1
|
Mizutani T, Boretto M, Lim S, Drost J, González DM, Oka R, Geurts MH, Begthel H, Korving J, van Es JH, van Boxtel R, Clevers H. Recapitulating the adenoma-carcinoma sequence by selection of four spontaneous oncogenic mutations in mismatch-repair-deficient human colon organoids. NATURE CANCER 2024:10.1038/s43018-024-00841-x. [PMID: 39487295 DOI: 10.1038/s43018-024-00841-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 09/23/2024] [Indexed: 11/04/2024]
Abstract
Carcinogenesis results from the sequential acquisition of oncogenic mutations that convert normal cells into invasive, metastasizing cancer cells. Colorectal cancer exemplifies this process through its well-described adenoma-carcinoma sequence, modeled previously using clustered regularly interspaced short palindromic repeats (CRISPR) to induce four consecutive mutations in wild-type human gut organoids. Here, we demonstrate that long-term culture of mismatch-repair-deficient organoids allows the selection of spontaneous oncogenic mutations through the sequential withdrawal of Wnt agonists, epidermal growth factor (EGF) agonists and the bone morphogenetic protein (BMP) antagonist Noggin, while TP53 mutations were selected through the addition of Nutlin-3. Thus, organoids sequentially acquired mutations in AXIN1 and AXIN2 (Wnt pathway), TP53, ACVR2A and BMPR2 (BMP pathway) and NRAS (EGF pathway), gaining complete independence from stem cell niche factors. Quadruple-pathway (Wnt, EGF receptor, p53 and BMP) mutant organoids formed solid tumors upon xenotransplantation. This demonstrates that carcinogenesis can be recapitulated in a DNA repair-mutant background through in vitro selection that targets four consecutive cancer pathways.
Collapse
Affiliation(s)
- Tomohiro Mizutani
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, Utrecht, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
- Department of Gastroenterology and Hepatology, Institute of Science Tokyo, Tokyo, Japan
| | - Matteo Boretto
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, Utrecht, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - Sangho Lim
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, Utrecht, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - Jarno Drost
- Oncode Institute, Utrecht, The Netherlands
- The Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Diego Montiel González
- Oncode Institute, Utrecht, The Netherlands
- The Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Rurika Oka
- Oncode Institute, Utrecht, The Netherlands
- The Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Maarten H Geurts
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, Utrecht, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
- The Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Harry Begthel
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, Utrecht, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - Jeroen Korving
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, Utrecht, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - Johan H van Es
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, Utrecht, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - Ruben van Boxtel
- Oncode Institute, Utrecht, The Netherlands
- The Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Hans Clevers
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, Utrecht, The Netherlands.
- Oncode Institute, Utrecht, The Netherlands.
- The Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands.
- Roche Pharmaceutical Research and Early Development, Basel, Switzerland.
| |
Collapse
|
2
|
Tsaalbi-Shtylik A, Mingard C, Räz M, Oka R, Manders F, Van Boxtel R, De Wind N, Sturla SJ. DNA mismatch repair controls the mutagenicity of Polymerase ζ-dependent translesion synthesis at methylated guanines. DNA Repair (Amst) 2024; 142:103755. [PMID: 39216121 DOI: 10.1016/j.dnarep.2024.103755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 07/27/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024]
Abstract
By replicating damaged nucleotides, error-prone DNA translesion synthesis (TLS) enables the completion of replication, albeit at the expense of fidelity. TLS of helix-distorting DNA lesions, that usually have reduced capacity of basepairing, comprises insertion opposite the lesion followed by extension, the latter in particular by polymerase ζ (Pol ζ). However, little is known about involvement of Pol ζ in TLS of non- or poorly-distorting, but miscoding, lesions such as O6-methyldeoxyguanosine (O6-medG). Using purified Pol ζ we describe that the enzyme can misincorporate thymidine opposite O6-medG and efficiently extend from terminal mismatches, suggesting its involvement in the mutagenicity of O6-medG. Surprisingly, O6-medG lesions induced by the methylating agent N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) appeared more, rather than less, mutagenic in Pol ζ-deficient mouse embryonic fibroblasts (MEFs) than in wild type MEFs. This suggested that in vivo Pol ζ participates in non-mutagenic TLS of O6-medG. However, we found that the Pol ζ-dependent misinsertions at O6-medG lesions are efficiently corrected by DNA mismatch repair (MMR), which masks the error-proneness of Pol ζ. We also found that the MNNG-induced mutational signature is determined by the adduct spectrum, and modulated by MMR. The signature mimicked single base substitution signature 11 in the catalogue of somatic mutations in cancer, associated with treatment with the methylating drug temozolomide. Our results unravel the individual roles of the major contributors to methylating drug-induced mutagenesis. Moreover, these results warrant caution as to the classification of TLS as mutagenic or error-free based on in vitro data or on the analysis of mutations induced in MMR-proficient cells.
Collapse
Affiliation(s)
| | - Cécile Mingard
- Department of Health Sciences and Technology, ETH Zürich, Zürich, 8092, Switzerland
| | - Michael Räz
- Department of Health Sciences and Technology, ETH Zürich, Zürich, 8092, Switzerland
| | - Rurika Oka
- Princess Máxima Center for Pediatric Oncology, Oncode Institute, Utrecht, 3584CS, the Netherlands
| | - Freek Manders
- Princess Máxima Center for Pediatric Oncology, Oncode Institute, Utrecht, 3584CS, the Netherlands
| | - Ruben Van Boxtel
- Princess Máxima Center for Pediatric Oncology, Oncode Institute, Utrecht, 3584CS, the Netherlands
| | - Niels De Wind
- Department of Human Genetics, Leiden University Medical Center, Leiden 2333AL, the Netherlands.
| | - Shana J Sturla
- Department of Health Sciences and Technology, ETH Zürich, Zürich, 8092, Switzerland.
| |
Collapse
|
3
|
Bertrums EJM, de Kanter JK, Derks LLM, Verheul M, Trabut L, van Roosmalen MJ, Hasle H, Antoniou E, Reinhardt D, Dworzak MN, Mühlegger N, van den Heuvel-Eibrink MM, Zwaan CM, Goemans BF, van Boxtel R. Selective pressures of platinum compounds shape the evolution of therapy-related myeloid neoplasms. Nat Commun 2024; 15:6025. [PMID: 39019934 PMCID: PMC11255340 DOI: 10.1038/s41467-024-50384-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 07/08/2024] [Indexed: 07/19/2024] Open
Abstract
Therapy-related myeloid neoplasms (t-MN) arise as a complication of chemo- and/or radiotherapy. Although t-MN can occur both in adult and childhood cancer survivors, the mechanisms driving therapy-related leukemogenesis likely vary across different ages. Chemotherapy is thought to induce driver mutations in children, whereas in adults pre-existing mutant clones are selected by the exposure. However, selective pressures induced by chemotherapy early in life are less well studied. Here, we use single-cell whole genome sequencing and phylogenetic inference to show that the founding cell of t-MN in children starts expanding after cessation of platinum exposure. In patients with Li-Fraumeni syndrome, characterized by a germline TP53 mutation, we find that the t-MN already expands during treatment, suggesting that platinum-induced growth inhibition is TP53-dependent. Our results demonstrate that germline aberrations can interact with treatment exposures in inducing t-MN, which is important for the development of more targeted, patient-specific treatment regimens and follow-up.
Collapse
Affiliation(s)
- Eline J M Bertrums
- Princess Máxima Centrum for pediatric oncology, Utrecht, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
- Department of Pediatric Oncology/Hematology, Erasmus Medical Center - Sophia Children's Hospital, Rotterdam, the Netherlands
| | - Jurrian K de Kanter
- Princess Máxima Centrum for pediatric oncology, Utrecht, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
| | - Lucca L M Derks
- Princess Máxima Centrum for pediatric oncology, Utrecht, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
| | - Mark Verheul
- Princess Máxima Centrum for pediatric oncology, Utrecht, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
| | - Laurianne Trabut
- Princess Máxima Centrum for pediatric oncology, Utrecht, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
| | - Markus J van Roosmalen
- Princess Máxima Centrum for pediatric oncology, Utrecht, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
| | - Henrik Hasle
- Department of Pediatrics, Aarhus University Hospital, Aarhus, Denmark
| | - Evangelia Antoniou
- Clinic of Pediatrics III, University Hospital of Essen, Essen, Germany
- AML-BFM Study Group, Essen, Germany
| | - Dirk Reinhardt
- Clinic of Pediatrics III, University Hospital of Essen, Essen, Germany
- AML-BFM Study Group, Essen, Germany
| | - Michael N Dworzak
- St. Anna Children's Cancer Research Institute, Vienna, Austria
- St. Anna Children's Hospital, Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
| | - Nora Mühlegger
- St. Anna Children's Cancer Research Institute, Vienna, Austria
| | | | - C Michel Zwaan
- Princess Máxima Centrum for pediatric oncology, Utrecht, the Netherlands
- Department of Pediatric Oncology/Hematology, Erasmus Medical Center - Sophia Children's Hospital, Rotterdam, the Netherlands
| | - Bianca F Goemans
- Princess Máxima Centrum for pediatric oncology, Utrecht, the Netherlands
| | - Ruben van Boxtel
- Princess Máxima Centrum for pediatric oncology, Utrecht, the Netherlands.
- Oncode Institute, Utrecht, the Netherlands.
| |
Collapse
|
4
|
Jin H, Yang Q, Yang J, Wang F, Feng J, Lei L, Dai M. Exploring tumor organoids for cancer treatment. APL MATERIALS 2024; 12. [DOI: 10.1063/5.0216185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
As a life-threatening chronic disease, cancer is characterized by tumor heterogeneity. This heterogeneity is associated with factors that lead to treatment failure and poor prognosis, including drug resistance, relapse, and metastasis. Therefore, precision medicine urgently needs personalized tumor models that accurately reflect the tumor heterogeneity. Currently, tumor organoid technologies are used to generate in vitro 3D tissues, which have been shown to precisely recapitulate structure, tumor microenvironment, expression profiles, functions, molecular signatures, and genomic alterations in primary tumors. Tumor organoid models are important for identifying potential therapeutic targets, characterizing the effects of anticancer drugs, and exploring novel diagnostic and therapeutic options. In this review, we describe how tumor organoids can be cultured and summarize how researchers can use them as an excellent tool for exploring cancer therapies. In addition, we discuss tumor organoids that have been applied in cancer therapy research and highlight the potential of tumor organoids to guide preclinical research.
Collapse
Affiliation(s)
- Hairong Jin
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine, Zhejiang Shuren University 1 , Hangzhou 310015, China
- The Third Affiliated Hospital of Wenzhou Medical University 2 , Wenzhou 325200, China
- Ningxia Medical University 3 , Ningxia 750004, China
| | - Qian Yang
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University 4 , Changsha 410011, Hunan, China
| | - Jing Yang
- The Third Affiliated Hospital of Wenzhou Medical University 2 , Wenzhou 325200, China
- Ningxia Medical University 3 , Ningxia 750004, China
| | - Fangyan Wang
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine, Zhejiang Shuren University 1 , Hangzhou 310015, China
| | - Jiayin Feng
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine, Zhejiang Shuren University 1 , Hangzhou 310015, China
| | - Lanjie Lei
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine, Zhejiang Shuren University 1 , Hangzhou 310015, China
| | - Minghai Dai
- The Third Affiliated Hospital of Wenzhou Medical University 2 , Wenzhou 325200, China
| |
Collapse
|
5
|
Bhartiya D, Raouf S, Pansare K, Tripathi A, Tripathi A. Initiation of Cancer: The Journey From Mutations in Somatic Cells to Epigenetic Changes in Tissue-resident VSELs. Stem Cell Rev Rep 2024; 20:857-880. [PMID: 38457060 DOI: 10.1007/s12015-024-10694-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/09/2024] [Indexed: 03/09/2024]
Abstract
Multiple theories exist to explain cancer initiation, although a consensus on this is crucial for developing effective therapies. 'Somatic mutation theory' suggests that mutations in somatic cells during DNA repair initiates cancer but this concept has several attached paradoxes. Research efforts to identify quiescent cancer stem cells (CSCs) that survive therapy and result in metastasis and recurrence have remained futile. In solid cancers, CSCs are suggested to appear during epithelial-mesenchymal transition by the dedifferentiation and reprogramming of epithelial cells. Pluripotent and quiescent very small embryonic-like stem cells (VSELs) exist in multiple tissues but remain elusive owing to their small size and scarce nature. VSELs are developmentally connected to primordial germ cells, undergo rare, asymmetrical cell divisions and are responsible for the regular turnover of cells to maintain tissue homeostasis throughout life. VSELs are directly vulnerable to extrinsic endocrine insults because they express gonadal and gonadotropin hormone receptors. VSELs undergo epigenetic changes due to endocrine insults and transform into CSCs. CSCs exhibit genomic instability and develop mutations due to errors during DNA replication while undergoing excessive proliferation and clonal expansion to form spheroids. Thus tissue-resident VSELs offer a connection between extrinsic insults and variations in cancer incidence reported in various body tissues. To conclude, cancer is indeed a stem cell disease with mutations occurring as a consequence. In addition to immunotherapy, targeting mutations, and Lgr5 + organoids for developing new therapeutics, targeting CSCs (epigenetically altered VSELs) by improving their niche and epigenetic status could serve as a promising strategy to treat cancer.
Collapse
Affiliation(s)
- Deepa Bhartiya
- Epigeneres Biotech Pvt Ltd, Todi Mill Compound, Senapati Bapat Marg, Lower Parel, 400013, Mumbai, India.
| | | | - Kshama Pansare
- Epigeneres Biotech Pvt Ltd, Todi Mill Compound, Senapati Bapat Marg, Lower Parel, 400013, Mumbai, India
| | - Anish Tripathi
- Epigeneres Biotech Pvt Ltd, Todi Mill Compound, Senapati Bapat Marg, Lower Parel, 400013, Mumbai, India
| | - Ashish Tripathi
- Epigeneres Biotech Pvt Ltd, Todi Mill Compound, Senapati Bapat Marg, Lower Parel, 400013, Mumbai, India
- 23Ikigai Pte Ltd, 30 Cecil Street, #21-08 Prudentsial Tower, Singapore, 049712, Singapore
| |
Collapse
|
6
|
Elitt MS, Tesar PJ. Pelizaeus-Merzbacher disease: on the cusp of myelin medicine. Trends Mol Med 2024; 30:459-470. [PMID: 38582621 PMCID: PMC11081862 DOI: 10.1016/j.molmed.2024.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/05/2024] [Accepted: 03/08/2024] [Indexed: 04/08/2024]
Abstract
Pelizaeus-Merzbacher disease (PMD) is caused by mutations in the proteolipid protein 1 (PLP1) gene encoding proteolipid protein (PLP). As a major component of myelin, mutated PLP causes progressive neurodegeneration and eventually death due to severe white matter deficits. Medical care has long been limited to symptomatic treatments, but first-in-class PMD therapies with novel mechanisms now stand poised to enter clinical trials. Here, we review PMD disease mechanisms and outline rationale for therapeutic interventions, including PLP1 suppression, cell transplantation, iron chelation, and intracellular stress modulation. We discuss available preclinical data and their implications on clinical development. With several novel treatments on the horizon, PMD is on the precipice of a new era in the diagnosis and treatment of patients suffering from this debilitating disease.
