1
|
de Almeida FN, Vasciaveo A, Antao AM, Zou M, Di Bernardo M, de Brot S, Rodriguez-Calero A, Chui A, Wang ALE, Floc'h N, Kim JY, Afari SN, Mukhammadov T, Arriaga JM, Lu J, Shen MM, Rubin MA, Califano A, Abate-Shen C. A forward genetic screen identifies Sirtuin1 as a driver of neuroendocrine prostate cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.24.609538. [PMID: 39253480 PMCID: PMC11383054 DOI: 10.1101/2024.08.24.609538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Although localized prostate cancer is relatively indolent, advanced prostate cancer manifests with aggressive and often lethal variants, including neuroendocrine prostate cancer (NEPC). To identify drivers of aggressive prostate cancer, we leveraged Sleeping Beauty (SB) transposon mutagenesis in a mouse model based on prostate-specific loss-of-function of Pten and Tp53 . Compared with control mice, SB mice developed more aggressive prostate tumors, with increased incidence of metastasis. Notably, a significant percentage of the SB prostate tumors display NEPC phenotypes, and the transcriptomic features of these SB mouse tumors recapitulated those of human NEPC. We identified common SB transposon insertion sites (CIS) and prioritized associated CIS-genes differentially expressed in NEPC versus non-NEPC SB tumors. Integrated analysis of CIS-genes encoding for proteins representing upstream, post-translational modulators of master regulators controlling the transcriptional state of SB -mouse and human NEPC tumors identified sirtuin 1 ( Sirt1 ) as a candidate mechanistic determinant of NEPC. Gain-of-function studies in human prostate cancer cell lines confirmed that SIRT1 promotes NEPC, while its loss-of-function or pharmacological inhibition abrogates NEPC. This integrative analysis is generalizable and can be used to identify novel cancer drivers for other malignancies. Summary Using an unbiased forward mutagenesis screen in an autochthonous mouse model, we have investigated mechanistic determinants of aggressive prostate cancer. SIRT1 emerged as a key regulator of neuroendocrine prostate cancer differentiation and a potential target for therapeutic intervention.
Collapse
|
2
|
Iida N, Muranaka Y, Park JW, Sekine S, Copeland NG, Jenkins NA, Shiraishi Y, Oshima M, Takeda H. Sleeping Beauty transposon mutagenesis in mouse intestinal organoids identifies genes involved in tumor progression and metastasis. Cancer Gene Ther 2024; 31:527-536. [PMID: 38177308 DOI: 10.1038/s41417-023-00723-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/14/2023] [Accepted: 12/19/2023] [Indexed: 01/06/2024]
Abstract
To identify genes important for colorectal cancer (CRC) development and metastasis, we established a new metastatic mouse organoid model using Sleeping Beauty (SB) transposon mutagenesis. Intestinal organoids derived from mice carrying actively mobilizing SB transposons, an activating KrasG12D, and an inactivating ApcΔ716 allele, were transplanted to immunodeficient mice. While 66.7% of mice developed primary tumors, 7.6% also developed metastatic tumors. Analysis of SB insertion sites in tumors identified numerous candidate cancer genes (CCGs) identified previously in intestinal SB screens performed in vivo, in addition to new CCGs, such as Slit2 and Atxn1. Metastatic tumors from the same mouse were clonally related to each other and to primary tumors, as evidenced by the transposon insertion site. To provide functional validation, we knocked out Slit2, Atxn1, and Cdkn2a in mouse tumor organoids and transplanted to mice. Tumor development was promoted when these gene were knocked out, demonstrating that these are potent tumor suppressors. Cdkn2a knockout cells also metastasized to the liver in 100% of the mice, demonstrating that Cdkn2a loss confers metastatic ability. Our organoid model thus provides a new approach that can be used to understand the evolutionary forces driving CRC metastasis and a rich resource to uncover CCGs promoting CRC.
Collapse
Affiliation(s)
- Naoko Iida
- Division of Genome Analysis Platform Development, National Cancer Center Research Institute, Tokyo, Japan
| | - Yukari Muranaka
- Laboratory of Molecular Genetics, National Cancer Center Research Institute, Tokyo, Japan
| | - Jun Won Park
- Division of Biomedical Convergence, College of Biomedical Science, Kang-won National University, Chuncheon-si, Republic of Korea
| | - Shigeki Sekine
- Division of Molecular Pathology, National Cancer Center Research Institute, Tokyo, Japan
| | - Neal G Copeland
- Genetics Department, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Nancy A Jenkins
- Genetics Department, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yuichi Shiraishi
- Division of Genome Analysis Platform Development, National Cancer Center Research Institute, Tokyo, Japan
| | - Masanobu Oshima
- Division of Genetics, Cancer Research Institute, Kanazawa University, Ishikawa, Japan
- Nano-Life Science Institute, Kanazawa University, Ishikawa, Japan
| | - Haruna Takeda
- Laboratory of Molecular Genetics, National Cancer Center Research Institute, Tokyo, Japan.
- Cancer genes and genomes unit, Cancer Research Institute, Kanazawa University, Ishikawa, Japan.
| |
Collapse
|
3
|
Shimomura K, Hattori N, Iida N, Muranaka Y, Sato K, Shiraishi Y, Arai Y, Hama N, Shibata T, Narushima D, Kato M, Takamaru H, Okamoto K, Takeda H. Sleeping Beauty transposon mutagenesis identified genes and pathways involved in inflammation-associated colon tumor development. Nat Commun 2023; 14:6514. [PMID: 37845228 PMCID: PMC10579371 DOI: 10.1038/s41467-023-42228-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 09/29/2023] [Indexed: 10/18/2023] Open
Abstract
Chronic inflammation promotes development and progression of colorectal cancer (CRC). To comprehensively understand the molecular mechanisms underlying the development and progression of inflamed CRC, we perform in vivo screening and identify 142 genes that are frequently mutated in inflammation-associated colon tumors. These genes include senescence and TGFβ-activin signaling genes. We find that TNFα can induce stemness and activate senescence signaling by enhancing cell plasticity in colonic epithelial cells, which could act as a selective pressure to mutate senescence-related genes in inflammation-associated colonic tumors. Furthermore, we show the efficacy of the Cdk4/6 inhibitor in vivo for inflammation-associated colonic tumors. Finally, we functionally validate that Arhgap5 and Mecom are tumor suppressor genes, providing possible therapeutic targets for CRC. Thus, we demonstrate the importance of the inactivation of senescence pathways in CRC development and progression in an inflammatory microenvironment, which can help progress toward precision medicine.
Collapse
Affiliation(s)
- Kana Shimomura
- The Laboratory of Molecular Genetics, National Cancer Center Research Institute, Tokyo, Japan
| | - Naoko Hattori
- Division of Epigenomics, National Cancer Center Research Institute, Tokyo, Japan
- Department of Epigenomics, Institute for Advanced Life Sciences, Hoshi University, Tokyo, Japan
| | - Naoko Iida
- Division of Genome Analysis Platform Development, National Cancer Center Research Institute, Tokyo, Japan
| | - Yukari Muranaka
- The Laboratory of Molecular Genetics, National Cancer Center Research Institute, Tokyo, Japan
| | - Kotomi Sato
- The Laboratory of Molecular Genetics, National Cancer Center Research Institute, Tokyo, Japan
| | - Yuichi Shiraishi
- Division of Genome Analysis Platform Development, National Cancer Center Research Institute, Tokyo, Japan
| | - Yasuhito Arai
- Division of Cancer Genomics, National Cancer Center Research Institute, Tokyo, Japan
| | - Natsuko Hama
- Division of Cancer Genomics, National Cancer Center Research Institute, Tokyo, Japan
| | - Tatsuhiro Shibata
- Division of Cancer Genomics, National Cancer Center Research Institute, Tokyo, Japan
| | - Daichi Narushima
- Division of Bioinformatics, National Cancer Center Research Institute, Tokyo, Japan
| | - Mamoru Kato
- Division of Bioinformatics, National Cancer Center Research Institute, Tokyo, Japan
| | | | - Koji Okamoto
- Advanced Comprehensive Research Organization, Teikyo University, Tokyo, Japan
| | - Haruna Takeda
- The Laboratory of Molecular Genetics, National Cancer Center Research Institute, Tokyo, Japan.
| |
Collapse
|
4
|
Shiode Y, Kodama T, Shigeno S, Murai K, Tanaka S, Newberg JY, Kondo J, Kobayashi S, Yamada R, Hikita H, Sakamori R, Suemizu H, Tatsumi T, Eguchi H, Jenkins NA, Copeland NG, Takehara T. TNF receptor-related factor 3 inactivation promotes the development of intrahepatic cholangiocarcinoma through NF-κB-inducing kinase-mediated hepatocyte transdifferentiation. Hepatology 2023; 77:395-410. [PMID: 34995376 PMCID: PMC9869956 DOI: 10.1002/hep.32317] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 12/27/2021] [Accepted: 01/03/2022] [Indexed: 02/01/2023]
Abstract
BACKGROUND AND AIMS Intrahepatic cholangiocarcinoma (ICC) is a deadly but poorly understood disease, and its treatment options are very limited. The aim of this study was to identify the molecular drivers of ICC and search for therapeutic targets. APPROACH AND RESULTS We performed a Sleeping Beauty transposon-based in vivo insertional mutagenesis screen in liver-specific Pten -deficient mice and identified TNF receptor-related factor 3 ( Traf3 ) as the most significantly mutated gene in murine ICCs in a loss-of-function manner. Liver-specific Traf3 deletion caused marked cholangiocyte overgrowth and spontaneous development of ICC in Pten knockout and KrasG12D mutant mice. Hepatocyte-specific, but not cholangiocyte-specific, Traf3 -deficient and Pten -deficient mice recapitulated these phenotypes. Lineage tracing and single-cell RNA sequencing suggested that these ICCs were derived from hepatocytes through transdifferentiation. TRAF3 and PTEN inhibition induced a transdifferentiation-like phenotype of hepatocyte-lineage cells into proliferative cholangiocytes through NF-κB-inducing kinase (NIK) up-regulation in vitro. Intrahepatic NIK levels were elevated in liver-specific Traf3 -deficient and Pten -deficient mice, and NIK inhibition alleviated cholangiocyte overgrowth. In human ICCs, we identified an inverse correlation between TRAF3 and NIK expression, with low TRAF3 or high NIK expression associated with poor prognosis. Finally, we showed that NIK inhibition by a small molecule inhibitor or gene silencing suppressed the growth of multiple human ICC cells in vitro and ICC xenografts in vivo. CONCLUSIONS TRAF3 inactivation promotes ICC development through NIK-mediated hepatocyte transdifferentiation. The oncogenic TRAF3-NIK axis may be a potential therapeutic target for ICC.
Collapse
Affiliation(s)
- Yuto Shiode
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Takahiro Kodama
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Satoshi Shigeno
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Kazuhiro Murai
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Satoshi Tanaka
- Department of Gastroenterology and Hepatology, National Hospital Organization, Osaka National Hospital, Osaka, Japan
| | - Justin Y. Newberg
- Cancer Research Program, Houston Methodist Research Institute, Houston, Texas, USA
| | - Jumpei Kondo
- Department of Molecular Biochemistry and Clinical Investigation, Division of Health Sciences, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Shogo Kobayashi
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Ryoko Yamada
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Hayato Hikita
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Ryotaro Sakamori
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Hiroshi Suemizu
- Department of Laboratory Animal Research, Central Institute for Experimental Animals, Kawasaki, Kanagawa, Japan
| | - Tomohide Tatsumi
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Hidetoshi Eguchi
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Nancy A. Jenkins
- Cancer Research Program, Houston Methodist Research Institute, Houston, Texas, USA
- Genetics Department, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Neal G. Copeland
- Cancer Research Program, Houston Methodist Research Institute, Houston, Texas, USA
- Genetics Department, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Tetsuo Takehara
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| |
Collapse
|
5
|
Vaishnavi A, Juan J, Jacob M, Stehn C, Gardner EE, Scherzer MT, Schuman S, Van Veen JE, Murphy B, Hackett CS, Dupuy AJ, Chmura SA, van der Weyden L, Newberg JY, Liu A, Mann K, Rust AG, Weiss WA, Kinsey CG, Adams DJ, Grossmann A, Mann MB, McMahon M. Transposon Mutagenesis Reveals RBMS3 Silencing as a Promoter of Malignant Progression of BRAFV600E-Driven Lung Tumorigenesis. Cancer Res 2022; 82:4261-4273. [PMID: 36112789 PMCID: PMC9664136 DOI: 10.1158/0008-5472.can-21-3214] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 06/29/2022] [Accepted: 09/13/2022] [Indexed: 01/09/2023]
Abstract
Mutationally activated BRAF is detected in approximately 7% of human lung adenocarcinomas, with BRAFT1799A serving as a predictive biomarker for treatment of patients with FDA-approved inhibitors of BRAFV600E oncoprotein signaling. In genetically engineered mouse (GEM) models, expression of BRAFV600E in the lung epithelium initiates growth of benign lung tumors that, without additional genetic alterations, rarely progress to malignant lung adenocarcinoma. To identify genes that cooperate with BRAFV600E for malignant progression, we used Sleeping Beauty-mediated transposon mutagenesis, which dramatically accelerated the emergence of lethal lung cancers. Among the genes identified was Rbms3, which encodes an RNA-binding protein previously implicated as a putative tumor suppressor. Silencing of RBMS3 via CRISPR/Cas9 gene editing promoted growth of BRAFV600E lung organoids and promoted development of malignant lung cancers with a distinct micropapillary architecture in BRAFV600E and EGFRL858R GEM models. BRAFV600E/RBMS3Null lung tumors displayed elevated expression of Ctnnb1, Ccnd1, Axin2, Lgr5, and c-Myc mRNAs, suggesting that RBMS3 silencing elevates signaling through the WNT/β-catenin signaling axis. Although RBMS3 silencing rendered BRAFV600E-driven lung tumors resistant to the effects of dabrafenib plus trametinib, the tumors were sensitive to inhibition of porcupine, an acyltransferase of WNT ligands necessary for their secretion. Analysis of The Cancer Genome Atlas patient samples revealed that chromosome 3p24, which encompasses RBMS3, is frequently lost in non-small cell lung cancer and correlates with poor prognosis. Collectively, these data reveal the role of RBMS3 as a lung cancer suppressor and suggest that RBMS3 silencing may contribute to malignant NSCLC progression. SIGNIFICANCE Loss of RBMS3 cooperates with BRAFV600E to induce lung tumorigenesis, providing a deeper understanding of the molecular mechanisms underlying mutant BRAF-driven lung cancer and potential strategies to more effectively target this disease.
