1
|
Nakano A, Kawada T, Morita A, Nakahara T. Repeated treatment with VEGF receptor inhibitors induces phenotypic changes in endothelial cells and pericytes in the rat retina. Microvasc Res 2024; 157:104756. [PMID: 39454823 DOI: 10.1016/j.mvr.2024.104756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 10/11/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024]
Abstract
Abnormal ocular angiogenesis is a major cause of visual impairment and vision loss in neovascularization-related diseases. Currently, anti-vascular endothelial growth factor (VEGF) drugs are used to treat ocular neovascularization, but repeated injections are needed to maintain their therapeutic effects. However, repeated injection of anti-VEGF drugs may affect the retinal blood vessel phenotype and diminish therapeutic effects. In this study, we aimed to investigate the phenotypic changes in endothelial cells and pericytes caused by the repeated interruption of the VEGF receptor signaling pathway in neonatal rats. KRN633 (10 mg/kg), a VEGF receptor tyrosine kinase inhibitor, was subcutaneously administered on postnatal day (P)-7 and P8 (first round), P14 and P15 (second round), and P21 and P22 (third round). The rat eyes were collected on P7, P9, P14, P16, P21, P23, P28, and P35. Using retinal flat-mount specimens stained with specific markers for vascular endothelial cells, basement membranes, and pericytes, the arteriolar tortuosity, capillary area density, and distribution of pericytes were evaluated. Significant loss of capillaries was observed the day after the first round of KRN633 treatment, after which aggressive angiogenesis occurred, leading to the formation of tortuous arterioles. Rats that completed second and third rounds of KRN633 treatment showed more severe abnormalities in the retinal vasculature than those that only completed first round treatment. Repeated treatment with KRN633 decreased the anti-angiogenic effects but increased the immunoreactivity of α-smooth muscle actin in the pericytes on veins and capillaries. α-Smooth muscle actin expression was inversely correlated to anti-angiogenic effects. Overall, these results revealed that repeated interruption of VEGF receptor signaling pathway altered the phenotypes of endothelial cells and pericytes and induced anti-VEGF drug resistance. Therefore, careful follow-up is necessary when using anti-VEGF drugs to treat abnormal angiogenesis-associated ocular diseases.
Collapse
Affiliation(s)
- Ayuki Nakano
- Department of Molecular Pharmacology, Kitasato University School of Pharmaceutical Sciences, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Takaaki Kawada
- Department of Molecular Pharmacology, Kitasato University School of Pharmaceutical Sciences, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Akane Morita
- Department of Molecular Pharmacology, Kitasato University School of Pharmaceutical Sciences, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Tsutomu Nakahara
- Department of Molecular Pharmacology, Kitasato University School of Pharmaceutical Sciences, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan.
| |
Collapse
|
2
|
Na JY, Jeon J, Huh KY, Yu KS, Lee S, Eom J, Ahn J, You WK, Oh J. Population pharmacokinetic model of ABL001/CTX-009 (anti-VEGF/DLL4) in adult cancer patients with solid tumor. Cancer Sci 2024. [PMID: 39375952 DOI: 10.1111/cas.16363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 09/03/2024] [Accepted: 09/19/2024] [Indexed: 10/09/2024] Open
Abstract
ABL001/CTX-009 is a bispecific antibody targeting delta-like ligand-4 and vascular endothelial growth factor A. In this study, we developed a population pharmacokinetic (PK) model of ABL001/CTX-009 in patients with solid tumors. A total of 712 plasma concentrations from 30 patients with relapsed or refractory solid tumors were collected from a phase 1 study (NCT03292783). A population PK model was developed using a nonlinear mixed-effect method and was evaluated by graphical and numerical methods. Using the model, the steady-state concentrations were simulated to compare weight-based and fixed-dose regimens and to find optimal dosing intervals. The PK of ABL001/CTX-009 was well described by a two-compartment model with a parallel first-order and Michaelis-Menten elimination kinetics. Body weight was selected as a significant covariate on V1. Model evaluation results suggested that the model was adequate and robust with good precision. Simulations after administrations of fixed or weight-based doses showed similar plasma concentrations. Additionally, 10 mg/kg for every other week and 15 mg/kg for every three-week administration showed comparable plasma concentrations. In conclusion, the model well described the plasma concentrations of ABL001/CTX-009 in patients with solid tumors. The simulation suggested that weight-based dose and fixed dose can provide equivalent systemic exposure.
Collapse
Affiliation(s)
- Joo Young Na
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul, Republic of Korea
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio, USA
| | | | - Ki Young Huh
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul, Republic of Korea
| | - Kyung-Sang Yu
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul, Republic of Korea
| | - Sangmi Lee
- ABL Bio Inc., Seongnam, Republic of Korea
| | | | | | | | - Jaeseong Oh
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul, Republic of Korea
- Department of Pharmacology, Jeju National University College of Medicine, Jeju, Republic of Korea
- Clinical Research Institute, Jeju National University Hospital, Jeju, Republic of Korea
| |
Collapse
|
3
|
Guelfi S, Hodivala-Dilke K, Bergers G. Targeting the tumour vasculature: from vessel destruction to promotion. Nat Rev Cancer 2024; 24:655-675. [PMID: 39210063 DOI: 10.1038/s41568-024-00736-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/25/2024] [Indexed: 09/04/2024]
Abstract
As angiogenesis was recognized as a core hallmark of cancer growth and survival, several strategies have been implemented to target the tumour vasculature. Yet to date, attempts have rarely been so diverse, ranging from vessel growth inhibition and destruction to vessel normalization, reprogramming and vessel growth promotion. Some of these strategies, combined with standard of care, have translated into improved cancer therapies, but their successes are constrained to certain cancer types. This Review provides an overview of these vascular targeting approaches and puts them into context based on our subsequent improved understanding of the tumour vasculature as an integral part of the tumour microenvironment with which it is functionally interlinked. This new knowledge has already led to dual targeting of the vascular and immune cell compartments and sets the scene for future investigations of possible alternative approaches that consider the vascular link with other tumour microenvironment components for improved cancer therapy.
Collapse
Affiliation(s)
- Sophie Guelfi
- Department of Oncology, VIB-KU Leuven Center for Cancer Biology and KU Leuven, Leuven, Belgium
| | - Kairbaan Hodivala-Dilke
- Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, London, UK.
| | - Gabriele Bergers
- Department of Oncology, VIB-KU Leuven Center for Cancer Biology and KU Leuven, Leuven, Belgium.
| |
Collapse
|
4
|
Yu M, Yu H, Wang H, Xu X, Sun Z, Chen W, Yu M, Liu C, Jiang M, Zhang X. Tumor‑associated macrophages activated in the tumor environment of hepatocellular carcinoma: Characterization and treatment (Review). Int J Oncol 2024; 65:100. [PMID: 39239752 PMCID: PMC11387121 DOI: 10.3892/ijo.2024.5688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 08/08/2024] [Indexed: 09/07/2024] Open
Abstract
Hepatocellular carcinoma (HCC) tissue is rich in dendritic cells, T cells, B cells, macrophages, natural killer cells and cellular stroma. Together they form the tumor microenvironment (TME), which is also rich in numerous cytokines. Tumor‑associated macrophages (TAMs) are involved in the regulation of tumor development. TAMs in HCC receive stimuli in different directions, polarize in different directions and release different cytokines to regulate the development of HCC. TAMs are mostly divided into two cell phenotypes: M1 and M2. M1 TAMs secrete pro‑inflammatory mediators, and M2 TAMs secrete a variety of anti‑inflammatory and pro‑tumorigenic substances. The TAM polarization in HCC tumors is M2. Both direct and indirect methods for TAMs to regulate the development of HCC are discussed. TAMs indirectly support HCC development by promoting peripheral angiogenesis and regulating the immune microenvironment of the TME. In terms of the direct regulation between TAMs and HCC cells, the present review mainly focuses on the molecular mechanism. TAMs are involved in both the proliferation and apoptosis of HCC cells to regulate the quantitative changes of HCC, and stimulate the related invasive migratory ability and cell stemness of HCC cells. The present review aims to identify immunotherapeutic options based on the mechanisms of TAMs in the TME of HCC.
Collapse
Affiliation(s)
- Mingkai Yu
- School of Clinical Medicine and Basic Medical Science, Shandong First Medical University (Shandong Academy of Medical Sciences), Jinan, Shandong 250000, P.R. China
| | - Haixia Yu
- Pharmacy College, Shandong First Medical University (Shandong Academy of Medical Sciences), Jinan, Shandong 250000, P.R. China
| | - Hongmei Wang
- Department of Pharmacology, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Xiaoya Xu
- School of Clinical Medicine and Basic Medical Science, Shandong First Medical University (Shandong Academy of Medical Sciences), Jinan, Shandong 250000, P.R. China
| | - Zhaoqing Sun
- School of Clinical Medicine and Basic Medical Science, Shandong First Medical University (Shandong Academy of Medical Sciences), Jinan, Shandong 250000, P.R. China
| | - Wenshuai Chen
- School of Clinical Medicine and Basic Medical Science, Shandong First Medical University (Shandong Academy of Medical Sciences), Jinan, Shandong 250000, P.R. China
| | - Miaomiao Yu
- School of Clinical Medicine and Basic Medical Science, Shandong First Medical University (Shandong Academy of Medical Sciences), Jinan, Shandong 250000, P.R. China
| | - Chunhua Liu
- Department of Physiology and Neurobiology, Shandong First Medical University (Shandong Academy of Medical Sciences), Jinan, Shandong 250000, P.R. China
| | - Mingchun Jiang
- Department of Physiology and Neurobiology, Shandong First Medical University (Shandong Academy of Medical Sciences), Jinan, Shandong 250000, P.R. China
| | - Xiaowei Zhang
- Department of Gastroenterology, The Second Affiliated Hospital of Shandong First Medical University, Taian, Shandong 271000, P.R. China
| |
Collapse
|
5
|
Mireles M, Jiménez-Valerio G, Morales-Dalmau J, Johansson JD, Martínez-Lozano M, Vidal-Rosas EE, Navarro-Pérez V, Busch DR, Casanovas O, Durduran T, Vilches C. Prediction of the response to antiangiogenic sunitinib therapy by non-invasive hybrid diffuse optics in renal cell carcinoma. BIOMEDICAL OPTICS EXPRESS 2024; 15:5773-5789. [PMID: 39421783 PMCID: PMC11482189 DOI: 10.1364/boe.532052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/21/2024] [Accepted: 08/25/2024] [Indexed: 10/19/2024]
Abstract
In this work, broadband diffuse reflectance spectroscopy (DRS) and diffuse correlation spectroscopy (DCS) were used to quantify deep tissue hemodynamics in a patient-derived orthotopic xenograft mouse model of clear cell renal cancer undergoing antiangiogenic treatment. A cohort of twenty-two mice were treated with sunitinib and compared to thirteen control untreated mice, and monitored by DRS/DCS. A reduction in total hemoglobin concentration (THC, p = 0.03), oxygen saturation (SO2, p = 0.03) and blood flow index (BFI, p = 0.02) was observed over the treatment course. Early changes in tumor microvascular blood flow and total hemoglobin concentration were correlated with the final microvessel density (p = 0.014) and tumor weight (p = 0.024), respectively. Higher pre-treatment tumor microvascular blood flow was observed in non-responder mice with respect to responder mice, which was statistically predictive of the tumor intrinsic resistance (p = 0.01). This hybrid diffuse optical technique provides a method for predicting tumor intrinsic resistance to antiangiogenic therapy and could be used as predictive biomarker of response to antiangiogenic therapies in pre-clinical models.
Collapse
Affiliation(s)
- Miguel Mireles
- ICFO - Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, 08860 Barcelona, Spain
- Computational Optics and Translational Imaging Lab, Northeastern University, Boston, Massachusetts 02115, USA
| | - Gabriela Jiménez-Valerio
- Computational Optics and Translational Imaging Lab, Northeastern University, Boston, Massachusetts 02115, USA
| | - Jordi Morales-Dalmau
- ICFO - Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, 08860 Barcelona, Spain
| | - Johannes D. Johansson
- ICFO - Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, 08860 Barcelona, Spain
- Department of Biomedical Engineering, Linköping University, SE-581 83 Linköping, Sweden
| | - Mar Martínez-Lozano
- Tumor Angiogenesis Group, ProCURE, Catalan Institute of Oncology - IDIBELL, 08908 L’Hospitalet de Llobregat, Spain
| | - Ernesto E. Vidal-Rosas
- ICFO - Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, 08860 Barcelona, Spain
- Digital Health and Biomedical Engineering, School of Electronics and Computer Science, University of Southampton, SO17 1BJ Southampton, UK
| | - Valentí Navarro-Pérez
- Clinical Research Unit, Institut Català d’Oncologia, 08908 L’Hospitalet de Llobregat, Spain
| | - David R. Busch
- University of Texas Southwestern Medical Center, Departments of Anesthesiology and Pain Management, Neurology, and Biomedical Engineering Dallas, Texas 75390-9003, USA
| | - Oriol Casanovas
- Tumor Angiogenesis Group, ProCURE, Catalan Institute of Oncology - IDIBELL, 08908 L’Hospitalet de Llobregat, Spain
| | - Turgut Durduran
- ICFO - Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, 08860 Barcelona, Spain
- ICREA - Institució Catalana de Recerca i Estudis Avançats, 08010 Barcelona, Spain
| | - Clara Vilches
- ICFO - Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, 08860 Barcelona, Spain
| |
Collapse
|
6
|
Faiz MB, Naeem F, Irfan M, Aslam MA, Estevinho LM, Ateşşahin DA, Alshahrani AM, Calina D, Khan K, Sharifi-Rad J. Exploring the therapeutic potential of cannabinoids in cancer by modulating signaling pathways and addressing clinical challenges. Discov Oncol 2024; 15:490. [PMID: 39331301 PMCID: PMC11436528 DOI: 10.1007/s12672-024-01356-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 09/17/2024] [Indexed: 09/28/2024] Open
Abstract
For centuries, cannabinoids have been utilized for their medicinal properties, particularly in Asian and South-Asian countries. Cannabis plants, known for their psychoactive and non-psychoactive potential, were historically used for spiritual and remedial healing. However, as cannabis became predominantly a recreational drug, it faced prohibition. Recently, the therapeutic potential of cannabinoids has sparked renewed research interest, extending their use to various medical conditions, including cancer. This review aims to highlight current data on the involvement of cannabinoids in cancer signaling pathways, emphasizing their potential in cancer therapy and the need for further investigation into the underlying mechanisms. A comprehensive literature review was conducted using databases such as PubMed/MedLine, Google Scholar, Web of Science, Scopus, and Embase. The search focused on peer-reviewed articles, review articles, and clinical trials discussing the anticancer properties of cannabinoids. Inclusion criteria included studies in English on the mechanisms of action and clinical efficacy of cannabinoids in cancer. Cannabinoids, including Δ9-THC, CBD, and CBG, exhibit significant anticancer activities such as apoptosis induction, autophagy stimulation, cell cycle arrest, anti-proliferation, anti-angiogenesis, and metastasis inhibition. Clinical trials have demonstrated cannabinoids' efficacy in tumor regression and health improvement in palliative care. However, challenges such as variability in cannabinoid composition, psychoactive effects, regulatory barriers, and lack of standardized dosing remain. Cannabinoids show promising potential as anticancer agents through various mechanisms. Further large-scale, randomized controlled trials are essential to validate these findings and establish standardized therapeutic protocols. Future research should focus on elucidating detailed mechanisms, optimizing dosing, and exploring cannabinoids as primary chemotherapeutic agents.
Collapse
Affiliation(s)
- Manal Bint Faiz
- Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, 44000, Pakistan
| | - Faiza Naeem
- Centre for Applied Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Muhammad Irfan
- Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, 44000, Pakistan
| | - Muhammad Adeel Aslam
- Department of Forensic Science, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Leticia M Estevinho
- Mountain Research Center, CIMO, Polytechnic Institute of Bragança, Campus Santa Apolónia, 5300-253, Bragança, Portugal
| | - Dilek Arslan Ateşşahin
- Baskil Vocational School, Department of Plant and Animal Production, Fırat University, 23100, Elazıg, Turkey
| | - Asma M Alshahrani
- Department of Clinical Pharmacy, College of Pharmacy, Shaqra University, Dawadimi, Saudi Arabia
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349, Craiova, Romania.
| | - Khushbukhat Khan
- Cancer Clinical Research Unit, Trials360, Lahore, 54000, Pakistan.
| | - Javad Sharifi-Rad
- Centro de Estudios Tecnológicos y Universitarios del Golfo, Veracruz, Mexico.
- Department of Medicine, College of Medicine, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
7
|
Huang Z, Chen LJ, Huang D, Yi J, Chen Z, Lin P, Wang Y, Zheng J, Chen W. Preoperative Intravitreal Conbercept Injection Reduced Both Angiogenic and Inflammatory Cytokines in Patients With Proliferative Diabetic Retinopathy. J Diabetes Res 2024; 2024:2550367. [PMID: 39308630 PMCID: PMC11416173 DOI: 10.1155/2024/2550367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/21/2024] [Accepted: 08/17/2024] [Indexed: 09/25/2024] Open
Abstract
Aims: To investigate the impact of intravitreal injection of conbercept, a recombinant fusion protein with decoy receptors for the vascular endothelial growth factor (VEGF) family, on intraocular concentrations of angiogenic and inflammatory mediators in patients with proliferative diabetic retinopathy (PDR), analyzed its potential impact on surgical outcomes. Methods: Forty eyes from 40 patients with PDR were included in this prospective study. Patients received intravitreal injection of conbercept followed by vitrectomy or phacovitrectomy in 1 week. Aqueous humor samples were collected before and 1 week after the conbercept injection. The concentrations of angiogenic and inflammatory cytokines and chemokines were measured by flow cytometry. Follow-up clinical data were collected and analyzed. Results: Intravitreal conbercept injection significantly decreased aqueous concentrations of VEGF (325.5 (baseline) versus 22.3 pg/mL (postinjection), p < 0.0001), PlGF (39.5 versus 24.5 pg/mL, p < 0.0001), and PDGF-A (54.1 versus 47.0 pg/mL, p = 0.0016), while no impact on bFGF levels. For inflammatory mediators, the concentration of TNF-α (0.79 versus 0.45 pg/mL, p = 0.0004) and IL-8 (180.6 versus 86 pg/mL, p < 0.0001) were decreased, while IL-6 (184.1 versus 333.7 pg/mL, p = 0.0003) and IL-10 (1.1 versus 1.5 pg/mL, p = 0.0032) were increased. No significant changes in IFN-γ or MCP-1 were detected. Three months after surgery, the mean best-corrected visual acuity improved from a baseline of 1.8 ± 0.1 logMAR to 0.7 ± 0.1 logMAR (p < 0.0001), with 36 eyes (90%) achieving an improvement of visual function. Conclusions: Intravitreal conbercept injection presents dual effects of antiangiogenesis and anti-inflammation and can be served as an adjuvant treatment to vitrectomy for PDR patients.
