1
|
Duan DC, Pan G, Liu J, Chen H, Xie T, Long Y, Dai F, Zhang S, Zhou B. Cellular and Intravital Nucleus Imaging by a D-π-A Type of Red-Emitting Two-Photon Fluorescent Probe. Anal Chem 2024. [PMID: 39686748 DOI: 10.1021/acs.analchem.4c04103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
The advancement in fluorescent probe technology for visualizing nuclear morphology and nucleic acid distribution in live cells and in vivo has attracted considerable interest within the biomedical research community, as it offers invaluable insights into cellular dynamics across various physiological and pathological contexts. In this study, we present a novel two-photon nucleus-imaging fluorescent probe called Nu-red, which is a typical donor(D)-π-acceptor(A) rotor composed of the donor (dihydroquinoline) and acceptor (pyridiniumylpentadienitrile) parts linked by a single bond. This probe offers several advantages, including long-wavelength excitation and emission (λex/λem = 610/664 nm), favorable quantum yields (1.35-22.15%), excellent two-photon absorption cross-section (425.92 GM), high selectivity and sensitivity, high DNA-binding affinity (Ka = 3.7 × 107 M-1, comparable to that of the commercial nucleus stain Hoechst 33342), rapid entry into the nucleus (1 min), low cytotoxicity, membrane-permeability, good water solubility, applicability to various cell lines, and compatibility with other commercial probes. Leveraging these aforementioned advantages, Nu-red was successfully employed to visualize cell division in living cells, distinguish abnormal division cells from normal ones, and track morphological changes in the nucleus during cell apoptosis. More notably, Nu-red was utilized to visualize nuclear shrinkage and pyknosis in the brain of a living mouse model of ischemic stroke.
Collapse
Affiliation(s)
- De-Chen Duan
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 Tianshui Street S., Lanzhou, Gansu 730000, China
| | - Gaowei Pan
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, 222 Tianshui Street S., Lanzhou, Gansu 730000, China
| | - Junru Liu
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, 222 Tianshui Street S., Lanzhou, Gansu 730000, China
- College of Medicine, Jiaxing University, 118 Jiahang Road, Jiaxing, Zhejiang 314001, China
| | - Hao Chen
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 Tianshui Street S., Lanzhou, Gansu 730000, China
| | - Tao Xie
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 Tianshui Street S., Lanzhou, Gansu 730000, China
| | - Ying Long
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 Tianshui Street S., Lanzhou, Gansu 730000, China
| | - Fang Dai
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 Tianshui Street S., Lanzhou, Gansu 730000, China
| | - Shengxiang Zhang
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, 222 Tianshui Street S., Lanzhou, Gansu 730000, China
| | - Bo Zhou
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 Tianshui Street S., Lanzhou, Gansu 730000, China
| |
Collapse
|
2
|
Shahib AK, Rastegar M, van Wijnen AJ, Davie JR. Neurodevelopmental functions and activities of the KAT3 class of lysine acetyltransferases. Biochem Cell Biol 2024; 102:430-447. [PMID: 39293094 DOI: 10.1139/bcb-2024-0156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2024] Open
Abstract
The human lysine acetyltransferases KAT3A (CREBBP) and KAT3B (EP300) are essential enzymes in gene regulation in the nucleus. Their ubiquitous expression in metazoan cell types controls cell proliferation and differentiation during development. This comprehensive review delves into the biological roles of KAT3A and KAT3B in neurodevelopment, shedding light on how alterations in their regulation or activity can potentially contribute to a spectrum of neurodegenerative diseases (e.g., Huntington's and Alzheimer's). We explore the pathophysiological implications of KAT3 function loss in these disorders, considering their conserved protein domains and biochemical functions in chromatin regulation. The discussion also underscores the crucial role of KAT3 proteins and their substrates in supporting the integration of key cell signaling pathways. Furthermore, the narrative highlights the interdependence of KAT3-mediated lysine acetylation with lysine methylation and arginine methylation. From a cellular perspective, KAT3-dependent signal integration at subnuclear domains is mediated by liquid-liquid phase separation in response to KAT3-mediated lysine acetylation. The disruption of these finely tuned regulatory processes underscores their pathological roles in neurodegeneration. This review also points to the exciting potential for future research in this field, inspiring further investigation and discovery in the area of neurodevelopment and neurodegenerative diseases.
Collapse
Affiliation(s)
- Ashraf K Shahib
- Department of Biochemistry and Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0W2, Canada
| | - Mojgan Rastegar
- Department of Biochemistry and Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0W2, Canada
| | - Andre J van Wijnen
- Department of Biochemistry, University of Vermont Larner College of Medicine, Burlington, VT, USA
| | - James R Davie
- Department of Biochemistry and Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0W2, Canada
- Paul Albrechtsen Research Institute, CancerCare Manitoba, Winnipeg, MB R3E 0V9, Canada
| |
Collapse
|
3
|
Zhang X, Yuan L, Zhang W, Zhang Y, Wu Q, Li C, Wu M, Huang Y. Liquid-liquid phase separation in diseases. MedComm (Beijing) 2024; 5:e640. [PMID: 39006762 PMCID: PMC11245632 DOI: 10.1002/mco2.640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 05/31/2024] [Accepted: 06/03/2024] [Indexed: 07/16/2024] Open
Abstract
Liquid-liquid phase separation (LLPS), an emerging biophysical phenomenon, can sequester molecules to implement physiological and pathological functions. LLPS implements the assembly of numerous membraneless chambers, including stress granules and P-bodies, containing RNA and protein. RNA-RNA and RNA-protein interactions play a critical role in LLPS. Scaffolding proteins, through multivalent interactions and external factors, support protein-RNA interaction networks to form condensates involved in a variety of diseases, particularly neurodegenerative diseases and cancer. Modulating LLPS phenomenon in multiple pathogenic proteins for the treatment of neurodegenerative diseases and cancer could present a promising direction, though recent advances in this area are limited. Here, we summarize in detail the complexity of LLPS in constructing signaling pathways and highlight the role of LLPS in neurodegenerative diseases and cancers. We also explore RNA modifications on LLPS to alter diseases progression because these modifications can influence LLPS of certain proteins or the formation of stress granules, and discuss the possibility of proper manipulation of LLPS process to restore cellular homeostasis or develop therapeutic drugs for the eradication of diseases. This review attempts to discuss potential therapeutic opportunities by elaborating on the connection between LLPS, RNA modification, and their roles in diseases.
Collapse
Affiliation(s)
- Xinyue Zhang
- College of Life and Health Sciences Northeastern University Shenyang China
| | - Lin Yuan
- Laboratory of Research in Parkinson's Disease and Related Disorders Health Sciences Institute China Medical University Shenyang China
| | - Wanlu Zhang
- College of Life and Health Sciences Northeastern University Shenyang China
| | - Yi Zhang
- College of Life and Health Sciences Northeastern University Shenyang China
| | - Qun Wu
- Department of Pediatrics Ruijin Hospital Affiliated to Shanghai Jiaotong University School of Medicine Shanghai China
| | - Chunting Li
- College of Life and Health Sciences Northeastern University Shenyang China
| | - Min Wu
- Wenzhou Institute University of Chinese Academy of Sciences Wenzhou Zhejiang China
- The Joint Research Center Affiliated Xiangshan Hospital of Wenzhou Medical University Ningbo China
| | - Yongye Huang
- College of Life and Health Sciences Northeastern University Shenyang China
- Key Laboratory of Bioresource Research and Development of Liaoning Province College of Life and Health Sciences Northeastern University Shenyang China
| |
Collapse
|
4
|
Huang Q, Zhao R, Xu L, Hao X, Tao S. Treatment of multiple myeloma with selinexor: a review. Ther Adv Hematol 2024; 15:20406207231219442. [PMID: 38186637 PMCID: PMC10771077 DOI: 10.1177/20406207231219442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 11/20/2023] [Indexed: 01/09/2024] Open
Abstract
Over the last 20 years, breakthroughs in accessible therapies for the treatment of multiple myeloma (MM) have been made. Nevertheless, patients with MM resistant to immunomodulatory drugs, proteasome inhibitors, and anti-CD38 monoclonal antibodies have a very poor outcome. Therefore, it is necessary to explore new drugs for the treatment of MM. This review summarizes the mechanism of action of selinexor, relevant primary clinical trials, and recent developments in both patients with relapsed/refractory myeloma and patients with newly diagnosed myeloma. Selinexor may be useful for the treatment of refractory MM.
Collapse
Affiliation(s)
- Qianlei Huang
- Department of Hematology, The First Affiliated Hospital of Hainan Medical University, Hainan Province Clinical Medical Center, Haikou, China
| | - Ranran Zhao
- Department of Hematology, The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Lu Xu
- Department of Hematology, The First Affiliated Hospital of Hainan Medical University, Hainan Province Clinical Medical Center, Haikou, China
| | - Xinbao Hao
- Department of Hematology, The First Affiliated Hospital of Hainan Medical University, Hainan Province Clinical Medical Center, Haikou, China
| | - Shi Tao
- Department of Hematology, The First Affiliated Hospital of Hainan Medical University, Hainan Province Clinical Medical Center, 31 Longhua Road, Haikou 570102, China
| |
Collapse
|
5
|
Kubickova A, De Sanctis JB, Hajduch M. Isoform-Directed Control of c-Myc Functions: Understanding the Balance from Proliferation to Growth Arrest. Int J Mol Sci 2023; 24:17524. [PMID: 38139353 PMCID: PMC10743581 DOI: 10.3390/ijms242417524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/07/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023] Open
Abstract
The transcription factor c-Myc, a key regulator of cellular processes, has long been associated with roles in cell proliferation and apoptosis. This review analyses the multiple functions of c-Myc by examining the different c-Myc isoforms in detail. The impact of different c-Myc isoforms, in particular p64 and p67, on fundamental biological processes remains controversial. It is necessary to investigate the different isoforms in the context of proto-oncogenesis. The current knowledge base suggests that neoplastic lesions may possess the means for self-destruction via increased c-Myc activity. This review presents the most relevant information on the c-Myc locus and focuses on a number of isoforms, including p64 and p67. This compilation provides a basis for the development of therapeutic approaches that target the potent growth arresting and pro-apoptotic functions of c-Myc. This information can then be used to develop targeted interventions against specific isoforms with the aim of shifting the oncogenic effects of c-Myc from pro-proliferative to pro-apoptotic. The research summarised in this review can deepen our understanding of how c-Myc activity contributes to different cellular responses, which will be crucial in developing effective therapeutic strategies; for example, isoform-specific approaches may allow for precise modulation of c-Myc function.
Collapse
Affiliation(s)
- Agata Kubickova
- Institute of Molecular and Translational Medicine, Palacky University and University Hospital Olomouc, Hnevotinska 1333/5, 77900 Olomouc, Czech Republic; (A.K.); (J.B.D.S.)
- Institute of Molecular and Translational Medicine, Czech Advanced Technology and Research Institute, Palacky University in Olomouc, Hnevotinska 1333/5, 77900 Olomouc, Czech Republic
| | - Juan Bautista De Sanctis
- Institute of Molecular and Translational Medicine, Palacky University and University Hospital Olomouc, Hnevotinska 1333/5, 77900 Olomouc, Czech Republic; (A.K.); (J.B.D.S.)
- Institute of Molecular and Translational Medicine, Czech Advanced Technology and Research Institute, Palacky University in Olomouc, Hnevotinska 1333/5, 77900 Olomouc, Czech Republic
| | - Marian Hajduch
- Institute of Molecular and Translational Medicine, Palacky University and University Hospital Olomouc, Hnevotinska 1333/5, 77900 Olomouc, Czech Republic; (A.K.); (J.B.D.S.)
- Institute of Molecular and Translational Medicine, Czech Advanced Technology and Research Institute, Palacky University in Olomouc, Hnevotinska 1333/5, 77900 Olomouc, Czech Republic
| |
Collapse
|
6
|
Stiff PJ, Mehrotra S, Potkul RK, Banerjee S, Walker C, Drakes ML. Selinexor in Combination with Decitabine Attenuates Ovarian Cancer in Mice. Cancers (Basel) 2023; 15:4541. [PMID: 37760508 PMCID: PMC10526280 DOI: 10.3390/cancers15184541] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/07/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
BACKGROUND High-grade serous ovarian cancer is a lethal gynecologic disease. Conventional therapies, such as platinum-based chemotherapy, are rendered inadequate for disease management as most advanced disease patients develop resistance to this therapy and soon relapse, leading to poor prognosis. Novel immunotherapy and targeted therapy are currently under investigation as treatment options for ovarian cancer, but so far with little success. Epigenetic changes, such as aberrant DNA methylation, have been reported in resistance to platinum-based therapy. Decitabine is a hypomethylating agent which is effective against platinum-resistant disease and also exhibits several anti-tumor immune functions. Selinexor is a selective inhibitor of nuclear protein export. It restored platinum sensitivity in patient-derived ovarian cancer cell lines and is currently in clinical trials for the treatment of platinum-resistant ovarian cancer. We hypothesized that these two agents used in combination could elicit more potent anti-tumor immune responses in vivo than either agent used alone. METHODS These studies were designed to investigate the efficacy of these two agents used in combination to treat ovarian cancer by assessing murine models for changes in disease pathology and in anti-tumor responses. RESULTS Decitabine priming followed by selinexor treatment significantly limited ascites formation and tumor size. This combination of agents also promoted T cell effector function as measured by granzyme B secretion. Treatment of mice with decitabine and selinexor led to the significant release of a broader range of macrophage and T cell cytokines and chemokines above control PBS and vehicle and above decitabine or selinexor treatment alone. CONCLUSIONS These results reveal crucial information for the design of clinical trials which may advance therapy outcomes in ovarian cancer.
Collapse
Affiliation(s)
- Patrick J. Stiff
- Cardinal Bernardin Cancer Center, Department of Medicine, Loyola University Chicago, Maywood, IL 60153, USA
| | | | - Ronald K. Potkul
- Department of Obstetrics and Gynecology, Loyola University Chicago, Maywood, IL 60153, USA
| | - Swarnali Banerjee
- Department of Mathematics and Statistics, Loyola University Chicago, Chicago, IL 60660, USA
| | | | - Maureen L. Drakes
- Cardinal Bernardin Cancer Center, Department of Medicine, Loyola University Chicago, Maywood, IL 60153, USA
| |
Collapse
|
7
|
Altan M, Tu J, Milton DR, Yilmaz B, Tian Y, Fossella FV, Mott FE, Blumenschein GR, Stephen B, Karp DD, Meric-Bernstam F, Heymach JV, Naing A. Safety, tolerability, and clinical activity of selinexor in combination with pembrolizumab in treatment of metastatic non-small cell lung cancer. Cancer 2023; 129:2685-2693. [PMID: 37129197 DOI: 10.1002/cncr.34820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 02/20/2023] [Accepted: 03/09/2023] [Indexed: 05/03/2023]
Abstract
BACKGROUND In lung cancer, overexpression of nuclear export proteins can result in inactivation of critical tumor suppressor proteins and cell-cycle regulators. Selective suppression of nuclear export proteins has immunomodulatory activities. Here, clinical safety and early efficacy data are presented on the combination of pembrolizumab and an oral selective nuclear export inhibitor, selinexor, for the treatment of metastatic non-small cell lung cancer (mNSCLC). METHODS The primary objective of this prospective investigator-initiated study was to determine the safety and tolerability of selinexor in combination with pembrolizumab in patients with mNSCLC. Secondary objectives included determination of objective tumor response rate, disease control rate, and progression-free survival duration. RESULTS A total of 17 patients were included in the final analysis. Fifteen (88%) received more than two lines of prior systemic therapy and 10 (59%) had prior exposure to anti-PD-1/programmed death-ligand 1 (PD-L1) therapy. The median age was 67.5 years. Ten patients had grade ≥3 adverse events related to selinexor treatment. Responses to treatment occurred in patients who did and did not undergo previous anti-PD-1/PD-L1 therapy and in patients with activating driver mutations. The median overall survival and progression-free survival were 11.4 months (95% CI, 3.4-19.8 months) and 3.0 months (95% CI, 1.7-5.7 months), respectively. The overall response rate was 18% and the 6-month disease control rate was 24%. CONCLUSIONS Selinexor in combination with pembrolizumab demonstrated promising antitumor activity in patients with mNSCLC, including those who had previously received anti-PD-1/PD-L1 therapy. The therapy-related toxic effects were consistent with the prior safety data for both drugs, and no overlapping toxic effects were observed. TRIAL REGISTRATION ClinicalTrials.gov identifier: NCT02419495. PLAIN LANGUAGE SUMMARY New strategies to prevent or reverse resistance to immune checkpoint inhibitors are under investigation. Selective inhibitors of nuclear export proteins, such as selinexor, can induce restoration of tumor-suppressing pathways and induce potent immunomodulatory activities. This article contains the clinical safety and early efficacy data on the combination of pembrolizumab and selinexor in treatment of metastatic non-small cell lung cancer.
Collapse
Affiliation(s)
- Mehmet Altan
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Janet Tu
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Denái R Milton
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Bulent Yilmaz
- Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Yanyan Tian
- Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Frank V Fossella
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Frank E Mott
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - George R Blumenschein
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Bettzy Stephen
- Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Daniel D Karp
- Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Funda Meric-Bernstam
- Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - John V Heymach
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Aung Naing
- Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
8
|
Zou Y, Zheng H, Ning Y, Yang Y, Wen Q, Fan S. New insights into the important roles of phase seperation in the targeted therapy of lung cancer. Cell Biosci 2023; 13:150. [PMID: 37580790 PMCID: PMC10426191 DOI: 10.1186/s13578-023-01101-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 08/04/2023] [Indexed: 08/16/2023] Open
Abstract
Lung cancer is a complex and heterogeneous disease characterized by abnormal growth and proliferation of lung cells. It is the leading cause of cancer-related deaths worldwide, accounting for approximately 18% of all cancer deaths. In recent years, targeted therapy has emerged as a promising approach to treat lung cancer, which involves the use of drugs that selectively target specific molecules or signaling pathways that are critical for the growth and survival of cancer cells. Liquid-liquid phase separation (LLPS) is a fundamental biological process that occurs when proteins and other biomolecules separate into distinct liquid phases in cells. LLPS is essential for various cellular functions, including the formation of membraneless organelles, the regulation of gene expression, and the response to stress and other stimuli. Recent studies have shown that LLPS plays a crucial role in targeted therapy of lung cancer, including the sequestration of oncogenic proteins and the development of LLPS-based drug delivery systems. Understanding the mechanisms of LLPS in these processes could provide insights into new therapeutic strategies to overcome drug resistance in lung cancer cells.
Collapse
Affiliation(s)
- Ying Zou
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Hongmei Zheng
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Yue Ning
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Yang Yang
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Qiuyuan Wen
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Songqing Fan
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China.
| |
Collapse
|
9
|
Fritz AJ, Ghule PN, Toor R, Dillac L, Perelman J, Boyd J, Lian JB, Gordon JA, Frietze S, Van Wijnen A, Stein JL, Stein GS. Spatiotemporal Epigenetic Control of the Histone Gene Chromatin Landscape during the Cell Cycle. Crit Rev Eukaryot Gene Expr 2023; 33:85-97. [PMID: 37017672 PMCID: PMC10826887 DOI: 10.1615/critreveukaryotgeneexpr.2022046190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Higher-order genomic organization supports the activation of histone genes in response to cell cycle regulatory cues that epigenetically mediates stringent control of transcription at the G1/S-phase transition. Histone locus bodies (HLBs) are dynamic, non-membranous, phase-separated nuclear domains where the regulatory machinery for histone gene expression is organized and assembled to support spatiotemporal epigenetic control of histone genes. HLBs provide molecular hubs that support synthesis and processing of DNA replication-dependent histone mRNAs. These regulatory microenvironments support long-range genomic interactions among non-contiguous histone genes within a single topologically associating domain (TAD). HLBs respond to activation of the cyclin E/CDK2/NPAT/HINFP pathway at the G1/S transition. HINFP and its coactivator NPAT form a complex within HLBs that controls histone mRNA transcription to support histone protein synthesis and packaging of newly replicated DNA. Loss of HINFP compromises H4 gene expression and chromatin formation, which may result in DNA damage and impede cell cycle progression. HLBs provide a paradigm for higher-order genomic organization of a subnuclear domain that executes an obligatory cell cycle-controlled function in response to cyclin E/CDK2 signaling. Understanding the coordinately and spatiotemporally organized regulatory programs in focally defined nuclear domains provides insight into molecular infrastructure for responsiveness to cell signaling pathways that mediate biological control of growth, differentiation phenotype, and are compromised in cancer.
