1
|
Sanai R, Yanagihara T, Ikeda T, Koga K, Shundo Y, Hamada N, Ebi N, Inoue H, Hamada Y, Hamasaki M, Fujita M. Small Intestine Metastasis Leads to the Diagnosis of Thoracic SMARCA4-Deficient Undifferentiated Tumor: A Case Report. Cureus 2024; 16:e68364. [PMID: 39360100 PMCID: PMC11444843 DOI: 10.7759/cureus.68364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/31/2024] [Indexed: 10/04/2024] Open
Abstract
SMARCA4-deficient undifferentiated tumor (SMARCA4-UT) is a rare and aggressive malignancy characterized by the loss of SMARCA4 protein expression. It typically affects middle-aged male smokers and has a poor prognosis due to its rapid progression and metastatic potential. This case report presents a 73-year-old male diagnosed with a thoracic SMARCA4-UT. Initially diagnosed with stage IVA non-small cell lung cancer, the patient underwent brain tumor resection, radiation, and chemo-immunotherapy. Treatment was halted due to immune-related adverse events. During treatment, a progressing small intestine tumor was discovered, resected, and identified as SMARCA4-UT metastasis through immunohistochemistry, leading to a revised diagnosis of SMARCA4-UT with brain and small intestine metastases. The patient received multimodal treatment, including surgery, radiation, and chemo-immunotherapy. The small intestine metastasis showed resistance to systemic therapy, necessitating surgical intervention. This case highlights the diagnostic challenges and treatment complexities of SMARCA4-UT, emphasizing the importance of comprehensive diagnostic workup and personalized treatment strategies. It demonstrates the potential efficacy of combining systemic therapy with targeted interventions for oligoprogressive disease. The patient's progression-free survival at approximately two years post-diagnosis underscores the need for further research into optimal management strategies for this rare tumor.
Collapse
Affiliation(s)
- Rei Sanai
- Department of Respiratory Medicine, Fukuoka University Hospital, Fukuoka, JPN
| | - Toyoshi Yanagihara
- Department of Respiratory Medicine, Fukuoka University Hospital, Fukuoka, JPN
| | - Takato Ikeda
- Department of Respiratory Medicine, Fukuoka University Hospital, Fukuoka, JPN
| | - Kaori Koga
- Department of Pathology, Fukuoka University School of Medicine, Fukuoka, JPN
| | - Yuki Shundo
- Department of Respiratory Medicine, Fukuoka University Hospital, Fukuoka, JPN
| | - Naoki Hamada
- Department of Respiratory Medicine, Fukuoka University Hospital, Fukuoka, JPN
| | - Noriyuki Ebi
- Department of Respiratory Medicine, Fukuoka University Hospital, Fukuoka, JPN
| | - Hiroyuki Inoue
- Department of Respiratory Medicine, Fukuoka University Hospital, Fukuoka, JPN
| | - Yoshihiro Hamada
- Department of Pathology, Fukuoka University School of Medicine, Fukuoka, JPN
| | - Makoto Hamasaki
- Department of Pathology, Fukuoka University School of Medicine, Fukuoka, JPN
| | - Masaki Fujita
- Department of Respiratory Medicine, Fukuoka University School of Medicine, Fukuoka, JPN
| |
Collapse
|
2
|
Morgan JE, Jaferi N, Shonibare Z, Huang GS. ARID1A in Gynecologic Precancers and Cancers. Reprod Sci 2024; 31:2150-2162. [PMID: 38740655 DOI: 10.1007/s43032-024-01585-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 04/29/2024] [Indexed: 05/16/2024]
Abstract
The highest frequency of genetic alterations in the tumor suppressor ARID1A occurs in malignancies of the female reproductive tract. The prevalence of ARID1A alterations in gynecologic precancers and cancers is summarized from the literature, and the putative mechanisms of tumor suppressive action examined both in benign/precursor lesions including endometriosis and atypical hyperplasia and in malignancies of the ovary, uterus, cervix and vagina. ARID1A alterations in gynecologic cancers are usually loss-of-function mutations, resulting in diminished or absent protein expression. ARID1A deficiency results in pleiotropic downstream effects related not only to its role in transcriptional regulation as a SWI/SNF complex subunit, but also related to the functions of ARID1A in DNA replication and repair, immune modulation, cell cycle progression, endoplasmic reticulum (ER) stress and oxidative stress. The most promising actionable signaling pathway interactions and therapeutic vulnerabilities of ARID1A mutated cancers are presented with a critical review of the currently available experimental and clinical evidence. The role of ARID1A in response to chemotherapeutic agents, radiation therapy and immunotherapy is also addressed. In summary, the multi-faceted role of ARID1A mutation in precancer and cancer is examined through a clinical lens focused on development of novel preventive and therapeutic interventions for gynecological cancers.
Collapse
Affiliation(s)
- Jaida E Morgan
- Yale College, Yale University, New Haven, Connecticut, USA
| | - Nishah Jaferi
- Yale College, Yale University, New Haven, Connecticut, USA
| | - Zainab Shonibare
- Department of Obstetrics, Gynecology & Reproductive Sciences, Yale School of Medicine, Yale University, New Haven, Connecticut, USA
| | - Gloria S Huang
- Department of Obstetrics, Gynecology & Reproductive Sciences, Yale School of Medicine, Yale University, New Haven, Connecticut, USA.
- Department of Obstetrics, Gynecology & Reproductive Sciences, Division of Gynecologic Oncology, Yale School of Medicine, Yale Cancer Center, Yale University, PO Box 208063, New Haven, CT, 06520-8063, USA.
| |
Collapse
|
3
|
Cheung AHK, Wong KY, Chau SL, Xie F, Mui Z, Li GYH, Li MSC, Tong J, Ng CSH, Mok TS, Kang W, To KF. SMARCA4 deficiency and mutations are frequent in large cell lung carcinoma and are prognostically significant. Pathology 2024; 56:504-515. [PMID: 38413251 DOI: 10.1016/j.pathol.2023.12.414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 11/23/2023] [Accepted: 12/06/2023] [Indexed: 02/29/2024]
Abstract
SMARCA4 mutation has emerged as a marker of poor prognosis in lung cancer and has potential predictive value in cancer treatment, but recommendations for which patients require its investigation are lacking. We comprehensively studied SMARCA4 alterations and the clinicopathological significance in a large cohort of immunohistochemically-subtyped non-small cell lung cancer (NSCLC). A total of 1416 patients was studied for the presence of SMARCA4 deficiency by immunohistochemistry (IHC). Thereafter, comprehensive sequencing of tumours was performed for 397 of these patients to study the mutational spectrum of SWI/SNF and SMARCA4 aberrations. IHC evidence of SMARCA4 deficiency was found in 2.9% of NSCLC. Of the sequenced tumours, 38.3% showed aberration in SWI/SNF complex, and 9.3% had SMARCA4 mutations. Strikingly, SMARCA4 aberrations were much more prevalent in large cell carcinoma (LCC) than other histological tumour subtypes. SMARCA4-deficient and SMARCA4-mutated tumours accounted for 40.5% and 51.4% of all LCC, respectively. Multivariable analyses confirmed SMARCA4 mutation was an independent prognostic factor in lung cancer. The immunophenotype of a subset of these tumours frequently showed TTF1 negativity and HepPAR1 positivity. SMARCA4 mutation or its deficiency was associated with positive smoking history and poor prognosis. It also demonstrated mutual exclusion with EGFR mutation. Taken together, the high incidence of SMARCA4 aberrations in LCC may indicate its diagnostic and prognostic value. Our study established the necessity of SMARCA4 IHC in the identification of SMARCA4-aberrant tumours, and this may be of particular importance in LCC and tumours without known driver events.
Collapse
Affiliation(s)
- Alvin Ho-Kwan Cheung
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Kit-Yee Wong
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Shuk-Ling Chau
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Fuda Xie
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China; State Key Laboratory of Digestive Disease, Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China
| | - Zeta Mui
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Gordon Yuan-Ho Li
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Molly Siu Ching Li
- Department of Clinical Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Joanna Tong
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Calvin Sze-Hang Ng
- Department of Surgery, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Tony S Mok
- Department of Clinical Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Wei Kang
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China; State Key Laboratory of Digestive Disease, Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China.
| | - Ka-Fai To
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China; State Key Laboratory of Digestive Disease, Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
4
|
Mironova E, Molinas S, Pozo VD, Bandyopadhyay AM, Lai Z, Kurmashev D, Schneider EL, Santi DV, Chen Y, Kurmasheva RT. Synergistic Antitumor Activity of Talazoparib and Temozolomide in Malignant Rhabdoid Tumors. Cancers (Basel) 2024; 16:2041. [PMID: 38893160 PMCID: PMC11171327 DOI: 10.3390/cancers16112041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/20/2024] [Accepted: 05/22/2024] [Indexed: 06/21/2024] Open
Abstract
Malignant rhabdoid tumors (MRTs) are among the most aggressive and treatment-resistant malignancies affecting infants, originating in the kidney, brain, liver, and soft tissues. The 5-year event-free survival rate for these cancers is a mere 20%. In nearly all cases of MRT, the SMARCB1 gene (occasionally SMARCA4)-a pivotal component of the SWI/SNF chromatin remodeling complex-is homozygously deleted, although the precise etiology of these tumors remains unknown. While young patients with localized MRT generally show improved outcomes, especially those who are older and have early-stage disease, the overall prognosis remains poor despite optimal standard treatments. This highlights the urgent need for more effective treatment strategies. We investigated the antitumor activity of a PARP1 inhibitor (talazoparib, TLZ) combined with a DNA alkylating agent (temozolomide, TMZ) in MRT xenograft models. PARP1 is a widely targeted molecule in cancer treatment and, beyond its role in DNA repair, it participates in transcriptional regulation by recruiting chromatin remodeling complexes to modulate DNA accessibility for RNA polymerases. To widen the therapeutic window of the drug combination, we employed PEGylated TLZ (PEG~TLZ), which has been reported to reduce systemic toxicity through slow drug release. Remarkably, our findings indicate that five out of six MRT xenografts exhibited an objective response to PEG~TLZ+TMZ therapy. Significantly, the loss of SMARCB1 was found to confer a protective effect, correlating with higher expression levels of DNA damage and repair proteins in SMARCB1-deficient MRT cells. Additionally, we identified MGMT as a potential biomarker indicative of in vivo MRT response to PEG~TLZ+TMZ therapy. Moreover, our analysis revealed alterations in signaling pathways associated with the observed antitumor efficacy. This study presents a novel and efficacious therapeutic approach for MRT, along with a promising candidate biomarker for predicting tumor response.
Collapse
Affiliation(s)
- Elena Mironova
- Greehey Children’s Cancer Research Institute, University of Texas Health Science Center, San Antonio, TX 78229, USA
| | - Sebastian Molinas
- Greehey Children’s Cancer Research Institute, University of Texas Health Science Center, San Antonio, TX 78229, USA
| | - Vanessa Del Pozo
- Greehey Children’s Cancer Research Institute, University of Texas Health Science Center, San Antonio, TX 78229, USA
| | - Abhik M. Bandyopadhyay
- Greehey Children’s Cancer Research Institute, University of Texas Health Science Center, San Antonio, TX 78229, USA
| | - Zhao Lai
- Greehey Children’s Cancer Research Institute, University of Texas Health Science Center, San Antonio, TX 78229, USA
- Department of Molecular Medicine, University of Texas Health Science Center, San Antonio, TX 78229, USA
| | - Dias Kurmashev
- Greehey Children’s Cancer Research Institute, University of Texas Health Science Center, San Antonio, TX 78229, USA
| | | | | | - Yidong Chen
- Greehey Children’s Cancer Research Institute, University of Texas Health Science Center, San Antonio, TX 78229, USA
- Department of Population Health Sciences, University of Texas Health Science Center, San Antonio, TX 78229, USA
| | - Raushan T. Kurmasheva
- Greehey Children’s Cancer Research Institute, University of Texas Health Science Center, San Antonio, TX 78229, USA
- Department of Molecular Medicine, University of Texas Health Science Center, San Antonio, TX 78229, USA
| |
Collapse
|
5
|
Shao X, Liu M, Wang X, Han L, Luo S. Malignant Extrarenal Rhabdoid tumor derived from the greater omentum: A case report and literature review. Cancer Rep (Hoboken) 2024; 7:e2086. [PMID: 38767517 PMCID: PMC11104285 DOI: 10.1002/cnr2.2086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 04/20/2024] [Accepted: 04/29/2024] [Indexed: 05/22/2024] Open
Abstract
BACKGROUND Malignant extrarenal rhabdoid tumor (MERT) is a rare and highly metastatic tumor, which is more than 75% of patients dying within 6 months of initial diagnosis, and it often leads to misdiagnosis and delayed treatment. CASE This paper reports a 16-year-old girl who presented with the chief complaint of acute abdominal pain. She underwent laparoscopic exploration and excisional biopsy, then pathological examination and immunohistochemistry revealed "extrarenal malignant rhabdomyoma." One month after operation, she died of intra-abdominal hemorrhage and multiple organ dysfunction. CONCLUSION MERT were often misdiagnosed and had a poor prognosis. The surgery and chemotherapy are usually beneficial to prolong the survival time of patients with MERT.
Collapse
Affiliation(s)
- Xue Shao
- School of Medical and Life ScienceChengdu University of Traditional Chinese MedicineChengduChina
- Department of GynecologySuining Central HospitalSuiningChina
| | - Meijun Liu
- Department of GynecologySuining Central HospitalSuiningChina
| | - Xin Wang
- School of Medical and Life ScienceChengdu University of Traditional Chinese MedicineChengduChina
- Department of GynecologySuining Central HospitalSuiningChina
| | - Lingling Han
- School of Medical and Life ScienceChengdu University of Traditional Chinese MedicineChengduChina
- Department of GynecologySuining Central HospitalSuiningChina
| | - Shuang Luo
- Department of GynecologySuining Central HospitalSuiningChina
| |
Collapse
|
6
|
Zhang M, Wu K, Zhang W, Lin X, Cao Q, Zhang L, Chen K. The therapeutic potential of targeting the CHD protein family in cancer. Pharmacol Ther 2024; 256:108610. [PMID: 38367868 PMCID: PMC10942663 DOI: 10.1016/j.pharmthera.2024.108610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 01/06/2024] [Accepted: 02/02/2024] [Indexed: 02/19/2024]
Abstract
Accumulating evidence indicates that epigenetic events undergo deregulation in various cancer types, playing crucial roles in tumor development. Among the epigenetic factors involved in the epigenetic remodeling of chromatin, the chromodomain helicase DNA-binding protein (CHD) family frequently exhibits gain- or loss-of-function mutations in distinct cancer types. Therefore, targeting CHD remodelers holds the potential for antitumor treatment. In this review, we discuss epigenetic regulations of cancer development. We emphasize proteins in the CHD family, delving deeply into the intricate mechanisms governing their functions. Additionally, we provide an overview of current therapeutic strategies targeting CHD family members in preclinical trials. We further discuss the promising approaches that have demonstrated early signs of success in cancer treatment.