Collapse
Affiliation(s)
- Zijing Huang
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou, Guangdong, China
| | - Li Jia Chen
- Department of Ophthalmology & Visual SciencesThe Chinese University of Hong Kong, Sha Tin, New Territories, Hong Kong
| | - Dingguo Huang
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou, Guangdong, China
| | - Jingsheng Yi
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou, Guangdong, China
| | - Zhiying Chen
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou, Guangdong, China
- Fifth Clinical InstituteShantou University Medical College, Shantou, Guangdong, China
| | - Peimin Lin
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou, Guangdong, China
| | - Yifan Wang
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou, Guangdong, China
| | - Jianlong Zheng
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou, Guangdong, China
| | - Weiqi Chen
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou, Guangdong, China
| |
Collapse
|
8
|
Guo Z, Jing X, Sun X, Sun S, Yang Y, Cao Y. Tumor angiogenesis and anti-angiogenic therapy. Chin Med J (Engl) 2024; 137:2043-2051. [PMID: 39051171 PMCID: PMC11374217 DOI: 10.1097/cm9.0000000000003231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Indexed: 07/27/2024] Open
Abstract
ABSTRACT Anti-angiogenic drugs (AADs), which mainly target the vascular endothelial growth factor-A signaling pathway, have become a therapeutic option for cancer patients for two decades. During this period, tremendous clinical experience of anti-angiogenic therapy has been acquired, new AADs have been developed, and the clinical indications for AAD treatment of various cancers have been expanded using monotherapy and combination therapy. However, improvements in the therapeutic outcomes of clinically available AADs and the development of more effective next-generation AADs are still urgently required. This review aims to provide historical and perspective views on tumor angiogenesis to allow readers to gain mechanistic insights and learn new therapeutic development. We revisit the history of concept initiation and AAD discovery, and summarize the up-to-date clinical translation of anti-angiogenic cancer therapy in this field.
Collapse
Affiliation(s)
- Ziheng Guo
- Department of Pancreatic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xu Jing
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm 17177, Sweden
| | - Xiaoting Sun
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm 17177, Sweden
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vison and Brain Health), School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Shishuo Sun
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm 17177, Sweden
- Cancer Institute, the First Clinical Medical College, Xuzhou Medical University, Xuzhou, Jiangsu 221000, China
| | - Yunlong Yang
- Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Yihai Cao
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm 17177, Sweden
| |
Collapse
|
9
|
Guo L, Zong Y, Yang W, Lin Y, Feng Q, Yu C, Liu X, Li C, Zhang W, Wang R, Li L, Pei Y, Wang H, Liu D, Niu H, Nie L. DCBLD2 deletion increases hyperglycemia and induces vascular remodeling by inhibiting insulin receptor recycling in endothelial cells. FEBS J 2024; 291:4076-4095. [PMID: 38872483 DOI: 10.1111/febs.17198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 04/02/2024] [Accepted: 05/29/2024] [Indexed: 06/15/2024]
Abstract
Discoidin, CUB, LCCL domain-containing 2 (DCBLD2) is a type I transmembrane protein with a similar structure to neuropilin, which acts as a co-receptor for certain receptor tyrosine kinases (RTKs). The insulin receptor is an RTK and plays a critical role in endothelial cell function and glycolysis. However, how and whether DCBLD2 regulates insulin receptor activity in endothelial cells is poorly understood. Diabetes was induced through treatment of Dcbld2 global-genome knockout mice and endothelium-specific knockout mice with streptozotocin. Vascular ultrasound, vascular tension test, and hematoxylin and eosin staining were performed to assess endothelial function and aortic remodeling. Glycolytic rate assays, real-time PCR and western blotting were used to investigate the effects of DCBLD2 on glycolytic activity and insulin receptor (InsR)/phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) pathway in endothelial cells. Co-immunoprecipitation was used to assess the effects of DCBLD2 on insulin receptor endocytosis and recycling. Membrane and cytoplasmic proteins were isolated to determine whether DCBLD2 could affect the localization of the insulin receptor. We found that Dcbld2 deletion exacerbated endothelial dysfunction and vascular remodeling in diabetic mice. Both Dcbld2 knockdown and Dcbld2 deletion inhibited glycolysis and the InsR/PI3K/Akt signaling pathway in endothelial cells. Furthermore, Dcbld2 deletion inhibited insulin receptor recycling. Taken together, Dcbld2 deficiency exacerbated diabetic endothelial dysfunction and vascular remodeling by inhibiting the InsR/PI3K/Akt pathway in endothelial cells through the inhibition of Rab11-dependent insulin receptor recycling. Our data suggest that DCBLD2 is a potential therapeutic target for diabetes and cardiovascular diseases.
Collapse
Affiliation(s)
- Lingling Guo
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Hebei Medical University, Shijiazhuang, China
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Shijiazhuang, China
- Key Laboratory of Vascular Biology of Hebei Province, Hebei Medical University, Shijiazhuang, China
- Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang, China
| | - Yanhong Zong
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Hebei Medical University, Shijiazhuang, China
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Shijiazhuang, China
- Key Laboratory of Vascular Biology of Hebei Province, Hebei Medical University, Shijiazhuang, China
- Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang, China
| | - Weiwei Yang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Hebei Medical University, Shijiazhuang, China
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Shijiazhuang, China
- Key Laboratory of Vascular Biology of Hebei Province, Hebei Medical University, Shijiazhuang, China
- Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang, China
| | - Yanling Lin
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Hebei Medical University, Shijiazhuang, China
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Shijiazhuang, China
- Key Laboratory of Vascular Biology of Hebei Province, Hebei Medical University, Shijiazhuang, China
- Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang, China
| | - Qi Feng
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Hebei Medical University, Shijiazhuang, China
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Shijiazhuang, China
- Key Laboratory of Vascular Biology of Hebei Province, Hebei Medical University, Shijiazhuang, China
- Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang, China
| | - Chao Yu
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Hebei Medical University, Shijiazhuang, China
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Shijiazhuang, China
- Key Laboratory of Vascular Biology of Hebei Province, Hebei Medical University, Shijiazhuang, China
- Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang, China
| | - Xiaoning Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Hebei Medical University, Shijiazhuang, China
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Shijiazhuang, China
- Key Laboratory of Vascular Biology of Hebei Province, Hebei Medical University, Shijiazhuang, China
- Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang, China
| | - Chenyang Li
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Hebei Medical University, Shijiazhuang, China
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Shijiazhuang, China
- Key Laboratory of Vascular Biology of Hebei Province, Hebei Medical University, Shijiazhuang, China
- Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang, China
| | - Wenjun Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Hebei Medical University, Shijiazhuang, China
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Shijiazhuang, China
- Key Laboratory of Vascular Biology of Hebei Province, Hebei Medical University, Shijiazhuang, China
- Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang, China
| | - Runtao Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Hebei Medical University, Shijiazhuang, China
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Shijiazhuang, China
- Key Laboratory of Vascular Biology of Hebei Province, Hebei Medical University, Shijiazhuang, China
- Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang, China
| | - Lijing Li
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Hebei Medical University, Shijiazhuang, China
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Shijiazhuang, China
- Key Laboratory of Vascular Biology of Hebei Province, Hebei Medical University, Shijiazhuang, China
- Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang, China
| | - Yunli Pei
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Hebei Medical University, Shijiazhuang, China
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Shijiazhuang, China
- Key Laboratory of Vascular Biology of Hebei Province, Hebei Medical University, Shijiazhuang, China
- Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang, China
| | - Huifang Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Hebei Medical University, Shijiazhuang, China
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Shijiazhuang, China
- Key Laboratory of Vascular Biology of Hebei Province, Hebei Medical University, Shijiazhuang, China
- Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang, China
| | - Demin Liu
- Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang, China
- Department of Cardiology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Honglin Niu
- Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang, China
- School of Nursing, Hebei Medical University, Shijiazhuang, China
| | - Lei Nie
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Hebei Medical University, Shijiazhuang, China
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Shijiazhuang, China
- Key Laboratory of Vascular Biology of Hebei Province, Hebei Medical University, Shijiazhuang, China
- Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
10
|
Fieni C, Sorrentino C, Ciummo SL, Fontana A, Lotti LV, Scialis S, Calvo Garcia D, Caulo M, Di Carlo E. Immunoliposome-based targeted delivery of the CRISPR/Cas9gRNA-IL30 complex inhibits prostate cancer and prolongs survival. Exp Mol Med 2024; 56:2033-2051. [PMID: 39232121 PMCID: PMC11447253 DOI: 10.1038/s12276-024-01310-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 06/20/2024] [Accepted: 06/24/2024] [Indexed: 09/06/2024] Open
Abstract
The development of selective and nontoxic immunotherapy targeting prostate cancer (PC) is challenging. Interleukin (IL)30 plays immunoinhibitory and oncogenic roles in PC, and its tumor-specific suppression may have significant clinical implications. CRISPR/Cas9-mediated IL30 gene deletion in PC xenografts using anti-PSCA antibody-driven lipid nanocomplexes (Cas9gRNA-hIL30-PSCA NxPs) revealed significant genome editing efficiency and circulation stability without off-target effects or organ toxicity. Biweekly intravenous administration of Cas9gRNA-hIL30-PSCA NxPs to PC-bearing mice inhibited tumor growth and metastasis and improved survival. Mechanistically, Cas9gRNA-hIL30-PSCA NxPs suppressed ANGPTL 1/2/4, IL1β, CCL2, CXCL1/6, SERPINE1-F1, EFNB2, PLG, PF4, VEGFA, VEGFD, ANG, TGFβ1, EGF and HGF expression in human PC cells while upregulated CDH1, DKK3 and PTEN expression, leading to low proliferation and extensive ischemic necrosis. In the syngeneic PC model, IL30-targeting immunoliposomes downregulated NFKB1 expression and prevented intratumoral influx of CD11b+Gr-1+MDCs, Foxp3+Tregs, and NKp46+RORγt+ILC3, and prolonged host survival by inhibiting tumor progression. This study serves as a proof of principle that immunoliposome-based targeted delivery of Cas9gRNA-IL30 represent a potentially safe and effective strategy for PC treatment.
Collapse
Affiliation(s)
- Cristiano Fieni
- Department of Medicine and Sciences of Aging, "G. d'Annunzio" University of Chieti-Pescara, 66100, Chieti, Italy
- Anatomic Pathology and Immuno-Oncology Unit, Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, 66100, Chieti, Italy
| | - Carlo Sorrentino
- Department of Medicine and Sciences of Aging, "G. d'Annunzio" University of Chieti-Pescara, 66100, Chieti, Italy
- Anatomic Pathology and Immuno-Oncology Unit, Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, 66100, Chieti, Italy
| | - Stefania Livia Ciummo
- Department of Medicine and Sciences of Aging, "G. d'Annunzio" University of Chieti-Pescara, 66100, Chieti, Italy
- Anatomic Pathology and Immuno-Oncology Unit, Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, 66100, Chieti, Italy
| | - Antonella Fontana
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, 66100, Chieti, Italy
- UDA-TECHLAB Research Center, "G. d'Annunzio" University of Chieti-Pescara, 66100, Chieti, Italy
| | | | - Sofia Scialis
- Anatomic Pathology and Immuno-Oncology Unit, Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, 66100, Chieti, Italy
| | - Darien Calvo Garcia
- Department of Neuroscience, Imaging and Clinical Sciences, "G. d'Annunzio" University of Chieti-Pescara, 66100, Chieti, Italy
- Institute for Advanced Biomedical Technologies (ITAB), "G. d'Annunzio" University of Chieti-Pescara, 66100, Chieti, Italy
| | - Massimo Caulo
- Department of Neuroscience, Imaging and Clinical Sciences, "G. d'Annunzio" University of Chieti-Pescara, 66100, Chieti, Italy
- Institute for Advanced Biomedical Technologies (ITAB), "G. d'Annunzio" University of Chieti-Pescara, 66100, Chieti, Italy
| | - Emma Di Carlo
- Department of Medicine and Sciences of Aging, "G. d'Annunzio" University of Chieti-Pescara, 66100, Chieti, Italy.
- Anatomic Pathology and Immuno-Oncology Unit, Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, 66100, Chieti, Italy.
| |
Collapse
|
11
|
Pi J, Liu J, Chang H, Chen X, Pan W, Zhang Q, Zhuang T, Liu J, Wang H, Tomlinson B, Chan P, Cheng Y, Yu Z, Zhang L, Zhao Z, Liu Z, Liu J, Zhang Y. Therapeutic efficacy of ECs Foxp1 targeting Hif1α-Hk2 glycolysis signal to restrict angiogenesis. Redox Biol 2024; 75:103281. [PMID: 39083899 PMCID: PMC11342203 DOI: 10.1016/j.redox.2024.103281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/21/2024] [Accepted: 07/21/2024] [Indexed: 08/02/2024] Open
Abstract
Endothelial cells (ECs) rely on glycolysis for energy production to maintain vascular homeostasis and the normalization of hyperglycolysis in tumor vessels has recently gained attention as a therapeutic target. We analyzed the TCGA database and found reduced Foxp1 expression in lung carcinoma. Immunostaining demonstrated reduced expression more restricted at tumor vascular ECs. Therefore, we investigated the function and mechanisms of Foxp1 in EC metabolism for tumor angiogenesis required for tumor growth. EC-Foxp1 deletion mice exhibited a significant increase of tumor and retinal developmental angiogenesis and Hif1α was identified as Foxp1 target gene, and Hk2 as Hif1α target gene. The Foxp1-Hif1α-Hk2 pathway in ECs is important in the regulation of glycolytic metabolism to govern tumor angiogenesis. Finally, we used genetic deletion of EC-Hif1α and RGD-peptide nanoparticles EC target delivery of Hif1α/Hk2-siRNAs to knockdown gene expression which reduced the tumor EC hyperglycolysis state and restricted angiogenesis for tumor growth. This study advances our understanding of EC metabolism for tumor angiogenesis, and meanwhile provides evidence for future therapeutic intervention of hyperglycolysis in tumor ECs for suppression of tumor growth.
Collapse
Affiliation(s)
- Jingjiang Pi
- State Key Laboratory of Cardiovascular Diseases and Medical Innovation Center, Shanghai Heart Failure Research Center, Department of Cardiology, Department of Cardiovascular Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China; Shenzhen Ruipuxun Academy for Stem Cell and Regenerative Medicine, Shenzhen, China; Department of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China.
| | - Jie Liu
- State Key Laboratory of Cardiovascular Diseases and Medical Innovation Center, Shanghai Heart Failure Research Center, Department of Cardiology, Department of Cardiovascular Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Huan Chang
- Department of Electrophysiology, Jingjiang People's Hospital Affiliated to Yangzhou University, Yangzhou, 225000, China
| | - Xiaoli Chen
- State Key Laboratory of Cardiovascular Diseases and Medical Innovation Center, Shanghai Heart Failure Research Center, Department of Cardiology, Department of Cardiovascular Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Wenqi Pan
- State Key Laboratory of Cardiovascular Diseases and Medical Innovation Center, Shanghai Heart Failure Research Center, Department of Cardiology, Department of Cardiovascular Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Qi Zhang
- Department of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Tao Zhuang
- State Key Laboratory of Cardiovascular Diseases and Medical Innovation Center, Shanghai Heart Failure Research Center, Department of Cardiology, Department of Cardiovascular Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China; Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Jiwen Liu
- State Key Laboratory of Cardiovascular Diseases and Medical Innovation Center, Shanghai Heart Failure Research Center, Department of Cardiology, Department of Cardiovascular Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Haikun Wang
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Science, University of Chinese Academy of Sciences, 320 Yueyang Rd, Shanghai, 200031, China
| | - Brian Tomlinson
- Faculty of Medicine, Macau University of Science and Technology, Macau SAR, China
| | - Paul Chan
- Division of Cardiology, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Yu Cheng
- Institute for Biomedical Engineering and Nano Science, Tongji University School of Medicine, Shanghai, China
| | - Zuoren Yu
- State Key Laboratory of Cardiovascular Diseases and Medical Innovation Center, Shanghai Heart Failure Research Center, Department of Cardiology, Department of Cardiovascular Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Lin Zhang
- State Key Laboratory of Cardiovascular Diseases and Medical Innovation Center, Shanghai Heart Failure Research Center, Department of Cardiology, Department of Cardiovascular Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Zhenlin Zhao
- Shenzhen Ruipuxun Academy for Stem Cell and Regenerative Medicine, Shenzhen, China.
| | - Zhongmin Liu
- State Key Laboratory of Cardiovascular Diseases and Medical Innovation Center, Shanghai Heart Failure Research Center, Department of Cardiology, Department of Cardiovascular Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China.
| | - Jie Liu
- State Key Laboratory of Cardiovascular Diseases and Medical Innovation Center, Shanghai Heart Failure Research Center, Department of Cardiology, Department of Cardiovascular Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China; Shenzhen Ruipuxun Academy for Stem Cell and Regenerative Medicine, Shenzhen, China.
| | - Yuzhen Zhang
- State Key Laboratory of Cardiovascular Diseases and Medical Innovation Center, Shanghai Heart Failure Research Center, Department of Cardiology, Department of Cardiovascular Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China.
| |
Collapse
|
12
|
Hoosemans L, Vooijs M, Hoeben A. Opportunities and Challenges of Small Molecule Inhibitors in Glioblastoma Treatment: Lessons Learned from Clinical Trials. Cancers (Basel) 2024; 16:3021. [PMID: 39272879 PMCID: PMC11393907 DOI: 10.3390/cancers16173021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/26/2024] [Accepted: 08/29/2024] [Indexed: 09/15/2024] Open
Abstract
Glioblastoma (GBM) is the most prevalent central nervous system tumour (CNS). Patients with GBM have a dismal prognosis of 15 months, despite an intensive treatment schedule consisting of surgery, chemoradiation and concurrent chemotherapy. In the last decades, many trials have been performed investigating small molecule inhibitors, which target specific genes involved in tumorigenesis. So far, these trials have been unsuccessful, and standard of care for GBM patients has remained the same since 2005. This review gives an overview of trials investigating small molecule inhibitors on their own, combined with chemotherapy or other small molecule inhibitors. We discuss possible resistance mechanisms in GBM, focussing on intra- and intertumoral heterogeneity, bypass mechanisms and the influence of the tumour microenvironment. Moreover, we emphasise how combining inhibitors can help overcome these resistance mechanisms. We also address strategies for improving trial outcomes through modifications to their design. In summary, this review aims to elucidate different resistance mechanisms against small molecule inhibitors, highlighting their significance in the search for novel therapeutic combinations to improve the overall survival of GBM patients.
