1
|
Chen Y, Jin H, Wen W, Xu Y, Zhang X, Yang J, Wang Y. Targeting RhoA expression with formononetin and salvianolic acid B to mitigate pancreatic cancer-associated endothelial cells changes. JOURNAL OF ETHNOPHARMACOLOGY 2025; 336:118711. [PMID: 39181286 DOI: 10.1016/j.jep.2024.118711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 08/08/2024] [Accepted: 08/17/2024] [Indexed: 08/27/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE According to the theory of Qi and blood in Traditional Chinese Medicine (TCM), the combination of Qi-reinforcing herbs and blood-activating herbs has a synergistic effect in improving blood stasis syndrome, especially in tumor treatment. The classic "Radix Astragali - Salvia miltiorrhiza" duo exemplifies this principle, renowned for invigorating Qi and activating blood flow, employed widely in tumor therapies. Our prior research underscores the potent inhibition of pancreatic tumor xenografts by the combination of Formononetin (from Radix Astragali) and Salvianolic acid B (from Salvia miltiorrhiza) in vitro. However, it remains unclear whether this combination can inhibit the abnormal vascularization of pancreatic tumors to achieve its anti-cancer effect. AIM OF THE STUDY Abnormal vasculature, known to facilitate tumor growth and metastasis. Strategies to normalize tumor-associated blood vessels provide a promising avenue for anti-tumor therapy. This study aimed to unravel the therapeutic potential of Formononetin combined with Salvianolic acid B (FcS) in modulating pancreatic cancer's impact on endothelial cells, illuminate the underlying mechanisms that govern this therapeutic interaction, thereby advancing strategies to normalize tumor vasculature and combat cancer progression. MATERIALS AND METHODS A co-culture system involving Human Umbilical Vein Endothelial Cells (HUVECs) and PANC-1 cells was established to investigate the potential of targeting abnormal vasculature as a novel anti-tumor therapeutic strategy. We systematically compared HUVEC proliferation, migration, invasion, and lumenogenesis in both mono- and co-culture conditions with PANC-1 (H-P). Subsequently, FcS treatment of the H-P system was evaluated for its anti-angiogenic properties. Molecular docking was utilized to predict the interactions between Formononetin and Salvianolic acid B with RhoA, and the post-treatment expression of RhoA in HUVECs was assessed. Furthermore, we utilized shRhoA lentivirus to elucidate the role of RhoA in FcS-mediated effects on HUVECs. In vivo, a zebrafish xenograft tumor model was employed to assess FcS's anti-tumor potential, focusing on cancer cell proliferation, migration, apoptosis, and vascular development. RESULTS FcS treatment demonstrated a significant, dose-dependent inhibition of PANC-1-induced alterations in HUVECs, including proliferation, migration, invasion, and tube formation capabilities. Molecular docking analyses indicated potential interactions between FcS and RhoA. Further, FcS treatment was found to downregulate RhoA expression and modulated the PI3K/AKT signaling pathway in PANC-1-induced HUVECs. Notably, the phenotypic inhibitory effects of FcS on HUVECs were attenuated by RhoA knockdown. In vivo zebrafish studies validated FcS's anti-tumor activity, inhibiting cancer cell proliferation, metastasis, and vascular sprouting, while promoting tumor cell apoptosis. CONCLUSIONS This study underscores the promising potential of FcS in countering pancreatic cancer-induced endothelial alterations. FcS exhibits pronounced anti-abnormal vasculature effects, potentially achieved through downregulation of RhoA and inhibition of the PI3K/Akt signaling pathway, thereby presenting a novel therapeutic avenue for pancreatic cancer management.
Collapse
Affiliation(s)
- Yan Chen
- Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang, China; Key Laboratory of Integrated Traditional Chinese and Western Medicine for Biliary and Pancreatic Diseases of Zhejiang Province, Hangzhou, Zhejiang, China; Hangzhou Institute of Digestive Diseases, Hangzhou, Zhejiang, China
| | - Hangbin Jin
- Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang, China; Key Laboratory of Integrated Traditional Chinese and Western Medicine for Biliary and Pancreatic Diseases of Zhejiang Province, Hangzhou, Zhejiang, China; Hangzhou Institute of Digestive Diseases, Hangzhou, Zhejiang, China; Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Weiwei Wen
- Department of Dermatology, Third People's Hospital of Hangzhou, Hangzhou, China
| | - Ying Xu
- Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang, China; Key Laboratory of Integrated Traditional Chinese and Western Medicine for Biliary and Pancreatic Diseases of Zhejiang Province, Hangzhou, Zhejiang, China; Hangzhou Institute of Digestive Diseases, Hangzhou, Zhejiang, China
| | - Xiaofeng Zhang
- Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang, China; Key Laboratory of Integrated Traditional Chinese and Western Medicine for Biliary and Pancreatic Diseases of Zhejiang Province, Hangzhou, Zhejiang, China; Hangzhou Institute of Digestive Diseases, Hangzhou, Zhejiang, China; Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Hangzhou, Zhejiang, China.
| | - Jianfeng Yang
- Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang, China; Key Laboratory of Integrated Traditional Chinese and Western Medicine for Biliary and Pancreatic Diseases of Zhejiang Province, Hangzhou, Zhejiang, China; Hangzhou Institute of Digestive Diseases, Hangzhou, Zhejiang, China; Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Hangzhou, Zhejiang, China.
| | - Yu Wang
- Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang, China; Key Laboratory of Integrated Traditional Chinese and Western Medicine for Biliary and Pancreatic Diseases of Zhejiang Province, Hangzhou, Zhejiang, China; Hangzhou Institute of Digestive Diseases, Hangzhou, Zhejiang, China.
| |
Collapse
|
2
|
Li J, Jiang L, Kai H, Zhou Y, Cao J, Tang W. Identifying preeclampsia-associated key module and hub genes via weighted gene co-expression network analysis. Sci Rep 2025; 15:1364. [PMID: 39779839 PMCID: PMC11711461 DOI: 10.1038/s41598-025-85599-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 01/03/2025] [Indexed: 01/11/2025] Open
Abstract
Preeclampsia (PE) is a common hypertensive disease in women with pregnancy. With the development of bioinformatics, WGCNA was used to explore specific biomarkers to provide therapy targets efficiently. All samples were obtained from gene expression omnibus (GEO), then we used a package named "WGCNA" to construct a scale-free co-expression network and modules related to PE. Next, the search tool for the retrieval of interacting genes database (STRING) was adopted to structure the protein-protein interaction (PPI) of genes in the hub module. Furthermore, the MCODE plug-in was applied to discern hub clusters of the PPI network. We also utilized clusterprofiler to execute the functional analysis. Finally, hub genes were selected via Venn Plot and confirmed by quantitative real-time polymerase chain reaction. Through the co-expression networks and modules, we ensured the turquoise module was the most significant one related to PE. Functional analysis implied these genes were mainly enriched in the organic hydroxy compound metabolic process and Phosphatidylinositol signal system. Due to connectivity, the PPI network showed that GAPDH and VEGFA were the most conspicuous. Lastly, the Venn Plot screened eight hub genes (LDHA, ENG, OCRL, PIK3CB, FLT1, HK2, PKM, and LEP). LDHA was confirmed to be downregulated in PE tissues (P<0.001). This study revealed vital module and hub genes associated with preeclampsia and indicated that LDHA might be a therapeutic target in the future.
Collapse
Affiliation(s)
- Jie Li
- Department of Operating Room Nursing Group, Affiliated Hospital 2 of Nantong University, Nantong, Jiangsu, China
| | - Lingling Jiang
- Department of Gynaecology and Obstetrics, Affiliated Hospital 2 of Nantong University, Nantong, Jiangsu, China
| | - Haili Kai
- Department of Gynaecology and Obstetrics, Affiliated Hospital 2 of Nantong University, Nantong, Jiangsu, China
| | - Yang Zhou
- Department of Gynaecology and Obstetrics, Affiliated Hospital 2 of Nantong University, Nantong, Jiangsu, China
| | - Jiachen Cao
- Department of Gynaecology and Obstetrics, Affiliated Hospital 2 of Nantong University, Nantong, Jiangsu, China
| | - Weichun Tang
- Department of Gynaecology and Obstetrics, Affiliated Hospital 2 of Nantong University, Nantong, Jiangsu, China.
| |
Collapse
|
3
|
Messing S, Widmeyer SRT, Denson JP, Mehalko J, Wall VE, Drew M, Snead K, Hong M, Grose C, Esposito D, Gillette W. Improved production of class I phosphatidylinositol 4,5-bisphosphate 3-kinase. Protein Expr Purif 2025; 225:106582. [PMID: 39173964 PMCID: PMC11421577 DOI: 10.1016/j.pep.2024.106582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/05/2024] [Accepted: 08/18/2024] [Indexed: 08/24/2024]
Abstract
Phosphatidylinositol 4,5-bisphosphate 3-kinases (PI3K) are a family of kinases whose activity affects pathways needed for basic cell functions. As a result, PI3K is one of the most mutated genes in all human cancers and serves as an ideal therapeutic target for cancer treatment. Expanding on work done by other groups we improved protein yield to produce stable and pure protein using a variety of modifications including improved solubility tag, novel expression modalities, and optimized purification protocol and buffer. By these means, we achieved a 40-fold increase in yield for p110α/p85α and a 3-fold increase in p110α. We also used these protocols to produce comparable constructs of the β and δ isoforms of PI3K. Increased yield enhanced the efficiency of our downstream high throughput drug discovery efforts on the PIK3 family of kinases.