Collapse
Affiliation(s)
- Min Zhang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Kaiyuan Wu
- Basic and Translational Research Division, Department of Cardiology, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA; Department of Bioengineering, Rice University, Houston, TX 77005, USA
| | - Weijie Zhang
- Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China; Department of Orthopaedic Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Xia Lin
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Qi Cao
- Department of Urology, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Lili Zhang
- Basic and Translational Research Division, Department of Cardiology, Boston Children's Hospital, Boston, MA 02115, USA; Prostate Cancer Program, Dana-Farber and Harvard Cancer Center, Harvard University, Boston, MA 02115, USA
| | - Kaifu Chen
- Basic and Translational Research Division, Department of Cardiology, Boston Children's Hospital, Boston, MA 02115, USA; Prostate Cancer Program, Dana-Farber and Harvard Cancer Center, Harvard University, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
7
|
Kashiwagi K, Yoshida J, Kimura H, Shinjo K, Kondo Y, Horie K. Mutation of the SWI/SNF complex component Smarce1 decreases nucleosome stability in embryonic stem cells and impairs differentiation. J Cell Sci 2024; 137:jcs260467. [PMID: 38357971 DOI: 10.1242/jcs.260467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 02/07/2024] [Indexed: 02/16/2024] Open
Abstract
The SWI/SNF chromatin remodeling complex consists of more than ten component proteins that form a large protein complex of >1 MDa. The catalytic proteins Smarca4 or Smarca2 work in concert with the component proteins to form a chromatin platform suitable for transcriptional regulation. However, the mechanism by which each component protein works synergistically with the catalytic proteins remains largely unknown. Here, we report on the function of Smarce1, a component of the SWI/SNF complex, through the phenotypic analysis of homozygous mutant embryonic stem cells (ESCs). Disruption of Smarce1 induced the dissociation of other complex components from the SWI/SNF complex. Histone binding to DNA was loosened in homozygous mutant ESCs, indicating that disruption of Smarce1 decreased nucleosome stability. Sucrose gradient sedimentation analysis suggested that there was an ectopic genomic distribution of the SWI/SNF complex upon disruption of Smarce1, accounting for the misregulation of chromatin conformations. Unstable nucleosomes remained during ESC differentiation, impairing the heterochromatin formation that is characteristic of the differentiation process. These results suggest that Smarce1 guides the SWI/SNF complex to the appropriate genomic regions to generate chromatin structures adequate for transcriptional regulation.
Collapse
Affiliation(s)
- Katsunobu Kashiwagi
- Department of Physiology II, Nara Medical University, Kashihara, Nara 634-8521, Japan
- Division of Cancer Biology, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan
| | - Junko Yoshida
- Department of Physiology II, Nara Medical University, Kashihara, Nara 634-8521, Japan
| | - Hiroshi Kimura
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Kanagawa 226-8503, Japan
| | - Keiko Shinjo
- Division of Cancer Biology, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan
| | - Yutaka Kondo
- Division of Cancer Biology, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan
| | - Kyoji Horie
- Department of Physiology II, Nara Medical University, Kashihara, Nara 634-8521, Japan
| |
Collapse
|
8
|
Shinno Y, Ohe Y. Thoracic SMARCA4-deficient undifferentiated tumor: current knowledge and future perspectives. Jpn J Clin Oncol 2024; 54:265-270. [PMID: 38117955 DOI: 10.1093/jjco/hyad175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 11/28/2023] [Indexed: 12/22/2023] Open
Abstract
Thoracic SMARCA4-deficient undifferentiated tumor is a newly recognized disease entity characterized as a high-grade malignant neoplasm with an undifferentiated or rhabdoid phenotype. The tumor was initially identified as a subtype of thoracic sarcoma with SMARCA4 loss, but further investigation resulted in its classification as a subtype of epithelial malignancies in the current World Health Organization classification. SMARCA4-deficient undifferentiated tumor is highly aggressive and has a poor prognosis. Because of its rarity, an optimal treatment strategy has not yet been identified. In this review, we summarize the literature on SMARCA4-deficient undifferentiated tumor in terms of its clinical characteristics, diagnosis, treatment strategy and future perspectives.
Collapse
Affiliation(s)
- Yuki Shinno
- Department of Thoracic Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Yuichiro Ohe
- Department of Thoracic Oncology, National Cancer Center Hospital, Tokyo, Japan
| |
Collapse
|
9
|
Szczepanski A, Tsuboyama N, Lyu H, Wang P, Beytullahoglu O, Zhang T, Singer BD, Yue F, Zhao Z, Wang L. A SWI/SNF-dependent transcriptional regulation mediated by POU2AF2/C11orf53 at enhancer. Nat Commun 2024; 15:2067. [PMID: 38453939 PMCID: PMC10920751 DOI: 10.1038/s41467-024-46492-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 02/13/2024] [Indexed: 03/09/2024] Open
Abstract
Recent studies have identified a previously uncharacterized protein C11orf53 (now named POU2AF2/OCA-T1), which functions as a robust co-activator of POU2F3, the master transcription factor which is critical for both normal and neoplastic tuft cell identity and viability. Here, we demonstrate that POU2AF2 dictates opposing transcriptional regulation at distal enhance elements. Loss of POU2AF2 leads to an inhibition of active enhancer nearby genes, such as tuft cell identity genes, and a derepression of Polycomb-dependent poised enhancer nearby genes, which are critical for cell viability and differentiation. Mechanistically, depletion of POU2AF2 results in a global redistribution of the chromatin occupancy of the SWI/SNF complex, leading to a significant 3D genome structure change and a subsequent transcriptional reprogramming. Our genome-wide CRISPR screen further demonstrates that POU2AF2 depletion or SWI/SNF inhibition leads to a PTEN-dependent cell growth defect, highlighting a potential role of POU2AF2-SWI/SNF axis in small cell lung cancer (SCLC) pathogenesis. Additionally, pharmacological inhibition of SWI/SNF phenocopies POU2AF2 depletion in terms of gene expression alteration and cell viability decrease in SCLC-P subtype cells. Therefore, impeding POU2AF2-mediated transcriptional regulation represents a potential therapeutic approach for human SCLC therapy.
Collapse
Affiliation(s)
- Aileen Szczepanski
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
- Simpson Querrey Center for Epigenetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Natsumi Tsuboyama
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
- Simpson Querrey Center for Epigenetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Huijue Lyu
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
- Simpson Querrey Center for Epigenetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Ping Wang
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
- Simpson Querrey Center for Epigenetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Oguzhan Beytullahoglu
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
- Simpson Querrey Center for Epigenetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Te Zhang
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
- Simpson Querrey Center for Epigenetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Benjamin David Singer
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
- Simpson Querrey Center for Epigenetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Feng Yue
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
- Simpson Querrey Center for Epigenetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
- Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Zibo Zhao
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA.
- Simpson Querrey Center for Epigenetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA.
| | - Lu Wang
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA.
- Simpson Querrey Center for Epigenetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA.
| |
Collapse
|
10
|
Li K, Wang B, Hu H. Research progress of SWI/SNF complex in breast cancer. Epigenetics Chromatin 2024; 17:4. [PMID: 38365747 PMCID: PMC10873968 DOI: 10.1186/s13072-024-00531-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 02/13/2024] [Indexed: 02/18/2024] Open
Abstract
In the past decade, numerous epigenetic mechanisms have been discovered to be associated with cancer. The mammalian SWI/SNF complex is an ATP-dependent chromatin remodeling complex whose mutations are associated with various malignancies including breast cancer. As the SWI/SNF complex has become one of the most commonly mutated complexes in cancer, targeting epigenetic mutations acquired during breast cancer progress is a potential means of improving clinical efficacy in treatment strategies. This article reviews the composition of the SWI/SNF complex, its main roles and research progress in breast cancer, and links these findings to the latest discoveries in cancer epigenomics to discuss the potential mechanisms and therapeutic potential of SWI/SNF in breast cancer.
Collapse
Affiliation(s)
- Kexuan Li
- School of Medicine, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Baocai Wang
- Department of Surgery, TUM School of Medicine, Klinikum rechts der Isar, Technical University of Munich, 81675, Munich, Germany
| | - Haolin Hu
- Breast Center, Zhongda Hospital, School of Medicine, Southeast University, 87 Dingjiaqiao Road, Nanjing, 210009, Jiangsu, China.
| |
Collapse
|
11
|
Maurya S, Yadav S, Bhowmik S, Dhal J, Mehra L, Sharma R, Krishna A, Sharma A, Barwad A, Das P. SMARCB1/INI1-Deficient Poorly Differentiated Carcinoma of the Colon With Rhabdoid Features-A Rare Tumor With Serrated Phenotype: Case Report and Review of Literature. Int J Surg Pathol 2024; 32:187-195. [PMID: 37128676 DOI: 10.1177/10668969231171134] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Poorly differentiated colonic carcinoma with rhabdoid features is a rarely described entity. Our knowledge regarding the molecular phenotype of the tumor is evolving. We herein report a similar tumor with rhabdoid differentiation identified in the splenic flexure, which on histological examination showed a poorly differentiated phenotype with epithelioid to spindled morphology, tumor giant cells, and rhabdoid differentiation. The tumor was mismatch repair-proficient, deficient of INI1/SMARCB1, KRAS mutated (A146×), BRAFV600E mutated (c.1799T > A), and NRAS wild-type, indicating serrated differentiation in the tumor. The patient died after 3.5 months post-surgery. INI1-deficient poorly differentiated carcinoma of the colon is a rare, aggressive colonic malignancy showing a serrated phenotype. Routine identification and subtyping are important keeping in mind the distinct tumor phenotype, resistance to conventional chemotherapy, and dismal prognosis.
Collapse
Affiliation(s)
- Shivali Maurya
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, India
| | - Sujata Yadav
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, India
| | - Subham Bhowmik
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, India
| | - Jasmine Dhal
- Department of Surgery, All India Institute of Medical Sciences, New Delhi, India
| | - Lalita Mehra
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, India
| | - Raju Sharma
- Department of Radiology, All India Institute of Medical Sciences, New Delhi, India
| | - Asuri Krishna
- Department of Surgery, All India Institute of Medical Sciences, New Delhi, India
| | - Atul Sharma
- Department of Medical Oncology, All India Institute of Medical Sciences, New Delhi, India
| | - Adarsh Barwad
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, India
| | - Prasenjit Das
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
12
|
Liu Y, Bao L, Catalano SR, Zhu X, Li X. The Effects of Larval Cryopreservation on the Epigenetics of the Pacific Oyster Crassostrea gigas. Int J Mol Sci 2023; 24:17262. [PMID: 38139089 PMCID: PMC10743806 DOI: 10.3390/ijms242417262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/30/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023] Open
Abstract
High mortalities and highly variable results during the subsequent development of post-thaw larvae have been widely considered as key issues restricting the application of cryopreservation techniques to support genetic improvement programs and hatchery production in farmed marine bivalve species. To date, few studies have been undertaken to investigate the effects of cryodamage at the molecular level in bivalves. This study is the first to evaluate the effect of larval cryopreservation on the epigenetics of the resultant progenies of the Pacific oyster Crassostrea gigas. The results show that the level of DNA methylation was significantly (p < 0.05) higher and lower than that of the control when the trochophore larvae were revived and when they developed to D-stage larvae (day 1 post-fertilization), respectively, but the level returned to the control level from day 8 post-fertilization onwards. The expression of the epigenetic regulator genes DNMT3b, MeCP2, JmjCA, KDM2 and OSA changed significantly (p < 0.05) when the trochophore larvae were thawed, and then they reverted to the control levels at the D- and later larval developmental stages. However, the expression of other epigenetic regulator genes, namely, MBD2, DNMT1, CXXC1 and JmjD6, did not change at any post-thaw larval developmental stage. For the newly thawed trochophore larvae, the amount of methylated H3K4Me1 and H3K27Me1 significantly changed, and the expression of all Jumonji orthologs, except that of Jumonji5, significantly (p < 0.05) decreased. These epigenetic results agree with the data collected on larval performances (e.g., survival rate), suggesting that the effect period of the published cryopreservation technique on post-thaw larvae is short in C. gigas.
Collapse
Affiliation(s)
- Yibing Liu
- Fisheries College, Ocean University of China, Qingdao 266003, China;
| | - Lisui Bao
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China;
| | - Sarah R. Catalano
- Aquatic Sciences Centre, South Australian Research and Development Institute, Adelaide 5024, Australia;
| | - Xiaochen Zhu
- College of Science and Engineering, Flinders University, Adelaide 5042, Australia;
| | - Xiaoxu Li
- Aquatic Sciences Centre, South Australian Research and Development Institute, Adelaide 5024, Australia;
| |
Collapse
|
13
|
Sun J, Yan Q, Zhang Z, Xu T, Gong Y, Li W, Mai K, Ai Q. Exploring the role of SWI/SNF complex subunit BAF60c in lipid metabolism and inflammation in fish. iScience 2023; 26:108207. [PMID: 37942006 PMCID: PMC10628743 DOI: 10.1016/j.isci.2023.108207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/26/2023] [Accepted: 10/11/2023] [Indexed: 11/10/2023] Open
Abstract
Chromatin remodeling plays an important role in regulating gene transcription, in which chromatin remodeling complex is a crucial aspect. Brg1/Brm-associated factor 60c (BAF60c) subunit forms a bridge between chromatin remodeling complexes and transcription factors in mammals; hence, it has received extensive attention. However, the roles of BAF60c in fish remain largely unexplored. In this study, we identified BAF60c-interacting proteins by using HIS-pull-down and LC-MS/MS analysis in fish. Subsequently, the RNA-seq analysis was performed to identify the overall effects of BAF60c. Then, the function of BAF60c was verified through BAF60c knockdown and overexpression experiments. We demonstrated for the first time that BAF60c interacts with glucose-regulated protein 78 (GRP78) and regulates lipid metabolism, endoplasmic reticulum (ER) stress, and inflammation. Knockdown of BAF60c reduces fatty acid biosynthesis, ER stress, and inflammation. In conclusion, the results enriched BAF60c-interacting protein network and explored the function of BAF60c in lipid metabolism and inflammation in fish.