Collapse
Affiliation(s)
- Linde Hoosemans
- Department of Radiation Oncology (MAASTRO), GROW School for Oncology and Reproduction, Maastricht University Medical Center+, 6229 HX Maastricht, The Netherlands
| | - Marc Vooijs
- Department of Radiation Oncology (MAASTRO), GROW School for Oncology and Reproduction, Maastricht University Medical Center+, 6229 HX Maastricht, The Netherlands
| | - Ann Hoeben
- Department of Medical Oncology, GROW School for Oncology and Reproduction, Maastricht University Medical Center+, 6229 HX Maastricht, The Netherlands
| |
Collapse
|
13
|
Tosato G, Wang Y. Celebrating the 1945 JNCI pioneering contribution to antiangiogenic therapy for cancer. J Natl Cancer Inst 2024:djae181. [PMID: 39178374 DOI: 10.1093/jnci/djae181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 07/25/2024] [Accepted: 07/29/2024] [Indexed: 08/25/2024] Open
Affiliation(s)
- Giovanna Tosato
- Laboratory of Cellular Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Yuyi Wang
- Laboratory of Cellular Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
14
|
Lu Z, Verginadis I, Kumazoe M, Castillo GM, Yao Y, Guerra RE, Bicher S, You M, McClung G, Qiu R, Xiao Z, Miao Z, George SS, Beiting DP, Nojiri T, Tanaka Y, Fujimura Y, Onda H, Hatakeyama Y, Nishimoto-Ashfield A, Bykova K, Guo W, Fan Y, Buynov NM, Diehl JA, Stanger BZ, Tachibana H, Gade TP, Puré E, Koumenis C, Bolotin EM, Fuchs SY. Modified C-type natriuretic peptide normalizes tumor vasculature, reinvigorates antitumor immunity, and improves solid tumor therapies. Sci Transl Med 2024; 16:eadn0904. [PMID: 39167664 DOI: 10.1126/scitranslmed.adn0904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 04/23/2024] [Accepted: 07/17/2024] [Indexed: 08/23/2024]
Abstract
Deficit of oxygen and nutrients in the tumor microenvironment (TME) triggers abnormal angiogenesis that produces dysfunctional and leaky blood vessels, which fail to adequately perfuse tumor tissues. Resulting hypoxia, exacerbation of metabolic disturbances, and generation of an immunosuppressive TME undermine the efficacy of anticancer therapies. Use of carefully scheduled angiogenesis inhibitors has been suggested to overcome these problems and normalize the TME. Here, we propose an alternative agonist-based normalization approach using a derivative of the C-type natriuretic peptide (dCNP). Multiple gene expression signatures in tumor tissues were affected in mice treated with dCNP. In several mouse orthotopic and subcutaneous solid tumor models including colon and pancreatic adenocarcinomas, this well-tolerated agent stimulated formation of highly functional tumor blood vessels to reduce hypoxia. Administration of dCNP also inhibited stromagenesis and remodeling of the extracellular matrix and decreased tumor interstitial fluid pressure. In addition, treatment with dCNP reinvigorated the antitumor immune responses. Administration of dCNP decelerated growth of primary mouse tumors and suppressed their metastases. Moreover, inclusion of dCNP into the chemo-, radio-, or immune-therapeutic regimens increased their efficacy against solid tumors in immunocompetent mice. These results demonstrate the proof of principle for using vasculature normalizing agonists to improve therapies against solid tumors and characterize dCNP as the first in class among such agents.
Collapse
Affiliation(s)
- Zhen Lu
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ioannis Verginadis
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Motofumi Kumazoe
- Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
| | | | - Yao Yao
- PharmaIN Corp., Bothell, WA 98011, USA
| | | | - Sandra Bicher
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Menghao You
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - George McClung
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Rong Qiu
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Zebin Xiao
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Zhen Miao
- Department of Biology, School of Arts & Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Subin S George
- Institute for Biomedical Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Daniel P Beiting
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Takashi Nojiri
- Department of General Thoracic Surgery, Higashiosaka City Medical Center, Higashiosaka 578-8588, Japan
| | - Yasutake Tanaka
- Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
| | - Yoshinori Fujimura
- Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
| | - Hiroaki Onda
- Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
| | - Yui Hatakeyama
- Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
| | | | | | - Wei Guo
- Department of Biology, School of Arts & Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yi Fan
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | - J Alan Diehl
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Ben Z Stanger
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hirofumi Tachibana
- Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
| | - Terence P Gade
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ellen Puré
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Constantinos Koumenis
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | - Serge Y Fuchs
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
15
|
Dumitru CS, Raica M. A Splice Form of VEGF, a Potential Anti-Angiogenetic Form of Head and Neck Squamous Cell Cancer Inhibition. Int J Mol Sci 2024; 25:8855. [PMID: 39201541 PMCID: PMC11354464 DOI: 10.3390/ijms25168855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 08/10/2024] [Accepted: 08/13/2024] [Indexed: 09/02/2024] Open
Abstract
Angiogenesis, primarily mediated by vascular endothelial growth factor (VEGF), is a fundamental step in the progression and metastasis of head and neck squamous cell carcinoma (HNSCC). Traditional anti-angiogenic therapies that target the VEGF pathway have shown promise but are often associated with significant side effects and variable efficacy due to the complexity of the angiogenic signaling pathway. This review highlights the potential of a specific VEGF splice form, VEGF165b, as an innovative therapeutic target for HNSCC. VEGF165b, unlike standard VEGF, is a natural inhibitor that binds to VEGF receptors without triggering pro-angiogenic signaling. Its distinct molecular structure and behavior suggest ways to modulate angiogenesis. This concept is particularly relevant when studying HNSCC, as introducing VEGF165b's anti-angiogenic properties offers a novel approach to understanding and potentially influencing the disease's dynamics. The review synthesizes experimental evidence suggesting the efficacy of VEGF165b in inhibiting tumor-induced angiogenesis and provides insight into a novel therapeutic strategy that could better manage HNSCC by selectively targeting aberrant vascular growth. This approach not only provides a potential pathway for more targeted and effective treatment options but also opens the door to a new paradigm in anti-angiogenic therapy with the possibility of reduced systemic toxicity. Our investigation is reshaping the future of HNSCC treatment by setting the stage for future research on VEGF splice variants as a tool for personalized medicine.
Collapse
Affiliation(s)
- Cristina Stefania Dumitru
- Department of Microscopic Morphology/Histology, Angiogenesis Research Center, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania;
| | | |
Collapse
|
16
|
Elayat G, Selim A. Angiogenesis in breast cancer: insights and innovations. Clin Exp Med 2024; 24:178. [PMID: 39105831 PMCID: PMC11303414 DOI: 10.1007/s10238-024-01446-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 07/19/2024] [Indexed: 08/07/2024]
Abstract
This review explores the pivotal role of angiogenesis in breast cancer progression and treatment. It covers biomarkers, imaging techniques, therapeutic approaches, resistance mechanisms, and clinical implications. Key topics include Vascular Endothelial Growth Factors, angiopoietins, microRNA signatures, and circulating endothelial cells as biomarkers, along with Magnetic Resonance Imaging, Computed Tomography Angiography, Ultrasound, and Positron Emission Tomography for imaging. Therapeutic strategies targeting VEGF, tyrosine kinase inhibitors, and the intersection of angiogenesis with immunotherapy are discussed. Challenges such as resistance mechanisms and personalized medicine approaches are addressed. Clinical implications, prognostic value, and the future direction of angiogenesis-targeted therapies are highlighted. The article concludes with reflections on the transformative potential of understanding angiogenesis.
Collapse
Affiliation(s)
- Ghada Elayat
- Department of Natural Science, Middlesex University, Hendon, London, UK.
- Pathology Department, Faculty of Medicine, Tanta University, Tanta, Egypt.
| | - Abdel Selim
- Histopathology Department, King's College Hospital, Denmark Hill, London, UK
| |
Collapse
|
17
|
Zhao L, Li Q, Zhou T, Liu X, Guo J, Fang Q, Cao X, Geng Q, Yu Y, Zhang S, Deng T, Wang X, Jiao Y, Zhang M, Liu H, Tan H, Xiao C. Role of N6-methyladenosine in tumor neovascularization. Cell Death Dis 2024; 15:563. [PMID: 39098905 PMCID: PMC11298539 DOI: 10.1038/s41419-024-06931-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 07/14/2024] [Accepted: 07/22/2024] [Indexed: 08/06/2024]
Abstract
Tumor neovascularization is essential for the growth, invasion, and metastasis of tumors. Recent studies have highlighted the significant role of N6-methyladenosine (m6A) modification in regulating these processes. This review explores the mechanisms by which m6A influences tumor neovascularization, focusing on its impact on angiogenesis and vasculogenic mimicry (VM). We discuss the roles of m6A writers, erasers, and readers in modulating the stability and translation of angiogenic factors like vascular endothelial growth factor (VEGF), and their involvement in key signaling pathways such as PI3K/AKT, MAPK, and Hippo. Additionally, we outline the role of m6A in vascular-immune crosstalk. Finally, we discuss the current development of m6A inhibitors and their potential applications, along with the contribution of m6A to anti-angiogenic therapy resistance. Highlighting the therapeutic potential of targeting m6A regulators, this review provides novel insights into anti-angiogenic strategies and underscores the need for further research to fully exploit m6A modulation in cancer treatment. By understanding the intricate role of m6A in tumor neovascularization, we can develop more effective therapeutic approaches to inhibit tumor growth and overcome treatment resistance. Targeting m6A offers a novel approach to interfere with the tumor's ability to manipulate its microenvironment, enhancing the efficacy of existing treatments and providing new avenues for combating cancer progression.
Collapse
Affiliation(s)
- Lu Zhao
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, China
- China-Japan Friendship Hospital, Capital Medical University, Beijing, China
| | - Qinshan Li
- Institute of Precision Medicine of Guizhou Province, Department of Obstetrics and Gynecology, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, 550004, China
- Department of Clinical Biochemistry, School of Clinical Laboratory Science, Guizhou Medical University, Guiyang, Guizhou, 550004, China
| | - Tongliang Zhou
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Xuan Liu
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Jing Guo
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Qing Fang
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Xiaoxue Cao
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, China
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, China
| | - Qishun Geng
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, China
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, China
| | - Yang Yu
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Songjie Zhang
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Tingting Deng
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Xing Wang
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, China
- China-Japan Friendship Clinical Medical College, Beijing University of Chinese Medicine, Beijing, China
| | - Yi Jiao
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, China
- China-Japan Friendship Clinical Medical College, Beijing University of Chinese Medicine, Beijing, China
| | - Mengxiao Zhang
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Honglin Liu
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, China.
- China-Japan Friendship Hospital, Capital Medical University, Beijing, China.
| | - Haidong Tan
- Department of Hepatobiliary Surgery, China-Japan Friendship Hospital, Beijing, 100029, China.
| | - Cheng Xiao
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, China.
- China-Japan Friendship Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
18
|
Yang F, Lee G, Fan Y. Navigating tumor angiogenesis: therapeutic perspectives and myeloid cell regulation mechanism. Angiogenesis 2024; 27:333-349. [PMID: 38580870 PMCID: PMC11303583 DOI: 10.1007/s10456-024-09913-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 03/04/2024] [Indexed: 04/07/2024]
Abstract
Sustained angiogenesis stands as a hallmark of cancer. The intricate vascular tumor microenvironment fuels cancer progression and metastasis, fosters therapy resistance, and facilitates immune evasion. Therapeutic strategies targeting tumor vasculature have emerged as transformative for cancer treatment, encompassing anti-angiogenesis, vessel normalization, and endothelial reprogramming. Growing evidence suggests the dynamic regulation of tumor angiogenesis by infiltrating myeloid cells, such as macrophages, myeloid-derived suppressor cells (MDSCs), and neutrophils. Understanding these regulatory mechanisms is pivotal in paving the way for successful vasculature-targeted cancer treatments. Therapeutic interventions aimed to disrupt myeloid cell-mediated tumor angiogenesis may reshape tumor microenvironment and overcome tumor resistance to radio/chemotherapy and immunotherapy.
Collapse
Affiliation(s)
- Fan Yang
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Department of Obstetrics and Gynecology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China.
- Shanghai Key Laboratory of Gynecologic Oncology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China.
| | - Gloria Lee
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Yi Fan
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
19
|
Sherman JH, Bobak A, Arsiwala T, Lockman P, Aulakh S. Targeting drug resistance in glioblastoma (Review). Int J Oncol 2024; 65:80. [PMID: 38994761 PMCID: PMC11251740 DOI: 10.3892/ijo.2024.5668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 05/16/2024] [Indexed: 07/13/2024] Open
Abstract
Glioblastoma (GBM) is the most common malignancy of the central nervous system in adults. The current standard of care includes surgery, radiation therapy, temozolomide; and tumor‑treating fields leads to dismal overall survival. There are far limited treatments upon recurrence. Therapies to date are ineffective as a result of several factors, including the presence of the blood‑brain barrier, blood tumor barrier, glioma stem‑like cells and genetic heterogeneity in GBM. In the present review, the potential mechanisms that lead to treatment resistance in GBM and the measures which have been taken so far to attempt to overcome the resistance were discussed. The complex biology of GBM and lack of comprehensive understanding of the development of therapeutic resistance in GBM demands discovery of novel antigens that are targetable and provide effective therapeutic strategies.
Collapse
Affiliation(s)
- Jonathan H. Sherman
- Department of Neurosurgery, Rockefeller Neuroscience Institute, West Virginia University, Martinsburg, WV 25401, USA
| | - Adam Bobak
- Department of Biology, Seton Hill University, Greensburg, PA 15601, USA
| | - Tasneem Arsiwala
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, WV 26506, USA
| | - Paul Lockman
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, WV 26506, USA
| | - Sonikpreet Aulakh
- Section of Hematology/Oncology, Department of Internal Medicine, West Virginia University, Morgantown, WV 26506, USA
- Department of Neuroscience, West Virginia University, Morgantown, WV 26505, USA
| |
Collapse
|
20
|
Yang B, Zheng G, Lu F. PDCL3 as a prognostic factor and associated with the VEGF signaling pathway in glioma. J Gene Med 2024; 26:e3724. [PMID: 39107869 DOI: 10.1002/jgm.3724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/29/2024] [Accepted: 07/16/2024] [Indexed: 09/14/2024] Open
Abstract
BACKGROUND New targeted drugs about angiogenesis could develop the treatment of glioma. We aimed to explore the role of phosducin like 3 (PDCL3) in angiogenesis of glioma. MATERIALS AND METHODS RNA sequencing data and matched clinical data were downloaded from The Cancer Genome Atlas (TCGA) and Chinese Glioma Genome Atlas (CGGA) databases. To screen for the reliable genes with the filtering analyses, survival, multivariate Cox, receiver operating characteristic (ROC) curve filtration, and clinical correlation analyses were performed. The PDCL3 gene was validated by immunohistochemistry as a reliable gene for further analysis. Then we used the combined data of TCGA and Genotype-Tissue Expression from UCSC to detect the differential gene expression of PDCL3. Related signal pathways in glioma were explored by the gene set enrichment analysis and co-expression analysis. Lastly, we performed in vitro experiments to verify the gene functions and related mechanisms. RESULTS The three filtering analyses and immunostaining indicated that the expression of PDCL3 in glioma tissues was higher than the normal tissues. Gene function analysis showed that PDCL3 activated the vascular endothelial growth factor (VEGF) signal pathway, and its mechanism was related to pathways in cancer, like NOD like receptor signaling pathway, the RIG-I like receptor signaling pathway and the P53 signaling pathway by MAPK/AKT in gliomas. This suggested that the proliferation, migration and invasion of glioma cells might be inhibited by the downregulation of PDCL3 in vitro, which may be related to the activation of VEGF signaling pathway. CONCLUSION We demonstrated that PDCL3 could function as an independent adverse prognostic marker in glioma. Its pro-oncogenic mechanism may be related to the VEGF signaling pathway.
Collapse
Affiliation(s)
- Bo Yang
- Department of Neurosurgery, Shengli Clinical Medical College of Fujian Medical University, Fuzhou University Affiliated Provincial Hospital, Fujian Provincial Hospital, Fuzhou, China
| | - Guangwei Zheng
- Department of Neurosurgery, Shengli Clinical Medical College of Fujian Medical University, Fuzhou University Affiliated Provincial Hospital, Fujian Provincial Hospital, Fuzhou, China
| | - Feng Lu
- Department of Neurosurgery, Shengli Clinical Medical College of Fujian Medical University, Fuzhou University Affiliated Provincial Hospital, Fujian Provincial Hospital, Fuzhou, China
| |
Collapse
|
21
|
Al-Ostoot FH, Salah S, Khanum SA. An Overview of Cancer Biology, Pathophysiological Development and It's Treatment Modalities: Current Challenges of Cancer anti-Angiogenic Therapy. Cancer Invest 2024; 42:559-604. [PMID: 38874308 DOI: 10.1080/07357907.2024.2361295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 11/22/2021] [Accepted: 05/25/2024] [Indexed: 06/15/2024]
Abstract
A number of conditions and factors can cause the transformation of normal cells in the body into malignant tissue by changing the normal functions of a wide range of regulatory, apoptotic, and signal transduction pathways. Despite the current deficiency in fully understanding the mechanism of cancer action accurately and clearly, numerous genes and proteins that are causally involved in the initiation, progression, and metastasis of cancer have been identified. But due to the lack of space and the abundance of details on this complex topic, we have emphasized here more recent advances in our understanding of the principles implied tumor cell transformation, development, invasion, angiogenesis, and metastasis. Inhibition of angiogenesis is a significant strategy for the treatment of various solid tumors, that essentially depend on cutting or at least limiting the supply of blood to micro-regions of tumors, leading to pan-hypoxia and pan-necrosis inside solid tumor tissues. Researchers have continued to enhance the efficiency of anti-angiogenic drugs over the past two decades, to identify their potential in the drug interaction, and to discover reasonable interpretations for possible resistance to treatment. In this review, we have discussed an overview of cancer history and recent methods use in cancer therapy, focusing on anti-angiogenic inhibitors targeting angiogenesis formation. Further, this review has explained the molecular mechanism of action of these anti-angiogenic inhibitors in various tumor types and their limitations use. In addition, we described the synergistic mechanisms of immunotherapy and anti-angiogenic therapy and summarizes current clinical trials of these combinations. Many phase III trials found that combining immunotherapy and anti-angiogenic therapy improved survival. Therefore, targeting the source supply of cancer cells to grow and spread with new anti-angiogenic agents in combination with different conventional therapy is a novel method to reduce cancer progression. The aim of this paper is to overview the varying concepts of cancer focusing on mechanisms involved in tumor angiogenesis and provide an overview of the recent trends in anti-angiogenic strategies for cancer therapy.
