1
|
Xing X, Zhou Z, Peng H, Cheng S. Anticancer role of flubendazole: Effects and molecular mechanisms (Review). Oncol Lett 2024; 28:558. [PMID: 39355784 PMCID: PMC11443308 DOI: 10.3892/ol.2024.14691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 08/29/2024] [Indexed: 10/03/2024] Open
Abstract
Flubendazole, an anthelmintic agent with a well-established safety profile, has emerged as a promising anticancer drug that has demonstrated efficacy against a spectrum of cancer types over the past decade. Its anticancer properties encompass a multifaceted mechanism of action, including the inhibition of cancer cell proliferation, disruption of microtubule dynamics, regulation of cell cycle, autophagy, apoptosis, suppression of cancer stem cell characteristics, promotion of ferroptosis and inhibition of angiogenesis. The present review aimed to provide a comprehensive overview of the molecular underpinnings of the anticancer activity of flubendazole, highlighting key molecules and regulatory pathways. Given the breadth of the potential of flubendazole, further research is imperative to identify additional cancer types sensitive to flubendazole, refine experimental methodologies for enhancing its reliability, uncover synergistic drug combinations, improve its bioavailability and explore innovative administration methods. The present review provided a foundation for future studies on the role of flubendazole in oncology and described its molecular mechanisms of action.
Collapse
Affiliation(s)
- Xing Xing
- Department of Urology, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434000, P.R. China
| | - Zongning Zhou
- Human Genetic Resources Preservation Center of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Hongwei Peng
- Human Genetic Resources Preservation Center of Wuhan University, Wuhan, Hubei 430071, P.R. China
- Hubei Key Laboratory of Urological Diseases, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Shaoping Cheng
- Department of Urology, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434000, P.R. China
| |
Collapse
|
2
|
Li C, Xiao Y, Kong J, Lai C, Chen Z, Li Z, Xie W. Elucidating the role of MICAL1 in pan-cancer using integrated bioinformatics and experimental approaches. Cell Adh Migr 2024; 18:1-17. [PMID: 38555517 PMCID: PMC10984120 DOI: 10.1080/19336918.2024.2335682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 03/22/2024] [Indexed: 04/02/2024] Open
Abstract
Molecule interacting with CasL 1 (MICAL1) is a crucial protein involved in cell motility, axon guidance, cytoskeletal dynamics, and gene transcription. This pan-cancer study analyzed MICAL1 across 33 cancer types using bioinformatics and experiments. Dysregulated expression, diagnostic potential, and prognostic value were assessed. Associations with tumor characteristics, immune factors, and drug sensitivity were explored. Enrichment analysis revealed MICAL1's involvement in metastasis, angiogenesis, metabolism, and immune pathways. Functional experiments demonstrated its impact on renal carcinoma cells. These findings position MICAL1 as a potential biomarker and therapeutic target in specific cancers, warranting further investigation into its role in cancer pathogenesis.
Collapse
Affiliation(s)
- Canxuan Li
- Department of Urology, Shenshan Medical Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Shanwei, Guangdong, P. R. China
| | - Yunfei Xiao
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, P. R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, P. R. China
- Guangdong Provincial Clinical Research Center for Urological Diseases, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, P. R. China
| | - Jianqiu Kong
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, P. R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, P. R. China
- Guangdong Provincial Clinical Research Center for Urological Diseases, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, P. R. China
| | - Cong Lai
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, P. R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, P. R. China
- Guangdong Provincial Clinical Research Center for Urological Diseases, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, P. R. China
| | - Zhiliang Chen
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, P. R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, P. R. China
- Guangdong Provincial Clinical Research Center for Urological Diseases, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, P. R. China
| | - Zhuohang Li
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, P. R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, P. R. China
- Guangdong Provincial Clinical Research Center for Urological Diseases, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, P. R. China
| | - Weibin Xie
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, P. R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, P. R. China
- Guangdong Provincial Clinical Research Center for Urological Diseases, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, P. R. China
| |
Collapse
|
3
|
Advani D, Kumar P. Uncovering Cell Cycle Dysregulations and Associated Mechanisms in Cancer and Neurodegenerative Disorders: A Glimpse of Hope for Repurposed Drugs. Mol Neurobiol 2024; 61:8600-8630. [PMID: 38532240 DOI: 10.1007/s12035-024-04130-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 03/19/2024] [Indexed: 03/28/2024]
Abstract
The cell cycle is the sequence of events orchestrated by a complex network of cell cycle proteins. Unlike normal cells, mature neurons subsist in a quiescent state of the cell cycle, and aberrant cell cycle activation triggers neuronal death accompanied by neurodegeneration. The periodicity of cell cycle events is choreographed by various mechanisms, including DNA damage repair, oxidative stress, neurotrophin activity, and ubiquitin-mediated degradation. Given the relevance of cell cycle processes in cancer and neurodegeneration, this review delineates the overlapping cell cycle events, signaling pathways, and mechanisms associated with cell cycle aberrations in cancer and the major neurodegenerative disorders. We suggest that dysregulation of some common fundamental signaling processes triggers anomalous cell cycle activation in cancer cells and neurons. We discussed the possible use of cell cycle inhibitors for neurodegenerative disorders and described the associated challenges. We propose that a greater understanding of the common mechanisms driving cell cycle aberrations in cancer and neurodegenerative disorders will open a new avenue for the development of repurposed drugs.
Collapse
Affiliation(s)
- Dia Advani
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly Delhi College of Engineering), Shahbad Daulatpur, Bawana Road, New Delhi, Delhi, 110042, India
| | - Pravir Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly Delhi College of Engineering), Shahbad Daulatpur, Bawana Road, New Delhi, Delhi, 110042, India.
| |
Collapse
|
4
|
Tan M, Zheng Y, Zhang S, Yao H, Yan X, Zhao X, Liu M, Huang N, Wang N. Base-Controlled Chemodivergent [4 + 1] and [2 + 1]/[4 + 2] Annulations of o-Aminochalcones with γ-Bromocrotonates. Org Lett 2024. [PMID: 39431996 DOI: 10.1021/acs.orglett.4c03187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
Controlling the selectivity of reactions is a significantly attractive strategy in synthetic organic chemistry. Herein, an efficient base-controlled chemodivergent domino reaction between o-aminochalcones and γ-bromocrotonates has been developed. A series of cis-2,3-disubstituted indolines and cyclopropane-fused tetrahydroquinolines were obtained via two pathways with a broad substrate scope in moderate to excellent yields under transition-metal-free conditions. It is noteworthy that the γ-bromocrotonates could be used as C1 or C2 synthons by modulating the base; in particular, the γ-bromocrotonates were used as both nucleophiles and electrophiles to generate cyclopropanes for the first time.
Collapse
Affiliation(s)
- Mengting Tan
- Hubei Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang, Hubei 443002, China
| | - Yunping Zheng
- Hubei Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang, Hubei 443002, China
| | - Sen Zhang
- Hubei Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang, Hubei 443002, China
| | - Hui Yao
- Hubei Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang, Hubei 443002, China
- Hubei Three Gorges Laboratory, Yichang, Hubei 443007, China
| | - Xin Yan
- Hubei Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang, Hubei 443002, China
| | - Xing Zhao
- Hubei Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang, Hubei 443002, China
| | - Mingguo Liu
- Hubei Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang, Hubei 443002, China
| | - Nianyu Huang
- Hubei Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang, Hubei 443002, China
- Hubei Three Gorges Laboratory, Yichang, Hubei 443007, China
| | - Nengzhong Wang
- Hubei Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang, Hubei 443002, China
- Hubei Three Gorges Laboratory, Yichang, Hubei 443007, China
| |
Collapse
|
5
|
Anisimov MN, Boichenko MA, Shorokhov VV, Borzunova JN, Janibekova M, Mustyatsa VV, Lifshits IA, Plodukhin AY, Andreev IA, Ratmanova NK, Zhokhov SS, Tarasenko EA, Ipatova DA, Pisarev AR, Vorobjev IA, Trushkov IV, Ivanova OA, Gudimchuk NB. Synthesis and evaluation of tetrahydropyrrolo[1,2- a]quinolin-1(2 H)-ones as new tubulin polymerization inhibitors. RSC Med Chem 2024:d4md00541d. [PMID: 39464648 PMCID: PMC11499956 DOI: 10.1039/d4md00541d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 10/10/2024] [Indexed: 10/29/2024] Open
Abstract
Here we explored new 1,5-disubstituted pyrrolidin-2-ones 1, 2 and 5-aryl-3,3a,4,5-tetrahydropyrrolo[1,2-a]quinoline-1(2H)-ones 3 as inhibitors of tubulin polymerization. We evaluated their effects on microtubule dynamics in vitro and on the proliferation of A549 cells, using flow cytometry-based cell cycle analysis. The results were verified with phase-contrast microscopy in three cancer cell lines: A549, HeLa and MCF-7. Guided by molecular modeling of the interactions between tubulin and the most active of the identified compounds, we designed, synthesized, and tested the 3-hydroxyphenyl-substituted compound 3c. This compound was further shown to bind to the colchicine site of tubulin and reduce microtubule growth rates in vitro. Moreover, compound 3c arrested division of the A549 cells in the low micromolar range (IC50 = 5.9 μM) and exhibited cytotoxicity against four different cell lines in the MTT assay for cell proliferation. Our findings demonstrate that 5-aryltetrahydropyrrolo[1,2-a]quinoline-1(2H)-one is a promising scaffold for the development of novel tubulin polymerization inhibitors.
Collapse
Affiliation(s)
- Mikhail N Anisimov
- Department of Physics, M.V. Lomonosov Moscow State University Moscow 119991 Russia
- Center for theoretical problems of physicochemical pharmacology Moscow 109029 Russia
| | - Maksim A Boichenko
- Department of Chemistry, M.V. Lomonosov Moscow State University Moscow 119991 Russia
| | - Vitaly V Shorokhov
- Department of Chemistry, M.V. Lomonosov Moscow State University Moscow 119991 Russia
| | - Julia N Borzunova
- Department of Physics, M.V. Lomonosov Moscow State University Moscow 119991 Russia
| | | | - Vadim V Mustyatsa
- Center for theoretical problems of physicochemical pharmacology Moscow 109029 Russia
- National Laboratory Astana Astana 010000 Kazakhstan
| | - Ilya A Lifshits
- Department of Physics, M.V. Lomonosov Moscow State University Moscow 119991 Russia
| | - Andrey Yu Plodukhin
- Department of Chemistry, M.V. Lomonosov Moscow State University Moscow 119991 Russia
| | - Ivan A Andreev
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology Moscow 117997 Russia
| | - Nina K Ratmanova
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology Moscow 117997 Russia
| | - Sergey S Zhokhov
- Department of Chemistry, M.V. Lomonosov Moscow State University Moscow 119991 Russia
| | - Elena A Tarasenko
- Department of Chemistry, M.V. Lomonosov Moscow State University Moscow 119991 Russia
| | - Daria A Ipatova
- Department of Chemistry, M.V. Lomonosov Moscow State University Moscow 119991 Russia
| | - Alexander R Pisarev
- Faculty of Biology and Biotechnologies, Higher School of Economics Moscow 117418 Russia
| | - Ivan A Vorobjev
- National Laboratory Astana Astana 010000 Kazakhstan
- Department of Biology, School of Sciences and Humanities, Nazarbayev University Astana 010000 Kazakhstan
- Department of Biology, M.V. Lomonosov Moscow State University Moscow 119991 Russia
| | - Igor V Trushkov
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences Moscow 119991 Russia
| | - Olga A Ivanova
- Department of Chemistry, M.V. Lomonosov Moscow State University Moscow 119991 Russia
| | - Nikita B Gudimchuk
- Department of Physics, M.V. Lomonosov Moscow State University Moscow 119991 Russia
- Center for theoretical problems of physicochemical pharmacology Moscow 109029 Russia
| |
Collapse
|
6
|
Mishra T, Dubey N, Basu S. Small molecules for impairing endoplasmic reticulum in cancer. Org Biomol Chem 2024. [PMID: 39373910 DOI: 10.1039/d4ob01238k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
The endoplasmic reticulum plays an important role in maintaining the protein homeostasis of cells as well as regulating Ca2+ storage. An increased load of unfolded proteins in the endoplasmic reticulum due to alterations in the cell's metabolic pathway leads to the activation of the unfolded protein response, also known as ER stress. ER stress plays a major role in maintaining the growth and survival of various cancer cells, but persistent ER stress can also lead to cell death and hence can be a therapeutic pathway in the treatment of cancer. In this review, we focus on different types of small molecules that impair different ER stress sensors, the protein degradation machinery, and chaperone proteins. We also review the metal complexes and other miscellaneous compounds inducing ER stress through multiple mechanisms. Finally, we discuss the challenges in this emerging area of research and the potential direction of research to overcome them towards next-generation ER-targeted cancer therapy.
Collapse
Affiliation(s)
- Tripti Mishra
- Department of Chemistry, Indian Institute of Technology (IIT) Gandhinagar, Palaj, Gandhinagar, Gujarat, 382355, India.
| | - Navneet Dubey
- Department of Chemistry, Indian Institute of Technology (IIT) Gandhinagar, Palaj, Gandhinagar, Gujarat, 382355, India.
| | - Sudipta Basu
- Department of Chemistry, Indian Institute of Technology (IIT) Gandhinagar, Palaj, Gandhinagar, Gujarat, 382355, India.
| |
Collapse
|
7
|
Wegmann R, Bankel L, Festl Y, Lau K, Lee S, Arnold F, Cappelletti V, Fehr A, Picotti P, Dedes KJ, Franzen D, Lenggenhager D, Bode PK, Zoche M, Moch H, Britschgi C, Snijder B. Molecular and functional landscape of malignant serous effusions for precision oncology. Nat Commun 2024; 15:8544. [PMID: 39358333 PMCID: PMC11447229 DOI: 10.1038/s41467-024-52694-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 09/12/2024] [Indexed: 10/04/2024] Open
Abstract
Personalized treatment for patients with advanced solid tumors critically depends on the deep characterization of tumor cells from patient biopsies. Here, we comprehensively characterize a pan-cancer cohort of 150 malignant serous effusion (MSE) samples at the cellular, molecular, and functional level. We find that MSE-derived cancer cells retain the genomic and transcriptomic profiles of their corresponding primary tumors, validating their use as a patient-relevant model system for solid tumor biology. Integrative analyses reveal that baseline gene expression patterns relate to global ex vivo drug sensitivity, while high-throughput drug-induced transcriptional changes in MSE samples are indicative of drug mode of action and acquired treatment resistance. A case study exemplifies the added value of multi-modal MSE profiling for patients who lack genetically stratified treatment options. In summary, our study provides a functional multi-omics view on a pan-cancer solid tumor cohort and underlines the feasibility and utility of MSE-based precision oncology.
Collapse
Affiliation(s)
- Rebekka Wegmann
- Institute of Molecular Systems Biology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Lorenz Bankel
- Institute of Molecular Systems Biology, Department of Biology, ETH Zurich, Zurich, Switzerland
- Department of Medical Oncology and Hematology, University Hospital Zurich, Zurich, Switzerland
- Comprehensive Cancer Center Zurich (CCCZ), Zurich, Switzerland
| | - Yasmin Festl
- Institute of Molecular Systems Biology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Kate Lau
- Institute of Molecular Systems Biology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Sohyon Lee
- Institute of Molecular Systems Biology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Fabian Arnold
- Department of Pathology and Molecular Pathology, University Hospital Zurich, Zurich, Switzerland
| | - Valentina Cappelletti
- Institute of Molecular Systems Biology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Aaron Fehr
- Institute of Molecular Systems Biology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Paola Picotti
- Institute of Molecular Systems Biology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Konstantin J Dedes
- Department of Gynecology, University Hospital Zurich, Zurich, Switzerland
| | - Daniel Franzen
- Department of Pulmonology, University Hospital Zurich, Zurich, Switzerland
| | - Daniela Lenggenhager
- Department of Pathology and Molecular Pathology, University Hospital Zurich, Zurich, Switzerland
| | - Peter K Bode
- Department of Pathology and Molecular Pathology, University Hospital Zurich, Zurich, Switzerland
| | - Martin Zoche
- Department of Pathology and Molecular Pathology, University Hospital Zurich, Zurich, Switzerland
| | - Holger Moch
- Comprehensive Cancer Center Zurich (CCCZ), Zurich, Switzerland
- Department of Pathology and Molecular Pathology, University Hospital Zurich, Zurich, Switzerland
- University of Zurich, Zurich, Switzerland
| | - Christian Britschgi
- Department of Medical Oncology and Hematology, University Hospital Zurich, Zurich, Switzerland
- Comprehensive Cancer Center Zurich (CCCZ), Zurich, Switzerland
- Medical Oncology and Hematology, Cantonal Hospital Winterthur, Winterthur, Switzerland
| | - Berend Snijder
- Institute of Molecular Systems Biology, Department of Biology, ETH Zurich, Zurich, Switzerland.
- Comprehensive Cancer Center Zurich (CCCZ), Zurich, Switzerland.
- Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland.
| |
Collapse
|
8
|
Kumar A, Kaushal A, Verma PK, Gupta MK, Chandra G, Kumar U, Yadav AK, Kumar D. An insight into recent developments in imidazole based heterocyclic compounds as anticancer agents: Synthesis, SARs, and mechanism of actions. Eur J Med Chem 2024; 280:116896. [PMID: 39366252 DOI: 10.1016/j.ejmech.2024.116896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 09/09/2024] [Accepted: 09/17/2024] [Indexed: 10/06/2024]
Abstract
Among all non-communicable diseases, cancer is ranked as the second most common cause of death and is rising constantly. While cancer treatments mainly include radiation therapy, chemotherapy, and surgery; chemotherapy is considered the most commonly employed and effective treatment. Most of the chemotherapeutic agents are azoles based compounds and imidazole is one such insightful azole. The anticancer properties of imidazole-based compounds have been thoroughly explored in recent years and all monosubstituted, disubstituted, trisubstituted, and tetrasubstituted imidazoles have been explored for their anticancer activities. Along with these compounds, other imidazole-based compounds like 1,3-dihydro-2H-imidazole-2-thiones, imidazolones, and poly imidazole compounds have also been explored for their anticancer activities. The activities of these compounds are heavily influenced by their structural resemblance to combretastatin 4A and ABI (2-aryl-4-benzoyl-imidazole). The lead compounds were highly active on breast, gastric, colon, ovarian, cervical, bone marrow, melanoma, prostate, lung, leukemic, neuroblastoma, liver, Ehrlich, melanoma, and pancreatic cancers. The targets of these leads like tubulin, heme oxygenases, VEGF, tyrosine kinases, EGFR, and others have also been explored. The exploration of the anticancer potential of substituted imidazole compounds is the main topic of this review including synthesis, SAR, and mechanism.
Collapse
Affiliation(s)
- Arun Kumar
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Shoolini University, Solan, Himachal Pradesh, 173 229, India
| | - Anjali Kaushal
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Shoolini University, Solan, Himachal Pradesh, 173 229, India; Institute of Pharmaceutical Sciences, Faculty of Pharmacy, Parul University, Vadodara, Gujarat, 391760, India
| | - Prabhakar K Verma
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, 124001, India
| | - Manoj K Gupta
- Department of Chemistry, Central University of Haryana, Mahendergarh, Haryana, 123031, India
| | - Girish Chandra
- Department of Chemistry, School of Physical and Chemical Sciences, Central University of South Bihar, Gaya, Bihar, 824236, India
| | - Umesh Kumar
- Catalysis and Bioinorganic Research Lab, Department of Chemistry, Deshbandhu College, University of Delhi, New Delhi, 110019, India
| | - Ashok K Yadav
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | - Deepak Kumar
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Shoolini University, Solan, Himachal Pradesh, 173 229, India.
| |
Collapse
|
9
|
Gupta S, Dev J R A, Prakash Prasad C, Kumar A, Kumar Ghosh S. A potent Bioorganic azapodophyllotoxin derivative Suppresses tumor Progression in Triple negative breast Cancer: An Insight into its Inhibitory effect on tubulin polymerization and Disruptive effect on microtubule assembly. Bioorg Chem 2024; 153:107839. [PMID: 39326339 DOI: 10.1016/j.bioorg.2024.107839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/18/2024] [Accepted: 09/19/2024] [Indexed: 09/28/2024]
Abstract
Triple negative breast cancer (TNBC) has long been a challenging disease owing to its high aggressive behaviour, poor prognosis and its limited treatment options. The growing demand of new therapeutics against TNBC enables us to examine the therapeutic efficiency of an emerging class of anticancer compounds, azapodophyllotoxin derivative (HTDQ), a nitrogen analogue of podophyllotoxin, using different biochemical, spectroscopic and computational approaches. The anticancer activities of HTDQ are studied by performing MTT assay in a dose depended manner on Triple negative breast cancer cells using MDA-MB-468 and MDA-MB-231 cell lines with IC50 value 937 nM and 1.13 µM respectively while demonstrating minimal effect on normal epithelial cells. The efficacy of HTDQ was further tested in 3D tumour spheroids formed by the human TNBC cell line MDA-MB468 and also the murine MMTV positive TNBC cell line 4 T1. The shrinkage that observed in the tumor spheroid clearly indicates that HTDQ remarkably decreases the growth of tumor spheroid thereby affirming its cytotoxicity. The 2D cell viability assay shows significant morphological alteration that possibly caused by the cytoskeleton disturbances. Hence the binding interaction of HTDQ with cytoskeleton protein tubulin, its effect on tubulin polymerisation as well as depolymerisation of preformed microtubules along with the conformational alternation in the protein itself have been investigated in detail. Moreover, the apoptotic effects of HTDQ have been examined using a range of apoptotic markers. HTDQ-treated cancer cells showed increased expression of cleaved PARP-1 and pro-caspase-3, suggesting activation of the apoptosis process. HTDQ also upregulated pro-apoptotic Bax expression while inhibiting anti-apoptotic Bcl2 expression, supporting its ability to induce apoptosis in cancer cells. Hence the consolidated biochemical and spectroscopic research described herein may provide enormous information to use azapodophyllotoxin as promising anticancer therapeutics for TNBC cells.
Collapse
Affiliation(s)
- Smruti Gupta
- Department of Chemistry, Visvesvaraya National Institute of Technology, Nagpur 440010, Maharashtra, India
| | - Arundhathi Dev J R
- Department of Medical Oncology (Laboratory), Dr. BRA IRCH, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India
| | - Chandra Prakash Prasad
- Department of Medical Oncology (Laboratory), Dr. BRA IRCH, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India
| | - Ajay Kumar
- School of Science, Technology and Environment, Universidad Ana G. Mendez, Cupey Campus, PO Box 21150, San Juan, PR 00928-1150, United States
| | - Sujit Kumar Ghosh
- Department of Chemistry, Visvesvaraya National Institute of Technology, Nagpur 440010, Maharashtra, India.
| |
Collapse
|
10
|
Oh SH, Oh JY, Vo NB, Ngo QA, Kovalenko V, Cho CG. Asymmetric Formal Total Syntheses of (+)- and (-)-Limaspermidine from Chirally Resolved 2-Pyrone Diels-Alder Cycloadducts via Aromatic C-H Amidation and Imino-Diels-Alder Reaction. J Org Chem 2024; 89:13501-13510. [PMID: 39215705 DOI: 10.1021/acs.joc.4c01696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
A new asymmetric synthetic route to (+)- and (-)-limaspermidine was devised, starting with chirally resolved enantiomerically pure 2-pyrone Diels-Alder cycloadducts. This route utilizes intramolecular Pd-catalyzed aromatic C-H amidation and imino-Diels-Alder reactions to construct the key indoline and indolizidine subunits onto the central cyclohexane core, allowing the straightforward formal total syntheses of both (+)- and (-)-limaspermidine.
Collapse
Affiliation(s)
- Sang-Ha Oh
- Center for New Directions in Organic Synthesis, Department of Chemistry, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Korea
| | - Joo-Yeon Oh
- Center for New Directions in Organic Synthesis, Department of Chemistry, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Korea
| | - Ngoc Binh Vo
- Institute of Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Ha Noi 00000, Vietnam
| | - Quoc Anh Ngo
- Institute of Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Ha Noi 00000, Vietnam
| | - Vitaly Kovalenko
- Department of Natural Sciences, Belarusian State Pedagogical University, Sovetskaya St. 18, 220030 Minsk, Republic of Belarus
| | - Cheon-Gyu Cho
- Center for New Directions in Organic Synthesis, Department of Chemistry, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Korea
| |
Collapse
|
11
|
Soltani J, Sheikh-Ahmadi A. Genomic and Chemical Evidence on Biosynthesis of Taxane Diterpenoids in Alternaria Isolates from Cupressaceae. Curr Microbiol 2024; 81:367. [PMID: 39299961 DOI: 10.1007/s00284-024-03886-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 09/06/2024] [Indexed: 09/22/2024]
Abstract
Alternaria species (Deuteromycetes, Ascomycota) as ubiquitous fungi and prolific producers of a variety of toxic compounds are a part of microbiomes of plants, humans, and animals, mainly causing disease, allergic reactions, and toxicosis. However, some species have also been reported as endophytic microorganisms with highly bioactive metabolites. Our previous results indicate that potentially endophytic Alternaria species from Cupressaceae produce bioactive metabolites that possibly contribute to plant holobiont's health. Here, a possible mechanism behind this bioactivity is elucidated. As some endophytic fungi are reported to produce cytotoxic taxane diterpenoids, eight potentially endophytic Alternaria isolates from our collection were analyzed for the presence of the key genes of the paclitaxel (Taxol) biosynthetic pathway, i.e., taxadin synthase (ts), 10-deacetylbaccatin III-10-O-acetyltransferase (dbat), and C-13-phenylpropanoid side-chain CoA acyltransferase (bapt). The presence of all genes, i.e., ts, dbat, and bapt, was detected by PCR in six isolates and dbat and bapt in two isolates. Chemical analyses of the fermentation broths by TLC and HPLC chromatography and IR spectroscopy indicated the synthesis of the final product, i.e., paclitaxel. So, we introduce the synthesis of taxane diterpenoids as a possible mechanism by which Alternaria occupies the plant niches and protects the plant holobiont in the presence of competing microorganisms.
Collapse
Affiliation(s)
- Jalal Soltani
- Phytopathology Section, Plant Protection Department, Bu-Ali Sina University, Hamedan, Iran.
| | - Adib Sheikh-Ahmadi
- Phytopathology Section, Plant Protection Department, Bu-Ali Sina University, Hamedan, Iran
| |
Collapse
|
12
|
Kamble P, Nagar PR, Bhakhar KA, Garg P, Sobhia ME, Naidu S, Bharatam PV. Cancer pharmacoinformatics: Databases and analytical tools. Funct Integr Genomics 2024; 24:166. [PMID: 39294509 DOI: 10.1007/s10142-024-01445-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/26/2024] [Accepted: 09/03/2024] [Indexed: 09/20/2024]
Abstract
Cancer is a subject of extensive investigation, and the utilization of omics technology has resulted in the generation of substantial volumes of big data in cancer research. Numerous databases are being developed to manage and organize this data effectively. These databases encompass various domains such as genomics, transcriptomics, proteomics, metabolomics, immunology, and drug discovery. The application of computational tools into various core components of pharmaceutical sciences constitutes "Pharmacoinformatics", an emerging paradigm in rational drug discovery. The three major features of pharmacoinformatics include (i) Structure modelling of putative drugs and targets, (ii) Compilation of databases and analysis using statistical approaches, and (iii) Employing artificial intelligence/machine learning algorithms for the discovery of novel therapeutic molecules. The development, updating, and analysis of databases using statistical approaches play a pivotal role in pharmacoinformatics. Multiple software tools are associated with oncoinformatics research. This review catalogs the databases and computational tools related to cancer drug discovery and highlights their potential implications in the pharmacoinformatics of cancer.
Collapse
Affiliation(s)
- Pradnya Kamble
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar, Punjab, India
| | - Prinsa R Nagar
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar, Punjab, India
| | - Kaushikkumar A Bhakhar
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar, Punjab, India
| | - Prabha Garg
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar, Punjab, India
| | - M Elizabeth Sobhia
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar, Punjab, India
| | - Srivatsava Naidu
- Center of Biomedical Engineering, Indian Institute of Technology Ropar, Rupnagar, Punjab, India
| | - Prasad V Bharatam
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar, Punjab, India.
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar, Punjab, India.
| |
Collapse
|
13
|
Calheiros-Lobo M, Silva JPN, Pinto B, Monteiro L, Silva PMA, Bousbaa H. Exploring the Therapeutic Implications of Co-Targeting the EGFR and Spindle Assembly Checkpoint Pathways in Oral Cancer. Pharmaceutics 2024; 16:1196. [PMID: 39339232 PMCID: PMC11435222 DOI: 10.3390/pharmaceutics16091196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/06/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
Head and neck cancer (HNC), the sixth most common cancer worldwide, is increasing in incidence, with oral squamous cell carcinoma (OSCC) as the predominant subtype. OSCC mainly affects middle-aged to elderly males, often occurring on the posterior lateral border of the tongue, leading to significant disfigurement and functional impairments, such as swallowing and speech difficulties. Despite advancements in understanding OSCC's genetic and epigenetic variations, survival rates for advanced stages remain low, highlighting the need for new treatment options. Primary treatment includes surgery, often combined with radiotherapy (RT) and chemotherapy (CT). Cetuximab-based chemotherapy, targeting the overexpressed epidermal growth factor receptor (EGFR) in 80-90% of HNCs, is commonly used but correlates with poor prognosis. Additionally, monopolar spindle 1 (MPS1), a spindle assembly checkpoint (SAC) component, is a significant target due to its role in genomic fidelity during mitosis and its overexpression in several cancers. This review explores EGFR and MPS1 as therapeutic targets in HNC, analyzing their molecular mechanisms and the effects of their inhibition on cancer cells. It also highlights the promise of combinatorial approaches, such as microtubule-targeting agents (MTAs) and antimitotic agents, in improving HNC therapies, patient outcomes, and survival rates.
Collapse
Affiliation(s)
- Mafalda Calheiros-Lobo
- UNIPRO—Oral Pathology and Rehabilitation Research Unit, University Institute of Health Sciences (IUCS), Cooperativa de Ensino Superior Politécnico e Universitário (CESPU), Rua Central de Gandra, 1317, 4585-116 Gandra, Portugal; (M.C.-L.); (J.P.N.S.); (B.P.); (L.M.)
| | - João P. N. Silva
- UNIPRO—Oral Pathology and Rehabilitation Research Unit, University Institute of Health Sciences (IUCS), Cooperativa de Ensino Superior Politécnico e Universitário (CESPU), Rua Central de Gandra, 1317, 4585-116 Gandra, Portugal; (M.C.-L.); (J.P.N.S.); (B.P.); (L.M.)
| | - Bárbara Pinto
- UNIPRO—Oral Pathology and Rehabilitation Research Unit, University Institute of Health Sciences (IUCS), Cooperativa de Ensino Superior Politécnico e Universitário (CESPU), Rua Central de Gandra, 1317, 4585-116 Gandra, Portugal; (M.C.-L.); (J.P.N.S.); (B.P.); (L.M.)
| | - Luís Monteiro
- UNIPRO—Oral Pathology and Rehabilitation Research Unit, University Institute of Health Sciences (IUCS), Cooperativa de Ensino Superior Politécnico e Universitário (CESPU), Rua Central de Gandra, 1317, 4585-116 Gandra, Portugal; (M.C.-L.); (J.P.N.S.); (B.P.); (L.M.)
- Medicine and Oral Surgery Department, University Institute of Health Sciences—CESPU (IUCS-CESPU), 4585-116 Gandra, Portugal
| | - Patrícia M. A. Silva
- UNIPRO—Oral Pathology and Rehabilitation Research Unit, University Institute of Health Sciences (IUCS), Cooperativa de Ensino Superior Politécnico e Universitário (CESPU), Rua Central de Gandra, 1317, 4585-116 Gandra, Portugal; (M.C.-L.); (J.P.N.S.); (B.P.); (L.M.)
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, University Institute of Health Sciences—CESPU, 4585-116 Gandra, Portugal
- UCIBIO—Applied Molecular Biosciences Unit, Translational Toxicology Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), 4585-116 Gandra, Portugal
| | - Hassan Bousbaa
- UNIPRO—Oral Pathology and Rehabilitation Research Unit, University Institute of Health Sciences (IUCS), Cooperativa de Ensino Superior Politécnico e Universitário (CESPU), Rua Central de Gandra, 1317, 4585-116 Gandra, Portugal; (M.C.-L.); (J.P.N.S.); (B.P.); (L.M.)
| |
Collapse
|
14
|
Jia M, Pei Y, Li N, Zhang Y, Song J, Niu JB, Yang H, Zhang S, Sun M. Synthesis and biological evaluation of 4-phenyl-5-quinolinyl substituted isoxazole analogues as potent cytotoxic and tubulin polymerization inhibitors against ESCC. Eur J Med Chem 2024; 275:116611. [PMID: 38901104 DOI: 10.1016/j.ejmech.2024.116611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/09/2024] [Accepted: 06/16/2024] [Indexed: 06/22/2024]
Abstract
The identification of chemically different inhibitors that target the colchicine site of tubulin is still of great value for cancer treatment. Combretastatin A-4(CA-4), a naturally occurring colchicine-site binder characterized by its structural simplicity and biological activity, has served as a structural blueprint for the development of novel analogues with improved safety and therapeutic efficacy. In this study, a library of forty-eight 4-phenyl-5-quinolinyl substituted triazole, pyrazole or isoxazole analouges of CA-4, were synthesized and evaluated for their cytotoxicity against Esophageal Squamous Cell Carcinoma (ESCC) cell lines. Compound C11, which features a 2-methyl substitution at the quinoline and carries an isoxazole ring, emerged as the most promising, with 48 h IC50s of less than 20 nmol/L against two ESCC cell lines. The findings from EBI competitive assay, CETA, and in vitro tubulin polymerization assay of C11 are consistent with those of the positive control colchicine, demonstrating the clear affinity of compound C11 to the colchicine binding site. The subsequent cellular-based mechanism studies revealed that C11 significantly inhibited ESCC cell proliferation, arrested cell cycle at the M phase, induced apoptosis, and impeded migration. Experiments conducted in vivo further confirmed that C11 effectively suppressed the growth of ESCC without showing any toxicity towards the selected animal species. Overall, our research suggests that the tubulin polymerization inhibitor incorporating quinoline and the isoxazole ring may deserve consideration for cancer therapy.