Collapse
Affiliation(s)
- Jie Sun
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) & Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, Qingdao, Shandong 266003, People’s Republic of China
| | - Qiuxin Yan
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) & Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, Qingdao, Shandong 266003, People’s Republic of China
| | - Zhihao Zhang
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) & Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, Qingdao, Shandong 266003, People’s Republic of China
| | - Ting Xu
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) & Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, Qingdao, Shandong 266003, People’s Republic of China
| | - Ye Gong
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) & Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, Qingdao, Shandong 266003, People’s Republic of China
| | - Weijia Li
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) & Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, Qingdao, Shandong 266003, People’s Republic of China
| | - Kangsen Mai
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) & Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, Qingdao, Shandong 266003, People’s Republic of China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Qingdao, Shandong 266237, People’s Republic of China
| | - Qinghui Ai
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) & Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, Qingdao, Shandong 266003, People’s Republic of China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Qingdao, Shandong 266237, People’s Republic of China
| |
Collapse
|
14
|
Kang JS, Kim D, Rhee J, Seo JY, Park I, Kim JH, Lee D, Lee W, Kim YL, Yoo K, Bae S, Chung J, Seong RH, Kong YY. Baf155 regulates skeletal muscle metabolism via HIF-1a signaling. PLoS Biol 2023; 21:e3002192. [PMID: 37478146 PMCID: PMC10396025 DOI: 10.1371/journal.pbio.3002192] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 06/12/2023] [Indexed: 07/23/2023] Open
Abstract
During exercise, skeletal muscle is exposed to a low oxygen condition, hypoxia. Under hypoxia, the transcription factor hypoxia-inducible factor-1α (HIF-1α) is stabilized and induces expressions of its target genes regulating glycolytic metabolism. Here, using a skeletal muscle-specific gene ablation mouse model, we show that Brg1/Brm-associated factor 155 (Baf155), a core subunit of the switch/sucrose non-fermentable (SWI/SNF) complex, is essential for HIF-1α signaling in skeletal muscle. Muscle-specific ablation of Baf155 increases oxidative metabolism by reducing HIF-1α function, which accompanies the decreased lactate production during exercise. Furthermore, the augmented oxidation leads to high intramuscular adenosine triphosphate (ATP) level and results in the enhancement of endurance exercise capacity. Mechanistically, our chromatin immunoprecipitation (ChIP) analysis reveals that Baf155 modulates DNA-binding activity of HIF-1α to the promoters of its target genes. In addition, for this regulatory function, Baf155 requires a phospho-signal transducer and activator of transcription 3 (pSTAT3), which forms a coactivator complex with HIF-1α, to activate HIF-1α signaling. Our findings reveal the crucial role of Baf155 in energy metabolism of skeletal muscle and the interaction between Baf155 and hypoxia signaling.
Collapse
Affiliation(s)
- Jong-Seol Kang
- School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Dongha Kim
- Department of Anatomy, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Joonwoo Rhee
- School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Ji-Yun Seo
- School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Inkuk Park
- School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Ji-Hoon Kim
- School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Daewon Lee
- Institute of Molecular Biology and Genetics, Seoul National University, Seoul, South Korea
| | - WonUk Lee
- School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Ye Lynne Kim
- School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Kyusang Yoo
- School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Sunghwan Bae
- School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Jongkyeong Chung
- School of Biological Sciences, Seoul National University, Seoul, South Korea
- Institute of Molecular Biology and Genetics, Seoul National University, Seoul, South Korea
| | - Rho Hyun Seong
- School of Biological Sciences, Seoul National University, Seoul, South Korea
- Institute of Molecular Biology and Genetics, Seoul National University, Seoul, South Korea
| | - Young-Yun Kong
- School of Biological Sciences, Seoul National University, Seoul, South Korea
| |
Collapse
|
15
|
Kharel A, Shen J, Brown R, Chen Y, Nguyen C, Alson D, Bluemn T, Fan J, Gai K, Zhang B, Kudek M, Zhu N, Cui W. Loss of PBAF promotes expansion and effector differentiation of CD8 + T cells during chronic viral infection and cancer. Cell Rep 2023; 42:112649. [PMID: 37330910 PMCID: PMC10592487 DOI: 10.1016/j.celrep.2023.112649] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 04/10/2023] [Accepted: 05/30/2023] [Indexed: 06/20/2023] Open
Abstract
During chronic viral infection and cancer, it has been established that a subset of progenitor CD8+ T cells continuously gives rise to terminally exhausted cells and cytotoxic effector cells. Although multiple transcriptional programs governing the bifurcated differentiation trajectories have been previously studied, little is known about the chromatin structure changes regulating CD8+ T cell-fate decision. In this study, we demonstrate that the chromatin remodeling complex PBAF restrains expansion and promotes exhaustion of CD8+ T cells during chronic viral infection and cancer. Mechanistically, transcriptomic and epigenomic analyses reveal the role of PBAF in maintaining chromatin accessibility of multiple genetic pathways and transcriptional programs to restrain proliferation and promote T cell exhaustion. Harnessing this knowledge, we demonstrate that perturbation of PBAF complex constrained exhaustion and promoted expansion of tumor-specific CD8+ T cells resulting in antitumor immunity in a preclinical melanoma model, implicating PBAF as an attractive target for cancer immunotherapeutic.
Collapse
Affiliation(s)
- Arjun Kharel
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Jian Shen
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Ryan Brown
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA; Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Yao Chen
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Christine Nguyen
- Blood Research Institute, Versiti, Milwaukee, WI, USA; Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Donia Alson
- Blood Research Institute, Versiti, Milwaukee, WI, USA
| | - Theresa Bluemn
- Blood Research Institute, Versiti, Milwaukee, WI, USA; Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Jie Fan
- Department of Medicine/Hematology and Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Kexin Gai
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Bin Zhang
- Department of Medicine/Hematology and Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA; Department of Microbiology-Immunology, Northwestern University, Chicago, IL, USA
| | - Matthew Kudek
- Blood Research Institute, Versiti, Milwaukee, WI, USA
| | - Nan Zhu
- Blood Research Institute, Versiti, Milwaukee, WI, USA; Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Weiguo Cui
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA; Blood Research Institute, Versiti, Milwaukee, WI, USA; Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, USA.
| |
Collapse
|
16
|
Lalaoui Rachidi S, Firmin N, Elfadli M, Essadi I, Belbaraka R. A Case Report of SMARCA4-Deficient Thoracic Sarcoma: A Rare and Aggressive Disease With a Grim Prognosis. Cureus 2023; 15:e39571. [PMID: 37378131 PMCID: PMC10292728 DOI: 10.7759/cureus.39571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/27/2023] [Indexed: 06/29/2023] Open
Abstract
SMARCA4-deficient thoracic sarcoma (DTS) is a rare malignancy defined by inactivating SMARCA4 mutations leading to protein loss. It was recently described as an aggressive disease with a dismal prognosis, mostly affecting young men with a history of heavy smoking. Histologically, SMARCA4-DTS is a poorly differentiated tumor with rhabdoid or epithelioid features that can be distinguished from other soft tissue, and thoracic sarcomas by a higher tumor mutation burden (TMB) and the presence of smoking signatures, including KRAS, STK11, and KEAP1 mutations. Currently, there is no approved treatment for SMARCA4-DTS, which is known to be chemo-resistant, but more recent studies have shown some effectiveness with immune checkpoint inhibitors. We report the case of a 42-year-old man with a family history of cancer who was admitted to the hospital with acute respiratory distress and superior vena cava syndrome. He had been experiencing thoracic pain, dry cough, dyspnea, fatigue, and unintentional weight loss for a month. Imaging revealed multiple masses and lymph nodes in the chest, as well as pleural effusion. PET scan showed widespread metastases. A cervical lymph node biopsy confirmed the diagnosis of SMARCA4-deficient thoracic sarcoma. Unfortunately, his general condition did not allow an aggressive treatment. He was started on Pazopanib 800mg per day, but deteriorated rapidly and passed away. This report highlights the aggressive nature and unfavorable prognosis associated with SMARCA4-deficient thoracic sarcoma. Accurate diagnosis of this entity can be challenging due to its unique marker expression and unfamiliar histological features. Currently, there are no established treatment strategies for this condition; however, recent studies have shown promising results with immune checkpoint inhibitors and targeted therapies. Further research is necessary to identify the most effective treatment approaches for SMARCA4-DTS.
Collapse
Affiliation(s)
| | - Nelly Firmin
- Medical Oncology, Montpellier Cancer Institute (ICM), Montpellier, FRA
| | - Mohamed Elfadli
- Medical Oncology, Mohammed VI University Hospital, Marrakesh, MAR
| | - Ismail Essadi
- Medical Oncology, Ibn Sina Military Teaching Hospital Marrakesh, Marrakesh, MAR
| | | |
Collapse
|
17
|
Lin YT, Li CF, Wu HC, Jan YH, Kuo YH. Case report: Heterogenous SMARCA4-deficient thoracic non-small cell lung carcinoma with various responses to nivolumab. Front Immunol 2023; 14:1131448. [PMID: 37051241 PMCID: PMC10083322 DOI: 10.3389/fimmu.2023.1131448] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 03/10/2023] [Indexed: 03/29/2023] Open
Abstract
SMARCA4-deficient non-small cell carcinoma is an aggressive neoplasm with poor outcome. Several studies have highlighted its immunochemistry, pathophysiology, and underlying mechanisms, but studies of its definite treatment are few. Here, we report on a 69-year-old male with heterogenous pathological presentations of SMARCA4-deficient non-small cell carcinoma. He initially presented with neck lymphadenopathies. Immunohistochemistry staining and genomic profiling confirmed the diagnosis of SMARCA4-deficient non-small cell carcinoma. The patient responded well to immune checkpoint inhibitors with nivolumab. However, new lesions with various pathological presentations and various responses to nivolumab appeared during the treatment course. The patient survived more than 3 years from the initial diagnosis. This case shows the efficacy of nivolumab to treat SMARCA4-deficient non-small cell lung carcinoma.
Collapse
Affiliation(s)
- Yun-Tzu Lin
- Department of Oncology, Chi-Mei Medical Center, Tainan, Taiwan
| | - Chien-Feng Li
- Department of Pathology, Chi-Mei Medical Center, Tainan, Taiwan
- Institute of Precision Medicine, National Sun Yat-sen University, Kaohsiung, Taiwan
- Department of Medical Research, Chi Mei Medical Center, Tainan, Taiwan
- National Institute of Cancer Research, National Health Research Institutes, Tainan, Taiwan
| | - Hung-Chang Wu
- Department of Oncology, Chi-Mei Medical Center, Tainan, Taiwan
- College of Pharmacy and Science, Chia Nan University, Tainan, Taiwan
| | | | - Yu-Hsuan Kuo
- Department of Oncology, Chi-Mei Medical Center, Tainan, Taiwan
- College of Pharmacy and Science, Chia Nan University, Tainan, Taiwan
- Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
- *Correspondence: Yu-Hsuan Kuo,
| |
Collapse
|
18
|
Bomber ML, Wang J, Liu Q, Barnett KR, Layden HM, Hodges E, Stengel KR, Hiebert SW. Human SMARCA5 is continuously required to maintain nucleosome spacing. Mol Cell 2023; 83:507-522.e6. [PMID: 36630954 PMCID: PMC9974918 DOI: 10.1016/j.molcel.2022.12.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 12/07/2022] [Accepted: 12/16/2022] [Indexed: 01/12/2023]
Abstract
Genetic models suggested that SMARCA5 was required for DNA-templated events including transcription, DNA replication, and DNA repair. We engineered a degron tag into the endogenous alleles of SMARCA5, a catalytic component of the imitation switch complexes in three different human cell lines to define the effects of rapid degradation of this key regulator. Degradation of SMARCA5 was associated with a rapid increase in global nucleosome repeat length, which may allow greater chromatin compaction. However, there were few changes in nascent transcription within the first 6 h of degradation. Nevertheless, we demonstrated a requirement for SMARCA5 to control nucleosome repeat length at G1/S and during the S phase. SMARCA5 co-localized with CTCF and H2A.Z, and we found a rapid loss of CTCF DNA binding and disruption of nucleosomal phasing around CTCF binding sites. This spatiotemporal analysis indicates that SMARCA5 is continuously required for maintaining nucleosomal spacing.
Collapse
Affiliation(s)
- Monica L Bomber
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Jing Wang
- Department of Biostatistics, Vanderbilt University School of Medicine, Nashville, TN 37203, USA; Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Qi Liu
- Department of Biostatistics, Vanderbilt University School of Medicine, Nashville, TN 37203, USA; Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Kelly R Barnett
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Hillary M Layden
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Emily Hodges
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Kristy R Stengel
- Department of Cell Biology, Albert Einstein College of Medicine, New York, NY, USA.
| | - Scott W Hiebert
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.
| |
Collapse
|
19
|
Chung SY, Kenee P, Mitton T, Halderman A. SMARCB1(INI-1)-Deficient Sinonasal Carcinoma: An Evolving Entity. J Neurol Surg Rep 2023; 84:e1-e5. [PMID: 36712411 PMCID: PMC9883109 DOI: 10.1055/a-1996-1283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 11/23/2022] [Indexed: 12/14/2022] Open
Abstract
SMARCB1(INI-1)-deficient sinonasal carcinoma is a rare, poorly differentiated neoplasm with a poor prognosis. Though historically most were identified as sinonasal undifferentiated carcinoma, we now understand it to be a distinct entity. There is currently a general consensus supporting multimodal therapy, though the optimal sequence of surgery, chemotherapy, and radiation has yet to be defined.
Collapse
Affiliation(s)
- Sei Y. Chung
- Department of Otolaryngology-Head and Neck Surgery, The University of Texas Southwestern Medical Center Ringgold Standard Institution, Dallas, Texas, United States,Address for correspondence Sei Y. Chung, MD Department of Otolaryngology-Head and Neck SurgeryThe University of Texas Southwestern Medical Center Ringgold Standard Institution, Dallas, TX 75219United States
| | - Parker Kenee
- Department of Otolaryngology-Head and Neck Surgery, The University of Texas Southwestern Medical Center Ringgold Standard Institution, Dallas, Texas, United States
| | - Tanner Mitton
- Department of Otolaryngology-Head and Neck Surgery, The University of Texas Southwestern Medical Center Ringgold Standard Institution, Dallas, Texas, United States
| | - Ashleigh Halderman
- Department of Otolaryngology-Head and Neck Surgery, The University of Texas Southwestern Medical Center Ringgold Standard Institution, Dallas, Texas, United States
| |
Collapse
|
20
|
Zhao D, Zhang M, Huang S, Liu Q, Zhu S, Li Y, Jiang W, Kiss DL, Cao Q, Zhang L, Chen K. CHD6 promotes broad nucleosome eviction for transcriptional activation in prostate cancer cells. Nucleic Acids Res 2022; 50:12186-12201. [PMID: 36408932 PMCID: PMC9757051 DOI: 10.1093/nar/gkac1090] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 11/19/2022] [Indexed: 11/22/2022] Open
Abstract
Despite being a member of the chromodomain helicase DNA-binding protein family, little is known about the exact role of CHD6 in chromatin remodeling or cancer disease. Here we show that CHD6 binds to chromatin to promote broad nucleosome eviction for transcriptional activation of many cancer pathways. By integrating multiple patient cohorts for bioinformatics analysis of over a thousand prostate cancer datasets, we found CHD6 expression elevated in prostate cancer and associated with poor prognosis. Further comprehensive experiments demonstrated that CHD6 regulates oncogenicity of prostate cancer cells and tumor development in a murine xenograft model. ChIP-Seq for CHD6, along with MNase-Seq and RNA-Seq, revealed that CHD6 binds on chromatin to evict nucleosomes from promoters and gene bodies for transcriptional activation of oncogenic pathways. These results demonstrated a key function of CHD6 in evicting nucleosomes from chromatin for transcriptional activation of prostate cancer pathways.