Collapse
Affiliation(s)
- Andrew J. Fritz
- Department of Biochemistry, University of Vermont, Burlington, Vermont, USA
- University of Vermont Cancer Center, Burlington, Vermont, USA
| | - Prachi N. Ghule
- Department of Biochemistry, University of Vermont, Burlington, Vermont, USA
- University of Vermont Cancer Center, Burlington, Vermont, USA
| | - Rabail Toor
- Department of Biochemistry, University of Vermont, Burlington, Vermont, USA
- University of Vermont Cancer Center, Burlington, Vermont, USA
| | - Louis Dillac
- Department of Biochemistry, University of Vermont, Burlington, Vermont, USA
- University of Vermont Cancer Center, Burlington, Vermont, USA
| | - Jonah Perelman
- Department of Biochemistry, University of Vermont, Burlington, Vermont, USA
| | - Joseph Boyd
- College of Nursing and Health Sciences, University of Vermont, Burlington, Vermont, USA
| | - Jane B. Lian
- Department of Biochemistry, University of Vermont, Burlington, Vermont, USA
- University of Vermont Cancer Center, Burlington, Vermont, USA
| | - Johnathan A.R. Gordon
- Department of Biochemistry, University of Vermont, Burlington, Vermont, USA
- University of Vermont Cancer Center, Burlington, Vermont, USA
| | - Seth Frietze
- University of Vermont Cancer Center, Burlington, Vermont, USA
- College of Nursing and Health Sciences, University of Vermont, Burlington, Vermont, USA
| | - Andre Van Wijnen
- Department of Biochemistry, University of Vermont, Burlington, Vermont, USA
| | - Janet L. Stein
- Department of Biochemistry, University of Vermont, Burlington, Vermont, USA
- University of Vermont Cancer Center, Burlington, Vermont, USA
| | - Gary S. Stein
- Department of Biochemistry, University of Vermont, Burlington, Vermont, USA
- University of Vermont Cancer Center, Burlington, Vermont, USA
| |
Collapse
|
10
|
Human Enzyme PADI4 Binds to the Nuclear Carrier Importin α3. Cells 2022; 11:cells11142166. [PMID: 35883608 PMCID: PMC9319256 DOI: 10.3390/cells11142166] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/13/2022] [Accepted: 07/08/2022] [Indexed: 12/18/2022] Open
Abstract
PADI4 is a peptidyl-arginine deiminase (PADI) involved in the conversion of arginine to citrulline. PADI4 is present in macrophages, monocytes, granulocytes, and several cancer cells. It is the only PADI family member observed within both the nucleus and the cytoplasm. PADI4 has a predicted nuclear localization sequence (NLS) comprising residues Pro56 to Ser83, to allow for nuclear translocation. Recent predictors also suggest that the region Arg495 to Ile526 is a possible NLS. To understand how PADI4 is involved in cancer, we studied the ability of intact PADI4 to bind importin α3 (Impα3), a nuclear transport factor that plays tumor-promoting roles in several cancers, and its truncated species (ΔImpα3) without the importin-binding domain (IBB), by using fluorescence, circular dichroism (CD), and isothermal titration calorimetry (ITC). Furthermore, the binding of two peptides, encompassing the first and the second NLS regions, was also studied using the same methods and molecular docking simulations. PADI4 interacted with both importin species, with affinity constants of ~1–5 µM. The isolated peptides also interacted with both importins. The molecular simulations predict that the anchoring of both peptides takes place in the major binding site of Impα3 for the NLS of cargo proteins. These findings suggest that both NLS regions were essentially responsible for the binding of PADI4 to the two importin species. Our data are discussed within the framework of a cell mechanism of nuclear transport that is crucial in cancer.
Collapse
|
11
|
Sukocheva OA, Lukina E, Friedemann M, Menschikowski M, Hagelgans A, Aliev G. The crucial role of epigenetic regulation in breast cancer anti-estrogen resistance: Current findings and future perspectives. Semin Cancer Biol 2022; 82:35-59. [PMID: 33301860 DOI: 10.1016/j.semcancer.2020.12.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/22/2020] [Accepted: 12/03/2020] [Indexed: 02/07/2023]
Abstract
Breast cancer (BC) cell de-sensitization to Tamoxifen (TAM) or other selective estrogen receptor (ER) modulators (SERM) is a complex process associated with BC heterogeneity and the transformation of ER signalling. The most influential resistance-related mechanisms include modifications in ER expression and gene regulation patterns. During TAM/SERM treatment, epigenetic mechanisms can effectively silence ER expression and facilitate the development of endocrine resistance. ER status is efficiently regulated by specific epigenetic tools including hypermethylation of CpG islands within ER promoters, increased histone deacetylase activity in the ER promoter, and/or translational repression by miRNAs. Over-methylation of the ER α gene (ESR1) promoter by DNA methyltransferases was associated with poor prognosis and indicated the development of resistance. Moreover, BC progression and spreading were marked by transformed chromatin remodelling, post-translational histone modifications, and expression of specific miRNAs and/or long non-coding RNAs. Therefore, targeted inhibition of histone acetyltransferases (e.g. MYST3), deacetylases (e.g. HDAC1), and/or demethylases (e.g. lysine-specific demethylase LSD1) was shown to recover and increase BC sensitivity to anti-estrogens. Indicated as a powerful molecular instrument, the administration of epigenetic drugs can regain ER expression along with the activation of tumour suppressor genes, which can in turn prevent selection of resistant cells and cancer stem cell survival. This review examines recent advances in the epigenetic regulation of endocrine drug resistance and evaluates novel anti-resistance strategies. Underlying molecular mechanisms of epigenetic regulation will be discussed, emphasising the utilization of epigenetic enzymes and their inhibitors to re-program irresponsive BCs.
Collapse
Affiliation(s)
- Olga A Sukocheva
- Discipline of Health Sciences, College of Nursing and Health Sciences, Flinders University, Bedford Park, South Australia, 5042, Australia.
| | - Elena Lukina
- Discipline of Biology, College of Sciences, Flinders University, Bedford Park, South Australia, 5042, Australia
| | - Markus Friedemann
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital `Carl Gustav Carus`, Technical University of Dresden, Dresden 01307, Germany
| | - Mario Menschikowski
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital `Carl Gustav Carus`, Technical University of Dresden, Dresden 01307, Germany
| | - Albert Hagelgans
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital `Carl Gustav Carus`, Technical University of Dresden, Dresden 01307, Germany
| | - Gjumrakch Aliev
- Sechenov First Moscow State Medical University (Sechenov University), Moscow, 119991, Russia; Institute of Physiologically Active Compounds, Russian Academy of Sciences, Chernogolovka, 142432, Russia; Federal State Budgetary Institution «Research Institute of Human Morphology», 3, Tsyurupy Str., Moscow, 117418, Russian Federation; GALLY International Research Institute, San Antonio, TX, 78229, USA.
| |
Collapse
|
12
|
Fritz AJ, El Dika M, Toor RH, Rodriguez PD, Foley SJ, Ullah R, Nie D, Banerjee B, Lohese D, Glass KC, Frietze S, Ghule PN, Heath JL, Imbalzano AN, van Wijnen A, Gordon J, Lian JB, Stein JL, Stein GS, Stein GS. Epigenetic-Mediated Regulation of Gene Expression for Biological Control and Cancer: Cell and Tissue Structure, Function, and Phenotype. Results Probl Cell Differ 2022; 70:339-373. [PMID: 36348114 PMCID: PMC9753575 DOI: 10.1007/978-3-031-06573-6_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Epigenetic gene regulatory mechanisms play a central role in the biological control of cell and tissue structure, function, and phenotype. Identification of epigenetic dysregulation in cancer provides mechanistic into tumor initiation and progression and may prove valuable for a variety of clinical applications. We present an overview of epigenetically driven mechanisms that are obligatory for physiological regulation and parameters of epigenetic control that are modified in tumor cells. The interrelationship between nuclear structure and function is not mutually exclusive but synergistic. We explore concepts influencing the maintenance of chromatin structures, including phase separation, recognition signals, factors that mediate enhancer-promoter looping, and insulation and how these are altered during the cell cycle and in cancer. Understanding how these processes are altered in cancer provides a potential for advancing capabilities for the diagnosis and identification of novel therapeutic targets.
Collapse
Affiliation(s)
- Andrew J. Fritz
- University of Vermont, UVM Cancer Center, Larner College of Medicine, Department of Biochemistry, Burlington, VT 05405
| | - Mohammed El Dika
- University of Vermont, UVM Cancer Center, Larner College of Medicine, Department of Biochemistry, Burlington, VT 05405
| | - Rabail H. Toor
- University of Vermont, UVM Cancer Center, Larner College of Medicine, Department of Biochemistry, Burlington, VT 05405
| | | | - Stephen J. Foley
- University of Vermont, UVM Cancer Center, Larner College of Medicine, Department of Biochemistry, Burlington, VT 05405
| | - Rahim Ullah
- University of Vermont, UVM Cancer Center, Larner College of Medicine, Department of Biochemistry, Burlington, VT 05405
| | - Daijing Nie
- University of Vermont, UVM Cancer Center, Larner College of Medicine, Department of Biochemistry, Burlington, VT 05405
| | - Bodhisattwa Banerjee
- University of Vermont, UVM Cancer Center, Larner College of Medicine, Department of Biochemistry, Burlington, VT 05405
| | - Dorcas Lohese
- University of Vermont, UVM Cancer Center, Larner College of Medicine, Department of Biochemistry, Burlington, VT 05405
| | - Karen C. Glass
- University of Vermont, UVM Cancer Center, Larner College of Medicine, Department of Pharmacology, Burlington, VT 05405
| | - Seth Frietze
- University of Vermont, College of Nursing and Health Sciences, Burlington, VT 05405
| | - Prachi N. Ghule
- University of Vermont, UVM Cancer Center, Larner College of Medicine, Department of Biochemistry, Burlington, VT 05405
| | - Jessica L. Heath
- University of Vermont, UVM Cancer Center, Larner College of Medicine, Department of Biochemistry, Burlington, VT 05405,University of Vermont, Larner College of Medicine, Department of Pediatrics, Burlington, VT 05405
| | - Anthony N. Imbalzano
- UMass Chan Medical School, Department of Biochemistry and Molecular Biotechnology, Worcester, MA 01605
| | - Andre van Wijnen
- University of Vermont, UVM Cancer Center, Larner College of Medicine, Department of Biochemistry, Burlington, VT 05405
| | - Jonathan Gordon
- University of Vermont, UVM Cancer Center, Larner College of Medicine, Department of Biochemistry, Burlington, VT 05405
| | - Jane B. Lian
- University of Vermont, UVM Cancer Center, Larner College of Medicine, Department of Biochemistry, Burlington, VT 05405
| | - Janet L. Stein
- University of Vermont, UVM Cancer Center, Larner College of Medicine, Department of Biochemistry, Burlington, VT 05405
| | - Gary S. Stein
- University of Vermont, UVM Cancer Center, Larner College of Medicine, Department of Biochemistry, Burlington, VT 05405
| | | |
Collapse
|
13
|
Verma AH, Ganesh S, Venkatakrishnan K, Tan B. Self-functional gold nanoprobes for intra-nuclear epigenomic monitoring of cancer stem-like cells. Biosens Bioelectron 2022; 195:113644. [PMID: 34571478 DOI: 10.1016/j.bios.2021.113644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 09/10/2021] [Accepted: 09/13/2021] [Indexed: 11/02/2022]
Abstract
Cancer epigenomic-environment is a core center of a tumor's genetic and epigenetic configuration. Surveying epigenomic-environment of cancer stem-like cells (CSC) is vital for developing novel diagnostic methods and improving current therapies since CSCs are among the most challenging clinical hurdles. To date, there exists no technique which can successfully monitor the epigenomics of CSC. Here, we have developed unique sub-10 nm Self-functional Gold Nanoprobes (GNP) as a CSC epigenomic monitoring platform that can easily maneuver into the nucleus while not producing any conformal changes to the genomic DNA. The GNP was synthesized using physical synthesis method of pulsed laser multiphoton ionization, which enabled the shrinking of GNP to 2.69 nm which helped us achieve two critical parameters for epigenomics monitoring: efficient nuclear uptake (98%) without complex functionalization and no conformational nuclear changes. The GNP efficiently generated SERS for structural, functional, molecular epigenetics, and nuclear proteomics in preclinical models of breast and lung CSCs. To the best of knowledge, this study is first to utilize the intranuclear epigenomic signal to distinguish between CSC from different tissues with >99% accuracy and specificity. Our findings are anticipated to help advance real-time epigenomics surveillance technologies such as nucleus-targeted drug surveillance and epigenomic prognosis and diagnostics.
Collapse
Affiliation(s)
- Anish Hiresha Verma
- Keenan Research Center for Biomedical Science, Unity Health Toronto, Toronto, Ontario, M5B 1W8, Canada; Institute for Biomedical Engineering, Science and Technology (I BEST), Partnership Between Ryerson University and St. Michael's Hospital, Toronto, Ontario, M5B 1W8, Canada; Ultrashort Laser Nanomanufacturing Research Facility, Faculty of Engineering and Architectural Sciences, Ryerson University, 350 Victoria Street, Toronto, ON, M5B 2K3, Canada; Nano-Bio Interface Facility, Faculty of Engineering and Architectural Sciences, Ryerson University, 350 Victoria Street, Toronto, ON, M5B 2K3, Canada
| | - Swarna Ganesh
- Keenan Research Center for Biomedical Science, Unity Health Toronto, Toronto, Ontario, M5B 1W8, Canada; Institute for Biomedical Engineering, Science and Technology (I BEST), Partnership Between Ryerson University and St. Michael's Hospital, Toronto, Ontario, M5B 1W8, Canada; Ultrashort Laser Nanomanufacturing Research Facility, Faculty of Engineering and Architectural Sciences, Ryerson University, 350 Victoria Street, Toronto, ON, M5B 2K3, Canada; Nano-Bio Interface Facility, Faculty of Engineering and Architectural Sciences, Ryerson University, 350 Victoria Street, Toronto, ON, M5B 2K3, Canada
| | - Krishnan Venkatakrishnan
- Keenan Research Center for Biomedical Science, Unity Health Toronto, Toronto, Ontario, M5B 1W8, Canada; Institute for Biomedical Engineering, Science and Technology (I BEST), Partnership Between Ryerson University and St. Michael's Hospital, Toronto, Ontario, M5B 1W8, Canada; Ultrashort Laser Nanomanufacturing Research Facility, Faculty of Engineering and Architectural Sciences, Ryerson University, 350 Victoria Street, Toronto, ON, M5B 2K3, Canada; Nano-Bio Interface Facility, Faculty of Engineering and Architectural Sciences, Ryerson University, 350 Victoria Street, Toronto, ON, M5B 2K3, Canada.
| | - Bo Tan
- Keenan Research Center for Biomedical Science, Unity Health Toronto, Toronto, Ontario, M5B 1W8, Canada; Institute for Biomedical Engineering, Science and Technology (I BEST), Partnership Between Ryerson University and St. Michael's Hospital, Toronto, Ontario, M5B 1W8, Canada; Nano-characterization Laboratory, Faculty of Engineering and Architectural Sciences, Ryerson University, 350 Victoria Street, Toronto, Ontario, M5B 2K3, Canada; Nano-Bio Interface Facility, Faculty of Engineering and Architectural Sciences, Ryerson University, 350 Victoria Street, Toronto, ON, M5B 2K3, Canada
| |
Collapse
|
14
|
Kundu S, Ray MD, Sharma A. Interplay between genome organization and epigenomic alterations of pericentromeric DNA in cancer. J Genet Genomics 2021; 48:184-197. [PMID: 33840602 DOI: 10.1016/j.jgg.2021.02.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 02/07/2021] [Accepted: 02/20/2021] [Indexed: 12/16/2022]
Abstract
In eukaryotic genome biology, the genomic organization inside the three-dimensional (3D) nucleus is highly complex, and whether this organization governs gene expression is poorly understood. Nuclear lamina (NL) is a filamentous meshwork of proteins present at the lining of inner nuclear membrane that serves as an anchoring platform for genome organization. Large chromatin domains termed as lamina-associated domains (LADs), play a major role in silencing genes at the nuclear periphery. The interaction of the NL and genome is dynamic and stochastic. Furthermore, many genes change their positions during developmental processes or under disease conditions such as cancer, to activate certain sorts of genes and/or silence others. Pericentromeric heterochromatin (PCH) is mostly in the silenced region within the genome, which localizes at the nuclear periphery. Studies show that several genes located at the PCH are aberrantly expressed in cancer. The interesting question is that despite being localized in the pericentromeric region, how these genes still manage to overcome pericentromeric repression. Although epigenetic mechanisms control the expression of the pericentromeric region, recent studies about genome organization and genome-nuclear lamina interaction have shed light on a new aspect of pericentromeric gene regulation through a complex and coordinated interplay between epigenomic remodeling and genomic organization in cancer.
Collapse
Affiliation(s)
- Subhadip Kundu
- Laboratory of Chromatin and Cancer Epigenetics, Department of Biochemistry, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India
| | - M D Ray
- Department of Surgical Oncology, IRCH, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India
| | - Ashok Sharma
- Laboratory of Chromatin and Cancer Epigenetics, Department of Biochemistry, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India.
| |
Collapse
|
15
|
Liu LY, Zhao Y, Zhang N, Wang KN, Tian M, Pan Q, Lin W. Ratiometric Fluorescence Imaging for the Distribution of Nucleic Acid Content in Living Cells and Human Tissue Sections. Anal Chem 2021; 93:1612-1619. [PMID: 33381958 DOI: 10.1021/acs.analchem.0c04064] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The misregulation of nucleic acids behavior leads to cell dysfunction and induces serious diseases. A ratiometric fluorescence probe is a powerful tool to study the dynamic behavior and function relationships of nucleic acids. However, currently, no such effective probe has been reported for in situ, real-time tracking of nucleic acids in living cells and tissue sections. Herein, the unique probe named QPP-AS was rationally designed for ratiometric fluorescence response to nucleic acids through skillful regulation of the intramolecular charge-transfer capabilities of the electron acceptor and donor. Encouraged by the advantages of the selective nucleic acid response, ideal biocompatibility, and high signal-to-noise ratio, QPP-AS has been applied for in situ, real-time ratiometric fluorescence imaging of nucleic acids in living cells for the first time. Furthermore, we have demonstrated that QPP-AS is capable of visualizing the dynamic behavior of nucleic acids during different cellular processes (e.g., cell division and apoptosis) by ratiometric fluorescence imaging. More significantly, QPP-AS has been successfully used for ratiometric fluorescence imaging of nucleic acids in human tissue sections, which provides not only the cell contour, nuclear morphology, and nuclear-plasma ratio but also the nucleic acid content information and may greatly improve accuracy in clinicopathological diagnosis.