Collapse
Affiliation(s)
- Fares Hezam Al-Ostoot
- Department of Chemistry, Yuvaraja's College, University of Mysore, Mysuru, India
- Department of Biochemistry, Faculty of Education & Science, Albaydha University, Al-Baydha, Yemen
| | - Salma Salah
- Faculty of Medicine and Health Sciences, Thamar University, Dhamar, Yemen
| | - Shaukath Ara Khanum
- Department of Chemistry, Yuvaraja's College, University of Mysore, Mysuru, India
| |
Collapse
|
22
|
Hu X, Ye K, Bo S, Xiao Z, Ma M, Pan J, Zhong X, Zhang D, Mo X, Yu X, Chen M, Luo L, Shi C. Monitoring imatinib decreasing pericyte coverage and HIF-1α level in a colorectal cancer model by an ultrahigh-field multiparametric MRI approach. J Transl Med 2024; 22:712. [PMID: 39085929 PMCID: PMC11293104 DOI: 10.1186/s12967-024-05497-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 07/10/2024] [Indexed: 08/02/2024] Open
Abstract
BACKGROUND Excessive pericyte coverage promotes tumor growth, and a downregulation may solve this dilemma. Due to the double-edged sword role of vascular pericytes in tumor microenvironment (TME), indiscriminately decreasing pericyte coverage by imatinib causes poor treatment outcomes. Here, we optimized the use of imatinib in a colorectal cancer (CRC) model in high pericyte-coverage status, and revealed the value of multiparametric magnetic resonance imaging (mpMRI) at 9.4T in monitoring treatment-related changes in pericyte coverage and the TME. METHODS CRC xenograft models were evaluated by histological vascular characterizations and mpMRI. Mice with the highest pericyte coverage were treated with imatinib or saline; then, vascular characterizations, tumor apoptosis and HIF-1α level were analyzed histologically, and alterations in the expression of Bcl-2/bax pathway were assessed through qPCR. The effects of imatinib were monitored by dynamic contrast-enhanced (DCE)-, diffusion-weighted imaging (DWI)- and amide proton transfer chemical exchange saturation transfer (APT CEST)-MRI at 9.4T. RESULTS The DCE- parameters provided a good histologic match the tumor vascular characterizations. In the high pericyte coverage status, imatinib exhibited significant tumor growth inhibition, necrosis increase and pericyte coverage downregulation, and these changes were accompanied by increased vessel permeability, decreased microvessel density (MVD), increased tumor apoptosis and altered gene expression of apoptosis-related Bcl-2/bax pathway. Strategically, a 4-day imatinib effectively decreased pericyte coverage and HIF-1α level, and continuous treatment led to a less marked decrease in pericyte coverage and re-elevated HIF-1α level. Correlation analysis confirmed the feasibility of using mpMRI parameters to monitor imatinib treatment, with DCE-derived Ve and Ktrans being most correlated with pericyte coverage, Ve with vessel permeability, AUC with microvessel density (MVD), DWI-derived ADC with tumor apoptosis, and APT CEST-derived MTRasym at 1 µT with HIF-1α. CONCLUSIONS These results provided an optimized imatinib regimen to achieve decreasing pericyte coverage and HIF-1α level in the high pericyte-coverage CRC model, and offered an ultrahigh-field multiparametric MRI approach for monitoring pericyte coverage and dynamics response of the TME to treatment.
Collapse
Affiliation(s)
- Xinpeng Hu
- Medical Imaging Center, The First Affiliated Hospital of Jinan University, West Huangpu Avenue No. 613, Guangzhou, 510630, China
| | - Kunlin Ye
- Medical Imaging Center, The First Affiliated Hospital of Jinan University, West Huangpu Avenue No. 613, Guangzhou, 510630, China
| | - Shaowei Bo
- Department of Medical Imaging, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Xingang Middle Road No. 466, Guangzhou, 510317, China
| | - Zeyu Xiao
- Medical Imaging Center, The First Affiliated Hospital of Jinan University, West Huangpu Avenue No. 613, Guangzhou, 510630, China
- Engineering Research Center of Medical Imaging Artificial Intelligence for Precision Diagnosis and Treatment, West Huangpu Avenue No. 613, Guangzhou, 510630, China
| | - Mengjie Ma
- Department of Radiology, Guangzhou First People's Hospital, Panfu Road No. 1, Guangzhou, 510080, China
| | - Jinghua Pan
- Department of General Surgery, The First Affiliated Hospital of Jinan University, West Huangpu Avenue No. 613, Guangzhou, 510630, China
| | - Xing Zhong
- Medical Imaging Center, The First Affiliated Hospital of Jinan University, West Huangpu Avenue No. 613, Guangzhou, 510630, China
| | - Dong Zhang
- Medical Imaging Center, The First Affiliated Hospital of Jinan University, West Huangpu Avenue No. 613, Guangzhou, 510630, China
| | - Xukai Mo
- Medical Imaging Center, The First Affiliated Hospital of Jinan University, West Huangpu Avenue No. 613, Guangzhou, 510630, China
| | - Xiaojun Yu
- Medical Imaging Center, The First Affiliated Hospital of Jinan University, West Huangpu Avenue No. 613, Guangzhou, 510630, China
| | - Minfeng Chen
- College of Pharmacy, Jinan University, West Huangpu Avenue No.601, Guangzhou, 510632, China.
| | - Liangping Luo
- Medical Imaging Center, The First Affiliated Hospital of Jinan University, West Huangpu Avenue No. 613, Guangzhou, 510630, China.
- Engineering Research Center of Medical Imaging Artificial Intelligence for Precision Diagnosis and Treatment, West Huangpu Avenue No. 613, Guangzhou, 510630, China.
| | - Changzheng Shi
- Medical Imaging Center, The First Affiliated Hospital of Jinan University, West Huangpu Avenue No. 613, Guangzhou, 510630, China.
- Engineering Research Center of Medical Imaging Artificial Intelligence for Precision Diagnosis and Treatment, West Huangpu Avenue No. 613, Guangzhou, 510630, China.
| |
Collapse
|
23
|
Moro M, Balestrero FC, Grolla AA. Pericytes: jack-of-all-trades in cancer-related inflammation. Front Pharmacol 2024; 15:1426033. [PMID: 39086395 PMCID: PMC11288921 DOI: 10.3389/fphar.2024.1426033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 06/25/2024] [Indexed: 08/02/2024] Open
Abstract
Pericytes, recognized as mural cells, have long been described as components involved in blood vessel formation, playing a mere supporting role for endothelial cells (ECs). Emerging evidence strongly suggests their multifaceted roles in tissues and organs. Indeed, pericytes exhibit a remarkable ability to anticipate endothelial cell behavior and adapt their functions based on the specific cells they interact with. Pericytes can be activated by pro-inflammatory stimuli and crosstalk with immune cells, actively participating in their transmigration into blood vessels. Moreover, they can influence the immune response, often sustaining an immunosuppressive phenotype in most of the cancer types studied. In this review, we concentrate on the intricate crosstalk between pericytes and immune cells in cancer, highlighting the primary evidence regarding pericyte involvement in primary tumor mass dynamics, their contributions to tumor reprogramming for invasion and migration of malignant cells, and their role in the formation of pre-metastatic niches. Finally, we explored recent and emerging pharmacological approaches aimed at vascular normalization, including novel strategies to enhance the efficacy of immunotherapy through combined use with anti-angiogenic drugs.
Collapse
Affiliation(s)
| | | | - Ambra A. Grolla
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale, Novara, Italy
| |
Collapse
|
24
|
Mpekris F, Panagi M, Charalambous A, Voutouri C, Stylianopoulos T. Modulating cancer mechanopathology to restore vascular function and enhance immunotherapy. Cell Rep Med 2024; 5:101626. [PMID: 38944037 PMCID: PMC11293360 DOI: 10.1016/j.xcrm.2024.101626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/12/2024] [Accepted: 06/07/2024] [Indexed: 07/01/2024]
Abstract
Solid tumor pathology, characterized by abnormalities in the tumor microenvironment (TME), challenges therapeutic effectiveness. Mechanical factors, including increased tumor stiffness and accumulation of intratumoral forces, can determine the success of cancer treatments, defining the tumor's "mechanopathology" profile. These abnormalities cause extensive vascular compression, leading to hypoperfusion and hypoxia. Hypoperfusion hinders drug delivery, while hypoxia creates an unfavorable TME, promoting tumor progression through immunosuppression, heightened metastatic potential, drug resistance, and chaotic angiogenesis. Strategies targeting TME mechanopathology, such as vascular and stroma normalization, hold promise in enhancing cancer therapies with some already advancing to the clinic. Normalization can be achieved using anti-angiogenic agents, mechanotherapeutics, immune checkpoint inhibitors, engineered bacterial therapeutics, metronomic nanomedicine, and ultrasound sonopermeation. Here, we review the methods developed to rectify tumor mechanopathology, which have even led to cures in preclinical models, and discuss their bench-to-bedside translation, including the derivation of biomarkers from tumor mechanopathology for personalized therapy.
Collapse
Affiliation(s)
- Fotios Mpekris
- Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia, Cyprus.
| | - Myrofora Panagi
- Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia, Cyprus
| | - Antonia Charalambous
- Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia, Cyprus
| | - Chrysovalantis Voutouri
- Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia, Cyprus
| | - Triantafyllos Stylianopoulos
- Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia, Cyprus.
| |
Collapse
|
25
|
Hheidari A, Mohammadi J, Ghodousi M, Mahmoodi M, Ebrahimi S, Pishbin E, Rahdar A. Metal-based nanoparticle in cancer treatment: lessons learned and challenges. Front Bioeng Biotechnol 2024; 12:1436297. [PMID: 39055339 PMCID: PMC11269265 DOI: 10.3389/fbioe.2024.1436297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 06/17/2024] [Indexed: 07/27/2024] Open
Abstract
Cancer, being one of the deadliest diseases, poses significant challenges despite the existence of traditional treatment approaches. This has led to a growing demand for innovative pharmaceutical agents that specifically target cancer cells for effective treatment. In recent years, the use of metal nanoparticles (NPs) as a promising alternative to conventional therapies has gained prominence in cancer research. Metal NPs exhibit unique properties that hold tremendous potential for various applications in cancer treatment. Studies have demonstrated that certain metals possess inherent or acquired anticancer capabilities through their surfaces. These properties make metal NPs an attractive focus for therapeutic development. In this review, we will investigate the applicability of several distinct classes of metal NPs for tumor targeting in cancer treatment. These classes may include gold, silver, iron oxide, and other metals with unique properties that can be exploited for therapeutic purposes. Additionally, we will provide a comprehensive summary of the risk factors associated with the therapeutic application of metal NPs. Understanding and addressing these factors will be crucial for successful clinical translation and to mitigate any potential challenges or failures in the translation of metal NP-based therapies. By exploring the therapeutic potential of metal NPs and identifying the associated risk factors, this review aims to contribute to the advancement of cancer treatment strategies. The anticipated outcome of this review is to provide valuable insights and pave the way for the advancement of effective and targeted therapies utilizing metal NPs specifically for cancer patients.
Collapse
Affiliation(s)
- Ali Hheidari
- Department of Mechanical Engineering, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Javad Mohammadi
- School of Mechanical Engineering, Sharif University of Technology, Tehran, Iran
| | - Maryam Ghodousi
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA, United States
| | - Mohammadreza Mahmoodi
- Bio-microfluidics Lab, Department of Electrical Engineering and Information Technology, Iranian Research Organization for Science and Technology, Tehran, Iran
| | - Sina Ebrahimi
- School of Mechanical Engineering, Sharif University of Technology, Tehran, Iran
| | - Esmail Pishbin
- Bio-microfluidics Lab, Department of Electrical Engineering and Information Technology, Iranian Research Organization for Science and Technology, Tehran, Iran
| | - Abbas Rahdar
- Department of Physics, University of Zabol, Zabol, Iran
| |
Collapse
|
26
|
Dou M, Zhu D, Cui G, Li H, Di L, Wang L. Euphorbia helioscopia L. exhibits promising therapeutic effects on hemangioendothelioma and melanoma through angiogenesis inhibition. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 129:155666. [PMID: 38678953 DOI: 10.1016/j.phymed.2024.155666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 04/05/2024] [Accepted: 04/20/2024] [Indexed: 05/01/2024]
Abstract
BACKGROUND Euphorbia helioscopia L (EHL), a widely used medicinal plant in traditional Chinese medicine, has shown promising effects on certain cancers. However, previous studies on EHL did not elucidate the underlying molecular mechanisms. Herein, for the first time, we present the strong therapeutic potential of EHL extracts on malignant hemangioendothelioma, a rare type of vascular tumor. PURPOSE To investigate the potential anti-tumor mechanism of extracts of EHL on hemangioendothelioma and melanoma. METHODS The dried stems and leaves of EHL were extracted with Ethyl Acetate and n-Butyl alcohol, yielding two crude extracts Ethyl Acetate fraction (EA) and n-Butyl alcohol fraction (Bu). EA and Bu were prepared to assess the potential mechanism by assays for cell proliferation, cell cycle, apoptosis, colony formation, tube formation, cellular metabolic activity, reactive oxygen species (ROS), N-Acetylcysteine (NAC) antagonism, RNA expression and western blot. To further confirm the anti-tumor effect of EHL in vivo, we established hemangioendothelioma and melanoma tumor-bearing mouse model using node mice and administered with EA and Bu, tracked alterations in tumor volume and survival rate. Furthermore, tissue samples were obtained for histological, protein, and genetic investigations. RESULTS We demonstrate that the injection of EA and Bu, significantly inhibits tumor growth and prolongs the lifespan of tumor-bearing mice. Bu treatment exhibited a remarkable 33 % healing effect on the primary hemangioendothelioma tumor, bringing the survival rate to a level comparable to that of healthy mice. Mechanically, both EA and Bu impair respiratory chain complexes, leading to mitochondrial dysfunction and accumulation of reactive oxygen species (ROS), resulting in DNA damage, cell apoptosis, and finally blocked angiogenesis. While EA demonstrates robust inhibitory effects on cancer cell growth and a broader impact on metabolism in vitro, the in vivo effect of Bu surpasses that of EA in terms of strength. EA and Bu also exhibit potent anti-tumor effects on a primary melanoma model by inhibiting angiogenesis. Importantly, when compared to other compounds used in the treatment of hemangioendothelioma, EA and Bu demonstrate more profound anti-tumor effects. CONCLUSION For the first time, our findings reveal that EHL extracts, especially the high polarity compounds, exhibit potent anti-tumor effects by targeting cellular metabolism, specifically through the inhibition of mitochondria-related metabolic activities. This leads to the accumulation of ROS and effectively suppresses abnormal angiogenesis.
Collapse
Affiliation(s)
- Man Dou
- Department of Biological Sciences, Faculty of Health Sciences, University of Macau, Macau, PR China; Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau, PR China; Ministry of Education Frontiers Science Center for Precision Oncology, University of Macau, PR China; Proteomics, Metabolomics and Drug development core facility, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Dongliang Zhu
- Department of Biological Sciences, Faculty of Health Sciences, University of Macau, Macau, PR China; Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau, PR China; Ministry of Education Frontiers Science Center for Precision Oncology, University of Macau, PR China; Cancer Center, Faculty of Health Sciences, University of Macau, Macau, PR China
| | - Guozhen Cui
- Bioengineering department, Zunyi Medical college, Zhuhai, Guangdong, Province, PR China
| | - Haixia Li
- Guang' amen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Lijun Di
- Department of Biological Sciences, Faculty of Health Sciences, University of Macau, Macau, PR China; Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau, PR China; Ministry of Education Frontiers Science Center for Precision Oncology, University of Macau, PR China; Cancer Center, Faculty of Health Sciences, University of Macau, Macau, PR China.
| | - Li Wang
- Department of Biological Sciences, Faculty of Health Sciences, University of Macau, Macau, PR China; Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau, PR China; Ministry of Education Frontiers Science Center for Precision Oncology, University of Macau, PR China; Proteomics, Metabolomics and Drug development core facility, Faculty of Health Sciences, University of Macau, Macau SAR, China.
| |
Collapse
|
27
|
Zhang L, Li C, Song X, Guo R, Zhao W, Liu C, Chen X, Song Q, Wu B, Deng N. Targeting ONECUT2 inhibits tumor angiogenesis via down-regulating ZKSCAN3/VEGFA. Biochem Pharmacol 2024; 225:116315. [PMID: 38797268 DOI: 10.1016/j.bcp.2024.116315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 05/13/2024] [Accepted: 05/23/2024] [Indexed: 05/29/2024]
Abstract
OC-2 plays a vital role in tumor growth, metastasis and angiogenesis, but molecular mechanism how OC-2 regulates angiogenic factors is unclear. We found that OC-2 was highly expressed in HepG2, COLO, MCF-7, SKOV3 cells and rectum carcinoma tissues, and angiogenic factors levels were positively related to OC-2. Then OC-2 KD inhibited the tumor growth, metastasis and angiogenesis process in vitro and vivo. ChIP-Seq showed that 228 target genes of OC-2 were identified and they were associated with tumor growth, metastasis, angiogenesis and signal transduction; OC-2 bound to ZKSCAN3 at promoter region. Luciferase assays showed that ZKSCAN3 was identified as target gene of OC-2 and VEGFA was identified as target gene of ZKSCAN3; OC-2 promoted VEGFA expression via activating ZKSCAN3 transcriptional program. Importantly, OC-2 KD down-regulated VEGFA secretion to suppress tumor angiogenesis of HUVECs. Besides VEGFA, OC-2 was positively correlated with other angiogenic factors HIF-1α, FGF2, EGFL6 and HGF. Meanwhile, ERK1/2 and Smad1 signaling pathways might be related to function of OC-2 driving tumor aggressiveness. We revealed that OC-2 might regulate tumor growth, metastasis, angiogenesis via ERK1/2, Smad1 signaling pathways and regulate VEGFA expression for tumor angiogenesis via activating ZKSCAN3 transcriptional program, indicating that OC-2 was a convincing target to develop novel anti-tumor drugs based on angiogenesis.