Collapse
Affiliation(s)
- Simon Messing
- Protein Expression Laboratory, NCI RAS Initiative, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA.
| | - Stephanie R T Widmeyer
- Protein Expression Laboratory, NCI RAS Initiative, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - John-Paul Denson
- Protein Expression Laboratory, NCI RAS Initiative, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Jennifer Mehalko
- Protein Expression Laboratory, NCI RAS Initiative, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Vanessa E Wall
- Protein Expression Laboratory, NCI RAS Initiative, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Matthew Drew
- Protein Expression Laboratory, NCI RAS Initiative, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Kelly Snead
- Protein Expression Laboratory, NCI RAS Initiative, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Min Hong
- Protein Expression Laboratory, NCI RAS Initiative, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Carissa Grose
- Protein Expression Laboratory, NCI RAS Initiative, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Dominic Esposito
- Protein Expression Laboratory, NCI RAS Initiative, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - William Gillette
- Protein Expression Laboratory, NCI RAS Initiative, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| |
Collapse
|
4
|
Xie H, Lin F, Shi F, Johnstone E, Wang Y, An Y, Su J, Liu J, Dong Q, Liu J. Synthesis, biological evaluation and mechanism study based on network pharmacology of amino acids esters of 20(S)-protopanaxadiol as novel anticancer agents. Fitoterapia 2025; 180:106274. [PMID: 39537112 DOI: 10.1016/j.fitote.2024.106274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 10/21/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024]
Abstract
As one of the metabolites of ginseng, 20(S)-protopanaxadiol (PPD) is a compound with dammarane-type tetracyclic triterpene, which performs a wide range of anticancer activities. In this study, PPD was used as a lead. A series of compounds were synthesized respectively with 11 amino acids through esterification and were evaluated for their cytotoxicity against several cancer cell lines. One of the synthetic products (PL) exhibited potent inhibitory effect on Huh-7 cells relative to that of PPD in vitro. Subsequently, the Annexin V-FITC /PI staining assay was used to verify that PL induced apoptosis of Huh-7 cells in a dose-dependent manner. A UPLC-Q/TOF-MS analysis method was established and validated for assessing pharmacokinetic properties after the administration of PPD and PL in rats. The results showed that compared with PPD, T1/2of PL in rats was prolonged, and the peak time was delayed, resulting in broader tissue distribution of the compound in the body. In addition, the targets of PL against several cancers were predicted and analyzed via network pharmacology. Molecular docking simulations demonstrated that PL interacted with the active sites of the above targets. In conclusion, this study provided a theoretical basis for the development and clinical application of anti-tumor activity of PPD.
Collapse
Affiliation(s)
- Hongliu Xie
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, PR China
| | - Fang Lin
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, PR China
| | - Fei Shi
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, PR China
| | | | - Yaqi Wang
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, PR China
| | - Yang An
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, PR China
| | - Jun Su
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, PR China; Basic Medicine Department, Fenyang College of Shanxi Medical University, Fenyang 032200, PR China
| | - Jiayin Liu
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, PR China
| | - Qinghai Dong
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, PR China
| | - Jihua Liu
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, PR China.
| |
Collapse
|
5
|
Sheng Z, Beck P, Gabby M, Habte-Mariam S, Mitkos K. Molecular Basis of Oncogenic PI3K Proteins. Cancers (Basel) 2024; 17:77. [PMID: 39796708 PMCID: PMC11720314 DOI: 10.3390/cancers17010077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/20/2024] [Accepted: 12/23/2024] [Indexed: 01/13/2025] Open
Abstract
The dysregulation of phosphatidylinositol 3-kinase (PI3K) signaling plays a pivotal role in driving neoplastic transformation by promoting uncontrolled cell survival and proliferation. This oncogenic activity is primarily caused by mutations that are frequently found in PI3K genes and constitutively activate the PI3K signaling pathway. However, tumorigenesis can also arise from nonmutated PI3K proteins adopting unique active conformations, further complicating the understanding of PI3K-driven cancers. Recent structural studies have illuminated the functional divergence among highly homologous PI3K proteins, revealing how subtle structural alterations significantly impact their activity and contribute to tumorigenesis. In this review, we summarize current knowledge of Class I PI3K proteins and aim to unravel the complex mechanism underlying their oncogenic traits. These insights will not only enhance our understanding of PI3K-mediated oncogenesis but also pave the way for the design of novel PI3K-based therapies to combat cancers driven by this signaling pathway.
Collapse
Affiliation(s)
- Zhi Sheng
- Fralin Biomedical Research Institute at VTC, Roanoke, VA 24016, USA
- Department of Internal Medicine, Virginia Tech Carilion School of Medicine, Roanoke, VA 24016, USA
- Department of Neurosurgery, Virginia Tech Carilion School of Medicine, Roanoke, VA 24016, USA
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
- Faculty of Health Science, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Patrick Beck
- Division of General Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Maegan Gabby
- Fralin Biomedical Research Institute at VTC, Roanoke, VA 24016, USA
| | | | - Katherine Mitkos
- Fralin Biomedical Research Institute at VTC, Roanoke, VA 24016, USA
| |
Collapse
|
6
|
Baliyan D, Sharma R, Goyal S, Chhabra R, Singh B. Phytochemical strategies in glioblastoma therapy: Mechanisms, efficacy, and future perspectives. Biochim Biophys Acta Mol Basis Dis 2024; 1871:167647. [PMID: 39740382 DOI: 10.1016/j.bbadis.2024.167647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 12/24/2024] [Accepted: 12/26/2024] [Indexed: 01/02/2025]
Abstract
Glioblastoma (GBM) is foremost the most aggressive primary brain tumor, presenting extensive therapeutic challenges due to its high invasiveness, genetic complexity, and resistance to established treatments. Despite substantial advances in surgical and chemotherapeutic interventions, the median survival rate for patients is only 14.6 months, and the prognosis remains poor. This review focuses on the molecular hallmarks of GBM, including the activation of the PI3K/Akt pathway, genomic instability, and the deregulation of epidermal growth factor receptor (EGFR), all of which contribute to the tumor's aggressive behavior. Current therapies, such as Temozolomide and Bevacizumab, have limitations, highlighting the need for novel treatment strategies. Phytochemicals, bioactive compounds found in plants, have emerged as potential therapeutic agents by targeting multiple cellular pathways involved in GBM progression. This review provides an overview of key phytochemicals, including quercetin, curcumin, apigenin, and resveratrol. These compounds have shown promise in preclinical studies, with their anti-invasive, anti- angiogenic, pro-apoptotic, and anti-proliferative properties positioning them as strong candidates for GBM therapy. While phytochemicals offer a promising avenue for GBM treatment, further research is required to fully understand their mechanisms of action and to evaluate their efficiency in clinical settings. Developing multi-targeted, safer, and cost-effective anti-GBM therapies could significantly improve patient outcomes.
Collapse
Affiliation(s)
- Deepanjali Baliyan
- Department of Biochemistry, School of Basic Science, Central University of Punjab, Bathinda 151401, India
| | - Rajni Sharma
- Department of Biochemistry, School of Basic Science, Central University of Punjab, Bathinda 151401, India.
| | - Shipra Goyal
- Department of Biochemistry, School of Basic Science, Central University of Punjab, Bathinda 151401, India
| | - Ravindresh Chhabra
- Department of Biochemistry, School of Basic Science, Central University of Punjab, Bathinda 151401, India.
| | - Baljinder Singh
- Department of Biochemistry, School of Basic Science, Central University of Punjab, Bathinda 151401, India.
| |
Collapse
|
7
|
Liu L, Graff SL, Wang Y. New Emerging Therapies Targeting PI3K/AKT/mTOR/PTEN Pathway in Hormonal Receptor-Positive and HER2-Negative Breast Cancer-Current State and Molecular Pathology Perspective. Cancers (Basel) 2024; 17:16. [PMID: 39796647 PMCID: PMC11718791 DOI: 10.3390/cancers17010016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/17/2024] [Accepted: 12/23/2024] [Indexed: 01/13/2025] Open
Abstract
In hormone receptor-positive and HER2-negative breast cancers, a growing number of revolutionary personalized therapies are in clinical use or trials, such as CDK4/6 inhibitors, immune checkpoint inhibitors, and PIK3CA inhibitors. Those treatment options are largely driven by the presence or absence of genomic alterations in the tumor. Therefore, molecular profiling is often performed during disease progression. The most encountered genomic alterations are in the PI3K/AKT/mTOR/PTEN pathway. This review discusses the genetic alterations associated with the PI3K/AKT/mTOR/PTEN pathway to help clinicians understand drug selection, resistance, or interaction from a molecular pathologist's perspective.