Collapse
Affiliation(s)
- Meiqi Jia
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Yuanyuan Pei
- School of Pharmaceutical Sciences, and Institute of Drug Discovery & Development, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan, 450001, China
| | - Na Li
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Ying Zhang
- School of Pharmaceutical Sciences, and Institute of Drug Discovery & Development, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan, 450001, China
| | - Jian Song
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Jin-Bo Niu
- The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450000, China
| | - Hua Yang
- School of Pharmaceutical Sciences, and Institute of Drug Discovery & Development, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan, 450001, China
| | - Saiyang Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, China.
| | - Moran Sun
- School of Pharmaceutical Sciences, and Institute of Drug Discovery & Development, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan, 450001, China.
| |
Collapse
|
15
|
Christofyllakis K, Kaddu-Mulindwa D, Lesan V, Rixecker T, Kos IA, Held G, Regitz E, Pfreundschuh M, Bittenbring JT, Thurner L, Poeschel V, Ziepert M, Altmann B, Bewarder M. An inherited genetic variant of the CEP72 gene is associated with the development of vincristine-induced peripheral neuropathy in female patients with aggressive B-cell lymphoma. Ann Hematol 2024:10.1007/s00277-024-05973-9. [PMID: 39227453 DOI: 10.1007/s00277-024-05973-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 08/24/2024] [Indexed: 09/05/2024]
Abstract
Vincristine-induced peripheral neuropathy (VIPN) is an adverse effect of regimens used for the treatment of aggressive B-cell non-Hodgkin lymphoma (B-NHL). A single-nucleotide polymorphism (SNP) in the promotor region of the CEP72 gene has been identified as risk factor for the development of VIPN in children. To validate these results in adults we aimed to determine the association of the high-risk CEP72 (rs924607 TT genotype) with the occurrence and severity of VIPN. Analysis of SNP rs924607 (TT, CC or CT) was performed in all enrolled patients with available blood samples with a TaqMan genotyping assay. Rates and grades of VIPN were assessed prospectively as part of the RICOVER-60 trial. CEP72 genotype could be assessed in 519 patients. VIPN data was available for 499/519 patients who were included in the final analysis. 286 (57%) patients developed VIPN of any grade during treatment. Grade 2-4 VIPN occurred in 33% (166/499) of patients. The high-risk CEP72 TT genotype at rs924607 was identified in 97/499 (19%) patients. The TT genotype was not correlated with VIPN in the overall study population compared to patients with either CC or CT genotypes (p = 0.748). However, in the subgroup of female patients, the TT genotype was associated with increased occurrence of any-grade VIPN as well as grade 2-4 VIPN as compared to patients with either CC or CT genotypes (p = 0.016 and p = 0.020, respectively). Thus, the SNP rs924607 in the CEP72 gene is associated with increased VIPN incidence in female patients with aggressive B-NHL treated with CHOP chemotherapy. Trial registration ClinicalTrials.gov identifier: NCT00052936, submission date: 2005-06-23, EudraCT Number: 2010-019587-36.
Collapse
Affiliation(s)
- Konstantinos Christofyllakis
- Department of Internal Medicine I (Oncology, Hematology, Clinical Immunology, and Rheumatology), Saarland University Medical Center, Homburg/Saar, Germany.
| | - Dominic Kaddu-Mulindwa
- Department of Internal Medicine I (Oncology, Hematology, Clinical Immunology, and Rheumatology), Saarland University Medical Center, Homburg/Saar, Germany
| | - Vadim Lesan
- Department of Internal Medicine I (Oncology, Hematology, Clinical Immunology, and Rheumatology), Saarland University Medical Center, Homburg/Saar, Germany
| | - Torben Rixecker
- Department of Internal Medicine I (Oncology, Hematology, Clinical Immunology, and Rheumatology), Saarland University Medical Center, Homburg/Saar, Germany
| | - Igor Age Kos
- Department of Internal Medicine I (Oncology, Hematology, Clinical Immunology, and Rheumatology), Saarland University Medical Center, Homburg/Saar, Germany
| | - Gerhard Held
- Department of Internal Medicine I (Oncology, Hematology, Clinical Immunology, and Rheumatology), Saarland University Medical Center, Homburg/Saar, Germany
| | - Evi Regitz
- Department of Internal Medicine I (Oncology, Hematology, Clinical Immunology, and Rheumatology), Saarland University Medical Center, Homburg/Saar, Germany
| | - Michael Pfreundschuh
- Department of Internal Medicine I (Oncology, Hematology, Clinical Immunology, and Rheumatology), Saarland University Medical Center, Homburg/Saar, Germany
| | - Joerg Thomas Bittenbring
- Department of Internal Medicine I (Oncology, Hematology, Clinical Immunology, and Rheumatology), Saarland University Medical Center, Homburg/Saar, Germany
| | - Lorenz Thurner
- Department of Internal Medicine I (Oncology, Hematology, Clinical Immunology, and Rheumatology), Saarland University Medical Center, Homburg/Saar, Germany
| | - Viola Poeschel
- Department of Internal Medicine I (Oncology, Hematology, Clinical Immunology, and Rheumatology), Saarland University Medical Center, Homburg/Saar, Germany
| | - Marita Ziepert
- Institute for Medical Informatics, Statistics and Epidemiology, Leipzig University, Leipzig, Germany
| | - Bettina Altmann
- Institute for Medical Informatics, Statistics and Epidemiology, Leipzig University, Leipzig, Germany
| | - Moritz Bewarder
- Department of Internal Medicine I (Oncology, Hematology, Clinical Immunology, and Rheumatology), Saarland University Medical Center, Homburg/Saar, Germany
| |
Collapse
|
16
|
Sicairos B, Zhou J, Hu Z, Zhang Q, Shi WQ, Du Y. Proteomic analysis reveals the dominant effect of ipomoeassin F on the synthesis of membrane and secretory proteins in triple-negative breast cancer cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.28.605505. [PMID: 39131350 PMCID: PMC11312459 DOI: 10.1101/2024.07.28.605505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Ipomoeassin F (Ipom-F) is a natural compound with embedded carbohydrates that exhibits a potent cytotoxic effect on triple-negative breast cancer (TNBC) cells. The mechanism behind this selective potency remains unclear. To elucidate this mechanism, we analyzed the proteome profiles of the TNBC MDA-MB-231 cells after exposure to Ipom-F at different time points and increasing doses using a quantitative proteomic method. Our proteomic data demonstrate that the major effect of Ipom-F on MDA-MB-231 cells is the inhibition of membrane and secreted protein expression. Our proteomic data are consistent with the recently uncovered molecular mechanism of action of Ipom-F, which binds to Sec61-α and inhibits the co-translational import of proteins into the endoplasmic reticulum. We have defined a subset of membrane and secreted proteins particularly sensitive to Ipom-F. Analysis of the expression of these Ipom-F-sensitive proteins in cancer cell lines and breast cancer tissues demonstrates that some of these proteins are upregulated in TNBC cells. Thus, it is likely that TNBC cells may have adapted to the elevated levels of some proteins identified as sensitive to Ipom-F in this study; inhibition of the expression of these proteins leads to a crisis in proliferation and/or survival for the cells.
Collapse
Affiliation(s)
- Brihget Sicairos
- Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas 72701, USA
| | - Jianhong Zhou
- Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas 72701, USA
| | - Zhijian Hu
- Feinstein Institute for Medical Research, Northwell Health, 350 Community Dr., Manhasset, New York, 11030, USA
| | - Qingyang Zhang
- Department of Mathematical Sciences, University of Arkansas, Fayetteville, Arkansas 72701, USA
| | - Wei Q Shi
- Department of Chemistry, Ball State University, Muncie, Indiana 47306, USA
| | - Yuchun Du
- Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas 72701, USA
| |
Collapse
|
17
|
Yousefi T, Mohammadi Jobani B, Taebi R, Qujeq D. Innovating Cancer Treatment Through Cell Cycle, Telomerase, Angiogenesis, and Metastasis. DNA Cell Biol 2024; 43:438-451. [PMID: 39018567 DOI: 10.1089/dna.2024.0109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/19/2024] Open
Abstract
Cancer remains a formidable challenge in the field of medicine, necessitating innovative therapeutic strategies to combat its relentless progression. The cell cycle, a tightly regulated process governing cell growth and division, plays a pivotal role in cancer development. Dysregulation of the cell cycle allows cancer cells to proliferate uncontrollably. Therapeutic interventions designed to disrupt the cell cycle offer promise in restraining tumor growth and progression. Telomerase, an enzyme responsible for maintaining telomere length, is often overactive in cancer cells, conferring them with immortality. Targeting telomerase presents an opportunity to limit the replicative potential of cancer cells and hinder tumor growth. Angiogenesis, the formation of new blood vessels, is essential for tumor growth and metastasis. Strategies aimed at inhibiting angiogenesis seek to deprive tumors of their vital blood supply, thereby impeding their progression. Metastasis, the spread of cancer cells from the primary tumor to distant sites, is a major challenge in cancer therapy. Research efforts are focused on understanding the underlying mechanisms of metastasis and developing interventions to disrupt this deadly process. This review provides a glimpse into the multifaceted approach to cancer therapy, addressing critical aspects of cancer biology-cell cycle regulation, telomerase activity, angiogenesis, and metastasis. Through ongoing research and innovative strategies, the field of oncology continues to advance, offering new hope for improved treatment outcomes and enhanced quality of life for cancer patients.
Collapse
Affiliation(s)
- Tooba Yousefi
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bahareh Mohammadi Jobani
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reyhaneh Taebi
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Durdi Qujeq
- Department of Clinical Biochemistry, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| |
Collapse
|
18
|
Low K, Foulkes P, Hills F, Roberts HC, Stordal B. The efficacy of gemcitabine and docetaxel chemotherapy for the treatment of relapsed and refractory osteosarcoma: A systematic review and pre-clinical study. Cancer Med 2024; 13:e70248. [PMID: 39315544 PMCID: PMC11420655 DOI: 10.1002/cam4.70248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 06/11/2024] [Accepted: 09/01/2024] [Indexed: 09/25/2024] Open
Abstract
INTRODUCTION Osteosarcoma is the most common primary malignancy of the bone. There is a lack of effective treatments for patients who experience relapsed osteosarcoma. One treatment for relapsed patients is gemcitabine and docetaxel combination chemotherapy (GEMDOX). This systematic review aimed to establish the efficacy of this chemotherapy regimen, as well as identify the common severe toxicities that are associated with it. Resistant osteosarcoma cell lines developed from MG-63 and HOS-143B were used to represent relapsed osteosarcoma patients in a pre-clinical study. RESULTS We identified 11 retrospective and Phase II studies that were suitable for inclusion in our review. 10.65% of patients had a response to gemcitabine and docetaxel combination therapy and the disease control rate was 35% (n = 197). 36%, 35.3% and 18.04% of patients experienced grade 3 or 4 neutropenia, thrombocytopenia and anaemia respectively (n = 133). Male patients (X2 = 9.14, p < 0.05) and those below the age of 18 (X 2 = 10.94, p < 0.05) responded better to GEMDOX treatment than females and patients older than 18 years. The resistant osteosarcoma cell lines remained sensitive to either single-agent gemcitabine, docetaxel, and the combination of both. Cisplatin-resistant models (MG-63/CISR8 & HOS-143B/CISR8) were the most responsive to GEMDOX treatment compared to doxorubicin, methotrexate, and triple-combination resistant models. CONCLUSION GEMDOX treatment has potential efficacy in relapsed osteosarcoma patients especially those with cisplatin resistance. To directly compare the efficacy of GEMDOX therapy against other therapies randomised phase III clinical trials with adequate patient follow up must be performed to improve treatment options for osteosarcoma.
Collapse
Affiliation(s)
- Kaan Low
- Department of Natural SciencesMiddlesex UniversityLondonUK
| | - Paola Foulkes
- Department of Natural SciencesMiddlesex UniversityLondonUK
| | - Frank Hills
- Department of Natural SciencesMiddlesex UniversityLondonUK
| | | | - Britta Stordal
- Department of Natural SciencesMiddlesex UniversityLondonUK
| |
Collapse
|
19
|
Ouellette V, Bouzriba C, Chavez Alvarez AC, Bruxelles Q, Hamel-Côté G, Fortin S. Pyridinyl 4-(2-oxoalkylimidazolidin-1-yl)benzenesulfonates and their hydrochloride salts as novel water soluble antimitotic prodrugs bioactivated by cytochrome P450 1A1 in breast cancer cells. RSC Med Chem 2024:d4md00476k. [PMID: 39281801 PMCID: PMC11393734 DOI: 10.1039/d4md00476k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 08/20/2024] [Indexed: 09/18/2024] Open
Abstract
We developed first-in-class antimitotic prodrugs phenyl 4-(2-oxo-alkylimidazolidin-1-yl)benzenesulfonates (PAIB-SOs) bioactivated by cytochrome P450 (CYP) 1A1 that are highly selective toward several breast cancer cells. However, they show sparingly water solubility. Therefore, we replaced their phenyl ring B with a substituted pyridinyl group preparing novel pyridinyl 4-(2-oxo-3-alkylimidazolidin-1-yl)benzenesulfonates (PYRAIB-SOs) and their hydrochloride salts. Our results evidence that PYRAIB-SO hydrochloride salts show higher water solubility compared to their neutral and PAIB-SO counterparts by up to 625-fold. PYRAIB-SOs with a nitrogen atom at position 3 of the pyridinyl ring exhibited strong antiproliferative activity (IC50: 0.03-3.3 μM) and high selectivity (8->1250) toward sensitive CYP1A1-positive breast cancer cells and cells stably transfected with CYP1A1. They induce cell cycle arrest in the G2/M phase and disrupt microtubule dynamic assembly. Enzymatic assays confirmed that CYP1A1 metabolizes PYRAIB-SOs into their active form with in vitro hepatic half-lives (55-120 min) in rodent and human liver microsomes. Overall, this will allow to increase drug concentration for in vivo studies.
Collapse
Affiliation(s)
- Vincent Ouellette
- Hôpital Saint-François d'Assise, Centre de recherche du CHU de Québec - Université Laval, Axe Oncologie 10 Rue de l'Espinay Québec QC G1L 3L5 Canada (418) 525 4444 ext. 52364
- Faculté de pharmacie, Université Laval Québec QC G1V 0A6 Canada
| | - Chahrazed Bouzriba
- Hôpital Saint-François d'Assise, Centre de recherche du CHU de Québec - Université Laval, Axe Oncologie 10 Rue de l'Espinay Québec QC G1L 3L5 Canada (418) 525 4444 ext. 52364
- Faculté de pharmacie, Université Laval Québec QC G1V 0A6 Canada
| | - Atziri Corin Chavez Alvarez
- Hôpital Saint-François d'Assise, Centre de recherche du CHU de Québec - Université Laval, Axe Oncologie 10 Rue de l'Espinay Québec QC G1L 3L5 Canada (418) 525 4444 ext. 52364
- Faculté de pharmacie, Université Laval Québec QC G1V 0A6 Canada
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec-Université Laval 2725 Ch Ste-Foy Québec QC G1V 4G5 Canada
| | - Quentin Bruxelles
- Hôpital Saint-François d'Assise, Centre de recherche du CHU de Québec - Université Laval, Axe Oncologie 10 Rue de l'Espinay Québec QC G1L 3L5 Canada (418) 525 4444 ext. 52364
- Faculté de pharmacie, Université Laval Québec QC G1V 0A6 Canada
| | - Geneviève Hamel-Côté
- Hôpital Saint-François d'Assise, Centre de recherche du CHU de Québec - Université Laval, Axe Oncologie 10 Rue de l'Espinay Québec QC G1L 3L5 Canada (418) 525 4444 ext. 52364
| | - Sébastien Fortin
- Hôpital Saint-François d'Assise, Centre de recherche du CHU de Québec - Université Laval, Axe Oncologie 10 Rue de l'Espinay Québec QC G1L 3L5 Canada (418) 525 4444 ext. 52364
- Faculté de pharmacie, Université Laval Québec QC G1V 0A6 Canada
| |
Collapse
|
20
|
Bubik A, Frangež R, Žužek MC, Gutiérrez-Aguirre I, Lah TT, Sedmak B. Cyanobacterial Cyclic Peptides Can Disrupt Cytoskeleton Organization in Human Astrocytes-A Contribution to the Understanding of the Systemic Toxicity of Cyanotoxins. Toxins (Basel) 2024; 16:374. [PMID: 39330832 PMCID: PMC11436104 DOI: 10.3390/toxins16090374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 08/13/2024] [Accepted: 08/21/2024] [Indexed: 09/28/2024] Open
Abstract
The systemic toxicity of cyclic peptides produced by cyanobacteria (CCPs) is not yet completely understood. Apart from the most known damages to the liver and kidneys, symptoms of their neurotoxicity have also been reported. Hepatotoxic CCPs, like microcystins, as well as non-hepatotoxic anabaenopeptins and planktopeptins, all exhibit cytotoxic and cytostatic effects on mammalian cells. However, responses of different cell types to CCPs depend on their specific modes of interaction with cell membranes. This study demonstrates that non-hepatotoxic planktopeptin BL1125 and anabaenopeptins B and F, at concentrations up to 10 µM, affect normal and tumor human astrocytes (NHA and U87-GM) in vitro by their almost immediate insertion into the lipid monolayer. Like microcystin-LR (up to 1 µM), they inhibit Ser/Thr phosphatases and reorganize cytoskeletal elements, with modest effects on their gene expression. Based on the observed effects on intermediate filaments and intermediate filament linkage elements, their direct or indirect influence on tubulin cytoskeletons via post-translational modifications, we conclude that the basic mechanism of CCP toxicities is the induction of inter- and intracellular communication failure. The assessed inhibitory activity on Ser/Thr phosphatases is also crucial since the signal transduction cascades are modulated by phosphorylation/dephosphorylation processes.