Collapse
Affiliation(s)
- Dongyu Zhao
- Department of Biomedical Informatics, MOE Key Lab of Cardiovascular Sciences, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
- Prostate Cancer Program, Dana-Farber and Harvard Cancer Center, Harvard University, Boston, MA 02115, USA
- Basic and Translational Research Division, Department of Cardiology, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX 77030, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Min Zhang
- Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Shaodong Huang
- Department of Biomedical Informatics, MOE Key Lab of Cardiovascular Sciences, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Qi Liu
- Department of Urology, and Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Sen Zhu
- Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Yanqiang Li
- Prostate Cancer Program, Dana-Farber and Harvard Cancer Center, Harvard University, Boston, MA 02115, USA
- Basic and Translational Research Division, Department of Cardiology, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX 77030, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Weihua Jiang
- Center for Inflammation and Epigenetics, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Daniel L Kiss
- Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Qi Cao
- Center for Inflammation and Epigenetics, Houston Methodist Research Institute, Houston, TX 77030, USA
- Department of Urology, and Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Lili Zhang
- Basic and Translational Research Division, Department of Cardiology, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX 77030, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Kaifu Chen
- Prostate Cancer Program, Dana-Farber and Harvard Cancer Center, Harvard University, Boston, MA 02115, USA
- Basic and Translational Research Division, Department of Cardiology, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX 77030, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
21
|
ARID1A loss induces polymorphonuclear myeloid-derived suppressor cell chemotaxis and promotes prostate cancer progression. Nat Commun 2022; 13:7281. [PMID: 36435834 PMCID: PMC9701216 DOI: 10.1038/s41467-022-34871-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 11/10/2022] [Indexed: 11/28/2022] Open
Abstract
Chronic inflammation and an immunosuppressive microenvironment promote prostate cancer (PCa) progression and diminish the response to immune checkpoint blockade (ICB) therapies. However, it remains unclear how and to what extent these two events are coordinated. Here, we show that ARID1A, a subunit of the SWI/SNF chromatin remodeling complex, functions downstream of inflammation-induced IKKβ activation to shape the immunosuppressive tumor microenvironment (TME). Prostate-specific deletion of Arid1a cooperates with Pten loss to accelerate prostate tumorigenesis. We identify polymorphonuclear myeloid-derived suppressor cells (PMN-MDSCs) as the major infiltrating immune cell type that causes immune evasion and reveal that neutralization of PMN-MDSCs restricts the progression of Arid1a-deficient tumors. Mechanistically, inflammatory cues activate IKKβ to phosphorylate ARID1A, leading to its degradation via β-TRCP. ARID1A downregulation in turn silences the enhancer of A20 deubiquitinase, a critical negative regulator of NF-κB signaling, and thereby unleashes CXCR2 ligand-mediated MDSC chemotaxis. Importantly, our results support the therapeutic strategy of anti-NF-κB antibody or targeting CXCR2 combined with ICB for advanced PCa. Together, our findings highlight that the IKKβ/ARID1A/NF-κB feedback axis integrates inflammation and immunosuppression to promote PCa progression.
Collapse
|
22
|
Coutinho DF, Mundi PS, Marks LJ, Burke C, Ortiz MV, Diolaiti D, Bird L, Vallance KL, Ibáñez G, You D, Long M, Rosales N, Grunn A, Ndengu A, Siddiquee A, Gaviria ES, Rainey AR, Fazlollahi L, Hosoi H, Califano A, Kung AL, Dela Cruz FS. Validation of a non-oncogene encoded vulnerability to exportin 1 inhibition in pediatric renal tumors. MED 2022; 3:774-791.e7. [PMID: 36195086 PMCID: PMC9669237 DOI: 10.1016/j.medj.2022.09.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 07/20/2022] [Accepted: 09/13/2022] [Indexed: 11/12/2022]
Abstract
BACKGROUND Malignant rhabdoid tumors (MRTs) and Wilms' tumors (WTs) are rare and aggressive renal tumors of infants and young children comprising ∼5% of all pediatric cancers. MRTs are among the most genomically stable cancers, and although WTs are genomically heterogeneous, both generally lack therapeutically targetable genetic mutations. METHODS Comparative protein activity analysis of MRTs (n = 68) and WTs (n = 132) across TCGA and TARGET cohorts, using metaVIPER, revealed elevated exportin 1 (XPO1) inferred activity. In vitro studies were performed on a panel of MRT and WT cell lines to evaluate effects on proliferation and cell-cycle progression following treatment with the selective XPO1 inhibitor selinexor. In vivo anti-tumor activity was assessed in patient-derived xenograft (PDX) models of MRTs and WTs. FINDINGS metaVIPER analysis identified markedly aberrant activation of XPO1 in MRTs and WTs compared with other tumor types. All MRT and most WT cell lines demonstrated baseline, aberrant XPO1 activity with in vitro sensitivity to selinexor via cell-cycle arrest and induction of apoptosis. In vivo, XPO1 inhibitors significantly abrogated tumor growth in PDX models, inducing effective disease control with sustained treatment. Corroborating human relevance, we present a case report of a child with multiply relapsed WTs with prolonged disease control on selinexor. CONCLUSIONS We report on a novel systems-biology-based comparative framework to identify non-genetically encoded vulnerabilities in genomically quiescent pediatric cancers. These results have provided preclinical rationale for investigation of XPO1 inhibitors in an upcoming investigator-initiated clinical trial of selinexor in children with MRTs and WTs and offer opportunities for exploration of inferred XPO1 activity as a potential predictive biomarker for response. FUNDING This work was funded by CureSearch for Children's Cancer, Alan B. Slifka Foundation, NIH (U01 CA217858, S10 OD012351, and S10 OD021764), Michael's Miracle Cure, Hyundai Hope on Wheels, Cannonball Kids Cancer, Conquer Cancer the ASCO Foundation, Cycle for Survival, Paulie Strong Foundation, and the Grayson Fund.
Collapse
Affiliation(s)
- Diego F Coutinho
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Prabhjot S Mundi
- Department of Medicine, Columbia University Medical Center, New York, NY 10032, USA
| | - Lianna J Marks
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Chelsey Burke
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Michael V Ortiz
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Daniel Diolaiti
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Lauren Bird
- Cook Children's Hematology and Oncology, Fort Worth, TX 76104, USA
| | - Kelly L Vallance
- Cook Children's Hematology and Oncology, Fort Worth, TX 76104, USA
| | - Glorymar Ibáñez
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Daoqi You
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Matthew Long
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Nestor Rosales
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Adina Grunn
- Department of Systems Biology, Columbia University Medical Center, New York, NY 10032, USA
| | - Andoyo Ndengu
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Armaan Siddiquee
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Ervin S Gaviria
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Allison R Rainey
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Ladan Fazlollahi
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY 10032, USA
| | - Hajime Hosoi
- Department of Pediatrics, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Andrea Califano
- Department of Systems Biology, Columbia University Medical Center, New York, NY 10032, USA.
| | - Andrew L Kung
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| | - Filemon S Dela Cruz
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| |
Collapse
|
23
|
Al-Shbool G, Krishnan Nair H. SMARCA4-Deficient Undifferentiated Tumor: A Rare Malignancy With Distinct Clinicopathological Characteristics. Cureus 2022; 14:e30708. [DOI: 10.7759/cureus.30708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/25/2022] [Indexed: 11/07/2022] Open
|
24
|
Complex Relationships between HIV-1 Integrase and Its Cellular Partners. Int J Mol Sci 2022; 23:ijms232012341. [PMID: 36293197 PMCID: PMC9603942 DOI: 10.3390/ijms232012341] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/09/2022] [Accepted: 10/11/2022] [Indexed: 11/06/2022] Open
Abstract
RNA viruses, in pursuit of genome miniaturization, tend to employ cellular proteins to facilitate their replication. HIV-1, one of the most well-studied retroviruses, is not an exception. There is numerous evidence that the exploitation of cellular machinery relies on nucleic acid-protein and protein-protein interactions. Apart from Vpr, Vif, and Nef proteins that are known to regulate cellular functioning via interaction with cell components, another viral protein, integrase, appears to be crucial for proper virus-cell dialog at different stages of the viral life cycle. The goal of this review is to summarize and systematize existing data on known cellular partners of HIV-1 integrase and their role in the HIV-1 life cycle.
Collapse
|
25
|
Karim A, Shaikhyzada K, Suleimenova A, Ibraimov B, Nurgaliev D, Poddighe D. Case report: Atypical teratoid/rhabdoid tumor of the lateral ventricle in a male adolescent (case-based review and diagnostic challenges in developing countries). Front Oncol 2022; 12:985862. [PMID: 36276064 PMCID: PMC9582653 DOI: 10.3389/fonc.2022.985862] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 09/06/2022] [Indexed: 12/04/2022] Open
Abstract
Atypical teratoid/rhabdoid tumor (AT/RT) is a rare and highly malignant central nervous system (CNS) embryonal neoplasm: it accounts for <2% of all pediatric CNS tumors and occurs mainly in infants and young children. The primary site of this tumor is usually the posterior cranial fossa. Supratentorial and, in detail, latero-ventricular location is extremely uncommon, especially in adolescents. This tumor is characterized by rapid growth and spread in cerebrospinal fluid and, therefore, it is characterized by a poor prognosis. Neurological signs and symptoms are related the location of the tumor. The radiological features of AT/RT are nonspecific. Immunohistochemical staining for loss of nuclear integrase interactor 1 (INI1) expression is considered a reliable criterion for the diagnosis of this type of tumor. AT/RT has been linked to mutations of SMARCB1 or, rarely, SMARCA4 genes, which function as tumor suppressor genes. Currently, there is no validated protocol of treatment for children with AT/RT, and multimodality treatment (consisting of surgery, chemotherapy, and radiation therapy) is considered. In this case report, we describe a 15-year-old adolescent with an AT/RT of the left lateral ventricle. Despite the late diagnosis, the multimodal therapeutic approach provided a good outcome for our patient at 21 months' follow-up. Based on our case-based review, early diagnosis and a multimodal approach to treatment play a key role in improving the survival of patients with this diagnosis. Implementing a system supporting pathological and molecular analyses for developing countries and, in general, for non-academic centers is of primary importance to timely diagnose and treat rare tumors, such as AT/RT.
Collapse
Affiliation(s)
- Akzhol Karim
- Clinical Academic Department of Pediatrics, Pediatric Oncology Section, National Research Center for Maternal and Child Health, University Medical Center (UMC), Nur-Sultan, Kazakhstan
| | - Kundyz Shaikhyzada
- Clinical Academic Department of Pediatrics, Pediatric Oncology Section, National Research Center for Maternal and Child Health, University Medical Center (UMC), Nur-Sultan, Kazakhstan
| | - Assel Suleimenova
- Clinical Academic Department of Pediatrics, Pediatric Oncology Section, National Research Center for Maternal and Child Health, University Medical Center (UMC), Nur-Sultan, Kazakhstan
| | - Bakytkali Ibraimov
- Clinical Academic Department of Laboratory Medicine, Pathology Section, University Medical Center (UMC), Nur-Sultan, Kazakhstan
| | - Dair Nurgaliev
- Clinical Academic Department of Pediatrics, Pediatric Oncology Section, National Research Center for Maternal and Child Health, University Medical Center (UMC), Nur-Sultan, Kazakhstan
| | - Dimitri Poddighe
- Clinical Academic Department of Pediatrics, Pediatric Oncology Section, National Research Center for Maternal and Child Health, University Medical Center (UMC), Nur-Sultan, Kazakhstan,Department of Medicine, Nazarbayev University School of Medicine, Nur-Sultan, Kazakhstan,*Correspondence: Dimitri Poddighe,
| |
Collapse
|
26
|
Farooq U, Notani D. Transcriptional regulation of INK4/ARF locus by cis and trans mechanisms. Front Cell Dev Biol 2022; 10:948351. [PMID: 36158211 PMCID: PMC9500187 DOI: 10.3389/fcell.2022.948351] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 08/09/2022] [Indexed: 12/12/2022] Open
Abstract
9p21 locus is one of the most reproducible regions in genome-wide association studies (GWAS). The region harbors CDKN2A/B genes that code for p16INK4a, p15INK4b, and p14ARF proteins, and it also harbors a long gene desert adjacent to these genes. The polymorphisms that are associated with several diseases and cancers are present in these genes and the gene desert region. These proteins are critical cell cycle regulators whose transcriptional dysregulation is strongly linked with cellular regeneration, stemness, aging, and cancers. Given the importance of this locus, intense scientific efforts on understanding the regulation of these genes via promoter-driven mechanisms and recently, via the distal regulatory mechanism have provided major insights. In this review, we describe these mechanisms and propose the ways by which this locus can be targeted in pathologies and aging.
Collapse
Affiliation(s)
- Umer Farooq
- Genetics and Development, National Centre for Biological Sciences, Tata Institute for Fundamental Research, Bangalore, India
- The University of Trans-Disciplinary Health Sciences and Technology, Bangalore, India
- *Correspondence: Umer Farooq, ; Dimple Notani,
| | - Dimple Notani
- Genetics and Development, National Centre for Biological Sciences, Tata Institute for Fundamental Research, Bangalore, India
- *Correspondence: Umer Farooq, ; Dimple Notani,
| |
Collapse
|
27
|
Iwakoshi A, Sasaki E, Sato M, Sugiyama K, Kogure Y, Kitagawa C, Nishimura R. Thoracic SMARCA2-deficient But SMARCA4-preserved Tumors With Undifferentiated Morphology Combined With Claudin-4 Negativity. Am J Surg Pathol 2022; 46:1000-1006. [PMID: 35220352 DOI: 10.1097/pas.0000000000001879] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Thoracic SMARCA4-deficient undifferentiated tumor (SMARCA4-UT) is a recently recognized tumor characterized by inactivation of SMARCA4, a SWItch/Sucrose NonFermentable chromatin remodeler, detectable by immunohistochemistry. SMARCA4-UT shows undifferentiated or rhabdoid morphology with claudin-4 negativity. However, thoracic undifferentiated tumors with the same histologic features as SMARCA4-UTs but a preserved SMARCA4 expression have so far been underrecognized. We herein report 3 cases of thoracic undifferentiated tumors with isolated loss of SMARCA2 but retained expression of SMARCA4 and SMARCB1. The present tumors were found in 2 men and 1 woman, 40 to 50 years old. All patients were heavy smokers (≥20 pack-years). The tumors were generally large masses located in the mediastinum, lung>chest wall, or lung and composed of relatively monotonous, round to epithelioid cells with variably rhabdoid cells. Immunohistochemically, the tumors showed claudin-4 negativity with variable expression of cytokeratin. All cases showed highly aggressive clinical behavior with overall survival of 2 to 10 months. These SMARCA2-deficient tumors with preserved SMARCA4 expression appeared to be clinicopathologically indistinguishable from SMARCA4-UTs, except for in their SMARCA4 status. This variant may expand the spectrum of SWItch/Sucrose NonFermentable-deficient undifferentiated tumors of the thoracic region beyond SMARCA4-UT.