Collapse
Affiliation(s)
- Liu Liu
- Department of Pathology and Laboratory Medicine, Rhode Island Hospital and Brown University Health, Providence, RI 02903, USA;
- Legorreta Cancer Center, Warren Alpert School of Medicine, Brown University, Providence, RI 02903, USA;
| | - Stephanie L. Graff
- Legorreta Cancer Center, Warren Alpert School of Medicine, Brown University, Providence, RI 02903, USA;
- Division of Medical Oncology, Rhode Island Hospital and Brown University Health, Providence, RI 02903, USA
| | - Yihong Wang
- Department of Pathology and Laboratory Medicine, Rhode Island Hospital and Brown University Health, Providence, RI 02903, USA;
- Legorreta Cancer Center, Warren Alpert School of Medicine, Brown University, Providence, RI 02903, USA;
| |
Collapse
|
8
|
Liu J, Gao K, Ren X, Wu T, Zhang H, Yang D, Wang H, Xu Y, Yan Y. TMT-based proteomic analysis of radiation lung injury in rats. Clin Proteomics 2024; 21:67. [PMID: 39701953 DOI: 10.1186/s12014-024-09518-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 12/09/2024] [Indexed: 12/21/2024] Open
Abstract
Radiation-induced lung injury (RILI) is a common adverse effect of radiation therapy that negatively affects treatment progression and the quality of life of patients. Identifying biomarkers for RILI can provide reference for the prevention and treatment of RILI in clinical practice. In this study, to explore key proteins related to RILI, we constructed a rat model of RILI and analyzed RILI tissues and normal lung tissues using tandem mass spectrometry labeling and quantitative proteomics technology. We used Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment, Gene Ontology (GO) enrichment and protein-protein interaction (PPI) networks for bioinformatics analysis of Differentially expressed proteins (DEPs). The results identified 185 differentially expressed proteins in lung tissue from the RILI group compared with the controls, including 110 up-regulated proteins and 75 down-regulated proteins. GO analysis showed that the differentially expressed proteins were involved oxidation-reduction process, cellular biosynthetic processes and extracellular matrix. KEGG results demonstrated that the differentially expressed proteins were mainly involved in the PI3K-Akt, ECM receptor interactions, arachidonic acid metabolism, glutathione metabolism and other pathways. These results on the functions and signaling pathways of the differentially expressed proteins provide a theoretical basis for further study of the mechanism of RILI.
Collapse
Affiliation(s)
- Jing Liu
- Graduate school of Dalian Medical University, Dalian, China
- Department of Radiation Oncology, General Hospital of Northern Theater Command, No. 83 Wenhua Road, Shenhe District, Shenyang, l10016, China
| | - Kuanke Gao
- Department of Radiation Oncology, General Hospital of Northern Theater Command, No. 83 Wenhua Road, Shenhe District, Shenyang, l10016, China
| | - Xue Ren
- Department of Radiation Oncology, General Hospital of Northern Theater Command, No. 83 Wenhua Road, Shenhe District, Shenyang, l10016, China
| | - Tong Wu
- Department of Radiation Oncology, General Hospital of Northern Theater Command, No. 83 Wenhua Road, Shenhe District, Shenyang, l10016, China
| | - Haibo Zhang
- Department of Radiation Oncology, General Hospital of Northern Theater Command, No. 83 Wenhua Road, Shenhe District, Shenyang, l10016, China
| | - Defu Yang
- Department of Radiation Oncology, General Hospital of Northern Theater Command, No. 83 Wenhua Road, Shenhe District, Shenyang, l10016, China
| | - Hengjiao Wang
- Department of Radiation Oncology, General Hospital of Northern Theater Command, No. 83 Wenhua Road, Shenhe District, Shenyang, l10016, China
| | - Ying Xu
- Department of Radiation Oncology, General Hospital of Northern Theater Command, No. 83 Wenhua Road, Shenhe District, Shenyang, l10016, China.
| | - Ying Yan
- Department of Radiation Oncology, General Hospital of Northern Theater Command, No. 83 Wenhua Road, Shenhe District, Shenyang, l10016, China.
| |
Collapse
|
9
|
Jaiswal R, Bhati G, Ahmed S, Siddiqi MI. iDCNNPred: an interpretable deep learning model for virtual screening and identification of PI3Ka inhibitors against triple-negative breast cancer. Mol Divers 2024:10.1007/s11030-024-11055-9. [PMID: 39648257 DOI: 10.1007/s11030-024-11055-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 11/12/2024] [Indexed: 12/10/2024]
Abstract
Triple-negative breast cancer (TNBC) lacks estrogen, progesterone, and HER2 expression, accounting for 15-20% of breast cancer cases. It is challenging due to low therapeutic response, heterogeneity, and aggressiveness. The PI3Ka isoform is a promising therapeutic target, often hyperactivated in TNBC, contributing to uncontrolled growth and cancer cell formation. We have proposed an interpretable deep convolutional neural network prediction (iDCNNPred) system using 2D molecular images to classify bioactivity and identify potential PI3Ka inhibitors. We built Custom-DCNN models and pre-trained models such as AlexNet, SqueezeNet, and VGG19 by using the Bayesian optimization algorithm, and found that our Custom-DCNN model performed better than a pre-trained model with lower complexity and memory usage. All top-performed models were screened with the Maybridge Chemical library to find predictive hit molecules. The screened molecules were further evaluated for protein-ligand interaction with molecular docking and finally 12 promising hits were shortlisted for biological validation using in-vitro PI3K inhibition studies. After biological evaluation, 4 potent molecules with different structural moieties were identified, and these molecules present new starting scaffolds for further improvement in terms of their potency and selectivity as PI3K inhibitors with the help of medicinal chemistry efforts. Furthermore, we also showed the significance of the interpretation and visualization of the model's predictions by the Grad-CAM technique, enhancing the robustness, transparency, and interpretability of the model's predictions. The data and script files and prediction run of models used for this study to reproduce the experiment are available in the GitHub repository at https://github.com/ravishankar1307/iDCNNPred.git .
Collapse
Affiliation(s)
- Ravishankar Jaiswal
- Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Girdhar Bhati
- Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India
| | - Shakil Ahmed
- Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India
| | - Mohammad Imran Siddiqi
- Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
10
|
Yang J, Zhong X, Gao X, Xie W, Chen Y, Liao Y, Zhang P. Knockdown of PIK3R6 impedes the onset and advancement of clear cell renal cell carcinoma. Cell Adh Migr 2024; 18:1-12. [PMID: 38831518 PMCID: PMC11152098 DOI: 10.1080/19336918.2024.2353920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 05/07/2024] [Indexed: 06/05/2024] Open
Abstract
In this research, we investigated the role of PIK3R6, a regulatory subunit of PI3Kγ, known for its tumor-promoting properties, in clear cell renal cell carcinoma (CCRCC). Utilizing the UALCAN website, we found PIK3R6 upregulated in CCRCC, correlating with lower survival rates. We compared PIK3R6 expression in CCRCC tumor tissues and adjacent normal tissues using immunohistochemistry. Post RNA interference-induced knockdown of PIK3R6 in 786-O and ACHN cell lines, we performed CCK-8, colony formation, Edu staining, flow cytometry, wound healing, and transwell assays. Results showed that PIK3R6 silencing reduced cell proliferation, migration, and invasion, and induced G0/G1 phase arrest and apoptosis. Molecular analysis revealed decreased CDK4, Cyclin D1, N-cadherin, Vimentin, Bcl-2, p-PI3K and p-AKT, with increased cleaved caspase-3, Bax, and E-cadherin levels in CCRCC cells. Moreover, inhibiting PIK3R6 hindered tumor growth. These findings suggest a significant role for PIK3R6 in CCRCC cell proliferation and metastasis, presenting it as a potential therapeutic target.