Collapse
Affiliation(s)
- Aria Vaishnavi
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah
| | - Joseph Juan
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, California
| | - Maebh Jacob
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah
| | | | - Eric E. Gardner
- Meyer Cancer Center, Weill Cornell Medicine, New York City, New York
- Palo Alto Wellness, Menlo Park, California
| | - Michael T. Scherzer
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah
- Department of Oncological Sciences, University of Utah, Salt Lake City, Utah
| | - Sophia Schuman
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah
| | - J. Edward Van Veen
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, California
| | - Brandon Murphy
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah
| | - Christopher S. Hackett
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, California
| | - Adam J. Dupuy
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, Iowa
| | - Steven A. Chmura
- Meyer Cancer Center, Weill Cornell Medicine, New York City, New York
- Palo Alto Wellness, Menlo Park, California
| | - Louise van der Weyden
- Experimental Cancer Genetics, Wellcome Trust Sanger Institute, Cambridge, United Kingdom
| | - Justin Y. Newberg
- Department of Molecular Oncology, Moffitt Cancer Center, Tampa, Florida
| | - Annie Liu
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah
| | - Karen Mann
- Department of Molecular Oncology, Moffitt Cancer Center, Tampa, Florida
| | - Alistair G. Rust
- Experimental Cancer Genetics, Wellcome Trust Sanger Institute, Cambridge, United Kingdom
| | - William A. Weiss
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, California
- Department of Neurology, University of California, San Francisco, California
- Department of Dermatology, University of Utah, Salt Lake City, Utah
- Department of Pediatrics, University of California, San Francisco, California
- Department of Neurological Surgery, University of California, San Francisco, California
| | - Conan G. Kinsey
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah
| | - David J. Adams
- Department of Dermatology, University of Utah, Salt Lake City, Utah
- Department of Pediatrics, University of California, San Francisco, California
| | - Allie Grossmann
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah
- Department of Pathology, University of Utah, Salt Lake City, Utah
| | - Michael B. Mann
- Department of Molecular Oncology, Moffitt Cancer Center, Tampa, Florida
| | - Martin McMahon
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, California
- Department of Oncological Sciences, University of Utah, Salt Lake City, Utah
- Department of Dermatology, University of Utah, Salt Lake City, Utah
- Department of Pediatrics, University of California, San Francisco, California
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California
| |
Collapse
|
6
|
Weishaupt H, Čančer M, Rosén G, Holmberg KO, Häggqvist S, Bunikis I, Jiang Y, Sreedharan S, Gyllensten U, Becher OJ, Uhrbom L, Ameur A, Swartling FJ. Novel cancer gene discovery using a forward genetic screen in RCAS-PDGFB-driven gliomas. Neuro Oncol 2022; 25:97-107. [PMID: 35738865 PMCID: PMC9825320 DOI: 10.1093/neuonc/noac158] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Malignant gliomas, the most common malignant brain tumors in adults, represent a heterogeneous group of diseases with poor prognosis. Retroviruses can cause permanent genetic alterations that modify genes close to the viral integration site. METHODS Here we describe the use of a high-throughput pipeline coupled to the commonly used tissue-specific retroviral RCAS-TVA mouse tumor model system. Utilizing next-generation sequencing, we show that retroviral integration sites can be reproducibly detected in malignant stem cell lines generated from RCAS-PDGFB-driven glioma biopsies. RESULTS A large fraction of common integration sites contained genes that have been dysregulated or misexpressed in glioma. Others overlapped with loci identified in previous glioma-related forward genetic screens, but several novel putative cancer-causing genes were also found. Integrating retroviral tagging and clinical data, Ppfibp1 was highlighted as a frequently tagged novel glioma-causing gene. Retroviral integrations into the locus resulted in Ppfibp1 upregulation, and Ppfibp1-tagged cells generated tumors with shorter latency on orthotopic transplantation. In human gliomas, increased PPFIBP1 expression was significantly linked to poor prognosis and PDGF treatment resistance. CONCLUSIONS Altogether, the current study has demonstrated a novel approach to tagging glioma genes via forward genetics, validating previous results, and identifying PPFIBP1 as a putative oncogene in gliomagenesis.
Collapse
Affiliation(s)
| | | | - Gabriela Rosén
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Karl O Holmberg
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Susana Häggqvist
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Ignas Bunikis
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Yiwen Jiang
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Smitha Sreedharan
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Ulf Gyllensten
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Oren J Becher
- Department of Pediatrics and Biochemistry and Molecular Genetics, Northwestern University, Chicago, Illinois, USA,Department of Pediatrics and Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Lene Uhrbom
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Adam Ameur
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Fredrik J Swartling
- Corresponding Author: Fredrik J. Swartling, PhD, Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Dag Hammarskjoldsv. 20, SE-751 85 Uppsala, Sweden ()
| |
Collapse
|
7
|
Kodama M, Shimura H, Tien JC, Newberg JY, Kodama T, Wei Z, Rangel R, Yoshihara K, Kuruma A, Nakae A, Hashimoto K, Sawada K, Kimura T, Jenkins NA, Copeland NG. Sleeping Beauty Transposon Mutagenesis Identifies Genes Driving the Initiation and Metastasis of Uterine Leiomyosarcoma. Cancer Res 2021; 81:5413-5424. [PMID: 34475109 DOI: 10.1158/0008-5472.can-21-0356] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 07/29/2021] [Accepted: 09/01/2021] [Indexed: 11/16/2022]
Abstract
Uterine leiomyosarcoma (ULMS) is a malignancy, which arises from the uterine smooth muscle. Because of its rarity, aggressive nature, and extremely poor prognosis, the molecular mechanisms driving ULMS remain elusive. To identify candidate cancer genes (CCG) driving ULMS, we conducted an in vivo Sleeping Beauty (SB) transposon mutagenesis screen in uterine myometrium-specific, PTEN knockout, KRAS mutant (PTEN KO/KRAS) mice. ULMS quickly developed in SB PTEN KO/KRAS mice, but not in PTEN KO/KRAS mice, demonstrating the critical importance of SB mutagenesis for driving ULMS in this model. Subsequent sequencing of SB insertion sites in these tumors identified 19 ULMS CCGs that were significantly enriched in known cancer genes. Among them, Zfp217 and Sfmbt2 functioned at early stages of tumor initiation and appeared to be oncogenes. Expression of ZNF217, the human homolog of ZFP217, was shown to be elevated in human ULMS compared with paired normal uterine smooth muscle, where it negatively correlated with patient prognosis. Inhibition of ZNF217 suppressed, whereas overexpression induced, proliferation, survival, migration, and stemness of human ULMS. In a second ex vivo ULMS SB metastasis screen, three CCGs were identified that may drive ULMS metastasis to the lung. One of these CCGs, Nrd1 (NRDC in humans), showed stronger expression in human metastatic tumors compared with primary ULMS and negatively associated with patient survival. NRDC knockdown impaired migration and adhesion without affecting cell proliferation, whereas overexpression had the opposite effect. Together, these results reveal novel mechanism driving ULMS tumorigenesis and metastasis and identify ZNF217 and NRDC as potential targets for ULMS therapy. SIGNIFICANCE: An in vivo Sleeping Beauty transposon mutagenesis screen identifies candidate cancer genes that drive initiation and progression of uterine leiomyosarcoma and may serve as therapeutic targets.
Collapse
Affiliation(s)
- Michiko Kodama
- Cancer Research Program, Houston Methodist Research Institute, Houston, Texas. .,Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Hiroko Shimura
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Jean C Tien
- Cancer Research Program, Houston Methodist Research Institute, Houston, Texas.,Department of Pathology, Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, Michigan
| | - Justin Y Newberg
- Cancer Research Program, Houston Methodist Research Institute, Houston, Texas
| | - Takahiro Kodama
- Cancer Research Program, Houston Methodist Research Institute, Houston, Texas.,Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Zhubo Wei
- Cancer Research Program, Houston Methodist Research Institute, Houston, Texas.,Center for Genomic and Precision Medicine, Institute of Biosciences and Technology, Texas A&M University, Houston, Texas
| | - Roberto Rangel
- Cancer Research Program, Houston Methodist Research Institute, Houston, Texas.,Department of Head and Neck Surgery, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Kosuke Yoshihara
- Department of Obstetrics and Gynecology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Airi Kuruma
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Aya Nakae
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Kae Hashimoto
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Kenjiro Sawada
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Tadashi Kimura
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Nancy A Jenkins
- Cancer Research Program, Houston Methodist Research Institute, Houston, Texas.,Genetics Department, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Neal G Copeland
- Cancer Research Program, Houston Methodist Research Institute, Houston, Texas. .,Genetics Department, University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
8
|
Martin TD, Patel RS, Cook DR, Choi MY, Patil A, Liang AC, Li MZ, Haigis KM, Elledge SJ. The adaptive immune system is a major driver of selection for tumor suppressor gene inactivation. Science 2021; 373:1327-1335. [PMID: 34529489 DOI: 10.1126/science.abg5784] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
During tumorigenesis, tumors must evolve to evade the immune system and do so by disrupting the genes involved in antigen processing and presentation or up-regulating inhibitory immune checkpoint genes. We performed in vivo CRISPR screens in syngeneic mouse tumor models to examine requirements for tumorigenesis both with and without adaptive immune selective pressure. In each tumor type tested, we found a marked enrichment for the loss of tumor suppressor genes (TSGs) in the presence of an adaptive immune system relative to immunocompromised mice. Nearly one-third of TSGs showed preferential enrichment, often in a cancer- and tissue-specific manner. These results suggest that clonal selection of recurrent mutations found in cancer is driven largely by the tumor’s requirement to avoid the adaptive immune system.
Collapse
MESH Headings
- Animals
- CRISPR-Cas Systems
- Carcinogenesis
- Cell Line, Tumor
- Chemokine CCL2/metabolism
- Female
- GTP-Binding Protein alpha Subunits, G12-G13/genetics
- GTP-Binding Protein alpha Subunits, G12-G13/metabolism
- Gene Silencing
- Genes, Tumor Suppressor
- Humans
- Immune Evasion/genetics
- Mammary Neoplasms, Experimental/genetics
- Mammary Neoplasms, Experimental/immunology
- Mammary Neoplasms, Experimental/pathology
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, SCID
- Neoplasm Transplantation
- Neoplasms, Experimental/genetics
- Neoplasms, Experimental/immunology
- Neoplasms, Experimental/pathology
- Selection, Genetic
- Tumor Microenvironment
Collapse
Affiliation(s)
- Timothy D Martin
- Division of Genetics, Brigham and Women's Hospital, Howard Hughes Medical Institute, Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Rupesh S Patel
- Division of Genetics, Brigham and Women's Hospital, Howard Hughes Medical Institute, Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Danielle R Cook
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Mei Yuk Choi
- Division of Genetics, Brigham and Women's Hospital, Howard Hughes Medical Institute, Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Ajinkya Patil
- Division of Genetics, Brigham and Women's Hospital, Howard Hughes Medical Institute, Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Anthony C Liang
- Division of Genetics, Brigham and Women's Hospital, Howard Hughes Medical Institute, Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Mamie Z Li
- Division of Genetics, Brigham and Women's Hospital, Howard Hughes Medical Institute, Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Kevin M Haigis
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Stephen J Elledge
- Division of Genetics, Brigham and Women's Hospital, Howard Hughes Medical Institute, Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
9
|
Aiderus A, Newberg JY, Guzman-Rojas L, Contreras-Sandoval AM, Meshey AL, Jones DJ, Amaya-Manzanares F, Rangel R, Ward JM, Lee SC, Ban KHK, Rogers K, Rogers SM, Selvanesan L, McNoe LA, Copeland NG, Jenkins NA, Tsai KY, Black MA, Mann KM, Mann MB. Transposon mutagenesis identifies cooperating genetic drivers during keratinocyte transformation and cutaneous squamous cell carcinoma progression. PLoS Genet 2021; 17:e1009094. [PMID: 34398873 PMCID: PMC8389471 DOI: 10.1371/journal.pgen.1009094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 08/26/2021] [Accepted: 07/14/2021] [Indexed: 12/01/2022] Open
Abstract
The systematic identification of genetic events driving cellular transformation and tumor progression in the absence of a highly recurrent oncogenic driver mutation is a challenge in cutaneous oncology. In cutaneous squamous cell carcinoma (cuSCC), the high UV-induced mutational burden poses a hurdle to achieve a complete molecular landscape of this disease. Here, we utilized the Sleeping Beauty transposon mutagenesis system to statistically define drivers of keratinocyte transformation and cuSCC progression in vivo in the absence of UV-IR, and identified both known tumor suppressor genes and novel oncogenic drivers of cuSCC. Functional analysis confirms an oncogenic role for the ZMIZ genes, and tumor suppressive roles for KMT2C, CREBBP and NCOA2, in the initiation or progression of human cuSCC. Taken together, our in vivo screen demonstrates an extremely heterogeneous genetic landscape of cuSCC initiation and progression, which can be harnessed to better understand skin oncogenic etiology and prioritize therapeutic candidates. Non-melanoma skin cancers, the most common cancers in the US, are caused by UV skin exposure. Nearly 1 million cases of cutaneous squamous cell carcinoma (cuSCC) are diagnosed in the US each year. While most cuSCCs are highly treatable, more than twice as many individuals die from this disease as from melanoma. The high burden of UV-induced DNA damage in human skin poses a challenge for identifying initiating and cooperating mutations that promote cuSCC development and for defining potential therapeutic targets. Here, we describe a genetic screen in mice using a DNA transposon system to mutagenize the genome of keratinocytes and drive squamous cell carcinoma in the absence of UV. By sequencing where the transposons selectively integrated in the genomes of normal skin, skin with pre-cancerous lesions and skin with fully developed cuSCCs from our mouse model, we were able to identify frequently mutated genes likely important for this disease. Our analysis also defined cooperation between sets of genes not previously appreciated in cuSCC. Our mouse model and ensuing data provide a framework for understanding the genetics of cuSCC and for defining the molecular changes that may lead to the future therapies for patients.
Collapse
Affiliation(s)
- Aziz Aiderus
- Department of Molecular Oncology, Moffitt Cancer Center & Research Institute, Tampa, Florida, United States of America
| | - Justin Y. Newberg
- Department of Molecular Oncology, Moffitt Cancer Center & Research Institute, Tampa, Florida, United States of America
- Cancer Research Program, Houston Methodist Research Institute, Houston, Texas, United States of America
| | - Liliana Guzman-Rojas
- Cancer Research Program, Houston Methodist Research Institute, Houston, Texas, United States of America
| | - Ana M. Contreras-Sandoval
- Department of Molecular Oncology, Moffitt Cancer Center & Research Institute, Tampa, Florida, United States of America
| | - Amanda L. Meshey
- Department of Molecular Oncology, Moffitt Cancer Center & Research Institute, Tampa, Florida, United States of America
| | - Devin J. Jones
- Cancer Research Program, Houston Methodist Research Institute, Houston, Texas, United States of America
| | - Felipe Amaya-Manzanares
- Cancer Research Program, Houston Methodist Research Institute, Houston, Texas, United States of America
| | - Roberto Rangel
- Cancer Research Program, Houston Methodist Research Institute, Houston, Texas, United States of America
| | - Jerrold M. Ward
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Biopolis, Singapore, Republic of Singapore
| | - Song-Choon Lee
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Biopolis, Singapore, Republic of Singapore
| | - Kenneth Hon-Kim Ban
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Biopolis, Singapore, Republic of Singapore
| | - Keith Rogers
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Biopolis, Singapore, Republic of Singapore
| | - Susan M. Rogers
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Biopolis, Singapore, Republic of Singapore
| | - Luxmanan Selvanesan
- Centre for Translational Cancer Research, Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Leslie A. McNoe
- Centre for Translational Cancer Research, Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Neal G. Copeland
- Cancer Research Program, Houston Methodist Research Institute, Houston, Texas, United States of America
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Biopolis, Singapore, Republic of Singapore
| | - Nancy A. Jenkins
- Cancer Research Program, Houston Methodist Research Institute, Houston, Texas, United States of America
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Biopolis, Singapore, Republic of Singapore
| | - Kenneth Y. Tsai
- Departments of Anatomic Pathology & Tumor Biology, Moffitt Cancer Center & Research Institute, Tampa, Florida, United States of America
- Donald A. Adam Melanoma and Skin Cancer Research Center of Excellence, Moffitt Cancer Center & Research Institute, Tampa, Florida, United States of America
- Department of Oncologic Sciences, Morsani College of Medicine, University of South Florida, Tampa, Florida, United States of America
| | - Michael A. Black
- Centre for Translational Cancer Research, Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Karen M. Mann
- Department of Molecular Oncology, Moffitt Cancer Center & Research Institute, Tampa, Florida, United States of America
- Cancer Research Program, Houston Methodist Research Institute, Houston, Texas, United States of America
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Biopolis, Singapore, Republic of Singapore
- Department of Oncologic Sciences, Morsani College of Medicine, University of South Florida, Tampa, Florida, United States of America
- Departments of Gastrointestinal Oncology & Malignant Hematology, Moffitt Cancer Center & Research Institute, Tampa, Florida, United States of America
- Cancer Biology and Evolution Program, Moffitt Cancer Center & Research Institute, Tampa, Florida, United States of America
| | - Michael B. Mann
- Department of Molecular Oncology, Moffitt Cancer Center & Research Institute, Tampa, Florida, United States of America
- Cancer Research Program, Houston Methodist Research Institute, Houston, Texas, United States of America
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Biopolis, Singapore, Republic of Singapore
- Donald A. Adam Melanoma and Skin Cancer Research Center of Excellence, Moffitt Cancer Center & Research Institute, Tampa, Florida, United States of America
- Department of Oncologic Sciences, Morsani College of Medicine, University of South Florida, Tampa, Florida, United States of America
- Cancer Biology and Evolution Program, Moffitt Cancer Center & Research Institute, Tampa, Florida, United States of America
- Department of Cutaneous Oncology, Moffitt Cancer Center & Research Institute, Tampa, Florida, United States of America
- * E-mail:
| |
Collapse
|
10
|
Takeda H. A Platform for Validating Colorectal Cancer Driver Genes Using Mouse Organoids. Front Genet 2021; 12:698771. [PMID: 34262603 PMCID: PMC8273277 DOI: 10.3389/fgene.2021.698771] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 05/24/2021] [Indexed: 12/13/2022] Open
Abstract
Systematic approaches for functionally validating cancer genes are needed since numerous genes mutated in cancer tissues have been identified from cancer genome sequencing. The mouse organoid culture system has been extensively used in the field of cancer research since mouse organoids can faithfully recapitulate the physiological behavior of the cells. Taking advantage of this, we recently described a platform for functionally validating colorectal cancer (CRC) driver genes that utilized CRISPR-Cas9 in mouse intestinal tumor organoids. In this review, we will describe how mouse organoids have been applied to CRC research and focus on how CRC genes can be validated using mouse organoids.