Collapse
Affiliation(s)
- Liu-Yi Liu
- Shunde Hospital of Southern Medical University (The First People's Hospital of Shunde), Foshan, Guangdong 528308, P.R. China.,MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, P.R. China
| | - Yuping Zhao
- Institute of Optical Materials and Chemical Biology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P.R. China.,Institute of Fluorescent Probes for Biological Imaging, School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, University of Jinan, Jinan, Shandong 250022, P.R. China
| | - Nan Zhang
- Department of Physiology, Zhongshan School of Medicine, Sun Yat-Sen University, 74 Zhongshan Road 2, Guangzhou 510080, P.R. China
| | - Kang-Nan Wang
- Shunde Hospital of Southern Medical University (The First People's Hospital of Shunde), Foshan, Guangdong 528308, P.R. China.,MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, P.R. China
| | - Minggang Tian
- Institute of Fluorescent Probes for Biological Imaging, School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, University of Jinan, Jinan, Shandong 250022, P.R. China
| | - Qiling Pan
- Shunde Hospital of Southern Medical University (The First People's Hospital of Shunde), Foshan, Guangdong 528308, P.R. China
| | - Weiying Lin
- Institute of Optical Materials and Chemical Biology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P.R. China.,Institute of Fluorescent Probes for Biological Imaging, School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, University of Jinan, Jinan, Shandong 250022, P.R. China
| |
Collapse
|
16
|
Nozawa RS, Yamamoto T, Takahashi M, Tachiwana H, Maruyama R, Hirota T, Saitoh N. Nuclear microenvironment in cancer: Control through liquid-liquid phase separation. Cancer Sci 2020; 111:3155-3163. [PMID: 32594560 PMCID: PMC7469853 DOI: 10.1111/cas.14551] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 06/16/2020] [Accepted: 06/19/2020] [Indexed: 12/20/2022] Open
Abstract
The eukaryotic nucleus is not a homogenous single‐spaced but a highly compartmentalized organelle, partitioned by various types of membraneless structures, including nucleoli, PML bodies, paraspeckles, DNA damage foci and RNA clouds. Over the past few decades, these nuclear structures have been implicated in biological reactions such as gene regulation and DNA damage response and repair, and are thought to provide “microenvironments,” facilitating these reactions in the nucleus. Notably, an altered morphology of these nuclear structures is found in many cancers, which may relate to so‐called “nuclear atypia” in histological examinations. While the diagnostic significance of nuclear atypia has been established, its nature has remained largely enigmatic and awaits characterization. Here, we review the emerging biophysical principles that govern biomolecular condensate assembly in the nucleus, namely, liquid‐liquid phase separation (LLPS), to investigate the nature of the nuclear microenvironment. In the nucleus, LLPS is typically driven by multivalent interactions between proteins with intrinsically disordered regions, and is also facilitated by protein interaction with nucleic acids, including nuclear non–coding RNAs. Importantly, an altered LLPS leads to dysregulation of nuclear events and epigenetics, and often to tumorigenesis and tumor progression. We further note the possibility that LLPS could represent a new therapeutic target for cancer intervention.
Collapse
Affiliation(s)
- Ryu-Suke Nozawa
- Division of Experimental Pathology, The Cancer Institute of JFCR, Tokyo, Japan
| | - Tatsuro Yamamoto
- Division of Cancer Biology, The Cancer Institute of JFCR, Tokyo, Japan
| | - Motoko Takahashi
- Division of Experimental Pathology, The Cancer Institute of JFCR, Tokyo, Japan
| | - Hiroaki Tachiwana
- Division of Cancer Biology, The Cancer Institute of JFCR, Tokyo, Japan
| | - Reo Maruyama
- Project for Cancer Epigenomics, The Cancer Institute of JFCR, Tokyo, Japan
| | - Toru Hirota
- Division of Experimental Pathology, The Cancer Institute of JFCR, Tokyo, Japan
| | - Noriko Saitoh
- Division of Cancer Biology, The Cancer Institute of JFCR, Tokyo, Japan
| |
Collapse
|
17
|
Rose JT, Moskovitz E, Boyd JR, Gordon JA, Bouffard NA, Fritz AJ, Illendula A, Bushweller JH, Lian JB, Stein JL, Zaidi SK, Stein GS. Inhibition of the RUNX1-CBFβ transcription factor complex compromises mammary epithelial cell identity: a phenotype potentially stabilized by mitotic gene bookmarking. Oncotarget 2020; 11:2512-2530. [PMID: 32655837 PMCID: PMC7335667 DOI: 10.18632/oncotarget.27637] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 05/20/2020] [Indexed: 12/12/2022] Open
Abstract
RUNX1 has recently been shown to play an important role in determination of mammary epithelial cell identity. However, mechanisms by which loss of the RUNX1 transcription factor in mammary epithelial cells leads to epithelial-to-mesenchymal transition (EMT) are not known. Here, we report that interaction between RUNX1 and its heterodimeric partner CBFβ is essential for sustaining mammary epithelial cell identity. Disruption of RUNX1-CBFβ interaction, DNA binding, and association with mitotic chromosomes alters cell morphology, global protein synthesis, and phenotype-related gene expression. During interphase, RUNX1 is organized as punctate, predominantly nuclear, foci that are dynamically redistributed during mitosis, with a subset localized to mitotic chromosomes. Genome-wide RUNX1 occupancy profiles for asynchronous, mitotically enriched, and early G1 breast epithelial cells reveal RUNX1 associates with RNA Pol II-transcribed protein coding and long non-coding RNA genes and RNA Pol I-transcribed ribosomal genes critical for mammary epithelial proliferation, growth, and phenotype maintenance. A subset of these genes remains occupied by the protein during the mitosis to G1 transition. Together, these findings establish that the RUNX1-CBFβ complex is required for maintenance of the normal mammary epithelial phenotype and its disruption leads to EMT. Importantly, our results suggest, for the first time, that RUNX1 mitotic bookmarking of a subset of epithelial-related genes may be an important epigenetic mechanism that contributes to stabilization of the mammary epithelial cell identity.
Collapse
Affiliation(s)
- Joshua T. Rose
- Department of Biochemistry and University of Vermont Cancer Center, Robert Larner College of Medicine, University of Vermont, Burlington, VT 05405, USA
- These authors contributed equally to this work
| | - Eliana Moskovitz
- Department of Biochemistry and University of Vermont Cancer Center, Robert Larner College of Medicine, University of Vermont, Burlington, VT 05405, USA
- These authors contributed equally to this work
| | - Joseph R. Boyd
- Department of Biochemistry and University of Vermont Cancer Center, Robert Larner College of Medicine, University of Vermont, Burlington, VT 05405, USA
| | - Jonathan A. Gordon
- Department of Biochemistry and University of Vermont Cancer Center, Robert Larner College of Medicine, University of Vermont, Burlington, VT 05405, USA
| | - Nicole A. Bouffard
- Microscopy Imaging Center at the Robert Larner College of Medicine, University of Vermont, Burlington, VT 05405, USA
| | - Andrew J. Fritz
- Department of Biochemistry and University of Vermont Cancer Center, Robert Larner College of Medicine, University of Vermont, Burlington, VT 05405, USA
| | - Anuradha Illendula
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22908, USA
| | - John H. Bushweller
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22908, USA
| | - Jane B. Lian
- Department of Biochemistry and University of Vermont Cancer Center, Robert Larner College of Medicine, University of Vermont, Burlington, VT 05405, USA
| | - Janet L. Stein
- Department of Biochemistry and University of Vermont Cancer Center, Robert Larner College of Medicine, University of Vermont, Burlington, VT 05405, USA
| | - Sayyed K. Zaidi
- Department of Biochemistry and University of Vermont Cancer Center, Robert Larner College of Medicine, University of Vermont, Burlington, VT 05405, USA
| | - Gary S. Stein
- Department of Biochemistry and University of Vermont Cancer Center, Robert Larner College of Medicine, University of Vermont, Burlington, VT 05405, USA
| |
Collapse
|
18
|
Ben-Barouch S, Kuruvilla J. Selinexor (KTP-330) - a selective inhibitor of nuclear export (SINE): anti-tumor activity in diffuse large B-cell lymphoma (DLBCL). Expert Opin Investig Drugs 2019; 29:15-21. [PMID: 31847605 DOI: 10.1080/13543784.2020.1706087] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Introduction: Selinexor is a first-in-class, oral therapeutic that selectively inhibits nuclear export. It has received fast track designation from the FDA for the treatment of relapsed or refractory diffuse large B-cell lymphoma (DLBCL) recently, and continues to be evaluated as a potential treatment for DLBCL.Area covered: This article reviews the available data from clinical trials regarding the efficacy of selinexor in DLBCL and highlights the key toxicity issues and how they may best be managed. Ongoing and future studies in DLBCL are also discussed.Expert opinion: More translational studies are necessary to leverage the unique mechanism action and rationally inform the use of selinexor in combination strategies. There are several different genetic subtypes of DLBCL, but it is not clear if these classifications will identify patients that may benefit from targeted therapies. The broad potential mechanism of action of selinexor will require careful analysis to inform predictive or prognostic biomarkers. Further evaluation of selinexor in combination with standard lymphoma regimens could identify deliverable promising regimens. Future randomized trials are key for registration and to determine the optimal role for this first-in-class agent.
Collapse
Affiliation(s)
- Sharon Ben-Barouch
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, Department of Medicine, University of Toronto, Toronto, Canada
| | - John Kuruvilla
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, Department of Medicine, University of Toronto, Toronto, Canada
| |
Collapse
|
19
|
Gao J, Zhang Q, Zhang C, Chen M, Li D, Fu Y, Lv X, Zhang B, Guo H. Diagnostic performance of multiparametric MRI parameters for Gleason score and cellularity metrics of prostate cancer in different zones: a quantitative comparison. Clin Radiol 2019; 74:895.e17-895.e26. [DOI: 10.1016/j.crad.2019.06.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 06/21/2019] [Indexed: 12/30/2022]
|
20
|
Fritz AJ, Sehgal N, Pliss A, Xu J, Berezney R. Chromosome territories and the global regulation of the genome. Genes Chromosomes Cancer 2019; 58:407-426. [PMID: 30664301 DOI: 10.1002/gcc.22732] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 01/11/2019] [Accepted: 01/12/2019] [Indexed: 12/29/2022] Open
Abstract
Spatial positioning is a fundamental principle governing nuclear processes. Chromatin is organized as a hierarchy from nucleosomes to Mbp chromatin domains (CD) or topologically associating domains (TADs) to higher level compartments culminating in chromosome territories (CT). Microscopic and sequencing techniques have substantiated chromatin organization as a critical factor regulating gene expression. For example, enhancers loop back to interact with their target genes almost exclusively within TADs, distally located coregulated genes reposition into common transcription factories upon activation, and Mbp CDs exhibit dynamic motion and configurational changes in vivo. A longstanding question in the nucleus field is whether an interactive nuclear matrix provides a direct link between structure and function. The findings of nonrandom radial positioning of CT within the nucleus suggest the possibility of preferential interaction patterns among populations of CT. Sequential labeling up to 10 CT followed by application of computer imaging and geometric graph mining algorithms revealed cell-type specific interchromosomal networks (ICN) of CT that are altered during the cell cycle, differentiation, and cancer progression. It is proposed that the ICN correlate with the global level of genome regulation. These approaches also demonstrated that the large scale 3-D topology of CT is specific for each CT. The cell-type specific proximity of certain chromosomal regions in normal cells may explain the propensity of distinct translocations in cancer subtypes. Understanding how genes are dysregulated upon disruption of the normal "wiring" of the nucleus by translocations, deletions, and amplifications that are hallmarks of cancer, should enable more targeted therapeutic strategies.
Collapse
Affiliation(s)
- Andrew J Fritz
- Department of Biochemistry and University of Vermont Cancer Center, The University of Vermont Larner College of Medicine, Burlington, Vermont
| | - Nitasha Sehgal
- Department of Biological Sciences, University at Buffalo, Buffalo, New York
| | - Artem Pliss
- Institute for Lasers, Photonics and Biophotonics and the Department of Chemistry, University at Buffalo, Buffalo, New York
| | - Jinhui Xu
- Department of Computer Science and Engineering, University at Buffalo, Buffalo, New York
| | - Ronald Berezney
- Department of Biological Sciences, University at Buffalo, Buffalo, New York
| |
Collapse
|
21
|
Fritz AJ, Gillis NE, Gerrard DL, Rodriguez PD, Hong D, Rose JT, Ghule PN, Bolf EL, Gordon JA, Tye CE, Boyd JR, Tracy KM, Nickerson JA, van Wijnen AJ, Imbalzano AN, Heath JL, Frietze SE, Zaidi SK, Carr FE, Lian JB, Stein JL, Stein GS. Higher order genomic organization and epigenetic control maintain cellular identity and prevent breast cancer. Genes Chromosomes Cancer 2019; 58:484-499. [PMID: 30873710 DOI: 10.1002/gcc.22731] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 01/07/2019] [Accepted: 01/07/2019] [Indexed: 12/24/2022] Open
Abstract
Cells establish and sustain structural and functional integrity of the genome to support cellular identity and prevent malignant transformation. In this review, we present a strategic overview of epigenetic regulatory mechanisms including histone modifications and higher order chromatin organization (HCO) that are perturbed in breast cancer onset and progression. Implications for dysfunctions that occur in hormone regulation, cell cycle control, and mitotic bookmarking in breast cancer are considered, with an emphasis on epithelial-to-mesenchymal transition and cancer stem cell activities. The architectural organization of regulatory machinery is addressed within the contexts of translating cancer-compromised genomic organization to advances in breast cancer risk assessment, diagnosis, prognosis, and identification of novel therapeutic targets with high specificity and minimal off target effects.
Collapse
Affiliation(s)
- A J Fritz
- Department of Biochemistry, Larner College of Medicine, University of Vermont, Burlington, Vermont.,University of Vermont Cancer Center, Burlington, Vermont
| | - N E Gillis
- University of Vermont Cancer Center, Burlington, Vermont.,Department of Pharmacology, Larner college of Medicine, University of Vermont, Burlington, Vermont
| | - D L Gerrard
- Cellular Molecular Biomedical Sciences Program, University of Vermont, Burlington, Vermont.,Department of Biomedical and Health Sciences, University of Vermont, Burlington, Vermont
| | - P D Rodriguez
- Cellular Molecular Biomedical Sciences Program, University of Vermont, Burlington, Vermont.,Department of Biomedical and Health Sciences, University of Vermont, Burlington, Vermont
| | - D Hong
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, Massachusetts
| | - J T Rose
- Department of Biochemistry, Larner College of Medicine, University of Vermont, Burlington, Vermont.,University of Vermont Cancer Center, Burlington, Vermont
| | - P N Ghule
- Department of Biochemistry, Larner College of Medicine, University of Vermont, Burlington, Vermont.,University of Vermont Cancer Center, Burlington, Vermont
| | - E L Bolf
- University of Vermont Cancer Center, Burlington, Vermont.,Department of Pharmacology, Larner college of Medicine, University of Vermont, Burlington, Vermont
| | - J A Gordon
- Department of Biochemistry, Larner College of Medicine, University of Vermont, Burlington, Vermont.,University of Vermont Cancer Center, Burlington, Vermont
| | - C E Tye
- Department of Biochemistry, Larner College of Medicine, University of Vermont, Burlington, Vermont.,University of Vermont Cancer Center, Burlington, Vermont
| | - J R Boyd
- Department of Biochemistry, Larner College of Medicine, University of Vermont, Burlington, Vermont.,University of Vermont Cancer Center, Burlington, Vermont
| | - K M Tracy
- Department of Biochemistry, Larner College of Medicine, University of Vermont, Burlington, Vermont.,University of Vermont Cancer Center, Burlington, Vermont
| | - J A Nickerson
- Division of Genes and Development of the Department of Pediatrics, University of Massachusetts Medical School, Worcester, Massachusetts
| | - A J van Wijnen
- Orthopedic Surgery and Biochemistry and Molecular Biology, Mayo Clinic Minnesota, Rochester, Minnesota
| | - A N Imbalzano
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts
| | - J L Heath
- Department of Biochemistry, Larner College of Medicine, University of Vermont, Burlington, Vermont.,University of Vermont Cancer Center, Burlington, Vermont.,Department of Pediatrics, Larner College of Medicine, University of Vermont, Burlington, Vermont
| | - S E Frietze
- Cellular Molecular Biomedical Sciences Program, University of Vermont, Burlington, Vermont.,Department of Biomedical and Health Sciences, University of Vermont, Burlington, Vermont
| | - S K Zaidi
- Department of Biochemistry, Larner College of Medicine, University of Vermont, Burlington, Vermont.,University of Vermont Cancer Center, Burlington, Vermont
| | - F E Carr
- Department of Biochemistry, Larner College of Medicine, University of Vermont, Burlington, Vermont.,University of Vermont Cancer Center, Burlington, Vermont.,Department of Pharmacology, Larner college of Medicine, University of Vermont, Burlington, Vermont
| | - J B Lian
- Department of Biochemistry, Larner College of Medicine, University of Vermont, Burlington, Vermont.,University of Vermont Cancer Center, Burlington, Vermont
| | - J L Stein
- Department of Biochemistry, Larner College of Medicine, University of Vermont, Burlington, Vermont.,University of Vermont Cancer Center, Burlington, Vermont
| | - G S Stein
- Department of Biochemistry, Larner College of Medicine, University of Vermont, Burlington, Vermont.,University of Vermont Cancer Center, Burlington, Vermont
| |
Collapse
|
22
|
Cycles of protein condensation and discharge in nuclear organelles studied by fluorescence lifetime imaging. Nat Commun 2019; 10:455. [PMID: 30692529 PMCID: PMC6349932 DOI: 10.1038/s41467-019-08354-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Accepted: 01/03/2019] [Indexed: 02/07/2023] Open
Abstract
Nuclear organelles are viscous droplets, created by concentration-dependent condensation and liquid–liquid phase separation of soluble proteins. Nuclear organelles have been actively investigated for their role in cellular regulation and disease. However, these studies are highly challenging to perform in live cells, and therefore, their physico-chemical properties are still poorly understood. In this study, we describe a fluorescence lifetime imaging approach for real-time monitoring of protein condensation in nuclear organelles of live cultured cells. This approach unravels surprisingly large cyclic changes in concentration of proteins in major nuclear organelles including nucleoli, nuclear speckles, Cajal bodies, as well as in the clusters of heterochromatin. Remarkably, protein concentration changes are synchronous for different organelles of the same cells. We propose a molecular mechanism responsible for synchronous accumulations of proteins in the nuclear organelles. This mechanism can serve for general regulation of cellular metabolism and contribute to coordination of gene expression. Studying the condensation of proteins into membraneless organelles in live cells is highly challenging. Here the authors develop a fluorescence lifetime imaging approach to monitor the condensation of proteins in nuclear organelles and report coordinated and cyclic changes in several nuclear organelles.
Collapse
|
23
|
Zaidi SK, Fritz AJ, Tracy KM, Gordon JA, Tye CE, Boyd J, Van Wijnen AJ, Nickerson JA, Imbalzano AN, Lian JB, Stein JL, Stein GS. Nuclear organization mediates cancer-compromised genetic and epigenetic control. Adv Biol Regul 2018; 69:1-10. [PMID: 29759441 PMCID: PMC6102062 DOI: 10.1016/j.jbior.2018.05.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 04/13/2018] [Accepted: 05/02/2018] [Indexed: 12/19/2022]
Abstract
Nuclear organization is functionally linked to genetic and epigenetic regulation of gene expression for biological control and is modified in cancer. Nuclear organization supports cell growth and phenotypic properties of normal and cancer cells by facilitating physiologically responsive interactions of chromosomes, genes and regulatory complexes at dynamic three-dimensional microenvironments. We will review nuclear structure/function relationships that include: 1. Epigenetic bookmarking of genes by phenotypic transcription factors to control fidelity and plasticity of gene expression as cells enter and exit mitosis; 2. Contributions of chromatin remodeling to breast cancer nuclear morphology, metabolism and effectiveness of chemotherapy; 3. Relationships between fidelity of nuclear organization and metastasis of breast cancer to bone; 4. Dynamic modifications of higher-order inter- and intra-chromosomal interactions in breast cancer cells; 5. Coordinate control of cell growth and phenotype by tissue-specific transcription factors; 6. Oncofetal epigenetic control by bivalent histone modifications that are functionally related to sustaining the stem cell phenotype; and 7. Noncoding RNA-mediated regulation in the onset and progression of breast cancer. The discovery of components to nuclear organization that are functionally related to cancer and compromise gene expression have the potential for translation to innovative cancer diagnosis and targeted therapy.