Collapse
Affiliation(s)
- Anja Bubik
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Večna pot 121, SI-1000 Ljubljana, Slovenia
- Faculty of Environmental Protection, Trg mladosti 7, SI-3320 Velenje, Slovenia
| | - Robert Frangež
- Institute of Preclinical Sciences, Veterinary Faculty, University of Ljubljana, Gerbičeva 60, SI-1000 Ljubljana, Slovenia
| | - Monika C Žužek
- Institute of Preclinical Sciences, Veterinary Faculty, University of Ljubljana, Gerbičeva 60, SI-1000 Ljubljana, Slovenia
| | - Ion Gutiérrez-Aguirre
- Department of Biotechnology and Systems Biology, National Institute of Biology, Večna pot 121, SI-1000 Ljubljana, Slovenia
| | - Tamara T Lah
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Večna pot 121, SI-1000 Ljubljana, Slovenia
| | - Bojan Sedmak
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Večna pot 121, SI-1000 Ljubljana, Slovenia
- Faculty of Environmental Protection, Trg mladosti 7, SI-3320 Velenje, Slovenia
| |
Collapse
|
21
|
Li Y, Tian R, Zou Y, Wang T, Liu J. Strategies and Applications for Supramolecular Protein Self-Assembly. Chemistry 2024:e202402624. [PMID: 39158515 DOI: 10.1002/chem.202402624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/15/2024] [Accepted: 08/19/2024] [Indexed: 08/20/2024]
Abstract
Supramolecular chemistry achieves higher-order molecular self-assembly through non-covalent interactions. Utilizing supramolecular methods to explore the polymorphism of proteins, the building blocks of life, from a "bottom-up" perspective is essential for constructing diverse and functional biomaterials. In recent years, significant progress has been achieved in the design strategies and functional applications of supramolecular protein self-assembly, becoming a focal point for researchers. This paper reviews classical supramolecular strategies driving protein self-assembly, including electrostatic interactions, metal coordination, hydrogen bonding, hydrophobic interactions, host-guest interactions, and other mechanisms. We discuss how these supramolecular interactions regulate protein assembly processes and highlight protein supramolecular assemblies' unique structural and functional advantages in constructing artificial photosynthetic systems, protein hydrogels, bio-delivery systems, and other functional materials. The enormous potential and significance of supramolecular protein materials are elucidated. Finally, the challenges in preparing and applying protein supramolecular assemblies are summarized, and future development directions are projected.
Collapse
Affiliation(s)
- Yijia Li
- State Key Laboratory of Powder Metallurgy, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, China
| | - Ruizhen Tian
- State Key Laboratory of Powder Metallurgy, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, China
| | - Yingping Zou
- State Key Laboratory of Powder Metallurgy, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Tingting Wang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, China
| | - Junqiu Liu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, China
| |
Collapse
|
22
|
Tucker JB, Carlsen CL, Scribano CM, Pattaswamy SM, Burkard ME, Weaver BA. CENP-E Inhibition Induces Chromosomal Instability and Synergizes with Diverse Microtubule-Targeting Agents in Breast Cancer. Cancer Res 2024; 84:2674-2689. [PMID: 38832939 PMCID: PMC11326998 DOI: 10.1158/0008-5472.can-23-3332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 04/09/2024] [Accepted: 05/29/2024] [Indexed: 06/06/2024]
Abstract
Drugs that perturb microtubules are commonly used to treat breast cancers of all subtypes in both early stage and metastatic disease, but they are effective in only approximately 50% of patients. High concentrations of microtubule-targeting agents can elicit mitotic arrest in cell culture models; however, recent evidence from primary and metastatic breast cancers has revealed that these agents only accumulate at intratumoral levels capable of inducing abnormal multipolar mitotic spindles, not mitotic arrest. Although the maintenance of multipolar spindles can generate cytotoxic rates of chromosomal instability (CIN), focusing of aberrant multipolar spindles into normal bipolar spindles can dramatically reduce CIN and confer resistance to microtubule poisons. Here, we showed that inhibition of the mitotic kinesin centromeric-associated protein-E (CENP-E) overcomes resistance caused by focusing multipolar spindles. Clinically relevant microtubule-targeting agents used a mechanistically conserved pathway to induce multipolar spindles without requiring centrosome amplification. Focusing could occur at any point in mitosis, with earlier focusing conferring greater resistance to antimicrotubule agents. CENP-E inhibition increased CIN on focused spindles by generating chromosomes that remained misaligned at spindle poles during anaphase, which substantially increased death in the resulting daughter cells. CENP-E inhibition synergized with diverse, clinically relevant microtubule poisons to potentiate cell death in cell lines and suppress tumor growth in orthotopic tumor models. These results suggest that primary resistance to microtubule-targeting drugs can be overcome by simultaneous inhibition of CENP-E. Significance: The increased incidence of polar chromosomes induced by inhibition of the mitotic kinesin CENP-E exacerbates chromosomal instability, reduces daughter cell viability, and improves sensitivity to microtubule-targeting therapies.
Collapse
Affiliation(s)
- John B Tucker
- Cancer Biology Graduate Training Program, University of Wisconsin-Madison, Madison, Wisconsin
| | - Caleb L Carlsen
- Cellular and Molecular Biology Graduate Training Program, University of Wisconsin-Madison, Madison, Wisconsin
| | - Christina M Scribano
- Cellular and Molecular Pharmacology Graduate Training Program, University of Wisconsin-Madison, Madison, Wisconsin
| | - Srishrika M Pattaswamy
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, Wisconsin
| | - Mark E Burkard
- Department of Oncology, McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, Wisconsin
- Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin
| | - Beth A Weaver
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, Wisconsin
- Department of Oncology, McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, Wisconsin
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin
| |
Collapse
|
23
|
Marangoni-Iglecias L, Rojo-Tolosa S, Márquez-Pete N, Cura Y, Moreno-Toro N, Membrive-Jiménez C, Sánchez-Martin A, Pérez-Ramírez C, Jiménez-Morales A. Precision Medicine in Childhood Cancer: The Influence of Genetic Polymorphisms on Vincristine-Induced Peripheral Neuropathy. Int J Mol Sci 2024; 25:8797. [PMID: 39201483 PMCID: PMC11354794 DOI: 10.3390/ijms25168797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/08/2024] [Accepted: 08/12/2024] [Indexed: 09/02/2024] Open
Abstract
Cancer is the leading cause of disease-related death among children. Vincristine (VCR), a key component of childhood cancer treatment protocols, is associated with the risk of peripheral neuropathy (PN), a condition that may be reversible upon drug discontinuation but can also leave lasting sequelae. Single nucleotide polymorphism (SNP) in genes involved in VCR pharmacokinetics and pharmacodynamics have been investigated in relation to an increased risk of PN. However, the results of these studies have been inconsistent. A retrospective cohort study was conducted to investigate the potential association of drug transporter genes from the ATP-binding cassette (ABC) family and the centrosomal protein 72 (CEP72) gene with the development of PN in 88 Caucasian children diagnosed with cancer and treated with VCR. Genotyping was performed using real-time PCR techniques for the following SNPs: ABCB1 rs1128503, ABCC1 rs246240, ABCC2 rs717620, and CEP72 rs924607. The results indicated that age at diagnosis (OR = 1.33; 95% CI = 1.07-1.75) and the ABCC1 rs246240 G allele (OR = 12.48; 95% CI = 2.26-100.42) were associated with vincristine-induced peripheral neuropathy (VIPN). No association was found between this toxicity and CEP72 rs924607. Our study provides insights that may contribute to optimizing childhood cancer therapy in the future by predicting the risk of VIPN.
Collapse
Affiliation(s)
- Luciana Marangoni-Iglecias
- Clinical Analysis Laboratory Unit, Hospital Universitário Maria Aparecida Pedrossian HUMAP-UFMS, Av. Sen. Filinto Müler, 355, Vila Ipiranga, Campo Grande 79080-190, Brazil;
- Pharmacogenetics Unit, Pharmacy Service, University Hospital Virgen de las Nieves, Avda. de las Fuerzas Armadas 2, 18004 Granada, Spain (Y.C.); (C.M.-J.); (A.S.-M.); (C.P.-R.); (A.J.-M.)
| | - Susana Rojo-Tolosa
- Pharmacogenetics Unit, Pharmacy Service, University Hospital Virgen de las Nieves, Avda. de las Fuerzas Armadas 2, 18004 Granada, Spain (Y.C.); (C.M.-J.); (A.S.-M.); (C.P.-R.); (A.J.-M.)
- Biosanitary Research Institute ibs.GRANADA, Avda. de Madrid 15, 18012 Granada, Spain
- Department of Biochemistry and Molecular Biology II, Faculty of Pharmacy, Campus Universitario de Cartuja, University of Granada, 18011 Granada, Spain
- Pneumology Service, University Hospital Virgen de las Nieves, Avda. de las Fuerzas Armadas 2, 18004 Granada, Spain
| | - Noelia Márquez-Pete
- Pharmacogenetics Unit, Pharmacy Service, University Hospital Virgen de las Nieves, Avda. de las Fuerzas Armadas 2, 18004 Granada, Spain (Y.C.); (C.M.-J.); (A.S.-M.); (C.P.-R.); (A.J.-M.)
- Biosanitary Research Institute ibs.GRANADA, Avda. de Madrid 15, 18012 Granada, Spain
| | - Yasmín Cura
- Pharmacogenetics Unit, Pharmacy Service, University Hospital Virgen de las Nieves, Avda. de las Fuerzas Armadas 2, 18004 Granada, Spain (Y.C.); (C.M.-J.); (A.S.-M.); (C.P.-R.); (A.J.-M.)
- Department of Biochemistry and Molecular Biology II, Faculty of Pharmacy, Campus Universitario de Cartuja, University of Granada, 18011 Granada, Spain
| | - Noelia Moreno-Toro
- Pediatric Service, Santa Ana Regional Hospital, Av. Enrique Martín Cuevas, s/n, Motril, 18600 Granada, Spain;
| | - Cristina Membrive-Jiménez
- Pharmacogenetics Unit, Pharmacy Service, University Hospital Virgen de las Nieves, Avda. de las Fuerzas Armadas 2, 18004 Granada, Spain (Y.C.); (C.M.-J.); (A.S.-M.); (C.P.-R.); (A.J.-M.)
- Biosanitary Research Institute ibs.GRANADA, Avda. de Madrid 15, 18012 Granada, Spain
- Department of Biochemistry and Molecular Biology II, Faculty of Pharmacy, Campus Universitario de Cartuja, University of Granada, 18011 Granada, Spain
| | - Almudena Sánchez-Martin
- Pharmacogenetics Unit, Pharmacy Service, University Hospital Virgen de las Nieves, Avda. de las Fuerzas Armadas 2, 18004 Granada, Spain (Y.C.); (C.M.-J.); (A.S.-M.); (C.P.-R.); (A.J.-M.)
| | - Cristina Pérez-Ramírez
- Pharmacogenetics Unit, Pharmacy Service, University Hospital Virgen de las Nieves, Avda. de las Fuerzas Armadas 2, 18004 Granada, Spain (Y.C.); (C.M.-J.); (A.S.-M.); (C.P.-R.); (A.J.-M.)
- Biosanitary Research Institute ibs.GRANADA, Avda. de Madrid 15, 18012 Granada, Spain
- Department of Biochemistry and Molecular Biology II, Faculty of Pharmacy, Campus Universitario de Cartuja, University of Granada, 18011 Granada, Spain
| | - Alberto Jiménez-Morales
- Pharmacogenetics Unit, Pharmacy Service, University Hospital Virgen de las Nieves, Avda. de las Fuerzas Armadas 2, 18004 Granada, Spain (Y.C.); (C.M.-J.); (A.S.-M.); (C.P.-R.); (A.J.-M.)
- Biosanitary Research Institute ibs.GRANADA, Avda. de Madrid 15, 18012 Granada, Spain
| |
Collapse
|
24
|
Peng Y, Zhang Y, Fang R, Jiang H, Lan G, Xu Z, Liu Y, Nie Z, Ren L, Wang F, Zhang S, Ma Y, Yang P, Ge H, Zhang W, Luo C, Li A, He W. Target Identification and Mechanistic Characterization of Indole Terpenoid Mimics: Proper Spindle Microtubule Assembly Is Essential for Cdh1-Mediated Proteolysis of CENP-A. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305593. [PMID: 38873820 PMCID: PMC11304278 DOI: 10.1002/advs.202305593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 04/23/2024] [Indexed: 06/15/2024]
Abstract
Centromere protein A (CENP-A), a centromere-specific histone H3 variant, is crucial for kinetochore positioning and chromosome segregation. However, its regulatory mechanism in human cells remains incompletely understood. A structure-activity relationship (SAR) study of the cell-cycle-arresting indole terpenoid mimic JP18 leads to the discovery of two more potent analogs, (+)-6-Br-JP18 and (+)-6-Cl-JP18. Tubulin is identified as a potential cellular target of these halogenated analogs by using the drug affinity responsive target stability (DARTS) based method. X-ray crystallography analysis reveals that both molecules bind to the colchicine-binding site of β-tubulin. Treatment of human cells with microtubule-targeting agents (MTAs), including these two compounds, results in CENP-A accumulation by destabilizing Cdh1, a co-activator of the anaphase-promoting complex/cyclosome (APC/C) E3 ubiquitin ligase. This study establishes a link between microtubule dynamics and CENP-A accumulation using small-molecule tools and highlights the role of Cdh1 in CENP-A proteolysis.
Collapse
Affiliation(s)
- Yan Peng
- Shanghai Key Laboratory of New Drug DesignSchool of PharmacyEast China University of Science and TechnologyShanghai200237China
| | - Yumeng Zhang
- Shanghai Key Laboratory of New Drug DesignSchool of PharmacyEast China University of Science and TechnologyShanghai200237China
| | - Ruan Fang
- Shanghai Key Laboratory of New Drug DesignSchool of PharmacyEast China University of Science and TechnologyShanghai200237China
- State Key Laboratory of Chemical BiologyShanghai Institute of Organic ChemistryUniversity of Chinese Academy of SciencesChinese Academy of SciencesShanghai200032China
| | - Hao Jiang
- Drug Discovery and Design CenterState Key Laboratory of Drug ResearchShanghai Institute of Materia MedicaChinese Academy of SciencesShanghai201203China
| | - Gongcai Lan
- Shanghai Key Laboratory of New Drug DesignSchool of PharmacyEast China University of Science and TechnologyShanghai200237China
| | - Zhou Xu
- State Key Laboratory of Chemical BiologyShanghai Institute of Organic ChemistryUniversity of Chinese Academy of SciencesChinese Academy of SciencesShanghai200032China
| | - Yajie Liu
- Shanghai Key Laboratory of New Drug DesignSchool of PharmacyEast China University of Science and TechnologyShanghai200237China
| | - Zhaoyang Nie
- State Key Laboratory of Chemical BiologyShanghai Institute of Organic ChemistryUniversity of Chinese Academy of SciencesChinese Academy of SciencesShanghai200032China
- Henan Institute of Advanced Technology and College of ChemistryZhengzhou UniversityZhengzhou450001China
| | - Lu Ren
- State Key Laboratory of Chemical BiologyShanghai Institute of Organic ChemistryUniversity of Chinese Academy of SciencesChinese Academy of SciencesShanghai200032China
| | - Fengcan Wang
- Shanghai Key Laboratory of New Drug DesignSchool of PharmacyEast China University of Science and TechnologyShanghai200237China
| | - Shou‐De Zhang
- State Key Laboratory of Plateau Ecology and AgricultureQinghai UniversityXining810016China
| | - Yuyong Ma
- State Key Laboratory of Chemical BiologyShanghai Institute of Organic ChemistryUniversity of Chinese Academy of SciencesChinese Academy of SciencesShanghai200032China
| | - Peng Yang
- State Key Laboratory of Chemical BiologyShanghai Institute of Organic ChemistryUniversity of Chinese Academy of SciencesChinese Academy of SciencesShanghai200032China
- Henan Institute of Advanced Technology and College of ChemistryZhengzhou UniversityZhengzhou450001China
| | - Hong‐Hua Ge
- Institute of Physical Science and Information TechnologyAnhui UniversityHefei230601China
| | - Wei‐Dong Zhang
- Shanghai Key Laboratory of New Drug DesignSchool of PharmacyEast China University of Science and TechnologyShanghai200237China
- Department of PhytochemistrySchool of PharmacySecond Military Medical UniversityShanghai200433China
| | - Cheng Luo
- Drug Discovery and Design CenterState Key Laboratory of Drug ResearchShanghai Institute of Materia MedicaChinese Academy of SciencesShanghai201203China
| | - Ang Li
- State Key Laboratory of Chemical BiologyShanghai Institute of Organic ChemistryUniversity of Chinese Academy of SciencesChinese Academy of SciencesShanghai200032China
- Henan Institute of Advanced Technology and College of ChemistryZhengzhou UniversityZhengzhou450001China
| | - Weiwei He
- Shanghai Key Laboratory of New Drug DesignSchool of PharmacyEast China University of Science and TechnologyShanghai200237China
| |
Collapse
|
25
|
Vicari HP, Gomes RDC, Lima K, Rossini NDO, Rodrigues Junior MT, de Miranda LBL, Dias MVB, Costa-Lotufo LV, Coelho F, Machado-Neto JA. Cyclopenta[b]indoles as novel antimicrotubule agents with antileukemia activity. Toxicol In Vitro 2024; 99:105856. [PMID: 38821378 DOI: 10.1016/j.tiv.2024.105856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/27/2024] [Accepted: 05/28/2024] [Indexed: 06/02/2024]
Abstract
Acute leukemias present therapeutic challenges despite advances in treatments. Microtubule inhibitors have played a pivotal role in cancer therapy, inspiring exploration into novel compounds like C2E1 from the cyclopenta[b]indole class. In the present study, we investigated C2E1's potential as a therapeutic agent for acute leukemia at molecular, cellular, and genetic levels. C2E1 demonstrated tubulin depolarization activity, significantly reducing leukemia cell viability. Its impact involved multifaceted mechanisms: inducing apoptosis, arrest of cell cycle progression, and inhibition of clonogenicity and migration in leukemia cells. At a molecular level, C2E1 triggered DNA damage, antiproliferative, and apoptosis markers and altered gene expression related to cytoskeletal regulation, disrupting essential cellular processes crucial for leukemia cell survival and proliferation. These findings highlight C2E1's promise as a potential candidate for novel anti-cancer therapies. Notably, its distinct mode of action from conventional microtubule-targeting drugs suggests the potential to bypass common resistance mechanisms encountered with existing treatments. In summary, C2E1 emerges as a compelling compound with diverse effects on leukemia cells, showcasing promising antineoplastic properties. Its ability to disrupt critical cellular functions selective to leukemia cells positions it as a candidate for future therapeutic development.