Collapse
Affiliation(s)
- Haruna Takeda
- Laboratory of Molecular Genetics, National Cancer Center Research Institute, Tokyo, Japan
| |
Collapse
|
11
|
Sandoval-Villegas N, Nurieva W, Amberger M, Ivics Z. Contemporary Transposon Tools: A Review and Guide through Mechanisms and Applications of Sleeping Beauty, piggyBac and Tol2 for Genome Engineering. Int J Mol Sci 2021; 22:ijms22105084. [PMID: 34064900 PMCID: PMC8151067 DOI: 10.3390/ijms22105084] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 04/30/2021] [Accepted: 05/05/2021] [Indexed: 01/19/2023] Open
Abstract
Transposons are mobile genetic elements evolved to execute highly efficient integration of their genes into the genomes of their host cells. These natural DNA transfer vehicles have been harnessed as experimental tools for stably introducing a wide variety of foreign DNA sequences, including selectable marker genes, reporters, shRNA expression cassettes, mutagenic gene trap cassettes, and therapeutic gene constructs into the genomes of target cells in a regulated and highly efficient manner. Given that transposon components are typically supplied as naked nucleic acids (DNA and RNA) or recombinant protein, their use is simple, safe, and economically competitive. Thus, transposons enable several avenues for genome manipulations in vertebrates, including transgenesis for the generation of transgenic cells in tissue culture comprising the generation of pluripotent stem cells, the production of germline-transgenic animals for basic and applied research, forward genetic screens for functional gene annotation in model species and therapy of genetic disorders in humans. This review describes the molecular mechanisms involved in transposition reactions of the three most widely used transposon systems currently available (Sleeping Beauty, piggyBac, and Tol2), and discusses the various parameters and considerations pertinent to their experimental use, highlighting the state-of-the-art in transposon technology in diverse genetic applications.
Collapse
Affiliation(s)
| | | | | | - Zoltán Ivics
- Correspondence: ; Tel.: +49-6103-77-6000; Fax: +49-6103-77-1280
| |
Collapse
|
12
|
Takeda H, Jenkins NA, Copeland NG. Identification of cancer driver genes using Sleeping Beauty transposon mutagenesis. Cancer Sci 2021; 112:2089-2096. [PMID: 33783919 PMCID: PMC8177796 DOI: 10.1111/cas.14901] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/21/2021] [Accepted: 03/23/2021] [Indexed: 12/17/2022] Open
Abstract
Cancer genome sequencing studies have identified driver genes for a variety of different cancers and helped to understand the genetic landscape of human cancer. It is still challenging, however, to identify cancer driver genes with confidence simply from genetic data alone. In vivo forward genetic screens using Sleeping Beauty (SB) transposon mutagenesis provides another powerful genetic tool for identifying candidate cancer driver genes in wild-type and sensitized mouse tumors. By comparing cancer driver genes identified in human and mouse tumors, cancer driver genes can be identified with additional confidence based upon comparative oncogenomics. This review describes how SB mutagenesis works in mice and focuses on studies that have identified cancer driver genes in the mouse gastrointestinal tract.
Collapse
Affiliation(s)
- Haruna Takeda
- Laboratory of Molecular Genetics, National Cancer Center Research Institute, Tokyo, Japan
| | - Nancy A Jenkins
- Laboratory of Molecular Genetics, National Cancer Center Research Institute, Tokyo, Japan
| | - Neal G Copeland
- Genetics Department, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
13
|
Vancura A, Lanzós A, Bosch-Guiteras N, Esteban MT, Gutierrez AH, Haefliger S, Johnson R. Cancer LncRNA Census 2 (CLC2): an enhanced resource reveals clinical features of cancer lncRNAs. NAR Cancer 2021; 3:zcab013. [PMID: 34316704 PMCID: PMC8210278 DOI: 10.1093/narcan/zcab013] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 03/12/2021] [Accepted: 03/17/2021] [Indexed: 01/28/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) play key roles in cancer and are at the vanguard of precision therapeutic development. These efforts depend on large and high-confidence collections of cancer lncRNAs. Here, we present the Cancer LncRNA Census 2 (CLC2). With 492 cancer lncRNAs, CLC2 is 4-fold greater in size than its predecessor, without compromising on strict criteria of confident functional/genetic roles and inclusion in the GENCODE annotation scheme. This increase was enabled by leveraging high-throughput transposon insertional mutagenesis screening data, yielding 92 novel cancer lncRNAs. CLC2 makes a valuable addition to existing collections: it is amongst the largest, contains numerous unique genes (not found in other databases) and carries functional labels (oncogene/tumour suppressor). Analysis of this dataset reveals that cancer lncRNAs are impacted by germline variants, somatic mutations and changes in expression consistent with inferred disease functions. Furthermore, we show how clinical/genomic features can be used to vet prospective gene sets from high-throughput sources. The combination of size and quality makes CLC2 a foundation for precision medicine, demonstrating cancer lncRNAs’ evolutionary and clinical significance.
Collapse
Affiliation(s)
- Adrienne Vancura
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern 3010, Switzerland
| | - Andrés Lanzós
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern 3010, Switzerland
| | - Núria Bosch-Guiteras
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern 3010, Switzerland
| | - Mònica Torres Esteban
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern 3010, Switzerland
| | - Alejandro H Gutierrez
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern 3010, Switzerland
| | - Simon Haefliger
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern 3010, Switzerland
| | - Rory Johnson
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern 3010, Switzerland
| |
Collapse
|
14
|
Aiderus A, Contreras-Sandoval AM, Meshey AL, Newberg JY, Ward JM, Swing DA, Copeland NG, Jenkins NA, Mann KM, Mann MB. Promoterless Transposon Mutagenesis Drives Solid Cancers via Tumor Suppressor Inactivation. Cancers (Basel) 2021; 13:E225. [PMID: 33435458 PMCID: PMC7827284 DOI: 10.3390/cancers13020225] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 12/30/2020] [Accepted: 12/31/2020] [Indexed: 12/19/2022] Open
Abstract
A central challenge in cancer genomics is the systematic identification of single and cooperating tumor suppressor gene mutations driving cellular transformation and tumor progression in the absence of oncogenic driver mutation(s). Multiple in vitro and in vivo gene inactivation screens have enhanced our understanding of the tumor suppressor gene landscape in various cancers. However, these studies are limited to single or combination gene effects, specific organs, or require sensitizing mutations. In this study, we developed and utilized a Sleeping Beauty transposon mutagenesis system that functions only as a gene trap to exclusively inactivate tumor suppressor genes. Using whole body transposon mobilization in wild type mice, we observed that cumulative gene inactivation can drive tumorigenesis of solid cancers. We provide a quantitative landscape of the tumor suppressor genes inactivated in these cancers and show that, despite the absence of oncogenic drivers, these genes converge on key biological pathways and processes associated with cancer hallmarks.
Collapse
Affiliation(s)
- Aziz Aiderus
- Department of Molecular Oncology, Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA; (A.A.); (A.M.C.-S.); (A.L.M.); (J.Y.N.)
| | - Ana M. Contreras-Sandoval
- Department of Molecular Oncology, Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA; (A.A.); (A.M.C.-S.); (A.L.M.); (J.Y.N.)
| | - Amanda L. Meshey
- Department of Molecular Oncology, Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA; (A.A.); (A.M.C.-S.); (A.L.M.); (J.Y.N.)
| | - Justin Y. Newberg
- Department of Molecular Oncology, Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA; (A.A.); (A.M.C.-S.); (A.L.M.); (J.Y.N.)
- Cancer Research Program, Houston Methodist Research Institute, Houston, TX 77030, USA; (N.G.C.); (N.A.J.)
| | - Jerrold M. Ward
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore 138673, Singapore;
| | - Deborah A. Swing
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA;
| | - Neal G. Copeland
- Cancer Research Program, Houston Methodist Research Institute, Houston, TX 77030, USA; (N.G.C.); (N.A.J.)
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore 138673, Singapore;
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA;
| | - Nancy A. Jenkins
- Cancer Research Program, Houston Methodist Research Institute, Houston, TX 77030, USA; (N.G.C.); (N.A.J.)
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore 138673, Singapore;
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA;
| | - Karen M. Mann
- Department of Molecular Oncology, Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA; (A.A.); (A.M.C.-S.); (A.L.M.); (J.Y.N.)
- Cancer Research Program, Houston Methodist Research Institute, Houston, TX 77030, USA; (N.G.C.); (N.A.J.)
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore 138673, Singapore;
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA;
- Departments of Gastrointestinal Oncology & Malignant Hematology, Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
- Cancer Biology and Evolution Program, Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
- Department of Oncologic Sciences, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Michael B. Mann
- Department of Molecular Oncology, Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA; (A.A.); (A.M.C.-S.); (A.L.M.); (J.Y.N.)
- Cancer Research Program, Houston Methodist Research Institute, Houston, TX 77030, USA; (N.G.C.); (N.A.J.)
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore 138673, Singapore;
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA;
- Cancer Biology and Evolution Program, Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
- Department of Oncologic Sciences, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
- Donald A. Adam Melanoma and Skin Cancer Research Center of Excellence, Moffitt Cancer Center, Tampa, FL 33612, USA
- Department of Cutaneous Oncology, Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| |
Collapse
|
15
|
Genome-Wide Screen for Context-Dependent Tumor Suppressors Identified Using in Vivo Models for Neoplasia in Drosophila. G3-GENES GENOMES GENETICS 2020; 10:2999-3008. [PMID: 32737065 PMCID: PMC7467006 DOI: 10.1534/g3.120.401545] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Genetic approaches in Drosophila have successfully identified many genes involved in regulation of growth control as well as genetic interactions relevant to the initiation and progression of cancer in vivo. Here, we report on large-scale RNAi-based screens to identify potential tumor suppressor genes that interact with known cancer-drivers: the Epidermal Growth Factor Receptor and the Hippo pathway transcriptional cofactor Yorkie. These screens were designed to identify genes whose depletion drove tissue expressing EGFR or Yki from a state of benign overgrowth into neoplastic transformation in vivo. We also report on an independent screen aimed to identify genes whose depletion suppressed formation of neoplastic tumors in an existing EGFR-dependent neoplasia model. Many of the positives identified here are known to be functional in growth control pathways. We also find a number of novel connections to Yki and EGFR driven tissue growth, mostly unique to one of the two. Thus, resources provided here would be useful to all researchers who study negative regulators of growth during development and cancer in the context of activated EGFR and/or Yki and positive regulators of growth in the context of activated EGFR. Resources reported here are available freely for anyone to use.
Collapse
|
16
|
Kesselring L, Miskey C, Zuliani C, Querques I, Kapitonov V, Laukó A, Fehér A, Palazzo A, Diem T, Lustig J, Sebe A, Wang Y, Dinnyés A, Izsvák Z, Barabas O, Ivics Z. A single amino acid switch converts the Sleeping Beauty transposase into an efficient unidirectional excisionase with utility in stem cell reprogramming. Nucleic Acids Res 2020; 48:316-331. [PMID: 31777924 PMCID: PMC6943129 DOI: 10.1093/nar/gkz1119] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 11/07/2019] [Accepted: 11/22/2019] [Indexed: 12/26/2022] Open
Abstract
The Sleeping Beauty (SB) transposon is an advanced tool for genetic engineering and a useful model to investigate cut-and-paste DNA transposition in vertebrate cells. Here, we identify novel SB transposase mutants that display efficient and canonical excision but practically unmeasurable genomic re-integration. Based on phylogenetic analyses, we establish compensating amino acid replacements that fully rescue the integration defect of these mutants, suggesting epistasis between these amino acid residues. We further show that the transposons excised by the exc+/int− transposase mutants form extrachromosomal circles that cannot undergo a further round of transposition, thereby representing dead-end products of the excision reaction. Finally, we demonstrate the utility of the exc+/int− transposase in cassette removal for the generation of reprogramming factor-free induced pluripotent stem cells. Lack of genomic integration and formation of transposon circles following excision is reminiscent of signal sequence removal during V(D)J recombination, and implies that cut-and-paste DNA transposition can be converted to a unidirectional process by a single amino acid change.
Collapse
Affiliation(s)
- Lisa Kesselring
- Transposition and Genome Engineering, Division of Medical Biotechnology, Paul Ehrlich Institute, Langen, Germany
| | - Csaba Miskey
- Transposition and Genome Engineering, Division of Medical Biotechnology, Paul Ehrlich Institute, Langen, Germany
| | - Cecilia Zuliani
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany
| | - Irma Querques
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany
| | - Vladimir Kapitonov
- Transposition and Genome Engineering, Division of Medical Biotechnology, Paul Ehrlich Institute, Langen, Germany
| | | | - Anita Fehér
- BioTalentum Ltd, Gödöllő, 2100 Gödöllő, Hungary
| | - Antonio Palazzo
- Department of Biology, University of Bari 'Aldo Moro', Italy
| | - Tanja Diem
- Transposition and Genome Engineering, Division of Medical Biotechnology, Paul Ehrlich Institute, Langen, Germany
| | - Janna Lustig
- Transposition and Genome Engineering, Division of Medical Biotechnology, Paul Ehrlich Institute, Langen, Germany
| | - Attila Sebe
- Transposition and Genome Engineering, Division of Medical Biotechnology, Paul Ehrlich Institute, Langen, Germany
| | - Yongming Wang
- Mobile DNA, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | | | - Zsuzsanna Izsvák
- Mobile DNA, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Orsolya Barabas
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany
| | - Zoltán Ivics
- Transposition and Genome Engineering, Division of Medical Biotechnology, Paul Ehrlich Institute, Langen, Germany
| |
Collapse
|
17
|
Carlevaro-Fita J, Lanzós A, Feuerbach L, Hong C, Mas-Ponte D, Pedersen JS, Johnson R. Cancer LncRNA Census reveals evidence for deep functional conservation of long noncoding RNAs in tumorigenesis. Commun Biol 2020; 3:56. [PMID: 32024996 PMCID: PMC7002399 DOI: 10.1038/s42003-019-0741-7] [Citation(s) in RCA: 133] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 08/31/2018] [Indexed: 12/14/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) are a growing focus of cancer genomics studies, creating the need for a resource of lncRNAs with validated cancer roles. Furthermore, it remains debated whether mutated lncRNAs can drive tumorigenesis, and whether such functions could be conserved during evolution. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, we introduce the Cancer LncRNA Census (CLC), a compilation of 122 GENCODE lncRNAs with causal roles in cancer phenotypes. In contrast to existing databases, CLC requires strong functional or genetic evidence. CLC genes are enriched amongst driver genes predicted from somatic mutations, and display characteristic genomic features. Strikingly, CLC genes are enriched for driver mutations from unbiased, genome-wide transposon-mutagenesis screens in mice. We identified 10 tumour-causing mutations in orthologues of 8 lncRNAs, including LINC-PINT and NEAT1, but not MALAT1. Thus CLC represents a dataset of high-confidence cancer lncRNAs. Mutagenesis maps are a novel means for identifying deeply-conserved roles of lncRNAs in tumorigenesis.
Collapse
Affiliation(s)
- Joana Carlevaro-Fita
- Department of Medical Oncology, Inselspital, University Hospital and University of Bern, 3010, Bern, Switzerland
- Department of Biomedical Research, University of Bern, 3008, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, 3012, Bern, Switzerland
| | - Andrés Lanzós
- Department of Medical Oncology, Inselspital, University Hospital and University of Bern, 3010, Bern, Switzerland
- Department of Biomedical Research, University of Bern, 3008, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, 3012, Bern, Switzerland
| | - Lars Feuerbach
- Applied Bioinformatics, Deutsches Krebsforschungszentrum, 69120, Heidelberg, Germany
| | - Chen Hong
- Applied Bioinformatics, Deutsches Krebsforschungszentrum, 69120, Heidelberg, Germany
| | - David Mas-Ponte
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona, 08003, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Dr. Aiguader 88, 08003, Barcelona, Spain
| | - Jakob Skou Pedersen
- Department for Molecular Medicine, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, 8200, Aarhus N, Denmark
| | - Rory Johnson
- Department of Medical Oncology, Inselspital, University Hospital and University of Bern, 3010, Bern, Switzerland.
- Department of Biomedical Research, University of Bern, 3008, Bern, Switzerland.