Collapse
Affiliation(s)
- Matthew S Elitt
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | - Paul J Tesar
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA.
| |
Collapse
|
7
|
Konkwo C, Chowdhury S, Vilarinho S. Genetics of liver disease in adults. Hepatol Commun 2024; 8:e0408. [PMID: 38551385 PMCID: PMC10984672 DOI: 10.1097/hc9.0000000000000408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 01/30/2024] [Indexed: 04/02/2024] Open
Abstract
Chronic liver disease stands as a significant global health problem with an estimated 2 million annual deaths across the globe. Combining the use of next-generation sequencing technologies with evolving knowledge in the interpretation of genetic variation across the human genome is propelling our understanding, diagnosis, and management of both rare and common liver diseases. Here, we review the contribution of risk and protective alleles to common forms of liver disease, the rising number of monogenic diseases affecting the liver, and the role of somatic genetic variants in the onset and progression of oncological and non-oncological liver diseases. The incorporation of genomic information in the diagnosis and management of patients with liver disease is driving the beginning of a new era of genomics-informed clinical hepatology practice, facilitating personalized medicine, and improving patient care.
Collapse
Affiliation(s)
- Chigoziri Konkwo
- Department of Internal Medicine, Section of Digestive Diseases, Yale School of Medicine, New Haven, Connecticut, USA
| | - Shanin Chowdhury
- Department of Internal Medicine, Section of Digestive Diseases, Yale School of Medicine, New Haven, Connecticut, USA
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Silvia Vilarinho
- Department of Internal Medicine, Section of Digestive Diseases, Yale School of Medicine, New Haven, Connecticut, USA
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
8
|
Youk J, Kwon HW, Lim J, Kim E, Kim T, Kim R, Park S, Yi K, Nam CH, Jeon S, An Y, Choi J, Na H, Lee ES, Cho Y, Min DW, Kim H, Kang YR, Choi SH, Bae MJ, Lee CG, Kim JG, Kim YS, Yu T, Lee WC, Shin JY, Lee DS, Kim TY, Ku T, Kim SY, Lee JH, Koo BK, Lee H, Yi OV, Han EC, Chang JH, Kim KS, Son TG, Ju YS. Quantitative and qualitative mutational impact of ionizing radiation on normal cells. CELL GENOMICS 2024; 4:100499. [PMID: 38359788 PMCID: PMC10879144 DOI: 10.1016/j.xgen.2024.100499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 10/23/2023] [Accepted: 01/09/2024] [Indexed: 02/17/2024]
Abstract
The comprehensive genomic impact of ionizing radiation (IR), a carcinogen, on healthy somatic cells remains unclear. Using large-scale whole-genome sequencing (WGS) of clones expanded from irradiated murine and human single cells, we revealed that IR induces a characteristic spectrum of short insertions or deletions (indels) and structural variations (SVs), including balanced inversions, translocations, composite SVs (deletion-insertion, deletion-inversion, and deletion-translocation composites), and complex genomic rearrangements (CGRs), including chromoplexy, chromothripsis, and SV by breakage-fusion-bridge cycles. Our findings suggest that 1 Gy IR exposure causes an average of 2.33 mutational events per Gb genome, comprising 2.15 indels, 0.17 SVs, and 0.01 CGRs, despite a high level of inter-cellular stochasticity. The mutational burden was dependent on total irradiation dose, regardless of dose rate or cell type. The findings were further validated in IR-induced secondary cancers and single cells without clonalization. Overall, our study highlights a comprehensive and clear picture of IR effects on normal mammalian genomes.
Collapse
Affiliation(s)
- Jeonghwan Youk
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Hyun Woo Kwon
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea; Department of Nuclear Medicine, Korea University College of Medicine, Seoul, Republic of Korea
| | - Joonoh Lim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea; Genome Insight, Inc., San Diego, CA 92121, USA
| | - Eunji Kim
- Department of Radiation Oncology, Seoul Metropolitan Government-Seoul National University Boramae Medical Center, 20, Boramae-ro 5 Gil, Dongjak-gu, Seoul 07061, Republic of Korea; Department of Radiation Oncology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Taewoo Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Ryul Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea; Genome Insight, Inc., San Diego, CA 92121, USA
| | - Seongyeol Park
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea; Genome Insight, Inc., San Diego, CA 92121, USA
| | - Kijong Yi
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea; Genome Insight, Inc., San Diego, CA 92121, USA
| | - Chang Hyun Nam
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Sara Jeon
- Department of Biological Sciences & IMBG, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Yohan An
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Jinwook Choi
- Wellcome - MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, CB2 0AW Cambridge, UK; Department of Physiology, Development and Neuroscience, University of Cambridge, CB2 3EL Cambridge, UK
| | - Hyelin Na
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Eon-Seok Lee
- Research Center, Dongnam Institute of Radiological and Medical Science, Busan, Republic of Korea
| | - Youngwon Cho
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea; Cancer Research Institute, Seoul National University, Seoul, Republic of Korea
| | - Dong-Wook Min
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea; Cancer Research Institute, Seoul National University, Seoul, Republic of Korea
| | - HyoJin Kim
- Research Center, Dongnam Institute of Radiological and Medical Science, Busan, Republic of Korea
| | - Yeong-Rok Kang
- Research Center, Dongnam Institute of Radiological and Medical Science, Busan, Republic of Korea
| | - Si Ho Choi
- Research Center, Dongnam Institute of Radiological and Medical Science, Busan, Republic of Korea
| | - Min Ji Bae
- Research Center, Dongnam Institute of Radiological and Medical Science, Busan, Republic of Korea
| | - Chang Geun Lee
- Research Center, Dongnam Institute of Radiological and Medical Science, Busan, Republic of Korea
| | - Joon-Goon Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea; KI for Health Science and Technology, KAIST, Daejeon 34141, Republic of Korea
| | - Young Seo Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea; KI for Health Science and Technology, KAIST, Daejeon 34141, Republic of Korea
| | - Tosol Yu
- Department of Radiation Oncology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; Department of Radiation Oncology, Dongnam Institute of Radiological and Medical Science, Busan 46033, Republic of Korea
| | | | | | - Dong Soo Lee
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea; Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Tae-You Kim
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea; Cancer Research Institute, Seoul National University, Seoul, Republic of Korea; Department of Internal Medicine, Seoul National University Hospital, Seoul 03080, Republic of Korea
| | - Taeyun Ku
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea; KI for Health Science and Technology, KAIST, Daejeon 34141, Republic of Korea
| | - Su Yeon Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Joo-Hyeon Lee
- Wellcome - MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, CB2 0AW Cambridge, UK; Department of Physiology, Development and Neuroscience, University of Cambridge, CB2 3EL Cambridge, UK
| | - Bon-Kyoung Koo
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Hyunsook Lee
- Department of Biological Sciences & IMBG, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - On Vox Yi
- Department of Breast Surgery, Dongnam Institute of Radiological and Medical Science, Busan, Republic of Korea
| | - Eon Chul Han
- Department of Surgery, Dongnam Institute of Radiological and Medical Science, Busan, Republic of Korea
| | - Ji Hyun Chang
- Department of Radiation Oncology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; Department of Radiation Oncology, Seoul National University Hospital, Seoul, Republic of Korea.
| | - Kyung Su Kim
- Department of Radiation Oncology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; Department of Radiation Oncology, Seoul National University Hospital, Seoul, Republic of Korea.
| | - Tae Gen Son
- Research Center, Dongnam Institute of Radiological and Medical Science, Busan, Republic of Korea.
| | - Young Seok Ju
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea; Genome Insight, Inc., San Diego, CA 92121, USA.
| |
Collapse
|
9
|
Chen W, Lin F, Feng X, Yao Q, Yu Y, Gao F, Zhou J, Pan Q, Wu J, Yang J, Yu J, Cao H, Li L. MSC-derived exosomes attenuate hepatic fibrosis in primary sclerosing cholangitis through inhibition of Th17 differentiation. Asian J Pharm Sci 2024; 19:100889. [PMID: 38419761 PMCID: PMC10900800 DOI: 10.1016/j.ajps.2024.100889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 12/13/2023] [Accepted: 01/14/2024] [Indexed: 03/02/2024] Open
Abstract
Primary sclerosing cholangitis (PSC) is an autoimmune cholangiopathy characterized by chronic inflammation of the biliary epithelium and periductal fibrosis, with no curative treatment available, and liver transplantation is inevitable for end-stage patients. Human placental mesenchymal stem cell (hpMSC)-derived exosomes have demonstrated the ability to prevent fibrosis, inhibit collagen production and possess immunomodulatory properties in autoimmune liver disease. Here, we prepared hpMSC-derived exosomes (ExoMSC) and further investigated the anti-fibrotic effects and detailed mechanism on PSC based on Mdr2-/- mice and multicellular organoids established from PSC patients. The results showed that ExoMSC ameliorated liver fibrosis in Mdr2-/- mice with significant collagen reduction in the preductal area where Th17 differentiation was inhibited as demonstrated by RNAseq analysis, and the percentage of CD4+IL-17A+T cells was reduced both in ExoMSC-treated Mdr2-/- mice (Mdr2-/--Exo) in vivo and ExoMSC-treated Th17 differentiation progressed in vitro. Furthermore, ExoMSC improved the hypersecretory phenotype and intercellular interactions in the hepatic Th17 microenvironment by regulating PERK/CHOP signaling as supported by multicellular organoids. Thus, our data demonstrate the anti-fibrosis effect of ExoMSC in PSC disease by inhibiting Th17 differentiation, and ameliorating the Th17-induced microenvironment, indicating the promising potential therapeutic role of ExoMSC in liver fibrosis of PSC or Th17-related diseases.
Collapse
Affiliation(s)
- Wenyi Chen
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Medical Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Feiyan Lin
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Medical Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Xudong Feng
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Medical Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Qigu Yao
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Medical Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Yingduo Yu
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Medical Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Feiqiong Gao
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Medical Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Jiahang Zhou
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Medical Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Qiaoling Pan
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Medical Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Jian Wu
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Medical Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Jinfeng Yang
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Medical Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Jiong Yu
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Medical Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Hongcui Cao
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Medical Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
- Key Laboratory of Diagnosis and Treatment of Aging and Physic-chemical Injury Diseases of Zhejiang Province, Hangzhou 310003, China
| | - Lanjuan Li
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Medical Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan 250117, China
| |
Collapse
|
10
|
Wang T, Song W, Meng Q, Qu C, Guo S, Wang Y, Tan R, Jia B, Chen Y. Tumorigenicity and prediction of clinical prognosis of patient-derived gastric cancer organoids. Clin Transl Med 2024; 14:e1588. [PMID: 38363112 PMCID: PMC10870796 DOI: 10.1002/ctm2.1588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/26/2024] [Accepted: 01/31/2024] [Indexed: 02/17/2024] Open
Affiliation(s)
- Ting Wang
- The State Key Laboratory of Membrane BiologyTsinghua‐Peking Center for Life SciencesSchool of Life SciencesTsinghua UniversityBeijingChina
| | - Wanlu Song
- The State Key Laboratory of Membrane BiologyTsinghua‐Peking Center for Life SciencesSchool of Life SciencesTsinghua UniversityBeijingChina
| | - Qingyu Meng
- Department of General SurgeryThe First Medical CenterPLA General HospitalBeijingChina
| | - Chuanqing Qu
- The State Key Laboratory of Membrane BiologyTsinghua‐Peking Center for Life SciencesSchool of Life SciencesTsinghua UniversityBeijingChina
| | - Shaohua Guo
- Department of General SurgeryThe First Medical CenterPLA General HospitalBeijingChina
| | | | | | - Baoqing Jia
- Department of General SurgeryThe First Medical CenterPLA General HospitalBeijingChina
| | - Ye‐Guang Chen
- The State Key Laboratory of Membrane BiologyTsinghua‐Peking Center for Life SciencesSchool of Life SciencesTsinghua UniversityBeijingChina
- Guangzhou National LaboratoryGuangzhouChina
- School of Basic MedicineJiangxi Medical CollegeNanchang UniversityNanchangChina
| |
Collapse
|
11
|
Derks LLM, van Boxtel R. Stem cell mutations, associated cancer risk, and consequences for regenerative medicine. Cell Stem Cell 2023; 30:1421-1433. [PMID: 37832550 PMCID: PMC10624213 DOI: 10.1016/j.stem.2023.09.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/05/2023] [Accepted: 09/20/2023] [Indexed: 10/15/2023]
Abstract
Mutation accumulation in stem cells has been associated with cancer risk. However, the presence of numerous mutant clones in healthy tissues has raised the question of what limits cancer initiation. Here, we review recent developments in characterizing mutation accumulation in healthy tissues and compare mutation rates in stem cells during development and adult life with corresponding cancer risk. A certain level of mutagenesis within the stem cell pool might be beneficial to limit the size of malignant clones through competition. This knowledge impacts our understanding of carcinogenesis with potential consequences for the use of stem cells in regenerative medicine.
Collapse
Affiliation(s)
- Lucca L M Derks
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, the Netherlands; Oncode Institute, Jaarbeursplein 6, 3521 AL Utrecht, the Netherlands
| | - Ruben van Boxtel
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, the Netherlands; Oncode Institute, Jaarbeursplein 6, 3521 AL Utrecht, the Netherlands.
| |
Collapse
|
12
|
Yang Q, Li M, Yang X, Xiao Z, Tong X, Tuerdi A, Li S, Lei L. Flourishing tumor organoids: History, emerging technology, and application. Bioeng Transl Med 2023; 8:e10559. [PMID: 37693042 PMCID: PMC10487342 DOI: 10.1002/btm2.10559] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 05/16/2023] [Accepted: 05/25/2023] [Indexed: 09/12/2023] Open
Abstract
Malignant tumors are one of the leading causes of death which impose an increasingly heavy burden on all countries. Therefore, the establishment of research models that closely resemble original tumor characteristics is crucial to further understanding the mechanisms of malignant tumor development, developing safer and more effective drugs, and formulating personalized treatment plans. Recently, organoids have been widely used in tumor research owing to their advantages including preserving the structure, heterogeneity, and cellular functions of the original tumor, together with the ease of manipulation. This review describes the history and characteristics of tumor organoids and the synergistic combination of three-dimensional (3D) culture approaches for tumor organoids with emerging technologies, including tissue-engineered cell scaffolds, microfluidic devices, 3D bioprinting, rotating wall vessels, and clustered regularly interspaced short palindromic repeats-CRISPR-associated protein 9 (CRISPR-Cas9). Additionally, the progress in research and the applications in basic and clinical research of tumor organoid models are summarized. This includes studies of the mechanism of tumor development, drug development and screening, precision medicine, immunotherapy, and simulation of the tumor microenvironment. Finally, the existing shortcomings of tumor organoids and possible future directions are discussed.
Collapse
Affiliation(s)
- Qian Yang
- Department of Otorhinolaryngology Head and Neck Surgery, the Second Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Mengmeng Li
- Department of Otorhinolaryngology Head and Neck Surgery, the Second Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Xinming Yang
- Department of Otorhinolaryngology Head and Neck Surgery, the Second Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Zian Xiao
- Department of Otorhinolaryngology Head and Neck Surgery, the Second Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Xinying Tong
- Department of Hemodialysis, the Second Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Ayinuer Tuerdi
- Department of Otorhinolaryngology Head and Neck Surgery, the Second Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Shisheng Li
- Department of Otorhinolaryngology Head and Neck Surgery, the Second Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Lanjie Lei
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical EngineeringSoutheast UniversityNanjingChina
| |
Collapse
|
13
|
Geurts MH, Gandhi S, Boretto MG, Akkerman N, Derks LLM, van Son G, Celotti M, Harshuk-Shabso S, Peci F, Begthel H, Hendriks D, Schürmann P, Andersson-Rolf A, Chuva de Sousa Lopes SM, van Es JH, van Boxtel R, Clevers H. One-step generation of tumor models by base editor multiplexing in adult stem cell-derived organoids. Nat Commun 2023; 14:4998. [PMID: 37591832 PMCID: PMC10435570 DOI: 10.1038/s41467-023-40701-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 08/07/2023] [Indexed: 08/19/2023] Open
Abstract
Optimization of CRISPR/Cas9-mediated genome engineering has resulted in base editors that hold promise for mutation repair and disease modeling. Here, we demonstrate the application of base editors for the generation of complex tumor models in human ASC-derived organoids. First we show efficacy of cytosine and adenine base editors in modeling CTNNB1 hot-spot mutations in hepatocyte organoids. Next, we use C > T base editors to insert nonsense mutations in PTEN in endometrial organoids and demonstrate tumorigenicity even in the heterozygous state. Moreover, drug sensitivity assays on organoids harboring either PTEN or PTEN and PIK3CA mutations reveal the mechanism underlying the initial stages of endometrial tumorigenesis. To further increase the scope of base editing we combine SpCas9 and SaCas9 for simultaneous C > T and A > G editing at individual target sites. Finally, we show that base editor multiplexing allow modeling of colorectal tumorigenesis in a single step by simultaneously transfecting sgRNAs targeting five cancer genes.