Collapse
Affiliation(s)
| | - Eiichi Sasaki
- Department of Pathology and Molecular Diagnostics, Aichi Cancer Center Hospital, Nagoya, Aichi Prefecture, Japan
| | | | | | - Yoshihito Kogure
- Medical Oncology
- Respiratory Medicine, National Hospital Organization Nagoya Medical Center
| | - Chiyoe Kitagawa
- Medical Oncology
- Respiratory Medicine, National Hospital Organization Nagoya Medical Center
| | | |
Collapse
|
28
|
Al-Farsi H, Al-Azwani I, Malek JA, Chouchane L, Rafii A, Halabi NM. Discovery of new therapeutic targets in ovarian cancer through identifying significantly non-mutated genes. J Transl Med 2022; 20:244. [PMID: 35619151 PMCID: PMC9134657 DOI: 10.1186/s12967-022-03440-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 05/13/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Mutated and non-mutated genes interact to drive cancer growth and metastasis. While research has focused on understanding the impact of mutated genes on cancer biology, understanding non-mutated genes that are essential to tumor development could lead to new therapeutic strategies. The recent advent of high-throughput whole genome sequencing being applied to many different samples has made it possible to calculate if genes are significantly non-mutated in a specific cancer patient cohort. METHODS We carried out random mutagenesis simulations of the human genome approximating the regions sequenced in the publicly available Cancer Growth Atlas Project for ovarian cancer (TCGA-OV). Simulated mutations were compared to the observed mutations in the TCGA-OV cohort and genes with the largest deviations from simulation were identified. Pathway analysis was performed on the non-mutated genes to better understand their biological function. We then compared gene expression, methylation and copy number distributions of non-mutated and mutated genes in cell lines and patient data from the TCGA-OV project. To directly test if non-mutated genes can affect cell proliferation, we carried out proof-of-concept RNAi silencing experiments of a panel of nine selected non-mutated genes in three ovarian cancer cell lines and one primary ovarian epithelial cell line. RESULTS We identified a set of genes that were mutated less than expected (non-mutated genes) and mutated more than expected (mutated genes). Pathway analysis revealed that non-mutated genes interact in cancer associated pathways. We found that non-mutated genes are expressed significantly more than mutated genes while also having lower methylation and higher copy number states indicating that they could be functionally important. RNAi silencing of the panel of non-mutated genes resulted in a greater significant reduction of cell viability in the cancer cell lines than in the non-cancer cell line. Finally, as a test case, silencing ANKLE2, a significantly non-mutated gene, affected the morphology, reduced migration, and increased the chemotherapeutic response of SKOV3 cells. CONCLUSION We show that we can identify significantly non-mutated genes in a large ovarian cancer cohort that are well-expressed in patient and cell line data and whose RNAi-induced silencing reduces viability in three ovarian cancer cell lines. Targeting non-mutated genes that are important for tumor growth and metastasis is a promising approach to expand cancer therapeutic options.
Collapse
Affiliation(s)
| | | | - Joel A Malek
- Genomics Core, Weill Cornell Medicine in Qatar, Education City, Qatar Foundation, Doha, Qatar
| | - Lotfi Chouchane
- Genetic Intelligence Laboratory, Weill Cornell Medicine in Qatar, Education City, Qatar Foundation, Doha, Qatar
| | - Arash Rafii
- Genetic Intelligence Laboratory, Weill Cornell Medicine in Qatar, Education City, Qatar Foundation, Doha, Qatar.
| | - Najeeb M Halabi
- Genetic Intelligence Laboratory, Weill Cornell Medicine in Qatar, Education City, Qatar Foundation, Doha, Qatar.
| |
Collapse
|
29
|
Jafari H, Hussain S, Campbell MJ. Nuclear Receptor Coregulators in Hormone-Dependent Cancers. Cancers (Basel) 2022; 14:2402. [PMID: 35626007 PMCID: PMC9139824 DOI: 10.3390/cancers14102402] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 05/09/2022] [Indexed: 12/10/2022] Open
Abstract
Nuclear receptors (NRs) function collectively as a transcriptional signaling network that mediates gene regulatory actions to either maintain cellular homeostasis in response to hormonal, dietary and other environmental factors, or act as orphan receptors with no known ligand. NR complexes are large and interact with multiple protein partners, collectively termed coregulators. Coregulators are essential for regulating NR activity and can dictate whether a target gene is activated or repressed by a variety of mechanisms including the regulation of chromatin accessibility. Altered expression of coregulators contributes to a variety of hormone-dependent cancers including breast and prostate cancers. Therefore, understanding the mechanisms by which coregulators interact with and modulate the activity of NRs provides opportunities to develop better prognostic and diagnostic approaches, as well as novel therapeutic targets. This review aims to gather and summarize recent studies, techniques and bioinformatics methods used to identify distorted NR coregulator interactions that contribute as cancer drivers in hormone-dependent cancers.
Collapse
Affiliation(s)
- Hedieh Jafari
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210, USA;
- Department of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA;
| | - Shahid Hussain
- Department of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA;
| | - Moray J. Campbell
- Department of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA;
| |
Collapse
|
30
|
Yang S, Huang Y, Zhao Q. Epigenetic Alterations and Inflammation as Emerging Use for the Advancement of Treatment in Non-Small Cell Lung Cancer. Front Immunol 2022; 13:878740. [PMID: 35514980 PMCID: PMC9066637 DOI: 10.3389/fimmu.2022.878740] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 03/21/2022] [Indexed: 12/26/2022] Open
Abstract
Lung cancer remains one of the most common malignancies in the world. Nowadays, the most common lung cancer is non-small cell lung cancer (NSCLC), namely, adenocarcinoma, squamous cell carcinoma, and large cell lung carcinoma. Epigenetic alterations that refer to DNA methylation, histone modifications, and noncoding RNA expression, are now suggested to drive the genesis and development of NSCLC. Additionally, inflammation-related tumorigenesis also plays a vital role in cancer research and efforts have been attempted to reverse such condition. During the occurrence and development of inflammatory diseases, the immune component of inflammation may cause epigenetic changes, but it is not always certain whether the immune component itself or the stimulated host cells cause epigenetic changes. Moreover, the links between epigenetic alterations and cancer-related inflammation and their influences on the human cancer are not clear so far. Therefore, the connection between epigenetic drivers, inflammation, and NSCLC will be summarized. Investigation on such topic is most likely to shed light on the molecular and immunological mechanisms of epigenetic and inflammatory factors and promote the application of epigenetics in the innovative diagnostic and therapeutic strategies for NSCLC.
Collapse
Affiliation(s)
- Shuo Yang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
- *Correspondence: Shuo Yang, ; Yang Huang, ; Qi Zhao,
| | - Yang Huang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
- *Correspondence: Shuo Yang, ; Yang Huang, ; Qi Zhao,
| | - Qi Zhao
- Cancer Centre, Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau, Macau SAR, China
- MoE Frontiers Science Center for Precision Oncology, University of Macau, Macau, Macau SAR, China
- *Correspondence: Shuo Yang, ; Yang Huang, ; Qi Zhao,
| |
Collapse
|
31
|
Shinno Y, Yoshida A, Masuda K, Matsumoto Y, Okuma Y, Yoshida T, Goto Y, Horinouchi H, Yamamoto N, Yatabe Y, Ohe Y. Efficacy of immune checkpoint inhibitors in SMARCA4-deficient thoracic tumor. Clin Lung Cancer 2022; 23:386-392. [DOI: 10.1016/j.cllc.2022.03.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 03/05/2022] [Accepted: 03/17/2022] [Indexed: 12/30/2022]
|
32
|
Zhuang Y, Che J, Wu M, Guo Y, Xu Y, Dong X, Yang H. Altered pathways and targeted therapy in double hit lymphoma. J Hematol Oncol 2022; 15:26. [PMID: 35303910 PMCID: PMC8932183 DOI: 10.1186/s13045-022-01249-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 03/07/2022] [Indexed: 12/20/2022] Open
Abstract
High-grade B-cell lymphoma with translocations involving MYC and BCL2 or BCL6, usually referred to as double hit lymphoma (DHL), is an aggressive hematological malignance with distinct genetic features and poor clinical prognosis. Current standard chemoimmunotherapy fails to confer satisfying outcomes and few targeted therapeutics are available for the treatment against DHL. Recently, the delineating of the genetic landscape in tumors has provided insight into both biology and targeted therapies. Therefore, it is essential to understand the altered signaling pathways of DHL to develop treatment strategies with better clinical benefits. Herein, we summarized the genetic alterations in the two DHL subtypes (DHL-BCL2 and DHL-BCL6). We further elucidate their implications on cellular processes, including anti-apoptosis, epigenetic regulations, B-cell receptor signaling, and immune escape. Ongoing and potential therapeutic strategies and targeted drugs steered by these alterations were reviewed accordingly. Based on these findings, we also discuss the therapeutic vulnerabilities that coincide with these genetic changes. We believe that the understanding of the DHL studies will provide insight into this disease and capacitate the finding of more effective treatment strategies.
Collapse
Affiliation(s)
- Yuxin Zhuang
- Department of Lymphoma, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, People’s Republic of China
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, People’s Republic of China
| | - Jinxin Che
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, People’s Republic of China
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou, People’s Republic of China
| | - Meijuan Wu
- Department of Pathology, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, People’s Republic of China
| | - Yu Guo
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou, People’s Republic of China
| | - Yongjin Xu
- Department of Lymphoma, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, People’s Republic of China
| | - Xiaowu Dong
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, People’s Republic of China
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou, People’s Republic of China
- Cancer Center, Zhejiang University, Hangzhou, People’s Republic of China
| | - Haiyan Yang
- Department of Lymphoma, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, People’s Republic of China
| |
Collapse
|
33
|
Jian Y, Shim WB, Ma Z. Multiple functions of SWI/SNF chromatin remodeling complex in plant-pathogen interactions. STRESS BIOLOGY 2021; 1:18. [PMID: 37676626 PMCID: PMC10442046 DOI: 10.1007/s44154-021-00019-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 11/22/2021] [Indexed: 09/08/2023]
Abstract
The SWI/SNF chromatin remodeling complex utilizes the energy of ATP hydrolysis to facilitate chromatin access and plays essential roles in DNA-based events. Studies in animals, plants and fungi have uncovered sophisticated regulatory mechanisms of this complex that govern development and various stress responses. In this review, we summarize the composition of SWI/SNF complex in eukaryotes and discuss multiple functions of the SWI/SNF complex in regulating gene transcription, mRNA splicing, and DNA damage response. Our review further highlights the importance of SWI/SNF complex in regulating plant immunity responses and fungal pathogenesis. Finally, the potentials in exploiting chromatin remodeling for management of crop disease are presented.
Collapse
Affiliation(s)
- Yunqing Jian
- State Key Laboratory of Rice Biology, and Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Won-Bo Shim
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX, USA
| | - Zhonghua Ma
- State Key Laboratory of Rice Biology, and Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, China.
| |
Collapse
|
34
|
Ding H, Huang Y, Shi J, Wang L, Liu S, Zhao B, Liu Y, Yang J, Chen Z. Attenuated expression of SNF5 facilitates progression of bladder cancer via STAT3 activation. Cancer Cell Int 2021; 21:655. [PMID: 34876150 PMCID: PMC8650342 DOI: 10.1186/s12935-021-02363-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 11/24/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND SWI/SNF, a well-known ATP-dependent chromatin-remodeling complex, plays an essential role in several biological processes. SNF5, the core subunit of the SWI/SNF remodeling complex, inactivated in 95% of malignant rhabdoid tumors (MRT), highlighting its significance in tumorigenesis. However, the role of SNF5 in bladder cancer (BC) remains unknown. In this study, we aimed to investigate the function and potential clinical applicability of SNF5 in BC. METHODS Data from The Cancer Genome Atlas (TCGA), Gene Expression Omnibus (GEO) and Cancer Cell Line Encyclopedia (CCLE) databases were used to evaluate the clinical significance of SNF5 in BC. We performed Gene Set Enrichment Analysis (GSEA) and functional assays to investigate the role of SNF5 in BC. Genomics of Drug Sensitivity in Cancer (GDSC) and drug-susceptibility tests were performed to identify the potential value of SNF5 in the treatment of BC. RESULTS Low SNF5 expression conferred a poor prognosis and was significantly associated with the N-stage in BC. ROC curves indicated that SNF5 could distinguish BC from the normal tissues. In vitro and in vivo functional assays demonstrated that attenuated SNF5 expression could promote cell proliferation and enhance migration by STAT3 activation. We imputed that low SNF5 expression could confer greater resistance against conventional first-line drugs, including cisplatin and gemcitabine in BC. GDSC and drug-resistance assays suggested that low SNF5 expression renders T24 and 5637 cells high sensitivity to EGFR inhibitor gefitinib, and combination of EZH2 inhibitor GSK126 and cisplatin. CONCLUSIONS To the best of our knowledge, the present study, for the first time, showed that low SNF5 expression could promote cell proliferation and migration by activating STAT3 and confer poor prognosis in BC. Importantly, SNF5 expression may be a promising candidate for identifying BC patients who could benefit from EGFR-targeted chemotherapy or cisplatin in combination with EZH2 inhibitor treatment regimens.
Collapse
Affiliation(s)
- Hua Ding
- Department of Urology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Yaqin Huang
- Department of Cell Biology, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Jiazhong Shi
- Department of Cell Biology, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Liwei Wang
- Department of Urology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.,Unit 32357 of People's Liberation Army, Pujiang, 611630, China
| | - Sha Liu
- Department of Cell Biology, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Baixiong Zhao
- Department of Urology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Yuting Liu
- Department of Cell Biology, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Jin Yang
- Department of Cell Biology, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
| | - Zhiwen Chen
- Department of Urology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
| |
Collapse
|
35
|
Li M, Shen Y, Xiong Y, Wang S, Li C, Bai J, Zhang Y. Loss of SMARCB1 promotes autophagy and facilitates tumour progression in chordoma by transcriptionally activating ATG5. Cell Prolif 2021; 54:e13136. [PMID: 34668612 PMCID: PMC8666275 DOI: 10.1111/cpr.13136] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/30/2021] [Accepted: 09/20/2021] [Indexed: 01/07/2023] Open
Abstract
OBJECTIVES SWI/SNF-related matrix-associated actin-dependent regulator of chromatin subfamily B member 1 (SMARCB1) loss is associated with a poor prognosis in chordoma, while the mechanism remains largely unclear. Here, we aim to explore the function and regulatory mechanisms of SMARCB1 in chordoma. MATERIALS AND METHODS The effect of SMARCB1 on chordoma cells was investigated in vitro and in vivo. Chromatin immunoprecipitation (ChIP) sequencing was used to investigate the mechanisms of SMARCB1 in chordoma. The association between SMARCB1 and autophagy was validated by Western blot, immunofluorescence and transmission electron microscopy. In addition, the ATG5 expression in chordoma tissue was assessed using immunohistochemistry and correlated with patient survival. RESULTS SMARCB1 inhibited the malignant phenotype of chordoma cells in vitro and in vivo, supporting a tumour suppressor role of SMARCB1 in chordoma. ATG5-mediated autophagy was identified as a potential downstream pathway of SMARCB1. Mechanistically, SMARCB1 bound directly to the ATG5 promoter and epigenetically inhibited its transcription, which decreased ATG5 expression and impaired autophagy. Additionally, autophagy inhibitor chloroquine had a potential anti-cancer effect on chordoma cells in vitro. Moreover, high ATG5 expression was observed in recurrent chordoma patients, which independently correlated with adverse outcomes. CONCLUSIONS Taken together, our results revealed that the SMARCB1/ATG5 axis is a promising therapeutic target for chordoma and autophagy inhibitors may be effective agents for chordoma treatment.