Collapse
Affiliation(s)
- Hugo Passos Vicari
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Ralph da Costa Gomes
- Department of Organic Chemistry, Institute of Chemistry, State University of Campinas, Campinas, São Paulo, Brazil
| | - Keli Lima
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil; Laboratory of Medical Investigation in Pathogenesis and Targeted Therapy in Onco-Immuno-Hematology (LIM-31), Department of Internal Medicine, Hematology Division, Faculdade de Medicina, University of São Paulo, São Paulo, Brazil
| | | | | | | | | | - Leticia Veras Costa-Lotufo
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Fernando Coelho
- Department of Organic Chemistry, Institute of Chemistry, State University of Campinas, Campinas, São Paulo, Brazil.
| | | |
Collapse
|
26
|
Ye J, Wu Q, Ji Q, You S, Gao S, Zhao G, Xu Q, Liu K, Li P. Au/Doc/Quer@PDA/A10-3.2 Nanoparticles for targeted treatment of docetaxel-resistant prostate cancer. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2024; 35:1631-1655. [PMID: 38769597 DOI: 10.1080/09205063.2024.2346395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 04/04/2024] [Indexed: 05/22/2024]
Abstract
Docetaxel (Doc), as a first-line chemotherapy drug for prostate cancer (PC), often loses its therapeutic efficacy due to acquired resistance and lack of targeting specificity. Therefore, there is a need to develop a novel drug that can overcome Doc resistance and enhance its targeting ability to inhibit PC progression. In this study, we prepared Au/Doc/Quer@PDA/A10-3.2 nanoparticles (NPs) composite drug by encapsulating Doc and quercetin (Quer) within polydopamine (PDA)-coated Au NPs and further modifying them with RNA oligonucleotide aptamer A10-3.2. A10-3.2 was used for specific targeting of prostate-specific membrane antigen (PSMA)-positive PC cells (LNCaP). Quer was employed to reverse the resistance of Doc-resistant cell line (LNCaP/R) to Doc. Physical characterization using ultraviolet-visible spectroscopy (UV-vis), transmission electron microscopy (TEM), dynamic light scattering (DLS), X-ray photoelectron spectroscopy (XPS), and Fourier-transform infrared spectroscopy (FTIR) confirmed the successful preparation of Au/Doc/Quer@PDA/A10-3.2 NPs. Fluorescence imaging and flow cytometry experiments demonstrated the targeting ability of Au/Doc/Quer@PDA/A10-3.2 NPs towards PSMA-positive LNCaP/R cells. Cell proliferation, apoptosis, invasion, and migration experiments revealed that Quer reversed the resistance of LNCaP/R cells to Doc. Immunoblotting experiments further confirmed the mechanism behind sensitization of chemotherapy by Quer. Finally, we evaluated the therapeutic efficacy of Au/Doc/Quer@PDA/A10-3.2 NPs in a mouse model of PC. In conclusion, this study synthesized and validated a novel nano-composite drug (Au/Doc/Quer@PDA/A10-3.2 NPs) for combating Doc-resistant PC, which could potentially be applied in clinical treatment of PC.
Collapse
Affiliation(s)
- Junjie Ye
- Urology Department, Lishui City People's Hospital; Postgraduate training base Alliance of Wenzhou Medical University (Lishui City People's Hospital), Lishui City, Zhejiang Province, China
| | - Qi Wu
- Urology Department, Lishui City People's Hospital; Postgraduate training base Alliance of Wenzhou Medical University (Lishui City People's Hospital), Lishui City, Zhejiang Province, China
| | - Qingfen Ji
- Urology Department, Lishui City People's Hospital; Postgraduate training base Alliance of Wenzhou Medical University (Lishui City People's Hospital), Lishui City, Zhejiang Province, China
| | - Shengjie You
- Urology Department, Lishui City People's Hospital; Postgraduate training base Alliance of Wenzhou Medical University (Lishui City People's Hospital), Lishui City, Zhejiang Province, China
| | - Song Gao
- Urology Department, Lishui City People's Hospital; Postgraduate training base Alliance of Wenzhou Medical University (Lishui City People's Hospital), Lishui City, Zhejiang Province, China
| | - Guanan Zhao
- Urology Department, Lishui City People's Hospital; Postgraduate training base Alliance of Wenzhou Medical University (Lishui City People's Hospital), Lishui City, Zhejiang Province, China
| | - Qiangqiang Xu
- Urology Department, Lishui City People's Hospital; Postgraduate training base Alliance of Wenzhou Medical University (Lishui City People's Hospital), Lishui City, Zhejiang Province, China
| | - Ken Liu
- Urology Department, Lishui City People's Hospital; Postgraduate training base Alliance of Wenzhou Medical University (Lishui City People's Hospital), Lishui City, Zhejiang Province, China
| | - Peng Li
- Urology Department, Lishui City People's Hospital; Postgraduate training base Alliance of Wenzhou Medical University (Lishui City People's Hospital), Lishui City, Zhejiang Province, China
| |
Collapse
|
27
|
Nagavath R, Thupurani MK, Badithapuram V, Manchal R, Vasam CS, Thirukovela NS. Organo NHC catalyzed aqueous synthesis of 4β-isoxazole-podophyllotoxins: in vitro anticancer, caspase activation, tubulin polymerization inhibition and molecular docking studies. RSC Adv 2024; 14:23574-23582. [PMID: 39070249 PMCID: PMC11276401 DOI: 10.1039/d4ra04297b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 07/08/2024] [Indexed: 07/30/2024] Open
Abstract
We present, for the first time, the organo-N-heterocyclic carbene (NHC) catalyzed 1,3-dipolar cycloaddition of 4β-O-propargyl podophyllotoxin (1) with in situ aromatic nitrile oxides to afford regioselective 4β-isoxazolepodophyllotoxin hybrids (6a-n) in benign aqueous-organic media. Preliminary anticancer activity results showed that compound 6e displayed superior activity against MCF-7, HeLa and MIA PaCa2 human cell lines compared with podophyllotoxin. Compounds 6j and 6n showed greater activity against the MCF-7 cell line than the positive control. Caspase activation studies revealed that compound 6e at 20 μg ml-1 concentration had greater caspase 3/7 activation in MCF-7 and MIAPaCa2 cells than podophyllotoxin. Furthermore, in vitro tubulin polymerization inhibition studies revealed that compound 6e showed comparable activity with podophyllotoxin. Finally, in silico molecular docking studies of compounds 6e, 6j, 6n and podophyllotoxin on α,β-tubulin (pdb id 1SA0) revealed that compound 6n showed excellent binding energies and inhibition constants compared with podophyllotoxin.
Collapse
Affiliation(s)
- Rajkumar Nagavath
- Department of Chemistry, Chaitanya (Deemed to be University) Himayathnagar (V), Moinabad (M), Ranga Reddy (D) Hyderabad India
| | - Murali Krishna Thupurani
- Department of Biotechnology, Chaitanya (Deemed to be University) Himayathnagar (V), Moinabad (M), Ranga Reddy (D) Hyderabad India
| | - Vinitha Badithapuram
- Department of Chemistry, Chaitanya (Deemed to be University) Himayathnagar (V), Moinabad (M), Ranga Reddy (D) Hyderabad India
| | - Ravinder Manchal
- Department of Chemistry, Chaitanya (Deemed to be University) Himayathnagar (V), Moinabad (M), Ranga Reddy (D) Hyderabad India
| | | | - Narasimha Swamy Thirukovela
- Department of Chemistry, Chaitanya (Deemed to be University) Himayathnagar (V), Moinabad (M), Ranga Reddy (D) Hyderabad India
| |
Collapse
|
28
|
Besleaga I, Raptová R, Stoica AC, Milunovic MNM, Zalibera M, Bai R, Igaz N, Reynisson J, Kiricsi M, Enyedy ÉA, Rapta P, Hamel E, Arion VB. Are the metal identity and stoichiometry of metal complexes important for colchicine site binding and inhibition of tubulin polymerization? Dalton Trans 2024; 53:12349-12369. [PMID: 38989784 PMCID: PMC11264232 DOI: 10.1039/d4dt01469c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 06/29/2024] [Indexed: 07/12/2024]
Abstract
Quite recently we discovered that copper(II) complexes with isomeric morpholine-thiosemicarbazone hybrid ligands show good cytotoxicity in cancer cells and that the molecular target responsible for this activity might be tubulin. In order to obtain better lead drug candidates, we opted to exploit the power of coordination chemistry to (i) assemble structures with globular shape to better fit the colchicine pocket and (ii) vary the metal ion. We report the synthesis and full characterization of bis-ligand cobalt(III) and iron(III) complexes with 6-morpholinomethyl-2-formylpyridine 4N-(4-hydroxy-3,5-dimethylphenyl)-3-thiosemicarbazone (HL1), 6-morpholinomethyl-2-acetylpyridine 4N-(4-hydroxy-3,5-dimethylphenyl)-3-thiosemicarbazone (HL2), and 6-morpholinomethyl-2-formylpyridine 4N-phenyl-3-thiosemicarbazone (HL3), and mono-ligand nickel(II), zinc(II) and palladium(II) complexes with HL1, namely [CoIII(HL1)(L1)](NO3)2 (1), [CoIII(HL2)(L2)](NO3)2 (2), [CoIII(HL3)(L3)](NO3)2 (3), [FeIII(L2)2]NO3 (4), [FeIII(HL3)(L3)](NO3)2 (5), [NiII(L1)]Cl (6), [Zn(L1)Cl] (7) and [PdII(HL1)Cl]Cl (8). We discuss the effect of the metal identity and metal complex stoichiometry on in vitro cytotoxicity and antitubulin activity. The high antiproliferative activity of complex 4 correlated well with inhibition of tubulin polymerization. Insights into the mechanism of antiproliferative activity were supported by experimental results and molecular docking calculations.
Collapse
Affiliation(s)
- Iuliana Besleaga
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 42, A-1090 Vienna, Austria.
| | - Renáta Raptová
- Institute of Physical Chemistry and Chemical Physics, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, SK-81237 Bratislava, Slovakia
- Institute of Physical and Theoretical Chemistry, Graz University of Technology, Stremayrgasse 9/II, A-8010 Graz, Austria
| | - Alexandru-Constantin Stoica
- Inorganic Polymers Department, "Petru Poni" Institute of Macromolecular Chemistry, Aleea Gr. Ghica Voda 41 A, Iasi 700487, Romania
| | - Miljan N M Milunovic
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 42, A-1090 Vienna, Austria.
| | - Michal Zalibera
- Institute of Physical Chemistry and Chemical Physics, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, SK-81237 Bratislava, Slovakia
| | - Ruoli Bai
- Molecular Pharmacology Branch, Developmental Therapeutics Program, Division of Cancer Diagnosis and Treatment, National Cancer Institute, Frederick National Laboratory for Cancer Research, National Institutes of Health, Frederick, Maryland 21702, USA
| | - Nóra Igaz
- Department of Biochemistry and Molecular Biology, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary
| | - Jóhannes Reynisson
- School of Pharmacy and Bioengineering, Keele University, Newcastle-under-Lyme, Staffordshire ST5 5BG, UK
| | - Mónika Kiricsi
- School of Pharmacy and Bioengineering, Keele University, Newcastle-under-Lyme, Staffordshire ST5 5BG, UK
| | - Éva A Enyedy
- Department of Molecular and Analytical Chemistry, Interdisciplinary Excellence Centre, University of Szeged, Dóm tér 7-8, H-6720 Szeged, Hungary.
- MTA-SZTE Lendület Functional Metal Complexes Research Group, University of Szeged, Dóm tér 7, H-6720 Szeged, Hungary
| | - Peter Rapta
- Institute of Physical Chemistry and Chemical Physics, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, SK-81237 Bratislava, Slovakia
| | - Ernest Hamel
- Molecular Pharmacology Branch, Developmental Therapeutics Program, Division of Cancer Diagnosis and Treatment, National Cancer Institute, Frederick National Laboratory for Cancer Research, National Institutes of Health, Frederick, Maryland 21702, USA
| | - Vladimir B Arion
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 42, A-1090 Vienna, Austria.
- Inorganic Polymers Department, "Petru Poni" Institute of Macromolecular Chemistry, Aleea Gr. Ghica Voda 41 A, Iasi 700487, Romania
| |
Collapse
|
29
|
Bandekar M, Panda D. Microtubule depolymerization induces ferroptosis in neuroblastoma cells. IUBMB Life 2024. [PMID: 39038059 DOI: 10.1002/iub.2899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 06/06/2024] [Indexed: 07/24/2024]
Abstract
Estramustine (EM), a clinically successful hormone-refractory anti-prostate cancer drug, exhibited potent anti-proliferative activity, depolymerized microtubules, blocked cells at mitosis, and induced cell death in different cancer cells. Altered iron metabolism is a feature of cancer cells. Using EM, we examined the plausible relationship between microtubule depolymerization and induction of ferroptosis in human neuroblastoma (SH-SY5Y and IMR-32) cells. EM reduced glutathione (GSH) levels and induced reactive oxygen species (ROS) generation. The pre-treatment of neuroblastoma cells with ROS scavengers (N-acetyl cysteine and dithiothreitol) reduced the anti-proliferative effects of EM. EM treatment increased labile iron pool (LIP), depleted glutathione peroxidase 4 (GPX4) levels, and lipid peroxidation, hallmark features of ferroptosis, highlighting ferroptosis induction. Ferroptosis inhibitors (deferoxamine mesylate and liproxstatin-1) abrogated the cytotoxic effects of EM, further confirming ferroptosis induction. Vinblastine and nocodazole also increased LIP and induced lipid peroxidation in neuroblastoma cells. This study provides evidence for the coupling of microtubule integrity to ferroptosis. The results also suggest that microtubule-depolymerizing agents may be considered for developing pro-ferroptosis chemotherapeutics.
Collapse
Affiliation(s)
- Mayuri Bandekar
- Department of Biosciences & Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Dulal Panda
- Department of Biosciences & Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
- National Institute of Pharmaceutical Education and Research, Mohali, India
| |
Collapse
|
30
|
Saruengkhanphasit R, Ngiwsara L, Lirdprapamongkol K, Chatwichien J, Niwetmarin W, Eurtivong C, Kittakoop P, Svasti J, Ruchirawat S. Synthesis, in silico, in vitro evaluation of furanyl- and thiophenyl-3-phenyl-1 H-indole-2-carbohydrazide derivatives as tubulin inhibitors and anticancer agents. RSC Med Chem 2024; 15:2483-2495. [PMID: 39026641 PMCID: PMC11253851 DOI: 10.1039/d4md00210e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 05/23/2024] [Indexed: 07/20/2024] Open
Abstract
Twenty-one new indole derivatives comprising of seven furanyl-3-phenyl-1H-indole-carbohydrazide derivatives and fourteen thiophenyl-3-phenyl-1H-indole-carbohydrazide derivatives were synthesised and biologically evaluated for their microtubule-destabilising effects, and antiproliferative activities against the National Cancer Institute 60 (NCI60) human cancer cell line panel. Among the derivatives, 6i showed the best cytotoxic activity exhibiting selectivity for COLO 205 colon cancer (LC50 = 71 nM), SK-MEL-5 melanoma cells (LC50 = 75 nM), and MDA-MB-435 (LC50 = 259 nM). Derivative 6j showed the strongest microtubule-destabilising effect. Both 6i and 6j were able to induce G2/M cell cycle arrest and apoptosis in MDA-MB-231 triple-negative breast cancer cells. Molecular docking simulation results suggested that these derivatives inhibit tubulin by binding at the colchicine site. The calculated molecular descriptors showed that the most potent derivatives have acceptable pharmacokinetic profiles and are favourable for oral drug administration.