Collapse
Affiliation(s)
- Maarten H Geurts
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, 3584 CT, Utrecht, the Netherlands.
- Oncode Institute, 3521AL, Utrecht, the Netherlands.
- Princess Maxima Center for Pediatric Oncology, 3584 CS, Utrecht, the Netherlands.
| | - Shashank Gandhi
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, 3584 CT, Utrecht, the Netherlands
- Miller Institute for Basic Research in Science, University of California, Berkeley, CA, 94720, USA
| | - Matteo G Boretto
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, 3584 CT, Utrecht, the Netherlands
- Oncode Institute, 3521AL, Utrecht, the Netherlands
| | - Ninouk Akkerman
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, 3584 CT, Utrecht, the Netherlands
- Oncode Institute, 3521AL, Utrecht, the Netherlands
| | - Lucca L M Derks
- Oncode Institute, 3521AL, Utrecht, the Netherlands
- Princess Maxima Center for Pediatric Oncology, 3584 CS, Utrecht, the Netherlands
| | - Gijs van Son
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, 3584 CT, Utrecht, the Netherlands
- Oncode Institute, 3521AL, Utrecht, the Netherlands
- Princess Maxima Center for Pediatric Oncology, 3584 CS, Utrecht, the Netherlands
| | - Martina Celotti
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, 3584 CT, Utrecht, the Netherlands
- Oncode Institute, 3521AL, Utrecht, the Netherlands
| | - Sarina Harshuk-Shabso
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, 3584 CT, Utrecht, the Netherlands
- Oncode Institute, 3521AL, Utrecht, the Netherlands
| | - Flavia Peci
- Oncode Institute, 3521AL, Utrecht, the Netherlands
- Princess Maxima Center for Pediatric Oncology, 3584 CS, Utrecht, the Netherlands
| | - Harry Begthel
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, 3584 CT, Utrecht, the Netherlands
- Oncode Institute, 3521AL, Utrecht, the Netherlands
| | - Delilah Hendriks
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, 3584 CT, Utrecht, the Netherlands
- Oncode Institute, 3521AL, Utrecht, the Netherlands
- Princess Maxima Center for Pediatric Oncology, 3584 CS, Utrecht, the Netherlands
| | - Paul Schürmann
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, 3584 CT, Utrecht, the Netherlands
- Oncode Institute, 3521AL, Utrecht, the Netherlands
| | - Amanda Andersson-Rolf
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, 3584 CT, Utrecht, the Netherlands
- Oncode Institute, 3521AL, Utrecht, the Netherlands
| | | | - Johan H van Es
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, 3584 CT, Utrecht, the Netherlands
- Oncode Institute, 3521AL, Utrecht, the Netherlands
| | - Ruben van Boxtel
- Oncode Institute, 3521AL, Utrecht, the Netherlands
- Princess Maxima Center for Pediatric Oncology, 3584 CS, Utrecht, the Netherlands
| | - Hans Clevers
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, 3584 CT, Utrecht, the Netherlands.
- Oncode Institute, 3521AL, Utrecht, the Netherlands.
- Pharma Research Early Development, Basel, Switzerland.
| |
Collapse
|
14
|
Nam CH, Youk J, Kim JY, Lim J, Park JW, Oh SA, Lee HJ, Park JW, Won H, Lee Y, Jeong SY, Lee DS, Oh JW, Han J, Lee J, Kwon HW, Kim MJ, Ju YS. Widespread somatic L1 retrotransposition in normal colorectal epithelium. Nature 2023; 617:540-547. [PMID: 37165195 PMCID: PMC10191854 DOI: 10.1038/s41586-023-06046-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 04/04/2023] [Indexed: 05/12/2023]
Abstract
Throughout an individual's lifetime, genomic alterations accumulate in somatic cells1-11. However, the mutational landscape induced by retrotransposition of long interspersed nuclear element-1 (L1), a widespread mobile element in the human genome12-14, is poorly understood in normal cells. Here we explored the whole-genome sequences of 899 single-cell clones established from three different cell types collected from 28 individuals. We identified 1,708 somatic L1 retrotransposition events that were enriched in colorectal epithelium and showed a positive relationship with age. Fingerprinting of source elements showed 34 retrotransposition-competent L1s. Multidimensional analysis demonstrated that (1) somatic L1 retrotranspositions occur from early embryogenesis at a substantial rate, (2) epigenetic on/off of a source element is preferentially determined in the early organogenesis stage, (3) retrotransposition-competent L1s with a lower population allele frequency have higher retrotransposition activity and (4) only a small fraction of L1 transcripts in the cytoplasm are finally retrotransposed in somatic cells. Analysis of matched cancers further suggested that somatic L1 retrotransposition rate is substantially increased during colorectal tumourigenesis. In summary, this study illustrates L1 retrotransposition-induced somatic mosaicism in normal cells and provides insights into the genomic and epigenomic regulation of transposable elements over the human lifetime.
Collapse
Affiliation(s)
- Chang Hyun Nam
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Jeonghwan Youk
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
- Genome Insight, Inc., Daejeon, Republic of Korea
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | | | - Joonoh Lim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
- Genome Insight, Inc., Daejeon, Republic of Korea
| | - Jung Woo Park
- Korea Institute of Science and Technology Information, Daejeon, Republic of Korea
| | - Soo A Oh
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Hyun Jung Lee
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Ji Won Park
- Department of Surgery, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hyein Won
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Yunah Lee
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Seung-Yong Jeong
- Department of Surgery, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Dong-Sung Lee
- Department of Life Science, University of Seoul, Seoul, Republic of Korea
| | - Ji Won Oh
- Department of Anatomy, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
- Department of Anatomy, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jinju Han
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Junehawk Lee
- Korea Institute of Science and Technology Information, Daejeon, Republic of Korea
| | - Hyun Woo Kwon
- Department of Nuclear Medicine, Korea University College of Medicine, Seoul, Republic of Korea.
| | - Min Jung Kim
- Department of Surgery, Seoul National University College of Medicine, Seoul, Republic of Korea.
| | - Young Seok Ju
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea.
- Genome Insight, Inc., Daejeon, Republic of Korea.
| |
Collapse
|
15
|
Grave-to-cradle: human embryonic lineage tracing from the postmortem body. Exp Mol Med 2023; 55:13-21. [PMID: 36599930 PMCID: PMC9898511 DOI: 10.1038/s12276-022-00912-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 09/02/2022] [Accepted: 10/13/2022] [Indexed: 01/06/2023] Open
Abstract
Curiosity concerning the process of human creation has been around for a long time. Relevant questions seemed to be resolved with the knowledge of how cells divide after fertilization obtained through in vitro fertilization experiments. However, we still do not know how human life is created at the cellular level. Recently, the value of cadavers as a resource from which to obtain "normal" cells and tissues has been established, and human research using postmortem bodies has attracted growing scientific attention. As the human genome can be analyzed at the level of nucleotides through whole-genome sequencing, individual cells in a postmortem body can be traced back to determine what developmental processes have transpired from fertilization. These retrospective lineage tracing studies have answered several unsolved questions on how humans are created. This review covers the methodologies utilized in lineage tracing research in a historical context and the conceptual basis for reconstructing the division history of cells in a retrospective manner using postzygotic somatic variants in postmortem tissue. We further highlight answers that postmortem research could potentially address and discuss issues that wait to be solved in the future.
Collapse
|
16
|
Hamdan A, Ewing A. Unravelling the tumour genome: The evolutionary and clinical impacts of structural variants in tumourigenesis. J Pathol 2022; 257:479-493. [PMID: 35355264 PMCID: PMC9321913 DOI: 10.1002/path.5901] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/16/2022] [Accepted: 03/28/2022] [Indexed: 11/15/2022]
Abstract
Structural variants (SVs) represent a major source of aberration in tumour genomes. Given the diversity in the size and type of SVs present in tumours, the accurate detection and interpretation of SVs in tumours is challenging. New classes of complex structural events in tumours are discovered frequently, and the definitions of the genomic consequences of complex events are constantly being refined. Detailed analyses of short-read whole-genome sequencing (WGS) data from large tumour cohorts facilitate the interrogation of SVs at orders of magnitude greater scale and depth. However, the inherent technical limitations of short-read WGS prevent us from accurately detecting and investigating the impact of all the SVs present in tumours. The expanded use of long-read WGS will be critical for improving the accuracy of SV detection, and in fully resolving complex SV events, both of which are crucial for determining the impact of SVs on tumour progression and clinical outcome. Despite the present limitations, we demonstrate that SVs play an important role in tumourigenesis. In particular, SVs contribute significantly to late-stage tumour development and to intratumoural heterogeneity. The evolutionary trajectories of SVs represent a window into the clonal dynamics in tumours, a comprehensive understanding of which will be vital for influencing patient outcomes in the future. Recent findings have highlighted many clinical applications of SVs in cancer, from early detection to biomarkers for treatment response and prognosis. As the methods to detect and interpret SVs improve, elucidating the full breadth of the complex SV landscape and determining how these events modulate tumour evolution will improve our understanding of cancer biology and our ability to capitalise on the utility of SVs in the clinical management of cancer patients. © 2022 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Alhafidz Hamdan
- MRC Human Genetics Unit, Institute of Genetics and CancerUniversity of EdinburghEdinburghUK
- Cancer Research UK Edinburgh Centre, Institute of Genetics and CancerUniversity of EdinburghEdinburghUK
| | - Ailith Ewing
- MRC Human Genetics Unit, Institute of Genetics and CancerUniversity of EdinburghEdinburghUK
- Cancer Research UK Edinburgh Centre, Institute of Genetics and CancerUniversity of EdinburghEdinburghUK
| |
Collapse
|
17
|
Matas J, Kohrn B, Fredrickson J, Carter K, Yu M, Wang T, Gui X, Soussi T, Moreno V, Grady WM, Peinado MA, Risques RA. Colorectal Cancer Is Associated with the Presence of Cancer Driver Mutations in Normal Colon. Cancer Res 2022; 82:1492-1502. [PMID: 35425963 PMCID: PMC9022358 DOI: 10.1158/0008-5472.can-21-3607] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 01/20/2022] [Accepted: 02/10/2022] [Indexed: 11/16/2022]
Abstract
Although somatic mutations in colorectal cancer are well characterized, little is known about the accumulation of cancer mutations in the normal colon before cancer. Here, we have developed and applied an ultrasensitive, single-molecule mutational test based on CRISPR-DS technology, which enables mutation detection at extremely low frequency (<0.001) in normal colon from patients with and without colorectal cancer. This testing platform revealed that normal colon from patients with and without colorectal cancer carries mutations in common colorectal cancer genes, but these mutations are more abundant in patients with cancer. Oncogenic KRAS mutations were observed in the normal colon of about one third of patients with colorectal cancer but in none of the patients without colorectal cancer. Patients with colorectal cancer also carried more TP53 mutations than patients without cancer and these mutations were more pathogenic and formed larger clones, especially in patients with early-onset colorectal cancer. Most mutations in the normal colon were different from the driver mutations in tumors, suggesting that the occurrence of independent clones with pathogenic KRAS and TP53 mutations is a common event in the colon of individuals who develop colorectal cancer. These results indicate that somatic evolution contributes to clonal expansions in the normal colon and that this process is enhanced in individuals with cancer, particularly in those with early-onset colorectal cancer. SIGNIFICANCE This work suggests prevalent somatic evolution in the normal colon of patients with colorectal cancer, highlighting the potential of using ultrasensitive gene sequencing to predict disease risk.
Collapse
Affiliation(s)
- Julia Matas
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, USA
- Institut Germans Trias i Pujol, Badalona, Spain
| | - Brendan Kohrn
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, USA
| | - Jeanne Fredrickson
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, USA
| | - Kelly Carter
- Fred Hutchinson Cancer Research Center, Seattle, USA
| | - Ming Yu
- Fred Hutchinson Cancer Research Center, Seattle, USA
| | - Ting Wang
- Fred Hutchinson Cancer Research Center, Seattle, USA
| | - Xianyong Gui
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, USA
| | - Thierry Soussi
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
- Sorbonne Université, UPMC Univ Paris 06, F- 75005 Paris, France
- INSERM, U1138, Centre de Recherche des Cordeliers, Paris, France
| | - Victor Moreno
- Oncology Data Analytics Program, Catalan Institute of Oncology (ICO), Barcelona, Spain
- Colorectal Cancer Group, ONCOBELL Program, Institut de Recerca Biomedica de Bellvitge (IDIBELL), Barcelona, Spain
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Barcelona, Spain
- Department of Clinical Sciences, Faculty of Medicine, University of Barcelona, Barcelona, Spain
| | | | | | - Rosa Ana Risques
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, USA
| |
Collapse
|
18
|
Hasaart KA, Manders F, Ubels J, Verheul M, van Roosmalen MJ, Groenen NM, Oka R, Kuijk E, Lopes SMCDS, Boxtel RV. Human induced pluripotent stem cells display a similar mutation burden as embryonic pluripotent cells in vivo. iScience 2022; 25:103736. [PMID: 35118356 PMCID: PMC8792070 DOI: 10.1016/j.isci.2022.103736] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 12/03/2021] [Accepted: 01/02/2022] [Indexed: 11/30/2022] Open
Abstract
Induced pluripotent stem cells (iPSCs) hold great promise for regenerative medicine, but genetic instability is a major concern. Embryonic pluripotent cells also accumulate mutations during early development, but how this relates to the mutation burden in iPSCs remains unknown. Here, we directly compared the mutation burden of cultured iPSCs with their isogenic embryonic cells during human embryogenesis. We generated developmental lineage trees of human fetuses by phylogenetic inference from somatic mutations in the genomes of multiple stem cells, which were derived from different germ layers. Using this approach, we characterized the mutations acquired pre-gastrulation and found a rate of 1.65 mutations per cell division. When cultured in hypoxic conditions, iPSCs generated from fetal stem cells of the assessed fetuses displayed a similar mutation rate and spectrum. Our results show that iPSCs maintain a genomic integrity during culture at a similar degree as their pluripotent counterparts do in vivo.