Collapse
Affiliation(s)
- Jia Yang
- College of Public Health, Chongqing Medical University, Chongqing, China
- Department of Nephrology, Chongqing Ninth People’s Hospital, Chongqing, China
- Cost Management Research Center, Chongqing Ninth People’s Hospital, Chongqing, China
| | - Xiaoni Zhong
- College of Public Health, Chongqing Medical University, Chongqing, China
| | - Xiaoling Gao
- Department of Nephrology, Chongqing Ninth People’s Hospital, Chongqing, China
| | - Wenyi Xie
- Department of Nephrology, Chongqing Ninth People’s Hospital, Chongqing, China
- Cost Management Research Center, Chongqing Ninth People’s Hospital, Chongqing, China
| | - Yaokai Chen
- Scientific Research and Education Department, Chongqing Public Health Medical Center, Chongqing, China
| | - Yuanjiang Liao
- Department of Nephrology, Chongqing Ninth People’s Hospital, Chongqing, China
| | - Peilin Zhang
- Cost Management Research Center, Chongqing Ninth People’s Hospital, Chongqing, China
| |
Collapse
|
11
|
Svec J, Onhajzer J, Korinek V. Origin, development and therapy of colorectal cancer from the perspective of a biologist and an oncologist. Crit Rev Oncol Hematol 2024; 204:104544. [PMID: 39490796 DOI: 10.1016/j.critrevonc.2024.104544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/22/2024] [Accepted: 10/22/2024] [Indexed: 11/05/2024] Open
Abstract
The intestinal epithelium, a rapidly renewing tissue, is characterized by a continuous cell turnover that occurs through a well-coordinated process of cell proliferation and differentiation. This dynamic is crucial for the long-term function of the gastrointestinal tract. Disruption of this process can lead to colorectal carcinoma, a common malignancy worldwide. The first part of the review focuses on the cellular composition of the epithelium and the molecular mechanisms that control its functions, and describes the pathways that lead to epithelial transformation and tumor progression. This forms the basis for understanding the development and progression of advanced colorectal cancer. The second part deals with current therapeutic approaches and presents the latest treatment options, ongoing clinical trials and new drugs. In addition, the biological and medical perspectives of the adverse effects of therapies and models of regeneration of the intestinal epithelium are highlighted and, finally, future treatment options are discussed.
Collapse
Affiliation(s)
- Jiri Svec
- Laboratory of Cell and Developmental Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic; Department of Oncology, Third Faculty of Medicine, Charles University, University Hospital Kralovske Vinohrady, Prague, Czech Republic
| | - Jakub Onhajzer
- Laboratory of Cell and Developmental Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Vladimir Korinek
- Laboratory of Cell and Developmental Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic.
| |
Collapse
|
12
|
Liang Y, Chen X, Zhang X, Guo C, Zhang Y. Virus-driven dysregulation of the BCR pathway: a potential mechanism for the high prevalence of HIV related B-cell lymphoma. Ann Hematol 2024; 103:4839-4849. [PMID: 39196379 DOI: 10.1007/s00277-024-05959-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 08/19/2024] [Indexed: 08/29/2024]
Abstract
In people living with HIV (PLWH), the susceptibility to malignancies is notably augmented, with lymphoma emerging as a predominant malignancy. Even in the antiretroviral therapy (ART) era, aggressive B-cell lymphoma stands out as a paramount concern. Yet, the pathogenesis of HIV related lymphoma (HRL) largely remains an enigma. Recent insights underscore the pivotal role of the dysregulated B cell receptor (BCR) signaling cascade, evidencing its oncogenic potential across a spectrum of lymphomas. Intricate interplays between HIV and BCR structural-functional integrity have been identified in PLWH. In this review, we elucidated the mechanism by which the BCR signaling pathway is involved in HRL, mainly including the following aspects: HIV can reshape BCR structure by modulating of activation-induced cytidine deaminase (AID) and recombination-activating gene (RAG) dynamics; HIV can act as a chronic antigen to activate the BCR signaling pathway, such as upregulating PI3K and MAPK signaling pathway and reducing the expression of CD300a; HIV co-infection with other oncogenic viruses may also influence tumor formation mediated by the BCR signaling pathway. This review aims to elucidate the intricate regulation of the BCR signaling pathway by HIV in B cell lymphoma, providing a novel perspective on the pathogenesis of lymphoma in HIV-affected environments.
Collapse
Affiliation(s)
- Ying Liang
- Beijing Key Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Beijing Institute of Hepatology, Capital Medical University, Beijing, 100069, China
| | - Xue Chen
- Beijing Key Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Beijing Institute of Hepatology, Capital Medical University, Beijing, 100069, China
| | - Xiuqun Zhang
- Department of Hematology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Caiping Guo
- Beijing Key Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Beijing Institute of Hepatology, Capital Medical University, Beijing, 100069, China.
| | - Yulin Zhang
- Department of Respiratory and Critical Care Medicine, Beijing Youan Hospital, Capital Medical University, Beijing100069, China.
| |
Collapse
|
13
|
Yuan B, Feng Y, Ma M, Duan W, Wu Y, Liu J, Zhao HY, Yang Z, Zhang SQ, Xin M. Lysine-Targeted Covalent Inhibitors of PI3Kδ Synthesis and Screening by In Situ Interaction Upgradation. J Med Chem 2024; 67:20076-20099. [PMID: 39561981 DOI: 10.1021/acs.jmedchem.4c01284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
Targeting the lysine residue of protein kinases to develop covalent inhibitors is an emerging hotspot. Herein, we have reported an approach to develop lysine-targeted covalent inhibitors of PI3Kδ by in situ interaction upgradation of the H-bonding to covalent bonding. Several warhead groups were introduced and screened in situ, leading to lysine-targeted covalent inhibitors bearing aromatic esters with high bioactivity and PI3Kδ selectivity. Compound A11 bearing phenolic ester was finally optimized to show a long duration of action in SU-DHL-6 cells by multiple assays. Docking simulation and further protein mass spectrometry confirmed that A11 bound to PI3Kδ by covalent-bonding interactions with Lys779. Furthermore, A11 exhibited potently antitumor efficacy without obvious toxicity in the SU-DHL-6 and Pfeiffer xenograft mouse models. This study identified A11 to be a much more effective antitumor agent in vitro and in vivo as a lysine-targeted covalent inhibitor, and it also provided a practical approach for the development of lysine-targeted covalent inhibitors.
Collapse
Affiliation(s)
- Bo Yuan
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P. R. China
| | - Yifan Feng
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P. R. China
| | - Mengyan Ma
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P. R. China
| | - Weiming Duan
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P. R. China
| | - Yujie Wu
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P. R. China
| | - Jiaxin Liu
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P. R. China
| | - Hong-Yi Zhao
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P. R. China
| | - Zhe Yang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P. R. China
| | - San-Qi Zhang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P. R. China
| | - Minhang Xin
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P. R. China
| |
Collapse
|
14
|
Jiang Y, Wu W, Xie L, Zhou Y, Yang K, Wu D, Xu W, Fang R, Ge J. Molecular targets and mechanisms of Sijunzi decoction in the treatment of Parkinson's disease: evidence from network pharmacology, molecular docking, molecular dynamics simulation, and experimental validation. Front Pharmacol 2024; 15:1487474. [PMID: 39660000 PMCID: PMC11629541 DOI: 10.3389/fphar.2024.1487474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 10/31/2024] [Indexed: 12/12/2024] Open
Abstract
Aim To explore the molecular mechanism of Sijunzi Decoction (SJZD) in the treatment of Parkinson's disease (PD) through the application of network pharmacology, molecular docking, and molecular dynamics simulations, complemented by experimental verification. Methods The BATMAN-TCM, GeneCards, and DisGeNet databases were searched to screen the active components and therapeutic targets of SJZD. Cytoscape (3.7.1) was used to create a network diagram of the components and targets. The STRING platform was used to construct a protein-protein interaction (PPI) network. The Bioconductor database and RX64 (4.0.0) software were used to conduct Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis on the core target genes. The binding sites and binding energies between SJZD active components and the target were analyzed by molecular docking and dynamic simulation. Finally, the therapeutic effect and mechanism of SJZD were verified by Cell Counting Kit-8 (CCK-8) and Western blotting (WB). Results This research identified 188 active compounds in SJZD, 1568 drug targets, 2069 PD targets, and 451 intersection targets related to PD. According to network analysis, Adenosine Triphosphate, Tridecanoic Acid, Hexadecanoic Acid, Pentadecanoic Acid, and Adenosine were identified as the core components of SJZD in the treatment of PD. The five targets with the highest Degree values in the PPI network were AKT1, INS, TNF, IL-6, and TP53. The GO and KEGG enrichment analyses, in turn, determined that the administration of SJZD for the treatment of PD may engage processes such as xenobiotic stimulation and biological stimulus response. Furthermore, AGE-RAGE and cAMP signaling pathways related to diabetic complications may be involved. Molecular docking and kinetic simulations showed that IL-6 and AKT1 bind best to Adenosine. Experimental results showed that SJZD significantly reduced 6-OHDA-induced apoptosis of SH⁃SY5Y cells by activating the PI3K/AKT signaling pathway and regulating the expression of apoptosis factors such as Bcl⁃2 and Bax. Conclusion SJZD is essential in the processes of apoptosis and neuronal protection, acting through various components that target multiple pathways. Notably, the PI3K/AKT pathway is a verified SJZD-PD target, providing a reference for clinical precision drug use for PD.