Collapse
Affiliation(s)
- Sayyed K Zaidi
- Department of Biochemistry and University of Vermont Cancer Center, University of Vermont, Burlington, VT, United States
| | - Andrew J Fritz
- Department of Biochemistry and University of Vermont Cancer Center, University of Vermont, Burlington, VT, United States
| | - Kirsten M Tracy
- Department of Biochemistry and University of Vermont Cancer Center, University of Vermont, Burlington, VT, United States
| | - Jonathan A Gordon
- Department of Biochemistry and University of Vermont Cancer Center, University of Vermont, Burlington, VT, United States
| | - Coralee E Tye
- Department of Biochemistry and University of Vermont Cancer Center, University of Vermont, Burlington, VT, United States
| | - Joseph Boyd
- Department of Biochemistry and University of Vermont Cancer Center, University of Vermont, Burlington, VT, United States
| | - Andre J Van Wijnen
- Departments of Orthopedic Surgery, Biochemistry & Molecular Biology, Mayo Clinic, Rochester, MN, United States
| | - Jeffrey A Nickerson
- Department of Pediatrics, UMass Medical School, Worcester, MA, United States
| | - Antony N Imbalzano
- Graduate Program in Cell Biology and Department of Biochemistry and Molecular Pharmacology, UMass Medical School, Worcester, MA, United States
| | - Jane B Lian
- Department of Biochemistry and University of Vermont Cancer Center, University of Vermont, Burlington, VT, United States
| | - Janet L Stein
- Department of Biochemistry and University of Vermont Cancer Center, University of Vermont, Burlington, VT, United States.
| | - Gary S Stein
- Department of Biochemistry and University of Vermont Cancer Center, University of Vermont, Burlington, VT, United States.
| |
Collapse
|
24
|
Zaidi SK, Nickerson JA, Imbalzano AN, Lian JB, Stein JL, Stein GS. Mitotic Gene Bookmarking: An Epigenetic Program to Maintain Normal and Cancer Phenotypes. Mol Cancer Res 2018; 16:1617-1624. [PMID: 30002192 DOI: 10.1158/1541-7786.mcr-18-0415] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 05/24/2018] [Accepted: 06/22/2018] [Indexed: 01/06/2023]
Abstract
Reconfiguration of nuclear structure and function during mitosis presents a significant challenge to resume the next cell cycle in the progeny cells without compromising structural and functional identity of the cells. Equally important is the requirement for cancer cells to retain the transformed phenotype, that is, unrestricted proliferative potential, suppression of cell phenotype, and activation of oncogenic pathways. Mitotic gene bookmarking retention of key regulatory proteins that include sequence-specific transcription factors, chromatin-modifying factors, and components of RNA Pol (RNAP) I and II regulatory machineries at gene loci on mitotic chromosomes plays key roles in coordinate control of cell phenotype, growth, and proliferation postmitotically. There is growing recognition that three distinct protein types, mechanistically, play obligatory roles in mitotic gene bookmarking: (i) Retention of phenotypic transcription factors on mitotic chromosomes is essential to sustain lineage commitment; (ii) Select chromatin modifiers and posttranslational histone modifications/variants retain competency of mitotic chromatin for gene reactivation as cells exit mitosis; and (iii) Functional components of RNAP I and II transcription complexes (e.g., UBF and TBP, respectively) are retained on genes poised for reactivation immediately following mitosis. Importantly, recent findings have identified oncogenes that are associated with target genes on mitotic chromosomes in cancer cells. The current review proposes that mitotic gene bookmarking is an extensively utilized epigenetic mechanism for stringent control of proliferation and identity in normal cells and hypothesizes that bookmarking plays a pivotal role in maintenance of tumor phenotypes, that is, unrestricted proliferation and compromised control of differentiation. Mol Cancer Res; 16(11); 1617-24. ©2018 AACR.
Collapse
Affiliation(s)
- Sayyed K Zaidi
- Department of Biochemistry and University of Vermont Cancer Centre, University of Vermont, Burlington Vermont
| | - Jeffrey A Nickerson
- Department of Pediatrics, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Anthony N Imbalzano
- Graduate Program in Cell Biology and Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Jane B Lian
- Department of Biochemistry and University of Vermont Cancer Centre, University of Vermont, Burlington Vermont
| | - Janet L Stein
- Department of Biochemistry and University of Vermont Cancer Centre, University of Vermont, Burlington Vermont
| | - Gary S Stein
- Department of Biochemistry and University of Vermont Cancer Centre, University of Vermont, Burlington Vermont.
| |
Collapse
|
25
|
Ghule PN, Seward DJ, Fritz AJ, Boyd JR, van Wijnen AJ, Lian JB, Stein JL, Stein GS. Higher order genomic organization and regulatory compartmentalization for cell cycle control at the G1/S-phase transition. J Cell Physiol 2018; 233:6406-6413. [PMID: 29744889 DOI: 10.1002/jcp.26741] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 03/30/2018] [Indexed: 01/19/2023]
Abstract
Fidelity of histone gene regulation, and ultimately of histone protein biosynthesis, is obligatory for packaging of newly replicated DNA into chromatin. Control of histone gene expression within the 3-dimensional context of nuclear organization is reflected by two well documented observations. DNA replication-dependent histone mRNAs are synthesized at specialized subnuclear domains designated histone locus bodies (HLBs), in response to activation of the growth factor dependent Cyclin E/CDK2/HINFP/NPAT pathway at the G1/S transition in mammalian cells. Complete loss of the histone gene regulatory factors HINFP or NPAT disrupts HLB integrity that is necessary for coordinate control of DNA replication and histone gene transcription. Here we review the molecular histone-related requirements for G1/S-phase progression during the cell cycle. Recently developed experimental strategies, now enable us to explore mechanisms involved in dynamic control of histone gene expression in the context of the temporal (cell cycle) and spatial (HLBs) remodeling of the histone gene loci.
Collapse
Affiliation(s)
- Prachi N Ghule
- Department of Biochemistry and University of Vermont Cancer Center, University of Vermont Larner College of Medicine, Burlington, Vermont
| | - David J Seward
- Department of Pathology, University of Vermont Larner College of Medicine, Burlington, Vermont
| | - Andrew J Fritz
- Department of Biochemistry and University of Vermont Cancer Center, University of Vermont Larner College of Medicine, Burlington, Vermont
| | - Joseph R Boyd
- Department of Biochemistry and University of Vermont Cancer Center, University of Vermont Larner College of Medicine, Burlington, Vermont
| | - Andre J van Wijnen
- Departments of Orthopedic Surgery and Biochemistry & Molecular Biology, Mayo Clinic, Rochester, Minnesota
| | - Jane B Lian
- Department of Biochemistry and University of Vermont Cancer Center, University of Vermont Larner College of Medicine, Burlington, Vermont
| | - Janet L Stein
- Department of Biochemistry and University of Vermont Cancer Center, University of Vermont Larner College of Medicine, Burlington, Vermont
| | - Gary S Stein
- Department of Biochemistry and University of Vermont Cancer Center, University of Vermont Larner College of Medicine, Burlington, Vermont
| |
Collapse
|
26
|
Abstract
Multiple mechanisms of epigenetic control that include DNA methylation, histone modification, noncoding RNAs, and mitotic gene bookmarking play pivotal roles in stringent gene regulation during lineage commitment and maintenance. Experimental evidence indicates that bivalent chromatin domains, i.e., genome regions that are marked by both H3K4me3 (activating) and H3K27me3 (repressive) histone modifications, are a key property of pluripotent stem cells. Bivalency of developmental genes during the G1 phase of the pluripotent stem cell cycle contributes to cell fate decisions. Recently, some cancer types have been shown to exhibit partial recapitulation of bivalent chromatin modifications that are lost along with pluripotency, suggesting a mechanism by which cancer cells reacquire properties that are characteristic of undifferentiated, multipotent cells. This bivalent epigenetic control of oncofetal gene expression in cancer cells may offer novel insights into the onset and progression of cancer and may provide specific and selective options for diagnosis as well as for therapeutic intervention.
Collapse
|
27
|
Roitshtain D, Wolbromsky L, Bal E, Greenspan H, Satterwhite LL, Shaked NT. Quantitative phase microscopy spatial signatures of cancer cells. Cytometry A 2017; 91:482-493. [DOI: 10.1002/cyto.a.23100] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Revised: 02/09/2017] [Accepted: 03/03/2017] [Indexed: 12/29/2022]
Affiliation(s)
- Darina Roitshtain
- Department of Biomedical Engineering; Faculty of Engineering, Tel Aviv University; Tel Aviv 69978 Israel
| | - Lauren Wolbromsky
- Department of Biomedical Engineering; Faculty of Engineering, Tel Aviv University; Tel Aviv 69978 Israel
| | - Evgeny Bal
- Department of Biomedical Engineering; Faculty of Engineering, Tel Aviv University; Tel Aviv 69978 Israel
| | - Hayit Greenspan
- Department of Biomedical Engineering; Faculty of Engineering, Tel Aviv University; Tel Aviv 69978 Israel
| | - Lisa L. Satterwhite
- Department of Biomedical Engineering; Duke University; Durham North Carolina 27708
| | - Natan T. Shaked
- Department of Biomedical Engineering; Faculty of Engineering, Tel Aviv University; Tel Aviv 69978 Israel
| |
Collapse
|
28
|
Tyler PM, Servos MM, de Vries RC, Klebanov B, Kashyap T, Sacham S, Landesman Y, Dougan M, Dougan SK. Clinical Dosing Regimen of Selinexor Maintains Normal Immune Homeostasis and T-cell Effector Function in Mice: Implications for Combination with Immunotherapy. Mol Cancer Ther 2017; 16:428-439. [PMID: 28148714 DOI: 10.1158/1535-7163.mct-16-0496] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 12/03/2016] [Accepted: 12/27/2016] [Indexed: 12/18/2022]
Abstract
Selinexor (KPT-330) is a first-in-class nuclear transport inhibitor currently in clinical trials as an anticancer agent. To determine how selinexor might affect antitumor immunity, we analyzed immune homeostasis in mice treated with selinexor and found disruptions in T-cell development, a progressive loss of CD8 T cells, and increases in inflammatory monocytes. Antibody production in response to immunization was mostly normal. Precursor populations in bone marrow and thymus were unaffected by selinexor, suggesting that normal immune homeostasis could recover. We found that a high dose of selinexor given once per week preserved nearly normal immune functioning, whereas a lower dose given 3 times per week did not restore immune homeostasis. Both naïve and effector CD8 T cells cultured in vitro showed impaired activation in the presence of selinexor. These experiments suggest that nuclear exportins are required for T-cell development and function. We determined the minimum concentration of selinexor required to block T-cell activation and showed that T-cell-inhibitory effects of selinexor occur at levels above 100 nmol/L, corresponding to the first 24 hours post-oral dosing. In a model of implantable melanoma, selinexor treatment at 10 mg/kg with a 4-day drug holiday led to intratumoral IFNγ+, granzyme B+ cytotoxic CD8 T cells that were comparable with vehicle-treated mice. Overall, selinexor treatment leads to transient inhibition of T-cell activation, but clinically relevant once and twice weekly dosing schedules that incorporate sufficient drug holidays allow for normal CD8 T-cell functioning and development of antitumor immunity. Mol Cancer Ther; 16(3); 428-39. ©2017 AACRSee related article by Farren et al., p. 417.
Collapse
Affiliation(s)
- Paul M Tyler
- Dana-Farber Cancer Institute, Boston, Massachusetts
| | | | - Romy C de Vries
- Dana-Farber Cancer Institute, Boston, Massachusetts.,University of Amsterdam, Program in Biomedical Sciences, Amsterdam, the Netherlands
| | | | | | - Sharon Sacham
- Karyopharm Therapeutics, Inc., Newton, Massachusetts
| | | | | | | |
Collapse
|
29
|
Abdul Razak AR, Mau-Soerensen M, Gabrail NY, Gerecitano JF, Shields AF, Unger TJ, Saint-Martin JR, Carlson R, Landesman Y, McCauley D, Rashal T, Lassen U, Kim R, Stayner LA, Mirza MR, Kauffman M, Shacham S, Mahipal A. First-in-Class, First-in-Human Phase I Study of Selinexor, a Selective Inhibitor of Nuclear Export, in Patients With Advanced Solid Tumors. J Clin Oncol 2016; 34:4142-4150. [PMID: 26926685 PMCID: PMC5562433 DOI: 10.1200/jco.2015.65.3949] [Citation(s) in RCA: 171] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Purpose This trial evaluated the safety, pharmacokinetics, pharmacodynamics, and efficacy of selinexor (KPT-330), a novel, oral small-molecule inhibitor of exportin 1 (XPO1/CRM1), and determined the recommended phase II dose. Patients and Methods In total, 189 patients with advanced solid tumors received selinexor (3 to 85 mg/m2) in 21- or 28-day cycles. Pre- and post-treatment levels of XPO1 mRNA in patient-derived leukocytes were determined by reverse transcriptase quantitative polymerase chain reaction, and tumor biopsies were examined by immunohistochemistry for changes in markers consistent with XPO1 inhibition. Antitumor response was assessed according Response Evaluation Criteria in Solid Tumors (RECIST) version 1.1 guidelines. Results The most common treatment-related adverse events included fatigue (70%), nausea (70%), anorexia (66%), and vomiting (49%), which were generally grade 1 or 2. Most commonly reported grade 3 or 4 toxicities were thrombocytopenia (16%), fatigue (15%), and hyponatremia (13%). Clinically significant major organ or cumulative toxicities were rare. The maximum-tolerated dose was defined at 65 mg/m2 using a twice-a-week (days 1 and 3) dosing schedule. The recommended phase II dose of 35 mg/m2 given twice a week was chosen based on better patient tolerability and no demonstrable improvement in radiologic response or disease stabilization compared with higher doses. Pharmacokinetics were dose proportional, with no evidence of drug accumulation. Dose-dependent elevations in XPO1 mRNA in leukocytes were demonstrated up to a dose level of 28 mg/m2 before plateauing, and paired tumor biopsies showed nuclear accumulation of key tumor-suppressor proteins, reduction of cell proliferation, and induction of apoptosis. Among 157 patients evaluable for response, one complete and six partial responses were observed (n = 7, 4%), with 27 patients (17%) achieving stable disease for ≥ 4 months. Conclusion Selinexor is a novel and safe therapeutic with broad antitumor activity. Further interrogation into this class of therapy is warranted.