Collapse
Affiliation(s)
- Karlijn A.L. Hasaart
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, the Netherlands
- Oncode Institute, Jaarbeursplein 6, 3521 AL Utrecht, the Netherlands
| | - Freek Manders
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, the Netherlands
- Oncode Institute, Jaarbeursplein 6, 3521 AL Utrecht, the Netherlands
| | - Joske Ubels
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, the Netherlands
- Oncode Institute, Jaarbeursplein 6, 3521 AL Utrecht, the Netherlands
| | - Mark Verheul
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, the Netherlands
- Oncode Institute, Jaarbeursplein 6, 3521 AL Utrecht, the Netherlands
| | - Markus J. van Roosmalen
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, the Netherlands
- Oncode Institute, Jaarbeursplein 6, 3521 AL Utrecht, the Netherlands
| | - Niels M. Groenen
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, the Netherlands
- Oncode Institute, Jaarbeursplein 6, 3521 AL Utrecht, the Netherlands
| | - Rurika Oka
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, the Netherlands
- Oncode Institute, Jaarbeursplein 6, 3521 AL Utrecht, the Netherlands
| | - Ewart Kuijk
- Oncode Institute, Jaarbeursplein 6, 3521 AL Utrecht, the Netherlands
- Center for Molecular Medicine, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG Utrecht, the Netherlands
| | | | - Ruben van Boxtel
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, the Netherlands
- Oncode Institute, Jaarbeursplein 6, 3521 AL Utrecht, the Netherlands
| |
Collapse
|
19
|
Bollen Y, Hageman JH, van Leenen P, Derks LLM, Ponsioen B, Buissant des Amorie JR, Verlaan-Klink I, van den Bos M, Terstappen LWMM, van Boxtel R, Snippert HJG. Efficient and error-free fluorescent gene tagging in human organoids without double-strand DNA cleavage. PLoS Biol 2022; 20:e3001527. [PMID: 35089911 PMCID: PMC8827455 DOI: 10.1371/journal.pbio.3001527] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 02/09/2022] [Accepted: 01/05/2022] [Indexed: 12/30/2022] Open
Abstract
CRISPR-associated nucleases are powerful tools for precise genome editing of model systems, including human organoids. Current methods describing fluorescent gene tagging in organoids rely on the generation of DNA double-strand breaks (DSBs) to stimulate homology-directed repair (HDR) or non-homologous end joining (NHEJ)-mediated integration of the desired knock-in. A major downside associated with DSB-mediated genome editing is the required clonal selection and expansion of candidate organoids to verify the genomic integrity of the targeted locus and to confirm the absence of off-target indels. By contrast, concurrent nicking of the genomic locus and targeting vector, known as in-trans paired nicking (ITPN), stimulates efficient HDR-mediated genome editing to generate large knock-ins without introducing DSBs. Here, we show that ITPN allows for fast, highly efficient, and indel-free fluorescent gene tagging in human normal and cancer organoids. Highlighting the ease and efficiency of ITPN, we generate triple fluorescent knock-in organoids where 3 genomic loci were simultaneously modified in a single round of targeting. In addition, we generated model systems with allele-specific readouts by differentially modifying maternal and paternal alleles in one step. ITPN using our palette of targeting vectors, publicly available from Addgene, is ideally suited for generating error-free heterozygous knock-ins in human organoids. A major downside of double-strand break-mediated genome editing is the need to verify the genomic integrity of the targeted locus and confirm the absence of off-target indels. This study shows that in-trans paired nicking is a mutation-free CRISPR strategy to introduce precise knock-ins into human organoids; its genomic fidelity allows all knock-in cells to be pooled, accelerating the establishment of new organoid models.
Collapse
Affiliation(s)
- Yannik Bollen
- Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
- Medical Cell Biophysics, TechMed Centre, University of Twente, Enschede, the Netherlands
| | - Joris H. Hageman
- Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
| | - Petra van Leenen
- Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
| | - Lucca L. M. Derks
- Oncode Institute, Utrecht, the Netherlands
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Bas Ponsioen
- Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
| | - Julian R. Buissant des Amorie
- Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
| | - Ingrid Verlaan-Klink
- Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
| | - Myrna van den Bos
- Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
| | | | - Ruben van Boxtel
- Oncode Institute, Utrecht, the Netherlands
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Hugo J. G. Snippert
- Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
- * E-mail:
| |
Collapse
|
20
|
Nguyen L, Jager M, Lieshout R, de Ruiter PE, Locati MD, Besselink N, van der Roest B, Janssen R, Boymans S, de Jonge J, IJzermans JNM, Doukas M, Verstegen MMA, van Boxtel R, van der Laan LJW, Cuppen E, Kuijk E. Precancerous liver diseases do not cause increased mutagenesis in liver stem cells. Commun Biol 2021; 4:1301. [PMID: 34795391 PMCID: PMC8602268 DOI: 10.1038/s42003-021-02839-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 10/30/2021] [Indexed: 12/18/2022] Open
Abstract
Inflammatory liver disease increases the risk of developing primary liver cancer. The mechanism through which liver disease induces tumorigenesis remains unclear, but is thought to occur via increased mutagenesis. Here, we performed whole-genome sequencing on clonally expanded single liver stem cells cultured as intrahepatic cholangiocyte organoids (ICOs) from patients with alcoholic cirrhosis, non-alcoholic steatohepatitis (NASH), and primary sclerosing cholangitis (PSC). Surprisingly, we find that these precancerous liver disease conditions do not result in a detectable increased accumulation of mutations, nor altered mutation types in individual liver stem cells. This finding contrasts with the mutational load and typical mutational signatures reported for liver tumors, and argues against the hypothesis that liver disease drives tumorigenesis via a direct mechanism of induced mutagenesis. Disease conditions in the liver may thus act through indirect mechanisms to drive the transition from healthy to cancerous cells, such as changes to the microenvironment that favor the outgrowth of precancerous cells.
Collapse
Affiliation(s)
- Luan Nguyen
- Center for Molecular Medicine and Oncode Institute, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Myrthe Jager
- Center for Molecular Medicine and Oncode Institute, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | | | - Mauro D Locati
- Center for Molecular Medicine and Oncode Institute, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Nicolle Besselink
- Center for Molecular Medicine and Oncode Institute, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Bastiaan van der Roest
- Center for Molecular Medicine and Oncode Institute, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Roel Janssen
- Center for Molecular Medicine and Oncode Institute, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Sander Boymans
- Center for Molecular Medicine and Oncode Institute, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | | | | | | | | | | | - Edwin Cuppen
- Center for Molecular Medicine and Oncode Institute, University Medical Center Utrecht, Utrecht, The Netherlands.
- Hartwig Medical Foundation, Amsterdam, The Netherlands.
| | - Ewart Kuijk
- Center for Molecular Medicine and Oncode Institute, University Medical Center Utrecht, Utrecht, The Netherlands.
| |
Collapse
|
21
|
Rosendahl Huber A, Van Hoeck A, Van Boxtel R. The Mutagenic Impact of Environmental Exposures in Human Cells and Cancer: Imprints Through Time. Front Genet 2021; 12:760039. [PMID: 34745228 PMCID: PMC8565797 DOI: 10.3389/fgene.2021.760039] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 10/05/2021] [Indexed: 12/25/2022] Open
Abstract
During life, the DNA of our cells is continuously exposed to external damaging processes. Despite the activity of various repair mechanisms, DNA damage eventually results in the accumulation of mutations in the genomes of our cells. Oncogenic mutations are at the root of carcinogenesis, and carcinogenic agents are often highly mutagenic. Over the past decade, whole genome sequencing data of healthy and tumor tissues have revealed how cells in our body gradually accumulate mutations because of exposure to various mutagenic processes. Dissection of mutation profiles based on the type and context specificities of the altered bases has revealed a variety of signatures that reflect past exposure to environmental mutagens, ranging from chemotherapeutic drugs to genotoxic gut bacteria. In this review, we discuss the latest knowledge on somatic mutation accumulation in human cells, and how environmental mutagenic factors further shape the mutation landscapes of tissues. In addition, not all carcinogenic agents induce mutations, which may point to alternative tumor-promoting mechanisms, such as altered clonal selection dynamics. In short, we provide an overview of how environmental factors induce mutations in the DNA of our healthy cells and how this contributes to carcinogenesis. A better understanding of how environmental mutagens shape the genomes of our cells can help to identify potential preventable causes of cancer.
Collapse
Affiliation(s)
- Axel Rosendahl Huber
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
- Oncode Institute, Utrecht, Netherlands
| | - Arne Van Hoeck
- Oncode Institute, Utrecht, Netherlands
- Center for Molecular Medicine, University Medical Centre Utrecht, Utrecht, Netherlands
| | - Ruben Van Boxtel
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
- Oncode Institute, Utrecht, Netherlands
| |
Collapse
|
22
|
Brandsma AM, Bertrums EJM, van Roosmalen MJ, Hofman DA, Oka R, Verheul M, Manders F, Ubels J, Belderbos ME, van Boxtel R. Mutation signatures of pediatric acute myeloid leukemia and normal blood progenitors associated with differential patient outcomes. Blood Cancer Discov 2021; 2:484-499. [PMID: 34642666 PMCID: PMC7611805 DOI: 10.1158/2643-3230.bcd-21-0010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
A subset of pediatric AML cases harbors more somatic mutations in their genomes compared to normal blood progenitors. This subset displays expression profiles that resemble more committed progenitors and associates with better patient survival. Acquisition of oncogenic mutations with age is believed to be rate limiting for carcinogenesis. However, the incidence of leukemia in children is higher than in young adults. Here we compare somatic mutations across pediatric acute myeloid leukemia (pAML) patient-matched leukemic blasts and hematopoietic stem and progenitor cells (HSPC), as well as HSPCs from age-matched healthy donors. HSPCs in the leukemic bone marrow have limited genetic relatedness and share few somatic mutations with the cell of origin of the malignant blasts, suggesting polyclonal hematopoiesis in patients with pAML. Compared with normal HSPCs, a subset of pAML cases harbored more somatic mutations and a distinct composition of mutational process signatures. We hypothesize that these cases might have arisen from a more committed progenitor. This subset had better outcomes than pAML cases with mutation burden comparable with age-matched healthy HSPCs. Our study provides insights into the etiology and patient stratification of pAML.
Collapse
Affiliation(s)
- Arianne M Brandsma
- Princess Máxima Center for Pediatric Oncology and Oncode Institute, Heidelberglaan 25, 3584CS Utrecht, The Netherlands
| | - Eline J M Bertrums
- Princess Máxima Center for Pediatric Oncology and Oncode Institute, Heidelberglaan 25, 3584CS Utrecht, The Netherlands
| | - Markus J van Roosmalen
- Princess Máxima Center for Pediatric Oncology and Oncode Institute, Heidelberglaan 25, 3584CS Utrecht, The Netherlands
| | - Damon A Hofman
- Princess Máxima Center for Pediatric Oncology and Oncode Institute, Heidelberglaan 25, 3584CS Utrecht, The Netherlands
| | - Rurika Oka
- Princess Máxima Center for Pediatric Oncology and Oncode Institute, Heidelberglaan 25, 3584CS Utrecht, The Netherlands
| | - Mark Verheul
- Princess Máxima Center for Pediatric Oncology and Oncode Institute, Heidelberglaan 25, 3584CS Utrecht, The Netherlands
| | - Freek Manders
- Princess Máxima Center for Pediatric Oncology and Oncode Institute, Heidelberglaan 25, 3584CS Utrecht, The Netherlands
| | - Joske Ubels
- Princess Máxima Center for Pediatric Oncology and Oncode Institute, Heidelberglaan 25, 3584CS Utrecht, The Netherlands
| | - Mirjam E Belderbos
- Princess Máxima Center for Pediatric Oncology and Oncode Institute, Heidelberglaan 25, 3584CS Utrecht, The Netherlands
| | - Ruben van Boxtel
- Princess Máxima Center for Pediatric Oncology and Oncode Institute, Heidelberglaan 25, 3584CS Utrecht, The Netherlands
| |
Collapse
|
23
|
Antiviral treatment causes a unique mutational signature in cancers of transplantation recipients. Cell Stem Cell 2021; 28:1726-1739.e6. [PMID: 34496298 PMCID: PMC8516432 DOI: 10.1016/j.stem.2021.07.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 06/11/2021] [Accepted: 07/29/2021] [Indexed: 02/06/2023]
Abstract
Genetic instability is a major concern for successful application of stem cells in regenerative medicine. However, the mutational consequences of the most applied stem cell therapy in humans, hematopoietic stem cell transplantation (HSCT), remain unknown. Here we characterized the mutation burden of hematopoietic stem and progenitor cells (HSPCs) of human HSCT recipients and their donors using whole-genome sequencing. We demonstrate that the majority of transplanted HSPCs did not display altered mutation accumulation. However, in some HSCT recipients, we identified multiple HSPCs with an increased mutation burden after transplantation. This increase could be attributed to a unique mutational signature caused by the antiviral drug ganciclovir. Using a machine learning approach, we detected this signature in cancer genomes of individuals who received HSCT or solid organ transplantation earlier in life. Antiviral treatment with nucleoside analogs can cause enhanced mutagenicity in transplant recipients, which may ultimately contribute to therapy-related carcinogenesis.
Collapse
|
24
|
Youk J, Kwon HW, Kim R, Ju YS. Dissecting single-cell genomes through the clonal organoid technique. Exp Mol Med 2021; 53:1503-1511. [PMID: 34663940 PMCID: PMC8569207 DOI: 10.1038/s12276-021-00680-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 07/13/2021] [Indexed: 12/11/2022] Open
Abstract
The revolution in genome sequencing technologies has enabled the comprehensive detection of genomic variations in human cells, including inherited germline polymorphisms, de novo mutations, and postzygotic mutations. When these technologies are combined with techniques for isolating and expanding single-cell DNA, the landscape of somatic mosaicism in an individual body can be systematically revealed at a single-cell resolution. Here, we summarize three strategies (whole-genome amplification, microdissection of clonal patches in the tissue, and in vitro clonal expansion of single cells) that are currently applied for single-cell mutational analyses. Among these approaches, in vitro clonal expansion, particularly via adult stem cell-derived organoid culture technologies, yields the most sensitive and precise catalog of somatic mutations in single cells. Moreover, because it produces living mutant cells, downstream validation experiments and multiomics profiling are possible. Through the synergistic combination of organoid culture and genome sequencing, researchers can track genome changes at a single-cell resolution, which will lead to new discoveries that were previously impossible.
Collapse
Affiliation(s)
- Jeonghwan Youk
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- GENOME INSIGHT Inc, Daejeon, 34051, Republic of Korea
| | - Hyun Woo Kwon
- Department of Nuclear Medicine, Korea University College of Medicine, Seoul, 02841, Republic of Korea
| | - Ryul Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Young Seok Ju
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.
- GENOME INSIGHT Inc, Daejeon, 34051, Republic of Korea.
| |
Collapse
|
25
|
Geurts MH, de Poel E, Pleguezuelos-Manzano C, Oka R, Carrillo L, Andersson-Rolf A, Boretto M, Brunsveld JE, van Boxtel R, Beekman JM, Clevers H. Evaluating CRISPR-based prime editing for cancer modeling and CFTR repair in organoids. Life Sci Alliance 2021; 4:e202000940. [PMID: 34373320 PMCID: PMC8356249 DOI: 10.26508/lsa.202000940] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 07/13/2021] [Accepted: 07/16/2021] [Indexed: 12/14/2022] Open
Abstract
Prime editing is a recently reported genome editing tool using a nickase-cas9 fused to a reverse transcriptase that directly synthesizes the desired edit at the target site. Here, we explore the use of prime editing in human organoids. Common TP53 mutations can be correctly modeled in human adult stem cell-derived colonic organoids with efficiencies up to 25% and up to 97% in hepatocyte organoids. Next, we functionally repaired the cystic fibrosis CFTR-F508del mutation and compared prime editing to CRISPR/Cas9-mediated homology-directed repair and adenine base editing on the CFTR-R785* mutation. Whole-genome sequencing of prime editing-repaired organoids revealed no detectable off-target effects. Despite encountering varying editing efficiencies and undesired mutations at the target site, these results underline the broad applicability of prime editing for modeling oncogenic mutations and showcase the potential clinical application of this technique, pending further optimization.