Collapse
Affiliation(s)
- Yang Jiang
- Hunan Academy of Chinese Medicine, Changsha, Hunan, China
- Department of Gastroenterology, Hunan Provincial Hospital of Integrated Traditional Chinese and Western Medicine, Changsha, Hunan, China
| | - Wanfeng Wu
- Department of Gastroenterology, Hunan Provincial Hospital of Integrated Traditional Chinese and Western Medicine, Changsha, Hunan, China
| | - Le Xie
- Department of Neurology, Hunan Provincial Hospital of Integrated Traditional Chinese and Western Medicine, Changsha, Hunan, China
| | - Yue Zhou
- Department of Scientific Research, Hunan Academy of Chinese Medicine, Changsha, Hunan, China
| | - Kailin Yang
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Dahua Wu
- Hunan Provincial Hospital of Integrated Traditional Chinese and Western Medicine, Changsha, Hunan, China
| | - Wenfeng Xu
- Department of Nephrology, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Rui Fang
- Hunan Academy of Chinese Medicine, Changsha, Hunan, China
- Department of Neurology, Hunan Provincial Hospital of Integrated Traditional Chinese and Western Medicine, Changsha, Hunan, China
- Institute of Clinical Pharmacology of Chinese Medicine, Hunan Academy of Chinese Medicine, Changsha, Hunan, China
| | - Jinwen Ge
- Hunan Academy of Chinese Medicine, Changsha, Hunan, China
- Department of Neurology, Hunan Provincial Hospital of Integrated Traditional Chinese and Western Medicine, Changsha, Hunan, China
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| |
Collapse
|
15
|
Utpal BK, Mokhfi FZ, Zehravi M, Sweilam SH, Gupta JK, Kareemulla S, C RD, Rao AA, Kumar VV, Krosuri P, Prasad D, Khan SL, Roy SC, Rab SO, Alshehri MA, Emran TB. Resveratrol: A Natural Compound Targeting the PI3K/Akt/mTOR Pathway in Neurological Diseases. Mol Neurobiol 2024:10.1007/s12035-024-04608-4. [PMID: 39578340 DOI: 10.1007/s12035-024-04608-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 11/01/2024] [Indexed: 11/24/2024]
Abstract
Neurological diseases (NDs), including neurodegenerative disorders and acute injuries, are a significant global health concern. The PI3K/Akt/mTOR pathway, a crucial signaling cascade, is responsible for the survival of cells, proliferation, and metabolism. Dysregulation of this pathway has been linked to neurological conditions, indicating its potential as a vital target for therapeutic approaches. Resveratrol (RSV), a natural compound found in berries, peanuts, and red grapes, has antioxidant, anti-cancer, and anti-inflammatory effects. Its ability to modulate the PI3K/Akt/mTOR pathway has been interesting in NDs. Studies have shown that RSV can activate the PI3K/Akt pathway, promoting cell survival and inhibiting apoptosis of neuronal cells. Its impact on mTOR, a downstream effector of Akt, further contributes to its neuroprotective effects. RSV's ability to restore autophagic flux presents a promising avenue for therapeutic intervention. Its anti-inflammatory properties suppress inflammatory responses by inhibiting key signaling molecules within the pathway. Additionally, RSV's role in enhancing mitochondrial function contributes to its neuroprotective profile. This study highlights RSV's potential as a multifaceted therapeutic agent in NDs, specifically by PI3K/Akt/mTOR pathway modulation. Additional investigation is required to optimize its therapeutic capacity in diverse neurological conditions.
Collapse
Affiliation(s)
- Biswajit Kumar Utpal
- Department of Pharmacy, Faculty of Health and Life Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| | - Fatima Zohra Mokhfi
- Laboratory of AgroBiotechnology and Nutrition in Semi Arid Zones, Faculty of Nature and Life Sciences, University of Ibn Khaldoun, Tiaret, Algeria
| | - Mehrukh Zehravi
- Department of Clinical Pharmacy, College of Dentistry & Pharmacy, Buraydah Private Colleges, Buraydah, 51418, Saudi Arabia.
| | - Sherouk Hussein Sweilam
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
- Department of Pharmacognosy, Faculty of Pharmacy, Egyptian Russian University, Cairo-Suez Road, Badr City, Cairo, 11829, Egypt
| | - Jeetendra Kumar Gupta
- Department of Pharmacology, Institute of Pharmaceutical Research, GLA University Mathura, Chaumuha, Mathura, Uttar Pradesh, 281406, India
| | - Shaik Kareemulla
- Department of Pharmacy Practice, Malla Reddy College of Pharmacy (MRCP), Kompally, Secunderabad, Telangana, 500100, India
| | - Ronald Darwin C
- Department of Pharmacology, School of Pharmaceutical Sciences, Technology and Advanced Studies (VISTAS), Vels Institute of Science, Pallavaram, Chennai, 600117, India
| | - A Anka Rao
- KL College of Pharmacy, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Guntur, Andhra Pradesh, 522502, India
| | - Voleti Vijaya Kumar
- Department of Pharmaceutics, School of Pharmacy, Satyabhama Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Pavankumar Krosuri
- Department of Pharmaceutics, Santhiram College of Pharmacy, NH40, Nandyal, Andhra Pradesh, 518112, India
| | - Dharani Prasad
- Depertment of Pharmacology Mohan Babu University MB School of Pharmaceutical Sciences, Erstwhile Sree Vidyaniketan College of Pharmacy, Tirupati, Andhra Pradesh, 517102, India
| | - Sharukh L Khan
- Department of Pharmaceutical Chemistry, N.B.S. Institute of Pharmacy, Ausa, 413520, Maharashtra, India
| | - Sajib Chandra Roy
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Safia Obaidur Rab
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha, Saudi Arabia
| | - Mohammed Ali Alshehri
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk, 71491, Saudi Arabia
| | - Talha Bin Emran
- Department of Pharmacy, Faculty of Health and Life Sciences, Daffodil International University, Dhaka, 1207, Bangladesh.
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong, 4381, Bangladesh.
| |
Collapse
|
16
|
Duta-Ion SG, Juganaru IR, Hotinceanu IA, Dan A, Burtavel LM, Coman MC, Focsa IO, Zaruha AG, Codreanu PC, Bohiltea LC, Radoi VE. Redefining Therapeutic Approaches in Colorectal Cancer: Targeting Molecular Pathways and Overcoming Resistance. Int J Mol Sci 2024; 25:12507. [PMID: 39684219 DOI: 10.3390/ijms252312507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 11/12/2024] [Accepted: 11/19/2024] [Indexed: 12/18/2024] Open
Abstract
Colorectal cancer (CRC) arises through a combination of genetic and epigenetic alterations that affect key pathways involved in tumor growth and progression. This review examines the major molecular pathways driving CRC, including Chromosomal Instability (CIN), Microsatellite Instability (MSI), and the CpG Island Methylator Phenotype (CIMP). Key mutations in genes such as APC, KRAS, NRAS, BRAF, and TP53 activate signaling pathways like Wnt, EGFR, and PI3K/AKT, contributing to tumorigenesis and influencing responses to targeted therapies. Resistance mechanisms, including mutations that bypass drug action, remain challenging in CRC treatment. This review highlights the role of molecular profiling in guiding the use of targeted therapies such as tyrosine kinase inhibitors and immune checkpoint inhibitors. Novel combination treatments are also discussed as strategies to improve outcomes and overcome resistance. Understanding these molecular mechanisms is critical to advancing personalized treatment approaches in CRC and improving patient prognosis.