Collapse
Affiliation(s)
- Mingxuan Li
- Beijing Neurosurgical InstituteCapital Medical UniversityBeijingChina
| | - Yutao Shen
- Beijing Neurosurgical InstituteCapital Medical UniversityBeijingChina
| | - Yujia Xiong
- Beijing Neurosurgical InstituteCapital Medical UniversityBeijingChina
| | - Shuai Wang
- Beijing Neurosurgical InstituteCapital Medical UniversityBeijingChina
| | - Chuzhong Li
- Beijing Neurosurgical InstituteCapital Medical UniversityBeijingChina
- Department of NeurosurgeryBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina
| | - Jiwei Bai
- Beijing Neurosurgical InstituteCapital Medical UniversityBeijingChina
- Department of NeurosurgeryBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina
| | - Yazhuo Zhang
- Beijing Neurosurgical InstituteCapital Medical UniversityBeijingChina
- Department of NeurosurgeryBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
- Brain Tumor CenterBeijing Institute for Brain DisordersBeijingChina
| |
Collapse
|
36
|
Zhao Q, Cai Q, Yu S, Ji J, Zhu Z, Yan C, Zhang J. Combinatorial Analysis of AT-Rich Interaction Domain 1A and CD47 in Gastric Cancer Patients Reveals Markers of Prognosis. Front Cell Dev Biol 2021; 9:745120. [PMID: 34805154 PMCID: PMC8595398 DOI: 10.3389/fcell.2021.745120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 09/27/2021] [Indexed: 01/12/2023] Open
Abstract
Background: The AT-rich interaction domain 1A (ARID1A) is thought to be a tumor suppressive gene, and most of its mutations result in loss of expression of ARID1A protein. Combined with SIRPα on the surface of macrophages, CD47 on the surface of cancer cells can send an antiphagocytic "Don't eat me" signal to the immune system that helps to avoid immune surveillance. However, the relationship between ARID1A and CD47 expression and their prognostic value in gastric cancer (GC) are still unknown. Methods: In this study, we evaluated ARID1A and CD47 expression in 154 GC patients' tissues using tissue microarray. Expressions of ARID1A and CD47 in GC cell lines were determined by western blot and quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR) techniques, and cell membranous CD47 expression was quantified by flow cytometry. In addition, chromatin immunoprecipitation (ChIP)-qPCR was used to determine the aspects of regulation of CD47 by ARID1A. The proportions of tumor-infiltrating immune cells were estimated on The Cancer Genome Atlas (TCGA) data set by using quanTIseq and EPIC algorithms. The infiltration of M1-polarized macrophages, M2-polarized macrophages, and regulatory T cells (Tregs) in GC tissues was determined by multispectral immunofluorescence. Results: A significant correlation was found between loss of ARID1A and high expression of CD47 at protein level in GC. By integrating 375 bulk RNA sequencing samples from TCGA data set, we found that mutated ARID1A correlated with high CD47 expression. In GC cell lines, knockdown of ARID1A significantly increased CD47 expression both at protein and mRNA levels as measured by western blot, qRT-PCR, and flow cytometry. Moreover, ChIP-qPCR revealed that CD47 was a direct downstream target gene of ARID1A in GC. Utilizing univariate and multivariate survival analyses, we found that patients with ARID1AlossCD47high expression had a worse prognosis. Estimation of infiltrating immune cells on TCGA data set showed that a higher infiltration proportion of M2 macrophages and Tregs was found in ARID1A mutated CD47 high expression subgroup. Furthermore, application of multispectral immunofluorescence revealed a higher infiltration proportion of M2 macrophages and Tregs in ARID1AlossCD47high GC tissues. Conclusion: Loss of ARID1A is strongly correlated with high CD47 expression in GC, and combination of ARID1A and CD47 is a promising prognosis factor in GC.
Collapse
Affiliation(s)
- Qianfu Zhao
- Department of Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qu Cai
- Department of Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shanhe Yu
- State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Shanghai Institute of Hematology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jun Ji
- Shanghai Key Laboratory of Gastric Neoplasms, Department of Surgery, Ruijin Hospital, Shanghai Institute of Digestive Surgery, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhenggang Zhu
- Shanghai Key Laboratory of Gastric Neoplasms, Department of Surgery, Ruijin Hospital, Shanghai Institute of Digestive Surgery, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chao Yan
- Shanghai Key Laboratory of Gastric Neoplasms, Department of Surgery, Ruijin Hospital, Shanghai Institute of Digestive Surgery, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jun Zhang
- Department of Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
37
|
Han H, Jiang G, Kumari R, Silic MR, Owens JL, Hu C, Mittal SK, Zhang G. Loss of smarcad1a accelerates tumorigenesis of malignant peripheral nerve sheath tumors in zebrafish. Genes Chromosomes Cancer 2021; 60:743-761. [PMID: 34296799 PMCID: PMC9585957 DOI: 10.1002/gcc.22983] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 07/02/2021] [Accepted: 07/05/2021] [Indexed: 11/21/2022] Open
Abstract
Malignant peripheral nerve sheath tumors (MPNSTs) are a type of sarcoma that generally originates from Schwann cells. The prognosis for this type of malignancy is relatively poor due to complicated genetic alterations and the lack of specific targeted therapy. Chromosome fragment 4q22-23 is frequently deleted in MPNSTs and other human tumors, suggesting tumor suppressor genes may reside in this region. Here, we provide evidence that SMARCAD1, a known chromatin remodeler, is a novel tumor suppressor gene located in 4q22-23. We identified two human homologous smarcad1 genes (smarcad1a and smarcad1b) in zebrafish, and both genes share overlapping expression patterns during embryonic development. We demonstrated that two smarcad1a loss-of-function mutants, sa1299 and p403, can accelerate MPNST tumorigenesis in the tp53 mutant background, suggesting smarcad1a is a bona fide tumor suppressor gene for MPNSTs. Moreover, we found that DNA double-strand break (DSB) repair might be compromised in both mutants compared to wildtype zebrafish, as indicated by pH2AX, a DNA DSB marker. In addition, both SMARCAD1 gene knockdown and overexpression in human cells were able to inhibit tumor growth and displayed similar DSB repair responses, suggesting proper SMARCAD1 gene expression level or gene dosage is critical for cell growth. Given that mutations of SMARCAD1 sensitize cells to poly ADP ribose polymerase inhibitors in yeast and the human U2OS osteosarcoma cell line, the identification of SMARCAD1 as a novel tumor suppressor gene might contribute to the development of new cancer therapies for MPNSTs.
Collapse
Affiliation(s)
- Han Han
- Department of Comparative PathobiologyPurdue UniversityWest LafayetteIndianaUSA
| | - Guangzhen Jiang
- Department of Comparative PathobiologyPurdue UniversityWest LafayetteIndianaUSA
- Present address:
College of Animal Science and TechnologyNanjing Agricultural UniversityNanjingChina
| | - Rashmi Kumari
- Department of Comparative PathobiologyPurdue UniversityWest LafayetteIndianaUSA
| | - Martin R. Silic
- Department of Comparative PathobiologyPurdue UniversityWest LafayetteIndianaUSA
| | - Jake L. Owens
- Department of Medicinal Chemistry and Molecular PharmacologyPurdue UniversityWest LafayetteIndianaUSA
| | - Chang‐Deng Hu
- Department of Medicinal Chemistry and Molecular PharmacologyPurdue UniversityWest LafayetteIndianaUSA
- Purdue University Center for Cancer ResearchPurdue UniversityWest LafayetteIndianaUSA
| | - Suresh K. Mittal
- Department of Comparative PathobiologyPurdue UniversityWest LafayetteIndianaUSA
- Purdue University Center for Cancer ResearchPurdue UniversityWest LafayetteIndianaUSA
- Purdue Institute for Inflammation, Immunology and Infectious Disease (PI4D)Purdue UniversityWest LafayetteIndianaUSA
| | - GuangJun Zhang
- Department of Comparative PathobiologyPurdue UniversityWest LafayetteIndianaUSA
- Purdue University Center for Cancer ResearchPurdue UniversityWest LafayetteIndianaUSA
- Purdue Institute for Inflammation, Immunology and Infectious Disease (PI4D)Purdue UniversityWest LafayetteIndianaUSA
- Purdue Institute for Integrative Neuroscience (PIIN)Purdue UniversityWest LafayetteIndianaUSA
| |
Collapse
|
38
|
Fiore M, Sambri A, Spinnato P, Zucchini R, Giannini C, Caldari E, Pirini MG, De Paolis M. The Biology of Synovial Sarcoma: State-of-the-Art and Future Perspectives. Curr Treat Options Oncol 2021; 22:109. [PMID: 34687366 PMCID: PMC8541977 DOI: 10.1007/s11864-021-00914-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/20/2021] [Indexed: 12/22/2022]
Abstract
New molecular insights are being achieved in synovial sarcoma (SS) that can provide new potential diagnostic and prognostic markers as well as therapeutic targets. In particular, the advancement of research on epigenomics and gene regulation is promising. The concrete hypothesis that the pathogenesis of SS might mainly depend on the disruption of the balance of the complex interaction between epigenomic regulatory complexes and the consequences on gene expression opens interesting new perspectives. The standard of care for primary SS is wide surgical resection combined with radiation in selected cases. The role of chemotherapy is still under refinement and can be considered in patients at high risk of metastasis or in those with advanced disease. Cytotoxic chemotherapy (anthracyclines, ifosfamide, trabectedin, and pazopanib) is the treatment of choice, despite several possible side effects. Many possible drug-able targets have been identified. However, the impact of these strategies in improving SS outcome is still limited, thus making current and future research strongly needed to improve the survival of patients with SS.
Collapse
Affiliation(s)
- Michele Fiore
- Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | - Andrea Sambri
- Alma Mater Studiorum - University of Bologna, Bologna, Italy. .,IRCCS Azienda Ospedaliero Universitaria di Bologna, via Massarenti 9, 40138, Bologna, Italy.
| | | | | | | | - Emilia Caldari
- IRCCS Azienda Ospedaliero Universitaria di Bologna, via Massarenti 9, 40138, Bologna, Italy
| | - Maria Giulia Pirini
- IRCCS Azienda Ospedaliero Universitaria di Bologna, via Massarenti 9, 40138, Bologna, Italy
| | - Massimiliano De Paolis
- IRCCS Azienda Ospedaliero Universitaria di Bologna, via Massarenti 9, 40138, Bologna, Italy
| |
Collapse
|
39
|
Wang Y, Wang Y, Ci X, Choi SYC, Crea F, Lin D, Wang Y. Molecular events in neuroendocrine prostate cancer development. Nat Rev Urol 2021; 18:581-596. [PMID: 34290447 PMCID: PMC10802813 DOI: 10.1038/s41585-021-00490-0] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/07/2021] [Indexed: 02/07/2023]
Abstract
Neuroendocrine prostate cancer (NEPC) is a lethal subtype of prostate cancer. NEPC arises de novo only rarely; the disease predominantly develops from adenocarcinoma in response to drug-induced androgen receptor signalling inhibition, although the mechanisms behind this transdifferentiation are a subject of debate. The survival of patients with NEPC is poor, and few effective treatment options are available. To improve clinical outcomes, understanding of the biology and molecular mechanisms regulating NEPC development is crucial. Various NEPC molecular drivers make temporal contributions during NEPC development, and despite the limited treatment options available, several novel targeted therapeutics are currently under research.
Collapse
Affiliation(s)
- Yong Wang
- Vancouver Prostate Centre, Vancouver, BC, Canada
- Department of Urologic Sciences, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
- Department of Urology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Yu Wang
- Vancouver Prostate Centre, Vancouver, BC, Canada
- Department of Urologic Sciences, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
- Department of Experimental Therapeutics, BC Cancer Agency, Vancouver, BC, Canada
| | - Xinpei Ci
- Vancouver Prostate Centre, Vancouver, BC, Canada
- Department of Urologic Sciences, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
- Department of Experimental Therapeutics, BC Cancer Agency, Vancouver, BC, Canada
| | - Stephen Y C Choi
- Vancouver Prostate Centre, Vancouver, BC, Canada
- Department of Urologic Sciences, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
- Department of Experimental Therapeutics, BC Cancer Agency, Vancouver, BC, Canada
| | - Francesco Crea
- School of Life Health and Chemical Sciences, The Open University, Milton Keynes, UK
| | - Dong Lin
- Vancouver Prostate Centre, Vancouver, BC, Canada.
- Department of Urologic Sciences, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada.
- Department of Experimental Therapeutics, BC Cancer Agency, Vancouver, BC, Canada.
| | - Yuzhuo Wang
- Vancouver Prostate Centre, Vancouver, BC, Canada.
- Department of Urologic Sciences, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada.
- Department of Experimental Therapeutics, BC Cancer Agency, Vancouver, BC, Canada.
| |
Collapse
|
40
|
Botta GP, Kato S, Patel H, Fanta P, Lee S, Okamura R, Kurzrock R. SWI/SNF complex alterations as a biomarker of immunotherapy efficacy in pancreatic cancer. JCI Insight 2021; 6:e150453. [PMID: 34375311 PMCID: PMC8492298 DOI: 10.1172/jci.insight.150453] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 08/04/2021] [Indexed: 12/23/2022] Open
Abstract
BACKGROUNDImmune checkpoint inhibitors (ICIs) fail to demonstrate efficacy in pancreatic cancer. Recently, genomic biomarkers have been associated with response to ICIs: microsatellite instability high (MSI-H) and tumor mutation burden (TMB) > 10 mutations/Mb. Alterations in Switch/Sucrose Nonfermentable (SWI/SNF) chromatin remodeling genes may predispose to improved outcomes with immunotherapy. The current study examined a possible role for SWI/SNF complex abnormalities in pancreatic cancer responsiveness to ICIs.METHODSA database of 6831 cancer patients that had undergone next-generation sequencing (NGS) was filtered for advanced pancreatic cancer, SWI/SNF alterations, and outcomes depending on immunotherapy treatment.RESULTSNine patients had metastatic pancreatic adenocarcinoma harboring SWI/SNF chromatin remodeling gene alterations and had received ICIs: 7 had an ARID1A alteration (77%); 2, ARID1B (22%); 3, SMARCA4 (33%); 1, SMARCB1 (11%); and 1, PBRM1 (11%). Three patients possessed more than 1 SWI/SNF complex alteration. Only 3 tumors were microsatellite unstable. Eight of 9 patients (89%) achieved an objective response, including a complete remission, with the 2 longest responses ongoing at 33+ and 36+ months. Median progression-free and overall survival was 9 and 15 months, respectively. Responses occurred even in the presence of microsatellite stability, low TMB, and/or low PD-L1 expression.CONCLUSIONA small subset of patients with pancreatic cancer have genomic alterations in SWI/SNF chromatin remodeling components and appear to be responsive to ICIs, suggesting the need for prospective trials.TRIAL REGISTRATIONClinicalTrials.gov, NCT02478931.FUNDINGJoan and Irwin Jacobs Fund, NIH P30 CA023100 (RK) and LRP KYGF9753 (GPB), the Gershenson, Duarte, and anonymous patient families (GPB).