- Graduate School for Cellular and Biomedical Sciences, University of Bern, 3012, Bern, Switzerland.
| |
Collapse
|
18
|
Abstract
Diffuse large B cell lymphoma (DLBCL) is the most common type of aggressive lymphoma and has traditionally been subdivided into germinal center B cell-like and activated B cell-like DLBCL, using transcriptome profiling. The recent characterization of the genomic landscape of DLBCL revealed the identity of at least five molecularly-defined subclusters of DLBCL. Intriguingly, these different clusters display a different response to frontline, anthracycline-based chemo-immune therapy. Moreover, multiple, potentially actionable genomic aberrations have been identified in these clusters, including EZH2, CREBBP/EP300, and KMT2D mutations, BCL2 overexpression, PTEN inactivation, CD274 rearrangements and others. With this genomic understanding, it is possible to develop autochthonous mouse models, which capture this genomic complexity. These models can serve as pre-clinical platforms to devise molecularly targeted therapeutic intervention strategies. Here, we review the available mouse models of aggressive lymphoma and indicate which compound-mutant mice may be desirable tools to further advance the field of translational lymphoma research.
Collapse
Affiliation(s)
- Ruth Flümann
- Department I of Internal Medicine, University Hospital of Cologne, Faculty of Medicine, University of Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Response in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Pascal Nieper
- Department I of Internal Medicine, University Hospital of Cologne, Faculty of Medicine, University of Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Response in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Hans Christian Reinhardt
- Department I of Internal Medicine, University Hospital of Cologne, Faculty of Medicine, University of Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Response in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany.,Center of Integrated Oncology (CIO), University Hospital of Cologne, Cologne, Germany.,Center of Molecular Medicine, University of Cologne, Cologne, Germany
| | - Gero Knittel
- Department I of Internal Medicine, University Hospital of Cologne, Faculty of Medicine, University of Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Response in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| |
Collapse
|
19
|
MRTFB suppresses colorectal cancer development through regulating SPDL1 and MCAM. Proc Natl Acad Sci U S A 2019; 116:23625-23635. [PMID: 31690663 DOI: 10.1073/pnas.1910413116] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Myocardin-related transcription factor B (MRTFB) is a candidate tumor-suppressor gene identified in transposon mutagenesis screens of the intestine, liver, and pancreas. Using a combination of cell-based assays, in vivo tumor xenograft assays, and Mrtfb knockout mice, we demonstrate here that MRTFB is a human and mouse colorectal cancer (CRC) tumor suppressor that functions in part by inhibiting cell invasion and migration. To identify possible MRTFB transcriptional targets, we performed whole transcriptome RNA sequencing in MRTFB siRNA knockdown primary human colon cells and identified 15 differentially expressed genes. Among the top candidate tumor-suppressor targets were melanoma cell adhesion molecule (MCAM), a known tumor suppressor, and spindle apparatus coiled-coil protein 1 (SPDL1), which has no confirmed role in cancer. To determine whether these genes play a role in CRC, we knocked down the expression of MCAM and SPDL1 in human CRC cells and showed significantly increased invasion and migration of tumor cells. We also showed that Spdl1 expression is significantly down-regulated in Mrtfb knockout mouse intestine, while lower SPDL1 expression levels are significantly associated with reduced survival in CRC patients. Finally, we show that depletion of MCAM and SPDL1 in human CRC cells significantly increases tumor development in xenograft assays, further confirming their tumor-suppressive roles in CRC. Collectively, our findings demonstrate the tumor-suppressive role of MRTFB in CRC and identify several genes, including 2 tumor suppressors, that act downstream of MRTFB to regulate tumor growth and survival in CRC patients.
Collapse
|
20
|
Newberg JY, Black MA, Jenkins NA, Copeland NG, Mann KM, Mann MB. SB Driver Analysis: a Sleeping Beauty cancer driver analysis framework for identifying and prioritizing experimentally actionable oncogenes and tumor suppressors. Nucleic Acids Res 2019; 46:e94. [PMID: 29846651 PMCID: PMC6144815 DOI: 10.1093/nar/gky450] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 05/10/2018] [Indexed: 12/17/2022] Open
Abstract
Cancer driver prioritization for functional analysis of potential actionable therapeutic targets is a significant challenge. Meta-analyses of mutated genes across different human cancer types for driver prioritization has reaffirmed the role of major players in cancer, including KRAS, TP53 and EGFR, but has had limited success in prioritizing genes with non-recurrent mutations in specific cancer types. Sleeping Beauty (SB) insertional mutagenesis is a powerful experimental gene discovery framework to define driver genes in mouse models of human cancers. Meta-analyses of SB datasets across multiple tumor types is a potentially informative approach to prioritize drivers, and complements efforts in human cancers. Here, we report the development of SB Driver Analysis, an in-silico method for defining cancer driver genes that positively contribute to tumor initiation and progression from population-level SB insertion data sets. We demonstrate that SB Driver Analysis computationally prioritizes drivers and defines distinct driver classes from end-stage tumors that predict their putative functions during tumorigenesis. SB Driver Analysis greatly enhances our ability to analyze, interpret and prioritize drivers from SB cancer datasets and will continue to substantially increase our understanding of the genetic basis of cancer.
Collapse
Affiliation(s)
- Justin Y Newberg
- Department of Molecular Oncology, Moffitt Cancer Center, Tampa, FL, USA
| | - Michael A Black
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Nancy A Jenkins
- Genetics Department, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Neal G Copeland
- Genetics Department, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Karen M Mann
- Department of Molecular Oncology, Moffitt Cancer Center, Tampa, FL, USA.,Departments of Gastrointestinal Oncology and Malignant Hematology, Moffitt Cancer Center, Tampa, FL, USA.,Department of Oncological Sciences, College of Medicine, University of South Florida, Tampa, FL, USA
| | - Michael B Mann
- Department of Molecular Oncology, Moffitt Cancer Center, Tampa, FL, USA.,Department of Oncological Sciences, College of Medicine, University of South Florida, Tampa, FL, USA.,Department of Cutaneous Oncology and Donald A. Adam Melanoma and Skin Cancer Research Center of Excellence, Moffitt Cancer Center, Tampa, FL, USA
| |
Collapse
|
21
|
Newberg JY, Mann KM, Mann MB, Jenkins NA, Copeland NG. SBCDDB: Sleeping Beauty Cancer Driver Database for gene discovery in mouse models of human cancers. Nucleic Acids Res 2019; 46:D1011-D1017. [PMID: 29059366 PMCID: PMC5753260 DOI: 10.1093/nar/gkx956] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 10/06/2017] [Indexed: 12/12/2022] Open
Abstract
Large-scale oncogenomic studies have identified few frequently mutated cancer drivers and hundreds of infrequently mutated drivers. Defining the biological context for rare driving events is fundamentally important to increasing our understanding of the druggable pathways in cancer. Sleeping Beauty (SB) insertional mutagenesis is a powerful gene discovery tool used to model human cancers in mice. Our lab and others have published a number of studies that identify cancer drivers from these models using various statistical and computational approaches. Here, we have integrated SB data from primary tumor models into an analysis and reporting framework, the Sleeping Beauty Cancer Driver DataBase (SBCDDB, http://sbcddb.moffitt.org), which identifies drivers in individual tumors or tumor populations. Unique to this effort, the SBCDDB utilizes a single, scalable, statistical analysis method that enables data to be grouped by different biological properties. This allows for SB drivers to be evaluated (and re-evaluated) under different contexts. The SBCDDB provides visual representations highlighting the spatial attributes of transposon mutagenesis and couples this functionality with analysis of gene sets, enabling users to interrogate relationships between drivers. The SBCDDB is a powerful resource for comparative oncogenomic analyses with human cancer genomics datasets for driver prioritization.
Collapse
Affiliation(s)
- Justin Y Newberg
- Cancer Research Program, Houston Methodist Research Institute, Houston, Texas, USA.,Department of Molecular Oncology, H. Lee Moffitt Cancer Center, Tampa, FL, USA
| | - Karen M Mann
- Cancer Research Program, Houston Methodist Research Institute, Houston, Texas, USA.,Department of Molecular Oncology, H. Lee Moffitt Cancer Center, Tampa, FL, USA
| | - Michael B Mann
- Cancer Research Program, Houston Methodist Research Institute, Houston, Texas, USA.,Department of Molecular Oncology, H. Lee Moffitt Cancer Center, Tampa, FL, USA
| | - Nancy A Jenkins
- Cancer Research Program, Houston Methodist Research Institute, Houston, Texas, USA.,Genetics Department, University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Neal G Copeland
- Cancer Research Program, Houston Methodist Research Institute, Houston, Texas, USA.,Genetics Department, University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
22
|
Grisard E, Coan M, Cesaratto L, Rigo I, Zandonà L, Paulitti A, Andreuzzi E, Rampioni Vinciguerra GL, Poletto E, Del Ben F, Brisotto G, Biscontin E, Turetta M, Dassi E, Mirnezami A, Canzonieri V, Vecchione A, Baldassarre G, Mongiat M, Spizzo R, Nicoloso MS. Sleeping beauty genetic screen identifies miR-23b::BTBD7 gene interaction as crucial for colorectal cancer metastasis. EBioMedicine 2019; 46:79-93. [PMID: 31303496 PMCID: PMC6710852 DOI: 10.1016/j.ebiom.2019.06.044] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 06/21/2019] [Accepted: 06/21/2019] [Indexed: 12/12/2022] Open
Abstract
Background Metastatic colorectal cancer (CRC) remains a deadly disease. Identifying locally advanced CRC patients with high risk of developing metastasis and improving outcome of metastatic CRC patients require discovering master regulators of metastasis. In this context, the non-coding part of the human genome is still largely unexplored. Methods To interrogate the non-coding part of the human genome and disclose regulators of CRC metastasis, we combined a transposon-based forward genetic screen with a novel in vitro assay, which forces cells to grow deprived of cell-substrate and cell-cell contacts (i.e. forced single cell suspension assay - fSCS). Findings We proved that fSCS selects CRC cells with mesenchymal and pro-metastatic traits. Moreover, we found that the transposon insertions conferred CRC cells resistance to fSCS and thus metastatic advantage. Among the retrieved transposon insertions, we demonstrated that the one located in the 3′UTR of BTBD7 disrupts miR-23b::BTBD7 interaction and contributes to pro-metastatic traits. In addition, miR-23b and BTBD7 correlate with CRC metastasis both in preclinical experiments and in clinical samples. Interpretation fSCS is a simple and scalable in vitro assay to investigate pro-metastatic traits and transposon-based genetic screens can interrogate the non-coding part of the human genome (e.g. miRNA::target interactions). Finally, both Btbd7 and miR-23b represent promising prognostic biomarkers and therapeutic targets in CRC. Fund This work was supported by Marie Curie Actions (CIG n. 303877) and Friuli Venezia Giulia region (Grant Agreement n°245574), Italian Association for Cancer Research (AIRC, MFAG n°13589), Italian Ministry of Health (GR-2010-2319387 and PE-2016-02361040) and 5x1000 to CRO Aviano.
Collapse
Affiliation(s)
- Eleonora Grisard
- Division of Molecular Oncology, Department of Translational Research, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Italy
| | - Michela Coan
- Division of Molecular Oncology, Department of Translational Research, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Italy; Department of Life and Reproduction Sciences, University of Verona, Verona, Italy
| | - Laura Cesaratto
- Division of Molecular Oncology, Department of Translational Research, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Italy
| | - Ilenia Rigo
- Division of Molecular Oncology, Department of Translational Research, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Italy
| | - Luigi Zandonà
- Division of Molecular Oncology, Department of Translational Research, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Italy
| | - Alice Paulitti
- Division of Molecular Oncology, Department of Translational Research, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Italy
| | - Eva Andreuzzi
- Division of Molecular Oncology, Department of Translational Research, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Italy
| | - Gian Luca Rampioni Vinciguerra
- Division of Molecular Oncology, Department of Translational Research, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Italy; Faculty of Medicine and Psychology, Department of Clinical and Molecular Medicine, University of Rome "Sapienza", Santo Andrea Hospital, 00189 Rome, Italy
| | - Evelina Poletto
- Division of Molecular Oncology, Department of Translational Research, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Italy
| | - Fabio Del Ben
- Immunopathology and Cancer Biomarkers, Department of Translational Research, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Italy
| | - Giulia Brisotto
- Immunopathology and Cancer Biomarkers, Department of Translational Research, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Italy; Veneto Institute of Oncology IOV-IRCCS, Comprehensive Cancer Centre, Department of Surgery, Oncology and Gastroenterology, University of Padova, Italy
| | - Eva Biscontin
- Immunopathology and Cancer Biomarkers, Department of Translational Research, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Italy
| | - Matteo Turetta
- Pathology Department, University Hospital of Udine, Italy
| | - Erik Dassi
- Laboratory of Translational Genomics, Centre for Integrative Biology, University of Trento, Italy
| | - Alex Mirnezami
- Cancer Sciences, University Surgical Unit, University of Southampton, UK
| | - Vincenzo Canzonieri
- Pathology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Italy; Department of Medical, Surgical and Health Sciences, University of Trieste Medical School, Trieste, Italy
| | - Andrea Vecchione
- Faculty of Medicine and Psychology, Department of Clinical and Molecular Medicine, University of Rome "Sapienza", Santo Andrea Hospital, 00189 Rome, Italy
| | - Gustavo Baldassarre
- Division of Molecular Oncology, Department of Translational Research, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Italy
| | - Maurizio Mongiat
- Division of Molecular Oncology, Department of Translational Research, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Italy
| | - Riccardo Spizzo
- Division of Molecular Oncology, Department of Translational Research, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Italy.
| | - Milena S Nicoloso
- Division of Molecular Oncology, Department of Translational Research, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Italy
| |
Collapse
|
23
|
Ziyad S, Riordan JD, Cavanaugh AM, Su T, Hernandez GE, Hilfenhaus G, Morselli M, Huynh K, Wang K, Chen JN, Dupuy AJ, Iruela-Arispe ML. A Forward Genetic Screen Targeting the Endothelium Reveals a Regulatory Role for the Lipid Kinase Pi4ka in Myelo- and Erythropoiesis. Cell Rep 2019; 22:1211-1224. [PMID: 29386109 PMCID: PMC5828030 DOI: 10.1016/j.celrep.2018.01.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 11/05/2017] [Accepted: 01/05/2018] [Indexed: 11/19/2022] Open
Abstract
Given its role as the source of definitive hematopoietic cells, we sought to determine whether mutations initiated in the hemogenic endothelium would yield hematopoietic abnormalities or malignancies. Here, we find that endothelium-specific transposon mutagenesis in mice promotes hematopoietic pathologies that are both myeloid and lymphoid in nature. Frequently mutated genes included previously recognized cancer drivers and additional candidates, such as Pi4ka, a lipid kinase whose mutation was found to promote myeloid and erythroid dysfunction. Subsequent validation experiments showed that targeted inactivation of the Pi4ka catalytic domain or reduction in mRNA expression inhibited myeloid and erythroid cell differentiation in vitro and promoted anemia in vivo through a mechanism involving deregulation of AKT, MAPK, SRC, and JAK-STAT signaling. Finally, we provide evidence linking PI4KAP2, previously considered a pseudogene, to human myeloid and erythroid leukemia.
Collapse
Affiliation(s)
- Safiyyah Ziyad
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Jesse D Riordan
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, IA 52242, USA
| | - Ann M Cavanaugh
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Trent Su
- Institute for Quantitative and Computational Biology and Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Gloria E Hernandez
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Georg Hilfenhaus
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Marco Morselli
- Institute for Quantitative and Computational Biology and Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA; Institute of Genomics and Proteomics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Kristine Huynh
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Kevin Wang
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Jau-Nian Chen
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Adam J Dupuy
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, IA 52242, USA
| | - M Luisa Iruela-Arispe
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA; Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
24
|
Prahallad A, Jensen MR, Chapeau EA. Deciphering mechanisms of response and resistance in large-scale mouse cancer screens. Curr Opin Genet Dev 2019; 54:48-54. [PMID: 30954760 DOI: 10.1016/j.gde.2019.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 02/08/2019] [Accepted: 02/16/2019] [Indexed: 11/27/2022]
Abstract
Acquired resistance is a major limitation for the successful treatment of cancer patients. Although numerous efficacious cancer therapeutics have been developed in the past decades, resistance arises due to a variety of reasons including tumoral genetic alterations, or modulation of factors in the tumor environment. Understanding the mechanistic reasons for tumor relapse supports the identification of novel combination therapies that could lead to more durable responses. Here, we will review large-scale in vivo screens in pre-clinical cancer models that employed genetic and pharmacological agents toward elucidating acquired drug resistance and informing on beneficial combinations to be tested in clinical trials.