Collapse
Affiliation(s)
- Ligang Zhang
- Guangdong Province Engineering Research Center for Antibody Drug and Immunoassay, Department of Biology, Jinan University, Guangzhou 510632, China; School of Medicine, Foshan University, Foshan 528225, China.
| | - Cunjie Li
- Guangdong Province Engineering Research Center for Antibody Drug and Immunoassay, Department of Biology, Jinan University, Guangzhou 510632, China
| | - Xinran Song
- Guangdong Province Engineering Research Center for Antibody Drug and Immunoassay, Department of Biology, Jinan University, Guangzhou 510632, China
| | - Raoqing Guo
- Guangdong Province Engineering Research Center for Antibody Drug and Immunoassay, Department of Biology, Jinan University, Guangzhou 510632, China
| | - Wenli Zhao
- Guangdong Province Engineering Research Center for Antibody Drug and Immunoassay, Department of Biology, Jinan University, Guangzhou 510632, China
| | - Chunyan Liu
- Guangdong Province Engineering Research Center for Antibody Drug and Immunoassay, Department of Biology, Jinan University, Guangzhou 510632, China
| | - Xi Chen
- Guangdong Province Engineering Research Center for Antibody Drug and Immunoassay, Department of Biology, Jinan University, Guangzhou 510632, China
| | - Qifang Song
- Guangdong Province Engineering Research Center for Antibody Drug and Immunoassay, Department of Biology, Jinan University, Guangzhou 510632, China
| | - Binhua Wu
- Guangdong Province Engineering Research Center for Antibody Drug and Immunoassay, Department of Biology, Jinan University, Guangzhou 510632, China
| | - Ning Deng
- Guangdong Province Engineering Research Center for Antibody Drug and Immunoassay, Department of Biology, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
28
|
Ye J, Gao X, Huang X, Huang S, Zeng D, Luo W, Zeng C, Lu C, Lu L, Huang H, Mo K, Huang J, Li S, Tang M, Wu T, Mai R, Luo M, Xie M, Wang S, Li Y, Lin Y, Liang R. Integrating Single-Cell and Spatial Transcriptomics to Uncover and Elucidate GP73-Mediated Pro-Angiogenic Regulatory Networks in Hepatocellular Carcinoma. RESEARCH (WASHINGTON, D.C.) 2024; 7:0387. [PMID: 38939041 PMCID: PMC11208919 DOI: 10.34133/research.0387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 04/21/2024] [Indexed: 06/29/2024]
Abstract
Hepatocellular carcinoma (HCC) was characterized as being hypervascular. In the present study, we generated a single-cell spatial transcriptomic landscape of the vasculogenic etiology of HCC and illustrated overexpressed Golgi phosphoprotein 73 (GP73) HCC cells exerting cellular communication with vascular endothelial cells with high pro-angiogenesis potential via multiple receptor-ligand interactions in the process of tumor vascular development. Specifically, we uncovered an interactive GP73-mediated regulatory network coordinated with c-Myc, lactate, Janus kinase 2/signal transducer and activator of transcription 3 (JAK2/STAT3) pathway, and endoplasmic reticulum stress (ERS) signals in HCC cells and elucidated its pro-angiogenic roles in vitro and in vivo. Mechanistically, we found that GP73, the pivotal hub gene, was activated by histone lactylation and c-Myc, which stimulated the phosphorylation of downstream STAT3 by directly binding STAT3 and simultaneously enhancing glucose-regulated protein 78 (GRP78)-induced ERS. STAT3 potentiates GP73-mediated pro-angiogenic functions. Clinically, serum GP73 levels were positively correlated with HCC response to anti-angiogenic regimens and were essential for a prognostic nomogram showing good predictive performance for determining 6-month and 1-year survival in patients with HCC treated with anti-angiogenic therapy. Taken together, the aforementioned data characterized the pro-angiogenic roles and mechanisms of a GP73-mediated network and proved that GP73 is a crucial tumor angiogenesis niche gene with favorable anti-angiogenic potential in the treatment of HCC.
Collapse
Affiliation(s)
- Jiazhou Ye
- Department of Hepatobiliary Surgery,
Guangxi Medical University Cancer Hospital, Nanning 530021, China
- Guangxi Liver Cancer Diagnosis and Treatment Project Technology Research Center, Nanning 530021, China
- Guangxi Key Laboratory of Basic and Translational Research for Colorectal Cancer, Nanning 530021, China
| | - Xing Gao
- Guangxi Liver Cancer Diagnosis and Treatment Project Technology Research Center, Nanning 530021, China
- Department of Digestive Oncology, Guangxi Medical University Cancer Hospital, Nanning 530021, China
| | - Xi Huang
- Guangxi Liver Cancer Diagnosis and Treatment Project Technology Research Center, Nanning 530021, China
- Department of Digestive Oncology, Guangxi Medical University Cancer Hospital, Nanning 530021, China
| | - Shilin Huang
- Guangxi Liver Cancer Diagnosis and Treatment Project Technology Research Center, Nanning 530021, China
- Department of Digestive Oncology, Guangxi Medical University Cancer Hospital, Nanning 530021, China
| | - Dandan Zeng
- Guangxi Liver Cancer Diagnosis and Treatment Project Technology Research Center, Nanning 530021, China
- Department of Digestive Oncology, Guangxi Medical University Cancer Hospital, Nanning 530021, China
| | - Wenfeng Luo
- Guangxi Liver Cancer Diagnosis and Treatment Project Technology Research Center, Nanning 530021, China
- Department of Digestive Oncology, Guangxi Medical University Cancer Hospital, Nanning 530021, China
| | - Can Zeng
- Department of Hepatobiliary Surgery,
Guangxi Medical University Cancer Hospital, Nanning 530021, China
- Guangxi Liver Cancer Diagnosis and Treatment Project Technology Research Center, Nanning 530021, China
| | - Cheng Lu
- Department of Hepatobiliary Surgery,
Guangxi Medical University Cancer Hospital, Nanning 530021, China
- Guangxi Liver Cancer Diagnosis and Treatment Project Technology Research Center, Nanning 530021, China
| | - Lu Lu
- Guangxi Liver Cancer Diagnosis and Treatment Project Technology Research Center, Nanning 530021, China
- Department of Digestive Oncology, Guangxi Medical University Cancer Hospital, Nanning 530021, China
| | - Hongyang Huang
- Department of Hepatobiliary Surgery,
Guangxi Medical University Cancer Hospital, Nanning 530021, China
- Guangxi Liver Cancer Diagnosis and Treatment Project Technology Research Center, Nanning 530021, China
| | - Kaixiang Mo
- Department of Hepatobiliary Surgery,
Guangxi Medical University Cancer Hospital, Nanning 530021, China
- Guangxi Liver Cancer Diagnosis and Treatment Project Technology Research Center, Nanning 530021, China
| | - Julu Huang
- Department of Hepatobiliary Surgery,
Guangxi Medical University Cancer Hospital, Nanning 530021, China
- Guangxi Liver Cancer Diagnosis and Treatment Project Technology Research Center, Nanning 530021, China
| | - Shizhou Li
- Department of Hepatobiliary Surgery,
Guangxi Medical University Cancer Hospital, Nanning 530021, China
- Guangxi Liver Cancer Diagnosis and Treatment Project Technology Research Center, Nanning 530021, China
| | - Minchao Tang
- Department of Hepatobiliary Surgery,
Guangxi Medical University Cancer Hospital, Nanning 530021, China
- Guangxi Liver Cancer Diagnosis and Treatment Project Technology Research Center, Nanning 530021, China
| | - Tianzhun Wu
- Guangxi Liver Cancer Diagnosis and Treatment Project Technology Research Center, Nanning 530021, China
- Department of Digestive Oncology, Guangxi Medical University Cancer Hospital, Nanning 530021, China
| | - Rongyun Mai
- Department of Hepatobiliary Surgery,
Guangxi Medical University Cancer Hospital, Nanning 530021, China
- Guangxi Liver Cancer Diagnosis and Treatment Project Technology Research Center, Nanning 530021, China
| | - Min Luo
- Guangxi Liver Cancer Diagnosis and Treatment Project Technology Research Center, Nanning 530021, China
- Department of Digestive Oncology, Guangxi Medical University Cancer Hospital, Nanning 530021, China
| | - Mingzhi Xie
- Guangxi Liver Cancer Diagnosis and Treatment Project Technology Research Center, Nanning 530021, China
- Department of Digestive Oncology, Guangxi Medical University Cancer Hospital, Nanning 530021, China
| | - Shan Wang
- Guangxi Liver Cancer Diagnosis and Treatment Project Technology Research Center, Nanning 530021, China
- Guangxi Key Laboratory of Basic and Translational Research for Colorectal Cancer, Nanning 530021, China
- Department of Research, Guangxi Medical University Cancer Hospital, Nanning 530021, China
| | - Yongqiang Li
- Guangxi Liver Cancer Diagnosis and Treatment Project Technology Research Center, Nanning 530021, China
- Department of Digestive Oncology, Guangxi Medical University Cancer Hospital, Nanning 530021, China
| | - Yan Lin
- Guangxi Liver Cancer Diagnosis and Treatment Project Technology Research Center, Nanning 530021, China
- Guangxi Key Laboratory of Basic and Translational Research for Colorectal Cancer, Nanning 530021, China
- Department of Digestive Oncology, Guangxi Medical University Cancer Hospital, Nanning 530021, China
| | - Rong Liang
- Guangxi Liver Cancer Diagnosis and Treatment Project Technology Research Center, Nanning 530021, China
- Guangxi Key Laboratory of Basic and Translational Research for Colorectal Cancer, Nanning 530021, China
- Department of Digestive Oncology, Guangxi Medical University Cancer Hospital, Nanning 530021, China
| |
Collapse
|
29
|
Wang X, DeFilippis RA, Yan W, Shah NP, Li HY. Overcoming Secondary Mutations of Type II Kinase Inhibitors. J Med Chem 2024; 67:9776-9788. [PMID: 38837951 DOI: 10.1021/acs.jmedchem.3c01629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
Type II kinase inhibitors bind in the "DFG-out" kinase conformation and are generally considered to be more potent and selective than type I inhibitors, which target a DFG-in conformation. Nine type II inhibitors are currently clinically approved, with more undergoing clinical development. Resistance-conferring secondary mutations emerged with the first series of type II inhibitors, most commonly at residues within the kinase activation loop and at the "gatekeeper" position. Recently, new inhibitors have been developed to overcome such mutations; however, mutations activating other pathways (and/or other targets) have subsequently emerged on occasion. Here, we systematically summarize the secondary mutations that confer resistance to type II inhibitors, the structural basis for resistance, newer inhibitors designed to overcome resistance, as well as the challenges and opportunities for the development of new inhibitors to overcome secondary kinase domain mutations.
Collapse
Affiliation(s)
- Xiuqi Wang
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, United States
| | - Rosa Anna DeFilippis
- Division of Hematology/Oncology, University of California, San Francisco, California 94143, United States
| | - Wei Yan
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, United States
- Department of Pharmacology, School of Medicine, The University of Texas Health San Antonio, San Antonio, Texas 78229, United States
| | - Neil P Shah
- Division of Hematology/Oncology, University of California, San Francisco, California 94143, United States
| | - Hong-Yu Li
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, United States
- Department of Pharmacology, School of Medicine, The University of Texas Health San Antonio, San Antonio, Texas 78229, United States
| |
Collapse
|
30
|
Seufferlein T, Lausser L, Stein A, Arnold D, Prager G, Kasper-Virchow S, Niedermeier M, Müller L, Kubicka S, König A, Büchner-Steudel P, Wille K, Berger AW, Kestler AMR, Kraus JM, Werle SD, Perkhofer L, Ettrich TJ, Kestler HA. Prediction of resistance to bevacizumab plus FOLFOX in metastatic colorectal cancer-Results of the prospective multicenter PERMAD trial. PLoS One 2024; 19:e0304324. [PMID: 38875244 PMCID: PMC11178165 DOI: 10.1371/journal.pone.0304324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 05/08/2024] [Indexed: 06/16/2024] Open
Abstract
BACKGROUND Anti-vascular endothelial growth factor (VEGF) monoclonal antibodies (mAbs) are widely used for tumor treatment, including metastatic colorectal cancer (mCRC). So far, there are no biomarkers that reliably predict resistance to anti-VEGF mAbs like bevacizumab. A biomarker-guided strategy for early and accurate assessment of resistance could avoid the use of non-effective treatment and improve patient outcomes. We hypothesized that repeated analysis of multiple cytokines and angiogenic growth factors (CAFs) before and during treatment using machine learning could provide an accurate and earlier, i.e., 100 days before conventional radiologic staging, prediction of resistance to first-line mCRC treatment with FOLFOX plus bevacizumab. PATIENTS AND METHODS 15 German and Austrian centers prospectively recruited 50 mCRC patients receiving FOLFOX plus bevacizumab as first-line treatment. Plasma samples were collected every two weeks until radiologic progression (RECIST 1.1) as determined by CT scans performed every 2 months. 102 pre-selected CAFs were centrally analyzed using a cytokine multiplex assay (Luminex, Myriad RBM). RESULTS Using random forests, we developed a predictive machine learning model that discriminated between the situations of "no progress within 100 days before radiological progress" and "progress within 100 days before radiological progress". We could further identify a combination of ten out of the 102 CAF markers, which fulfilled this task with 78.2% accuracy, 71.8% sensitivity, and 82.5% specificity. CONCLUSIONS We identified a CAF marker combination that indicates treatment resistance to FOLFOX plus bevacizumab in patients with mCRC within 100 days prior to radiologic progress.
Collapse
Affiliation(s)
- Thomas Seufferlein
- Department of Internal Medicine I, Ulm University Hospital, Ulm, Germany
| | - Ludwig Lausser
- Institute of Medical Systems Biology, Ulm University, Ulm, Germany
- Faculty of Computer Science, Technische Hochschule Ingolstadt, Ingolstadt, Germany
| | - Alexander Stein
- Hematology-Oncology Practice Eppendorf, University Cancer Center Hamburg, Hamburg, Germany
| | - Dirk Arnold
- Asklepios Cancer Center Hamburg, AK Altona, Hamburg, Germany
| | - Gerald Prager
- Comprehensive Cancer Center Vienna, Medical University of Vienna, Vienna, Austria
| | - Stefan Kasper-Virchow
- Medical Oncology, University Hospital Essen West German Cancer Center, Essen, Germany
| | | | | | - Stefan Kubicka
- Cancer Center Reutlingen, Reutlingen Hospital, Reutlingen, Germany
| | - Alexander König
- Department of Gastroenterology, Gastrointestinal Oncology and Endocrinology, University Medical Center Goettingen, Göttingen, Germany
| | | | - Kai Wille
- Hematology, Oncology, University Hospital Ruhr-University-Bochum, Minden, Germany
| | - Andreas W. Berger
- Department of Internal Medicine I, Ulm University Hospital, Ulm, Germany
| | | | - Johann M. Kraus
- Institute of Medical Systems Biology, Ulm University, Ulm, Germany
| | - Silke D. Werle
- Institute of Medical Systems Biology, Ulm University, Ulm, Germany
| | - Lukas Perkhofer
- Department of Internal Medicine I, Ulm University Hospital, Ulm, Germany
| | - Thomas J. Ettrich
- Department of Internal Medicine I, Ulm University Hospital, Ulm, Germany
| | - Hans A. Kestler
- Institute of Medical Systems Biology, Ulm University, Ulm, Germany
| |
Collapse
|
31
|
Grytsai O, Dufies M, Le Du J, Rastoin O, Pires Gonçalves LC, Mateo L, Lacas-Gervais S, Cao Y, Demange L, Pagès G, Benhida R, Ronco C. A Potent Solution for Tumor Growth and Angiogenesis Suppression via an ELR +CXCL-CXCR1/2 Pathway Inhibitor. ACS Med Chem Lett 2024; 15:845-856. [PMID: 38894897 PMCID: PMC11181512 DOI: 10.1021/acsmedchemlett.4c00053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/15/2024] [Accepted: 03/28/2024] [Indexed: 06/21/2024] Open
Abstract
CXCR1/2 biomolecules play vital roles in cancer cell proliferation, tumor inflammation, and angiogenesis, making them attractive drug targets. In clear cell renal cell carcinoma (RCC) and head and neck squamous cell carcinoma (HNSCC), where CXCR1/2 is overexpressed, inhibition studies are limited. Building upon previous research efforts, we investigated new N,N'-diarylurea analogues as ELR+CXCL-CXCR1/2 inhibitors. Evaluations on RCC and HNSCC cell lines and 3D spheroid cultures identified compound 10 as a lead molecule, exhibiting significant inhibition of invasion, migration, and neo-angiogenesis. It demonstrated strong interference with the signaling pathway, with high selectivity toward kinases. In vivo studies on zebrafish embryos and RCC xenografted mice showed notable anticancer, antimetastatic, and antiangiogenic effects after oral administration and minimal toxicity. Compound 10 emerges as a promising candidate for further preclinical development as an oral anticancer and antiangiogenic drug targeting the ELR+CXCL-CXCR1/2 pathway.