Collapse
Affiliation(s)
- Simona Gabriela Duta-Ion
- Department of Medical Genetics, "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Ioana Ruxandra Juganaru
- Department of Medical Genetics, "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Iulian Andrei Hotinceanu
- Department of Medical Genetics, "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Andra Dan
- Department of Medical Genetics, "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Livia Malina Burtavel
- Department of Medical Genetics, "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Madalin Codrut Coman
- Department of Medical Genetics, "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Ina Ofelia Focsa
- Department of Medical Genetics, "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Andra Giorgiana Zaruha
- Department of Medical Genetics, "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Patricia Christina Codreanu
- Department of Medical Genetics, "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Laurentiu Camil Bohiltea
- Department of Medical Genetics, "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania
- "Alessandrescu-Rusescu" National Institute for Maternal and Child Health, 20382 Bucharest, Romania
| | - Viorica Elena Radoi
- Department of Medical Genetics, "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania
- "Alessandrescu-Rusescu" National Institute for Maternal and Child Health, 20382 Bucharest, Romania
| |
Collapse
|
17
|
Ju S, Singh MK, Han S, Ranbhise J, Ha J, Choe W, Yoon KS, Yeo SG, Kim SS, Kang I. Oxidative Stress and Cancer Therapy: Controlling Cancer Cells Using Reactive Oxygen Species. Int J Mol Sci 2024; 25:12387. [PMID: 39596452 PMCID: PMC11595237 DOI: 10.3390/ijms252212387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/31/2024] [Accepted: 11/13/2024] [Indexed: 11/28/2024] Open
Abstract
Cancer is a multifaceted disease influenced by various mechanisms, including the generation of reactive oxygen species (ROS), which have a paradoxical role in both promoting cancer progression and serving as targets for therapeutic interventions. At low concentrations, ROS serve as signaling agents that enhance cancer cell proliferation, migration, and resistance to drugs. However, at elevated levels, ROS induce oxidative stress, causing damage to biomolecules and leading to cell death. Cancer cells have developed mechanisms to manage ROS levels, including activating pathways such as NRF2, NF-κB, and PI3K/Akt. This review explores the relationship between ROS and cancer, focusing on cell death mechanisms like apoptosis, ferroptosis, and autophagy, highlighting the potential therapeutic strategies that exploit ROS to target cancer cells.
Collapse
Affiliation(s)
- Songhyun Ju
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (S.J.); (M.K.S.); (S.H.); (J.R.); (J.H.); (W.C.); (K.-S.Y.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Manish Kumar Singh
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (S.J.); (M.K.S.); (S.H.); (J.R.); (J.H.); (W.C.); (K.-S.Y.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Sunhee Han
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (S.J.); (M.K.S.); (S.H.); (J.R.); (J.H.); (W.C.); (K.-S.Y.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Jyotsna Ranbhise
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (S.J.); (M.K.S.); (S.H.); (J.R.); (J.H.); (W.C.); (K.-S.Y.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Joohun Ha
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (S.J.); (M.K.S.); (S.H.); (J.R.); (J.H.); (W.C.); (K.-S.Y.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Wonchae Choe
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (S.J.); (M.K.S.); (S.H.); (J.R.); (J.H.); (W.C.); (K.-S.Y.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Kyung-Sik Yoon
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (S.J.); (M.K.S.); (S.H.); (J.R.); (J.H.); (W.C.); (K.-S.Y.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Seung Geun Yeo
- Department of Otorhinolaryngology—Head and Neck Surgery, College of Medicine, Kyung Hee University Medical Center, Kyung Hee University, Seoul 02453, Republic of Korea;
| | - Sung Soo Kim
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (S.J.); (M.K.S.); (S.H.); (J.R.); (J.H.); (W.C.); (K.-S.Y.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Insug Kang
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (S.J.); (M.K.S.); (S.H.); (J.R.); (J.H.); (W.C.); (K.-S.Y.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
18
|
Zhang H, Qi HZ, Li YJ, Shi XY, Hu ML, Chen XL, Li Y. Identification of novel inhibitors targeting PI3Kα via ensemble-based virtual screening method, biological evaluation and molecular dynamics simulation. J Comput Aided Mol Des 2024; 38:37. [PMID: 39528618 DOI: 10.1007/s10822-024-00580-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024]
Abstract
PIK3CA gene encoding PI3K p110α is one of the most frequently mutated and overexpressed in majority of human cancers. Development of potent and selective novel inhibitors targeting PI3Kα was considered as the most promising approaches for cancer treatment. In this investigation, a virtual screening platform for PI3Kα inhibitors was established by employing machine learning methods, pharmacophore modeling, and molecular docking approaches. 28 potential PI3Kα inhibitors with different scaffolds were selected from the databases with 295,024 compounds. Among the 28 hits, hit15 exhibited the best inhibitory effect against PI3Kα with IC50 value less than 1.0 µM. The molecular dynamics simulation indicated that hit15 could stably bind to the active site of PI3Kα, interact with some residues by hydrophobic, electrostatic and hydrogen bonding interactions, and finally induced PI3Kα active pocket substantial conformation changes. Stable H-bond interactions were formed between hit15 and residues of Lys776, Asp810 and Asp933. The binding free energy of PI3Kα-hit15 was - 65.3 kJ/mol. The free energy decomposition indicated that key residues of Asp805, Ile848 and Ile932 contributed stronger energies to the binding free energy. The above results indicated that hit15 with novel scaffold was a potent PI3Kα inhibitor and considered as a promising candidate for further drug development to treat various cancers with PI3Kα over activated.
Collapse
Affiliation(s)
- Hui Zhang
- College of Life Science, Northwest Normal University, Lanzhou, 730070, Gansu, People's Republic of China.
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China.
| | - Hua-Zhao Qi
- College of Life Science, Northwest Normal University, Lanzhou, 730070, Gansu, People's Republic of China
| | - Ya-Juan Li
- College of Life Science, Northwest Normal University, Lanzhou, 730070, Gansu, People's Republic of China
| | - Xiu-Yun Shi
- College of Life Science, Northwest Normal University, Lanzhou, 730070, Gansu, People's Republic of China
| | - Mei-Ling Hu
- College of Life Science, Northwest Normal University, Lanzhou, 730070, Gansu, People's Republic of China
| | - Xiang-Long Chen
- College of Life Science, Northwest Normal University, Lanzhou, 730070, Gansu, People's Republic of China
| | - Yuan Li
- College of Life Science, Northwest Normal University, Lanzhou, 730070, Gansu, People's Republic of China
| |
Collapse
|
19
|
Lian S, Du Z, Chen Q, Xia Y, Miao X, Yu W, Sun Q, Feng C. From lab to clinic: The discovery and optimization journey of PI3K inhibitors. Eur J Med Chem 2024; 277:116786. [PMID: 39180946 DOI: 10.1016/j.ejmech.2024.116786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/13/2024] [Accepted: 08/15/2024] [Indexed: 08/27/2024]
Abstract
PI3K inhibitors have emerged as promising therapeutic agents due to their critical role in various cellular processes, particularly in cancer, where the PI3K pathway is frequently dysregulated. This review explores the evolutionary path of PI3K inhibitors from laboratory discovery to clinical application. The journey begins with early laboratory investigations into PI3K signaling and inhibitor development, highlighting fundamental discoveries that laid the foundation for subsequent advancements. Optimization strategies, including medicinal chemistry approaches and structural modifications, are scrutinized for their contributions to enhancing inhibitor potency, selectivity, and pharmacokinetic properties. The translation from preclinical studies to clinical trials is examined, emphasizing pivotal trials that evaluated efficacy and safety profiles. Challenges encountered during clinical development are critically assessed. Finally, the review discusses ongoing research directions and prospects for PI3K inhibitors, underscoring these agents' continuous evolution and therapeutic potential.
Collapse
Affiliation(s)
- Siyu Lian
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zhenhua Du
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Qingqing Chen
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yu Xia
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xinxin Miao
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Weiwei Yu
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China.
| | - Qian Sun
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China.
| | - Chong Feng
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
20
|
Lahnine G, Saddouki F, Bouanani Z, Akammar A, Bouardi NE, Haloua M, Alami B, Lamrani YA, Maaroufi M, Boubbou M. Congenital infiltrating lipomatosis of the face: Case report. Radiol Case Rep 2024; 19:5196-5200. [PMID: 39263506 PMCID: PMC11387536 DOI: 10.1016/j.radcr.2024.07.146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/24/2024] [Accepted: 07/25/2024] [Indexed: 09/13/2024] Open
Abstract
A rare disorder called congenital infiltrating lipomatosis of the face is characterized by a diffuse fatty infiltration of the soft tissues of the face. Muscle involvement and related bony hyperplasia may coexist. This particular form of lipomatous tumor is rare and typically appears in childhood. It is congenital in nature. Collections of mature, nonencapsulated lipocytes that infiltrate local tissues and frequently recur following surgery define congenital infiltrating lipomatosis, a unique clinicopathologic condition. The best modalities are, CT scan and MRI since they can determine the extent of the lesions and reveal their fat content. The treatment of this disease is surgical as soon as possible to restrict their infiltrative growth and improve the appearance of the face. We describe a case of massive facial invading lipoma that was investigated using MRI.