Collapse
Affiliation(s)
- Gregory P. Botta
- Center for Personalized Cancer Therapy, Department of Medicine, and
- Division of Hematology/Oncology, Department of Medicine, UCSD, La Jolla, California, USA
| | - Shumei Kato
- Center for Personalized Cancer Therapy, Department of Medicine, and
- Division of Hematology/Oncology, Department of Medicine, UCSD, La Jolla, California, USA
| | - Hitendra Patel
- Division of Hematology/Oncology, Department of Medicine, UCSD, La Jolla, California, USA
| | - Paul Fanta
- Division of Hematology/Oncology, Department of Medicine, UCSD, La Jolla, California, USA
| | - Suzanna Lee
- Center for Personalized Cancer Therapy, Department of Medicine, and
| | - Ryosuke Okamura
- Department of Surgery, Kyoto University Hospital, Kyoto, Japan
| | - Razelle Kurzrock
- Center for Personalized Cancer Therapy, Department of Medicine, and
- Division of Hematology/Oncology, Department of Medicine, UCSD, La Jolla, California, USA
| |
Collapse
|
41
|
Chen C, Yin W, Wang X, Li P, Chen Y, Jin X, Yang P, Wu H. Synchronous Malignant Gastrointestinal Neuroectodermal Tumor and SMARCA4-Deficient Undifferentiated Carcinoma With Independent Origins in the Small Intestine: A Case Report. Front Oncol 2021; 11:665056. [PMID: 34513665 PMCID: PMC8429901 DOI: 10.3389/fonc.2021.665056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 08/05/2021] [Indexed: 01/14/2023] Open
Abstract
Background Malignant gastrointestinal neuroectodermal tumor (GNET) is a rare malignant mesenchymal neoplasm that commonly arises in the small bowel, stomach or colon. Meanwhile, SMARCA4-deficient undifferentiated carcinoma is a rarely reported entity with highly aggressive behavior that may involve the ovary, lung, gastrointestinal (GI) tract, endometrium and other organs. To our knowledge, we describe for the first time, an extremely rare case of synchronous GNET and SMARCA4-deficient undifferentiated carcinoma with independent origins in the small intestine. Case Presentation A 46-year-old woman presented with multiple small intestine masses and underwent surgical resection. Two distinct entities, GNET and SMARCA4-deficient undifferentiated carcinoma, were identified. GNET was composed of epithelioid and spindle cells with clear or eosinophilic cytoplasm arranged in sheets, nest, papillary, fascicular, palisade, rosette like or pseudoalveolar pattern. The neoplastic cells were positive for S-100 and SOX-10. Ewing sarcoma breakpoint region 1 gene (EWSR1) rearrangement was confirmed by fluorescence in situ hybridization (FISH), and EWSR1-CREB1 fusion was revealed by next-generation sequencing (NGS). SMARCA4-deficient undifferentiated carcinoma was composed mainly of poorly adhesive rhabdoid cells with eosinophilic cytoplasm arranged in a diffuse pattern. Multifocal necrosis, brisk mitotic figures as well as multinucleated tumor cells were observed. The neoplastic cells diffusely expressed pancytokeratin and vimentin, and was negative for SMARCA4(BRG1). Frame shift mutation of SMARCA4 was detected by NGS. Conclusions This is the first report that GNET and SMARCA4-deficient undifferentiated carcinoma occurred simultaneously in the small intestine, with the latter showing multiple involvement of the jejunum and ileum. The potential mechanism underlying co-existence of these two rare malignancies is unknown and need further investigations and concern.
Collapse
Affiliation(s)
- Cuimin Chen
- Department of Pathology, Shenzhen Hospital of Peking University, Shenzhen, China
| | - Weihua Yin
- Department of Pathology, Shenzhen Hospital of Peking University, Shenzhen, China
| | - Xingen Wang
- Department of Pathology, Shenzhen Hospital of Peking University, Shenzhen, China
| | - Ping Li
- Department of Pathology, Shenzhen Hospital of Peking University, Shenzhen, China
| | - Yaoli Chen
- Department of Pathology, Shenzhen Hospital of Peking University, Shenzhen, China
| | - Xianglan Jin
- Department of Pathology, Shenzhen Hospital of Peking University, Shenzhen, China
| | - Ping Yang
- Department of Pathology, Shenzhen Hospital of Peking University, Shenzhen, China
| | - Huanwen Wu
- Department of Pathology, Peking Union Medical College Hospital, Peking, China
| |
Collapse
|
42
|
Wu R, Hu W, Chen H, Wang Y, Li Q, Xiao C, Fan L, Zhong Z, Chen X, Lv K, Zhong S, Shi Y, Chen J, Zhu W, Zhang J, Hu X, Wang J. A Novel Human Long Noncoding RNA SCDAL Promotes Angiogenesis through SNF5-Mediated GDF6 Expression. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2004629. [PMID: 34319658 PMCID: PMC8456203 DOI: 10.1002/advs.202004629] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 04/23/2021] [Indexed: 06/08/2023]
Abstract
Angiogenesis is essential for vascular development. The roles of regulatory long noncoding RNAs (lncRNAs) in mediating angiogenesis remain under-explored. Human embryonic stem cell-derived mesenchymal stem cells (hES-MSCs) are shown to exert more potent cardioprotective effects against cardiac ischemia than human bone marrow-derived MSCs (hBM-MSCs), associated with enhanced neovascularization. The purpose of this study is to search for angiogenic lncRNAs enriched in hES-MSCs, and investigate their roles and mechanisms. AC103746.1 is one of the most highly expressed intergenic lncRNAs detected in hES-MSCs versus hBM-MSCs, and named as SCDAL (stem cell-derived angiogenic lncRNA). SCDAL knockdown significantly reduce the angiogenic potential and reparative effects of hES-MSCs in the infarcted hearts, while overexpression of SCDAL in either hES-MSCs or hBM-MSCs exhibits augmented angiogenesis and cardiac function recovery. Mechanistically, SCDAL induces growth differentiation factor 6 (GDF6) expression via direct interaction with SNF5 at GDF6 promoter. Secreted GDF6 promotes endothelial angiogenesis via non-canonical vascular endothelial growth factor receptor 2 activation. Furthermore, SCDAL-GDF6 is expressed in human endothelial cells, and directly enhances endothelial angiogenesis in vitro and in vivo. Thus, these findings uncover a previously unknown lncRNA-dependent regulatory circuit for angiogenesis. Targeted intervention of the SCDAL-GDF6 pathway has potential as a therapy for ischemic heart diseases.
Collapse
Affiliation(s)
- Rongrong Wu
- Department of CardiologySecond Affiliated HospitalCollege of MedicineZhejiang UniversityHangzhou310009P. R. China
- Cardiovascular Key Laboratory of Zhejiang ProvinceHangzhou310009P. R. China
| | - Wangxing Hu
- Department of CardiologySecond Affiliated HospitalCollege of MedicineZhejiang UniversityHangzhou310009P. R. China
- Cardiovascular Key Laboratory of Zhejiang ProvinceHangzhou310009P. R. China
| | - Huan Chen
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang ProvinceHangzhou310012P. R. China
| | - Yingchao Wang
- Department of CardiologySecond Affiliated HospitalCollege of MedicineZhejiang UniversityHangzhou310009P. R. China
- Cardiovascular Key Laboratory of Zhejiang ProvinceHangzhou310009P. R. China
| | - Qingju Li
- Department of CardiologySecond Affiliated HospitalCollege of MedicineZhejiang UniversityHangzhou310009P. R. China
- Cardiovascular Key Laboratory of Zhejiang ProvinceHangzhou310009P. R. China
| | - Changchen Xiao
- Department of CardiologySecond Affiliated HospitalCollege of MedicineZhejiang UniversityHangzhou310009P. R. China
- Cardiovascular Key Laboratory of Zhejiang ProvinceHangzhou310009P. R. China
| | - Lin Fan
- Department of CardiologySecond Affiliated HospitalCollege of MedicineZhejiang UniversityHangzhou310009P. R. China
- Cardiovascular Key Laboratory of Zhejiang ProvinceHangzhou310009P. R. China
| | - Zhiwei Zhong
- Department of CardiologySecond Affiliated HospitalCollege of MedicineZhejiang UniversityHangzhou310009P. R. China
- Cardiovascular Key Laboratory of Zhejiang ProvinceHangzhou310009P. R. China
| | - Xiaoying Chen
- Department of CardiologySecond Affiliated HospitalCollege of MedicineZhejiang UniversityHangzhou310009P. R. China
- Cardiovascular Key Laboratory of Zhejiang ProvinceHangzhou310009P. R. China
| | - Kaiqi Lv
- Department of CardiologySecond Affiliated HospitalCollege of MedicineZhejiang UniversityHangzhou310009P. R. China
- Cardiovascular Key Laboratory of Zhejiang ProvinceHangzhou310009P. R. China
| | - Shuhan Zhong
- Department of CardiologySecond Affiliated HospitalCollege of MedicineZhejiang UniversityHangzhou310009P. R. China
- Cardiovascular Key Laboratory of Zhejiang ProvinceHangzhou310009P. R. China
| | - Yanna Shi
- Department of CardiologySecond Affiliated HospitalCollege of MedicineZhejiang UniversityHangzhou310009P. R. China
- Cardiovascular Key Laboratory of Zhejiang ProvinceHangzhou310009P. R. China
| | - Jinghai Chen
- Department of CardiologySecond Affiliated HospitalCollege of MedicineZhejiang UniversityHangzhou310009P. R. China
- Cardiovascular Key Laboratory of Zhejiang ProvinceHangzhou310009P. R. China
| | - Wei Zhu
- Department of CardiologySecond Affiliated HospitalCollege of MedicineZhejiang UniversityHangzhou310009P. R. China
- Cardiovascular Key Laboratory of Zhejiang ProvinceHangzhou310009P. R. China
| | - Jianyi Zhang
- Department of Biomedical EngineeringUniversity of Alabama at BirminghamSchool of Medicine and School of EngineeringBirminghamAL35294USA
| | - Xinyang Hu
- Department of CardiologySecond Affiliated HospitalCollege of MedicineZhejiang UniversityHangzhou310009P. R. China
- Cardiovascular Key Laboratory of Zhejiang ProvinceHangzhou310009P. R. China
| | - Jian'an Wang
- Department of CardiologySecond Affiliated HospitalCollege of MedicineZhejiang UniversityHangzhou310009P. R. China
- Cardiovascular Key Laboratory of Zhejiang ProvinceHangzhou310009P. R. China
| |
Collapse
|
43
|
Kurokawa M, Shimizuguchi T, Ito K, Takao M, Motoi T, Taguchi A, Yasugi T, Karasawa K. Notable Response of SMARCA4-Deficient Undifferentiated Uterine Sarcoma to Palliative Radiation Therapy. Adv Radiat Oncol 2021; 6:100728. [PMID: 34258477 PMCID: PMC8256183 DOI: 10.1016/j.adro.2021.100728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 03/25/2021] [Accepted: 05/14/2021] [Indexed: 11/18/2022] Open
Affiliation(s)
| | | | - Kei Ito
- Departments of Radiation Oncology
| | | | - Toru Motoi
- Pathology, Tokyo Metropolitan Cancer and Infectious Diseases Center, Komagome Hospital, 3-18-22 Honkomagome, Bunkyo-ku, Tokyo 113-8677, Japan
| | - Ayumi Taguchi
- Gynecology, and
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-8655, Japan
| | | | | |
Collapse
|
44
|
Launonen KM, Paakinaho V, Sigismondo G, Malinen M, Sironen R, Hartikainen JM, Laakso H, Visakorpi T, Krijgsveld J, Niskanen EA, Palvimo JJ. Chromatin-directed proteomics-identified network of endogenous androgen receptor in prostate cancer cells. Oncogene 2021; 40:4567-4579. [PMID: 34127815 PMCID: PMC8266679 DOI: 10.1038/s41388-021-01887-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 05/18/2021] [Accepted: 06/01/2021] [Indexed: 02/05/2023]
Abstract
Treatment of prostate cancer confronts resistance to androgen receptor (AR)-targeted therapies. AR-associated coregulators and chromatin proteins hold a great potential for novel therapy targets. Here, we employed a powerful chromatin-directed proteomics approach termed ChIP-SICAP to uncover the composition of chromatin protein network, the chromatome, around endogenous AR in castration resistant prostate cancer (CRPC) cells. In addition to several expected AR coregulators, the chromatome contained many nuclear proteins not previously associated with the AR. In the context of androgen signaling in CRPC cells, we further investigated the role of a known AR-associated protein, a chromatin remodeler SMARCA4 and that of SIM2, a transcription factor without a previous association with AR. To understand their role in chromatin accessibility and AR target gene expression, we integrated data from ChIP-seq, RNA-seq, ATAC-seq and functional experiments. Despite the wide co-occurrence of SMARCA4 and AR on chromatin, depletion of SMARCA4 influenced chromatin accessibility and expression of a restricted set of AR target genes, especially those involved in cell morphogenetic changes in epithelial-mesenchymal transition. The depletion also inhibited the CRPC cell growth, validating SMARCA4's functional role in CRPC cells. Although silencing of SIM2 reduced chromatin accessibility similarly, it affected the expression of a much larger group of androgen-regulated genes, including those involved in cellular responses to external stimuli and steroid hormone stimulus. The silencing also reduced proliferation of CRPC cells and tumor size in chick embryo chorioallantoic membrane assay, further emphasizing the importance of SIM2 in CRPC cells and pointing to the functional relevance of this potential prostate cancer biomarker in CRPC cells. Overall, the chromatome of AR identified in this work is an important resource for the field focusing on this important drug target.
Collapse
Affiliation(s)
- Kaisa-Mari Launonen
- Institute of Biomedicine, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Ville Paakinaho
- Institute of Biomedicine, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | | | - Marjo Malinen
- Department of Environmental and Biological Sciences, University of Eastern Finland, Joensuu, Finland
| | - Reijo Sironen
- Institute of Clinical Medicine, Clinical Pathology and Forensic Medicine, University of Eastern Finland, Kuopio, Finland
- Department of Clinical Pathology, Kuopio University Hospital, Kuopio, Finland
| | - Jaana M Hartikainen
- Institute of Clinical Medicine, Clinical Pathology and Forensic Medicine, University of Eastern Finland, Kuopio, Finland
| | - Hanna Laakso
- Institute of Biomedicine, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Tapio Visakorpi
- Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Centre, Tampere University Hospital, Tampere, Finland
- Fimlab Laboratories, Tampere, Finland
| | - Jeroen Krijgsveld
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Heidelberg University, Medical Faculty, Heidelberg, Germany
| | - Einari A Niskanen
- Institute of Biomedicine, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Jorma J Palvimo
- Institute of Biomedicine, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland.
| |
Collapse
|
45
|
Genau AC, Li Z, Renzaglia KS, Fernandez Pozo N, Nogué F, Haas FB, Wilhelmsson PKI, Ullrich KK, Schreiber M, Meyberg R, Grosche C, Rensing SA. HAG1 and SWI3A/B control of male germ line development in P. patens suggests conservation of epigenetic reproductive control across land plants. PLANT REPRODUCTION 2021; 34:149-173. [PMID: 33839924 PMCID: PMC8128824 DOI: 10.1007/s00497-021-00409-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 04/02/2021] [Indexed: 05/27/2023]
Abstract
KEY MESSAGE Bryophytes as models to study the male germ line: loss-of-function mutants of epigenetic regulators HAG1 and SWI3a/b demonstrate conserved function in sexual reproduction. With the water-to-land transition, land plants evolved a peculiar haplodiplontic life cycle in which both the haploid gametophyte and the diploid sporophyte are multicellular. The switch between these phases was coined alternation of generations. Several key regulators that control the bauplan of either generation are already known. Analyses of such regulators in flowering plants are difficult due to the highly reduced gametophytic generation, and the fact that loss of function of such genes often is embryo lethal in homozygous plants. Here we set out to determine gene function and conservation via studies in bryophytes. Bryophytes are sister to vascular plants and hence allow evolutionary inferences. Moreover, embryo lethal mutants can be grown and vegetatively propagated due to the dominance of the bryophyte gametophytic generation. We determined candidates by selecting single copy orthologs that are involved in transcriptional control, and of which flowering plant mutants show defects during sexual reproduction, with a focus on the under-studied male germ line. We selected two orthologs, SWI3a/b and HAG1, and analyzed loss-of-function mutants in the moss P. patens. In both mutants, due to lack of fertile spermatozoids, fertilization and hence the switch to the diploid generation do not occur. Pphag1 additionally shows arrested male and impaired female gametangia development. We analyzed HAG1 in the dioecious liverwort M. polymorpha and found that in Mphag1 the development of gametangiophores is impaired. Taken together, we find that involvement of both regulators in sexual reproduction is conserved since the earliest divergence of land plants.