Collapse
Affiliation(s)
- Oleksandr Grytsai
- Université
Côte d’Azur, CNRS UMR 7272, Institut de Chimie de Nice, 06108 Nice, France
| | - Maeva Dufies
- Roca
Therapeutics, 27 Rue
du Professeur Delvalle, 06000 Nice, France
- Université
Côte d’Azur, CNRS UMR 7284 and INSERM U 1081, Institute for Research on Cancer
and Aging (IRCAN), 28
Avenue de Valombrose, 06107 Nice, France
| | - Julie Le Du
- Université
Côte d’Azur, CNRS UMR 7272, Institut de Chimie de Nice, 06108 Nice, France
- Roca
Therapeutics, 27 Rue
du Professeur Delvalle, 06000 Nice, France
| | - Olivia Rastoin
- Roca
Therapeutics, 27 Rue
du Professeur Delvalle, 06000 Nice, France
| | - Leticia Christina Pires Gonçalves
- Université
Côte d’Azur, CNRS UMR 7272, Institut de Chimie de Nice, 06108 Nice, France
- Roca
Therapeutics, 27 Rue
du Professeur Delvalle, 06000 Nice, France
| | - Lou Mateo
- Université
Côte d’Azur, CNRS UMR 7272, Institut de Chimie de Nice, 06108 Nice, France
| | | | - Yihai Cao
- Department
of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Luc Demange
- Université
Côte d’Azur, CNRS UMR 7272, Institut de Chimie de Nice, 06108 Nice, France
- Université
de Paris, CiTCoM, UMR 8038 CNRS, F-75006 Paris, France
| | - Gilles Pagès
- Roca
Therapeutics, 27 Rue
du Professeur Delvalle, 06000 Nice, France
- Université
Côte d’Azur, CNRS UMR 7284 and INSERM U 1081, Institute for Research on Cancer
and Aging (IRCAN), 28
Avenue de Valombrose, 06107 Nice, France
| | - Rachid Benhida
- Université
Côte d’Azur, CNRS UMR 7272, Institut de Chimie de Nice, 06108 Nice, France
- Roca
Therapeutics, 27 Rue
du Professeur Delvalle, 06000 Nice, France
- Mohamed
VI Polytechnic University, UM6P, 43150 BenGuerir, Morocco
| | - Cyril Ronco
- Université
Côte d’Azur, CNRS UMR 7272, Institut de Chimie de Nice, 06108 Nice, France
- Roca
Therapeutics, 27 Rue
du Professeur Delvalle, 06000 Nice, France
- Institut
Universitaire de France (IUF), 75005 Paris, France
| |
Collapse
|
32
|
Lin S, Chen Q, Tan C, Su M, Min L, Ling L, Zhou J, Zhu T. ZEB family is a prognostic biomarker and correlates with anoikis and immune infiltration in kidney renal clear cell carcinoma. BMC Med Genomics 2024; 17:153. [PMID: 38840097 PMCID: PMC11151722 DOI: 10.1186/s12920-024-01895-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 04/28/2024] [Indexed: 06/07/2024] Open
Abstract
BACKGROUND Zinc finger E-box binding homEeobox 1 (ZEB1) and ZEB2 are two anoikis-related transcription factors. The mRNA expressions of these two genes are significantly increased in kidney renal clear cell carcinoma (KIRC), which are associated with poor survival. Meanwhile, the mechanisms and clinical significance of ZEB1 and ZEB2 upregulation in KIRC remain unknown. METHODS Through the Cancer Genome Atlas (TCGA) database and Gene Expression Omnibus (GEO) database, expression profiles, prognostic value and receiver operating characteristic curves (ROCs) of ZEB1 and ZEB2 were evaluated. The correlations of ZEB1 and ZEB2 with anoikis were further assessed in TCGA-KIRC database. Next, miRTarBase, miRDB, and TargetScan were used to predict microRNAs targeting ZEB1 and ZEB2, and TCGA-KIRC database was utilized to discern differences in microRNAs and establish the association between microRNAs and ZEBs. TCGA, TIMER, TISIDB, and TISCH were used to analyze tumor immune infiltration. RESULTS It was found that ZEB1 and ZEB2 expression were related with histologic grade in KIRC patient. Kaplan-Meier survival analyses showed that KIRC patients with low ZEB1 or ZEB2 levels had a significantly lower survival rate. Meanwhile, ZEB1 and ZEB2 are closely related to anoikis and are regulated by microRNAs. We constructed a risk model using univariate Cox and LASSO regression analyses to identify two microRNAs (hsa-miR-130b-3p and hsa-miR-138-5p). Furthermore, ZEB1 and ZEB2 regulate immune cell invasion in KIRC tumor microenvironments. CONCLUSIONS Anoikis, cytotoxic immune cell infiltration, and patient survival outcomes were correlated with ZEB1 and ZEB2 mRNA upregulation in KIRC. ZEB1 and ZEB2 are regulated by microRNAs.
Collapse
Affiliation(s)
- Sheng Lin
- Department of Laboratory Medicine, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Qi Chen
- Department of Urology, Foshan First People's Hospital, Foshan City, Guangdong Province, China
| | - Canliang Tan
- Department of general surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong Province, China
| | - Manyi Su
- Department of Laboratory Medicine, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Ling Min
- Department of Laboratory Medicine, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Lv Ling
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Junhao Zhou
- Department of general surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong Province, China.
- KingMed school of Laboratory Medicine, Guangzhou Medical University, Guangzhou, Guangdong Province, China.
| | - Ting Zhu
- Department of Laboratory Medicine, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, Guangdong Province, China.
- KingMed school of Laboratory Medicine, Guangzhou Medical University, Guangzhou, Guangdong Province, China.
| |
Collapse
|
33
|
Wang W, Zanotelli MR, Sabo LN, Fabiano ED, Goldfield NM, Le C, Techasiriwan EP, Lopez S, Berestesky ED, Reinhart-King CA. Collagen density regulates tip-stalk cell rearrangement during angiogenesis via cellular bioenergetics. APL Bioeng 2024; 8:026120. [PMID: 38872716 PMCID: PMC11170328 DOI: 10.1063/5.0195249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 05/07/2024] [Indexed: 06/15/2024] Open
Abstract
Tumor vasculature plays a crucial role in tumor progression, affecting nutrition and oxygen transportation as well as the efficiency of drug delivery. While targeting pro-angiogenic growth factors has been a significant focus for treating tumor angiogenesis, recent studies indicate that metabolism also plays a role in regulating endothelial cell behavior. Like cancer cells, tumor endothelial cells undergo metabolic changes that regulate rearrangement for tip cell position during angiogenesis. Our previous studies have shown that altered mechanical properties of the collagen matrix regulate angiogenesis and can promote a tumor vasculature phenotype. Here, we examine the effect of collagen density on endothelial cell tip-stalk cell rearrangement and cellular energetics during angiogenic sprouting. We find that increased collagen density leads to an elevated energy state and an increased rate of tip-stalk cell switching, which is correlated with the energy state of the cells. Tip cells exhibit higher glucose uptake than stalk cells, and inhibition of glucose uptake revealed that invading sprouts rely on glucose to meet elevated energy requirements for invasion in dense matrices. This work helps to elucidate the complex interplay between the mechanical microenvironment and the endothelial cell metabolic status during angiogenesis, which could have important implications for developing new anti-cancer therapies.
Collapse
Affiliation(s)
- Wenjun Wang
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37235, USA
| | | | - Lindsey N. Sabo
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37235, USA
| | - Emily D. Fabiano
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37235, USA
| | - Natalie M. Goldfield
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37235, USA
| | - Chloe Le
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee 37235, USA
| | - Elle P. Techasiriwan
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37235, USA
| | - Santiago Lopez
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37235, USA
| | - Emily D. Berestesky
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37235, USA
| | | |
Collapse
|
34
|
De Palma M, Hanahan D. Milestones in tumor vascularization and its therapeutic targeting. NATURE CANCER 2024; 5:827-843. [PMID: 38918437 DOI: 10.1038/s43018-024-00780-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 04/22/2024] [Indexed: 06/27/2024]
Abstract
Research into the mechanisms and manifestations of solid tumor vascularization was launched more than 50 years ago with the proposition and experimental demonstrations that angiogenesis is instrumental for tumor growth and was, therefore, a promising therapeutic target. The biological knowledge and therapeutic insights forthcoming have been remarkable, punctuated by new concepts, many of which were not foreseen in the early decades. This article presents a perspective on tumor vascularization and its therapeutic targeting but does not portray a historical timeline. Rather, we highlight eight conceptual milestones, integrating initial discoveries and recent progress and posing open questions for the future.
Collapse
Affiliation(s)
- Michele De Palma
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology in Lausanne (EPFL), Lausanne, Switzerland.
- Agora Cancer Research Center, Lausanne, Switzerland.
- Swiss Cancer Center Léman (SCCL), Lausanne, Switzerland.
| | - Douglas Hanahan
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology in Lausanne (EPFL), Lausanne, Switzerland.
- Agora Cancer Research Center, Lausanne, Switzerland.
- Swiss Cancer Center Léman (SCCL), Lausanne, Switzerland.
- Ludwig Institute for Cancer Research, Lausanne Branch, Lausanne, Switzerland.
| |
Collapse
|
35
|
Li J, Cao Q, Tong M. Deciphering anoikis resistance and identifying prognostic biomarkers in clear cell renal cell carcinoma epithelial cells. Sci Rep 2024; 14:12044. [PMID: 38802480 PMCID: PMC11130322 DOI: 10.1038/s41598-024-62978-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 05/23/2024] [Indexed: 05/29/2024] Open
Abstract
This study tackles the persistent prognostic and management challenges of clear cell renal cell carcinoma (ccRCC), despite advancements in multimodal therapies. Focusing on anoikis, a critical form of programmed cell death in tumor progression and metastasis, we investigated its resistance in cancer evolution. Using single-cell RNA sequencing from seven ccRCC patients, we assessed the impact of anoikis-related genes (ARGs) and identified differentially expressed genes (DEGs) in Anoikis-related epithelial subclusters (ARESs). Additionally, six ccRCC RNA microarray datasets from the GEO database were analyzed for robust DEGs. A novel risk prognostic model was developed through LASSO and multivariate Cox regression, validated using BEST, ULCAN, and RT-PCR. The study included functional enrichment, immune infiltration analysis in the tumor microenvironment (TME), and drug sensitivity assessments, leading to a predictive nomogram integrating clinical parameters. Results highlighted dynamic ARG expression patterns and enhanced intercellular interactions in ARESs, with significant KEGG pathway enrichment in MYC + Epithelial subclusters indicating enhanced anoikis resistance. Additionally, all ARESs were identified in the spatial context, and their locational relationships were explored. Three key prognostic genes-TIMP1, PECAM1, and CDKN1A-were identified, with the high-risk group showing greater immune infiltration and anoikis resistance, linked to poorer prognosis. This study offers a novel ccRCC risk signature, providing innovative approaches for patient management, prognosis, and personalized treatment.
Collapse
Affiliation(s)
- Junyi Li
- Department of Urology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121001, Liaoning, China
| | - Qingfei Cao
- Department of Urology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121001, Liaoning, China
| | - Ming Tong
- Department of Urology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121001, Liaoning, China.
| |
Collapse
|
36
|
Chava S, Ekmen N, Ferraris P, Aydin Y, Moroz K, Wu T, Thung SN, Dash S. Mechanisms of Sorafenib Resistance in HCC Culture Relate to the Impaired Membrane Expression of Organic Cation Transporter 1 (OCT1). J Hepatocell Carcinoma 2024; 11:839-855. [PMID: 38741679 PMCID: PMC11090194 DOI: 10.2147/jhc.s452152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 04/30/2024] [Indexed: 05/16/2024] Open
Abstract
Introduction Sorafenib, an FDA-approved drug for advanced hepatocellular carcinoma (HCC) treatment, encounters resistance in many patients. Deciphering the mechanisms underlying sorafenib resistance is crucial for devising alternative strategies to overcome it. Aim This study aimed to investigate sorafenib resistance mechanisms using a diverse panel of HCC cell lines. Methods HCC cell lines were subjected to continuous sorafenib treatment, and stable cell lines (Huh 7.5 and Huh 7PX) exhibiting sustained growth in its presence were isolated. The investigation of drug resistance mechanisms involved a comparative analysis of drug-targeted signal transduction pathways (EGFR/RAF/MEK/ERK/Cyclin D), sorafenib uptake, and membrane expression of the drug uptake transporter. Results HCC cell lines (Huh 7.5 and Huh 7PX) with a higher IC50 (10μM) displayed a more frequent development of sorafenib resistance compared to those with a lower IC50 (2-4.8μM), indicating a potential impact of IC50 variation on initial treatment response. Our findings reveal that activated overexpression of Raf1 kinases and impaired sorafenib uptake, mediated by reduced membrane expression of organic cation transporter-1 (OCT1), contribute to sorafenib resistance in HCC cultures. Stable expression of the drug transporter OCT1 through cDNA transfection or adenoviral delivery of OCT1 mRNA increased sorafenib uptake and successfully overcame sorafenib resistance. Additionally, consistent with sorafenib resistance in HCC cultures, cirrhotic liver-associated human HCC tumors often exhibited impaired membrane expression of OCT1 and OCT3. Conclusion Intrinsic differences among HCC cell clones, affecting sorafenib sensitivity at the expression level of Raf kinases, drug uptake, and OCT1 transporters, were identified. This study underscores the potential of HCC tumor targeted OCT1 expression to enhance sorafenib treatment response.
Collapse
Affiliation(s)
- Srinivas Chava
- Department of Pathology and Laboratory Medicine, Tulane University Health Sciences Center, New Orleans, LA, USA
| | - Nergiz Ekmen
- Department of Gastroenterology and Hepatology, Tulane University Health Sciences Center, New Orleans, LA, USA
| | - Pauline Ferraris
- Department of Pathology and Laboratory Medicine, Tulane University Health Sciences Center, New Orleans, LA, USA
| | - Yucel Aydin
- Department of Gastroenterology and Hepatology, Tulane University Health Sciences Center, New Orleans, LA, USA
| | - Krzysztof Moroz
- Department of Pathology and Laboratory Medicine, Tulane University Health Sciences Center, New Orleans, LA, USA
| | - Tong Wu
- Department of Pathology and Laboratory Medicine, Tulane University Health Sciences Center, New Orleans, LA, USA
| | - Swan N Thung
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Srikanta Dash
- Department of Pathology and Laboratory Medicine, Tulane University Health Sciences Center, New Orleans, LA, USA
- Department of Gastroenterology and Hepatology, Tulane University Health Sciences Center, New Orleans, LA, USA
- Southeast Louisiana Veterans Health Care System, New Orleans, LA, USA
| |
Collapse
|
37
|
Qiu Y, Che B, Zhang W, Zhang A, Ge J, Du D, Li J, Peng X, Shao J. The ubiquitin-like protein FAT10 in hepatocellular carcinoma cells limits the efficacy of anti-VEGF therapy. J Adv Res 2024; 59:97-109. [PMID: 37328057 PMCID: PMC11081941 DOI: 10.1016/j.jare.2023.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 06/09/2023] [Accepted: 07/12/2023] [Indexed: 06/18/2023] Open
Abstract
INTRODUCTION The efficacy of anti-vascular endothelial growth factor (VEGF) therapy is limited. However, the key factors involved in limiting the efficacy of anti-VEGF therapy and the underlying mechanisms remain unclear. OBJECTIVES To investigate the effects and mechanisms of human leukocyte antigen F locus-adjacent transcript 10 (FAT10), a ubiquitin-like protein, in limiting the efficacy of anti-VEGF therapy in hepatocellular carcinoma (HCC) cells. METHODS FAT10 was knocked out in HCC cells using the clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein 9 technology. Bevacizumab (BV), an anti-VEGF monoclonal antibody, was used to evaluate the efficacy of anti-VEGF therapy in vivo. Mechanisms of FAT10 action were assessed by RNA sequencing, glutathione S-transferase pulldown assays and in vivo ubiquitination assays. RESULTS FAT10 accelerated VEGF-independent angiogenesis in HCC cells which limited BV efficacy and BV-aggravated hypoxia and inflammation promoted FAT10 expression. FAT10 overexpression increased levels of proteins involved in several signaling pathways in HCC cells, resulting in upregulation of VEGF and multiple non-VEGF proangiogenic factors. Upregulation of multiple FAT10-mediated non-VEGF signals compensated for the inhibition of VEGF signaling by BV, enhancing VEGF-independent angiogenesis and promoting HCC growth. CONCLUSIONS Our preclinical findings identify FAT10 in HCC cells as a key factor limiting the efficacy of anti-VEGF therapy and elucidate its underlying mechanisms. This study provides new mechanistic insights into the development of antiangiogenic therapies.