Collapse
Affiliation(s)
- Anirudh Prahallad
- Oncology Disease Area, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | | | - Emilie Anne Chapeau
- Oncology Disease Area, Novartis Institutes for BioMedical Research, Basel, Switzerland.
| |
Collapse
|
25
|
Insertional mutagenesis using the Sleeping Beauty transposon system identifies drivers of erythroleukemia in mice. Sci Rep 2019; 9:5488. [PMID: 30940846 PMCID: PMC6445099 DOI: 10.1038/s41598-019-41805-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 03/19/2019] [Indexed: 12/26/2022] Open
Abstract
Insertional mutagenesis is a powerful means of identifying cancer drivers in animal models. We used the Sleeping Beauty (SB) transposon/transposase system to identify activated oncogenes in hematologic cancers in wild-type mice and mice that express a stabilized cyclin E protein (termed cyclin ET74AT393A). Cyclin E governs cell division and is misregulated in human cancers. Cyclin ET74AT393A mice develop ineffective erythropoiesis that resembles early-stage human myelodysplastic syndrome, and we sought to identify oncogenes that might cooperate with cyclin E hyperactivity in leukemogenesis. SB activation in hematopoietic precursors caused T-cell leukemia/lymphomas (T-ALL) and pure red blood cell erythroleukemias (EL). Analysis of >12,000 SB integration sites revealed markedly different oncogene activations in EL and T-ALL: Notch1 and Ikaros were most common in T-ALL, whereas ETS transcription factors (Erg and Ets1) were targeted in most ELs. Cyclin E status did not impact leukemogenesis or oncogene activations. Whereas most SB insertions were lost during culture of EL cell lines, Erg insertions were retained, indicating Erg's key role in these neoplasms. Surprisingly, cyclin ET74AT393A conferred growth factor independence and altered Erg-dependent differentiation in EL cell lines. These studies provide new molecular insights into erythroid leukemia and suggest potential therapeutic targets for human leukemia.
Collapse
|
26
|
Weber J, de la Rosa J, Grove CS, Schick M, Rad L, Baranov O, Strong A, Pfaus A, Friedrich MJ, Engleitner T, Lersch R, Öllinger R, Grau M, Menendez IG, Martella M, Kohlhofer U, Banerjee R, Turchaninova MA, Scherger A, Hoffman GJ, Hess J, Kuhn LB, Ammon T, Kim J, Schneider G, Unger K, Zimber-Strobl U, Heikenwälder M, Schmidt-Supprian M, Yang F, Saur D, Liu P, Steiger K, Chudakov DM, Lenz G, Quintanilla-Martinez L, Keller U, Vassiliou GS, Cadiñanos J, Bradley A, Rad R. PiggyBac transposon tools for recessive screening identify B-cell lymphoma drivers in mice. Nat Commun 2019; 10:1415. [PMID: 30926791 PMCID: PMC6440946 DOI: 10.1038/s41467-019-09180-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 02/18/2019] [Indexed: 01/03/2023] Open
Abstract
B-cell lymphoma (BCL) is the most common hematologic malignancy. While sequencing studies gave insights into BCL genetics, identification of non-mutated cancer genes remains challenging. Here, we describe PiggyBac transposon tools and mouse models for recessive screening and show their application to study clonal B-cell lymphomagenesis. In a genome-wide screen, we discover BCL genes related to diverse molecular processes, including signaling, transcriptional regulation, chromatin regulation, or RNA metabolism. Cross-species analyses show the efficiency of the screen to pinpoint human cancer drivers altered by non-genetic mechanisms, including clinically relevant genes dysregulated epigenetically, transcriptionally, or post-transcriptionally in human BCL. We also describe a CRISPR/Cas9-based in vivo platform for BCL functional genomics, and validate discovered genes, such as Rfx7, a transcription factor, and Phip, a chromatin regulator, which suppress lymphomagenesis in mice. Our study gives comprehensive insights into the molecular landscapes of BCL and underlines the power of genome-scale screening to inform biology.
Collapse
Affiliation(s)
- Julia Weber
- Institute of Molecular Oncology and Functional Genomics, TUM School of Medicine, Technische Universität München, Munich, 81675, Germany
- Center for Translational Cancer Research (TranslaTUM), TUM School of Medicine, Technische Universität München, Munich, 81675, Germany
| | - Jorge de la Rosa
- The Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Carolyn S Grove
- The Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
- School of Medicine, University of Western Australia, Crawley, 6009, Australia
- Department of Haematology, PathWest and Sir Charles Gairdner Hospital, Queen Elizabeth II Medical Centre, Nedlands, 6009, Australia
| | - Markus Schick
- Department of Medicine III, Klinikum rechts der Isar, Technische Universität München, Munich, 81675, Germany
| | - Lena Rad
- The Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Olga Baranov
- Institute of Molecular Oncology and Functional Genomics, TUM School of Medicine, Technische Universität München, Munich, 81675, Germany
- Center for Translational Cancer Research (TranslaTUM), TUM School of Medicine, Technische Universität München, Munich, 81675, Germany
| | - Alexander Strong
- The Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Anja Pfaus
- Institute of Molecular Oncology and Functional Genomics, TUM School of Medicine, Technische Universität München, Munich, 81675, Germany
- Center for Translational Cancer Research (TranslaTUM), TUM School of Medicine, Technische Universität München, Munich, 81675, Germany
| | - Mathias J Friedrich
- Institute of Molecular Oncology and Functional Genomics, TUM School of Medicine, Technische Universität München, Munich, 81675, Germany
- Center for Translational Cancer Research (TranslaTUM), TUM School of Medicine, Technische Universität München, Munich, 81675, Germany
- The Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
- Department of Medicine II, Klinikum rechts der Isar, Technische Universität München, Munich, 81675, Germany
| | - Thomas Engleitner
- Institute of Molecular Oncology and Functional Genomics, TUM School of Medicine, Technische Universität München, Munich, 81675, Germany
- Center for Translational Cancer Research (TranslaTUM), TUM School of Medicine, Technische Universität München, Munich, 81675, Germany
| | - Robert Lersch
- Institute of Molecular Oncology and Functional Genomics, TUM School of Medicine, Technische Universität München, Munich, 81675, Germany
- Center for Translational Cancer Research (TranslaTUM), TUM School of Medicine, Technische Universität München, Munich, 81675, Germany
| | - Rupert Öllinger
- Institute of Molecular Oncology and Functional Genomics, TUM School of Medicine, Technische Universität München, Munich, 81675, Germany
- Center for Translational Cancer Research (TranslaTUM), TUM School of Medicine, Technische Universität München, Munich, 81675, Germany
| | - Michael Grau
- Department of Medicine A, University Hospital Münster, Münster, 48149, Germany
- Cluster of Excellence EXC 1003, Cells in Motion, Münster, 48149, Germany
| | - Irene Gonzalez Menendez
- Institute of Pathology and Comprehensive Cancer Center, Eberhard Karls Universität Tübingen, Tübingen, 72076, Germany
| | - Manuela Martella
- Institute of Pathology and Comprehensive Cancer Center, Eberhard Karls Universität Tübingen, Tübingen, 72076, Germany
| | - Ursula Kohlhofer
- Institute of Pathology and Comprehensive Cancer Center, Eberhard Karls Universität Tübingen, Tübingen, 72076, Germany
| | - Ruby Banerjee
- The Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Maria A Turchaninova
- Laboratory of Genomics of Antitumor Adaptive Immunity, Privolzhsky Research Medical University, Nizhny Novgorod, 603005, Russia
- Genomics of Adaptive Immunity Department, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Science, Moscow, 117997, Russia
- Pirogov Russian National Research Medical University, Moscow, 117997, Russia
| | - Anna Scherger
- Department of Medicine III, Klinikum rechts der Isar, Technische Universität München, Munich, 81675, Germany
| | - Gary J Hoffman
- The Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
- School of Medicine, University of Western Australia, Crawley, 6009, Australia
| | - Julia Hess
- Helmholtz Zentrum München, Research Unit Radiation Cytogenetics, Neuherberg, 85764, Germany
| | - Laura B Kuhn
- Helmholtz Zentrum München, Research Unit Gene Vectors, Munich, 81377, Germany
| | - Tim Ammon
- Center for Translational Cancer Research (TranslaTUM), TUM School of Medicine, Technische Universität München, Munich, 81675, Germany
- Department of Medicine III, Klinikum rechts der Isar, Technische Universität München, Munich, 81675, Germany
| | - Johnny Kim
- Department of Cardiac Development and Remodeling, Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, 61231, Germany
- German Center for Cardiovascular Research (DZHK), Rhine Main, Germany
| | - Günter Schneider
- Department of Medicine II, Klinikum rechts der Isar, Technische Universität München, Munich, 81675, Germany
| | - Kristian Unger
- Helmholtz Zentrum München, Research Unit Radiation Cytogenetics, Neuherberg, 85764, Germany
| | | | - Mathias Heikenwälder
- Divison of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), Heidelberg, 69120, Germany
| | - Marc Schmidt-Supprian
- Center for Translational Cancer Research (TranslaTUM), TUM School of Medicine, Technische Universität München, Munich, 81675, Germany
- Department of Medicine III, Klinikum rechts der Isar, Technische Universität München, Munich, 81675, Germany
| | - Fengtang Yang
- The Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Dieter Saur
- Center for Translational Cancer Research (TranslaTUM), TUM School of Medicine, Technische Universität München, Munich, 81675, Germany
- Department of Medicine II, Klinikum rechts der Isar, Technische Universität München, Munich, 81675, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, 69120, Germany
| | - Pentao Liu
- The Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
- Li Ka Shing Faculty of Medicine, Stem Cell and Regenerative Medicine Consortium, School of Biomedical Sciences, University of Hong Kong, Hong Kong, China
| | - Katja Steiger
- Comparative Experimental Pathology, Technische Universität München, Munich, 81675, Germany
| | - Dmitriy M Chudakov
- Laboratory of Genomics of Antitumor Adaptive Immunity, Privolzhsky Research Medical University, Nizhny Novgorod, 603005, Russia
- Genomics of Adaptive Immunity Department, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Science, Moscow, 117997, Russia
- Pirogov Russian National Research Medical University, Moscow, 117997, Russia
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, 121205, Russia
- Center of Molecular Medicine, CEITEC, Masaryk University, Brno, 601 77, Czech Republic
| | - Georg Lenz
- Department of Medicine A, University Hospital Münster, Münster, 48149, Germany
- Cluster of Excellence EXC 1003, Cells in Motion, Münster, 48149, Germany
| | - Leticia Quintanilla-Martinez
- Institute of Pathology and Comprehensive Cancer Center, Eberhard Karls Universität Tübingen, Tübingen, 72076, Germany
| | - Ulrich Keller
- Department of Medicine III, Klinikum rechts der Isar, Technische Universität München, Munich, 81675, Germany
- Hematology and Oncology-Campus Benjamin Franklin (CBF), Charité-Universitätsmedizin Berlin, Berlin, 12203, Germany
| | - George S Vassiliou
- The Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
- Wellcome Trust-MRC Stem Cell Institute, Cambridge Biomedical Campus, University of Cambridge, CB2 0XY, Cambridge, UK
- Department of Haematology, Cambridge University Hospitals NHS Trust, Cambridge, CB2 0PT, UK
| | - Juan Cadiñanos
- Instituto de Medicina Oncológica y Molecular de Asturias (IMOMA), Oviedo, 33193, Spain
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Instituto Universitario de Oncología (IUOPA), Universidad de Oviedo, Oviedo, 33006, Spain
| | - Allan Bradley
- The Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Roland Rad
- Institute of Molecular Oncology and Functional Genomics, TUM School of Medicine, Technische Universität München, Munich, 81675, Germany.
- Center for Translational Cancer Research (TranslaTUM), TUM School of Medicine, Technische Universität München, Munich, 81675, Germany.
- Department of Medicine II, Klinikum rechts der Isar, Technische Universität München, Munich, 81675, Germany.
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, 69120, Germany.
| |
Collapse
|
27
|
Weissbein U, Peretz M, Plotnik O, Yanuka O, Sagi I, Golan-Lev T, Benvenisty N. Genome-wide Screen for Culture Adaptation and Tumorigenicity-Related Genes in Human Pluripotent Stem Cells. iScience 2019; 11:398-408. [PMID: 30660107 PMCID: PMC6348297 DOI: 10.1016/j.isci.2018.12.031] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 11/19/2018] [Accepted: 12/27/2018] [Indexed: 01/08/2023] Open
Abstract
Human pluripotent stem cells (hPSCs) acquire genetic changes during their propagation in culture that can affect their use in research and future therapies. To identify the key genes involved in selective advantage during culture adaptation and tumorigenicity of hPSCs, we generated a genome-wide screening system for genes and pathways that provide a growth advantage either in vitro or in vivo. We found that hyperactivation of the RAS pathway confers resistance to selection with the hPSC-specific drug PluriSIn-1. We also identified that inactivation of the RHO-ROCK pathway gives growth advantage during culture adaptation. Last, we demonstrated the importance of the PI3K-AKT and HIPPO pathways for the teratoma formation process. Our screen revealed key genes and pathways relevant to the tumorigenicity and survival of hPSCs and should thus assist in understanding and confronting their tumorigenic potential. Large-scale analysis of genes and pathways involved in growth and survival of hPSCs Activation of the RAS pathways confers enhanced resistance to PluriSIn-1 treatment Inactivation of the RHO-ROCK pathway gives selective growth advantage to hPSCs The PI3K-AKT and HIPPO pathways are involved in the process of teratoma formation
Collapse
Affiliation(s)
- Uri Weissbein
- The Azrieli Center for Stem Cells and Genetic Research, Department of Genetics, Silberman Institute of Life Sciences, The Hebrew University, Jerusalem, Israel
| | - Mordecai Peretz
- The Azrieli Center for Stem Cells and Genetic Research, Department of Genetics, Silberman Institute of Life Sciences, The Hebrew University, Jerusalem, Israel
| | - Omer Plotnik
- The Azrieli Center for Stem Cells and Genetic Research, Department of Genetics, Silberman Institute of Life Sciences, The Hebrew University, Jerusalem, Israel
| | - Ofra Yanuka
- The Azrieli Center for Stem Cells and Genetic Research, Department of Genetics, Silberman Institute of Life Sciences, The Hebrew University, Jerusalem, Israel
| | - Ido Sagi
- The Azrieli Center for Stem Cells and Genetic Research, Department of Genetics, Silberman Institute of Life Sciences, The Hebrew University, Jerusalem, Israel
| | - Tamar Golan-Lev
- The Azrieli Center for Stem Cells and Genetic Research, Department of Genetics, Silberman Institute of Life Sciences, The Hebrew University, Jerusalem, Israel
| | - Nissim Benvenisty
- The Azrieli Center for Stem Cells and Genetic Research, Department of Genetics, Silberman Institute of Life Sciences, The Hebrew University, Jerusalem, Israel.
| |
Collapse
|
28
|
Jacobsen SEW, Nerlov C. Haematopoiesis in the era of advanced single-cell technologies. Nat Cell Biol 2019; 21:2-8. [PMID: 30602765 DOI: 10.1038/s41556-018-0227-8] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 10/02/2018] [Indexed: 12/19/2022]
Abstract
The molecular and functional characterization of single cells at scale has emerged as a key driver to unravel tissue biology. Thus, it is important to understand the strengths and limitations of transcriptomic approaches, molecular barcoding and functional assays used to study cellular properties at the single-cell level. Here, we review recent relevant work from the haematopoietic system and discuss how to interpret and integrate data obtained with different technologies.
Collapse
Affiliation(s)
- Sten Eirik W Jacobsen
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK.
- Haematopoietic Stem Cell Laboratory, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK.
- Department of Cell and Molecular Biology, Wallenberg Institute for Regenerative Medicine, Karolinska Institutet, Stockholm, Sweden.
- Department of Medicine Huddinge, Center for Hematology and Regenerative Medicine, Karolinska Institutet, Stockholm, Sweden.
- Karolinska University Hospital, Stockholm, Sweden.
| | - Claus Nerlov
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK.
| |
Collapse
|
29
|
Guimaraes-Young A, Feddersen CR, Dupuy AJ. Sleeping Beauty Mouse Models of Cancer: Microenvironmental Influences on Cancer Genetics. Front Oncol 2019; 9:611. [PMID: 31338332 PMCID: PMC6629774 DOI: 10.3389/fonc.2019.00611] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 06/21/2019] [Indexed: 12/13/2022] Open
Abstract
The Sleeping Beauty (SB) transposon insertional mutagenesis system offers a streamlined approach to identify genetic drivers of cancer. With a relatively random insertion profile, SB is uniquely positioned for conducting unbiased forward genetic screens. Indeed, SB mouse models of cancer have revealed insights into the genetics of tumorigenesis. In this review, we highlight experiments that have exploited the SB system to interrogate the genetics of cancer in distinct biological contexts. We also propose experimental designs that could further our understanding of the relationship between tumor microenvironment and tumor progression.