Collapse
Affiliation(s)
- Maarten H Geurts
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, Utrecht, the Netherlands
- Oncode Institute, Hubrecht Institute, Utrecht, the Netherlands
| | - Eyleen de Poel
- Department of Pediatric Respiratory Medicine, Wilhelmina Children's Hospital, University Medical Center, Utrecht University, Utrecht, the Netherlands
- Regenerative Medicine Utrecht, University Medical Center, Utrecht University, Utrecht, the Netherlands
| | - Cayetano Pleguezuelos-Manzano
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, Utrecht, the Netherlands
- Oncode Institute, Hubrecht Institute, Utrecht, the Netherlands
| | - Rurika Oka
- Oncode Institute,Princes Maxima Center, Utrecht, The Netherlands
| | - Léo Carrillo
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, Utrecht, the Netherlands
- Oncode Institute, Hubrecht Institute, Utrecht, the Netherlands
| | - Amanda Andersson-Rolf
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, Utrecht, the Netherlands
- Oncode Institute, Hubrecht Institute, Utrecht, the Netherlands
| | - Matteo Boretto
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, Utrecht, the Netherlands
- Oncode Institute, Hubrecht Institute, Utrecht, the Netherlands
| | - Jesse E Brunsveld
- Department of Pediatric Respiratory Medicine, Wilhelmina Children's Hospital, University Medical Center, Utrecht University, Utrecht, the Netherlands
- Regenerative Medicine Utrecht, University Medical Center, Utrecht University, Utrecht, the Netherlands
| | - Ruben van Boxtel
- Oncode Institute,Princes Maxima Center, Utrecht, The Netherlands
| | - Jeffrey M Beekman
- Department of Pediatric Respiratory Medicine, Wilhelmina Children's Hospital, University Medical Center, Utrecht University, Utrecht, the Netherlands
- Regenerative Medicine Utrecht, University Medical Center, Utrecht University, Utrecht, the Netherlands
| | - Hans Clevers
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, Utrecht, the Netherlands
- Oncode Institute, Hubrecht Institute, Utrecht, the Netherlands
| |
Collapse
|
26
|
Luo Z, Zhou X, Mandal K, He N, Wennerberg W, Qu M, Jiang X, Sun W, Khademhosseini A. Reconstructing the tumor architecture into organoids. Adv Drug Deliv Rev 2021; 176:113839. [PMID: 34153370 PMCID: PMC8560135 DOI: 10.1016/j.addr.2021.113839] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 06/11/2021] [Accepted: 06/14/2021] [Indexed: 02/07/2023]
Abstract
Cancer remains a leading health burden worldwide. One of the challenges hindering cancer therapy development is the substantial discrepancies between the existing cancer models and the tumor microenvironment (TME) of human patients. Constructing tumor organoids represents an emerging approach to recapitulate the pathophysiological features of the TME in vitro. Over the past decade, various approaches have been demonstrated to engineer tumor organoids as in vitro cancer models, such as incorporating multiple cellular populations, reconstructing biophysical and chemical traits, and even recapitulating structural features. In this review, we focus on engineering approaches for building tumor organoids, including biomaterial-based, microfabrication-assisted, and synthetic biology-facilitated strategies. Furthermore, we summarize the applications of engineered tumor organoids in basic cancer research, cancer drug discovery, and personalized medicine. We also discuss the challenges and future opportunities in using tumor organoids for broader applications.
Collapse
Affiliation(s)
- Zhimin Luo
- Department of Bioengineering, California NanoSystems Institute and Center for Minimally Invasive Therapeutics, University of California, Los Angeles, Los Angeles, CA 90095, USA; School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, China
| | - Xingwu Zhou
- Department of Bioengineering, California NanoSystems Institute and Center for Minimally Invasive Therapeutics, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA
| | - Kalpana Mandal
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064, USA
| | - Na He
- School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, China
| | - Wally Wennerberg
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064, USA
| | - Moyuan Qu
- Department of Bioengineering, California NanoSystems Institute and Center for Minimally Invasive Therapeutics, University of California, Los Angeles, Los Angeles, CA 90095, USA; Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, and Cancer Center of Zhejiang University, Hangzhou 310006, China
| | - Xing Jiang
- Department of Bioengineering, California NanoSystems Institute and Center for Minimally Invasive Therapeutics, University of California, Los Angeles, Los Angeles, CA 90095, USA; School of Nursing, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Wujin Sun
- Department of Bioengineering, California NanoSystems Institute and Center for Minimally Invasive Therapeutics, University of California, Los Angeles, Los Angeles, CA 90095, USA; Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064, USA.
| | - Ali Khademhosseini
- Department of Bioengineering, California NanoSystems Institute and Center for Minimally Invasive Therapeutics, University of California, Los Angeles, Los Angeles, CA 90095, USA; Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064, USA; Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA; Jonsson Comprehensive Cancer Center, Department of Radiology, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
27
|
Struys I, Lenaerts L, Thienpont B, Amant F. Novel next-generation sequencing-based methodologies to characterize the mutational consequences of (prenatal) chemotherapy exposure in noncancerous tissue. Curr Opin Oncol 2021; 33:476-484. [PMID: 34038918 DOI: 10.1097/cco.0000000000000755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW Although chemotherapeutics are considered as genotoxins for decades, their exact mutagenic impact on the genome of cancerous and normal cells of cancer patients was unknown for a long time. However, this knowledge is necessary to understand the long-term side effects of chemotherapy. A particular condition represents pregnant cancer patients being treated with chemotherapy. Since certain chemotherapeutics can cross the placenta, concerns exist about possible mutational effects on the fetus' genome with potential long-term health consequences. RECENT FINDINGS Recent advances of next-generation sequencing (NGS) techniques have opened possibilities to explore the exact mutational footprint of chemotherapies in healthy tissue from treated cancer patients. However, the ultra-low frequency of chemotherapy-induced mutations, introduction of technical artefacts, and inaccessibility of normal tissue has posed important limitations. This review discusses five state-of-the-art approaches that were recently designed to overcome these drawbacks. SUMMARY Results of the latest investigations give valuable insights into the genome-wide genotoxicity profile of frequently applied chemotherapies, with most of these drugs being associated with a signature of random base substitutions and small indels. Though these findings still might be limited to extrapolate to healthy tissue, they pave the way for studies on the origin of long-term chemotherapy-related adverse health effects.
Collapse
Affiliation(s)
| | | | | | - Frédéric Amant
- Department of Oncology
- Gynecologic Oncology, Netherlands Cancer Institute
- Gynecologic Oncology, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| |
Collapse
|
28
|
Rothgangl T, Dennis MK, Lin PJC, Oka R, Witzigmann D, Villiger L, Qi W, Hruzova M, Kissling L, Lenggenhager D, Borrelli C, Egli S, Frey N, Bakker N, Walker JA, Kadina AP, Victorov DV, Pacesa M, Kreutzer S, Kontarakis Z, Moor A, Jinek M, Weissman D, Stoffel M, van Boxtel R, Holden K, Pardi N, Thöny B, Häberle J, Tam YK, Semple SC, Schwank G. In vivo adenine base editing of PCSK9 in macaques reduces LDL cholesterol levels. Nat Biotechnol 2021; 39:949-957. [PMID: 34012094 PMCID: PMC8352781 DOI: 10.1038/s41587-021-00933-4] [Citation(s) in RCA: 203] [Impact Index Per Article: 67.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 04/23/2021] [Indexed: 02/02/2023]
Abstract
Most known pathogenic point mutations in humans are C•G to T•A substitutions, which can be directly repaired by adenine base editors (ABEs). In this study, we investigated the efficacy and safety of ABEs in the livers of mice and cynomolgus macaques for the reduction of blood low-density lipoprotein (LDL) levels. Lipid nanoparticle-based delivery of mRNA encoding an ABE and a single-guide RNA targeting PCSK9, a negative regulator of LDL, induced up to 67% editing (on average, 61%) in mice and up to 34% editing (on average, 26%) in macaques. Plasma PCSK9 and LDL levels were stably reduced by 95% and 58% in mice and by 32% and 14% in macaques, respectively. ABE mRNA was cleared rapidly, and no off-target mutations in genomic DNA were found. Re-dosing in macaques did not increase editing, possibly owing to the detected humoral immune response to ABE upon treatment. These findings support further investigation of ABEs to treat patients with monogenic liver diseases.
Collapse
Affiliation(s)
- Tanja Rothgangl
- University of Zurich, Institute for Pharmacology and Toxicology, Zurich, Switzerland
| | | | | | - Rurika Oka
- Oncode Institute, Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
| | - Dominik Witzigmann
- University of Zurich, Institute for Pharmacology and Toxicology, Zurich, Switzerland
| | - Lukas Villiger
- University of Zurich, Institute for Pharmacology and Toxicology, Zurich, Switzerland
| | - Weihong Qi
- Functional Genomics Center Zurich, ETH Zurich/University of Zurich, Zurich, Switzerland
| | - Martina Hruzova
- Department of Biology, Institute for Molecular Health Sciences, ETH Zurich, Zurich, Switzerland
| | - Lucas Kissling
- University of Zurich, Institute for Pharmacology and Toxicology, Zurich, Switzerland
| | - Daniela Lenggenhager
- Department of Pathology and Molecular Pathology, University Hospital and University of Zurich, Zurich, Switzerland
| | - Costanza Borrelli
- Department of Biosystems Science and Engineering, ETH Zurich, Zurich, Switzerland
| | - Sabina Egli
- University of Zurich, Institute for Pharmacology and Toxicology, Zurich, Switzerland
| | - Nina Frey
- Department of Biology, Institute for Molecular Health Sciences, ETH Zurich, Zurich, Switzerland
| | - Noëlle Bakker
- University of Zurich, Institute for Pharmacology and Toxicology, Zurich, Switzerland
| | | | | | | | - Martin Pacesa
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| | - Susanne Kreutzer
- Functional Genomics Center Zurich, ETH Zurich/University of Zurich, Zurich, Switzerland
- Genome Engineering and Measurement Laboratory, ETH Zurich, Zurich, Switzerland
| | - Zacharias Kontarakis
- Functional Genomics Center Zurich, ETH Zurich/University of Zurich, Zurich, Switzerland
- Genome Engineering and Measurement Laboratory, ETH Zurich, Zurich, Switzerland
| | - Andreas Moor
- Department of Biosystems Science and Engineering, ETH Zurich, Zurich, Switzerland
| | - Martin Jinek
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| | - Drew Weissman
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Markus Stoffel
- Department of Biology, Institute for Molecular Health Sciences, ETH Zurich, Zurich, Switzerland
| | - Ruben van Boxtel
- Oncode Institute, Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
| | | | - Norbert Pardi
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Beat Thöny
- Division of Metabolism and Children's Research Centre, University Children's Hospital Zurich, Zurich, Switzerland
- Zurich Center for Integrative Human Physiology, Zurich, Switzerland
- Neuroscience Center Zurich, Zurich, Switzerland
| | - Johannes Häberle
- Division of Metabolism and Children's Research Centre, University Children's Hospital Zurich, Zurich, Switzerland
- Zurich Center for Integrative Human Physiology, Zurich, Switzerland
- Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Ying K Tam
- Acuitas Therapeutics Inc., Vancouver, BC, Canada
| | | | - Gerald Schwank
- University of Zurich, Institute for Pharmacology and Toxicology, Zurich, Switzerland.
- Department of Biology, Institute for Molecular Health Sciences, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
29
|
Revollo JR, McKinzie PB, Robison TW, Dobrovolsky VN. Mutational signatures in T-lymphocytes of rats treated with N-propyl-N-nitrosourea and procarbazine. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2021; 62:350-363. [PMID: 34117657 DOI: 10.1002/em.22448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 05/12/2021] [Accepted: 06/09/2021] [Indexed: 06/12/2023]
Abstract
We have used whole genome sequencing (WGS) to determine mutational signatures induced in the T-cells of rats treated in vivo with N-propyl-N-nitrosourea (PNU) or procarbazine (PCZ). The signatures from the treated rats were different from the signature of background mutations. The main component of the spontaneous T-cell mutational signature was C➔T transition with all other single base substitutions evenly distributed. The PNU-induced mutational signature showed relatively equal contributions from C➔T and T➔C transitions, and T➔A transversions. The PCZ-induced signature was characterized by T➔C transitions, T➔A and, to a smaller extent, T➔G transversions. C➔G transversions were infrequent in either the PNU or PCZ signatures. WGS not only allowed mutational signature detection, but also measured quantitative responses to mutagen treatment: 10-40× increases in the number of mutations per clone were detected in T-cell clones from treated rats. The overall strand specificity of induced mutations for annotated rat genes was comparable to the strand specificity of mutations determined previously for the endogenous X-linked Pig-a gene. Our results provide valuable reference data for future applications of WGS in safety research and risk assessment.
Collapse
Affiliation(s)
- Javier R Revollo
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas, USA
| | - Page B McKinzie
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas, USA
| | - Timothy W Robison
- Division of Pulmonary, Allergy and Critical Care Products, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, USA
| | - Vasily N Dobrovolsky
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas, USA
| |
Collapse
|
30
|
Ma YS, Yang XL, Xin R, Wu TM, Shi Y, Dan Zhang D, Wang HM, Wang PY, Liu JB, Fu D. The power and the promise of organoid models for cancer precision medicine with next-generation functional diagnostics and pharmaceutical exploitation. Transl Oncol 2021; 14:101126. [PMID: 34020369 PMCID: PMC8144479 DOI: 10.1016/j.tranon.2021.101126] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 05/12/2021] [Indexed: 12/25/2022] Open
Abstract
As organ-specific three-dimensional cell clusters derived from cancer tissue or cancer-specific stem cells, cancer-derived organoids are organized in the same manner of the cell sorting and spatial lineage restriction in vivo, making them ideal for simulating the characteristics of cancer and the heterogeneity of cancer cells in vivo. Besides the applications as a new in vitro model to study the physiological characteristics of normal tissues and organs, organoids are also used for in vivo cancer cell characterization, anti-cancer drug screening, and precision medicine. However, organoid cultures are not without limitations, i.e., the lack of nerves, blood vessels, and immune cells. As a result, organoids could not fully replicate the characteristics of organs but partially simulate the disease process. This review attempts to provide insights into the organoid models for cancer precision medicine.
Collapse
Affiliation(s)
- Yu-Shui Ma
- National Engineering Laboratory for Deep Process of Rice and Byproducts, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, China; Cancer Institute, Nantong Tumor Hospital, Affiliated Tumor Hospital of Nantong University, Nantong 226631, China; International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital/Institute, National Center for Liver Cancer, the Second Military Medical University, Shanghai 200433, China
| | - Xiao-Li Yang
- Central Laboratory for Medical Research, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Rui Xin
- Central Laboratory for Medical Research, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Ting-Miao Wu
- Department of Radiology, The Forth Affiliated Hospital of Anhui Medical University, Hefei 230012, China
| | - Yi Shi
- National Engineering Laboratory for Deep Process of Rice and Byproducts, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, China
| | - Dan Dan Zhang
- Central Laboratory for Medical Research, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Hui-Min Wang
- Central Laboratory for Medical Research, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Pei-Yao Wang
- Central Laboratory for Medical Research, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Ji-Bin Liu
- Cancer Institute, Nantong Tumor Hospital, Affiliated Tumor Hospital of Nantong University, Nantong 226631, China
| | - Da Fu
- National Engineering Laboratory for Deep Process of Rice and Byproducts, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, China; Central Laboratory for Medical Research, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China; Department of Radiology, The Forth Affiliated Hospital of Anhui Medical University, Hefei 230012, China.
| |
Collapse
|
31
|
Villiger L, Rothgangl T, Witzigmann D, Oka R, Lin PJC, Qi W, Janjuha S, Berk C, Ringnalda F, Beattie MB, Stoffel M, Thöny B, Hall J, Rehrauer H, van Boxtel R, Tam YK, Schwank G. In vivo cytidine base editing of hepatocytes without detectable off-target mutations in RNA and DNA. Nat Biomed Eng 2021; 5:179-189. [PMID: 33495639 PMCID: PMC7610981 DOI: 10.1038/s41551-020-00671-z] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 12/02/2020] [Indexed: 12/26/2022]
Abstract
Base editors are RNA-programmable deaminases that enable precise single-base conversions in genomic DNA. However, off-target activity is a concern in the potential use of base editors to treat genetic diseases. Here, we report unbiased analyses of transcriptome-wide and genome-wide off-target modifications effected by cytidine base editors in the liver of mice with phenylketonuria. The intravenous delivery of intein-split cytidine base editors by dual adeno-associated viruses led to the repair of the disease-causing mutation without generating off-target mutations in the RNA and DNA of the hepatocytes. Moreover, the transient expression of a cytidine base editor mRNA and a relevant single-guide RNA intravenously delivered by lipid nanoparticles led to ~21% on-target editing and to the reversal of the disease phenotype; there were also no detectable transcriptome-wide and genome-wide off-target edits. Our findings support the feasibility of therapeutic cytidine base editing to treat genetic liver diseases.