Collapse
Affiliation(s)
- Ghita Lahnine
- Mother and Child Radiology Department, University of Sidi Mohammed Benabdellah, CHU Hassan II, Fes, Morocco
| | - Fatima Saddouki
- Mother and Child Radiology Department, University of Sidi Mohammed Benabdellah, CHU Hassan II, Fes, Morocco
| | - Zineb Bouanani
- Mother and Child Radiology Department, University of Sidi Mohammed Benabdellah, CHU Hassan II, Fes, Morocco
| | - Amal Akammar
- Mother and Child Radiology Department, University of Sidi Mohammed Benabdellah, CHU Hassan II, Fes, Morocco
| | - Nizar El Bouardi
- Central Radiology Department, University of Sidi Mohammed Benabdellah, CHU Hassan II, Fes, Morocco
| | - Meriem Haloua
- Mother and Child Radiology Department, University of Sidi Mohammed Benabdellah, CHU Hassan II, Fes, Morocco
| | - Badr Alami
- Central Radiology Department, University of Sidi Mohammed Benabdellah, CHU Hassan II, Fes, Morocco
| | - Youssef A Lamrani
- Central Radiology Department, University of Sidi Mohammed Benabdellah, CHU Hassan II, Fes, Morocco
| | - Mustapha Maaroufi
- Central Radiology Department, University of Sidi Mohammed Benabdellah, CHU Hassan II, Fes, Morocco
| | - Meriem Boubbou
- Mother and Child Radiology Department, University of Sidi Mohammed Benabdellah, CHU Hassan II, Fes, Morocco
| |
Collapse
|
21
|
Freitas de Sousa FJ, Nunes Azevedo FF, Santos de Oliveira FL, Vieira Carletti J, Freire VN, Zanatta G. Quantum biochemistry description of PI3Kα enzyme bound to selective inhibitors. J Biomol Struct Dyn 2024; 42:9283-9293. [PMID: 37632299 DOI: 10.1080/07391102.2023.2251063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023]
Abstract
The PI3K class I is composed of four PI3K isoforms that serve as regulatory enzymes governing cellular metabolism, proliferation, and survival. The hyperactivation of PI3Kα is observed in various types of cancer and is linked to poor prognosis. Unfortunately, the development inhibitors selectively targeting one of the isoforms remains challenging, with only few agents in clinical use. The main difficulty arises from the high conservation among residues at the ATP-binding pocket across isoforms, which also serves as target pocket for inhibitors. In this work, molecular dynamics and quantum calculations were performed to investigate the molecular features guiding the binding of selective inhibitors, alpelisib and GDC-0326, into the ATP-binding pocket of PI3Kα. While molecular dynamics allowed crystallographic coordinates to relax, the interaction eergy between each amino acid residues and inhibitors was obtained by combining the Molecular Fractionation with Conjugated Caps scheme with Density Functional Theory calculations. In addition, the atomic charge of ligands in the bound and unbound (free) was calculated. Results indicated that the most relevant residues for the binding of alpelisib are Ile932, Glu859, Val851, Val850, Tyr836, Met922, Ile800, and Ile848, while the most important residues for the binding of GDC-0326 are Ile848, Ile800, Ile932, Gln859, Glu849, and Met922. In addition, residues Trp780, Ile800, Tyr836, Ile848, Gln859 Val850, Val851, Ile932 and Met922 are common hotspots for both inhibitors. Overall, the results from this work contribute to improving the understanding of the molecular mechanisms controlling selectivity and highlight important interactions to be considered during the rational design of new agents.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
| | | | | | | | | | - Geancarlo Zanatta
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, Brazil
- Department of Biophysics, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
22
|
Vijayarangam V, Gopalakrishnan Deviparasakthi MK, Balasubramanian P, Palaniyandi T, Ravindran R, Suliman M, Saeed M, Natarajan S, Sivaji A, Baskar G. Ferroptosis as a hero against oral cancer. Pathol Res Pract 2024; 263:155637. [PMID: 39393267 DOI: 10.1016/j.prp.2024.155637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/30/2024] [Accepted: 10/02/2024] [Indexed: 10/13/2024]
Abstract
Cancer is an abnormal condition altering the cells to proliferate out of control simultaneously being susceptible to evolution. The lining which is made up of tissues in the lips, upper throat and mouth can undergo mutations, is recognised as mouth cancer or oral cancer. Substantial number of mouth lesions are identified at a point where it is typically not possible to get effective remedial care. Ferroptosis is a cutting-edge instance of cellular destruction which stands out in distinction to other sorts of cell death. It appears to have distinctive cellular, molecular and gene-level attributes and scavenges on deposits of reactive oxygen species triggered via iron-induced lipid peroxidation. It is said to be involved dichotomously in cancer development. Because the ferroptotic tumour cells put out numerous chemicals that alternatively signal for cancer attenuation or growth. There is increasing proof that researchers are now keenly investigating to stimulate ferroptosis through various inducers and pathways in the intent for oral cancer therapeutics, specifically to kill malignant tumours that refuse to respond well to conventional treatments. Also, it has the ability to reverse chemotherapy and radiotherapy resistance in victims maximising the success rate of the treatments. This review centres on the stimulation of ferroptosis as a stand-alone therapy for oral cancer, or in combination with other medicines, agents and pathways.
Collapse
Affiliation(s)
- Varshini Vijayarangam
- Department of Biotechnology, Dr. M.G.R. Educational and Research Institute, Chennai 600095, India
| | | | - Priyanka Balasubramanian
- Department of Biotechnology, Dr. M.G.R. Educational and Research Institute, Chennai 600095, India
| | - Thirunavukkarasu Palaniyandi
- Department of Biotechnology, Dr. M.G.R. Educational and Research Institute, Chennai 600095, India; ACS-Advanced Medical Research Institute, Dr. M.G.R Educational and Research Institute, Chennai 600077, India.
| | - Rekha Ravindran
- Department of Biotechnology, Rajalakshmi Engineering College, Chennai 602105, India
| | - Muath Suliman
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Mohd Saeed
- Department of Biology, College of Science, University of Hail, Hail, Saudi Arabia
| | - Sudhakar Natarajan
- Department of Tuberculosis, ICMR - National Institute for Research in Tuberculosis (NIRT), Chennai 600031, India
| | - Asha Sivaji
- Department of Biochemistry, DKM College for Women, Vellore 632001, India
| | - Gomathy Baskar
- Department of Biotechnology, Dr. M.G.R. Educational and Research Institute, Chennai 600095, India
| |
Collapse
|
23
|
Gupta I, Gaykalova DA. Unveiling the role of PIK3R1 in cancer: A comprehensive review of regulatory signaling and therapeutic implications. Semin Cancer Biol 2024; 106-107:58-86. [PMID: 39197810 DOI: 10.1016/j.semcancer.2024.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/11/2024] [Accepted: 08/20/2024] [Indexed: 09/01/2024]
Abstract
Phosphoinositide 3-kinase (PI3K) is responsible for phosphorylating phosphoinositides to generate secondary signaling molecules crucial for regulating various cellular processes, including cell growth, survival, and metabolism. The PI3K is a heterodimeric enzyme complex comprising of a catalytic subunit (p110α, p110β, or p110δ) and a regulatory subunit (p85). The binding of the regulatory subunit, p85, with the catalytic subunit, p110, forms an integral component of the PI3K enzyme. PIK3R1 (phosphoinositide-3-kinase regulatory subunit 1) belongs to class IA of the PI3K family. PIK3R1 exhibits structural complexity due to alternative splicing, giving rise to distinct isoforms, prominently p85α and p55α. While the primary p85α isoform comprises multiple domains, including Src homology 3 (SH3) domains, a Breakpoint Cluster Region Homology (BH) domain, and Src homology 2 (SH2) domains (iSH2 and nSH2), the shorter isoform, p55α, lacks certain domains present in p85α. In this review, we will highlight the intricate regulatory mechanisms governing PI3K signaling along with the impact of PIK3R1 alterations on cellular processes. We will further delve into the clinical significance of PIK3R1 mutations in various cancer types and their implications for prognosis and treatment outcomes. Additionally, we will discuss the evolving landscape of targeted therapies aimed at modulating PI3K-associated pathways. Overall, this review will provide insights into the dynamic interplay of PIK3R1 in cancer, fostering advancements in precision medicine and the development of targeted interventions.