Collapse
Affiliation(s)
- Albiruni R. Abdul Razak
- Albiruni R. Abdul Razak and Lee-Anne Stayner, Princess Margaret Cancer Centre, Toronto, Ontario, Canada; Morten Mau-Soerensen and Ulrik Lassen, Rigshospitalet, Copenhagen, Denmark; Nashat Y. Gabrail, Gabrail Cancer Institute, Canton, OH; John F. Gerecitano, Memorial Sloan-Kettering Cancer Center, Weill Cornell Medical College, New York, NY; Anthony F. Shields, Karmanos Cancer Institute, Wayne State University, Detroit, MI; Thaddeus J. Unger, Jean R. Saint-Martin, Robert Carlson, Yosef Landesman, Dilara McCauley, Tami Rashal, Mansoor R. Mirza, Michael Kauffman, and Sharon Shacham, Karyopharm Therapeutics, Newton, MA; and Richard Kim and Amit Mahipal, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL
| | - Morten Mau-Soerensen
- Albiruni R. Abdul Razak and Lee-Anne Stayner, Princess Margaret Cancer Centre, Toronto, Ontario, Canada; Morten Mau-Soerensen and Ulrik Lassen, Rigshospitalet, Copenhagen, Denmark; Nashat Y. Gabrail, Gabrail Cancer Institute, Canton, OH; John F. Gerecitano, Memorial Sloan-Kettering Cancer Center, Weill Cornell Medical College, New York, NY; Anthony F. Shields, Karmanos Cancer Institute, Wayne State University, Detroit, MI; Thaddeus J. Unger, Jean R. Saint-Martin, Robert Carlson, Yosef Landesman, Dilara McCauley, Tami Rashal, Mansoor R. Mirza, Michael Kauffman, and Sharon Shacham, Karyopharm Therapeutics, Newton, MA; and Richard Kim and Amit Mahipal, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL
| | - Nashat Y. Gabrail
- Albiruni R. Abdul Razak and Lee-Anne Stayner, Princess Margaret Cancer Centre, Toronto, Ontario, Canada; Morten Mau-Soerensen and Ulrik Lassen, Rigshospitalet, Copenhagen, Denmark; Nashat Y. Gabrail, Gabrail Cancer Institute, Canton, OH; John F. Gerecitano, Memorial Sloan-Kettering Cancer Center, Weill Cornell Medical College, New York, NY; Anthony F. Shields, Karmanos Cancer Institute, Wayne State University, Detroit, MI; Thaddeus J. Unger, Jean R. Saint-Martin, Robert Carlson, Yosef Landesman, Dilara McCauley, Tami Rashal, Mansoor R. Mirza, Michael Kauffman, and Sharon Shacham, Karyopharm Therapeutics, Newton, MA; and Richard Kim and Amit Mahipal, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL
| | - John F. Gerecitano
- Albiruni R. Abdul Razak and Lee-Anne Stayner, Princess Margaret Cancer Centre, Toronto, Ontario, Canada; Morten Mau-Soerensen and Ulrik Lassen, Rigshospitalet, Copenhagen, Denmark; Nashat Y. Gabrail, Gabrail Cancer Institute, Canton, OH; John F. Gerecitano, Memorial Sloan-Kettering Cancer Center, Weill Cornell Medical College, New York, NY; Anthony F. Shields, Karmanos Cancer Institute, Wayne State University, Detroit, MI; Thaddeus J. Unger, Jean R. Saint-Martin, Robert Carlson, Yosef Landesman, Dilara McCauley, Tami Rashal, Mansoor R. Mirza, Michael Kauffman, and Sharon Shacham, Karyopharm Therapeutics, Newton, MA; and Richard Kim and Amit Mahipal, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL
| | - Anthony F. Shields
- Albiruni R. Abdul Razak and Lee-Anne Stayner, Princess Margaret Cancer Centre, Toronto, Ontario, Canada; Morten Mau-Soerensen and Ulrik Lassen, Rigshospitalet, Copenhagen, Denmark; Nashat Y. Gabrail, Gabrail Cancer Institute, Canton, OH; John F. Gerecitano, Memorial Sloan-Kettering Cancer Center, Weill Cornell Medical College, New York, NY; Anthony F. Shields, Karmanos Cancer Institute, Wayne State University, Detroit, MI; Thaddeus J. Unger, Jean R. Saint-Martin, Robert Carlson, Yosef Landesman, Dilara McCauley, Tami Rashal, Mansoor R. Mirza, Michael Kauffman, and Sharon Shacham, Karyopharm Therapeutics, Newton, MA; and Richard Kim and Amit Mahipal, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL
| | - Thaddeus J. Unger
- Albiruni R. Abdul Razak and Lee-Anne Stayner, Princess Margaret Cancer Centre, Toronto, Ontario, Canada; Morten Mau-Soerensen and Ulrik Lassen, Rigshospitalet, Copenhagen, Denmark; Nashat Y. Gabrail, Gabrail Cancer Institute, Canton, OH; John F. Gerecitano, Memorial Sloan-Kettering Cancer Center, Weill Cornell Medical College, New York, NY; Anthony F. Shields, Karmanos Cancer Institute, Wayne State University, Detroit, MI; Thaddeus J. Unger, Jean R. Saint-Martin, Robert Carlson, Yosef Landesman, Dilara McCauley, Tami Rashal, Mansoor R. Mirza, Michael Kauffman, and Sharon Shacham, Karyopharm Therapeutics, Newton, MA; and Richard Kim and Amit Mahipal, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL
| | - Jean R. Saint-Martin
- Albiruni R. Abdul Razak and Lee-Anne Stayner, Princess Margaret Cancer Centre, Toronto, Ontario, Canada; Morten Mau-Soerensen and Ulrik Lassen, Rigshospitalet, Copenhagen, Denmark; Nashat Y. Gabrail, Gabrail Cancer Institute, Canton, OH; John F. Gerecitano, Memorial Sloan-Kettering Cancer Center, Weill Cornell Medical College, New York, NY; Anthony F. Shields, Karmanos Cancer Institute, Wayne State University, Detroit, MI; Thaddeus J. Unger, Jean R. Saint-Martin, Robert Carlson, Yosef Landesman, Dilara McCauley, Tami Rashal, Mansoor R. Mirza, Michael Kauffman, and Sharon Shacham, Karyopharm Therapeutics, Newton, MA; and Richard Kim and Amit Mahipal, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL
| | - Robert Carlson
- Albiruni R. Abdul Razak and Lee-Anne Stayner, Princess Margaret Cancer Centre, Toronto, Ontario, Canada; Morten Mau-Soerensen and Ulrik Lassen, Rigshospitalet, Copenhagen, Denmark; Nashat Y. Gabrail, Gabrail Cancer Institute, Canton, OH; John F. Gerecitano, Memorial Sloan-Kettering Cancer Center, Weill Cornell Medical College, New York, NY; Anthony F. Shields, Karmanos Cancer Institute, Wayne State University, Detroit, MI; Thaddeus J. Unger, Jean R. Saint-Martin, Robert Carlson, Yosef Landesman, Dilara McCauley, Tami Rashal, Mansoor R. Mirza, Michael Kauffman, and Sharon Shacham, Karyopharm Therapeutics, Newton, MA; and Richard Kim and Amit Mahipal, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL
| | - Yosef Landesman
- Albiruni R. Abdul Razak and Lee-Anne Stayner, Princess Margaret Cancer Centre, Toronto, Ontario, Canada; Morten Mau-Soerensen and Ulrik Lassen, Rigshospitalet, Copenhagen, Denmark; Nashat Y. Gabrail, Gabrail Cancer Institute, Canton, OH; John F. Gerecitano, Memorial Sloan-Kettering Cancer Center, Weill Cornell Medical College, New York, NY; Anthony F. Shields, Karmanos Cancer Institute, Wayne State University, Detroit, MI; Thaddeus J. Unger, Jean R. Saint-Martin, Robert Carlson, Yosef Landesman, Dilara McCauley, Tami Rashal, Mansoor R. Mirza, Michael Kauffman, and Sharon Shacham, Karyopharm Therapeutics, Newton, MA; and Richard Kim and Amit Mahipal, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL
| | - Dilara McCauley
- Albiruni R. Abdul Razak and Lee-Anne Stayner, Princess Margaret Cancer Centre, Toronto, Ontario, Canada; Morten Mau-Soerensen and Ulrik Lassen, Rigshospitalet, Copenhagen, Denmark; Nashat Y. Gabrail, Gabrail Cancer Institute, Canton, OH; John F. Gerecitano, Memorial Sloan-Kettering Cancer Center, Weill Cornell Medical College, New York, NY; Anthony F. Shields, Karmanos Cancer Institute, Wayne State University, Detroit, MI; Thaddeus J. Unger, Jean R. Saint-Martin, Robert Carlson, Yosef Landesman, Dilara McCauley, Tami Rashal, Mansoor R. Mirza, Michael Kauffman, and Sharon Shacham, Karyopharm Therapeutics, Newton, MA; and Richard Kim and Amit Mahipal, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL
| | - Tami Rashal
- Albiruni R. Abdul Razak and Lee-Anne Stayner, Princess Margaret Cancer Centre, Toronto, Ontario, Canada; Morten Mau-Soerensen and Ulrik Lassen, Rigshospitalet, Copenhagen, Denmark; Nashat Y. Gabrail, Gabrail Cancer Institute, Canton, OH; John F. Gerecitano, Memorial Sloan-Kettering Cancer Center, Weill Cornell Medical College, New York, NY; Anthony F. Shields, Karmanos Cancer Institute, Wayne State University, Detroit, MI; Thaddeus J. Unger, Jean R. Saint-Martin, Robert Carlson, Yosef Landesman, Dilara McCauley, Tami Rashal, Mansoor R. Mirza, Michael Kauffman, and Sharon Shacham, Karyopharm Therapeutics, Newton, MA; and Richard Kim and Amit Mahipal, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL
| | - Ulrik Lassen
- Albiruni R. Abdul Razak and Lee-Anne Stayner, Princess Margaret Cancer Centre, Toronto, Ontario, Canada; Morten Mau-Soerensen and Ulrik Lassen, Rigshospitalet, Copenhagen, Denmark; Nashat Y. Gabrail, Gabrail Cancer Institute, Canton, OH; John F. Gerecitano, Memorial Sloan-Kettering Cancer Center, Weill Cornell Medical College, New York, NY; Anthony F. Shields, Karmanos Cancer Institute, Wayne State University, Detroit, MI; Thaddeus J. Unger, Jean R. Saint-Martin, Robert Carlson, Yosef Landesman, Dilara McCauley, Tami Rashal, Mansoor R. Mirza, Michael Kauffman, and Sharon Shacham, Karyopharm Therapeutics, Newton, MA; and Richard Kim and Amit Mahipal, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL
| | - Richard Kim
- Albiruni R. Abdul Razak and Lee-Anne Stayner, Princess Margaret Cancer Centre, Toronto, Ontario, Canada; Morten Mau-Soerensen and Ulrik Lassen, Rigshospitalet, Copenhagen, Denmark; Nashat Y. Gabrail, Gabrail Cancer Institute, Canton, OH; John F. Gerecitano, Memorial Sloan-Kettering Cancer Center, Weill Cornell Medical College, New York, NY; Anthony F. Shields, Karmanos Cancer Institute, Wayne State University, Detroit, MI; Thaddeus J. Unger, Jean R. Saint-Martin, Robert Carlson, Yosef Landesman, Dilara McCauley, Tami Rashal, Mansoor R. Mirza, Michael Kauffman, and Sharon Shacham, Karyopharm Therapeutics, Newton, MA; and Richard Kim and Amit Mahipal, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL
| | - Lee-Anne Stayner
- Albiruni R. Abdul Razak and Lee-Anne Stayner, Princess Margaret Cancer Centre, Toronto, Ontario, Canada; Morten Mau-Soerensen and Ulrik Lassen, Rigshospitalet, Copenhagen, Denmark; Nashat Y. Gabrail, Gabrail Cancer Institute, Canton, OH; John F. Gerecitano, Memorial Sloan-Kettering Cancer Center, Weill Cornell Medical College, New York, NY; Anthony F. Shields, Karmanos Cancer Institute, Wayne State University, Detroit, MI; Thaddeus J. Unger, Jean R. Saint-Martin, Robert Carlson, Yosef Landesman, Dilara McCauley, Tami Rashal, Mansoor R. Mirza, Michael Kauffman, and Sharon Shacham, Karyopharm Therapeutics, Newton, MA; and Richard Kim and Amit Mahipal, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL
| | - Mansoor R. Mirza
- Albiruni R. Abdul Razak and Lee-Anne Stayner, Princess Margaret Cancer Centre, Toronto, Ontario, Canada; Morten Mau-Soerensen and Ulrik Lassen, Rigshospitalet, Copenhagen, Denmark; Nashat Y. Gabrail, Gabrail Cancer Institute, Canton, OH; John F. Gerecitano, Memorial Sloan-Kettering Cancer Center, Weill Cornell Medical College, New York, NY; Anthony F. Shields, Karmanos Cancer Institute, Wayne State University, Detroit, MI; Thaddeus J. Unger, Jean R. Saint-Martin, Robert Carlson, Yosef Landesman, Dilara McCauley, Tami Rashal, Mansoor R. Mirza, Michael Kauffman, and Sharon Shacham, Karyopharm Therapeutics, Newton, MA; and Richard Kim and Amit Mahipal, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL
| | - Michael Kauffman
- Albiruni R. Abdul Razak and Lee-Anne Stayner, Princess Margaret Cancer Centre, Toronto, Ontario, Canada; Morten Mau-Soerensen and Ulrik Lassen, Rigshospitalet, Copenhagen, Denmark; Nashat Y. Gabrail, Gabrail Cancer Institute, Canton, OH; John F. Gerecitano, Memorial Sloan-Kettering Cancer Center, Weill Cornell Medical College, New York, NY; Anthony F. Shields, Karmanos Cancer Institute, Wayne State University, Detroit, MI; Thaddeus J. Unger, Jean R. Saint-Martin, Robert Carlson, Yosef Landesman, Dilara McCauley, Tami Rashal, Mansoor R. Mirza, Michael Kauffman, and Sharon Shacham, Karyopharm Therapeutics, Newton, MA; and Richard Kim and Amit Mahipal, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL
| | - Sharon Shacham
- Albiruni R. Abdul Razak and Lee-Anne Stayner, Princess Margaret Cancer Centre, Toronto, Ontario, Canada; Morten Mau-Soerensen and Ulrik Lassen, Rigshospitalet, Copenhagen, Denmark; Nashat Y. Gabrail, Gabrail Cancer Institute, Canton, OH; John F. Gerecitano, Memorial Sloan-Kettering Cancer Center, Weill Cornell Medical College, New York, NY; Anthony F. Shields, Karmanos Cancer Institute, Wayne State University, Detroit, MI; Thaddeus J. Unger, Jean R. Saint-Martin, Robert Carlson, Yosef Landesman, Dilara McCauley, Tami Rashal, Mansoor R. Mirza, Michael Kauffman, and Sharon Shacham, Karyopharm Therapeutics, Newton, MA; and Richard Kim and Amit Mahipal, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL
| | - Amit Mahipal
- Albiruni R. Abdul Razak and Lee-Anne Stayner, Princess Margaret Cancer Centre, Toronto, Ontario, Canada; Morten Mau-Soerensen and Ulrik Lassen, Rigshospitalet, Copenhagen, Denmark; Nashat Y. Gabrail, Gabrail Cancer Institute, Canton, OH; John F. Gerecitano, Memorial Sloan-Kettering Cancer Center, Weill Cornell Medical College, New York, NY; Anthony F. Shields, Karmanos Cancer Institute, Wayne State University, Detroit, MI; Thaddeus J. Unger, Jean R. Saint-Martin, Robert Carlson, Yosef Landesman, Dilara McCauley, Tami Rashal, Mansoor R. Mirza, Michael Kauffman, and Sharon Shacham, Karyopharm Therapeutics, Newton, MA; and Richard Kim and Amit Mahipal, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL
| |
Collapse
|
30
|
Gounder MM, Zer A, Tap WD, Salah S, Dickson MA, Gupta AA, Keohan ML, Loong HH, D'Angelo SP, Baker S, Condy M, Nyquist-Schultz K, Tanner L, Erinjeri JP, Jasmine FH, Friedlander S, Carlson R, Unger TJ, Saint-Martin JR, Rashal T, Ellis J, Kauffman M, Shacham S, Schwartz GK, Abdul Razak AR. Phase IB Study of Selinexor, a First-in-Class Inhibitor of Nuclear Export, in Patients With Advanced Refractory Bone or Soft Tissue Sarcoma. J Clin Oncol 2016; 34:3166-74. [PMID: 27458288 DOI: 10.1200/jco.2016.67.6346] [Citation(s) in RCA: 119] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
PURPOSE We evaluated the pharmacokinetics (PKs), pharmacodynamics, safety, and efficacy of selinexor, an oral selective inhibitor of nuclear export compound, in patients with advanced soft tissue or bone sarcoma with progressive disease. PATIENTS AND METHODS Fifty-four patients were treated with oral selinexor twice per week (on days 1 and 3) at one of three doses (30 mg/m(2), 50 mg/m(2), or flat dose of 60 mg) either continuously or on a schedule of 3 weeks on, 1 week off. PK analysis was performed under fasting and fed states (low v high fat content) and using various formulations of selinexor (tablet, capsule, or suspension). Tumor biopsies before and during treatment were evaluated for pharmacodynamic changes. RESULTS The most commonly reported drug-related adverse events (grade 1 or 2) were nausea, vomiting, anorexia, and fatigue, which were well managed with supportive care. Commonly reported grade 3 or 4 toxicities were fatigue, thrombocytopenia, anemia, lymphopenia, and leukopenia. Selinexor was significantly better tolerated when administered as a flat dose on an intermittent schedule. PK analysis of selinexor revealed a clinically insignificant increase (approximately 15% to 20%) in drug exposure when taken with food. Immunohistochemical analysis of paired tumor biopsies revealed increased nuclear accumulation of tumor suppressor proteins, decreased cell proliferation, increased apoptosis, and stromal deposition. Of the 52 patients evaluable for response, none experienced an objective response by RECIST (version 1.1); however, 17 (33%) showed durable (≥ 4 months) stable disease, including seven (47%) of 15 evaluable patients with dedifferentiated liposarcoma. CONCLUSION Selinexor was well tolerated at a 60-mg flat dose on a 3-weeks-on, 1-week-off schedule. There was no clinically meaningful impact of food on PKs. Preliminary evidence of anticancer activity in sarcoma was demonstrated.
Collapse
Affiliation(s)
- Mrinal M Gounder
- Mrinal M. Gounder, William D. Tap, Mark A. Dickson, Mary Louise Keohan, Sandra P. D'Angelo, Mercedes Condy, Lanier Tanner, Joseph P. Erinjeri, and Francis H. Jasmine, Memorial Sloan Kettering Cancer Center and Weill Cornell Medical College; Gary K. Schwartz, Columbia University Medical Center, New York, NY; Alona Zer, Samer Salah, Abha A. Gupta, Herbert H. Loong, Stephanie Baker, Kjirsten Nyquist-Schultz, and Albiruni Ryan Abdul Razak, Princess Margaret Cancer Center, Toronto, Ontario, Canada; and Sharon Friedlander, Robert Carlson, Thaddeus J. Unger, Jean-Richard Saint-Martin, Tami Rashal, Joel Ellis, Michael Kauffman, and Sharon Shacham, Karyopharm Therapeutics, Newton, MA.