Collapse
Affiliation(s)
- Yumin Qiu
- Department of General Surgery, Second Affiliated Hospital of Nanchang University, Nanchang 330000, China
- Jiangxi Province Key Laboratory of Molecular Medicine, Second Affiliated Hospital of Nanchang University, Nanchang 330000, China
- Liver Cancer Institute, Nanchang University, Nanchang 330000, China
| | - Ben Che
- Department of General Surgery, Second Affiliated Hospital of Nanchang University, Nanchang 330000, China
- Jiangxi Province Key Laboratory of Molecular Medicine, Second Affiliated Hospital of Nanchang University, Nanchang 330000, China
- Liver Cancer Institute, Nanchang University, Nanchang 330000, China
| | - Wenming Zhang
- Department of General Surgery, Second Affiliated Hospital of Nanchang University, Nanchang 330000, China
- Jiangxi Province Key Laboratory of Molecular Medicine, Second Affiliated Hospital of Nanchang University, Nanchang 330000, China
- Liver Cancer Institute, Nanchang University, Nanchang 330000, China
| | - A.V. Zhang
- Liver Cancer Institute, Nanchang University, Nanchang 330000, China
| | - Jin Ge
- Department of General Surgery, Second Affiliated Hospital of Nanchang University, Nanchang 330000, China
- Jiangxi Province Key Laboratory of Molecular Medicine, Second Affiliated Hospital of Nanchang University, Nanchang 330000, China
- Liver Cancer Institute, Nanchang University, Nanchang 330000, China
| | - Dongnian Du
- Department of General Surgery, Second Affiliated Hospital of Nanchang University, Nanchang 330000, China
- Jiangxi Province Key Laboratory of Molecular Medicine, Second Affiliated Hospital of Nanchang University, Nanchang 330000, China
- Liver Cancer Institute, Nanchang University, Nanchang 330000, China
| | - Jiajuan Li
- Department of General Surgery, Second Affiliated Hospital of Nanchang University, Nanchang 330000, China
- Jiangxi Province Key Laboratory of Molecular Medicine, Second Affiliated Hospital of Nanchang University, Nanchang 330000, China
- Liver Cancer Institute, Nanchang University, Nanchang 330000, China
| | | | - Jianghua Shao
- Department of General Surgery, Second Affiliated Hospital of Nanchang University, Nanchang 330000, China
- Jiangxi Province Key Laboratory of Molecular Medicine, Second Affiliated Hospital of Nanchang University, Nanchang 330000, China
- Liver Cancer Institute, Nanchang University, Nanchang 330000, China
| |
Collapse
|
38
|
Xia Y, Sun M, Huang H, Jin WL. Drug repurposing for cancer therapy. Signal Transduct Target Ther 2024; 9:92. [PMID: 38637540 PMCID: PMC11026526 DOI: 10.1038/s41392-024-01808-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/05/2024] [Accepted: 03/19/2024] [Indexed: 04/20/2024] Open
Abstract
Cancer, a complex and multifactorial disease, presents a significant challenge to global health. Despite significant advances in surgical, radiotherapeutic and immunological approaches, which have improved cancer treatment outcomes, drug therapy continues to serve as a key therapeutic strategy. However, the clinical efficacy of drug therapy is often constrained by drug resistance and severe toxic side effects, and thus there remains a critical need to develop novel cancer therapeutics. One promising strategy that has received widespread attention in recent years is drug repurposing: the identification of new applications for existing, clinically approved drugs. Drug repurposing possesses several inherent advantages in the context of cancer treatment since repurposed drugs are typically cost-effective, proven to be safe, and can significantly expedite the drug development process due to their already established safety profiles. In light of this, the present review offers a comprehensive overview of the various methods employed in drug repurposing, specifically focusing on the repurposing of drugs to treat cancer. We describe the antitumor properties of candidate drugs, and discuss in detail how they target both the hallmarks of cancer in tumor cells and the surrounding tumor microenvironment. In addition, we examine the innovative strategy of integrating drug repurposing with nanotechnology to enhance topical drug delivery. We also emphasize the critical role that repurposed drugs can play when used as part of a combination therapy regimen. To conclude, we outline the challenges associated with repurposing drugs and consider the future prospects of these repurposed drugs transitioning into clinical application.
Collapse
Affiliation(s)
- Ying Xia
- Center for Clinical Laboratories, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, PR China
- The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, 550001, PR China
- School of Clinical Laboratory Science, Guizhou Medical University, Guiyang, 550004, PR China
- Division of Gastroenterology and Hepatology, Department of Medicine and, Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Ming Sun
- Center for Clinical Laboratories, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, PR China
- School of Clinical Laboratory Science, Guizhou Medical University, Guiyang, 550004, PR China
| | - Hai Huang
- Center for Clinical Laboratories, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, PR China.
- School of Clinical Laboratory Science, Guizhou Medical University, Guiyang, 550004, PR China.
| | - Wei-Lin Jin
- Institute of Cancer Neuroscience, Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, The First Clinical Medical College of Lanzhou University, Lanzhou, 730000, PR China.
| |
Collapse
|
39
|
Kaur G, Roy B. Decoding Tumor Angiogenesis for Therapeutic Advancements: Mechanistic Insights. Biomedicines 2024; 12:827. [PMID: 38672182 PMCID: PMC11048662 DOI: 10.3390/biomedicines12040827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/05/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
Tumor angiogenesis, the formation of new blood vessels within the tumor microenvironment, is considered a hallmark of cancer progression and represents a crucial target for therapeutic intervention. The tumor microenvironment is characterized by a complex interplay between proangiogenic and antiangiogenic factors, regulating the vascularization necessary for tumor growth and metastasis. The study of angiogenesis involves a spectrum of techniques, spanning from biomarker assessment to advanced imaging modalities. This comprehensive review aims to provide insights into the molecular intricacies, regulatory dynamics, and clinical implications of tumor angiogenesis. By delving into these aspects, we gain a deeper understanding of the processes driving vascularization in tumors, paving the way for the development of novel and effective antiangiogenic therapies in the fight against cancer.
Collapse
Affiliation(s)
- Geetika Kaur
- Integrative Biosciences Center, Wayne State University, Detroit, MI 48202, USA;
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI 48202, USA
| | - Bipradas Roy
- Division of Cardiology, Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
40
|
Zhang C, Du Z, Gao Y, Lim KS, Zhou W, Huang H, He H, Xiao J, Xu D, Li Q. Methionine secreted by tumor-associated pericytes supports cancer stem cells in clear cell renal carcinoma. Cell Metab 2024; 36:778-792.e10. [PMID: 38378000 DOI: 10.1016/j.cmet.2024.01.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 11/16/2023] [Accepted: 01/29/2024] [Indexed: 02/22/2024]
Abstract
Here, we identify a subset of vascular pericytes, defined by expression of platelet-derived growth factor receptor beta (PDGFR-β) and G-protein-coupled receptor 91 (GPR91), that promote tumorigenesis and tyrosine kinase inhibitors (TKIs) resistance by functioning as the primary methionine source for cancer stem cells (CSCs) in clear cell renal cell carcinoma (ccRCC). Tumor-cell-derived succinate binds to GPR91 on pericyte to activate autophagy for methionine production. CSCs use methionine to create stabilizing N6-methyladenosine in ATPase-family-AAA-domain-containing 2 (ATAD2) mRNA, and the resulting ATAD2 protein complexes with SRY-box transcription factor 9 to assemble super enhancers and thereby dictate its target genes that feature prominently in CSCs. Targeting PDGFR-β+GPR91+ pericytes with specific GRP91 antagonists reduce intratumoral methionine level, eliminate CSCs, and enhance TKIs sensitivity. These results unraveled the mechanisms by which PDGFR-β+GPR91+ pericytes provide supportive niche for CSCs and could be used to develop targets for treating ccRCC.
Collapse
Affiliation(s)
- ChuanJie Zhang
- Department of Urology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, Anhui, China; Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai 201203, China; Department of Urology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - ZunGuo Du
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai 201203, China; Department of Pathology, HuaShan Hospital, Fudan University, Shanghai 200040, China
| | - Yi Gao
- Department of Urology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Kiat Shenq Lim
- Department of Urology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - WenJie Zhou
- Department of Urology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Hai Huang
- Department of Urology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - HongChao He
- Department of Urology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jun Xiao
- Department of Urology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, Anhui, China
| | - DanFeng Xu
- Department of Urology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - QingQuan Li
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai 201203, China.
| |
Collapse
|
41
|
Zhu J, Yang W, Ma J, He H, Liu Z, Zhu X, He X, He J, Chen Z, Jin X, Wang X, He K, Wei W, Hu J. Pericyte signaling via soluble guanylate cyclase shapes the vascular niche and microenvironment of tumors. EMBO J 2024; 43:1519-1544. [PMID: 38528180 PMCID: PMC11021551 DOI: 10.1038/s44318-024-00078-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 03/04/2024] [Accepted: 03/07/2024] [Indexed: 03/27/2024] Open
Abstract
Pericytes and endothelial cells (ECs) constitute the fundamental components of blood vessels. While the role of ECs in tumor angiogenesis and the tumor microenvironment is well appreciated, pericyte function in tumors remains underexplored. In this study, we used pericyte-specific deletion of the nitric oxide (NO) receptor, soluble guanylate cyclase (sGC), to investigate via single-cell RNA sequencing how pericytes influence the vascular niche and the tumor microenvironment. Our findings demonstrate that pericyte sGC deletion disrupts EC-pericyte interactions, impairing Notch-mediated intercellular communication and triggering extensive transcriptomic reprogramming in both pericytes and ECs. These changes further extended their influence to neighboring cancer-associated fibroblasts (CAFs) and tumor-associated macrophages (TAMs) through paracrine signaling, collectively suppressing tumor growth. Inhibition of pericyte sGC has minimal impact on quiescent vessels but significantly increases the vulnerability of angiogenic tumor vessels to conventional anti-angiogenic therapy. In conclusion, our findings elucidate the role of pericytes in shaping the tumor vascular niche and tumor microenvironment and support pericyte sGC targeting as a promising strategy for improving anti-angiogenic therapy for cancer treatment.
Collapse
Affiliation(s)
- Jing Zhu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wu Yang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China.
- University of Chinese Academy of Sciences, Beijing, China.
| | - Jianyun Ma
- University of Chinese Academy of Sciences, Beijing, China
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Hao He
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhen Liu
- University of Chinese Academy of Sciences, Beijing, China
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
- Lingang Laboratory, Shanghai, China
| | - Xiaolan Zhu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xueyang He
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jing He
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhan Chen
- Pathology Department, Cixi People's Hospital, Zhejiang, China
| | - Xiaoliang Jin
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaohong Wang
- Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Kaiwen He
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
- Shanghai Key Laboratory of Aging Studies, Shanghai, China
| | - Wu Wei
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China.
- Lingang Laboratory, Shanghai, China.
| | - Junhao Hu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China.
- University of Chinese Academy of Sciences, Beijing, China.
- Shanghai Key Laboratory of Aging Studies, Shanghai, China.
| |
Collapse
|
42
|
Fares J, Wan Y, Mair R, Price SJ. Molecular diversity in isocitrate dehydrogenase-wild-type glioblastoma. Brain Commun 2024; 6:fcae108. [PMID: 38646145 PMCID: PMC11032202 DOI: 10.1093/braincomms/fcae108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 01/15/2024] [Accepted: 03/26/2024] [Indexed: 04/23/2024] Open
Abstract
In the dynamic landscape of glioblastoma, the 2021 World Health Organization Classification of Central Nervous System tumours endeavoured to establish biological homogeneity, yet isocitrate dehydrogenase-wild-type (IDH-wt) glioblastoma persists as a tapestry of clinical and molecular diversity. Intertumoural heterogeneity in IDH-wt glioblastoma presents a formidable challenge in treatment strategies. Recent strides in genetics and molecular biology have enhanced diagnostic precision, revealing distinct subtypes and invasive patterns that influence survival in patients with IDH-wt glioblastoma. Genetic and molecular biomarkers, such as the overexpression of neurofibromin 1, phosphatase and tensin homolog and/or cyclin-dependent kinase inhibitor 2A, along with specific immune cell abundance and neurotransmitters, correlate with favourable outcomes. Conversely, increased expression of epidermal growth factor receptor tyrosine kinase, platelet-derived growth factor receptor alpha and/or vascular endothelial growth factor receptor, coupled with the prevalence of glioma stem cells, tumour-associated myeloid cells, regulatory T cells and exhausted effector cells, signifies an unfavourable prognosis. The methylation status of O6-methylguanine-DNA methyltransferase and the influence of microenvironmental factors and neurotransmitters further shape treatment responses. Understanding intertumoural heterogeneity is complemented by insights into intratumoural dynamics and cellular interactions within the tumour microenvironment. Glioma stem cells and immune cell composition significantly impact progression and outcomes, emphasizing the need for personalized therapies targeting pro-tumoural signalling pathways and resistance mechanisms. A successful glioblastoma management demands biomarker identification, combination therapies and a nuanced approach considering intratumoural variability. These advancements herald a transformative era in glioblastoma comprehension and treatment.
Collapse
Affiliation(s)
- Jawad Fares
- Academic Neurosurgery Division, Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0QQ, UK
- Cambridge Brain Tumour Imaging Laboratory, Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0QQ, UK
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Yizhou Wan
- Academic Neurosurgery Division, Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0QQ, UK
- Cambridge Brain Tumour Imaging Laboratory, Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Richard Mair
- Academic Neurosurgery Division, Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Stephen J Price
- Academic Neurosurgery Division, Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0QQ, UK
- Cambridge Brain Tumour Imaging Laboratory, Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0QQ, UK
| |
Collapse
|
43
|
Wang H, Gao C, Li X, Chen F, Li G. Camptothecin enhances the anti-tumor effect of low-dose apatinib combined with PD-1 inhibitor on hepatocellular carcinoma. Sci Rep 2024; 14:7140. [PMID: 38532022 PMCID: PMC10966085 DOI: 10.1038/s41598-024-57874-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 03/22/2024] [Indexed: 03/28/2024] Open
Abstract
Apatinib has been shown to apply to a variety of solid tumors, including advanced hepatocellular carcinoma. Preclinical and preliminary clinical results confirmed the synergistic antitumor effects of apatinib in combination with anti-programmed death-1 (PD-1) inhibitors. In this study, we investigated camptothecin (CPT) enhances the anti-tumor effect of low-dose apatinib combined with PD-1 inhibitor on hepatocellular carcinoma. CPT combined with a PD-1 inhibitor enhances the anti-tumor effects of low-dose apatinib in hepatocellular carcinoma which was evaluated in making use of the H22 mouse model (n = 32), which was divided into four groups. Immunohistochemical staining and western blotting were used to detect nuclear factor erythroid 2-related factor 2 (Nrf2) as well as sequestosome 1 (p62), vascular endothelial growth factor A (VEGFA), vascular endothelial growth factor receptor 2 (VEGFR2), PD-1, and programmed cell death ligand 1 (PD-L1). The results showed that the average size of the tumor of the combination group (Group D) was significantly less than that of the apatinib + PD-1 inhibitor group (Group C). The expression levels of Nrf2, p62, VEGFA, VEGFR2, PD-1, and PD-L1 in the apatinib + PD-1 inhibitor group(Group C) were lower than those in the control group (Group A) (P < 0.05). The expression levels of these genes in the apatinib + PD-1 inhibitor group (Group C) were significantly lower in the combination group (Group D) (P < 0.05). There was no obvious difference in body weight and liver and kidney functions between the four groups of mice. In conclusion, CPT improves the anti-tumor effect of low-dose apatinib combined with PD-1 inhibitor on hepatocellular carcinoma.
Collapse
Affiliation(s)
- Hankang Wang
- Department of Radiology, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong, 250000, People's Republic of China
| | - Congcong Gao
- Jinan Center for Disease Control and Prevention, Jinan, Shandong, 250000, People's Republic of China
| | - Xiaodong Li
- Department of Radiology, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong, 250000, People's Republic of China
| | - Feng Chen
- Department of Radiology, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong, 250000, People's Republic of China.
- Department of Radiology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, 16766 Jingshi Road, Lixia, Jinan, Shandong, 250014, People's Republic of China.
| | - Guijie Li
- Department of Radiology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, 16766 Jingshi Road, Lixia, Jinan, Shandong, 250014, People's Republic of China.
| |
Collapse
|
44
|
Iacovelli R, Ciccarese C, Buti S, Zucali PA, Fantinel E, Bimbatti D, Verzoni E, Accettura C, Bonomi L, Buttigliero C, Fornarini G, Pipitone S, Atzori F, Masini C, Massari F, Primi F, Strusi A, Giudice GC, Perrino M, Maruzzo M, Milella M, Giannarelli D, Brunelli M, Procopio G, Tortora G. Avelumab Plus Intermittent Axitinib in Previously Untreated Patients with Metastatic Renal Cell Carcinoma. The Tide-A Phase 2 Study. Eur Urol 2024:S0302-2838(24)02132-8. [PMID: 38521617 DOI: 10.1016/j.eururo.2024.02.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/16/2024] [Accepted: 02/26/2024] [Indexed: 03/25/2024]
Abstract
BACKGROUND Combinations of vascular endothelial growth factor receptor (VEGFR) tyrosine kinase inhibitors (TKIs) plus immune checkpoint inhibitor (ICI) against PD1/PD-L1 are the standard first-line therapy for patients with metastatic renal cell carcinoma (mRCC), irrespective of the prognostic class. OBJECTIVE To investigate the feasibility and safety of withdrawing VEGFR-TKI but continuing anti-PD1/PD-L1 in patients who achieve a response to their combination. DESIGN, SETTING, AND PARTICIPANTS This was a single-arm phase 2 trial in patients with treatment-naïve mRCC with prior nephrectomy, without symptomatic/bulky disease and no liver metastases. INTERVENTION Enrolled patients received axitinib + avelumab; after 36 wk of therapy those who achieved a tumour response interrupted axitinib and continued avelumab maintenance until disease progression. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS The primary endpoint was the rate of patients without progression 8 wk after the axitinib interruption. The secondary endpoints were the median value for progression-free (mPFS) and overall (mOS) survival and the safety in the overall population. RESULTS AND LIMITATIONS Seventy-nine patients were enrolled and 75 were evaluated for efficacy. A total of 29 (38%) patients had axitinib withdrawn, as per the study design, with 72% of them having no progression after 8 wk and thus achieving the primary endpoint. The mPFS of the overall population was 24 mo, while the mOS was not reached. The objective response rate was 76% (12% complete response and 64% partial response), with 19% of patients having stable disease. In the patients who discontinued axitinib, the incidence of adverse events of any grade was 59% for grade 3 and 3% for grade 4. This study was limited by the lack of a comparative arm. CONCLUSIONS The TIDE-A study demonstrates that the withdrawal of VEGFR-TKI with ICI maintenance is feasible for selected mRCC patients with evidence of a response to the VEGFR-TKI + ICI combination employed in first-line therapy. Axitinib interruption with avelumab maintenance leads to decreased side effects and should be investigated further as a new strategy to delay tumour progression. PATIENT SUMMARY We evaluated whether certain patients with advanced kidney cancer treated with the fist-line combination of axitinib plus avelumab can interrupt the axitinib in case of a tumour response after 36 wk of therapy. We found that axitinib interruption improved the safety of the combination, while the maintenance with avelumab might delay tumour progression.