Collapse
Affiliation(s)
- Rungroj Saruengkhanphasit
- Program in Chemical Sciences, Chulabhorn Graduate Institute 54 Kamphaeng Phet 6, Talat Bang Khen, Lak Si Bangkok 10210 Thailand +66 25541900 ext. 2629
- Center of Excellence On Environmental Health and Toxicology (EHT), OPS, Ministry of Higher Education, Science, Research and Innovation Bangkok Thailand
| | - Lukana Ngiwsara
- Laboratory of Biochemistry, Chulabhorn Research Institute Bangkok 10210 Thailand
| | - Kriengsak Lirdprapamongkol
- Center of Excellence On Environmental Health and Toxicology (EHT), OPS, Ministry of Higher Education, Science, Research and Innovation Bangkok Thailand
- Laboratory of Biochemistry, Chulabhorn Research Institute Bangkok 10210 Thailand
| | - Jaruwan Chatwichien
- Program in Chemical Sciences, Chulabhorn Graduate Institute 54 Kamphaeng Phet 6, Talat Bang Khen, Lak Si Bangkok 10210 Thailand +66 25541900 ext. 2629
- Chulabhorn Royal Academy Bangkok 10210 Thailand
| | - Worawat Niwetmarin
- Program in Chemical Sciences, Chulabhorn Graduate Institute 54 Kamphaeng Phet 6, Talat Bang Khen, Lak Si Bangkok 10210 Thailand +66 25541900 ext. 2629
| | - Chatchakorn Eurtivong
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Mahidol University 447 Si Ayutthaya Road, Ratchathewi Bangkok 10400 Thailand +66 26448677-91 ext. 5402
| | - Prasat Kittakoop
- Program in Chemical Sciences, Chulabhorn Graduate Institute 54 Kamphaeng Phet 6, Talat Bang Khen, Lak Si Bangkok 10210 Thailand +66 25541900 ext. 2629
- Center of Excellence On Environmental Health and Toxicology (EHT), OPS, Ministry of Higher Education, Science, Research and Innovation Bangkok Thailand
- Laboratory of Natural Products, Chulabhorn Research Institute Bangkok 10210 Thailand
| | - Jisnuson Svasti
- Laboratory of Biochemistry, Chulabhorn Research Institute Bangkok 10210 Thailand
| | - Somsak Ruchirawat
- Program in Chemical Sciences, Chulabhorn Graduate Institute 54 Kamphaeng Phet 6, Talat Bang Khen, Lak Si Bangkok 10210 Thailand +66 25541900 ext. 2629
- Center of Excellence On Environmental Health and Toxicology (EHT), OPS, Ministry of Higher Education, Science, Research and Innovation Bangkok Thailand
- Laboratory of Medicinal Chemistry, Chulabhorn Research Institute Bangkok 10210 Thailand
| |
Collapse
|
31
|
Cai W, Rong D, Ding J, Zhang X, Wang Y, Fang Y, Xiao J, Yang S, Wang H. Activation of the PERK/eIF2α axis is a pivotal prerequisite of taxanes to cancer cell apoptosis and renders synergism to overcome paclitaxel resistance in breast cancer cells. Cancer Cell Int 2024; 24:249. [PMID: 39020371 PMCID: PMC11256575 DOI: 10.1186/s12935-024-03443-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 07/09/2024] [Indexed: 07/19/2024] Open
Abstract
BACKGROUND Microtubule polymerization is usually considered as the upstream of apoptotic cell death induced by taxanes, but recently published studies provide more insights into the mechanisms responsible for the antineoplastic effect of taxanes. In this study, we figure out the role of the stress-related PERK/eIF2α axis in tumor cell death upon taxane treatment along with paclitaxel resistance. METHODS Utilizing immunoblot assay, the activation status of PERK-eIF2α signaling was detected in a panel of cancer cell lines after the treatment of taxanes. The causal role of PERK-eIF2α signaling in the cancer cell apoptosis induced by taxanes was examined via pharmacological and genetic inhibitions of PERK. The relationship between microtubule polymerization and PERK-eIF2α activation was explored by immunofluorescent and immunoblotting assays. Eventaually, the combined therapeutic effect of paclitaxel (PTX) and CCT020312, a PERK agonist, was investigated in PTX-resistant breast cancer cells in vitro and in vivo. RESULTS PERK-eIF2α axis was dramatically activated by taxanes in several cancer cell types. Pharmacological or genetic inhibition of PERK efficiently impaired taxane-induced apoptotic cell death, independent of the cellular microtubule polymerization status. Moreover, PTX was able to activate the PERK/eIF2α axis in a very low concentration without triggering microtubule polymerization. In PTX-resistant breast cancer cells, the PERK/eIF2α axis was attenuated in comparison with the PTX-sensitive counterparts. Reactivation of the PERK/eIF2α axis in the PTX-resistant breast cancer cells with PERK agonist sensitized them to PTX in vitro. Combination treatment of the xenografted PTX-resistant breast tumors with PERK agonist and PTX validated the synergic effect of PTX and PERK activation in vivo. CONCLUSION Activation of the PERK/eIF2α axis is a pivotal prerequisite of taxanes to initiate cancer cell apoptosis, which is independent of the well-known microtubule polymerization-dependent manner. Simultaneous activation of PERK-eIF2α signaling would be a promising therapeutic strategy to overcome PTX resistance in breast cancer or other cancers.
Collapse
Affiliation(s)
- Wanhua Cai
- Center for Translational Medicine, the First Affiliated Hospital, Sun Yat-sen University, 58 Second Zhongshan Road, Guangzhou, 510080, China
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, 74 Second Zhongshan Road, Guangzhou, 510080, China
| | - Dade Rong
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, 74 Second Zhongshan Road, Guangzhou, 510080, China
- Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China
| | - Jiayu Ding
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, 74 Second Zhongshan Road, Guangzhou, 510080, China
| | - Xiaomei Zhang
- Center for Translational Medicine, the First Affiliated Hospital, Sun Yat-sen University, 58 Second Zhongshan Road, Guangzhou, 510080, China
| | - Yuwei Wang
- Center for Translational Medicine, the First Affiliated Hospital, Sun Yat-sen University, 58 Second Zhongshan Road, Guangzhou, 510080, China
- School of Medicine, Xizang Minzu University, No.6 Wenhui Donglu, Xianyang, 712082, China
| | - Ying Fang
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, 74 Second Zhongshan Road, Guangzhou, 510080, China
| | - Jing Xiao
- Department of Clinical Laboratory, Zhuhai Interventional Medical Center, Zhuhai Precision Medical Center, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, 519000, China.
| | - Shulan Yang
- Center for Translational Medicine, the First Affiliated Hospital, Sun Yat-sen University, 58 Second Zhongshan Road, Guangzhou, 510080, China.
| | - Haihe Wang
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, 74 Second Zhongshan Road, Guangzhou, 510080, China.
- School of Medicine, Xizang Minzu University, No.6 Wenhui Donglu, Xianyang, 712082, China.
- Clinical Medical Research Centre for Plateau Gastroenterological Disease of Xizang Autonomous Region, Xizang Minzu University, Xianyang 712082, China.
| |
Collapse
|
32
|
Hua M, Chen Y, Jia M, Lv W, Xu Y, Zhang Y. RNA-binding protein THUMPD2 inhibits proliferation and promotes metastasis in epithelial ovarian cancer. Heliyon 2024; 10:e33201. [PMID: 39071668 PMCID: PMC11279259 DOI: 10.1016/j.heliyon.2024.e33201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 06/13/2024] [Accepted: 06/17/2024] [Indexed: 07/30/2024] Open
Abstract
Ovarian cancer (OC) is a common and lethal gynaecological malignancy. RNA-binding proteins (RBPs) play a crucial role in governing RNA metabolism and have been implicated in the development and progression of diverse cancer types. Slight alterations in RBPs' expression or activity can induce substantial modifications in the regulatory network. THUMPD2, as member of the RBP family, was found to have differential expression in ovarian cancer, with the mechanism has not been studied yet. In this study, THUMPD2 protein was found to be weakly expressed in the early (I + II) stages of OC (P = 0.013), with a low expression rate of 78.6 %, and highly expressed in late (III + IV) stages (P = 0.009), with a high expression rate of 84.8 %. The shRNA-mediated knockdown of THUMPD2 in OVCAR3 and SKOV3 cells resulted in increased cell proliferation but inhibited metastasis, whereas THUMPD2 overexpression had the opposite effect. THUMPD2 overexpression suppressed tumour growth in vivo. Conversely, low THUMPD2 expression promoted tumour growth. Furthermore, we identified the potential target genes and pathways of THUMPD2 using GO and KEGG analyses, which were related to the centrosome, microtubules, cell cycle, and extracellular matrix. We demonstrated that low expression of THUMPD2 in the early stage promoted tumour growth and high expression in the late stage promoted tumour metastasis. Our findings reveal the dual function of THUMPD2 in OC and suggest that THUMPD2 may serve as a therapeutic target for the treatment of OC.
Collapse
Affiliation(s)
- Minhui Hua
- Suzhou Medical College of Soochow University, Suzhou, 215123, China
- Department of Gynecology and Obstetrics, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Yujie Chen
- Department of Gynecology and Obstetrics, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Meiqun Jia
- Department of Gynecology, Affiliated Tumor Hospital of Nantong University, Nantong, 226001, China
| | - Wenxuan Lv
- Department of Gynecology and Obstetrics, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Yunzhao Xu
- Department of Gynecology and Obstetrics, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Yuquan Zhang
- Suzhou Medical College of Soochow University, Suzhou, 215123, China
- Department of Gynecology and Obstetrics, Affiliated Hospital of Nantong University, Nantong, 226001, China
| |
Collapse
|
33
|
Alalawy AI. Key genes and molecular mechanisms related to Paclitaxel Resistance. Cancer Cell Int 2024; 24:244. [PMID: 39003454 PMCID: PMC11245874 DOI: 10.1186/s12935-024-03415-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 06/22/2024] [Indexed: 07/15/2024] Open
Abstract
Paclitaxel is commonly used to treat breast, ovarian, lung, esophageal, gastric, pancreatic cancer, and neck cancer cells. Cancer recurrence is observed in patients treated with paclitaxel due to paclitaxel resistance emergence. Resistant mechanisms are observed in cancer cells treated with paclitaxel, docetaxel, and cabazitaxel including changes in the target molecule β-tubulin of mitosis, molecular mechanisms that activate efflux drug out of the cells, and alterations in regulatory proteins of apoptosis. This review discusses new molecular mechanisms of taxane resistance, such as overexpression of genes like the multidrug resistance genes and EDIL3, ABCB1, MRP1, and TRAG-3/CSAG2 genes. Moreover, significant lncRNAs are detected in paclitaxel resistance, such as lncRNA H19 and cross-resistance between taxanes. This review contributed to discovering new treatment strategies for taxane resistance and increasing the responsiveness of cancer cells toward chemotherapeutic drugs.
Collapse
Affiliation(s)
- Adel I Alalawy
- Department of Biochemistry, Faculty of Science, University of Tabuk, Tabuk, 71491, Saudi Arabia.
| |
Collapse
|
34
|
Mondal P, Alyateem G, Mitchell AV, Gottesman MM. A whole-genome CRISPR screen identifies the spindle accessory checkpoint as a locus of nab-paclitaxel resistance in a pancreatic cancer cell line. Sci Rep 2024; 14:15912. [PMID: 38987356 PMCID: PMC11236977 DOI: 10.1038/s41598-024-66244-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 06/28/2024] [Indexed: 07/12/2024] Open
Abstract
Pancreatic adenocarcinoma is one of the most aggressive and lethal forms of cancer. Chemotherapy is the primary treatment for pancreatic cancer, but resistance to the drugs used remains a major challenge. A genome-wide CRISPR interference and knockout screen in the PANC-1 cell line with the drug nab-paclitaxel has identified a group of spindle assembly checkpoint (SAC) genes that enhance survival in nab-paclitaxel. Knockdown of these SAC genes (BUB1B, BUB3, and TTK) attenuates paclitaxel-induced cell death. Cells treated with the small molecule inhibitors BAY 1217389 or MPI 0479605, targeting the threonine tyrosine kinase (TTK), also enhance survival in paclitaxel. Overexpression of these SAC genes does not affect sensitivity to paclitaxel. These discoveries have helped to elucidate the mechanisms behind paclitaxel cytotoxicity. The outcomes of this investigation may pave the way for a deeper comprehension of the diverse responses of pancreatic cancer to therapies including paclitaxel. Additionally, they could facilitate the formulation of novel treatment approaches for pancreatic cancer.
Collapse
Affiliation(s)
- Priya Mondal
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - George Alyateem
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Allison V Mitchell
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Michael M Gottesman
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA.
| |
Collapse
|
35
|
Tang Y, Yao T, Tian X, Xia X, Huang X, Qin Z, Shen Z, Zhao L, Zhao Y, Diao B, Ping Y, Zheng X, Xu Y, Chen H, Qian T, Ma T, Zhou B, Xu S, Zhou Q, Liu Y, Shao M, Chen W, Shan B, Wu Y. Hepatic IRE1α-XBP1 signaling promotes GDF15-mediated anorexia and body weight loss in chemotherapy. J Exp Med 2024; 221:e20231395. [PMID: 38695876 PMCID: PMC11070642 DOI: 10.1084/jem.20231395] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 02/26/2024] [Accepted: 04/02/2024] [Indexed: 05/08/2024] Open
Abstract
Platinum-based chemotherapy drugs can lead to the development of anorexia, a detrimental effect on the overall health of cancer patients. However, managing chemotherapy-induced anorexia and subsequent weight loss remains challenging due to limited effective therapeutic strategies. Growth differentiation factor 15 (GDF15) has recently gained significant attention in the context of chemotherapy-induced anorexia. Here, we report that hepatic GDF15 plays a crucial role in regulating body weight in response to chemo drugs cisplatin and doxorubicin. Cisplatin and doxorubicin treatments induce hepatic Gdf15 expression and elevate circulating GDF15 levels, leading to hunger suppression and subsequent weight loss. Mechanistically, selective activation by chemotherapy of hepatic IRE1α-XBP1 pathway of the unfolded protein response (UPR) upregulates Gdf15 expression. Genetic and pharmacological inactivation of IRE1α is sufficient to ameliorate chemotherapy-induced anorexia and body weight loss. These results identify hepatic IRE1α as a molecular driver of GDF15-mediated anorexia and suggest that blocking IRE1α RNase activity offers a therapeutic strategy to alleviate the adverse anorexia effects in chemotherapy.
Collapse
Affiliation(s)
- Yuexiao Tang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Cancer Prevention and Therapy Combining Traditional Chinese and Western Medicine of Zhejiang Province, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Tao Yao
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Cancer Prevention and Therapy Combining Traditional Chinese and Western Medicine of Zhejiang Province, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, China
- College of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xin Tian
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Cancer Prevention and Therapy Combining Traditional Chinese and Western Medicine of Zhejiang Province, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, China
- College of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xintong Xia
- Key Laboratory of Cancer Prevention and Therapy Combining Traditional Chinese and Western Medicine of Zhejiang Province, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, China
- College of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xingxiao Huang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Zhewen Qin
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Zhong Shen
- Department of Coloproctology, Hangzhou Third People’s Hospital, Hangzhou, China
| | - Lin Zhao
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Yaping Zhao
- Division of Life Sciences and Medicine, Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, China
| | - Bowen Diao
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Yan Ping
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiaoxiao Zheng
- Key Laboratory of Cancer Prevention and Therapy Combining Traditional Chinese and Western Medicine of Zhejiang Province, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Yonghao Xu
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Hui Chen
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Tao Qian
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Tao Ma
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ben Zhou
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Suowen Xu
- Division of Life Sciences and Medicine, Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, China
| | - Qimin Zhou
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yong Liu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Frontier Science Center for Immunology and Metabolism, The Institute for Advanced Studies, Wuhan University, Wuhan, China
| | - Mengle Shao
- CAS Key Laboratory of Molecular Virology and Immunology, The Center for Microbes, Development, and Health, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China
| | - Wei Chen
- Key Laboratory of Cancer Prevention and Therapy Combining Traditional Chinese and Western Medicine of Zhejiang Province, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, China
- College of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Bo Shan
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
| | - Ying Wu
- Key Laboratory of Cancer Prevention and Therapy Combining Traditional Chinese and Western Medicine of Zhejiang Province, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, China
- College of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
36
|
Li S, Xu D, Yao H, Tan M, Li X, Liu M, Wang L, Huang N, Wang N. Facile synthesis of 2-vinylindolines via a phosphine-mediated α-umpolung/Wittig olefination/cyclization cascade process. Chem Commun (Camb) 2024; 60:6773-6776. [PMID: 38864654 DOI: 10.1039/d4cc01851f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
A novel phosphine-mediated α-umpolung/Wittig olefination/cyclization cascade process between o-aminobenzaldehydes and Morita-Baylis-Hillman (MBH) carbonates has been ingeniously developed. This protocol serves as a practical tool for the facile synthesis of a broad range of 2-vinylindolines in moderate to good yields under mild reaction conditions. The applicability of this method was demonstrated with gram-scale reaction and various transformations of the corresponding product.
Collapse
Affiliation(s)
- Shuhui Li
- Hubei Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang Hubei 443002, China.
| | - Dan Xu
- Hubei Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang Hubei 443002, China.
| | - Hui Yao
- Hubei Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang Hubei 443002, China.
- Hubei Three Gorges Laboratory, Yichang Hubei 443007, China
| | - Mengting Tan
- Hubei Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang Hubei 443002, China.
| | - Xiaoxuan Li
- Hubei Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang Hubei 443002, China.
| | - Mingguo Liu
- Hubei Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang Hubei 443002, China.
| | - Long Wang
- Hubei Three Gorges Laboratory, Yichang Hubei 443007, China
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang Hubei 443002, China
| | - Nianyu Huang
- Hubei Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang Hubei 443002, China.
- Hubei Three Gorges Laboratory, Yichang Hubei 443007, China
| | - Nengzhong Wang
- Hubei Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang Hubei 443002, China.
- Hubei Three Gorges Laboratory, Yichang Hubei 443007, China
| |
Collapse
|
37
|
van der Westhuyzen A, Ashraf N, Conradie D, Loots L, Kaschula CH, Pelly SC, Frolova LV, Landfair T, Shuster CB, Betancourt T, Kornienko A, van Otterlo WAL. Improved Rigidin-Inspired Antiproliferative Agents with Modifications on the 7-Deazahypoxanthine C7/C8 Ring Systems. J Med Chem 2024; 67:9950-9975. [PMID: 38865195 PMCID: PMC11215747 DOI: 10.1021/acs.jmedchem.3c02473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 06/02/2024] [Accepted: 06/04/2024] [Indexed: 06/14/2024]
Abstract
To improve their aqueous solubility characteristics, water-solubilizing groups were added to some antiproliferative, rigidin-inspired 7-deazahypoxanthine frameworks after molecular modeling seemed to indicate that structural modifications on the C7 and/or C8 phenyl groups would be beneficial. To this end, two sets of 7-deazahypoxanthines were synthesized by way of a multicomponent reaction approach. It was subsequently determined that their antiproliferative activity against HeLa cells was retained for those derivatives with a glycol ether at the 4'-position of the C8 aryl ring system, while also significantly improving their solubility behavior. The best of these compounds were the equipotent 6-[4-(2-ethoxyethoxy)benzoyl]-2-(pent-4-yn-1-yl)-5-phenyl-1,7-dihydro-4H-pyrrolo[2,3-d]pyrimidin-4-one 33 and 6-[4-(2-ethoxyethoxy)benzoyl]-5-(3-fluorophenyl)-2-(pent-4-yn-1-yl)-1,7-dihydro-4H-pyrrolo[2,3-d]pyrimidin-4-one 59. Similarly to the parent 1, the new derivatives were also potent inhibitors of tubulin assembly. In treated HeLa cells, live cell confocal microscopy demonstrated their impact on microtubulin dynamics and spindle morphology, which is the upstream trigger of mitotic delay and cell death.