| | - Alona Zer
- Mrinal M. Gounder, William D. Tap, Mark A. Dickson, Mary Louise Keohan, Sandra P. D'Angelo, Mercedes Condy, Lanier Tanner, Joseph P. Erinjeri, and Francis H. Jasmine, Memorial Sloan Kettering Cancer Center and Weill Cornell Medical College; Gary K. Schwartz, Columbia University Medical Center, New York, NY; Alona Zer, Samer Salah, Abha A. Gupta, Herbert H. Loong, Stephanie Baker, Kjirsten Nyquist-Schultz, and Albiruni Ryan Abdul Razak, Princess Margaret Cancer Center, Toronto, Ontario, Canada; and Sharon Friedlander, Robert Carlson, Thaddeus J. Unger, Jean-Richard Saint-Martin, Tami Rashal, Joel Ellis, Michael Kauffman, and Sharon Shacham, Karyopharm Therapeutics, Newton, MA
| | - William D Tap
- Mrinal M. Gounder, William D. Tap, Mark A. Dickson, Mary Louise Keohan, Sandra P. D'Angelo, Mercedes Condy, Lanier Tanner, Joseph P. Erinjeri, and Francis H. Jasmine, Memorial Sloan Kettering Cancer Center and Weill Cornell Medical College; Gary K. Schwartz, Columbia University Medical Center, New York, NY; Alona Zer, Samer Salah, Abha A. Gupta, Herbert H. Loong, Stephanie Baker, Kjirsten Nyquist-Schultz, and Albiruni Ryan Abdul Razak, Princess Margaret Cancer Center, Toronto, Ontario, Canada; and Sharon Friedlander, Robert Carlson, Thaddeus J. Unger, Jean-Richard Saint-Martin, Tami Rashal, Joel Ellis, Michael Kauffman, and Sharon Shacham, Karyopharm Therapeutics, Newton, MA
| | - Samer Salah
- Mrinal M. Gounder, William D. Tap, Mark A. Dickson, Mary Louise Keohan, Sandra P. D'Angelo, Mercedes Condy, Lanier Tanner, Joseph P. Erinjeri, and Francis H. Jasmine, Memorial Sloan Kettering Cancer Center and Weill Cornell Medical College; Gary K. Schwartz, Columbia University Medical Center, New York, NY; Alona Zer, Samer Salah, Abha A. Gupta, Herbert H. Loong, Stephanie Baker, Kjirsten Nyquist-Schultz, and Albiruni Ryan Abdul Razak, Princess Margaret Cancer Center, Toronto, Ontario, Canada; and Sharon Friedlander, Robert Carlson, Thaddeus J. Unger, Jean-Richard Saint-Martin, Tami Rashal, Joel Ellis, Michael Kauffman, and Sharon Shacham, Karyopharm Therapeutics, Newton, MA
| | - Mark A Dickson
- Mrinal M. Gounder, William D. Tap, Mark A. Dickson, Mary Louise Keohan, Sandra P. D'Angelo, Mercedes Condy, Lanier Tanner, Joseph P. Erinjeri, and Francis H. Jasmine, Memorial Sloan Kettering Cancer Center and Weill Cornell Medical College; Gary K. Schwartz, Columbia University Medical Center, New York, NY; Alona Zer, Samer Salah, Abha A. Gupta, Herbert H. Loong, Stephanie Baker, Kjirsten Nyquist-Schultz, and Albiruni Ryan Abdul Razak, Princess Margaret Cancer Center, Toronto, Ontario, Canada; and Sharon Friedlander, Robert Carlson, Thaddeus J. Unger, Jean-Richard Saint-Martin, Tami Rashal, Joel Ellis, Michael Kauffman, and Sharon Shacham, Karyopharm Therapeutics, Newton, MA
| | - Abha A Gupta
- Mrinal M. Gounder, William D. Tap, Mark A. Dickson, Mary Louise Keohan, Sandra P. D'Angelo, Mercedes Condy, Lanier Tanner, Joseph P. Erinjeri, and Francis H. Jasmine, Memorial Sloan Kettering Cancer Center and Weill Cornell Medical College; Gary K. Schwartz, Columbia University Medical Center, New York, NY; Alona Zer, Samer Salah, Abha A. Gupta, Herbert H. Loong, Stephanie Baker, Kjirsten Nyquist-Schultz, and Albiruni Ryan Abdul Razak, Princess Margaret Cancer Center, Toronto, Ontario, Canada; and Sharon Friedlander, Robert Carlson, Thaddeus J. Unger, Jean-Richard Saint-Martin, Tami Rashal, Joel Ellis, Michael Kauffman, and Sharon Shacham, Karyopharm Therapeutics, Newton, MA
| | - Mary Louise Keohan
- Mrinal M. Gounder, William D. Tap, Mark A. Dickson, Mary Louise Keohan, Sandra P. D'Angelo, Mercedes Condy, Lanier Tanner, Joseph P. Erinjeri, and Francis H. Jasmine, Memorial Sloan Kettering Cancer Center and Weill Cornell Medical College; Gary K. Schwartz, Columbia University Medical Center, New York, NY; Alona Zer, Samer Salah, Abha A. Gupta, Herbert H. Loong, Stephanie Baker, Kjirsten Nyquist-Schultz, and Albiruni Ryan Abdul Razak, Princess Margaret Cancer Center, Toronto, Ontario, Canada; and Sharon Friedlander, Robert Carlson, Thaddeus J. Unger, Jean-Richard Saint-Martin, Tami Rashal, Joel Ellis, Michael Kauffman, and Sharon Shacham, Karyopharm Therapeutics, Newton, MA
| | - Herbert H Loong
- Mrinal M. Gounder, William D. Tap, Mark A. Dickson, Mary Louise Keohan, Sandra P. D'Angelo, Mercedes Condy, Lanier Tanner, Joseph P. Erinjeri, and Francis H. Jasmine, Memorial Sloan Kettering Cancer Center and Weill Cornell Medical College; Gary K. Schwartz, Columbia University Medical Center, New York, NY; Alona Zer, Samer Salah, Abha A. Gupta, Herbert H. Loong, Stephanie Baker, Kjirsten Nyquist-Schultz, and Albiruni Ryan Abdul Razak, Princess Margaret Cancer Center, Toronto, Ontario, Canada; and Sharon Friedlander, Robert Carlson, Thaddeus J. Unger, Jean-Richard Saint-Martin, Tami Rashal, Joel Ellis, Michael Kauffman, and Sharon Shacham, Karyopharm Therapeutics, Newton, MA
| | - Sandra P D'Angelo
- Mrinal M. Gounder, William D. Tap, Mark A. Dickson, Mary Louise Keohan, Sandra P. D'Angelo, Mercedes Condy, Lanier Tanner, Joseph P. Erinjeri, and Francis H. Jasmine, Memorial Sloan Kettering Cancer Center and Weill Cornell Medical College; Gary K. Schwartz, Columbia University Medical Center, New York, NY; Alona Zer, Samer Salah, Abha A. Gupta, Herbert H. Loong, Stephanie Baker, Kjirsten Nyquist-Schultz, and Albiruni Ryan Abdul Razak, Princess Margaret Cancer Center, Toronto, Ontario, Canada; and Sharon Friedlander, Robert Carlson, Thaddeus J. Unger, Jean-Richard Saint-Martin, Tami Rashal, Joel Ellis, Michael Kauffman, and Sharon Shacham, Karyopharm Therapeutics, Newton, MA
| | - Stephanie Baker
- Mrinal M. Gounder, William D. Tap, Mark A. Dickson, Mary Louise Keohan, Sandra P. D'Angelo, Mercedes Condy, Lanier Tanner, Joseph P. Erinjeri, and Francis H. Jasmine, Memorial Sloan Kettering Cancer Center and Weill Cornell Medical College; Gary K. Schwartz, Columbia University Medical Center, New York, NY; Alona Zer, Samer Salah, Abha A. Gupta, Herbert H. Loong, Stephanie Baker, Kjirsten Nyquist-Schultz, and Albiruni Ryan Abdul Razak, Princess Margaret Cancer Center, Toronto, Ontario, Canada; and Sharon Friedlander, Robert Carlson, Thaddeus J. Unger, Jean-Richard Saint-Martin, Tami Rashal, Joel Ellis, Michael Kauffman, and Sharon Shacham, Karyopharm Therapeutics, Newton, MA
| | - Mercedes Condy
- Mrinal M. Gounder, William D. Tap, Mark A. Dickson, Mary Louise Keohan, Sandra P. D'Angelo, Mercedes Condy, Lanier Tanner, Joseph P. Erinjeri, and Francis H. Jasmine, Memorial Sloan Kettering Cancer Center and Weill Cornell Medical College; Gary K. Schwartz, Columbia University Medical Center, New York, NY; Alona Zer, Samer Salah, Abha A. Gupta, Herbert H. Loong, Stephanie Baker, Kjirsten Nyquist-Schultz, and Albiruni Ryan Abdul Razak, Princess Margaret Cancer Center, Toronto, Ontario, Canada; and Sharon Friedlander, Robert Carlson, Thaddeus J. Unger, Jean-Richard Saint-Martin, Tami Rashal, Joel Ellis, Michael Kauffman, and Sharon Shacham, Karyopharm Therapeutics, Newton, MA
| | - Kjirsten Nyquist-Schultz
- Mrinal M. Gounder, William D. Tap, Mark A. Dickson, Mary Louise Keohan, Sandra P. D'Angelo, Mercedes Condy, Lanier Tanner, Joseph P. Erinjeri, and Francis H. Jasmine, Memorial Sloan Kettering Cancer Center and Weill Cornell Medical College; Gary K. Schwartz, Columbia University Medical Center, New York, NY; Alona Zer, Samer Salah, Abha A. Gupta, Herbert H. Loong, Stephanie Baker, Kjirsten Nyquist-Schultz, and Albiruni Ryan Abdul Razak, Princess Margaret Cancer Center, Toronto, Ontario, Canada; and Sharon Friedlander, Robert Carlson, Thaddeus J. Unger, Jean-Richard Saint-Martin, Tami Rashal, Joel Ellis, Michael Kauffman, and Sharon Shacham, Karyopharm Therapeutics, Newton, MA
| | - Lanier Tanner
- Mrinal M. Gounder, William D. Tap, Mark A. Dickson, Mary Louise Keohan, Sandra P. D'Angelo, Mercedes Condy, Lanier Tanner, Joseph P. Erinjeri, and Francis H. Jasmine, Memorial Sloan Kettering Cancer Center and Weill Cornell Medical College; Gary K. Schwartz, Columbia University Medical Center, New York, NY; Alona Zer, Samer Salah, Abha A. Gupta, Herbert H. Loong, Stephanie Baker, Kjirsten Nyquist-Schultz, and Albiruni Ryan Abdul Razak, Princess Margaret Cancer Center, Toronto, Ontario, Canada; and Sharon Friedlander, Robert Carlson, Thaddeus J. Unger, Jean-Richard Saint-Martin, Tami Rashal, Joel Ellis, Michael Kauffman, and Sharon Shacham, Karyopharm Therapeutics, Newton, MA
| | - Joseph P Erinjeri
- Mrinal M. Gounder, William D. Tap, Mark A. Dickson, Mary Louise Keohan, Sandra P. D'Angelo, Mercedes Condy, Lanier Tanner, Joseph P. Erinjeri, and Francis H. Jasmine, Memorial Sloan Kettering Cancer Center and Weill Cornell Medical College; Gary K. Schwartz, Columbia University Medical Center, New York, NY; Alona Zer, Samer Salah, Abha A. Gupta, Herbert H. Loong, Stephanie Baker, Kjirsten Nyquist-Schultz, and Albiruni Ryan Abdul Razak, Princess Margaret Cancer Center, Toronto, Ontario, Canada; and Sharon Friedlander, Robert Carlson, Thaddeus J. Unger, Jean-Richard Saint-Martin, Tami Rashal, Joel Ellis, Michael Kauffman, and Sharon Shacham, Karyopharm Therapeutics, Newton, MA
| | - Francis H Jasmine
- Mrinal M. Gounder, William D. Tap, Mark A. Dickson, Mary Louise Keohan, Sandra P. D'Angelo, Mercedes Condy, Lanier Tanner, Joseph P. Erinjeri, and Francis H. Jasmine, Memorial Sloan Kettering Cancer Center and Weill Cornell Medical College; Gary K. Schwartz, Columbia University Medical Center, New York, NY; Alona Zer, Samer Salah, Abha A. Gupta, Herbert H. Loong, Stephanie Baker, Kjirsten Nyquist-Schultz, and Albiruni Ryan Abdul Razak, Princess Margaret Cancer Center, Toronto, Ontario, Canada; and Sharon Friedlander, Robert Carlson, Thaddeus J. Unger, Jean-Richard Saint-Martin, Tami Rashal, Joel Ellis, Michael Kauffman, and Sharon Shacham, Karyopharm Therapeutics, Newton, MA
| | - Sharon Friedlander
- Mrinal M. Gounder, William D. Tap, Mark A. Dickson, Mary Louise Keohan, Sandra P. D'Angelo, Mercedes Condy, Lanier Tanner, Joseph P. Erinjeri, and Francis H. Jasmine, Memorial Sloan Kettering Cancer Center and Weill Cornell Medical College; Gary K. Schwartz, Columbia University Medical Center, New York, NY; Alona Zer, Samer Salah, Abha A. Gupta, Herbert H. Loong, Stephanie Baker, Kjirsten Nyquist-Schultz, and Albiruni Ryan Abdul Razak, Princess Margaret Cancer Center, Toronto, Ontario, Canada; and Sharon Friedlander, Robert Carlson, Thaddeus J. Unger, Jean-Richard Saint-Martin, Tami Rashal, Joel Ellis, Michael Kauffman, and Sharon Shacham, Karyopharm Therapeutics, Newton, MA
| | - Robert Carlson
- Mrinal M. Gounder, William D. Tap, Mark A. Dickson, Mary Louise Keohan, Sandra P. D'Angelo, Mercedes Condy, Lanier Tanner, Joseph P. Erinjeri, and Francis H. Jasmine, Memorial Sloan Kettering Cancer Center and Weill Cornell Medical College; Gary K. Schwartz, Columbia University Medical Center, New York, NY; Alona Zer, Samer Salah, Abha A. Gupta, Herbert H. Loong, Stephanie Baker, Kjirsten Nyquist-Schultz, and Albiruni Ryan Abdul Razak, Princess Margaret Cancer Center, Toronto, Ontario, Canada; and Sharon Friedlander, Robert Carlson, Thaddeus J. Unger, Jean-Richard Saint-Martin, Tami Rashal, Joel Ellis, Michael Kauffman, and Sharon Shacham, Karyopharm Therapeutics, Newton, MA
| | - Thaddeus J Unger
- Mrinal M. Gounder, William D. Tap, Mark A. Dickson, Mary Louise Keohan, Sandra P. D'Angelo, Mercedes Condy, Lanier Tanner, Joseph P. Erinjeri, and Francis H. Jasmine, Memorial Sloan Kettering Cancer Center and Weill Cornell Medical College; Gary K. Schwartz, Columbia University Medical Center, New York, NY; Alona Zer, Samer Salah, Abha A. Gupta, Herbert H. Loong, Stephanie Baker, Kjirsten Nyquist-Schultz, and Albiruni Ryan Abdul Razak, Princess Margaret Cancer Center, Toronto, Ontario, Canada; and Sharon Friedlander, Robert Carlson, Thaddeus J. Unger, Jean-Richard Saint-Martin, Tami Rashal, Joel Ellis, Michael Kauffman, and Sharon Shacham, Karyopharm Therapeutics, Newton, MA
| | - Jean-Richard Saint-Martin
- Mrinal M. Gounder, William D. Tap, Mark A. Dickson, Mary Louise Keohan, Sandra P. D'Angelo, Mercedes Condy, Lanier Tanner, Joseph P. Erinjeri, and Francis H. Jasmine, Memorial Sloan Kettering Cancer Center and Weill Cornell Medical College; Gary K. Schwartz, Columbia University Medical Center, New York, NY; Alona Zer, Samer Salah, Abha A. Gupta, Herbert H. Loong, Stephanie Baker, Kjirsten Nyquist-Schultz, and Albiruni Ryan Abdul Razak, Princess Margaret Cancer Center, Toronto, Ontario, Canada; and Sharon Friedlander, Robert Carlson, Thaddeus J. Unger, Jean-Richard Saint-Martin, Tami Rashal, Joel Ellis, Michael Kauffman, and Sharon Shacham, Karyopharm Therapeutics, Newton, MA
| | - Tami Rashal
- Mrinal M. Gounder, William D. Tap, Mark A. Dickson, Mary Louise Keohan, Sandra P. D'Angelo, Mercedes Condy, Lanier Tanner, Joseph P. Erinjeri, and Francis H. Jasmine, Memorial Sloan Kettering Cancer Center and Weill Cornell Medical College; Gary K. Schwartz, Columbia University Medical Center, New York, NY; Alona Zer, Samer Salah, Abha A. Gupta, Herbert H. Loong, Stephanie Baker, Kjirsten Nyquist-Schultz, and Albiruni Ryan Abdul Razak, Princess Margaret Cancer Center, Toronto, Ontario, Canada; and Sharon Friedlander, Robert Carlson, Thaddeus J. Unger, Jean-Richard Saint-Martin, Tami Rashal, Joel Ellis, Michael Kauffman, and Sharon Shacham, Karyopharm Therapeutics, Newton, MA
| | - Joel Ellis
- Mrinal M. Gounder, William D. Tap, Mark A. Dickson, Mary Louise Keohan, Sandra P. D'Angelo, Mercedes Condy, Lanier Tanner, Joseph P. Erinjeri, and Francis H. Jasmine, Memorial Sloan Kettering Cancer Center and Weill Cornell Medical College; Gary K. Schwartz, Columbia University Medical Center, New York, NY; Alona Zer, Samer Salah, Abha A. Gupta, Herbert H. Loong, Stephanie Baker, Kjirsten Nyquist-Schultz, and Albiruni Ryan Abdul Razak, Princess Margaret Cancer Center, Toronto, Ontario, Canada; and Sharon Friedlander, Robert Carlson, Thaddeus J. Unger, Jean-Richard Saint-Martin, Tami Rashal, Joel Ellis, Michael Kauffman, and Sharon Shacham, Karyopharm Therapeutics, Newton, MA
| | - Michael Kauffman
- Mrinal M. Gounder, William D. Tap, Mark A. Dickson, Mary Louise Keohan, Sandra P. D'Angelo, Mercedes Condy, Lanier Tanner, Joseph P. Erinjeri, and Francis H. Jasmine, Memorial Sloan Kettering Cancer Center and Weill Cornell Medical College; Gary K. Schwartz, Columbia University Medical Center, New York, NY; Alona Zer, Samer Salah, Abha A. Gupta, Herbert H. Loong, Stephanie Baker, Kjirsten Nyquist-Schultz, and Albiruni Ryan Abdul Razak, Princess Margaret Cancer Center, Toronto, Ontario, Canada; and Sharon Friedlander, Robert Carlson, Thaddeus J. Unger, Jean-Richard Saint-Martin, Tami Rashal, Joel Ellis, Michael Kauffman, and Sharon Shacham, Karyopharm Therapeutics, Newton, MA
| | - Sharon Shacham
- Mrinal M. Gounder, William D. Tap, Mark A. Dickson, Mary Louise Keohan, Sandra P. D'Angelo, Mercedes Condy, Lanier Tanner, Joseph P. Erinjeri, and Francis H. Jasmine, Memorial Sloan Kettering Cancer Center and Weill Cornell Medical College; Gary K. Schwartz, Columbia University Medical Center, New York, NY; Alona Zer, Samer Salah, Abha A. Gupta, Herbert H. Loong, Stephanie Baker, Kjirsten Nyquist-Schultz, and Albiruni Ryan Abdul Razak, Princess Margaret Cancer Center, Toronto, Ontario, Canada; and Sharon Friedlander, Robert Carlson, Thaddeus J. Unger, Jean-Richard Saint-Martin, Tami Rashal, Joel Ellis, Michael Kauffman, and Sharon Shacham, Karyopharm Therapeutics, Newton, MA
| | - Gary K Schwartz
- Mrinal M. Gounder, William D. Tap, Mark A. Dickson, Mary Louise Keohan, Sandra P. D'Angelo, Mercedes Condy, Lanier Tanner, Joseph P. Erinjeri, and Francis H. Jasmine, Memorial Sloan Kettering Cancer Center and Weill Cornell Medical College; Gary K. Schwartz, Columbia University Medical Center, New York, NY; Alona Zer, Samer Salah, Abha A. Gupta, Herbert H. Loong, Stephanie Baker, Kjirsten Nyquist-Schultz, and Albiruni Ryan Abdul Razak, Princess Margaret Cancer Center, Toronto, Ontario, Canada; and Sharon Friedlander, Robert Carlson, Thaddeus J. Unger, Jean-Richard Saint-Martin, Tami Rashal, Joel Ellis, Michael Kauffman, and Sharon Shacham, Karyopharm Therapeutics, Newton, MA
| | - Albiruni Ryan Abdul Razak
- Mrinal M. Gounder, William D. Tap, Mark A. Dickson, Mary Louise Keohan, Sandra P. D'Angelo, Mercedes Condy, Lanier Tanner, Joseph P. Erinjeri, and Francis H. Jasmine, Memorial Sloan Kettering Cancer Center and Weill Cornell Medical College; Gary K. Schwartz, Columbia University Medical Center, New York, NY; Alona Zer, Samer Salah, Abha A. Gupta, Herbert H. Loong, Stephanie Baker, Kjirsten Nyquist-Schultz, and Albiruni Ryan Abdul Razak, Princess Margaret Cancer Center, Toronto, Ontario, Canada; and Sharon Friedlander, Robert Carlson, Thaddeus J. Unger, Jean-Richard Saint-Martin, Tami Rashal, Joel Ellis, Michael Kauffman, and Sharon Shacham, Karyopharm Therapeutics, Newton, MA
| |
Collapse
|
31
|
Sehgal N, Fritz AJ, Vecerova J, Ding H, Chen Z, Stojkovic B, Bhattacharya S, Xu J, Berezney R. Large-scale probabilistic 3D organization of human chromosome territories. Hum Mol Genet 2016; 25:419-36. [PMID: 26604142 PMCID: PMC4731017 DOI: 10.1093/hmg/ddv479] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2015] [Revised: 11/07/2015] [Accepted: 11/16/2015] [Indexed: 01/13/2023] Open
Abstract
There is growing evidence that chromosome territories (CT) have a probabilistic non-random arrangement within the cell nucleus of mammalian cells including radial positioning and preferred patterns of interchromosomal interactions that are cell-type specific. While it is generally assumed that the three-dimensional (3D) arrangement of genes within the CT is linked to genomic regulation, the degree of non-random organization of individual CT remains unclear. As a first step to elucidating the global 3D organization (topology) of individual CT, we performed multi-color fluorescence in situ hybridization using six probes extending across each chromosome in human WI38 lung fibroblasts. Six CT were selected ranging in size and gene density (1, 4, 12, 17, 18 and X). In-house computational geometric algorithms were applied to measure the 3D distances between every combination of probes and to elucidate data-mined structural patterns. Our findings demonstrate a high degree of non-random arrangement of individual CT that vary from chromosome to chromosome and display distinct changes during the cell cycle. Application of a classic, well-defined data mining and pattern recognition approach termed the 'k-means' generated 3D models for the best fit arrangement of each chromosome. These predicted models correlated well with the detailed distance measurements and analysis. We propose that the unique 3D topology of each CT and characteristic changes during the cell cycle provide the structural framework for the global gene expression programs of the individual chromosomes.
Collapse
Affiliation(s)
| | | | | | - Hu Ding
- Department of Computer Science and Engineering, University at Buffalo, State University of New York, Buffalo, NY 14260, USA and
| | - Zihe Chen
- Department of Computer Science and Engineering, University at Buffalo, State University of New York, Buffalo, NY 14260, USA and
| | - Branislav Stojkovic
- Department of Computer Science and Engineering, University at Buffalo, State University of New York, Buffalo, NY 14260, USA and
| | - Sambit Bhattacharya
- Department of Mathematics and Computer Sciences, Fayetteville State University, Fayetteville, NC 28301, USA
| | - Jinhui Xu
- Department of Computer Science and Engineering, University at Buffalo, State University of New York, Buffalo, NY 14260, USA and
| | | |
Collapse
|
32
|
Fritz A, Barutcu AR, Martin-Buley L, vanWijnen AJ, Zaidi SK, Imbalzano AN, Lian JB, Stein JL, Stein GS. Chromosomes at Work: Organization of Chromosome Territories in the Interphase Nucleus. J Cell Biochem 2016; 117:9-19. [PMID: 26192137 PMCID: PMC4715719 DOI: 10.1002/jcb.25280] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 07/17/2015] [Indexed: 12/26/2022]
Abstract
The organization of interphase chromosomes in chromosome territories (CTs) was first proposed more than one hundred years ago. The introduction of increasingly sophisticated microscopic and molecular techniques, now provide complementary strategies for studying CTs in greater depth than ever before. Here we provide an overview of these strategies and how they are being used to elucidate CT interactions and the role of these dynamically regulated, nuclear-structure building blocks in directly supporting nuclear function in a physiologically responsive manner.