Collapse
Affiliation(s)
- Lukas Villiger
- Department of Biology, Institute for Molecular Health Sciences, ETH Zurich, Zurich, Switzerland
- Institute for Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | - Tanja Rothgangl
- Department of Biology, Institute for Molecular Health Sciences, ETH Zurich, Zurich, Switzerland
- Institute for Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | - Dominik Witzigmann
- Institute for Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
- Division of Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Rurika Oka
- Oncode Institute, Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Paulo J C Lin
- Acuitas Therapeutics, Vancouver, British Columbia, Canada
| | - Weihong Qi
- Functional Genomics Center Zurich, ETH Zurich/University of Zurich, Zurich, Switzerland
| | - Sharan Janjuha
- Department of Biology, Institute for Molecular Health Sciences, ETH Zurich, Zurich, Switzerland
- Institute for Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | - Christian Berk
- Institute for Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| | - Femke Ringnalda
- Department of Biology, Institute for Molecular Health Sciences, ETH Zurich, Zurich, Switzerland
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | | | - Markus Stoffel
- Department of Biology, Institute for Molecular Health Sciences, ETH Zurich, Zurich, Switzerland
| | - Beat Thöny
- Zurich Center for Integrative Human Physiology, Zurich, Switzerland
- Neuroscience Center Zurich, Zurich, Switzerland
- Division of Metabolism, University Children's Hospital Zurich and Children's Research Centre, Zurich, Switzerland
| | - Jonathan Hall
- Institute for Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| | - Hubert Rehrauer
- Functional Genomics Center Zurich, ETH Zurich/University of Zurich, Zurich, Switzerland
| | - Ruben van Boxtel
- Oncode Institute, Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Ying K Tam
- Acuitas Therapeutics, Vancouver, British Columbia, Canada
| | - Gerald Schwank
- Department of Biology, Institute for Molecular Health Sciences, ETH Zurich, Zurich, Switzerland.
- Institute for Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
32
|
Direct quantification of in vivo mutagenesis and carcinogenesis using duplex sequencing. Proc Natl Acad Sci U S A 2020; 117:33414-33425. [PMID: 33318186 PMCID: PMC7776782 DOI: 10.1073/pnas.2013724117] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Error-corrected next-generation sequencing (ecNGS) can be used to rapidly detect and quantify the in vivo mutagenic impact of environmental exposures or endogenous processes in any tissue, from any species, at any genomic location. The greater speed, higher scalability, richer data outputs, and cross-species and cross-locus applicability of ecNGS compared to existing methods make it a powerful new tool for mutational research, regulatory safety testing, and emerging clinical applications. The ability to accurately measure mutations is critical for basic research and identifying potential drug and chemical carcinogens. Current methods for in vivo quantification of mutagenesis are limited because they rely on transgenic rodent systems that are low-throughput, expensive, prolonged, and do not fully represent other species such as humans. Next-generation sequencing (NGS) is a conceptually attractive alternative for detecting mutations in the DNA of any organism; however, the limit of resolution for standard NGS is poor. Technical error rates (∼1 × 10−3) of NGS obscure the true abundance of somatic mutations, which can exist at per-nucleotide frequencies ≤1 × 10−7. Using duplex sequencing, an extremely accurate error-corrected NGS (ecNGS) technology, we were able to detect mutations induced by three carcinogens in five tissues of two strains of mice within 31 d following exposure. We observed a strong correlation between mutation induction measured by duplex sequencing and the gold-standard transgenic rodent mutation assay. We identified exposure-specific mutation spectra of each compound through trinucleotide patterns of base substitution. We observed variation in mutation susceptibility by genomic region, as well as by DNA strand. We also identified a primordial marker of carcinogenesis in a cancer-predisposed strain of mice, as evidenced by clonal expansions of cells carrying an activated oncogene, less than a month after carcinogen exposure. These findings demonstrate that ecNGS is a powerful method for sensitively detecting and characterizing mutagenesis and the early clonal evolutionary hallmarks of carcinogenesis. Duplex sequencing can be broadly applied to basic mutational research, regulatory safety testing, and emerging clinical applications.
Collapse
|
33
|
Hasaart KAL, Manders F, van der Hoorn ML, Verheul M, Poplonski T, Kuijk E, de Sousa Lopes SMC, van Boxtel R. Mutation accumulation and developmental lineages in normal and Down syndrome human fetal haematopoiesis. Sci Rep 2020; 10:12991. [PMID: 32737409 PMCID: PMC7395765 DOI: 10.1038/s41598-020-69822-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 07/17/2020] [Indexed: 11/30/2022] Open
Abstract
Children show a higher incidence of leukemia compared to young adolescents, yet their cells have less age-related (oncogenic) somatic mutations. Newborns with Down syndrome have an even higher risk of developing leukemia, which is thought to be driven by mutations that accumulate during fetal development. To characterize mutation accumulation in individual stem and progenitor cells of Down syndrome and karyotypically normal fetuses, we clonally expanded single cells and performed whole-genome sequencing. We found a higher mutation rate in haematopoietic stem and progenitor cells during fetal development compared to the post-infant rate. In fetal trisomy 21 cells the number of somatic mutations is even further increased, which was already apparent during the first cell divisions of embryogenesis before gastrulation. The number and types of mutations in fetal trisomy 21 haematopoietic stem and progenitor cells were similar to those in Down syndrome-associated myeloid preleukemia and could be attributed to mutational processes that were active during normal fetal haematopoiesis. Finally, we found that the contribution of early embryonic cells to human fetal tissues can vary considerably between individuals. The increased mutation rates found in this study, may contribute to the increased risk of leukemia early during life and the higher incidence of leukemia in Down syndrome.
Collapse
Affiliation(s)
- Karlijn A L Hasaart
- Princess Máxima Center for Pediatric Oncology and Oncode Institute, Heidelberglaan 25, 3584CS, Utrecht, The Netherlands
| | - Freek Manders
- Princess Máxima Center for Pediatric Oncology and Oncode Institute, Heidelberglaan 25, 3584CS, Utrecht, The Netherlands
| | | | - Mark Verheul
- Princess Máxima Center for Pediatric Oncology and Oncode Institute, Heidelberglaan 25, 3584CS, Utrecht, The Netherlands
| | - Tomasz Poplonski
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584CS, Utrecht, The Netherlands
| | - Ewart Kuijk
- Center for Molecular Medicine, University Medical Center Utrecht and Oncode Institute, Universiteitsweg 100, 3584 CG, Utrecht, The Netherlands
| | | | - Ruben van Boxtel
- Princess Máxima Center for Pediatric Oncology and Oncode Institute, Heidelberglaan 25, 3584CS, Utrecht, The Netherlands.
| |
Collapse
|
34
|
The mutational impact of culturing human pluripotent and adult stem cells. Nat Commun 2020; 11:2493. [PMID: 32427826 PMCID: PMC7237696 DOI: 10.1038/s41467-020-16323-4] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 04/20/2020] [Indexed: 01/07/2023] Open
Abstract
Genetic changes acquired during in vitro culture pose a risk for the successful application of stem cells in regenerative medicine. To assess the genetic risks induced by culturing, we determined all mutations in individual human stem cells by whole genome sequencing. Individual pluripotent, intestinal, and liver stem cells accumulate 3.5 ± 0.5, 7.2 ± 1.1 and 8.3 ± 3.6 base substitutions per population doubling, respectively. The annual in vitro mutation accumulation rate of adult stem cells is nearly 40-fold higher than the in vivo mutation accumulation rate. Mutational signature analysis reveals that in vitro induced mutations are caused by oxidative stress. Reducing oxygen tension in culture lowers the mutational load. We use the mutation rates, spectra, and genomic distribution to model the accumulation of oncogenic mutations during typical in vitro expansion, manipulation or screening experiments using human stem cells. Our study provides empirically defined parameters to assess the mutational risk of stem cell based therapies. Genetic changes acquired during in vitro culture pose a challenge to application of stem cells. Here the authors use whole genome sequencing to show that cultured human adult and pluripotent stem cells have a high mutational load caused by oxidative stress and reduced oxygen tension in culture lowers mutation rates.
Collapse
|
35
|
Geurts MH, de Poel E, Amatngalim GD, Oka R, Meijers FM, Kruisselbrink E, van Mourik P, Berkers G, de Winter-de Groot KM, Michel S, Muilwijk D, Aalbers BL, Mullenders J, Boj SF, Suen SWF, Brunsveld JE, Janssens HM, Mall MA, Graeber SY, van Boxtel R, van der Ent CK, Beekman JM, Clevers H. CRISPR-Based Adenine Editors Correct Nonsense Mutations in a Cystic Fibrosis Organoid Biobank. Cell Stem Cell 2020; 26:503-510.e7. [PMID: 32084388 DOI: 10.1016/j.stem.2020.01.019] [Citation(s) in RCA: 112] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 12/11/2019] [Accepted: 01/27/2020] [Indexed: 02/06/2023]
Abstract
Adenine base editing (ABE) enables enzymatic conversion from A-T into G-C base pairs. ABE holds promise for clinical application, as it does not depend on the introduction of double-strand breaks, contrary to conventional CRISPR/Cas9-mediated genome engineering. Here, we describe a cystic fibrosis (CF) intestinal organoid biobank, representing 664 patients, of which ~20% can theoretically be repaired by ABE. We apply SpCas9-ABE (PAM recognition sequence: NGG) and xCas9-ABE (PAM recognition sequence: NGN) on four selected CF organoid samples. Genetic and functional repair was obtained in all four cases, while whole-genome sequencing (WGS) of corrected lines of two patients did not detect off-target mutations. These observations exemplify the value of large, patient-derived organoid biobanks representing hereditary disease and indicate that ABE may be safely applied in human cells.
Collapse
Affiliation(s)
- Maarten H Geurts
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, 3584 CT Utrecht, the Netherlands; Oncode Institute, Hubrecht Institute, 3584 CT Utrecht, the Netherlands
| | - Eyleen de Poel
- Department of Pediatric Respiratory Medicine, Wilhelmina Children's Hospital, University Medical Center, Utrecht University, 3584 EA Utrecht, the Netherlands; Regenerative Medicine Utrecht, University Medical Center, Utrecht University, 3584 CT Utrecht, the Netherlands
| | - Gimano D Amatngalim
- Department of Pediatric Respiratory Medicine, Wilhelmina Children's Hospital, University Medical Center, Utrecht University, 3584 EA Utrecht, the Netherlands; Regenerative Medicine Utrecht, University Medical Center, Utrecht University, 3584 CT Utrecht, the Netherlands
| | - Rurika Oka
- Princess Maxima Center, 3584 CS Utrecht, the Netherlands; Oncode Institute, Princess Maxima Center, 3584 CS Utrecht, the Netherlands
| | - Fleur M Meijers
- Department of Pediatric Respiratory Medicine, Wilhelmina Children's Hospital, University Medical Center, Utrecht University, 3584 EA Utrecht, the Netherlands; Regenerative Medicine Utrecht, University Medical Center, Utrecht University, 3584 CT Utrecht, the Netherlands
| | - Evelien Kruisselbrink
- Department of Pediatric Respiratory Medicine, Wilhelmina Children's Hospital, University Medical Center, Utrecht University, 3584 EA Utrecht, the Netherlands; Regenerative Medicine Utrecht, University Medical Center, Utrecht University, 3584 CT Utrecht, the Netherlands
| | - Peter van Mourik
- Department of Pediatric Respiratory Medicine, Wilhelmina Children's Hospital, University Medical Center, Utrecht University, 3584 EA Utrecht, the Netherlands
| | - Gitte Berkers
- Department of Pediatric Respiratory Medicine, Wilhelmina Children's Hospital, University Medical Center, Utrecht University, 3584 EA Utrecht, the Netherlands
| | - Karin M de Winter-de Groot
- Department of Pediatric Respiratory Medicine, Wilhelmina Children's Hospital, University Medical Center, Utrecht University, 3584 EA Utrecht, the Netherlands
| | - Sabine Michel
- Department of Pediatric Respiratory Medicine, Wilhelmina Children's Hospital, University Medical Center, Utrecht University, 3584 EA Utrecht, the Netherlands
| | - Danya Muilwijk
- Department of Pediatric Respiratory Medicine, Wilhelmina Children's Hospital, University Medical Center, Utrecht University, 3584 EA Utrecht, the Netherlands
| | - Bente L Aalbers
- Department of Pediatric Respiratory Medicine, Wilhelmina Children's Hospital, University Medical Center, Utrecht University, 3584 EA Utrecht, the Netherlands
| | | | - Sylvia F Boj
- Hubrecht Organoid Technology, 3584 CM, Utrecht, the Netherlands
| | - Sylvia W F Suen
- Department of Pediatric Respiratory Medicine, Wilhelmina Children's Hospital, University Medical Center, Utrecht University, 3584 EA Utrecht, the Netherlands; Regenerative Medicine Utrecht, University Medical Center, Utrecht University, 3584 CT Utrecht, the Netherlands
| | - Jesse E Brunsveld
- Department of Pediatric Respiratory Medicine, Wilhelmina Children's Hospital, University Medical Center, Utrecht University, 3584 EA Utrecht, the Netherlands; Regenerative Medicine Utrecht, University Medical Center, Utrecht University, 3584 CT Utrecht, the Netherlands
| | - Hettie M Janssens
- Department of Pediatrics, division of Respiratory Medicine and Allergology, ErasmusMC-Sophia Children's Hospital, University Hospital Rotterdam, 3015 GD Rotterdam, the Netherlands
| | - Marcus A Mall
- Department of Pediatric Pulmonology, Immunology and Critical Care Medicine, Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany; Berlin Institute of Health (BIH), 10178 Berlin, Germany
| | - Simon Y Graeber
- Department of Pediatric Pulmonology, Immunology and Critical Care Medicine, Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany; Berlin Institute of Health (BIH), 10178 Berlin, Germany
| | - Ruben van Boxtel
- Princess Maxima Center, 3584 CS Utrecht, the Netherlands; Oncode Institute, Princess Maxima Center, 3584 CS Utrecht, the Netherlands
| | - Cornelis K van der Ent
- Department of Pediatric Respiratory Medicine, Wilhelmina Children's Hospital, University Medical Center, Utrecht University, 3584 EA Utrecht, the Netherlands
| | - Jeffrey M Beekman
- Department of Pediatric Respiratory Medicine, Wilhelmina Children's Hospital, University Medical Center, Utrecht University, 3584 EA Utrecht, the Netherlands; Regenerative Medicine Utrecht, University Medical Center, Utrecht University, 3584 CT Utrecht, the Netherlands.
| | - Hans Clevers
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, 3584 CT Utrecht, the Netherlands; Oncode Institute, Hubrecht Institute, 3584 CT Utrecht, the Netherlands.
| |
Collapse
|
36
|
Pleguezuelos-Manzano C, Puschhof J, Rosendahl Huber A, van Hoeck A, Wood HM, Nomburg J, Gurjao C, Manders F, Dalmasso G, Stege PB, Paganelli FL, Geurts MH, Beumer J, Mizutani T, Miao Y, van der Linden R, van der Elst S, Garcia KC, Top J, Willems RJL, Giannakis M, Bonnet R, Quirke P, Meyerson M, Cuppen E, van Boxtel R, Clevers H. Mutational signature in colorectal cancer caused by genotoxic pks + E. coli. Nature 2020; 580:269-273. [PMID: 32106218 PMCID: PMC8142898 DOI: 10.1038/s41586-020-2080-8] [Citation(s) in RCA: 599] [Impact Index Per Article: 149.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Accepted: 02/17/2020] [Indexed: 02/06/2023]
Abstract
Various species of the intestinal microbiota have been associated with the development of colorectal cancer1,2, but it has not been demonstrated that bacteria have a direct role in the occurrence of oncogenic mutations. Escherichia coli can carry the pathogenicity island pks, which encodes a set of enzymes that synthesize colibactin3. This compound is believed to alkylate DNA on adenine residues4,5 and induces double-strand breaks in cultured cells3. Here we expose human intestinal organoids to genotoxic pks+ E. coli by repeated luminal injection over five months. Whole-genome sequencing of clonal organoids before and after this exposure revealed a distinct mutational signature that was absent from organoids injected with isogenic pks-mutant bacteria. The same mutational signature was detected in a subset of 5,876 human cancer genomes from two independent cohorts, predominantly in colorectal cancer. Our study describes a distinct mutational signature in colorectal cancer and implies that the underlying mutational process results directly from past exposure to bacteria carrying the colibactin-producing pks pathogenicity island.