Collapse
Affiliation(s)
- Amy Guimaraes-Young
- Department of Anatomy and Cell Biology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Charlotte R Feddersen
- Department of Anatomy and Cell Biology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Adam J Dupuy
- Department of Anatomy and Cell Biology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| |
Collapse
|
30
|
Peng C, Niu L, Deng J, Yu J, Zhang X, Zhou C, Xing J, Li J. Can-SINE dynamics in the giant panda and three other Caniformia genomes. Mob DNA 2018; 9:32. [PMID: 30455747 PMCID: PMC6230240 DOI: 10.1186/s13100-018-0137-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 11/01/2018] [Indexed: 11/10/2022] Open
Abstract
Background Although repeat sequences constitute about 37% of carnivore genomes, the characteristics and distribution of repeat sequences among carnivore genomes have not been fully investigated. Based on the updated Repbase library, we re-annotated transposable elements (TEs) in four Caniformia genomes (giant panda, polar bear, domestic dog, and domestic ferret) and performed a systematic, genome-wide comparison focusing on the Carnivora-specific SINE family, Can-SINEs. Results We found the majority of young recently integrated transposable elements are LINEs and SINEs in carnivore genomes. In particular, SINEC1_AMe, SINEC1B_AMe and SINEC_C1 are the top three most abundant Can-SINE subfamilies in the panda and polar bear genomes. Transposition in transposition analysis indicates that SINEC1_AMe and SINEC1B_AMe are the most active subfamilies in the panda and the polar bear genomes. SINEC2A1_CF and SINEC1A_CF subfamilies show a higher retrotransposition activity in the dog genome, and MVB2 subfamily is the most active Can-SINE in the ferret genome. As the giant panda is an endangered icon species, we then focused on the identification of panda specific Can-SINEs. With the panda-associated two-way genome alignments, we identified 250 putative panda-specific (PPS) elements (139 SINEC1_AMes and 111 SINEC1B_AMes) that inserted in the panda genome but were absent at the orthologous regions of the other three genomes. Further investigation of these PPS elements allowed us to identify a new Can-SINE subfamily, the SINEC1_AMe2, which was distinguishable from the current SINEC1_AMe consensus by four non-CpG sites. SINEC1_AMe2 has a high copy number (> 100,000) in the panda and polar bear genomes and the vast majority (> 96%) of the SINEC1_AMe2 elements have divergence rates less than 10% in both genomes. Conclusions Our results suggest that Can-SINEs show lineage-specific retransposition activity in the four genomes and have an important impact on the genomic landscape of different Caniformia lineages. Combining these observations with results from the COSEG, Network, and target site duplication analysis, we suggest that SINEC1_AMe2 is a young mobile element subfamily and currently active in both the panda and polar bear genomes.
Collapse
Affiliation(s)
- Changjun Peng
- 1Key Laboratory of Bio-resources and Eco-environment, Ministry of Education, College of Life and Sciences, University of Sichuan, Chengdu, China
| | - Lili Niu
- Sichuan Wild Animal Research Institute, Chengdu Zoo, Chengdu, China
| | - Jiabo Deng
- Sichuan Wild Animal Research Institute, Chengdu Zoo, Chengdu, China
| | - Jianqiu Yu
- Sichuan Wild Animal Research Institute, Chengdu Zoo, Chengdu, China
| | - Xueyan Zhang
- 1Key Laboratory of Bio-resources and Eco-environment, Ministry of Education, College of Life and Sciences, University of Sichuan, Chengdu, China
| | - Chuang Zhou
- 3Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, College of Life Sciences, Sichuan University, Chengdu, 610065 Sichuan China
| | - Jinchuan Xing
- 4Department of Genetics, Human Genetic Institute of New Jersey, Rutgers, The State University of New Jersey, Piscataway, NJ USA
| | - Jing Li
- 1Key Laboratory of Bio-resources and Eco-environment, Ministry of Education, College of Life and Sciences, University of Sichuan, Chengdu, China
| |
Collapse
|
31
|
Transposon mutagenesis screen in mice identifies TM9SF2 as a novel colorectal cancer oncogene. Sci Rep 2018; 8:15327. [PMID: 30333512 PMCID: PMC6193042 DOI: 10.1038/s41598-018-33527-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 10/01/2018] [Indexed: 01/04/2023] Open
Abstract
New therapeutic targets for advanced colorectal cancer (CRC) are critically needed. Our laboratory recently performed an insertional mutagenesis screen in mice to identify novel CRC driver genes and, thus, potential drug targets. Here, we define Transmembrane 9 Superfamily 2 (TM9SF2) as a novel CRC oncogene. TM9SF2 is an understudied protein, belonging to a well conserved protein family characterized by their nine putative transmembrane domains. Based on our transposon screen we found that TM9SF2 is a candidate progression driver in digestive tract tumors. Analysis of The Cancer Genome Atlas (TCGA) data revealed that approximately 35% of CRC patients have elevated levels of TM9SF2 mRNA, data we validated using an independent set of CRC samples. RNAi silencing of TM9SF2 reduced CRC cell growth in an anchorage-independent manner, a hallmark of cancer. Furthermore, CRISPR/Cas9 knockout of TM9SF2 substantially diminished CRC tumor fitness in vitro and in vivo. Transcriptome analysis of TM9SF2 knockout cells revealed a potential role for TM9SF2 in cell cycle progression, oxidative phosphorylation, and ceramide signaling. Lastly, we report that increased TM9SF2 expression correlates with disease stage and low TM9SF2 expression correlate with a more favorable relapse-free survival. Taken together, this study provides evidence that TM9SF2 is a novel CRC oncogene.
Collapse
|
32
|
Eichenlaub T, Villadsen R, Freitas FCP, Andrejeva D, Aldana BI, Nguyen HT, Petersen OW, Gorodkin J, Herranz H, Cohen SM. Warburg Effect Metabolism Drives Neoplasia in a Drosophila Genetic Model of Epithelial Cancer. Curr Biol 2018; 28:3220-3228.e6. [PMID: 30293715 DOI: 10.1016/j.cub.2018.08.035] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 05/21/2018] [Accepted: 08/15/2018] [Indexed: 01/08/2023]
Abstract
Cancers develop in a complex mutational landscape. Genetic models of tumor formation have been used to explore how combinations of mutations cooperate to promote tumor formation in vivo. Here, we identify lactate dehydrogenase (LDH), a key enzyme in Warburg effect metabolism, as a cooperating factor that is both necessary and sufficient for epidermal growth factor receptor (EGFR)-driven epithelial neoplasia and metastasis in a Drosophila model. LDH is upregulated during the transition from hyperplasia to neoplasia, and neoplasia is prevented by LDH depletion. Elevated LDH is sufficient to drive this transition. Notably, genetic alterations that increase glucose flux, or a high-sugar diet, are also sufficient to promote EGFR-driven neoplasia, and this depends on LDH activity. We provide evidence that increased LDHA expression promotes a transformed phenotype in a human primary breast cell culture model. Furthermore, analysis of publically available cancer data showed evidence of synergy between elevated EGFR and LDHA activity linked to poor clinical outcome in a number of human cancers. Altered metabolism has generally been assumed to be an enabling feature that accelerates cancer cell proliferation. Our findings provide evidence that sugar metabolism may have a more profound role in driving neoplasia than previously appreciated.
Collapse
Affiliation(s)
- Teresa Eichenlaub
- Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3, Copenhagen 2200 N, Denmark
| | - René Villadsen
- Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3, Copenhagen 2200 N, Denmark
| | - Flávia C P Freitas
- Center for Non-coding RNA in Technology and Health, Department of Veterinary and Animal Sciences, University of Copenhagen, Grønnegårdsvej 61, 1870 Frederiksberg C, Denmark
| | - Diana Andrejeva
- Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3, Copenhagen 2200 N, Denmark
| | - Blanca I Aldana
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Hung Than Nguyen
- Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3, Copenhagen 2200 N, Denmark
| | - Ole William Petersen
- Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3, Copenhagen 2200 N, Denmark
| | - Jan Gorodkin
- Center for Non-coding RNA in Technology and Health, Department of Veterinary and Animal Sciences, University of Copenhagen, Grønnegårdsvej 61, 1870 Frederiksberg C, Denmark
| | - Héctor Herranz
- Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3, Copenhagen 2200 N, Denmark.
| | - Stephen M Cohen
- Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3, Copenhagen 2200 N, Denmark.
| |
Collapse
|
33
|
de Ruiter JR, Wessels LFA, Jonkers J. Mouse models in the era of large human tumour sequencing studies. Open Biol 2018; 8:180080. [PMID: 30111589 PMCID: PMC6119864 DOI: 10.1098/rsob.180080] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 07/13/2018] [Indexed: 12/16/2022] Open
Abstract
Cancer is a complex disease in which cells progressively accumulate mutations disrupting their cellular processes. A fraction of these mutations drive tumourigenesis by affecting oncogenes or tumour suppressor genes, but many mutations are passengers with no clear contribution to tumour development. The advancement of DNA and RNA sequencing technologies has enabled in-depth analysis of thousands of human tumours from various tissues to perform systematic characterization of their (epi)genomes and transcriptomes in order to identify (epi)genetic changes associated with cancer. Combined with considerable progress in algorithmic development, this expansion in scale has resulted in the identification of many cancer-associated mutations, genes and pathways that are considered to be potential drivers of tumour development. However, it remains challenging to systematically identify drivers affected by complex genomic rearrangements and drivers residing in non-coding regions of the genome or in complex amplicons or deletions of copy-number driven tumours. Furthermore, functional characterization is challenging in the human context due to the lack of genetically tractable experimental model systems in which the effects of mutations can be studied in the context of their tumour microenvironment. In this respect, mouse models of human cancer provide unique opportunities for pinpointing novel driver genes and their detailed characterization. In this review, we provide an overview of approaches for complementing human studies with data from mouse models. We also discuss state-of-the-art technological developments for cancer gene discovery and validation in mice.
Collapse
Affiliation(s)
- J R de Ruiter
- Division of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
- Division of Molecular Carcinogenesis, The Netherlands Cancer Institute, Amsterdam, The Netherlands
- Oncode Institute, Amsterdam, The Netherlands
| | - L F A Wessels
- Division of Molecular Carcinogenesis, The Netherlands Cancer Institute, Amsterdam, The Netherlands
- Department of EEMCS, Delft University of Technology, Delft, The Netherlands
- Oncode Institute, Amsterdam, The Netherlands
| | - J Jonkers
- Division of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
- Oncode Institute, Amsterdam, The Netherlands
| |
Collapse
|
34
|
Mansour MR, He S, Li Z, Lobbardi R, Abraham BJ, Hug C, Rahman S, Leon TE, Kuang YY, Zimmerman MW, Blonquist T, Gjini E, Gutierrez A, Tang Q, Garcia-Perez L, Pike-Overzet K, Anders L, Berezovskaya A, Zhou Y, Zon LI, Neuberg D, Fielding AK, Staal FJT, Langenau DM, Sanda T, Young RA, Look AT. JDP2: An oncogenic bZIP transcription factor in T cell acute lymphoblastic leukemia. J Exp Med 2018; 215:1929-1945. [PMID: 29941549 PMCID: PMC6028512 DOI: 10.1084/jem.20170484] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 03/14/2018] [Accepted: 05/30/2018] [Indexed: 01/14/2023] Open
Abstract
A substantial subset of patients with T cell acute lymphoblastic leukemia (T-ALL) develops resistance to steroids and succumbs to their disease. JDP2 encodes a bZIP protein that has been implicated as a T-ALL oncogene from insertional mutagenesis studies in mice, but its role in human T-ALL pathogenesis has remained obscure. Here we show that JDP2 is aberrantly expressed in a subset of T-ALL patients and is associated with poor survival. JDP2 is required for T-ALL cell survival, as its depletion by short hairpin RNA knockdown leads to apoptosis. Mechanistically, JDP2 regulates prosurvival signaling through direct transcriptional regulation of MCL1. Furthermore, JDP2 is one of few oncogenes capable of initiating T-ALL in transgenic zebrafish. Notably, thymocytes from rag2:jdp2 transgenic zebrafish express high levels of mcl1 and demonstrate resistance to steroids in vivo. These studies establish JDP2 as a novel oncogene in high-risk T-ALL and implicate overexpression of MCL1 as a mechanism of steroid resistance in JDP2-overexpressing cells.
Collapse
Affiliation(s)
- Marc R Mansour
- Department of Haematology, University College London Cancer Institute, London, England, UK
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Shuning He
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Zhaodong Li
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Riadh Lobbardi
- Molecular Pathology and Cancer Center, Massachusetts General Hospital, Boston, MA
- Harvard Stem Cell Institute, Stem Cell and Regenerative Biology Department, Harvard University, Cambridge, MA
| | | | - Clemens Hug
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Sunniyat Rahman
- Department of Haematology, University College London Cancer Institute, London, England, UK
| | - Theresa E Leon
- Department of Haematology, University College London Cancer Institute, London, England, UK
| | - You-Yi Kuang
- Heilongjiang River Fisheries Research Institute of Chinese Academy of Fishery Sciences, Harbin, China
| | - Mark W Zimmerman
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Traci Blonquist
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, MA
| | - Evisa Gjini
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Alejandro Gutierrez
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA
| | - Qin Tang
- Molecular Pathology and Cancer Center, Massachusetts General Hospital, Boston, MA
- Harvard Stem Cell Institute, Stem Cell and Regenerative Biology Department, Harvard University, Cambridge, MA
| | - Laura Garcia-Perez
- Department of Immunohematology, Leiden University Medical Center, Leiden, Netherlands
| | - Karin Pike-Overzet
- Department of Immunohematology, Leiden University Medical Center, Leiden, Netherlands
| | - Lars Anders
- Whitehead Institute for Biomedical Research, Cambridge, MA
| | - Alla Berezovskaya
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Yi Zhou
- Harvard Stem Cell Institute, Stem Cell and Regenerative Biology Department, Harvard University, Cambridge, MA
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA
| | - Leonard I Zon
- Harvard Stem Cell Institute, Stem Cell and Regenerative Biology Department, Harvard University, Cambridge, MA
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA
| | - Donna Neuberg
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, MA
| | - Adele K Fielding
- Department of Haematology, University College London Cancer Institute, London, England, UK
| | - Frank J T Staal
- Department of Immunohematology, Leiden University Medical Center, Leiden, Netherlands
| | - David M Langenau
- Molecular Pathology and Cancer Center, Massachusetts General Hospital, Boston, MA
- Harvard Stem Cell Institute, Stem Cell and Regenerative Biology Department, Harvard University, Cambridge, MA
| | - Takaomi Sanda
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, Singapore
| | - Richard A Young
- Whitehead Institute for Biomedical Research, Cambridge, MA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA
| | - A Thomas Look
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| |
Collapse
|
35
|
Choi HJ, Lee HB, Jung S, Park HK, Jo W, Cho SM, Kim WJ, Son WC. Development of a Mouse Model of Prostate Cancer Using the Sleeping Beauty Transposon and Electroporation. Molecules 2018; 23:molecules23061360. [PMID: 29874846 PMCID: PMC6100630 DOI: 10.3390/molecules23061360] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 05/20/2018] [Accepted: 06/01/2018] [Indexed: 01/12/2023] Open
Abstract
The Sleeping Beauty (SB) transposon system is non-viral and uses insertional mutagenesis, resulting in the permanent expression of transferred genes. Although the SB transposon is a useful method for establishing a mouse tumor model, there has been difficulty in using this method to generate tumors in the prostate. In the present study, electroporation was used to enhance the transfection efficiency of the SB transposon. To generate tumors, three constructs (a c-Myc expression cassette, a HRAS (HRas proto-oncogene, GTPase) expression cassette and a shRNA against p53) contained within the SB transposon plasmids were directly injected into the prostate. Electroporation was conducted on the injection site after the injection of the DNA plasmid. Following the tumorigenesis, the tumors were monitored by animal PET imaging and identified by gross observation. After this, the tumors were characterized by using histological and immunohistochemical techniques. The expression of the targeted genes was analyzed by Real-Time qRT-PCR. All mice subjected to the injection were found to have prostate tumors, which was supported by PSA immunohistochemistry. To our knowledge, this is the first demonstration of tumor induction in the mouse prostate using the electroporation-enhanced SB transposon system in combination with c-Myc, HRAS and p53. This model serves as a valuable resource for the future development of SB-induced mouse models of cancer.