Collapse
Affiliation(s)
- Roberto Iacovelli
- Oncology Unit, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy; Department of Medicine and Translational Surgery, Università Cattolica del Sacro Cuore, Rome, Italy.
| | - Chiara Ciccarese
- Oncology Unit, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy
| | - Sebastiano Buti
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Paolo Andrea Zucali
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy; Medical Oncology, Humanitas Research Hospital Humanitas Cancer Center, Rozzano, Italy
| | - Emanuela Fantinel
- Medical Oncology, Azienda Ospedaliera Universitaria Integrata, Verona, Italy
| | - Davide Bimbatti
- Oncology Unit 1, Istituto Oncologico Veneto, IOV - IRCCS, Padua, Italy
| | - Elena Verzoni
- SSD Oncologia Medica Genitourinaria, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | | | - Lucia Bonomi
- Department of Oncology and Hematology, ASST Papa Giovanni XXIII, Bergamo, Italy
| | - Consuelo Buttigliero
- Department of Oncology, University of Turin, San Luigi Gonzaga Hospital, Orbassano, Turin, Italy
| | - Giuseppe Fornarini
- UO Oncologia Medica 1, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Stefania Pipitone
- Department of Oncology and Haematology, Azienda Ospedaliero-Universitaria di Modena, Modena, Italy
| | - Francesco Atzori
- Medical Oncology, University Hospital and University of Cagliari, Cagliari, Italy
| | - Cristina Masini
- Medical Oncology, Comprehensive Cancer Centre IRCCS - AUSL Reggio Emilia, Reggio Emilia, Italy
| | - Francesco Massari
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy; Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| | - Francesca Primi
- Medical Oncology, Central Hospital of Belcolle, Viterbo, Italy
| | - Alessandro Strusi
- Department of Medicine and Translational Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
| | | | - Matteo Perrino
- Medical Oncology, Humanitas Research Hospital Humanitas Cancer Center, Rozzano, Italy
| | - Marco Maruzzo
- Oncology Unit 1, Istituto Oncologico Veneto, IOV - IRCCS, Padua, Italy
| | - Michele Milella
- Medical Oncology, Azienda Ospedaliera Universitaria Integrata, Verona, Italy; Department of Medicine, University of Verona, Verona, Italy
| | - Diana Giannarelli
- Biostatistics Unit, Scientific Directorate, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Rome, Italy
| | - Matteo Brunelli
- Department of Diagnostics and Public Health, Pathology Unit, Azienda Ospedaliera Universitaria Integrata di Verona, University of Verona, Verona, Italy
| | - Giuseppe Procopio
- SSD Oncologia Medica Genitourinaria, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Giampaolo Tortora
- Oncology Unit, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy; Department of Medicine and Translational Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
| |
Collapse
|
45
|
Ribatti D. Aberrant tumor vasculature. Facts and pitfalls. Front Pharmacol 2024; 15:1384721. [PMID: 38576482 PMCID: PMC10991687 DOI: 10.3389/fphar.2024.1384721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 03/11/2024] [Indexed: 04/06/2024] Open
Abstract
Endothelial cells form a single cell layer lining the inner walls of blood vessels and play critical roles in organ homeostasis and disease progression. Specifically, tumor endothelial cells are heterogenous, and highly permeable, because of specific interactions with the tumor tissue environment and through soluble factors and cell-cell interactions. This review article aims to analyze different aspects of endothelial cell heterogeneity in tumor vasculature, with particular emphasis on vascular normalization, vascular permeability, metabolism, endothelial-to-mesenchymal transition, resistance to therapy, and the interplay between endothelial cells and the immune system.
Collapse
Affiliation(s)
- Domenico Ribatti
- Department of Translational Biomedicine and Neuroscience, University of Bari Medical School, Bari, Italy
| |
Collapse
|
46
|
Khafaga AF, Gaballa MMS, Karam R, Shoulah SA, Shamma RN, Khalifa NE, Farrag NE, Noreldin AE. Synergistic therapeutic strategies and engineered nanoparticles for anti-vascular endothelial growth factor therapy in cancer. Life Sci 2024; 341:122499. [PMID: 38342375 DOI: 10.1016/j.lfs.2024.122499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 01/29/2024] [Accepted: 02/07/2024] [Indexed: 02/13/2024]
Abstract
Angiogenesis is one of the defining characteristics of cancer. Vascular endothelial growth factor (VEGF) is crucial for the development of angiogenesis. A growing interest in cancer therapy is being caused by the widespread use of antiangiogenic drugs in treating several types of human cancer. However, this therapeutic approach can worsen resistance, invasion, and overall survival. As we proceed, refining combination strategies and addressing the constraint of targeted treatments are paramount. Therefore, major challenges in using novel combinations of antiangiogenic agents with cytotoxic treatments are currently focused on illustrating the potential of synergistic therapeutic strategies, alongside advancements in nanomedicine and gene therapy, present opportunities for more precise interference with angiogenesis pathways and tumor environments. Nanoparticles have the potential to regulate several crucial activities and improve several drug limitations such as lack of selectivity, non-targeted cytotoxicity, insufficient drug delivery at tumor sites, and multi-drug resistance based on their unique features. The goal of this updated review is to illustrate the enormous potential of novel synergistic therapeutic strategies and the targeted nanoparticles as an alternate strategy for t treating a variety of tumors employing antiangiogenic therapy.
Collapse
Affiliation(s)
- Asmaa F Khafaga
- Department of Pathology, Faculty of Veterinary Medicine, Alexandria University, Edfina 22758, Egypt.
| | - Mohamed M S Gaballa
- Department of Pathology, Faculty of Veterinary Medicine, Benha University, Toukh 13736, Egypt.
| | - Reham Karam
- Department of Virology, Faculty of Veterinary Medicine, Mansoura University, 35511, Egypt.
| | - Salma A Shoulah
- Department of Animal Medicine (Infectious Diseases), Faculty of Veterinary Medicine, Benha University, Toukh 13736, Egypt.
| | - Rehab N Shamma
- Department of Pharmaceutics & Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt.
| | - Norhan E Khalifa
- Department of Physiology, Faculty of Veterinary Medicine, Matrouh University, Matrouh 51511, Egypt.
| | - Nehal E Farrag
- Faculty of Veterinary Medicine, Alexandria University, Edfina 22758, Egypt.
| | - Ahmed E Noreldin
- Department of Histology and Cytology, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, Egypt.
| |
Collapse
|
47
|
Ko J, Song J, Lee Y, Choi N, Kim HN. Understanding organotropism in cancer metastasis using microphysiological systems. LAB ON A CHIP 2024; 24:1542-1556. [PMID: 38192269 DOI: 10.1039/d3lc00889d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
Cancer metastasis, the leading cause of cancer-related deaths, remains a complex challenge in medical science. Stephen Paget's "seed and soil theory" introduced the concept of organotropism, suggesting that metastatic success depends on specific organ microenvironments. Understanding organotropism not only offers potential for curbing metastasis but also novel treatment strategies. Microphysiological systems (MPS), especially organ-on-a-chip models, have emerged as transformative tools in this quest. These systems, blending microfluidics, biology, and engineering, grant precise control over cell interactions within organ-specific microenvironments. MPS enable real-time monitoring, morphological analysis, and protein quantification, enhancing our comprehension of cancer dynamics, including tumor migration, vascularization, and pre-metastatic niches. In this review, we explore innovative applications of MPS in investigating cancer metastasis, particularly focusing on organotropism. This interdisciplinary approach converges the field of science, engineering, and medicine, thereby illuminating a path toward groundbreaking discoveries in cancer research.
Collapse
Affiliation(s)
- Jihoon Ko
- Department of BioNano Technology, Gachon University, Seongnam-si, Gyeonggi-do 13120, Republic of Korea.
| | - Jiyoung Song
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea.
| | - Yedam Lee
- Department of BioNano Technology, Gachon University, Seongnam-si, Gyeonggi-do 13120, Republic of Korea.
| | - Nakwon Choi
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea.
- Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Korea
| | - Hong Nam Kim
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea.
- Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Republic of Korea
- School of Mechanical Engineering, Yonsei University, Seoul 03722, Republic of Korea
- Yonsei-KIST Convergence Research Institute, Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|
48
|
Surve CR, Duran CL, Ye X, Chen X, Lin Y, Harney AS, Wang Y, Sharma VP, Stanley ER, Cox D, McAuliffe JC, Entenberg D, Oktay MH, Condeelis JS. Signaling events at TMEM doorways provide potential targets for inhibiting breast cancer dissemination. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.08.574676. [PMID: 38260319 PMCID: PMC10802469 DOI: 10.1101/2024.01.08.574676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Tumor cell intravasation is essential for metastatic dissemination, but its exact mechanism is incompletely understood. We have previously shown that in breast cancer, the direct and stable association of a tumor cell expressing Mena, a Tie2hi/VEGFhi macrophage, and a vascular endothelial cell, creates an intravasation portal, called a "tumor microenvironment of metastasis" (TMEM) doorway, for tumor cell intravasation, leading to dissemination to distant sites. The density of TMEM doorways, also called TMEM doorway score, is a clinically validated prognostic marker of distant metastasis in breast cancer patients. Although we know that tumor cells utilize TMEM doorway-associated transient vascular openings to intravasate, the precise signaling mechanisms involved in TMEM doorway function are only partially understood. Using two mouse models of breast cancer and an in vitro assay of intravasation, we report that CSF-1 secreted by the TMEM doorway tumor cell stimulates local secretion of VEGF-A from the Tie2hi TMEM doorway macrophage, leading to the dissociation of endothelial junctions between TMEM doorway associated endothelial cells, supporting tumor cell intravasation. Acute blockade of CSF-1R signaling decreases macrophage VEGF-A secretion as well as TMEM doorway-associated vascular opening, tumor cell trans-endothelial migration, and dissemination. These new insights into signaling events regulating TMEM doorway function should be explored further as treatment strategies for metastatic disease.
Collapse
Affiliation(s)
- Chinmay R. Surve
- Integrated Imaging Program for Cancer Research, Albert Einstein College of Medicine, Bronx, New York
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, New York
| | - Camille L. Duran
- Integrated Imaging Program for Cancer Research, Albert Einstein College of Medicine, Bronx, New York
- Department of Pathology, Albert Einstein College of Medicine, Bronx, New York
- Montefiore Einstein Comprehensive Cancer Center, Albert Einstein College of Medicine, Bronx, New York
- Cancer Dormancy and Tumor Microenvironment Institute, Albert Einstein College of Medicine, Bronx, New York
| | - Xianjun Ye
- Integrated Imaging Program for Cancer Research, Albert Einstein College of Medicine, Bronx, New York
- Department of Pathology, Albert Einstein College of Medicine, Bronx, New York
- Montefiore Einstein Comprehensive Cancer Center, Albert Einstein College of Medicine, Bronx, New York
- Cancer Dormancy and Tumor Microenvironment Institute, Albert Einstein College of Medicine, Bronx, New York
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, New York
| | - Xiaoming Chen
- Department of Pathology, Albert Einstein College of Medicine, Bronx, New York
- Montefiore Einstein Comprehensive Cancer Center, Albert Einstein College of Medicine, Bronx, New York
| | - Yu Lin
- Department of Pathology, Albert Einstein College of Medicine, Bronx, New York
- Montefiore Einstein Comprehensive Cancer Center, Albert Einstein College of Medicine, Bronx, New York
| | - Allison S. Harney
- Integrated Imaging Program for Cancer Research, Albert Einstein College of Medicine, Bronx, New York
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, New York
| | - Yarong Wang
- Integrated Imaging Program for Cancer Research, Albert Einstein College of Medicine, Bronx, New York
| | - Ved P. Sharma
- Department of Pathology, Albert Einstein College of Medicine, Bronx, New York
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, New York
| | - E. Richard Stanley
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, New York
| | - Dianne Cox
- Montefiore Einstein Comprehensive Cancer Center, Albert Einstein College of Medicine, Bronx, New York
- Cancer Dormancy and Tumor Microenvironment Institute, Albert Einstein College of Medicine, Bronx, New York
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, New York
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, New York
| | - John C. McAuliffe
- Integrated Imaging Program for Cancer Research, Albert Einstein College of Medicine, Bronx, New York
- Department of Pathology, Albert Einstein College of Medicine, Bronx, New York
- Montefiore Einstein Comprehensive Cancer Center, Albert Einstein College of Medicine, Bronx, New York
- Cancer Dormancy and Tumor Microenvironment Institute, Albert Einstein College of Medicine, Bronx, New York
- Department of Surgery, Albert Einstein College of Medicine, Bronx, New York
| | - David Entenberg
- Integrated Imaging Program for Cancer Research, Albert Einstein College of Medicine, Bronx, New York
- Department of Pathology, Albert Einstein College of Medicine, Bronx, New York
- Montefiore Einstein Comprehensive Cancer Center, Albert Einstein College of Medicine, Bronx, New York
- Cancer Dormancy and Tumor Microenvironment Institute, Albert Einstein College of Medicine, Bronx, New York
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, New York
| | - Maja H. Oktay
- Integrated Imaging Program for Cancer Research, Albert Einstein College of Medicine, Bronx, New York
- Department of Pathology, Albert Einstein College of Medicine, Bronx, New York
- Montefiore Einstein Comprehensive Cancer Center, Albert Einstein College of Medicine, Bronx, New York
- Cancer Dormancy and Tumor Microenvironment Institute, Albert Einstein College of Medicine, Bronx, New York
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, New York
- Department of Surgery, Albert Einstein College of Medicine, Bronx, New York
| | - John S. Condeelis
- Integrated Imaging Program for Cancer Research, Albert Einstein College of Medicine, Bronx, New York
- Montefiore Einstein Comprehensive Cancer Center, Albert Einstein College of Medicine, Bronx, New York
- Cancer Dormancy and Tumor Microenvironment Institute, Albert Einstein College of Medicine, Bronx, New York
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, New York
- Department of Surgery, Albert Einstein College of Medicine, Bronx, New York
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York
| |
Collapse
|
49
|
Yu XH, Wu JB, Fan HY, Dai L, Xian HC, Chen BJ, Liao P, Huang MC, Pang X, Zhang M, Liang XH, Tang YL. Artemisinin suppressed tumour growth and induced vascular normalisation in oral squamous cell carcinoma via inhibition of macrophage migration inhibitory factor. Oral Dis 2024; 30:363-375. [PMID: 36321394 DOI: 10.1111/odi.14418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 09/05/2022] [Accepted: 10/26/2022] [Indexed: 11/06/2022]
Abstract
BACKGROUND Tumour vascular normalisation therapy advocates a balance between pro-angiogenic factors and anti-angiogenic factors in tumours. Artemisinin (ART), which is derived from traditional Chinese medicine, has been shown to inhibit tumour growth; however, the relationship between ART and tumour vascular normalisation in oral squamous cell carcinoma (OSCC) has not been previously reported. METHODS Different concentrations(0 mg/kg, 25 mg/kg, 50 mg/kg, 100 mg/kg)of ART were used to treat the xenograft nude mice model of OSCC. The effects of ART on migration and proliferation of OSCC and human umbilical vein endothelial cells (HUVEC) cells were detected by scratch assay and CCK-8 assay. OSCC cells with macrophage migration inhibitory factor (MIF) silenced were constructed to explore the effect of MIF. RESULTS Treatment with ART inhibited the growth and angiogenesis of OSCC xenografts in nude mice and downregulated vascular endothelial growth factor (VEGF), IL-8, and MIF expression levels. ART reduced the proliferation, migration, and tube formation of HUVEC, as well as the expression of VEGFR1 and VEGFR2. When the dose of ART was 50 mg/kg, vascular normalisation of OSCC xenografts was induced. Moreover, VEGF and IL-8 were needed in rhMIF restoring tumour growth and inhibit vascular normalisation after the addition of rhMIF to ART-treated cells. CONCLUSION Artemisinin might induce vascular normalisation and inhibit tumour growth in OSCC through the MIF-signalling pathway.
Collapse
Affiliation(s)
- Xiang-Hua Yu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral Pathology, West China Hospital of Stomatology (Sichuan University), Chengdu, China
| | - Jing-Biao Wu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology (Sichuan University), Chengdu, China
- Department of Stomatology, North Sichuan Medical College, Nanchong, China
| | - Hua-Yang Fan
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology (Sichuan University), Chengdu, China
| | - Li Dai
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology (Sichuan University), Chengdu, China
| | - Hong-Chun Xian
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral Pathology, West China Hospital of Stomatology (Sichuan University), Chengdu, China
| | - Bing-Jun Chen
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology (Sichuan University), Chengdu, China
| | - Peng Liao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology (Sichuan University), Chengdu, China
| | - Mei-Chang Huang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral Pathology, West China Hospital of Stomatology (Sichuan University), Chengdu, China
| | - Xin Pang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology (Sichuan University), Chengdu, China
| | - Mei Zhang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology (Sichuan University), Chengdu, China
| | - Xin-Hua Liang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology (Sichuan University), Chengdu, China
| | - Ya-Ling Tang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral Pathology, West China Hospital of Stomatology (Sichuan University), Chengdu, China
| |
Collapse
|
50
|
Yang Z, Zhang X, Bai X, Xi X, Liu W, Zhong W. Anti-angiogenesis in colorectal cancer therapy. Cancer Sci 2024; 115:734-751. [PMID: 38233340 PMCID: PMC10921012 DOI: 10.1111/cas.16063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/16/2023] [Accepted: 12/16/2023] [Indexed: 01/19/2024] Open
Abstract
The morbidity of colorectal cancer (CRC) has risen to third place among malignant tumors worldwide. In addition, CRC is a common cancer in China whose incidence increases annually. Angiogenesis plays an important role in the development of tumors because it can bring the nutrients that cancer cells need and take away metabolic waste. Various mechanisms are involved in the formation of neovascularization, and vascular endothelial growth factor is a key mediator. Meanwhile, angiogenesis inhibitors and drug resistance (DR) are challenges to consider when formulating treatment strategies for patients with different conditions. Thus, this review will discuss the molecules, signaling pathways, microenvironment, treatment, and DR of angiogenesis in CRC.
Collapse
Affiliation(s)
- Zhenni Yang
- Department of Gastroenterology and HepatologyGeneral Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive DiseasesTianjinChina
- Department of Gastroenterology and HepatologyXing'an League People's HospitalXing'an LeagueChina
| | - Xuqian Zhang
- Department of Gastroenterology and HepatologyGeneral Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive DiseasesTianjinChina
- Department of Gastroenterology and HepatologyChina Aerospace Science and Industry CorporationBeijingChina
| | - Xiaozhe Bai
- Department of Gastroenterology and HepatologyXing'an League People's HospitalXing'an LeagueChina
| | - Xiaonan Xi
- State Key Laboratory of Medicinal Chemical Biology and College of PharmacyNankai UniversityTianjinChina
| | - Wentian Liu
- Department of Gastroenterology and HepatologyGeneral Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive DiseasesTianjinChina
| | - Weilong Zhong
- Department of Gastroenterology and HepatologyGeneral Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive DiseasesTianjinChina
| |
Collapse
|