Collapse
Affiliation(s)
- Cayetano Pleguezuelos-Manzano
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, Utrecht, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - Jens Puschhof
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, Utrecht, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - Axel Rosendahl Huber
- Oncode Institute, Utrecht, The Netherlands
- The Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Arne van Hoeck
- Oncode Institute, Utrecht, The Netherlands
- Center for Molecular Medicine, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Henry M Wood
- Pathology and Data Analytics, Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, UK
| | - Jason Nomburg
- Graduate Program in Virology, Division of Medical Sciences, Harvard Medical School, Boston, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Carino Gurjao
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Freek Manders
- Oncode Institute, Utrecht, The Netherlands
- The Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Guillaume Dalmasso
- University Clermont Auvergne, Inserm U1071, INRA USC2018, M2iSH, Clermont-Ferrand, France
| | - Paul B Stege
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Fernanda L Paganelli
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Maarten H Geurts
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, Utrecht, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - Joep Beumer
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, Utrecht, The Netherlands
| | - Tomohiro Mizutani
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, Utrecht, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - Yi Miao
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, USA
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Reinier van der Linden
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, Utrecht, The Netherlands
| | - Stefan van der Elst
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, Utrecht, The Netherlands
| | - K Christopher Garcia
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, USA
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Janetta Top
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Rob J L Willems
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Marios Giannakis
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Richard Bonnet
- University Clermont Auvergne, Inserm U1071, INRA USC2018, M2iSH, Clermont-Ferrand, France
- Department of Bacteriology, University Hospital of Clermont-Ferrand, Clermont-Ferrand, France
| | - Phil Quirke
- Pathology and Data Analytics, Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, UK
| | - Matthew Meyerson
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Edwin Cuppen
- Oncode Institute, Utrecht, The Netherlands
- Center for Molecular Medicine, University Medical Centre Utrecht, Utrecht, The Netherlands
- Hartwig Medical Foundation, Amsterdam, The Netherlands
- CPCT Consortium, Rotterdam, The Netherlands
| | - Ruben van Boxtel
- Oncode Institute, Utrecht, The Netherlands.
- The Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands.
| | - Hans Clevers
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, Utrecht, The Netherlands.
- Oncode Institute, Utrecht, The Netherlands.
- The Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands.
| |
Collapse
|
37
|
Thun GA, Derdak S, Castro-Giner F, Apunte-Ramos K, Águeda L, Wjst M, Boland A, Deleuze JF, Kolsum U, Heiss-Neumann MS, Nowinski A, Gorecka D, Hohlfeld JM, Welte T, Brightling CE, Parr DG, Prasse A, Müller-Quernheim J, Greulich T, Stendardo M, Boschetto P, Barta I, Döme B, Gut M, Singh D, Ziegler-Heitbrock L, Gut IG. High degree of polyclonality hinders somatic mutation calling in lung brush samples of COPD cases and controls. Sci Rep 2019; 9:20158. [PMID: 31882973 PMCID: PMC6934450 DOI: 10.1038/s41598-019-56618-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 12/04/2019] [Indexed: 11/16/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is induced by cigarette smoking and characterized by inflammation of airway tissue. Since smokers with COPD have a higher risk of developing lung cancer than those without, we hypothesized that they carry more mutations in affected tissue. We called somatic mutations in airway brush samples from medium-coverage whole genome sequencing data from healthy never and ex-smokers (n = 8), as well as from ex-smokers with variable degrees of COPD (n = 4). Owing to the limited concordance of resulting calls between the applied tools we built a consensus, a strategy that was validated with high accuracy for cancer data. However, consensus calls showed little promise of representing true positives due to low mappability of corresponding sequence reads and high overlap with positions harbouring known genetic polymorphisms. A targeted re-sequencing approach suggested that only few mutations would survive stringent verification testing and that our data did not allow the inference of any difference in the mutational load of bronchial brush samples between former smoking COPD cases and controls. High polyclonality in airway brush samples renders medium-depth sequencing insufficient to provide the resolution to detect somatic mutations. Deep sequencing data of airway biopsies are needed to tackle the question.
Collapse
Affiliation(s)
- Gian-Andri Thun
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Sophia Derdak
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Francesc Castro-Giner
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Katherine Apunte-Ramos
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Lidia Águeda
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Matthias Wjst
- Helmholtz-Zentrum München, National Research Centre for Environmental Health, Institute of Lung Biology and Disease, Neuherberg, Germany
- Institute of Medical Statistics, Epidemiology and Medical Informatics, Technical University Munich, Munich, Germany
| | - Anne Boland
- Centre National de Recherche en Génomique Humaine (CNRGH), Institut de Biologie François Jacob, CEA, Université Paris-Saclay, Evry, France
| | - Jean-François Deleuze
- Centre National de Recherche en Génomique Humaine (CNRGH), Institut de Biologie François Jacob, CEA, Université Paris-Saclay, Evry, France
| | - Umme Kolsum
- University of Manchester, Manchester University NHS Foundation Trust, Manchester, UK
| | | | - Adam Nowinski
- 2nd Department of Respiratory Medicine, National Institute of Tuberculosis and Lung Diseases, Warsaw, Poland
| | - Dorota Gorecka
- 2nd Department of Respiratory Medicine, National Institute of Tuberculosis and Lung Diseases, Warsaw, Poland
| | - Jens M Hohlfeld
- Fraunhofer Institute for Toxicology and Experimental Medicine, Member of the German Center of Lung Research, Hannover, Germany
- Department of Respiratory Medicine, Hannover Medical School, Member of the German Center of Lung Research, Hannover, Germany
| | - Tobias Welte
- Department of Respiratory Medicine, Hannover Medical School, Member of the German Center of Lung Research, Hannover, Germany
| | - Christopher E Brightling
- Department of Infection, Immunity and Inflammation, Institute for Lung Health, University of Leicester, Leicester, UK
| | - David G Parr
- Department of Respiratory Medicine, University Hospitals Coventry and Warwickshire NHS Trust, Coventry, UK
| | - Antje Prasse
- Department of Respiratory Medicine, Hannover Medical School, Member of the German Center of Lung Research, Hannover, Germany
- Department of Pneumology, University Medical Center, Freiburg, Germany
| | | | - Timm Greulich
- Department of Medicine, Pulmonary and Critical Care Medicine, University Medical Center Giessen and Marburg, Philipps-University, Marburg, Germany
| | - Mariarita Stendardo
- Department of Medical Sciences, University of Ferrara and University-Hospital of Ferrara, Ferrara, Italy
| | - Piera Boschetto
- Department of Medical Sciences, University of Ferrara and University-Hospital of Ferrara, Ferrara, Italy
| | - Imre Barta
- Department of Pathophysiology, National Koranyi Institute for Pulmonology, Budapest, Hungary
| | - Balázs Döme
- Department of Tumorbiology, National Koranyi Institute for Pulmonology, Budapest, Hungary
| | - Marta Gut
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
| | - Dave Singh
- University of Manchester, Manchester University NHS Foundation Trust, Manchester, UK
| | | | - Ivo G Gut
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.
- Universitat Pompeu Fabra, Barcelona, Spain.
| |
Collapse
|
38
|
Somatic Mutations Reveal Lineage Relationships and Age-Related Mutagenesis in Human Hematopoiesis. Cell Rep 2019; 25:2308-2316.e4. [PMID: 30485801 PMCID: PMC6289083 DOI: 10.1016/j.celrep.2018.11.014] [Citation(s) in RCA: 150] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 10/10/2018] [Accepted: 10/31/2018] [Indexed: 12/30/2022] Open
Abstract
Mutation accumulation during life can contribute to hematopoietic dysfunction; however, the underlying dynamics are unknown. Somatic mutations in blood progenitors can provide insight into the rate and processes underlying this accumulation, as well as the developmental lineage tree and stem cell division numbers. Here, we catalog mutations in the genomes of human-bone-marrow-derived and umbilical-cord-blood-derived hematopoietic stem and progenitor cells (HSPCs). We find that mutations accumulate gradually during life with approximately 14 base substitutions per year. The majority of mutations were acquired after birth and could be explained by the constant activity of various endogenous mutagenic processes, which also explains the mutation load in acute myeloid leukemia (AML). Using these mutations, we construct a developmental lineage tree of human hematopoiesis, revealing a polyclonal architecture and providing evidence that developmental clones exhibit multipotency. Our approach highlights features of human native hematopoiesis and its implications for leukemogenesis.
Collapse
|
39
|
Christensen S, Van der Roest B, Besselink N, Janssen R, Boymans S, Martens JWM, Yaspo ML, Priestley P, Kuijk E, Cuppen E, Van Hoeck A. 5-Fluorouracil treatment induces characteristic T>G mutations in human cancer. Nat Commun 2019; 10:4571. [PMID: 31594944 PMCID: PMC6783534 DOI: 10.1038/s41467-019-12594-8] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 08/16/2019] [Indexed: 12/15/2022] Open
Abstract
5-Fluorouracil (5-FU) is a chemotherapeutic drug commonly used for the treatment of solid cancers. It is proposed that 5-FU interferes with nucleotide synthesis and incorporates into DNA, which may have a mutational impact on both surviving tumor and healthy cells. Here, we treat intestinal organoids with 5-FU and find a highly characteristic mutational pattern that is dominated by T>G substitutions in a CTT context. Tumor whole genome sequencing data confirms that this signature is also identified in vivo in colorectal and breast cancer patients who have received 5-FU treatment. Taken together, our results demonstrate that 5-FU is mutagenic and may drive tumor evolution and increase the risk of secondary malignancies. Furthermore, the identified signature shows a strong resemblance to COSMIC signature 17, the hallmark signature of treatment-naive esophageal and gastric tumors, which indicates that distinct endogenous and exogenous triggers can converge onto highly similar mutational signatures.
Collapse
Affiliation(s)
- Sharon Christensen
- Center for Molecular Medicine and Oncode Institute, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG, Utrecht, The Netherlands
| | - Bastiaan Van der Roest
- Center for Molecular Medicine and Oncode Institute, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG, Utrecht, The Netherlands
| | - Nicolle Besselink
- Center for Molecular Medicine and Oncode Institute, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG, Utrecht, The Netherlands
| | - Roel Janssen
- Center for Molecular Medicine and Oncode Institute, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG, Utrecht, The Netherlands
| | - Sander Boymans
- Center for Molecular Medicine and Oncode Institute, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG, Utrecht, The Netherlands
| | - John W M Martens
- Department of Medical Oncology, Erasmus MC Cancer institute, Erasmus University Medical Center, Doctor Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
- Center for Personalized Cancer Treatment, Rotterdam, The Netherlands
| | - Marie-Laure Yaspo
- Max Planck Institute for Molecular Genetics, Ihnestraße 63, 14195, Berlin, Germany
| | | | - Ewart Kuijk
- Center for Molecular Medicine and Oncode Institute, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG, Utrecht, The Netherlands
| | - Edwin Cuppen
- Center for Molecular Medicine and Oncode Institute, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG, Utrecht, The Netherlands.
- Center for Personalized Cancer Treatment, Rotterdam, The Netherlands.
- Hartwig Medical Foundation, Science Park 408, 1098 XH, Amsterdam, The Netherlands.
| | - Arne Van Hoeck
- Center for Molecular Medicine and Oncode Institute, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG, Utrecht, The Netherlands
| |
Collapse
|
40
|
Chen K, Wang G, Xiong J, Jiang C, Miao W. Exploration of Genetic Variations through Single-cell Whole-genome Sequencing in the Model Ciliate Tetrahymena thermophila. J Eukaryot Microbiol 2019; 66:954-965. [PMID: 31188517 DOI: 10.1111/jeu.12746] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 05/05/2019] [Accepted: 05/30/2019] [Indexed: 01/05/2023]
Abstract
Ciliates are unicellular eukaryotes with separate germline and somatic genomes and diverse life cycles, which make them a unique model to improve our understanding of population genetics through the detection of genetic variations. However, traditional sequencing methods cannot be directly applied to ciliates because the majority are uncultivated. Single-cell whole-genome sequencing (WGS) is a powerful tool for studying genetic variation in microbes, but no studies have been performed in ciliates. We compared the use of single-cell WGS and bulk DNA WGS to detect genetic variation, specifically single nucleotide polymorphisms (SNPs), in the model ciliate Tetrahymena thermophila. Our analyses showed that (i) single-cell WGS has excellent performance regarding mapping rate and genome coverage but lower sequencing uniformity compared with bulk DNA WGS due to amplification bias (which was reproducible); (ii) false-positive SNP sites detected by single-cell WGS tend to occur in genomic regions with particularly high sequencing depth and high rate of C:G to T:A base changes; (iii) SNPs detected in three or more cells should be reliable (an detection efficiency of 83.4-97.4% was obtained for combined data from three cells). This analytical method could be adapted to measure genetic variation in other ciliates and broaden research into ciliate population genetics.
Collapse
Affiliation(s)
- Kai Chen
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guangying Wang
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Jie Xiong
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Chuanqi Jiang
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Wei Miao
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.,University of Chinese Academy of Sciences, Beijing, 100049, China.,State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.,CAS Center for Excellence in Animal Evolution and Genetics, Kunming, 650223, China
| |
Collapse
|
41
|
Jager M, Blokzijl F, Kuijk E, Bertl J, Vougioukalaki M, Janssen R, Besselink N, Boymans S, de Ligt J, Pedersen JS, Hoeijmakers J, Pothof J, van Boxtel R, Cuppen E. Deficiency of nucleotide excision repair is associated with mutational signature observed in cancer. Genome Res 2019; 29:1067-1077. [PMID: 31221724 PMCID: PMC6633256 DOI: 10.1101/gr.246223.118] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 06/07/2019] [Indexed: 12/24/2022]
Abstract
Nucleotide excision repair (NER) is one of the main DNA repair pathways that protect cells against genomic damage. Disruption of this pathway can contribute to the development of cancer and accelerate aging. Mutational characteristics of NER-deficiency may reveal important diagnostic opportunities, as tumors deficient in NER are more sensitive to certain treatments. Here, we analyzed the genome-wide somatic mutational profiles of adult stem cells (ASCs) from NER-deficient Ercc1 -/Δ mice. Our results indicate that NER-deficiency increases the base substitution load twofold in liver but not in small intestinal ASCs, which coincides with the tissue-specific aging pathology observed in these mice. Moreover, NER-deficient ASCs of both tissues show an increased contribution of Signature 8 mutations, which is a mutational pattern with unknown etiology that is recurrently observed in various cancer types. The scattered genomic distribution of the base substitutions indicates that deficiency of global-genome NER (GG-NER) underlies the observed mutational consequences. In line with this, we observe increased Signature 8 mutations in a GG-NER-deficient human organoid culture, in which XPC was deleted using CRISPR-Cas9 gene-editing. Furthermore, genomes of NER-deficient breast tumors show an increased contribution of Signature 8 mutations compared with NER-proficient tumors. Elevated levels of Signature 8 mutations could therefore contribute to a predictor of NER-deficiency based on a patient's mutational profile.