Collapse
Affiliation(s)
- Andrew Fritz
- University of Vermont Cancer Center, Department of Biochemistry, University of Vermont College of Medicine, 89 Beaumont Avenue, Burlington, VT 05405, USA
| | - A. Rasim Barutcu
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01655, USA
| | - Lori Martin-Buley
- University of Vermont Cancer Center, Department of Biochemistry, University of Vermont College of Medicine, 89 Beaumont Avenue, Burlington, VT 05405, USA
| | - André J. vanWijnen
- Departments of Orthopedic Surgery and Biochemistry & Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Sayyed K. Zaidi
- University of Vermont Cancer Center, Department of Biochemistry, University of Vermont College of Medicine, 89 Beaumont Avenue, Burlington, VT 05405, USA
| | - Anthony N. Imbalzano
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01655, USA
| | - Jane B. Lian
- University of Vermont Cancer Center, Department of Biochemistry, University of Vermont College of Medicine, 89 Beaumont Avenue, Burlington, VT 05405, USA
| | - Janet L. Stein
- University of Vermont Cancer Center, Department of Biochemistry, University of Vermont College of Medicine, 89 Beaumont Avenue, Burlington, VT 05405, USA
| | - Gary S. Stein
- University of Vermont Cancer Center, Department of Biochemistry, University of Vermont College of Medicine, 89 Beaumont Avenue, Burlington, VT 05405, USA
| |
Collapse
|
33
|
Pliss A, Fritz AJ, Stojkovic B, Ding H, Mukherjee L, Bhattacharya S, Xu J, Berezney R. Non-Random Patterns in the Distribution of NOR-Bearing Chromosome Territories in Human Fibroblasts: A Network Model of Interactions. J Cell Physiol 2015; 230:427-39. [PMID: 25077974 DOI: 10.1002/jcp.24726] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Accepted: 07/25/2014] [Indexed: 12/24/2022]
Abstract
We present a 3-D mapping in WI38 human diploid fibroblast cells of chromosome territories (CT) 13,14,15,21, and 22, which contain the nucleolar organizing regions (NOR) and participate in the formation of nucleoli. The nuclear radial positioning of NOR-CT correlated with the size of chromosomes with smaller CT more interior. A high frequency of pairwise associations between NOR-CT ranging from 52% (CT13-21) to 82% (CT15-21) was detected as well as a triplet arrangement of CT15-21-22 (72%). The associations of homologous CT were significantly lower (24-36%). Moreover, singular contacts between CT13-14 or CT13-22 were found in the majority of cells, while CT13-15 or CT13-21 predominantly exhibited multiple interactions. In cells with multiple nucleoli, one of the nucleoli (termed "dominant") always associated with a higher number of CT. Moreover, certain CT pairs more frequently contributed to the same nucleolus than to others. This nonrandom pattern suggests that a large number of the NOR-chromosomes are poised in close proximity during the postmitotic nucleolar recovery and through their NORs may contribute to the formation of the same nucleolus. A global data mining program termed the chromatic median determined the most probable interchromosomal arrangement of the entire NOR-CT population. This interactive network model was significantly above randomized simulation and was composed of 13 connections among the NOR-CT. We conclude that the NOR-CT form a global interactive network in the cell nucleus that may be a fundamental feature for the regulation of nucleolar and other genomic functions.
Collapse
Affiliation(s)
- Artem Pliss
- Department of Biological Sciences, University at Buffalo, State University of New York, Buffalo, New York
| | - Andrew J Fritz
- Department of Biological Sciences, University at Buffalo, State University of New York, Buffalo, New York
| | - Branislav Stojkovic
- Department of Computer Science and Engineering, University at Buffalo, State University of New York, Buffalo, New York
| | - Hu Ding
- Department of Computer Science and Engineering, University at Buffalo, State University of New York, Buffalo, New York
| | - Lopamudra Mukherjee
- Department of Computer Sciences, University at Wisconsin Whitewater, Whitewater, Wisconsin
| | - Sambit Bhattacharya
- Department of Computer Sciences, Fayetteville State University, Fayetteville, North Carolina
| | - Jinhui Xu
- Department of Computer Science and Engineering, University at Buffalo, State University of New York, Buffalo, New York
| | - Ronald Berezney
- Department of Biological Sciences, University at Buffalo, State University of New York, Buffalo, New York
| |
Collapse
|
34
|
Sehgal N, Seifert B, Ding H, Chen Z, Stojkovic B, Bhattacharya S, Xu J, Berezney R. Reorganization of the interchromosomal network during keratinocyte differentiation. Chromosoma 2015; 125:389-403. [DOI: 10.1007/s00412-015-0546-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 09/29/2015] [Accepted: 10/01/2015] [Indexed: 10/22/2022]
|
35
|
Scott RE, Ghule PN, Stein JL, Stein GS. Cell cycle gene expression networks discovered using systems biology: Significance in carcinogenesis. J Cell Physiol 2015; 230:2533-42. [PMID: 25808367 PMCID: PMC4481160 DOI: 10.1002/jcp.24990] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 03/18/2015] [Indexed: 12/13/2022]
Abstract
The early stages of carcinogenesis are linked to defects in the cell cycle. A series of cell cycle checkpoints are involved in this process. The G1/S checkpoint that serves to integrate the control of cell proliferation and differentiation is linked to carcinogenesis and the mitotic spindle checkpoint is associated with the development of chromosomal instability. This paper presents the outcome of systems biology studies designed to evaluate if networks of covariate cell cycle gene transcripts exist in proliferative mammalian tissues including mice, rats, and humans. The GeneNetwork website that contains numerous gene expression datasets from different species, sexes, and tissues represents the foundational resource for these studies (www.genenetwork.org). In addition, WebGestalt, a gene ontology tool, facilitated the identification of expression networks of genes that co-vary with key cell cycle targets, especially Cdc20 and Plk1 (www.bioinfo.vanderbilt.edu/webgestalt). Cell cycle expression networks of such covariate mRNAs exist in multiple proliferative tissues including liver, lung, pituitary, adipose, and lymphoid tissues among others but not in brain or retina that have low proliferative potential. Sixty-three covariate cell cycle gene transcripts (mRNAs) compose the average cell cycle network with P = e(-13) to e(-36) . Cell cycle expression networks show species, sex and tissue variability, and they are enriched in mRNA transcripts associated with mitosis, many of which are associated with chromosomal instability.
Collapse
Affiliation(s)
- RE Scott
- Varigenix, Inc., Memphis, Tennessee
| | - PN Ghule
- Department of Biochemistry and University of Vermont Cancer Center, University of Vermont College of Medicine, Burlington, Vermont, USA
| | - JL Stein
- Department of Biochemistry and University of Vermont Cancer Center, University of Vermont College of Medicine, Burlington, Vermont, USA
| | - GS Stein
- Department of Biochemistry and University of Vermont Cancer Center, University of Vermont College of Medicine, Burlington, Vermont, USA
| |
Collapse
|
36
|
Sahin U, de Thé H, Lallemand-Breitenbach V. PML nuclear bodies: assembly and oxidative stress-sensitive sumoylation. Nucleus 2015; 5:499-507. [PMID: 25482067 DOI: 10.4161/19491034.2014.970104] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
PML Nuclear Bodies (NBs) have fascinated cell biologists due to their exquisitely dynamic nature and their involvement in human diseases, notably acute promyelocytic leukemia. NBs, as well as their master organizer--the PML protein--exhibit multiple connections with stress responses. Initially viewed as a tumor suppressor, PML recently re-emerged as a multifaceted protein, capable of controlling numerous aspects of cellular homeostasis. NBs recruit many functionally diverse proteins and function as stress-regulated sumoylation factories. SUMO-initiated partner retention can subsequently facilitate a variety of other post-translational modifications, as well as partner degradation. With this newly elucidated central role of stress-enhanced sumoylation, it should now be possible to build a working model for the different NB-regulated cellular activities. Moreover, pharmacological manipulation of NB formation by interferons or oxidants holds the promise of clearing many undesirable proteins for clinical management of malignant, viral or neurodegenerative diseases.
Collapse
Affiliation(s)
- Umut Sahin
- a University Paris Diderot; Sorbonne Paris Cité ; Hôpital St. Louis ; Paris , France
| | | | | |
Collapse
|
37
|
Pliss A, Peng X, Liu L, Kuzmin A, Wang Y, Qu J, Li Y, Prasad PN. Single Cell Assay for Molecular Diagnostics and Medicine: Monitoring Intracellular Concentrations of Macromolecules by Two-photon Fluorescence Lifetime Imaging. Theranostics 2015; 5:919-30. [PMID: 26155309 PMCID: PMC4493531 DOI: 10.7150/thno.11863] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 04/03/2015] [Indexed: 02/01/2023] Open
Abstract
Molecular organization of a cell is dynamically transformed along the course of cellular physiological processes, pathologic developments or derived from interactions with drugs. The capability to measure and monitor concentrations of macromolecules in a single cell would greatly enhance studies of cellular processes in heterogeneous populations. In this communication, we introduce and experimentally validate a bio-analytical single-cell assay, wherein the overall concentration of macromolecules is estimated in specific subcellular domains, such as structure-function compartments of the cell nucleus as well as in nucleoplasm. We describe quantitative mapping of local biomolecular concentrations, either intrinsic relating to the functional and physiological state of a cell, or altered by a therapeutic drug action, using two-photon excited fluorescence lifetime imaging (FLIM). The proposed assay utilizes a correlation between the fluorescence lifetime of fluorophore and the refractive index of its microenvironment varying due to changes in the concentrations of macromolecules, mainly proteins. Two-photon excitation in Near-Infra Red biological transparency window reduced the photo-toxicity in live cells, as compared with a conventional single-photon approach. Using this new assay, we estimated average concentrations of proteins in the compartments of nuclear speckles and in the nucleoplasm at ~150 mg/ml, and in the nucleolus at ~284 mg/ml. Furthermore, we show a profound influence of pharmaceutical inhibitors of RNA synthesis on intracellular protein density. The approach proposed here will significantly advance theranostics, and studies of drug-cell interactions at the single-cell level, aiding development of personal molecular medicine.
Collapse
|
38
|
Terzo EA, Lyons SM, Poulton JS, Temple BRS, Marzluff WF, Duronio RJ. Distinct self-interaction domains promote Multi Sex Combs accumulation in and formation of the Drosophila histone locus body. Mol Biol Cell 2015; 26:1559-74. [PMID: 25694448 PMCID: PMC4395134 DOI: 10.1091/mbc.e14-10-1445] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 02/12/2015] [Indexed: 11/11/2022] Open
Abstract
The Drosophila Multi Sex Combs (Mxc) protein is necessary for the recruitment of histone mRNA biosynthetic factors to the histone locus body (HLB). Mxc contains multiple domains required for HLB assembly and histone mRNA biosynthesis. Two N-terminal domains of Mxc are essential for promoting HLB assembly via a self-interaction. Nuclear bodies (NBs) are structures that concentrate proteins, RNAs, and ribonucleoproteins that perform functions essential to gene expression. How NBs assemble is not well understood. We studied the Drosophila histone locus body (HLB), a NB that concentrates factors required for histone mRNA biosynthesis at the replication-dependent histone gene locus. We coupled biochemical analysis with confocal imaging of both fixed and live tissues to demonstrate that the Drosophila Multi Sex Combs (Mxc) protein contains multiple domains necessary for HLB assembly. An important feature of this assembly process is the self-interaction of Mxc via two conserved N-terminal domains: a LisH domain and a novel self-interaction facilitator (SIF) domain immediately downstream of the LisH domain. Molecular modeling suggests that the LisH and SIF domains directly interact, and mutation of either the LisH or the SIF domain severely impairs Mxc function in vivo, resulting in reduced histone mRNA accumulation. A region of Mxc between amino acids 721 and 1481 is also necessary for HLB assembly independent of the LisH and SIF domains. Finally, the C-terminal 195 amino acids of Mxc are required for recruiting FLASH, an essential histone mRNA-processing factor, to the HLB. We conclude that multiple domains of the Mxc protein promote HLB assembly in order to concentrate factors required for histone mRNA biosynthesis.
Collapse
Affiliation(s)
- Esteban A Terzo
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC 27599
| | - Shawn M Lyons
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599
| | - John S Poulton
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599
| | - Brenda R S Temple
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599
| | - William F Marzluff
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC 27599 Department of Biology, University of North Carolina, Chapel Hill, NC 27599 Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599 Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599 Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC 27599
| | - Robert J Duronio
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC 27599 Department of Biology, University of North Carolina, Chapel Hill, NC 27599 Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599 Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC 27599 Department of Genetics, University of North Carolina, Chapel Hill, NC 27599
| |
Collapse
|
39
|
Yang S, Quaresma AJC, Nickerson JA, Green KM, Shaffer SA, Imbalzano AN, Martin-Buley LA, Lian JB, Stein JL, van Wijnen AJ, Stein GS. Subnuclear domain proteins in cancer cells support the functions of RUNX2 in the DNA damage response. J Cell Sci 2015; 128:728-40. [PMID: 25609707 DOI: 10.1242/jcs.160051] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Cancer cells exhibit modifications in nuclear architecture and transcriptional control. Tumor growth and metastasis are supported by RUNX family transcriptional scaffolding proteins, which mediate the assembly of nuclear-matrix-associated gene-regulatory hubs. We used proteomic analysis to identify RUNX2-dependent protein-protein interactions associated with the nuclear matrix in bone, breast and prostate tumor cell types and found that RUNX2 interacts with three distinct proteins that respond to DNA damage - RUVBL2, INTS3 and BAZ1B. Subnuclear foci containing these proteins change in intensity or number following UV irradiation. Furthermore, RUNX2, INTS3 and BAZ1B form UV-responsive complexes with the serine-139-phosphorylated isoform of H2AX (γH2AX). UV irradiation increases the interaction of BAZ1B with γH2AX and decreases histone H3 lysine 9 acetylation levels, which mark accessible chromatin. RUNX2 depletion prevents the BAZ1B-γH2AX interaction and attenuates loss of H3K9 and H3K56 acetylation. Our data are consistent with a model in which RUNX2 forms functional complexes with BAZ1B, RUVBL2 and INTS3 to mount an integrated response to DNA damage. This proposed cytoprotective function for RUNX2 in cancer cells might clarify its expression in chemotherapy-resistant and/or metastatic tumors.
Collapse
Affiliation(s)
- Seungchan Yang
- Department of Cell Biology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Alexandre J C Quaresma
- Department of Cell Biology, University of Massachusetts Medical School, Worcester, MA 01655, USA Institute of Biomedicine, Department of Biochemistry and Developmental Biology, FI-00014 University of Helsinki, Finland
| | - Jeffrey A Nickerson
- Department of Cell Biology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Karin M Green
- Department of Biochemistry and Molecular Pharmacology and Proteomics and Mass Spectrometry Facility, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Scott A Shaffer
- Department of Biochemistry and Molecular Pharmacology and Proteomics and Mass Spectrometry Facility, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Anthony N Imbalzano
- Department of Cell Biology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Lori A Martin-Buley
- Department of Biochemistry & Vermont Cancer Center, University of Vermont Medical School, Burlington, VT 05405, USA
| | - Jane B Lian
- Department of Cell Biology, University of Massachusetts Medical School, Worcester, MA 01655, USA Department of Biochemistry & Vermont Cancer Center, University of Vermont Medical School, Burlington, VT 05405, USA
| | - Janet L Stein
- Department of Cell Biology, University of Massachusetts Medical School, Worcester, MA 01655, USA Department of Biochemistry & Vermont Cancer Center, University of Vermont Medical School, Burlington, VT 05405, USA
| | - Andre J van Wijnen
- Department of Cell Biology, University of Massachusetts Medical School, Worcester, MA 01655, USA Departments of Orthopedic Surgery & Biochemistry and Molecular Biology, Mayo Clinic, 200 First Street S.W., MSB 3-69, Rochester, MN 55905, USA
| | - Gary S Stein
- Department of Cell Biology, University of Massachusetts Medical School, Worcester, MA 01655, USA Department of Biochemistry & Vermont Cancer Center, University of Vermont Medical School, Burlington, VT 05405, USA
| |
Collapse
|
40
|
Alarcón H, Ynsa MD, Dang ZY, Torres-Costa V, Manso-Silván M, Wu JF, Breese MBH, García-Ruiz JP. Conditioned bio-interfaces of silicon/porous silicon micro-patterns lead to the chondrogenesis of hMSCs. RSC Adv 2015. [DOI: 10.1039/c5ra09069e] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
hMSCs find attractive both Si and PSi surfaces to develop cell-surface adhesions which are needed in differentiation and the presence of CM-hMSCs bio-interface improves the differentiation process with respect to a control PSi surface.
Collapse
Affiliation(s)
- H. Alarcón
- Molecular Biology Department
- Universidad Autónoma de Madrid
- 28049 Madrid
- Spain
| | - M. D. Ynsa
- Department of Applied Physics and Instituto Nicolás Cabrera
- Universidad Autónoma de Madrid
- 28049 Madrid
- Spain
- Centro de Micro-Análisis de Materiales (CMAM)
| | - Z. Y. Dang
- Centre for Ion Beam Applications (CIBA)
- Department of Physics
- National University of Singapore
- Singapore 117542
| | - V. Torres-Costa
- Department of Applied Physics and Instituto Nicolás Cabrera
- Universidad Autónoma de Madrid
- 28049 Madrid
- Spain
- Centro de Micro-Análisis de Materiales (CMAM)
| | - M. Manso-Silván
- Department of Applied Physics and Instituto Nicolás Cabrera
- Universidad Autónoma de Madrid
- 28049 Madrid
- Spain
| | - J. F. Wu
- Centre for Ion Beam Applications (CIBA)
- Department of Physics
- National University of Singapore
- Singapore 117542
| | - M. B. H. Breese
- Centre for Ion Beam Applications (CIBA)
- Department of Physics
- National University of Singapore
- Singapore 117542
| | - J. P. García-Ruiz
- Molecular Biology Department
- Universidad Autónoma de Madrid
- 28049 Madrid
- Spain
| |
Collapse
|
41
|
Gordon JAR, Montecino MA, Aqeilan RI, Stein JL, Stein GS, Lian JB. Epigenetic pathways regulating bone homeostasis: potential targeting for intervention of skeletal disorders. Curr Osteoporos Rep 2014; 12:496-506. [PMID: 25260661 PMCID: PMC4216616 DOI: 10.1007/s11914-014-0240-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Epigenetic regulation utilizes different mechanisms to convey heritable traits to progeny cells that are independent of DNA sequence, including DNA silencing, post-translational modifications of histone proteins, and the post-transcriptional modulation of RNA transcript levels by non-coding RNAs. Although long non-coding RNAs have recently emerged as important regulators of gene imprinting, their functions during osteogenesis are as yet unexplored. In contrast, microRNAs (miRNAs) are well characterized for their control of osteogenic and osteoclastic pathways; thus, further defining how gene regulatory networks essential for skeleton functions are coordinated and finely tuned through the activities of miRNAs. Roles of miRNAs are constantly expanding as new studies uncover associations with skeletal disorders. The distinct functions of epigenetic regulators and evidence for integrating their activities to control normal bone gene expression and bone disease will be presented. In addition, potential for using "signature miRNAs" to identify, manage, and therapeutically treat osteosarcoma will be discussed in this review.