Collapse
Affiliation(s)
- Anne C Genau
- Plant Cell Biology, Department of Biology, University of Marburg, Marburg, Germany
| | - Zhanghai Li
- Plant Cell Biology, Department of Biology, University of Marburg, Marburg, Germany
| | - Karen S Renzaglia
- Department of Plant Biology, Southern Illinois University, Carbondale, IL, 62901, USA
| | - Noe Fernandez Pozo
- Plant Cell Biology, Department of Biology, University of Marburg, Marburg, Germany
| | - Fabien Nogué
- Institut Jean-Pierre Bourgin, INRAE, Université Paris-Saclay, 78000, Versailles, AgroParisTech, France
| | - Fabian B Haas
- Plant Cell Biology, Department of Biology, University of Marburg, Marburg, Germany
| | - Per K I Wilhelmsson
- Plant Cell Biology, Department of Biology, University of Marburg, Marburg, Germany
| | - Kristian K Ullrich
- Plant Cell Biology, Department of Biology, University of Marburg, Marburg, Germany
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Mona Schreiber
- Plant Cell Biology, Department of Biology, University of Marburg, Marburg, Germany
| | - Rabea Meyberg
- Plant Cell Biology, Department of Biology, University of Marburg, Marburg, Germany
| | - Christopher Grosche
- Plant Cell Biology, Department of Biology, University of Marburg, Marburg, Germany
| | - Stefan A Rensing
- Plant Cell Biology, Department of Biology, University of Marburg, Marburg, Germany.
- BIOSS Centre for Biological Signaling Studies, University of Freiburg, Freiburg, Germany.
- LOEWE Center for Synthetic Microbiology (SYNMIKRO), Philipps University of Marburg, Marburg, Germany.
| |
Collapse
|
46
|
Kenny C, O’Meara E, Ulaş M, Hokamp K, O’Sullivan MJ. Global Chromatin Changes Resulting from Single-Gene Inactivation-The Role of SMARCB1 in Malignant Rhabdoid Tumor. Cancers (Basel) 2021; 13:cancers13112561. [PMID: 34071089 PMCID: PMC8197137 DOI: 10.3390/cancers13112561] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/02/2021] [Accepted: 05/10/2021] [Indexed: 01/08/2023] Open
Abstract
Simple Summary Malignant rhabdoid tumors (MRT), one of the most lethal, treatment-resistant human cancers, arises in young children within brain, kidney, liver and/or soft tissues. Generally, cancer arises in older adults, and results from multiple significant changes (mutations) accumulating in the genetic blueprint (DNA) of a person’s tissues. This blueprint is composed of a 4-letter alphabet. Together, the multiple significant changes in the blueprint then allow a cell to go “out of control”, becoming a cancer cell. The striking thing about MRT is that it has only a single spelling change, so that mutation must be very powerful to lead to such a lethal cancer. Using a model system that we developed, we show herein how this single mutation alters how the whole of the DNA is arranged, thereby having its profound and lethal effects. We present insights into how this mutation arrests maturation of the cells, keeping them in a cancer “state”. Abstract Human cancer typically results from the stochastic accumulation of multiple oncogene-activating and tumor-suppressor gene-inactivating mutations. However, this process takes time and especially in the context of certain pediatric cancer, fewer but more ‘impactful’ mutations may in short order produce the full-blown cancer phenotype. This is well exemplified by the highly aggressive malignant rhabdoid tumor (MRT), where the only gene classically showing recurrent inactivation is SMARCB1, a subunit member of the BAF chromatin-remodeling complex. This is true of all three presentations of MRT including MRT of kidney (MRTK), MRT of the central nervous system (atypical teratoid rhabdoid tumor—ATRT) and extracranial, extrarenal rhabdoid tumor (EERT). Our reverse modeling of rhabdoid tumors with isogenic cell lines, either induced or not induced, to express SMARCB1 showed widespread differential chromatin remodeling indicative of altered BAF complex activity with ensuant histone modifications when tested by chromatin immunoprecipitation followed by sequencing (ChIP-seq). The changes due to reintroduction of SMARCB1 were preponderantly at typical enhancers with tandem BAF complex occupancy at these sites and related gene activation, as substantiated also by transcriptomic data. Indeed, for both MRTK and ATRT cells, there is evidence of an overlap between SMARCB1-dependent enhancer activation and tissue-specific lineage-determining genes. These genes are inactive in the tumor state, conceivably arresting the cells in a primitive/undifferentiated state. This epigenetic dysregulation from inactivation of a chromatin-remodeling complex subunit contributes to an improved understanding of the complex pathophysiological basis of MRT, one of the most lethal and aggressive human cancers.
Collapse
Affiliation(s)
- Colin Kenny
- School of Medicine, Trinity College, University of Dublin, Dublin 2, Ireland;
| | - Elaine O’Meara
- School of Medicine, Trinity College, University of Dublin, Dublin 2, Ireland;
| | - Mevlüt Ulaş
- The National Children’s Research Centre, O’Sullivan Research Laboratory, Oncology Division, Gate 5, Children’s Health Ireland at Crumlin, D12N512 Dublin, Ireland; (E.O.); (M.U.)
| | - Karsten Hokamp
- School of Genetics and Microbiology, Trinity College, University of Dublin, Dublin 2, Ireland;
| | - Maureen J. O’Sullivan
- School of Medicine, Trinity College, University of Dublin, Dublin 2, Ireland;
- The National Children’s Research Centre, O’Sullivan Research Laboratory, Oncology Division, Gate 5, Children’s Health Ireland at Crumlin, D12N512 Dublin, Ireland; (E.O.); (M.U.)
- Histology Laboratory, Pathology Department, Children’s Health Ireland at Crumlin, D12N512 Dublin, Ireland
- Correspondence:
| |
Collapse
|
47
|
SMARCA4-deficient thoracic sarcoma revealed by metastasis to the small intestine: a diagnostic dilemma. Gen Thorac Cardiovasc Surg 2021; 69:1155-1158. [PMID: 33866513 PMCID: PMC8203525 DOI: 10.1007/s11748-021-01627-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 03/23/2021] [Indexed: 01/25/2023]
Abstract
SMARCA4-deficient thoracic sarcoma (SMARCA4-DTS) is a recently identified aggressive subtype of sarcoma. We present the case of a 44-year-old man who underwent a surgery for a perforated small intestine. Compued tomography scan revealed a tissular mediastino–pulmonary mass. Histopathological examination of the intestinal mass shown a malignant tumour with a typical epithelioid and rhabdoid cells, numerous mitoses and large necrosis. A large panel of immunohistochemistry revealed loss of SMARCA4 and SMARCA2 and allowed the diagnosis of SMARCA4-DTS. It is important to consider SMARCA4-deficient thoracic sarcoma in the differential diagnosis of tumours showing suggestive morphologic features in patients of all ages, especially in the case of metastasis associated with thoracic mass.
Collapse
|
48
|
Abstract
The SMARCB1/INI1 gene was first discovered in the mid-1990s, and since then it has been revealed that loss of function mutations in this gene result in aggressive rhabdoid tumors. Recently, the term "rhabdoid tumor" has become synonymous with decreased SMARCB1/INI1 expression. When genetic aberrations in the SMARCB1/INI1 gene occur, the result can cause complete loss of expression, decreased expression, and mosaic expression. Although SMARCB1/INI1-deficient tumors are predominantly sarcomas, this is a diverse group of tumors with mixed phenotypes, which can often make the diagnosis challenging. Prognosis for these aggressive tumors is often poor. Moreover, refractory and relapsing progressive disease is common. As a result, accurate and timely diagnosis is imperative. Despite the SMARCB1/INI1 gene itself and its implications in tumorigenesis being discovered over two decades ago, there is a paucity of rhabdoid tumor cases reported in the literature that detail SMARCB1/INI1 expression. Much work remains if we hope to provide additional therapeutic strategies for patients with aggressive SMARCB1/INI1-deficient tumors.
Collapse
Affiliation(s)
- Nathaniel A Parker
- University of Kansas School of Medicine, 1010 N Kansas St, Wichita, KS, 67214, USA
| | - Ammar Al-Obaidi
- University of Kansas School of Medicine, 1010 N Kansas St, Wichita, KS, 67214, USA
| | - Jeremy M Deutsch
- Cancer Center of Kansas, 818 N. Emporia #403, Wichita, KS, 67214, USA
| |
Collapse
|
49
|
Mehta GA, Angus SP, Khella CA, Tong K, Khanna P, Dixon SAH, Verzi MP, Johnson GL, Gatza ML. SOX4 and SMARCA4 cooperatively regulate PI3k signaling through transcriptional activation of TGFBR2. NPJ Breast Cancer 2021; 7:40. [PMID: 33837205 PMCID: PMC8035213 DOI: 10.1038/s41523-021-00248-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 03/15/2021] [Indexed: 12/11/2022] Open
Abstract
Dysregulation of PI3K/Akt signaling is a dominant feature in basal-like or triple-negative breast cancers (TNBC). However, the mechanisms regulating this pathway are largely unknown in this subset of aggressive tumors. Here we demonstrate that the transcription factor SOX4 is a key regulator of PI3K signaling in TNBC. Genomic and proteomic analyses coupled with mechanistic studies identified TGFBR2 as a direct transcriptional target of SOX4 and demonstrated that TGFBR2 is required to mediate SOX4-dependent PI3K signaling. We further report that SOX4 and the SWI/SNF ATPase SMARCA4, which are uniformly overexpressed in basal-like tumors, form a previously unreported complex that is required to maintain an open chromatin conformation at the TGFBR2 regulatory regions in order to mediate TGFBR2 expression and PI3K signaling. Collectively, our findings delineate the mechanism by which SOX4 and SMARCA4 cooperatively regulate PI3K/Akt signaling and suggest that this complex may play an essential role in TNBC genesis and/or progression.
Collapse
Affiliation(s)
- Gaurav A Mehta
- Department of Radiation Oncology, Robert Wood Johnson Medical School, New Brunswick, NJ, USA
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
| | - Steven P Angus
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Christen A Khella
- Department of Radiation Oncology, Robert Wood Johnson Medical School, New Brunswick, NJ, USA
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
| | - Kevin Tong
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Pooja Khanna
- Department of Radiation Oncology, Robert Wood Johnson Medical School, New Brunswick, NJ, USA
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
| | - Shelley A H Dixon
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Michael P Verzi
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Gary L Johnson
- Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Michael L Gatza
- Department of Radiation Oncology, Robert Wood Johnson Medical School, New Brunswick, NJ, USA.
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA.
| |
Collapse
|
50
|
Zhu Y, Wang H, Fei M, Tang T, Niu W, Zhang L. Smarcd1 Inhibits the Malignant Phenotypes of Human Glioblastoma Cells via Crosstalk with Notch1. Mol Neurobiol 2021; 58:1438-1452. [PMID: 33190170 PMCID: PMC7932991 DOI: 10.1007/s12035-020-02190-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 10/29/2020] [Indexed: 11/29/2022]
Abstract
Smarcd1 is a component of an evolutionary conserved chromatin remodeling complex-SWI/SNF, which is involved in transcription factor recruitment, DNA replication, recombination, and repair. Suppression of the SWI/SNF complex required for cellular differentiation and gene regulation may be inducible for cell proliferation and tumorigenicity. However, the inhibitory role of Smarcd1 in human glioblastoma cells has not been well illustrated. Both U87 and U251 human glioblastoma cell lines were employed in the present study. The lentivirus-mediated gene knockdown and overexpression approach was conducted to determine the function of Smarcd1. The protein levels were tested by western blot, and the relative mRNA contents were detected by quantitative real-time PCR. Cell viability was tested by CCK-8 and colony-forming assay. Transwell assays were utilized to evaluate the motility and invasive ability. Flow cytometry was employed to analyze cell cycle and apoptosis. SPSS software was used for statistical analysis. Low expression of Smarcd1 was observed in glioblastoma cell lines and in patients with high-grade glioma. Importantly, the depletion of Smarcd1 promoted cell proliferation, invasion, and chemoresistance, whereas enhanced expression of Smarcd1 inhibited tumor-malignant phenotypes. Mechanistic research demonstrated that overexpression of Smarcd1 decreased the expression of Notch1, while knockdown of Notch1 increased the expression of Smarcd1 through Hes1 suppression. Hence, the crosstalk between Smarcd1 and Notch1, which formed a feedback loop, was crucial in regulation of glioblastoma malignant phenotypes. Furthermore, targeting Smarcd1 could be a potential strategy for human glioblastoma treatment.
Collapse
Affiliation(s)
- Yihao Zhu
- Department of Neurosurgery, Jinling Hospital, Medical School of Nanjing University, 305 East Zhongshan Road, Nanjing, 210002, Jiangsu, People's Republic of China
- Department of Neurosurgery, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, People's Republic of China
| | - Handong Wang
- Department of Neurosurgery, Jinling Hospital, Medical School of Nanjing University, 305 East Zhongshan Road, Nanjing, 210002, Jiangsu, People's Republic of China.
| | - Maoxing Fei
- Department of Neurosurgery, Jinling Hospital, Medical School of Nanjing University, 305 East Zhongshan Road, Nanjing, 210002, Jiangsu, People's Republic of China
| | - Ting Tang
- Department of Neurosurgery, Jinling Hospital, Medical School of Nanjing University, 305 East Zhongshan Road, Nanjing, 210002, Jiangsu, People's Republic of China
| | - Wenhao Niu
- Department of Neurosurgery, Jinling Hospital, Medical School of Nanjing University, 305 East Zhongshan Road, Nanjing, 210002, Jiangsu, People's Republic of China
| | - Li Zhang
- Department of Neurosurgery, Jinling Hospital, Medical School of Nanjing University, 305 East Zhongshan Road, Nanjing, 210002, Jiangsu, People's Republic of China
| |
Collapse
|