Collapse
Affiliation(s)
| | - Naghmana Ashraf
- Department
of Biology, New Mexico State University, Las Cruces ,New Mexico 88003, United States
| | - Daleen Conradie
- Department
of Chemistry and Polymer Science, Stellenbosch
University, Stellenbosch 7600, South Africa
- Department
of Physiological Sciences, Stellenbosch
University, Stellenbosch 7600, South Africa
| | - Leigh Loots
- Department
of Chemistry and Polymer Science, Stellenbosch
University, Stellenbosch 7600, South Africa
| | - Catherine H. Kaschula
- Department
of Chemistry and Polymer Science, Stellenbosch
University, Stellenbosch 7600, South Africa
| | - Stephen C. Pelly
- Department
of Chemistry and Polymer Science, Stellenbosch
University, Stellenbosch 7600, South Africa
- Department
of Chemistry, Emory University, 1515 Dickey Drive ,Atlanta ,Georgia 30322, United States
| | - Liliya V. Frolova
- Department
of Chemistry and Biochemistry, Purdue University, 2101 East Coliseum Blvd. ,Fort Wayne ,Indiana 46805, United States
| | - Taylor Landfair
- Department
of Biology, New Mexico State University, Las Cruces ,New Mexico 88003, United States
| | - Charles B. Shuster
- Department
of Biology, New Mexico State University, Las Cruces ,New Mexico 88003, United States
| | - Tania Betancourt
- Department
of Chemistry and Biochemistry, Texas State
University, San Marcos ,Texas 78666, United States
| | - Alexander Kornienko
- Department
of Chemistry and Biochemistry, Texas State
University, San Marcos ,Texas 78666, United States
| | - Willem A. L. van Otterlo
- Department
of Chemistry and Polymer Science, Stellenbosch
University, Stellenbosch 7600, South Africa
| |
Collapse
|
38
|
Bergonzini C, Giovannetti E, Danen EH. Targeting ABC transporters in PDAC - past, present, or future? Oncotarget 2024; 15:403-406. [PMID: 38900606 PMCID: PMC11197972 DOI: 10.18632/oncotarget.28597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Indexed: 06/22/2024] Open
Affiliation(s)
| | | | - Erik H.J. Danen
- Correspondence to:Erik H.J. Danen, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands email
| |
Collapse
|
39
|
Carceles-Cordon M, Orme JJ, Domingo-Domenech J, Rodriguez-Bravo V. The yin and yang of chromosomal instability in prostate cancer. Nat Rev Urol 2024; 21:357-372. [PMID: 38307951 PMCID: PMC11156566 DOI: 10.1038/s41585-023-00845-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/13/2023] [Indexed: 02/04/2024]
Abstract
Metastatic prostate cancer remains an incurable lethal disease. Studies indicate that prostate cancer accumulates genomic changes during disease progression and displays the highest levels of chromosomal instability (CIN) across all types of metastatic tumours. CIN, which refers to ongoing chromosomal DNA gain or loss during mitosis, and derived aneuploidy, are known to be associated with increased tumour heterogeneity, metastasis and therapy resistance in many tumour types. Paradoxically, high CIN levels are also proposed to be detrimental to tumour cell survival, suggesting that cancer cells must develop adaptive mechanisms to ensure their survival. In the context of prostate cancer, studies indicate that CIN has a key role in disease progression and might also offer a therapeutic vulnerability that can be pharmacologically targeted. Thus, a comprehensive evaluation of the causes and consequences of CIN in prostate cancer, its contribution to aggressive advanced disease and a better understanding of the acquired CIN tolerance mechanisms can translate into new tumour classifications, biomarker development and therapeutic strategies.
Collapse
Affiliation(s)
| | - Jacob J Orme
- Department of Oncology, Mayo Clinic, Rochester, MN, USA
| | - Josep Domingo-Domenech
- Department of Urology, Mayo Clinic, Rochester, MN, USA.
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA.
| | - Veronica Rodriguez-Bravo
- Department of Urology, Mayo Clinic, Rochester, MN, USA.
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
40
|
Raikwar S, Yadav V, Jain S, Jain SK. Antibody-conjugated pH-sensitive liposomes for HER-2 positive breast cancer: development, characterization, in vitro and in vivo assessment. J Liposome Res 2024; 34:239-263. [PMID: 37594466 DOI: 10.1080/08982104.2023.2248505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/27/2023] [Accepted: 08/04/2023] [Indexed: 08/19/2023]
Abstract
The object of the current study was to develop and evaluate trastuzumab-conjugated Paclitaxel (PTX) and Elacridar (ELA)-loaded PEGylated pH-sensitive liposomes (TPPLs) for site-specific delivery of an anticancer drug. In this study, paclitaxel is used as an anticancer drug which promotes microtubules polymerization and arrest cell cycle progression at mitosis and subsequently leading to cell death. The single use of PTX causes multiple drug resistance (MDR) and results failure of the therapy. Hence, the combination of PTX and P-glycoprotein inhibitor (ELA) are used to achieve maximum therapeutic effects of PTX. Moreover, monoclonal antibody (trastuzumab) is used as ligand for the targeting the drug bearing carriers to BC. Thus, trastuzumab anchored pH-sensitive liposomes bearing PTX and ELA were developed using thin film hydration method and Box-Behnken Design (BBD) for optimizing various formulation variables. The optimized liposomes undergo characterization such as vesicle size, PDI, and zeta potential, which were observed to be 122 ± 2.14 nm, 0.224, and -15.5 mV for PEGylated pH-sensitive liposomes (PEG-Ls) and 134 ± 1.88 nm, 0.238, and -13.98 mV for TPPLs, respectively. The results of the in vitro drug release study of both formulations (PEG-Ls and TPPLs) showed enhanced percentage drug release at an acidic pH 5 as compared to drug release at a physiological pH 7.4. Further, the in vitro cytotoxicity studies were performed in the SK-BR-3 and MDA-MB-231 cell lines. The cellular uptake study of FITC-loaded TPPLs in SK-BR-3 cells showed greater uptake than FITC-loaded PEG-Ls, while in MDA-MB-231 cells there was no significant difference in cell uptake between FITC-loaded TPPLs and FITC-loaded PEG-Ls. Hence, it can be concluded that the HER-2 overexpressing cancer cell line (SK-BR-3) was showed better cytotoxicity and cell uptake of TPPLs than the cells that expressed low levels of HER2 (MDA-MB-231). The in vivo tumor regression study, TPPLs showed significantly more tumor burden reduction i.e. up ∼74% as compared to other liposomes after 28 days. Furthermore, the in vivo studies of TPPLs showed a minimal toxicity profile, minimal hemolysis, higher tumor tissue distribution, and superior antitumor efficacy as compared to other formulations. These studies confirmed that TPPLs are a safe and efficacious treatment for breast cancer.
Collapse
Affiliation(s)
- Sarjana Raikwar
- Pharmaceutics Research Projects Laboratory, Department of Pharmaceutical Sciences, Dr. Harisingh Gour Vishwavidyalaya, Sagar (M.P.), India
| | - Vivek Yadav
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Punjab, India
| | - Sanyog Jain
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Punjab, India
| | - Sanjay K Jain
- Pharmaceutics Research Projects Laboratory, Department of Pharmaceutical Sciences, Dr. Harisingh Gour Vishwavidyalaya, Sagar (M.P.), India
| |
Collapse
|
41
|
Jia N, Zhang B, Huo Z, Qin J, Ji Q, Geng Y. Binding patterns of inhibitors to different pockets of kinesin Eg5. Arch Biochem Biophys 2024; 756:109998. [PMID: 38641233 DOI: 10.1016/j.abb.2024.109998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/19/2024] [Accepted: 04/12/2024] [Indexed: 04/21/2024]
Abstract
The kinesin-5 family member, Eg5, plays very important role in the mitosis. As a mitotic protein, Eg5 is the target of various mitotic inhibitors. There are two targeting pockets in the motor domain of Eg5, which locates in the α2/L5/α3 region and the α4/α6 region respectively. We investigated the interactions between the different inhibitors and the two binding pockets of Eg5 by using all-atom molecular dynamics method. Combined the conformational analysis with the free-energy calculation, the binding patterns of inhibitors to the two binding pockets are shown. The α2/L5/α3 pocket can be divided into 4 regions. The structures and binding conformations of inhibitors in region 1 and 2 are highly conserved. The shape of α4/α6 pocket is alterable. The space of this pocket in ADP-binding state of Eg5 is larger than that in ADP·Pi-binding state due to the limitation of a hydrogen bond formed in the ADP·Pi-binding state. The results of this investigation provide the structural basis of the inhibitor-Eg5 interaction and offer a reference for the Eg5-targeted drug design.
Collapse
Affiliation(s)
- Ning Jia
- School of Science, Hebei University of Technology, Tianjin, China; Institute of Biophysics, Hebei University of Technology, Tianjin, China
| | - Bingbing Zhang
- School of Health Sciences & Biomedical Engineering, Hebei University of Technology, Tianjin, China; Institute of Biophysics, Hebei University of Technology, Tianjin, China
| | - Ziling Huo
- School of Health Sciences & Biomedical Engineering, Hebei University of Technology, Tianjin, China; Institute of Biophysics, Hebei University of Technology, Tianjin, China
| | - Jingyu Qin
- College of Electrical and Information Engineering, Quzhou University, Quzhou, China
| | - Qing Ji
- School of Science, Hebei University of Technology, Tianjin, China; Institute of Biophysics, Hebei University of Technology, Tianjin, China
| | - Yizhao Geng
- School of Science, Hebei University of Technology, Tianjin, China; Institute of Biophysics, Hebei University of Technology, Tianjin, China.
| |
Collapse
|
42
|
Ouellette V, Bouzriba C, Chavez Alvarez AC, Hamel-Côté G, Fortin S. Modification of the phenyl ring B of phenyl 4-(2-oxoimidazolidin-1-yl)benzenesulfonates by pyridinyl moiety leads to novel antimitotics targeting the colchicine-binding site. Bioorg Med Chem Lett 2024; 105:129745. [PMID: 38614151 DOI: 10.1016/j.bmcl.2024.129745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/05/2024] [Accepted: 04/10/2024] [Indexed: 04/15/2024]
Abstract
A series of 8 novel pyridinyl 4-(2-oxoimidazolidin-1-yl)benzenesulfonates (PYRIB-SOs) were designed, prepared and evaluated for their mechanism of action. PYRIB-SOs were found to have antiproliferative activity in the nanomolar to submicromolar range on several breast cancer cell lines. Moreover, subsequent biofunctional assays indicated that the most potent PYRIB-SOs 1-3 act as antimitotics binding to the colchicine-binding site (C-BS) of α, β-tubulin and that they arrest the cell cycle progression in the G2/M phase. Microtubule immunofluorescence and tubulin polymerisation assay confirm that they disrupt the cytoskeleton through inhibition of tubulin polymerisation as observed with microtubule-destabilising agents. They also show good overall theoretical physicochemical, pharmacokinetic and druglike properties. Overall, these results show that PYRIB-SOs is a new family of promising antimitotics to be further studied in vivo for biopharmaceutical and pharmacodynamic evaluations.
Collapse
Affiliation(s)
- Vincent Ouellette
- Centre de recherche du CHU de Québec-Université Laval, Axe Oncologie, Hôpital Saint-François d'Assise, 10 rue de l'Espinay, Québec, QC, G1L 3L5, Canada; Faculté de pharmacie, Université Laval, Pavillon Ferdinand-Vandry, 1050 avenue de la Médecine, Québec, QC, G1V 0A6, Canada.
| | - Chahrazed Bouzriba
- Centre de recherche du CHU de Québec-Université Laval, Axe Oncologie, Hôpital Saint-François d'Assise, 10 rue de l'Espinay, Québec, QC, G1L 3L5, Canada; Faculté de pharmacie, Université Laval, Pavillon Ferdinand-Vandry, 1050 avenue de la Médecine, Québec, QC, G1V 0A6, Canada.
| | - Atziri Corin Chavez Alvarez
- Centre de recherche du CHU de Québec-Université Laval, Axe Oncologie, Hôpital Saint-François d'Assise, 10 rue de l'Espinay, Québec, QC, G1L 3L5, Canada; Faculté de pharmacie, Université Laval, Pavillon Ferdinand-Vandry, 1050 avenue de la Médecine, Québec, QC, G1V 0A6, Canada; Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec-Université Laval (IUCPQ), 2725 chemin Ste-Foy, Québec, QC, G1V 4G5, Canada.
| | - Geneviève Hamel-Côté
- Centre de recherche du CHU de Québec-Université Laval, Axe Oncologie, Hôpital Saint-François d'Assise, 10 rue de l'Espinay, Québec, QC, G1L 3L5, Canada.
| | - Sébastien Fortin
- Centre de recherche du CHU de Québec-Université Laval, Axe Oncologie, Hôpital Saint-François d'Assise, 10 rue de l'Espinay, Québec, QC, G1L 3L5, Canada; Faculté de pharmacie, Université Laval, Pavillon Ferdinand-Vandry, 1050 avenue de la Médecine, Québec, QC, G1V 0A6, Canada.
| |
Collapse
|
43
|
Mao X, Chen J, Yao Y, Liu D, Wang H, Chen Y. Progress in phosphorylation of natural products. Mol Biol Rep 2024; 51:697. [PMID: 38802698 DOI: 10.1007/s11033-024-09596-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 04/30/2024] [Indexed: 05/29/2024]
Abstract
Natural medicines are a valuable resource for the development of new drugs. However, factors such as low solubility and poor bioavailability of certain constituents have hindered their efficacy and potential as pharmaceuticals. Structural modification of natural products has emerged as an important research area for drug development. Phosphorylation groups, as crucial endogenous active groups, have been extensively utilized for structural modification and development of new drugs based on natural molecules. Incorporating phosphate groups into natural molecules not only enhances their stability, bioavailability, and pharmacological properties, but also improves their biological activity by altering their charge, hydrogen bonding, and spatial structure. This review summarizes the phosphorylation mechanism, modification approaches, and biological activity enhancement of natural medicines. Notably, compounds such as polysaccharides, flavonoids, terpenoids, anthraquinones, and coumarins exhibit increased antioxidation, anticancer, antiviral, immune regulatory, Antiaging, enzyme inhibition, bacteriostasis, liver protection, and lipid-lowering effects following phosphorylation modification.
Collapse
Affiliation(s)
- Xiaoran Mao
- Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Jiaqi Chen
- Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Yingrui Yao
- Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Defu Liu
- Department of Pharmacy, Characteristic Medical Center of PAP, Tianjin, 300162, China
| | - Haiying Wang
- Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| | - Yuzhou Chen
- Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| |
Collapse
|
44
|
Ma Y, Wang T, Cheng L, Ma X, Li R, Zhang M, Chen J, Zhao P. Design, concise synthesis and evaluation of novel amide-based combretastatin A-4 analogues as potent tubulin inhibitors. Bioorg Med Chem Lett 2024; 108:129816. [PMID: 38806101 DOI: 10.1016/j.bmcl.2024.129816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/23/2024] [Accepted: 05/25/2024] [Indexed: 05/30/2024]
Abstract
As our ongoing work, a novel series of the amide-based CA-4 analogues were successfully designed, synthesized, and explored for their biological evaluation. Among these compounds, 7d and 8a illustrated most potent antiproliferative activity toward A549, HeLa, HCT116, and HT-29 cell lines. Most importantly, these two compounds didn't display noticeable cytotoxic activity on the non-tumoural cell line HEK-293. Further mechanism studies revealed that analogue 8a was identified as a novel tubulin polymerization inhibitor with an IC50 value of 6.90 μM, which is comparable with CA-4. The subsequent investigations unveiled that analogue 8a not only effectively caused cell cycle arrest at the G2/M phase but also induced apoptosis in A549 cells via a concentration-dependent manner. The molecular docking revealed that 8a could occupy well the colchicine-binding site of tubulin. Collectively, these findings indicate that amide-based CA-4 scaffold could be worthy of further evaluation for development of novel tubulin inhibitors with improved safety profile.
Collapse
Affiliation(s)
- Yufeng Ma
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou 510515, PR China
| | - Ting Wang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou 510515, PR China
| | - Li Cheng
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou 510515, PR China
| | - Xuanxuan Ma
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou 510515, PR China
| | - Rou Li
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou 510515, PR China
| | - Mengting Zhang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou 510515, PR China
| | - Jingkao Chen
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou 510515, PR China.
| | - Peiliang Zhao
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou 510515, PR China.
| |
Collapse
|
45
|
Lamaa D, Cailleau C, Vergnaud J, Mougin J, Bignon J, Alami M, Fattal E, Hamze A, Tsapis N. Overcoming Solubility Challenges: Liposomal isoCoQ-Carbazole as a Promising Anti-Tumor Agent for Inoperable and Radiation-Insensitive cancers. Chembiochem 2024; 25:e202400062. [PMID: 38536125 DOI: 10.1002/cbic.202400062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/25/2024] [Indexed: 04/19/2024]
Abstract
This study evaluated the potential of isoCoQ-Carbazole, a diheterocyclic analog of isoCA-4, as an anti-tumor agent. To overcome its low aqueous solubility, liposomes were developed as a delivery system for the compound. In vitro experiments showed that loaded liposomes exhibited similar activity to the free form on multiple human tumor cell lines. In vivo experiments using a palliative intratumoral injection chemotherapy approach further demonstrated that isoCoQ-Carbazole loaded liposomes significantly reduced tumor growth in a CA-4-resistant HT29 cell model, without inducing any observable toxicity or weight loss in the treated mice. These findings suggest that liposomal isoCoQ-Carbazole may hold promise as a potential therapeutic agent for the treatment of inoperable, radiation-insensitive cancers.