Collapse
Affiliation(s)
- Jonathan A. R. Gordon
- Department of Biochemistry and Vermont Cancer Center, University of Vermont College of Medicine, 89 Beaumont Avenue, Burlington, VT, USA
| | - Martin A. Montecino
- Centro de Investigaciones Biomedicas and FONDAP Center for Genome Regulation, Universidad Andres Bello, Avenida Republica 239, Santiago, Chile
| | - Rami I. Aqeilan
- Lautenberg Center for Immunology and Cancer Research-IMRIC, Hebrew University-Hadassah Medical School, PO Box 12272, Ein Karem Campus, Jerusalem 91120, Israel
| | - Janet L. Stein
- Department of Biochemistry and Vermont Cancer Center, University of Vermont College of Medicine, 89 Beaumont Avenue, Burlington, VT, USA
| | - Gary S. Stein
- Department of Biochemistry and Vermont Cancer Center, University of Vermont College of Medicine, 89 Beaumont Avenue, Burlington, VT, USA
| | - Jane B. Lian
- Department of Biochemistry and Vermont Cancer Center, University of Vermont College of Medicine, 89 Beaumont Avenue, Burlington, VT, USA
- Corresponding Author: Jane B. Lian – P: 802-656-4872, F: 802-656-8216,
| |
Collapse
|
42
|
Fritz AJ, Stojkovic B, Ding H, Xu J, Bhattacharya S, Berezney R. Cell type specific alterations in interchromosomal networks across the cell cycle. PLoS Comput Biol 2014; 10:e1003857. [PMID: 25275626 PMCID: PMC4183423 DOI: 10.1371/journal.pcbi.1003857] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Accepted: 08/16/2014] [Indexed: 11/18/2022] Open
Abstract
The interchromosomal organization of a subset of human chromosomes (#1, 4, 11, 12, 16, 17, and 18) was examined in G1 and S phase of human WI38 lung fibroblast and MCF10A breast epithelial cells. Radial positioning of the chromosome territories (CTs) was independent of gene density, but size dependent. While no changes in radial positioning during the cell cycle were detected, there were stage-specific differences between cell types. Each CT was in close proximity (interaction) with a similar number of other CT except the gene rich CT17 which had significantly more interactions. Furthermore, CT17 was a member of the highest pairwise CT combinations with multiple interactions. Major differences were detected in the pairwise interaction profiles of MCF10A versus WI38 including cell cycle alterations from G1 to S. These alterations in interaction profiles were subdivided into five types: overall increase, overall decrease, switching from 1 to ≥2 interactions, vice versa, or no change. A global data mining program termed the chromatic median determined the most probable overall association network for the entire subset of CT. This probabilistic interchromosomal network was nearly completely different between the two cell lines. It was also strikingly altered across the cell cycle in MCF10A, but only slightly in WI38. We conclude that CT undergo multiple and preferred interactions with other CT in the nucleus and form preferred -albeit probabilistic- interchromosomal networks. This network of interactions is altered across the cell cycle and between cell types. It is intriguing to consider the relationship of these alterations to the corresponding changes in the gene expression program across the cell cycle and in different cell types.
Collapse
Affiliation(s)
- Andrew J. Fritz
- Department of Biological Sciences, University at Buffalo, State University of New York, Buffalo, New York, United States of America
| | - Branislav Stojkovic
- Department of Computer Science and Engineering, University at Buffalo, State University of New York, Buffalo, New York, United States of America
| | - Hu Ding
- Department of Computer Science and Engineering, University at Buffalo, State University of New York, Buffalo, New York, United States of America
| | - Jinhui Xu
- Department of Computer Science and Engineering, University at Buffalo, State University of New York, Buffalo, New York, United States of America
| | - Sambit Bhattacharya
- Department of Computer Sciences, Fayetteville State University, Fayetteville, North Carolina, United States of America
| | - Ronald Berezney
- Department of Biological Sciences, University at Buffalo, State University of New York, Buffalo, New York, United States of America
| |
Collapse
|
43
|
Sehgal N, Fritz AJ, Morris K, Torres I, Chen Z, Xu J, Berezney R. Gene density and chromosome territory shape. Chromosoma 2014; 123:499-513. [PMID: 25106753 DOI: 10.1007/s00412-014-0480-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 07/15/2014] [Accepted: 07/17/2014] [Indexed: 12/16/2022]
Abstract
Despite decades of study of chromosome territories (CT) in the interphase nucleus of mammalian cells, our understanding of the global shape and 3-D organization of the individual CT remains very limited. Past microscopic analysis of CT suggested that while many of the CT appear to be very regular ellipsoid-like shapes, there were also those with more irregular shapes. We have undertaken a comprehensive analysis to determine the degree of shape regularity of different CT. To be representative of the whole human genome, 12 different CT (~41 % of the genome) were selected that ranged from the largest (CT 1) to the smallest (CT 21) in size and from the highest (CT 19) to lowest (CT Y) in gene density. Using both visual inspection and algorithms that measure the degree of shape ellipticity and regularity, we demonstrate a strong inverse correlation between the degree of regular CT shape and gene density for those CT that are most gene-rich (19, 17, 11) and gene-poor (18, 13, Y). CT more intermediate in gene density showed a strong negative correlation with shape regularity, but not with ellipticity. An even more striking correlation between gene density and CT shape was determined for the nucleolar-associated NOR-CT. Correspondingly, striking differences in shape between the X active and inactive CT implied that aside from gene density, the overall global level of gene transcription on individual CT is also an important determinant of chromosome territory shape.
Collapse
Affiliation(s)
- Nitasha Sehgal
- Department of Biological Sciences, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA
| | | | | | | | | | | | | |
Collapse
|
44
|
Turner JG, Dawson J, Cubitt CL, Baz R, Sullivan DM. Inhibition of CRM1-dependent nuclear export sensitizes malignant cells to cytotoxic and targeted agents. Semin Cancer Biol 2014; 27:62-73. [PMID: 24631834 PMCID: PMC4108511 DOI: 10.1016/j.semcancer.2014.03.001] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 02/25/2014] [Accepted: 03/01/2014] [Indexed: 10/25/2022]
Abstract
Nuclear-cytoplasmic trafficking of proteins is a significant factor in the development of cancer and drug resistance. Subcellular localization of exported proteins linked to cancer development include those involved in cell growth and proliferation, apoptosis, cell cycle regulation, transformation, angiogenesis, cell adhesion, invasion, and metastasis. Here, we examined the basic mechanisms involved in the export of proteins from the nucleus to the cytoplasm. All proteins over 40kDa use the nuclear pore complex to gain entry or exit from the nucleus, with the primary nuclear export molecule involved in these processes being chromosome region maintenance 1 (CRM1, exportin 1 or XPO1). Proteins exported from the nucleus must possess a hydrophobic nuclear export signal (NES) peptide that binds to a hydrophobic groove containing an active-site Cys528 in the CRM1 protein. CRM1 inhibitors function largely by covalent modification of the active site Cys528 and prevent binding to the cargo protein NES. In the absence of a CRM1 inhibitor, CRM1 binds cooperatively to the NES of the cargo protein and RanGTP, forming a trimer that is actively transported out of the nucleus by facilitated diffusion. Nuclear export can be blocked by CRM1 inhibitors, NES peptide inhibitors or by preventing post-translational modification of cargo proteins. Clinical trials using the classic CRM1 inhibitor leptomycin B proved too toxic for patients; however, a new generation of less toxic small molecule inhibitors is being used in clinical trials in patients with both hematological malignancies and solid tumors. Additional trials are being initiated using small-molecule CRM1 inhibitors in combination with chemotherapeutics such as pegylated liposomal doxorubicin. In this review, we present evidence that combining the new CRM1 inhibitors with other classes of therapeutics may prove effective in the treatment of cancer. Potential combinatorial therapies discussed include the use of CRM1 inhibitors and the addition of alkylating agents (melphalan), anthracyclines (doxorubicin and daunomycin), BRAF inhibitors, platinum drugs (cisplatin and oxaliplatin), proteosome inhibitors (bortezomib and carfilzomib), or tyrosine-kinase inhibitors (imatinib). Also, the sequence of treatment may be important for combination therapy. We found that the most effective treatment regimen involved first priming the cancer cells with the CRM1 inhibitor followed by doxorubicin, bortezomib, carfilzomib, or melphalan. This order sensitized both de novo and acquired drug-resistant cancer cell lines.
Collapse
Affiliation(s)
- Joel G Turner
- Department of Blood and Marrow Transplantation and Chemical Biology and Molecular Medicine Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Jana Dawson
- Department of Blood and Marrow Transplantation and Chemical Biology and Molecular Medicine Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Christopher L Cubitt
- Translational Research Core Laboratory, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Rachid Baz
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Daniel M Sullivan
- Department of Blood and Marrow Transplantation and Chemical Biology and Molecular Medicine Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA.
| |
Collapse
|
45
|
Tai PWL, Zaidi SK, Wu H, Grandy RA, Montecino MM, van Wijnen AJ, Lian JB, Stein GS, Stein JL. The dynamic architectural and epigenetic nuclear landscape: developing the genomic almanac of biology and disease. J Cell Physiol 2014; 229:711-27. [PMID: 24242872 PMCID: PMC3996806 DOI: 10.1002/jcp.24508] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Accepted: 11/11/2013] [Indexed: 12/31/2022]
Abstract
Compaction of the eukaryotic genome into the confined space of the cell nucleus must occur faithfully throughout each cell cycle to retain gene expression fidelity. For decades, experimental limitations to study the structural organization of the interphase nucleus restricted our understanding of its contributions towards gene regulation and disease. However, within the past few years, our capability to visualize chromosomes in vivo with sophisticated fluorescence microscopy, and to characterize chromosomal regulatory environments via massively parallel sequencing methodologies have drastically changed how we currently understand epigenetic gene control within the context of three-dimensional nuclear structure. The rapid rate at which information on nuclear structure is unfolding brings challenges to compare and contrast recent observations with historic findings. In this review, we discuss experimental breakthroughs that have influenced how we understand and explore the dynamic structure and function of the nucleus, and how we can incorporate historical perspectives with insights acquired from the ever-evolving advances in molecular biology and pathology.
Collapse
Affiliation(s)
- Phillip W. L. Tai
- Department of Biochemistry and Vermont Cancer Center, University of Vermont College of Medicine, Burlington, VT
| | - Sayyed K. Zaidi
- Department of Biochemistry and Vermont Cancer Center, University of Vermont College of Medicine, Burlington, VT
| | - Hai Wu
- Department of Biochemistry and Vermont Cancer Center, University of Vermont College of Medicine, Burlington, VT
| | - Rodrigo A. Grandy
- Department of Biochemistry and Vermont Cancer Center, University of Vermont College of Medicine, Burlington, VT
| | - Martin M. Montecino
- Center for Biomedical Research and FONDAP Center for Genome Regulation, Universidad Andres Bello, Santiago, Chile
| | - André J. van Wijnen
- Departments of Orthopedic Surgery and Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN
| | - Jane B. Lian
- Department of Biochemistry and Vermont Cancer Center, University of Vermont College of Medicine, Burlington, VT
| | - Gary S. Stein
- Department of Biochemistry and Vermont Cancer Center, University of Vermont College of Medicine, Burlington, VT
| | - Janet L. Stein
- Department of Biochemistry and Vermont Cancer Center, University of Vermont College of Medicine, Burlington, VT
| |
Collapse
|
46
|
Fritz AJ, Stojkovic B, Ding H, Xu J, Bhattacharya S, Gaile D, Berezney R. Wide-scale alterations in interchromosomal organization in breast cancer cells: defining a network of interacting chromosomes. Hum Mol Genet 2014; 23:5133-46. [PMID: 24833717 DOI: 10.1093/hmg/ddu237] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The interchromosomal spatial positionings of a subset of human chromosomes was examined in the human breast cell line MCF10A (10A) and its malignant counterpart MCF10CA1a (CA1a). The nine chromosomes selected (#1, 4, 11, 12, 15, 16, 18, 21 and X) cover a wide range in size and gene density and compose ∼40% of the total human genome. Radial positioning of the chromosome territories (CT) was size dependent with certain of the CT more peripheral in CA1a. Each CT was in close proximity (interaction) with a similar number of other CT except the inactive CTXi. It had lower levels of interchromosomal partners in 10A which increased strikingly in CA1a. Major alterations from 10A to CA1a were detected in the pairwise interaction profiles which were subdivided into five types of altered interaction profiles: overall increase, overall decrease, switching from 1 to ≥2, vice versa or no change. A global data mining program termed the chromatic median calculated the most probable overall association network for the entire subset of CT. This interchromosomal network was drastically altered in CA1a with only 1 of 20 shared connections. We conclude that CT undergo multiple and preferred interactions with other CT in the cell nucleus and form preferred-albeit probabilistic-interchromosomal networks. This network of interactions is highly altered in malignant human breast cells. It is intriguing to consider the relationship of these alterations to the corresponding changes in the gene expression program of these malignant cancer cells.
Collapse
Affiliation(s)
| | - Branislav Stojkovic
- Department of Computer Sciences, University at Buffalo, State University of New York, Buffalo, NY 14260, USA
| | - Hu Ding
- Department of Computer Sciences, University at Buffalo, State University of New York, Buffalo, NY 14260, USA
| | - Jinhui Xu
- Department of Computer Sciences, University at Buffalo, State University of New York, Buffalo, NY 14260, USA
| | - Sambit Bhattacharya
- Department of Computer Sciences, Fayetteville State University, Fayetteville, NC 28301, USA
| | - Daniel Gaile
- Department of Biostatistics, University at Buffalo, State University of New York, Buffalo, NY 14214, USA
| | | |
Collapse
|
47
|
Tan DSP, Bedard PL, Kuruvilla J, Siu LL, Razak ARA. Promising SINEs for embargoing nuclear-cytoplasmic export as an anticancer strategy. Cancer Discov 2014; 4:527-37. [PMID: 24743138 DOI: 10.1158/2159-8290.cd-13-1005] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In cancer cells, the nuclear-cytoplasmic transport machinery is frequently disrupted, resulting in mislocalization and loss of function for many key regulatory proteins. In this review, the mechanisms by which tumor cells co-opt the nuclear transport machinery to facilitate carcinogenesis, cell survival, drug resistance, and tumor progression will be elucidated, with a particular focus on the role of the nuclear-cytoplasmic export protein. The recent development of a new generation of selective inhibitors of nuclear export (XPO1 antagonists) and how these novel anticancer drugs may bring us closer to the implementation of this therapeutic strategy in the clinic will be discussed.
Collapse
Affiliation(s)
- David S P Tan
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, Canada
| | | | | | | | | |
Collapse
|
48
|
Zaidi SK, Grandy RA, Lopez-Camacho C, Montecino MM, van Wijnen AJ, Lian JB, Stein JL, Stein GS. Bookmarking target genes in mitosis: a shared epigenetic trait of phenotypic transcription factors and oncogenes? Cancer Res 2014; 74:420-5. [PMID: 24408924 PMCID: PMC3996803 DOI: 10.1158/0008-5472.can-13-2837] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The regulatory information for phenotype, proliferation, and growth of normal and tumor cells must be maintained through genome replication in the S phase and cell division during mitosis. Epigenetic mechanisms that include DNA methylation, posttranslational modifications of histones, selective utilization of histone variants, and inheritable RNA molecules play pivotal roles in maintaining cellular identity through mitotic divisions. Recent studies demonstrate that mitotic occupancy of genes, which are determinants of cell fate, growth, and proliferation, by lineage-restricted transcription factors is a key epigenetic mechanism for retention and transmission of cellular expression memory. Evidence is emerging for the presence of distinct transcriptional regulatory microenvironments in mitotic chromosomes in which the genes bookmarked for reactivation postmitotically reside. Importantly, some oncoproteins are present in mitotic microenvironments where they occupy target genes during mitosis and may contribute to perpetuating the transformed phenotype. We discuss emerging regulatory implications of epigenetically bookmarking genes during mitosis for physiologic control as well as for the onset and progression of cancer.
Collapse
Affiliation(s)
- Sayyed K. Zaidi
- Vermont Cancer Center and Department of Biochemistry, University of Vermont, Burlington VT
| | - Rodrigo A. Grandy
- Vermont Cancer Center and Department of Biochemistry, University of Vermont, Burlington VT
| | - Cesar Lopez-Camacho
- Vermont Cancer Center and Department of Biochemistry, University of Vermont, Burlington VT
| | - Martin M. Montecino
- Center for Biomedical Research and FONDAP Center for Genome Regulation, Universidad Andres Bello, Santiago, Chile
| | - Andre J. van Wijnen
- Departments of Orthopedic Surgery and Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota
| | - Jane B. Lian
- Vermont Cancer Center and Department of Biochemistry, University of Vermont, Burlington VT
| | - Janet L. Stein
- Vermont Cancer Center and Department of Biochemistry, University of Vermont, Burlington VT
| | - Gary S. Stein
- Vermont Cancer Center and Department of Biochemistry, University of Vermont, Burlington VT
| |
Collapse
|
49
|
p11 and its role in depression and therapeutic responses to antidepressants. Nat Rev Neurosci 2013; 14:673-80. [PMID: 24002251 DOI: 10.1038/nrn3564] [Citation(s) in RCA: 119] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Studies of the multifunctional protein p11 (also known as S100A10) are shedding light on the molecular and cellular mechanisms underlying depression. Here, we review data implicating p11 in both the amplification of serotonergic signalling and the regulation of gene transcription. We summarize studies demonstrating that levels of p11 are regulated in depression and by antidepressant regimens and, conversely, that p11 regulates depression-like behaviours and/or responses to antidepressants. Current and future studies of p11 may provide a molecular and cellular framework for the development of novel antidepressant therapies.
Collapse
|
50
|
Shima H, Suzuki H, Sun J, Kono K, Shi L, Kinomura A, Horikoshi Y, Ikura T, Ikura M, Kanaar R, Igarashi K, Saitoh H, Kurumizaka H, Tashiro S. Activation of the SUMO modification system is required for the accumulation of RAD51 at sites of DNA damage. J Cell Sci 2013; 126:5284-92. [PMID: 24046452 DOI: 10.1242/jcs.133744] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Genetic information encoded in chromosomal DNA is challenged by intrinsic and exogenous sources of DNA damage. DNA double-strand breaks (DSBs) are extremely dangerous DNA lesions. RAD51 plays a central role in homologous DSB repair, by facilitating the recombination of damaged DNA with intact DNA in eukaryotes. RAD51 accumulates at sites containing DNA damage to form nuclear foci. However, the mechanism of RAD51 accumulation at sites of DNA damage is still unclear. Post-translational modifications of proteins, such as phosphorylation, acetylation and ubiquitylation play a role in the regulation of protein localization and dynamics. Recently, the covalent binding of small ubiquitin-like modifier (SUMO) proteins to target proteins, termed SUMOylation, at sites containing DNA damage has been shown to play a role in the regulation of the DNA-damage response. Here, we show that the SUMOylation E2 ligase UBC9, and E3 ligases PIAS1 and PIAS4, are required for RAD51 accretion at sites containing DNA damage in human cells. Moreover, we identified a SUMO-interacting motif (SIM) in RAD51, which is necessary for accumulation of RAD51 at sites of DNA damage. These findings suggest that the SUMO-SIM system plays an important role in DNA repair, through the regulation of RAD51 dynamics.
Collapse
Affiliation(s)
- Hiroki Shima
- Department of Cellular Biology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima 734-8553, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|