Collapse
Affiliation(s)
- Myrthe Jager
- Center for Molecular Medicine and Oncode Institute, University Medical Center Utrecht, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Francis Blokzijl
- Center for Molecular Medicine and Oncode Institute, University Medical Center Utrecht, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Ewart Kuijk
- Center for Molecular Medicine and Oncode Institute, University Medical Center Utrecht, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Johanna Bertl
- Department of Molecular Medicine, Aarhus University, 8200 Aarhus N, Denmark
| | | | - Roel Janssen
- Center for Molecular Medicine and Oncode Institute, University Medical Center Utrecht, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Nicolle Besselink
- Center for Molecular Medicine and Oncode Institute, University Medical Center Utrecht, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Sander Boymans
- Center for Molecular Medicine and Oncode Institute, University Medical Center Utrecht, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Joep de Ligt
- Center for Molecular Medicine and Oncode Institute, University Medical Center Utrecht, Utrecht University, 3584 CG Utrecht, The Netherlands
| | | | | | - Joris Pothof
- Erasmus Medical Center, 3015 CN Rotterdam, The Netherlands
| | - Ruben van Boxtel
- Center for Molecular Medicine and Oncode Institute, University Medical Center Utrecht, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Edwin Cuppen
- Center for Molecular Medicine and Oncode Institute, University Medical Center Utrecht, Utrecht University, 3584 CG Utrecht, The Netherlands
| |
Collapse
|
42
|
Wallaschek N, Niklas C, Pompaiah M, Wiegering A, Germer CT, Kircher S, Brändlein S, Maurus K, Rosenwald A, Yan HHN, Leung SY, Bartfeld S. Establishing Pure Cancer Organoid Cultures: Identification, Selection and Verification of Cancer Phenotypes and Genotypes. J Mol Biol 2019; 431:2884-2893. [PMID: 31150736 DOI: 10.1016/j.jmb.2019.05.031] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 05/14/2019] [Accepted: 05/22/2019] [Indexed: 01/26/2023]
Abstract
Precision medicine requires in vitro models which will both faithfully recapitulate the features of an individual's disease and enable drug testing on a wide variety of samples covering the greatest range of phenotypes possible for a particular disease. Organoid technology has immense potential to fulfill this demand, but it will be necessary to develop robust protocols that enable the generation of organoids in a dependable manner from nearly every patient. Here we provide a user's guide, including detailed step-by-step protocols, to the establishment, isolation and verification of gastric cancer organoids. Selection strategies include omission of growth factors, addition of drugs, isolation of distinct phenotypes and generation of monoclonal lines. For confirmation of cancer identity, we use sequencing, drug selection, karyotyping and histology. While we specify these protocols for human gastric cancer organoids here, the methods described are applicable to organoids derived from other tissues as well.
Collapse
Affiliation(s)
- Nina Wallaschek
- Research Centre for Infectious Diseases, Institute for Molecular Infection Biology, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Carolin Niklas
- Research Centre for Infectious Diseases, Institute for Molecular Infection Biology, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Malvika Pompaiah
- Research Centre for Infectious Diseases, Institute for Molecular Infection Biology, Julius-Maximilians-Universität Würzburg, Würzburg, Germany; Paul-Klein-Centre for Immune Intervention, Cell Biology Unit, JGU, University Medical Centre, Mainz, Germany
| | - Armin Wiegering
- Department of General Visceral Vascular and Paediatric Surgery, University Hospital of Würzburg, Würzburg, Germany
| | - Christoph-Thomas Germer
- Department of General Visceral Vascular and Paediatric Surgery, University Hospital of Würzburg, Würzburg, Germany
| | - Stefan Kircher
- Institute of Pathology, Julius-Maximilians-Universität Würzburg and Comprehensive Cancer Center Mainfranken, Würzburg, Germany
| | - Stephanie Brändlein
- Institute of Pathology, Julius-Maximilians-Universität Würzburg and Comprehensive Cancer Center Mainfranken, Würzburg, Germany
| | - Katja Maurus
- Institute of Pathology, Julius-Maximilians-Universität Würzburg and Comprehensive Cancer Center Mainfranken, Würzburg, Germany
| | - Andreas Rosenwald
- Institute of Pathology, Julius-Maximilians-Universität Würzburg and Comprehensive Cancer Center Mainfranken, Würzburg, Germany
| | - Helen H N Yan
- Department of Pathology, University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong
| | - Suet Y Leung
- Department of Pathology, University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong; The Jockey Club Centre for Clinical Innovation and Discovery, LKS Faculty of Medicine, University of Hong Kong, Pokfulam, Hong Kong
| | - Sina Bartfeld
- Research Centre for Infectious Diseases, Institute for Molecular Infection Biology, Julius-Maximilians-Universität Würzburg, Würzburg, Germany.
| |
Collapse
|
43
|
Kuijk E, Blokzijl F, Jager M, Besselink N, Boymans S, Chuva de Sousa Lopes SM, van Boxtel R, Cuppen E. Early divergence of mutational processes in human fetal tissues. SCIENCE ADVANCES 2019; 5:eaaw1271. [PMID: 31149636 PMCID: PMC6541467 DOI: 10.1126/sciadv.aaw1271] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 04/23/2019] [Indexed: 05/12/2023]
Abstract
A developing human fetus needs to balance rapid cellular expansion with maintaining genomic stability. Here, we accurately quantified and characterized somatic mutation accumulation in fetal tissues by analyzing individual stem cells from human fetal liver and intestine. Fetal mutation rates were about fivefold higher than in tissue-matched adult stem cells. The mutational landscape of fetal intestinal stem cells resembled that of adult intestinal stem cells, while the mutation spectrum of fetal liver stem cells is distinct from stem cells of the fetal intestine and the adult liver. Our analyses indicate that variation in mutational mechanisms, including oxidative stress and spontaneous deamination of methylated cytosines, contributes to the observed divergence in mutation accumulation patterns and drives genetic mosaicism in humans.
Collapse
Affiliation(s)
- Ewart Kuijk
- Center for Molecular Medicine and Oncode Institute, University Medical Center Utrecht, Utrecht University, Universiteitsweg 100, 3584 CG Utrecht, Netherlands
| | - Francis Blokzijl
- Center for Molecular Medicine and Oncode Institute, University Medical Center Utrecht, Utrecht University, Universiteitsweg 100, 3584 CG Utrecht, Netherlands
- Oncode Institute, Hubrecht Institute-KNAW (Royal Netherlands Academy of Arts and Sciences) and University Medical Center Utrecht, 3584 CT Utrecht, Netherlands
| | - Myrthe Jager
- Center for Molecular Medicine and Oncode Institute, University Medical Center Utrecht, Utrecht University, Universiteitsweg 100, 3584 CG Utrecht, Netherlands
| | - Nicolle Besselink
- Center for Molecular Medicine and Oncode Institute, University Medical Center Utrecht, Utrecht University, Universiteitsweg 100, 3584 CG Utrecht, Netherlands
| | - Sander Boymans
- Center for Molecular Medicine and Oncode Institute, University Medical Center Utrecht, Utrecht University, Universiteitsweg 100, 3584 CG Utrecht, Netherlands
| | | | - Ruben van Boxtel
- Oncode Institute, Hubrecht Institute-KNAW (Royal Netherlands Academy of Arts and Sciences) and University Medical Center Utrecht, 3584 CT Utrecht, Netherlands
- Princess Máxima Center for Pediatric Oncology, 3584 CT Utrecht, Netherlands
| | - Edwin Cuppen
- Center for Molecular Medicine and Oncode Institute, University Medical Center Utrecht, Utrecht University, Universiteitsweg 100, 3584 CG Utrecht, Netherlands
- Hartwig Medical Foundation, Science Park 408, 1098 XH Amsterdam, Netherlands
- Corresponding author.
| |
Collapse
|
44
|
Sun W, Luo Z, Lee J, Kim HJ, Lee K, Tebon P, Feng Y, Dokmeci MR, Sengupta S, Khademhosseini A. Organ-on-a-Chip for Cancer and Immune Organs Modeling. Adv Healthc Mater 2019; 8:e1801363. [PMID: 30605261 PMCID: PMC6424124 DOI: 10.1002/adhm.201801363] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 12/07/2018] [Indexed: 12/21/2022]
Abstract
Bridging the gap between findings in preclinical 2D cell culture models and in vivo tissue cultures has been challenging; the simple microenvironment of 2D monolayer culture systems may not capture the cellular response to drugs accurately. Three-dimensional organotypic models have gained increasing interest due to their ability to recreate precise cellular organizations. These models facilitate investigation of the interactions between different sub-tissue level components through providing physiologically relevant microenvironments for cells in vitro. The incorporation of human-sourced tissues into these models further enables personalized prediction of drug responses. Integration of microfluidic units into the 3D models can be used to control their local environment, dynamic simulation of cell behaviors, and real-time readout of drug testing data. Cancer and immune system related diseases are severe burdens to our health care system and have created an urgent need for high-throughput, and effective drug development plans. This review focuses on recent progress in the development of "cancer-on-a-chip" and "immune organs-on-a-chip" systems designed to study disease progression and predict drug-induced responses. Future challenges and opportunities are also discussed.
Collapse
Affiliation(s)
- Wujin Sun
- Department of Bioengineering, University of California-Los Angeles, Los Angeles, CA 90095, USA, ; Center for Minimally Invasive Therapeutics (C-MIT), California NanoSystems Institute, University of California-Los Angleles, Los Angeles, CA 90095, USA
| | - Zhimin Luo
- Department of Bioengineering, University of California-Los Angeles, Los Angeles, CA 90095, USA, ; Center for Minimally Invasive Therapeutics (C-MIT), California NanoSystems Institute, University of California-Los Angleles, Los Angeles, CA 90095, USA; School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, China
| | - Junmin Lee
- Department of Bioengineering, University of California-Los Angeles, Los Angeles, CA 90095, USA, ; Center for Minimally Invasive Therapeutics (C-MIT), California NanoSystems Institute, University of California-Los Angleles, Los Angeles, CA 90095, USA
| | - Han-Jun Kim
- Department of Bioengineering, University of California-Los Angeles, Los Angeles, CA 90095, USA, ; Center for Minimally Invasive Therapeutics (C-MIT), California NanoSystems Institute, University of California-Los Angleles, Los Angeles, CA 90095, USA
| | - KangJu Lee
- Department of Bioengineering, University of California-Los Angeles, Los Angeles, CA 90095, USA, ; Center for Minimally Invasive Therapeutics (C-MIT), California NanoSystems Institute, University of California-Los Angleles, Los Angeles, CA 90095, USA
| | - Peyton Tebon
- Department of Bioengineering, University of California-Los Angeles, Los Angeles, CA 90095, USA, ; Center for Minimally Invasive Therapeutics (C-MIT), California NanoSystems Institute, University of California-Los Angleles, Los Angeles, CA 90095, USA
| | - Yudi Feng
- Department of Bioengineering, University of California-Los Angeles, Los Angeles, CA 90095, USA, ; Center for Minimally Invasive Therapeutics (C-MIT), California NanoSystems Institute, University of California-Los Angleles, Los Angeles, CA 90095, USA; College of Chemistry, Nankai University, Tianjin 300071, China
| | - Mehmet R. Dokmeci
- Department of Bioengineering, University of California-Los Angeles, Los Angeles, CA 90095, USA, ; Center for Minimally Invasive Therapeutics (C-MIT), California NanoSystems Institute, University of California-Los Angleles, Los Angeles, CA 90095, USA; Department of Chemical and Biomolecular Engineering, University of California-Los Angeles, Los Angeles, CA 90095, USA
| | - Shiladitya Sengupta
- Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA, ; Harvard – MIT Division of Health Sciences and Technology, Cambridge, MA 02139, USA
| | - Ali Khademhosseini
- Department of Bioengineering, University of California-Los Angeles, Los Angeles, CA 90095, USA, ; Center for Minimally Invasive Therapeutics (C-MIT), California NanoSystems Institute, University of California-Los Angleles, Los Angeles, CA 90095, USA; Jonsson Comprehensive Cancer Center, University of California - Los Angeles, 10833 Le Conte Ave, Los Angeles, CA 90024, USA.; Department of Chemical and Biomolecular Engineering, University of California-Los Angeles, Los Angeles, CA 90095, USA; Department of Radiology, University of California-Los Angeles, Los Angeles, CA 90095, USA; Center of Nanotechnology, Department of Physics, King Abdulaziz University, Jeddah 21569, Saudi Arabia; Department of Bioindustrial Technologies, College of Animal Bioscience and Technology, Konkuk University, Seoul, Republic of Korea
| |
Collapse
|
45
|
Intestinal organoids: A new paradigm for engineering intestinal epithelium in vitro. Biomaterials 2019; 194:195-214. [DOI: 10.1016/j.biomaterials.2018.12.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 11/22/2018] [Accepted: 12/08/2018] [Indexed: 12/11/2022]
|
46
|
Verheijen BM, Vermulst M, van Leeuwen FW. Somatic mutations in neurons during aging and neurodegeneration. Acta Neuropathol 2018; 135:811-826. [PMID: 29705908 PMCID: PMC5954077 DOI: 10.1007/s00401-018-1850-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 04/20/2018] [Accepted: 04/21/2018] [Indexed: 12/22/2022]
Abstract
The nervous system is composed of a large variety of neurons with a diverse array of morphological and functional properties. This heterogeneity is essential for the construction and maintenance of a distinct set of neural networks with unique characteristics. Accumulating evidence now indicates that neurons do not only differ at a functional level, but also at the genomic level. These genomic discrepancies seem to be the result of somatic mutations that emerge in nervous tissue during development and aging. Ultimately, these mutations bring about a genetically heterogeneous population of neurons, a phenomenon that is commonly referred to as "somatic brain mosaicism". Improved understanding of the development and consequences of somatic brain mosaicism is crucial to understand the impact of somatic mutations on neuronal function in human aging and disease. Here, we highlight a number of topics related to somatic brain mosaicism, including some early experimental evidence for somatic mutations in post-mitotic neurons of the hypothalamo-neurohypophyseal system. We propose that age-related somatic mutations are particularly interesting, because aging is a major risk factor for a variety of neuronal diseases, including Alzheimer's disease. We highlight potential links between somatic mutations and the development of these diseases and argue that recent advances in single-cell genomics and in vivo physiology have now finally made it possible to dissect the origins and consequences of neuronal mutations in unprecedented detail.
Collapse
Affiliation(s)
- Bert M Verheijen
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, 3584 CG, Utrecht, The Netherlands.
- Department of Neurology and Neurosurgery, Brain Center Rudolf Magnus, University Medical Center Utrecht, 3508 GA, Utrecht, The Netherlands.
| | - Marc Vermulst
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Fred W van Leeuwen
- Department of Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, 6229 ER, Maastricht, The Netherlands
| |
Collapse
|