Collapse
Affiliation(s)
- Hyun-Ji Choi
- Asan Institute for Life Sciences, Asan Medical Center, Songpa-gu, 05505 Seoul, Korea.
- Department of Pathology, University of Ulsan College of Medicine, Songpa-gu, 05505 Seoul, Korea.
| | - Han-Byul Lee
- Asan Institute for Life Sciences, Asan Medical Center, Songpa-gu, 05505 Seoul, Korea.
- Department of Pathology, University of Ulsan College of Medicine, Songpa-gu, 05505 Seoul, Korea.
| | - Sunyoung Jung
- Asan Institute for Life Sciences, Asan Medical Center, Songpa-gu, 05505 Seoul, Korea.
- Department of Pathology, University of Ulsan College of Medicine, Songpa-gu, 05505 Seoul, Korea.
| | - Hyun-Kyu Park
- Asan Institute for Life Sciences, Asan Medical Center, Songpa-gu, 05505 Seoul, Korea.
- Department of Pathology, University of Ulsan College of Medicine, Songpa-gu, 05505 Seoul, Korea.
| | - Woori Jo
- Asan Institute for Life Sciences, Asan Medical Center, Songpa-gu, 05505 Seoul, Korea.
- Department of Pathology, University of Ulsan College of Medicine, Songpa-gu, 05505 Seoul, Korea.
| | - Sung-Min Cho
- Asan Institute for Life Sciences, Asan Medical Center, Songpa-gu, 05505 Seoul, Korea.
- Department of Pathology, University of Ulsan College of Medicine, Songpa-gu, 05505 Seoul, Korea.
| | - Woo-Jin Kim
- Department of Pathology, University of Ulsan College of Medicine, Songpa-gu, 05505 Seoul, Korea.
| | - Woo-Chan Son
- Asan Institute for Life Sciences, Asan Medical Center, Songpa-gu, 05505 Seoul, Korea.
- Department of Pathology, University of Ulsan College of Medicine, Songpa-gu, 05505 Seoul, Korea.
| |
Collapse
|
36
|
Mushtaq M, Bhat JA, Mir ZA, Sakina A, Ali S, Singh AK, Tyagi A, Salgotra RK, Dar AA, Bhat R. CRISPR/Cas approach: A new way of looking at plant-abiotic interactions. JOURNAL OF PLANT PHYSIOLOGY 2018; 224-225:156-162. [PMID: 29655033 DOI: 10.1016/j.jplph.2018.04.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 03/26/2018] [Accepted: 04/02/2018] [Indexed: 05/20/2023]
Abstract
It is not the most grounded of the species that survive, nor the most shrewd, however one most receptive to change. Crop plants being sessile are subjected to various abiotic stresses resulting significant yield losses about an average of more than 50 percent, thus greatly threatening the global crop production. In this regard, plant breeding innovations and genetic engineering approaches have been used in the past for generating stress tolerant crop genotypes, but due to complex inheritance of abiotic stress tolerance these approaches are not enough to bring significant trait improvement and to guarantee world's future sustenance security. Although, RNA interference (RNAi) technology has been utilized amid the most recent decades to produce plants tolerant to environmental stress. But this technique ordinarily prompts to down-regulate as opposed to complete inhibition of target genes. Therefore, scientist/researchers were looking for techniques that should be efficient, precise and reliable as well as have potential to solve the issues experienced by previous approaches, and hence the CRISPR/Cas system came into spotlight. Although, only few studies using CRISPR/Cas approach for targeting abiotic stress tolerance related genes have been reported, but suggested its effective role for future applications in molecular breeding to improve abiotic stress tolerance. Hence, genome engineering via CRISPR-Cas system for targeted mutagenesis promise its immense potential in generating elite cultivars of crop plants with enhanced and durable climate resilience. Lastly, CRISPR-Cas will be future of crop breeding as well as to target minor gene variation of complex quantitative traits, and thus will be the key approach to release global hunger and maintain food security.
Collapse
Affiliation(s)
- Muntazir Mushtaq
- School of Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, Chatha, India.
| | - Javaid Akhter Bhat
- School of Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, Chatha, India
| | - Zahoor A Mir
- National Research Centre for Plant Biotechnology, New Delhi, India
| | - Afreen Sakina
- Division of Plant Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, India
| | - Sajad Ali
- Centre of Research for Develoment, University of Kashmir, Srinagar, India
| | - Anil Kumar Singh
- School of Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, Chatha, India
| | - Anshika Tyagi
- National Research Centre for Plant Biotechnology, New Delhi, India
| | - Romesh Kumar Salgotra
- School of Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, Chatha, India
| | - Ajaz Ahmad Dar
- Division of Mirobiology, Faculty of Basic Sciences, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, Chatha, India
| | - Rohini Bhat
- School of Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, Chatha, India
| |
Collapse
|
37
|
O'Donnell KA. Advances in functional genetic screening with transposons and CRISPR/Cas9 to illuminate cancer biology. Curr Opin Genet Dev 2018; 49:85-94. [PMID: 29587177 PMCID: PMC6312197 DOI: 10.1016/j.gde.2018.03.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 02/27/2018] [Accepted: 03/08/2018] [Indexed: 12/18/2022]
Abstract
Large-scale genome sequencing studies have identified a wealth of mutations in human tumors and have dramatically advanced the field of cancer genetics. However, the functional consequences of an altered gene in tumor progression cannot always be inferred from mutation status alone. This underscores the critical need for complementary methods to assign functional significance to mutated genes in cancer. Transposons are mobile genetic elements that serve as powerful tools for insertional mutagenesis. Over the last decade, investigators have employed mouse models with ondemand transposon-mediated mutagenesis to perform unbiased genetic screens to identify clinically relevant genes that participate in the pathogenesis of human cancer. Two distinct DNA transposon mutagenesis systems, Sleeping Beauty (SB) and PiggyBac (PB), have been applied extensively in vivo and more recently, in ex vivo settings. These studies have informed our understanding of the genes and pathways that drive cancer initiation, progression, and metastasis. This review highlights the latest progress on cancer gene identification for specific cancer subtypes, as well as new technological advances and incorporation of the CRISPR/Cas9 toolbox into transposon-mediated functional genetic studies.
Collapse
Affiliation(s)
- Kathryn A O'Donnell
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX 75390-9148, United States; Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX 75390-9148, United States; Hamon Center for Regenerative Science and Medicine, UT Southwestern Medical Center, Dallas, TX 75390-9148, United States.
| |
Collapse
|
38
|
Holstein M, Mesa-Nuñez C, Miskey C, Almarza E, Poletti V, Schmeer M, Grueso E, Ordóñez Flores JC, Kobelt D, Walther W, Aneja MK, Geiger J, Bonig HB, Izsvák Z, Schleef M, Rudolph C, Mavilio F, Bueren JA, Guenechea G, Ivics Z. Efficient Non-viral Gene Delivery into Human Hematopoietic Stem Cells by Minicircle Sleeping Beauty Transposon Vectors. Mol Ther 2018; 26:1137-1153. [PMID: 29503198 PMCID: PMC6079369 DOI: 10.1016/j.ymthe.2018.01.012] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 01/08/2018] [Accepted: 01/12/2018] [Indexed: 12/26/2022] Open
Abstract
The Sleeping Beauty (SB) transposon system is a non-viral gene delivery platform that combines simplicity, inexpensive manufacture, and favorable safety features in the context of human applications. However, efficient correction of hematopoietic stem and progenitor cells (HSPCs) with non-viral vector systems, including SB, demands further refinement of gene delivery techniques. We set out to improve SB gene transfer into hard-to-transfect human CD34+ cells by vectorizing the SB system components in the form of minicircles that are devoid of plasmid backbone sequences and are, therefore, significantly reduced in size. As compared to conventional plasmids, delivery of the SB transposon system as minicircle DNA is ∼20 times more efficient, and it is associated with up to a 50% reduction in cellular toxicity in human CD34+ cells. Moreover, providing the SB transposase in the form of synthetic mRNA enabled us to further increase the efficacy and biosafety of stable gene delivery into hematopoietic progenitors ex vivo. Genome-wide insertion site profiling revealed a close-to-random distribution of SB transposon integrants, which is characteristically different from gammaretroviral and lentiviral integrations in HSPCs. Transplantation of gene-marked CD34+ cells in immunodeficient mice resulted in long-term engraftment and hematopoietic reconstitution, which was most efficient when the SB transposase was supplied as mRNA and nucleofected cells were maintained for 4–8 days in culture before transplantation. Collectively, implementation of minicircle and mRNA technologies allowed us to further refine the SB transposon system in the context of HSPC gene delivery to ultimately meet clinical demands of an efficient and safe non-viral gene therapy protocol.
Collapse
Affiliation(s)
- Marta Holstein
- Transposition and Genome Engineering, Division of Medical Biotechnology, Paul Ehrlich Institute, Langen, Germany
| | - Cristina Mesa-Nuñez
- Division of Hematopoietic Innovative Therapies, Centro de Investigaciones Energéticas Medioambientales y Tecnológicas and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIEMAT/CIBERER), Madrid, Spain; Advanced Therapies Unit, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD, UAM) Madrid, Spain
| | - Csaba Miskey
- Transposition and Genome Engineering, Division of Medical Biotechnology, Paul Ehrlich Institute, Langen, Germany
| | - Elena Almarza
- Division of Hematopoietic Innovative Therapies, Centro de Investigaciones Energéticas Medioambientales y Tecnológicas and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIEMAT/CIBERER), Madrid, Spain; Advanced Therapies Unit, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD, UAM) Madrid, Spain
| | | | | | - Esther Grueso
- Transposition and Genome Engineering, Division of Medical Biotechnology, Paul Ehrlich Institute, Langen, Germany
| | - Juan Carlos Ordóñez Flores
- Transposition and Genome Engineering, Division of Medical Biotechnology, Paul Ehrlich Institute, Langen, Germany
| | - Dennis Kobelt
- Translational Oncology, Experimental and Clinical Research Center, Charité University Medicine, Berlin, Germany
| | - Wolfgang Walther
- Translational Oncology, Experimental and Clinical Research Center, Charité University Medicine, Berlin, Germany
| | | | | | - Halvard B Bonig
- Department of Transfusion Medicine and Immunohematology, Johann-Wolfgang-Goethe Universität, Frankfurt, Germany
| | - Zsuzsanna Izsvák
- Mobile DNA, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | | | - Carsten Rudolph
- ethris GmbH, Planegg, Germany; Department of Pediatrics, Ludwig Maximilian University, Munich, Germany
| | - Fulvio Mavilio
- Genethon, Evry, France; Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Juan A Bueren
- Division of Hematopoietic Innovative Therapies, Centro de Investigaciones Energéticas Medioambientales y Tecnológicas and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIEMAT/CIBERER), Madrid, Spain; Advanced Therapies Unit, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD, UAM) Madrid, Spain
| | - Guillermo Guenechea
- Division of Hematopoietic Innovative Therapies, Centro de Investigaciones Energéticas Medioambientales y Tecnológicas and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIEMAT/CIBERER), Madrid, Spain; Advanced Therapies Unit, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD, UAM) Madrid, Spain
| | - Zoltán Ivics
- Transposition and Genome Engineering, Division of Medical Biotechnology, Paul Ehrlich Institute, Langen, Germany.
| |
Collapse
|
39
|
Badodi S, Dubuc A, Zhang X, Rosser G, Da Cunha Jaeger M, Kameda-Smith MM, Morrissy AS, Guilhamon P, Suetterlin P, Li XN, Guglielmi L, Merve A, Farooq H, Lupien M, Singh SK, Basson MA, Taylor MD, Marino S. Convergence of BMI1 and CHD7 on ERK Signaling in Medulloblastoma. Cell Rep 2017; 21:2772-2784. [PMID: 29212025 PMCID: PMC5732319 DOI: 10.1016/j.celrep.2017.11.021] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 10/09/2017] [Accepted: 11/03/2017] [Indexed: 02/08/2023] Open
Abstract
We describe molecular convergence between BMI1 and CHD7 in the initiation of medulloblastoma. Identified in a functional genomic screen in mouse models, a BMI1High;CHD7Low expression signature within medulloblastoma characterizes patients with poor overall survival. We show that BMI1-mediated repression of the ERK1/2 pathway leads to increased proliferation and tumor burden in primary human MB cells and in a xenograft model, respectively. We provide evidence that repression of the ERK inhibitor DUSP4 by BMI1 is dependent on a more accessible chromatin configuration in G4 MB cells with low CHD7 expression. These findings extend current knowledge of the role of BMI1 and CHD7 in medulloblastoma pathogenesis, and they raise the possibility that pharmacological targeting of BMI1 or ERK may be particularly indicated in a subgroup of MB with low expression levels of CHD7.
Collapse
Affiliation(s)
- Sara Badodi
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, 4 Newark Street, London E1 2AT, UK
| | - Adrian Dubuc
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, 101 College Street, TMDT-11-401M, Toronto, ON M5G 1L7, Canada
| | - Xinyu Zhang
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, 4 Newark Street, London E1 2AT, UK
| | - Gabriel Rosser
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, 4 Newark Street, London E1 2AT, UK
| | - Mariane Da Cunha Jaeger
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, 4 Newark Street, London E1 2AT, UK
| | - Michelle M Kameda-Smith
- Pediatric Neurosurgery, Department of Surgery, McMaster Children's Hospital and McMaster Stem Cell & Cancer Research Institute, MDCL 5027, 1280 Main Street West, Hamilton, ON L8S 4K1, Canada
| | - Anca Sorana Morrissy
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, 101 College Street, TMDT-11-401M, Toronto, ON M5G 1L7, Canada
| | - Paul Guilhamon
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada; Ontario Institute for Cancer Research, Toronto, ON, Canada
| | - Philipp Suetterlin
- Department of Craniofacial Development and Stem Cell Biology, King's College London, Floor 27, Guy's Hospital Tower Wing, London SE1 9RT, UK
| | - Xiao-Nan Li
- Texas Children's Cancer Centre, Texas Children's Hospital, Baylor College of Medicine, 6621 Fannin Street, MC-3-3320, Houston, TX 77479, USA
| | - Loredana Guglielmi
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, 4 Newark Street, London E1 2AT, UK
| | - Ashirwad Merve
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, 4 Newark Street, London E1 2AT, UK
| | - Hamza Farooq
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, 101 College Street, TMDT-11-401M, Toronto, ON M5G 1L7, Canada
| | - Mathieu Lupien
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada; Ontario Institute for Cancer Research, Toronto, ON, Canada
| | - Sheila K Singh
- Pediatric Neurosurgery, Department of Surgery, McMaster Children's Hospital and McMaster Stem Cell & Cancer Research Institute, MDCL 5027, 1280 Main Street West, Hamilton, ON L8S 4K1, Canada
| | - M Albert Basson
- Department of Craniofacial Development and Stem Cell Biology, King's College London, Floor 27, Guy's Hospital Tower Wing, London SE1 9RT, UK
| | - Michael D Taylor
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, 101 College Street, TMDT-11-401M, Toronto, ON M5G 1L7, Canada
| | - Silvia Marino
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, 4 Newark Street, London E1 2AT, UK.
| |
Collapse
|
40
|
Ito S, Koso H, Sakamoto K, Watanabe S. RNA helicase DHX15 acts as a tumour suppressor in glioma. Br J Cancer 2017; 117:1349-1359. [PMID: 28829764 PMCID: PMC5672939 DOI: 10.1038/bjc.2017.273] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Revised: 06/22/2017] [Accepted: 07/24/2017] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Glioblastoma is the most common form of malignant brain cancer and has a poor prognosis in adults. We identified Dhx15 as a candidate tumour suppressor gene in glioma by transposon-based mutagenesis. Dhx15 is an adenosine triphosphate (ATP)-dependent RNA helicase belonging to the DEAH-box (DHX) helicase family, but its role in cancer remains elusive. METHODS DHX15 expression levels were examined in glioma cell lines. DHX15 functions were examined by gain- and loss-of-function analyses. Protein motifs required for the function of DHX15 were investigated by the analysis of mutant proteins. RESULTS DHX15 expression was lower in human glioma cell lines than in normal neural stem cells. Dhx15 knockdown resulted in enhanced proliferation of primary immortalised mouse astrocytes, supporting the notion that DHX15 is a tumour suppressor. Retroviral-mediated transduction of DHX15 into glioma cell lines suppressed proliferation and foci formation in vitro. Moreover, DHX15 suppressed tumour formation in a xenograft mouse model. ATPase activity was not required for the growth-inhibitory function of DHX15; however, the Ia, Ib, IV, and V motifs, which act as RNA-binding domains in DHX15, were essential. qPCR analysis revealed that DHX15 suppressed expression of NF-κB downstream target genes as well as the genes involved in splicing. CONCLUSIONS These findings provide evidence that DHX15 acts as a tumour suppressor gene in glioma.