Collapse
Affiliation(s)
- Diana Lamaa
- CNRS, BioCIS Institution, Université Paris-Saclay, 91400, Orsay, France
| | - Catherine Cailleau
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 91400, Orsay, France
| | - Juliette Vergnaud
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 91400, Orsay, France
| | - Julie Mougin
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 91400, Orsay, France
| | - Jérôme Bignon
- CIBI platform, Institut de Chimie des Substances Naturelles UPR 2301, CNRS avenue de la terrasse, F-91198, Gif sur Yvette, France
| | - Mouad Alami
- CNRS, BioCIS Institution, Université Paris-Saclay, 91400, Orsay, France
| | - Elias Fattal
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 91400, Orsay, France
| | - Abdallah Hamze
- CNRS, BioCIS Institution, Université Paris-Saclay, 91400, Orsay, France
| | - Nicolas Tsapis
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 91400, Orsay, France
| |
Collapse
|
46
|
Zhou S, Feng X, Bai J, Sun D, Yao B, Wang K. Synergistic effects and competitive relationships between DOC and DOX as acting on DNA molecules: Studied with confocal Raman spectroscopy and molecular docking technology. Heliyon 2024; 10:e30233. [PMID: 38707315 PMCID: PMC11066432 DOI: 10.1016/j.heliyon.2024.e30233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/10/2024] [Accepted: 04/22/2024] [Indexed: 05/07/2024] Open
Abstract
Docetaxel (DOC) is one of the second-generation antineoplastic drugs of the taxanes family with excellent antitumor activity. However, the mechanism of DOC inducing tumor cell apoptosis and treating cancer diseases, especially its interaction with DNA in the nucleus, and its adjuvant or combined Doxorubicin (DOX) acting on DNA molecules are unclear. In this study, the interaction mechanism between DOC and DNA, as well as the synergistic effects and competitive relationships among DOC and DOX when they simultaneously interact with DNA molecules were studied by laser confocal Raman spectroscopy combined with UV-visible absorption spectroscopy and molecular docking technology. The spectroscopic results showed that the binding constant of DOC to DNA is 5.25 × 103 M-1, the binding modes of DOC and DNA are non-classical intercalation and electrostatic binding, and the DNA-DOC complex has good stability. When DOC or DOX interacts with DNA alone, both of them can bind with bases and phosphate backbone of DNA, and also lead to DNA conformation changes; when DOC and DOX interact with DNA at the same time, the orders of interaction not only affect their binding sites with DNA, but also cause changes in the surrounding environment of the binding sites. In addition, the molecular docking results further verified that DOC and DOX have synergy and competition when they interact with DNA molecules simultaneously. The docking energies of DNA-DOC and DNA-DOX indicate the important role of van der Waals forces and hydrogen bonds. This study has practical significance for the design and development of antitumor drugs with less toxic based on the taxanes family and the combination with other drugs for the treatment of cancer.
Collapse
Affiliation(s)
- Suli Zhou
- Key Laboratory of Photoelectronic Technology of Shaanxi Province, National Center for International Research of Photoelectric Technology & Nano-Functional Materials and Application, Institute of Photonics and Photon-Technology, Northwest University, Xi'an, 710127, China
| | - Xiaoqiang Feng
- Key Laboratory of Photoelectronic Technology of Shaanxi Province, National Center for International Research of Photoelectric Technology & Nano-Functional Materials and Application, Institute of Photonics and Photon-Technology, Northwest University, Xi'an, 710127, China
| | - Jintao Bai
- Key Laboratory of Photoelectronic Technology of Shaanxi Province, National Center for International Research of Photoelectric Technology & Nano-Functional Materials and Application, Institute of Photonics and Photon-Technology, Northwest University, Xi'an, 710127, China
| | - Dan Sun
- Key Laboratory of Photoelectronic Technology of Shaanxi Province, National Center for International Research of Photoelectric Technology & Nano-Functional Materials and Application, Institute of Photonics and Photon-Technology, Northwest University, Xi'an, 710127, China
| | - Baoli Yao
- State Key Laboratory of Transient Optics and Photonics, Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi'an, 710119, China
| | - Kaige Wang
- Key Laboratory of Photoelectronic Technology of Shaanxi Province, National Center for International Research of Photoelectric Technology & Nano-Functional Materials and Application, Institute of Photonics and Photon-Technology, Northwest University, Xi'an, 710127, China
| |
Collapse
|
47
|
Vicente JJ, Khan K, Tillinghast G, McFaline-Figueroa JL, Sancak Y, Stella N. The microtubule targeting agent ST-401 triggers cell death in interphase and prevents the formation of polyploid giant cancer cells. J Transl Med 2024; 22:441. [PMID: 38730481 PMCID: PMC11084142 DOI: 10.1186/s12967-024-05234-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 04/24/2024] [Indexed: 05/12/2024] Open
Abstract
Microtubule targeting agents (MTAs) are commonly prescribed to treat cancers and predominantly kill cancer cells in mitosis. Significantly, some MTA-treated cancer cells escape death in mitosis, exit mitosis and become malignant polyploid giant cancer cells (PGCC). Considering the low number of cancer cells undergoing mitosis in tumor tissues, killing them in interphase may represent a favored antitumor approach. We discovered that ST-401, a mild inhibitor of microtubule (MT) assembly, preferentially kills cancer cells in interphase as opposed to mitosis, a cell death mechanism that avoids the development of PGCC. Single cell RNA sequencing identified mRNA transcripts regulated by ST-401, including mRNAs involved in ribosome and mitochondrial functions. Accordingly, ST-401 induces a transient integrated stress response, reduces energy metabolism, and promotes mitochondria fission. This cell response may underly death in interphase and avoid the development of PGCC. Considering that ST-401 is a brain-penetrant MTA, we validated these results in glioblastoma cell lines and found that ST-401 also reduces energy metabolism and promotes mitochondria fission in GBM sensitive lines. Thus, brain-penetrant mild inhibitors of MT assembly, such as ST-401, that induce death in interphase through a previously unanticipated antitumor mechanism represent a potentially transformative new class of therapeutics for the treatment of GBM.
Collapse
Affiliation(s)
- Juan Jesus Vicente
- Department of Physiology and Biophysics, University of Washington, Health Sciences Building G424, 1705 NE Pacific Str., Seattle, WA, 98195-7280, USA.
| | - Kainat Khan
- Department of Pharmacology, University of Washington, Health Sciences Center F404A, 1959 NE Pacific Str., Seattle, WA, 98195-7280, USA
| | - Grant Tillinghast
- Department of Biomedical Engineering, Columbia University, New York, NY, 10025, USA
| | | | - Yasemin Sancak
- Department of Pharmacology, University of Washington, Health Sciences Center F404A, 1959 NE Pacific Str., Seattle, WA, 98195-7280, USA
| | - Nephi Stella
- Department of Pharmacology, University of Washington, Health Sciences Center F404A, 1959 NE Pacific Str., Seattle, WA, 98195-7280, USA.
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, 98195, USA.
| |
Collapse
|
48
|
Shan P, Ye T, Tang YD, Song H, Wang C, Zhu K, Yang F, Zhang SL, Su PW, Gao S, Zhang H. First total synthesis, antitumor evaluation and target identification of mornaphthoate E: A new tubulin inhibitor template acting on PI3K/Akt signaling pathway. Acta Pharm Sin B 2024; 14:2177-2193. [PMID: 38799630 PMCID: PMC11120283 DOI: 10.1016/j.apsb.2024.02.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 01/29/2024] [Accepted: 02/08/2024] [Indexed: 05/29/2024] Open
Abstract
Mornaphthoate E (MPE) is a prenylated naphthoic acid methyl ester isolated from the roots of a famous Chinese medicinal plant Morinda officinalis and shows remarkable cytotoxicity against several human tumor cell lines. In the current project, the first total synthesis of (±)-MPE was achieved in seven steps and 5.6% overall yield. Then the in vitro anti-tumor activity of MPE was first assessed for both enantiomers in two breast cancer cells, with the levoisomer exerting slightly better potency. The in vivo anti-tumor effect was further verified by applying the racemate in an orthotopic autograft mouse model. Notably, MPE exerted promising anti-metastasis activity both in vitro and in vivo and showed no obvious toxicity on mice at the therapeutic dosage. Mechanistic investigations demonstrated that MPE acted as a tubulin polymerization stabilizer and disturbed the dynamic equilibrium of microtubules via regulating PI3K/Akt signaling. In conclusion, our work has provided a new chemical template for the future design and development of next-generation tubulin-targeting chemotherapies.
Collapse
Affiliation(s)
- Peipei Shan
- Institute of Translational Medicine, the Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Tao Ye
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China
| | - Ying-De Tang
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China
| | - Hui Song
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China
| | - Chao Wang
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China
| | - Kongkai Zhu
- Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Feifei Yang
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China
| | - Shi-Lei Zhang
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215127, China
| | - Pei-Wen Su
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China
| | - Shuanhu Gao
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Hua Zhang
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China
| |
Collapse
|
49
|
Li Y, Guo B, Wang L, Zhou F, Yu Z, Huang Y, Chen R, Zhang M, Zhang K, Zheng L, Jing S, Hong W, Han T. TEDC2 plays an oncogenic role and serves as a therapeutic target of hepatocellular carcinoma. Dig Liver Dis 2024; 56:861-871. [PMID: 37867019 DOI: 10.1016/j.dld.2023.09.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 07/29/2023] [Accepted: 09/29/2023] [Indexed: 10/24/2023]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is one of the most common malignancies and tends to have a poor prognosis due to its insidious onset, difficulty in early diagnosis, and limited treatment options. Tubulin epsilon and delta complex 2 (TEDC2), also known as C16orf59, is implicated in maintaining centriole stability, but the involvement of TEDC2 in HCC remains unknown. This study aimed to investigate the expression profile and potential mechanisms of TEDC2 in HCC. METHODS Multiple RNA sequencing datasets were screened for differentially expressed genes in HCC, and the prognosis-related gene, TEDC2, was further screened as a target gene in this study. The expression of TEDC2 in public datasets and clinical specimens was analyzed, and the involvement of TEDC2 in HCC was investigated by bioinformatic analysis and in vitro experiments. RESULTS TEDC2 levels were elevated in HCC compared to healthy livers. Overexpression of TEDC2 was positively correlated with pathologic stage and histologic grade. In addition, TEDC2 was found to be an independent prognostic predictor. An excellent prognostic model of HCC was successfully constructed with TEDC2 in combination with the TNM stage. Bioinformatic analysis revealed that overexpression of TEDC2 might be associated with impaired tumor immunity in HCC, as evidenced by increased infiltration of T helper 2 (Th2) cells and reduced infiltration of cytotoxic cells. Further studies showed that TP53 mutations regulated TEDC2 expression, and TEDC2 was significantly associated with drug sensitivity. Moreover, overexpression of TEDC2 promoted cell metastasis and proliferation in vitro. CONCLUSION These findings initially suggested a crucial effect of TEDC2 overexpression on HCC tumor progression, suggesting its potential as a novel prognostic and therapeutic target in HCC.
Collapse
Affiliation(s)
- Yuhan Li
- Department of Gastroenterology and Hepatology, Tianjin Union Medical Center, Tianjin Medical University, Department of Histology and Embryology, School of Basic Medical Sciences, Tianjin Union Medical Center affiliated to Nankai University, Tianjin, China
| | - Beichen Guo
- Department of Gastroenterology and Hepatology, Tianjin Union Medical Center, Tianjin Medical University, Department of Histology and Embryology, School of Basic Medical Sciences, Tianjin Union Medical Center affiliated to Nankai University, Tianjin, China
| | - Lewei Wang
- Department of Gastroenterology and Hepatology, Tianjin Union Medical Center, Tianjin Medical University, Department of Histology and Embryology, School of Basic Medical Sciences, Tianjin Union Medical Center affiliated to Nankai University, Tianjin, China
| | - Feng Zhou
- Department of Gastroenterology and Hepatology, Tianjin Union Medical Center, Tianjin Medical University, Department of Histology and Embryology, School of Basic Medical Sciences, Tianjin Union Medical Center affiliated to Nankai University, Tianjin, China
| | - Zhenjun Yu
- Department of Gastroenterology and Hepatology, Tianjin Union Medical Center, Tianjin Medical University, Department of Histology and Embryology, School of Basic Medical Sciences, Tianjin Union Medical Center affiliated to Nankai University, Tianjin, China
| | - Yue Huang
- Department of Gastroenterology and Hepatology, Tianjin Union Medical Center, Tianjin Medical University, Department of Histology and Embryology, School of Basic Medical Sciences, Tianjin Union Medical Center affiliated to Nankai University, Tianjin, China
| | - Rui Chen
- Department of Gastroenterology and Hepatology, Tianjin Union Medical Center, Tianjin Medical University, Department of Histology and Embryology, School of Basic Medical Sciences, Tianjin Union Medical Center affiliated to Nankai University, Tianjin, China
| | - Mengxia Zhang
- Department of Histology and Embryology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Kun Zhang
- Department of Histology and Embryology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Lina Zheng
- Department of Histology and Embryology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Shen Jing
- Tianjin Cancer Institution and Hospital, Tianjin Medical University, Tianjin, China
| | - Wei Hong
- Department of Histology and Embryology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.
| | - Tao Han
- Department of Gastroenterology and Hepatology, Tianjin Union Medical Center, Tianjin Medical University, Tianjin Union Medical Center affiliated to Nankai University, Tianjin, China.
| |
Collapse
|
50
|
Klemt I, Reshetnikov V, Dutta S, Bila G, Bilyy R, Cuartero IC, Hidalgo A, Wünsche A, Böhm M, Wondrak M, Kunz-Schughart LA, Tietze R, Beierlein F, Imhof P, Gensberger-Reigl S, Pischetsrieder M, Körber M, Jost T, Mokhir A. A concept of dual-responsive prodrugs based on oligomerization-controlled reactivity of ester groups: an improvement of cancer cells versus neutrophils selectivity of camptothecin. RSC Med Chem 2024; 15:1189-1197. [PMID: 38665843 PMCID: PMC11042170 DOI: 10.1039/d3md00609c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 01/20/2024] [Indexed: 04/28/2024] Open
Abstract
Many known chemotherapeutic anticancer agents exhibit neutropenia as a dose-limiting side effect. In this paper we suggest a prodrug concept solving this problem for camptothecin (HO-cpt). The prodrug is programmed according to Boolean "AND" logic. In the absence of H2O2 (trigger T1), e.g. in the majority of normal cells, it exists as an inactive oligomer. In cancer cells and in primed neutrophils (high H2O2), the oligomer is disrupted forming intermediate (inactive) lipophilic cationic species. These are accumulated in mitochondria (Mit) of cancer cells, where they are activated by hydrolysis at mitochondrial pH 8 (trigger T2) with formation of camptothecin. In contrast, the intermediates remain stable in neutrophils lacking Mit and therefore a source of T2. In this paper we demonstrated a proof-of-concept. Our prodrug exhibits antitumor activity both in vitro and in vivo, but is not toxic to normal cell and neutrophils in contrast to known single trigger prodrugs and the parent drug HO-cpt.
Collapse
Affiliation(s)
- Insa Klemt
- Department of Chemistry and Pharmacy, Organic Chemistry II, Friedrich-Alexander-University of Erlangen-Nürnberg (FAU) 91058 Erlangen Germany
| | - Viktor Reshetnikov
- Department of Chemistry and Pharmacy, Organic Chemistry II, Friedrich-Alexander-University of Erlangen-Nürnberg (FAU) 91058 Erlangen Germany
| | - Subrata Dutta
- Department of Chemistry and Pharmacy, Organic Chemistry II, Friedrich-Alexander-University of Erlangen-Nürnberg (FAU) 91058 Erlangen Germany
| | - Galyna Bila
- Department of Histology, Cytology and Embryology, Danylo Halytsky Lviv National Medical University 79010 Lviv Ukraine
| | - Rostyslav Bilyy
- Department of Histology, Cytology and Embryology, Danylo Halytsky Lviv National Medical University 79010 Lviv Ukraine
| | - Itziar Cossío Cuartero
- Program of Cardiovascular Regeneration, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC) C. Melchor Fernández Almagro, 3 28029 Madrid Spain
| | - Andrés Hidalgo
- Program of Cardiovascular Regeneration, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC) C. Melchor Fernández Almagro, 3 28029 Madrid Spain
| | - Adrian Wünsche
- Department of Chemistry and Pharmacy, Organic Chemistry II, Friedrich-Alexander-University of Erlangen-Nürnberg (FAU) 91058 Erlangen Germany
| | - Maximilian Böhm
- Department of Chemistry and Pharmacy, Organic Chemistry II, Friedrich-Alexander-University of Erlangen-Nürnberg (FAU) 91058 Erlangen Germany
| | - Marit Wondrak
- OncoRay, National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TU Dresden and Helmholtz-Zentrum Dresden-Rossendorf Dresden Germany
| | - Leoni A Kunz-Schughart
- OncoRay, National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TU Dresden and Helmholtz-Zentrum Dresden-Rossendorf Dresden Germany
- National Center for Tumor Diseases (NCT) Partner Site Dresden Germany
| | - Rainer Tietze
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), FAU University Hospital 91054 Erlangen Germany
| | - Frank Beierlein
- Erlangen National High Performance Computing Center (NHR@FAU), FAU 91058 Erlangen Germany
- Computer-Chemistry-Center, Department of Chemistry and Pharmacy, FAU Germany
| | - Petra Imhof
- Erlangen National High Performance Computing Center (NHR@FAU), FAU 91058 Erlangen Germany
- Computer-Chemistry-Center, Department of Chemistry and Pharmacy, FAU Germany
| | | | | | - Marlies Körber
- Department of Chemistry and Pharmacy, Organic Chemistry II, Friedrich-Alexander-University of Erlangen-Nürnberg (FAU) 91058 Erlangen Germany
| | - Tina Jost
- Department of Radiation Oncology, FAU University Hospital 91054 Erlangen Germany
| | - Andriy Mokhir
- Department of Chemistry and Pharmacy, Organic Chemistry II, Friedrich-Alexander-University of Erlangen-Nürnberg (FAU) 91058 Erlangen Germany
| |
Collapse
|