Collapse
Affiliation(s)
- Shingo Ito
- Division of Molecular and Developmental Biology, Institute of Medical Science, University of Tokyo, Tokyo 1088639, Japan
- Department of Coloproctological Surgery, Faculty of Medicine, Juntendo University, Tokyo 1138421, Japan
| | - Hideto Koso
- Division of Molecular and Developmental Biology, Institute of Medical Science, University of Tokyo, Tokyo 1088639, Japan
| | - Kazuhiro Sakamoto
- Department of Coloproctological Surgery, Faculty of Medicine, Juntendo University, Tokyo 1138421, Japan
| | - Sumiko Watanabe
- Division of Molecular and Developmental Biology, Institute of Medical Science, University of Tokyo, Tokyo 1088639, Japan
| |
Collapse
|
41
|
de Ruiter JR, Kas SM, Schut E, Adams DJ, Koudijs MJ, Wessels LFA, Jonkers J. Identifying transposon insertions and their effects from RNA-sequencing data. Nucleic Acids Res 2017; 45:7064-7077. [PMID: 28575524 PMCID: PMC5499543 DOI: 10.1093/nar/gkx461] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 05/11/2017] [Indexed: 01/22/2023] Open
Abstract
Insertional mutagenesis using engineered transposons is a potent forward genetic screening technique used to identify cancer genes in mouse model systems. In the analysis of these screens, transposon insertion sites are typically identified by targeted DNA-sequencing and subsequently assigned to predicted target genes using heuristics. As such, these approaches provide no direct evidence that insertions actually affect their predicted targets or how transcripts of these genes are affected. To address this, we developed IM-Fusion, an approach that identifies insertion sites from gene-transposon fusions in standard single- and paired-end RNA-sequencing data. We demonstrate IM-Fusion on two separate transposon screens of 123 mammary tumors and 20 B-cell acute lymphoblastic leukemias, respectively. We show that IM-Fusion accurately identifies transposon insertions and their true target genes. Furthermore, by combining the identified insertion sites with expression quantification, we show that we can determine the effect of a transposon insertion on its target gene(s) and prioritize insertions that have a significant effect on expression. We expect that IM-Fusion will significantly enhance the accuracy of cancer gene discovery in forward genetic screens and provide initial insight into the biological effects of insertions on candidate cancer genes.
Collapse
Affiliation(s)
- Julian R de Ruiter
- Division of Molecular Pathology and Cancer Genomics Netherlands, Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam 1066 CX, The Netherlands.,Division of Molecular Carcinogenesis and Cancer Genomics Netherlands, Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam 1066 CX, The Netherlands
| | - Sjors M Kas
- Division of Molecular Pathology and Cancer Genomics Netherlands, Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam 1066 CX, The Netherlands
| | - Eva Schut
- Division of Molecular Pathology and Cancer Genomics Netherlands, Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam 1066 CX, The Netherlands
| | - David J Adams
- Experimental Cancer Genetics, Wellcome Trust Sanger Institute, Hinxton CB10 1SA, UK
| | - Marco J Koudijs
- Division of Molecular Pathology and Cancer Genomics Netherlands, Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam 1066 CX, The Netherlands
| | - Lodewyk F A Wessels
- Division of Molecular Carcinogenesis and Cancer Genomics Netherlands, Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam 1066 CX, The Netherlands.,Faculty of EEMCS, Delft University of Technology, Mekelweg 4, Delft 2628 CD, The Netherlands
| | - Jos Jonkers
- Division of Molecular Pathology and Cancer Genomics Netherlands, Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam 1066 CX, The Netherlands
| |
Collapse
|
42
|
Biasco L, Rothe M, Schott JW, Schambach A. Integrating Vectors for Gene Therapy and Clonal Tracking of Engineered Hematopoiesis. Hematol Oncol Clin North Am 2017; 31:737-752. [DOI: 10.1016/j.hoc.2017.06.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
43
|
Rangel R, Guzman-Rojas L, Kodama T, Kodama M, Newberg JY, Copeland NG, Jenkins NA. Identification of New Tumor Suppressor Genes in Triple-Negative Breast Cancer. Cancer Res 2017; 77:4089-4101. [DOI: 10.1158/0008-5472.can-17-0785] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 04/28/2017] [Accepted: 06/05/2017] [Indexed: 11/16/2022]
|
44
|
Integration site selection by retroviruses and transposable elements in eukaryotes. Nat Rev Genet 2017; 18:292-308. [PMID: 28286338 DOI: 10.1038/nrg.2017.7] [Citation(s) in RCA: 145] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Transposable elements and retroviruses are found in most genomes, can be pathogenic and are widely used as gene-delivery and functional genomics tools. Exploring whether these genetic elements target specific genomic sites for integration and how this preference is achieved is crucial to our understanding of genome evolution, somatic genome plasticity in cancer and ageing, host-parasite interactions and genome engineering applications. High-throughput profiling of integration sites by next-generation sequencing, combined with large-scale genomic data mining and cellular or biochemical approaches, has revealed that the insertions are usually non-random. The DNA sequence, chromatin and nuclear context, and cellular proteins cooperate in guiding integration in eukaryotic genomes, leading to a remarkable diversity of insertion site distribution and evolutionary strategies.
Collapse
|
45
|
Suresh S, Durakoglugil D, Zhou X, Zhu B, Comerford SA, Xing C, Xie XJ, York B, O’Donnell KA. SRC-2-mediated coactivation of anti-tumorigenic target genes suppresses MYC-induced liver cancer. PLoS Genet 2017; 13:e1006650. [PMID: 28273073 PMCID: PMC5362238 DOI: 10.1371/journal.pgen.1006650] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 03/22/2017] [Accepted: 02/23/2017] [Indexed: 12/15/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the fifth most common solid tumor in the world and the third leading cause of cancer-associated deaths. A Sleeping Beauty-mediated transposon mutagenesis screen previously identified mutations that cooperate with MYC to accelerate liver tumorigenesis. This revealed a tumor suppressor role for Steroid Receptor Coactivator 2/Nuclear Receptor Coactivator 2 (Src-2/Ncoa2) in liver cancer. In contrast, SRC-2 promotes survival and metastasis in prostate cancer cells, suggesting a tissue-specific and context-dependent role for SRC-2 in tumorigenesis. To determine if genetic loss of SRC-2 is sufficient to accelerate MYC-mediated liver tumorigenesis, we bred Src-2-/- mice with a MYC-induced liver tumor model and observed a significant increase in liver tumor burden. RNA sequencing of liver tumors and in vivo chromatin immunoprecipitation assays revealed a set of direct target genes that are bound by SRC-2 and exhibit downregulated expression in Src-2-/- liver tumors. We demonstrate that activation of SHP (Small Heterodimer Partner), DKK4 (Dickkopf-4), and CADM4 (Cell Adhesion Molecule 4) by SRC-2 suppresses tumorigenesis in vitro and in vivo. These studies suggest that SRC-2 may exhibit oncogenic or tumor suppressor activity depending on the target genes and nuclear receptors that are expressed in distinct tissues and illuminate the mechanisms of tumor suppression by SRC-2 in liver.
Collapse
Affiliation(s)
- Shruthy Suresh
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX, United States of America
| | - Deniz Durakoglugil
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX, United States of America
| | - Xiaorong Zhou
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX, United States of America
- Department of Immunology, Nantong University School of Medicine, Nantong, China
| | - Bokai Zhu
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States of America
| | - Sarah A. Comerford
- Department of Molecular Genetics, UT Southwestern Medical Center, Dallas, TX, United States of America
| | - Chao Xing
- Department of Clinical Sciences, UT Southwestern Medical Center, Dallas, TX, United States of America
- McDermott Center for Human Growth and Development, UT Southwestern Medical Center, Dallas, TX, United States of America
| | - Xian-Jin Xie
- Department of Clinical Sciences, UT Southwestern Medical Center, Dallas, TX, United States of America
- Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX, United States of America
| | - Brian York
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States of America
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, United States of America
| | - Kathryn A. O’Donnell
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX, United States of America
- Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX, United States of America
- * E-mail:
| |
Collapse
|
46
|
Resistance mechanisms to TP53-MDM2 inhibition identified by in vivo piggyBac transposon mutagenesis screen in an Arf -/- mouse model. Proc Natl Acad Sci U S A 2017; 114:3151-3156. [PMID: 28265066 DOI: 10.1073/pnas.1620262114] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Inhibitors of double minute 2 protein (MDM2)-tumor protein 53 (TP53) interaction are predicted to be effective in tumors in which the TP53 gene is wild type, by preventing TP53 protein degradation. One such setting is represented by the frequent CDKN2A deletion in human cancer that, through inactivation of p14ARF, activates MDM2 protein, which in turn degrades TP53 tumor suppressor. Here we used piggyBac (PB) transposon insertional mutagenesis to anticipate resistance mechanisms occurring during treatment with the MDM2-TP53 inhibitor HDM201. Constitutive PB mutagenesis in Arf-/- mice provided a collection of spontaneous tumors with characterized insertional genetic landscapes. Tumors were allografted in large cohorts of mice to assess the pharmacologic effects of HDM201. Sixteen out of 21 allograft models were sensitive to HDM201 but ultimately relapsed under treatment. A comparison of tumors with acquired resistance to HDM201 and untreated tumors identified 87 genes that were differentially and significantly targeted by the PB transposon. Resistant tumors displayed a complex clonality pattern suggesting the emergence of several resistant subclones. Among the most frequent alterations conferring resistance, we observed somatic and insertional loss-of-function mutations in transformation-related protein 53 (Trp53) in 54% of tumors and transposon-mediated gain-of-function alterations in B-cell lymphoma-extra large (Bcl-xL), Mdm4, and two TP53 family members, resulting in expression of the TP53 dominant negative truncations ΔNTrp63 and ΔNTrp73. Enhanced BCL-xL and MDM4 protein expression was confirmed in resistant tumors, as well as in HDM201-resistant patient-derived tumor xenografts. Interestingly, concomitant inhibition of MDM2 and BCL-xL demonstrated significant synergy in p53 wild-type cell lines in vitro. Collectively, our findings identify several potential mechanisms by which TP53 wild-type tumors may escape MDM2-targeted therapy.
Collapse
|
47
|
Yoshida J, Akagi K, Misawa R, Kokubu C, Takeda J, Horie K. Chromatin states shape insertion profiles of the piggyBac, Tol2 and Sleeping Beauty transposons and murine leukemia virus. Sci Rep 2017; 7:43613. [PMID: 28252665 PMCID: PMC5333637 DOI: 10.1038/srep43613] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 01/26/2017] [Indexed: 12/31/2022] Open
Abstract
DNA transposons and retroviruses are versatile tools in functional genomics and gene therapy. To facilitate their application, we conducted a genome-wide insertion site profiling of the piggyBac (PB), Tol2 and Sleeping Beauty (SB) transposons and the murine leukemia virus (MLV) in mouse embryonic stem cells (ESCs). PB and MLV preferred highly expressed genes, whereas Tol2 and SB preferred weakly expressed genes. However, correlations with DNase I hypersensitive sites were different for all vectors, indicating that chromatin accessibility is not the sole determinant. Therefore, we analysed various chromatin states. PB and MLV highly correlated with Cohesin, Mediator and ESC-specific transcription factors. Notably, CTCF sites were correlated with PB but not with MLV, suggesting MLV prefers smaller promoter-enhancer loops, whereas PB insertion encompasses larger chromatin loops termed topologically associating domains. Tol2 also correlated with Cohesin and CTCF. However, correlations with ESC-specific transcription factors were weaker, suggesting that Tol2 prefers transcriptionally weak chromatin loops. Consistently, Tol2 insertions were associated with bivalent histone modifications characteristic of silent and inducible loci. SB showed minimum preference to all chromatin states, suggesting the least adverse effect on adjacent genes. These results will be useful for vector selection for various applications.
Collapse
Affiliation(s)
- Junko Yoshida
- Department of Physiology II, Nara Medical University, Kashihara, Nara 634-8521, Japan.,Department of Genome Biology, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Keiko Akagi
- Comprehensive Cancer Center, Ohio State University, Columbus, Ohio 43210, USA
| | - Ryo Misawa
- Department of Physiology II, Nara Medical University, Kashihara, Nara 634-8521, Japan
| | - Chikara Kokubu
- Department of Genome Biology, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Junji Takeda
- Department of Genome Biology, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Kyoji Horie
- Department of Physiology II, Nara Medical University, Kashihara, Nara 634-8521, Japan.,Department of Genome Biology, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan.,Precursory Research for Embryonic Science and Technology, Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012, Japan
| |
Collapse
|
48
|
Bii VM, Trobridge GD. Identifying Cancer Driver Genes Using Replication-Incompetent Retroviral Vectors. Cancers (Basel) 2016; 8:cancers8110099. [PMID: 27792127 PMCID: PMC5126759 DOI: 10.3390/cancers8110099] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Revised: 10/12/2016] [Accepted: 10/17/2016] [Indexed: 12/16/2022] Open
Abstract
Identifying novel genes that drive tumor metastasis and drug resistance has significant potential to improve patient outcomes. High-throughput sequencing approaches have identified cancer genes, but distinguishing driver genes from passengers remains challenging. Insertional mutagenesis screens using replication-incompetent retroviral vectors have emerged as a powerful tool to identify cancer genes. Unlike replicating retroviruses and transposons, replication-incompetent retroviral vectors lack additional mutagenesis events that can complicate the identification of driver mutations from passenger mutations. They can also be used for almost any human cancer due to the broad tropism of the vectors. Replication-incompetent retroviral vectors have the ability to dysregulate nearby cancer genes via several mechanisms including enhancer-mediated activation of gene promoters. The integrated provirus acts as a unique molecular tag for nearby candidate driver genes which can be rapidly identified using well established methods that utilize next generation sequencing and bioinformatics programs. Recently, retroviral vector screens have been used to efficiently identify candidate driver genes in prostate, breast, liver and pancreatic cancers. Validated driver genes can be potential therapeutic targets and biomarkers. In this review, we describe the emergence of retroviral insertional mutagenesis screens using replication-incompetent retroviral vectors as a novel tool to identify cancer driver genes in different cancer types.
Collapse
Affiliation(s)
- Victor M Bii
- College of Pharmacy, Washington State University, WSU Spokane PBS 323, P.O. Box 1495, Spokane, WA 99210, USA.
| | - Grant D Trobridge
- College of Pharmacy, Washington State University, WSU Spokane PBS 323, P.O. Box 1495, Spokane, WA 99210, USA.
- School of Molecular Biosciences, Washington State University, Pullman, WA 99164, USA.
| |
Collapse
|
49
|
Narayanavari SA, Chilkunda SS, Ivics Z, Izsvák Z. Sleeping Beauty transposition: from biology to applications. Crit Rev Biochem Mol Biol 2016; 52:18-44. [PMID: 27696897 DOI: 10.1080/10409238.2016.1237935] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Sleeping Beauty (SB) is the first synthetic DNA transposon that was shown to be active in a wide variety of species. Here, we review studies from the last two decades addressing both basic biology and applications of this transposon. We discuss how host-transposon interaction modulates transposition at different steps of the transposition reaction. We also discuss how the transposon was translated for gene delivery and gene discovery purposes. We critically review the system in clinical, pre-clinical and non-clinical settings as a non-viral gene delivery tool in comparison with viral technologies. We also discuss emerging SB-based hybrid vectors aimed at combining the attractive safety features of the transposon with effective viral delivery. The success of the SB-based technology can be fundamentally attributed to being able to insert fairly randomly into genomic regions that allow stable long-term expression of the delivered transgene cassette. SB has emerged as an efficient and economical toolkit for safe and efficient gene delivery for medical applications.
Collapse
Affiliation(s)
- Suneel A Narayanavari
- a Mobile DNA , Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC) , Berlin , Germany
| | - Shreevathsa S Chilkunda
- a Mobile DNA , Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC) , Berlin , Germany
| | - Zoltán Ivics
- b Division of Medical Biotechnology , Paul Ehrlich Institute , Langen , Germany
| | - Zsuzsanna Izsvák
- a Mobile DNA , Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC) , Berlin , Germany
| |
Collapse
|
50
|
Chen HJ, Zheng Y, Wei Z. Advancements in Modeling Colorectal Cancer in Rodents. CURRENT COLORECTAL CANCER REPORTS 2016. [DOI: 10.1007/s11888-016-0334-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|