Collapse
Affiliation(s)
- Ishita Gupta
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA; Department of Otorhinolaryngology-Head and Neck Surgery, Marlene & Stewart Greenebaum Comprehensive Cancer Center, University of Maryland Medical Center, Baltimore, MD, USA
| | - Daria A Gaykalova
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA; Department of Otorhinolaryngology-Head and Neck Surgery, Marlene & Stewart Greenebaum Comprehensive Cancer Center, University of Maryland Medical Center, Baltimore, MD, USA; Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
24
|
Jia W, Liu J, Cheng X, Li X, Ma Y. In Silico Discovery of a Novel PI3Kδ Inhibitor Incorporating 3,5,7-Trihydroxychroman-4-one Targeting Diffuse Large B-Cell Lymphoma. Int J Mol Sci 2024; 25:11250. [PMID: 39457034 PMCID: PMC11508633 DOI: 10.3390/ijms252011250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/14/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) is the most common lymphoma, and it is highly aggressive and heterogeneous. Targeted therapy is still the main treatment method used in clinic due to its lower risk of side effects and personalized medication. Excessive activation of PI3Kδ in DLBCL leads to abnormal activation of the PI3K/Akt pathway, promoting the occurrence and development of DLBCL. The side effects of existing PI3Kδ inhibitors limit their clinical application. The discovery of PI3Kδ inhibitors with novel structures and minimal side effects is urgently needed. This study constructed a PI3Kδ inhibitor screening model to screen natural product libraries. Revealing the mechanism of natural product therapy for DLBCL through network pharmacology, kinase assays, and molecular dynamics. The results of molecular docking indicated that Silibinin had a high docking score and a good binding mode with PI3Kδ. The results of network pharmacology indicated that Silibinin could exert therapeutic effects on DLBCL by inhibiting PI3Kδ activity and affecting the PI3K/Akt pathway. The kinase assays indicated that Silibinin concentration dependently inhibited the activity of PI3Kδ. The results of molecular dynamics indicated that Silibinin could stably bind to PI3Kδ. Silibinin was a structurally novel 3,5,7-trihydroxychroman-4-one PI3Kδ inhibitor, providing valuable information for the subsequent discovery of PI3Kδ inhibitors.
Collapse
Affiliation(s)
- Wenqing Jia
- College of Chemistry and Chemical Engineering, Qilu Normal University, Jinan 250200, China; (W.J.); (J.L.)
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin 300070, China;
| | - Jingdian Liu
- College of Chemistry and Chemical Engineering, Qilu Normal University, Jinan 250200, China; (W.J.); (J.L.)
| | - Xianchao Cheng
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin 300070, China;
| | - Xingguo Li
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions, College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Yukui Ma
- College of Chemistry and Chemical Engineering, Qilu Normal University, Jinan 250200, China; (W.J.); (J.L.)
- New Drug Evaluation Center of Shandong Academy of Pharmaceutical Sciences, Shandong Academy of Pharmaceutical Sciences, Jinan 250101, China
| |
Collapse
|
25
|
Somri-Gannam L, Meisel-Sharon S, Hantisteanu S, Bar-Noy T, Sigal E, Groisman G, Hallak M, Werner H, Bruchim I. IGF1R inhibition and PD-1 blockade improve anti-tumor immune response in epithelial ovarian cancer. Front Oncol 2024; 14:1410447. [PMID: 39450263 PMCID: PMC11499063 DOI: 10.3389/fonc.2024.1410447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 09/10/2024] [Indexed: 10/26/2024] Open
Abstract
Introduction The insulin-like growth factor (IGF) system plays a key role in regulating growth and invasiveness in epithelial ovarian cancer (EOC) and is considered a promising therapeutic target. EOC is an immunosuppressive disease, although there are limited data about the involvement of the IGF1R system in the anti-tumor immune response in the EOC microenvironment. Methods In the current study, we hypothesized that IGF 1 receptor (IGF1R) involvement in the maturation of dendritic cells (DC) with the co-inhibition of IGF1R and PD-1 would affect the EOC microenvironment. Results We found that DC pretreated with IGF1R inhibitor resulted in fewer EOC cells. Moreover, in vivo experiments conducted with an EOC mouse model, with anti-PD-1/IGF1R combined, resulted in lower tumor weight compared to individual treatments. Additionally, anti-PD-1/IGF1R treatment increased DC by 34% compared with AEW-541 and 40% with anti-PD-1. The combined treatment increased CD8+ T-cell levels compared to AEW-541 alone. RNA-seq data analysis indicated that anti-PD-1/IGF1R led to a more potent immune response, as reflected by altered gene expression levels related to anti-tumor immune response, compared with either treatment alone. Discussion These findings provide novel evidence that IGF1R axis inhibition combined with PD-1 blockade may be an effective therapeutic strategy for selected EOC patient populations.
Collapse
Affiliation(s)
- Lina Somri-Gannam
- Gynecology Oncology Laboratory, Department of Obstetrics and Gynecology, Hillel Yaffe Medical Center, Hadera, Israel
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Shilhav Meisel-Sharon
- Gynecology Oncology Laboratory, Department of Obstetrics and Gynecology, Hillel Yaffe Medical Center, Hadera, Israel
| | - Shay Hantisteanu
- Gynecology Oncology Laboratory, Department of Obstetrics and Gynecology, Hillel Yaffe Medical Center, Hadera, Israel
| | - Tomer Bar-Noy
- Gynecology and Gynecologic Oncology Department, Hillel Yaffe Medical Center, Hadera, Israel
| | - Emiliya Sigal
- Gynecology and Gynecologic Oncology Department, Hillel Yaffe Medical Center, Hadera, Israel
| | - Gabriel Groisman
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
- Institute of Pathology, Hillel Yaffe Medical Center, Hadera, Israel
| | - Mordechai Hallak
- Gynecology Oncology Laboratory, Department of Obstetrics and Gynecology, Hillel Yaffe Medical Center, Hadera, Israel
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
- Gynecology and Gynecologic Oncology Department, Hillel Yaffe Medical Center, Hadera, Israel
| | - Haim Werner
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ilan Bruchim
- Gynecology Oncology Laboratory, Department of Obstetrics and Gynecology, Hillel Yaffe Medical Center, Hadera, Israel
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
- Gynecology and Gynecologic Oncology Department, Hillel Yaffe Medical Center, Hadera, Israel
| |
Collapse
|
26
|
Lim HY, Dolzhenko AV. 1,3,5-Triazine as a promising scaffold in the development of therapeutic agents against breast cancer. Eur J Med Chem 2024; 276:116680. [PMID: 39018924 DOI: 10.1016/j.ejmech.2024.116680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/09/2024] [Accepted: 07/12/2024] [Indexed: 07/19/2024]
Abstract
1,3,5-Triazine scaffold has garnered considerable interest due to its wide-ranging pharmacological properties, particularly in the field of cancer research. Breast cancer is the most commonly diagnosed cancer among women. Approximately one in eight women will receive a diagnosis of invasive breast cancer during their lifetime. The five-year survival rate for invasive breast cancer is less than 30 %, indicating a need to develop a more effective therapeutic agent targeting breast cancer. This review discusses bioactive 1,3,5-triazines targeting breast cancer cells by the inhibition of different enzymes, which include PI3K, mTOR, EGFR, VEGFR, FAK, CDK, DHFR, DNA topoisomerase, ubiquitin-conjugating enzyme, carbonic anhydrase, and matrix metalloproteinase. The anticancer agent search in some drug discovery programs is based on compound screening for antiproliferative activity. Often, multiple targets contribute to the anticancer effect of 1,3,5-triazines and this approach allows identification of active molecules prior to identification of their targets.
Collapse
Affiliation(s)
- Han Yin Lim
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Selangor Darul Ehsan, 47500, Malaysia.
| | - Anton V Dolzhenko
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Selangor Darul Ehsan, 47500, Malaysia; Curtin Medical School, Curtin Health Innovation Research Institute, Faculty of Health Sciences, Curtin University, GPO Box U1987 Perth, Western, Bentley, 6845, Australia
| |
Collapse
|
27
|
Wang L, Sun X, Chen J, Li Y, He Y, Wei J, Shen Z, Yoshida S. Macropinocytic cups function as signal platforms for the mTORC2-AKT pathway to modulate LPS-induced cytokine expression in macrophages. J Leukoc Biol 2024; 116:738-752. [PMID: 38513294 DOI: 10.1093/jleuko/qiae074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 01/30/2024] [Accepted: 02/27/2024] [Indexed: 03/23/2024] Open
Abstract
Macropinocytosis is a large-scale endocytosis process primarily observed in phagocytes as part of their cellular function to ingest antigens. Once phagocytes encounter gram-negative bacteria, the receptor proteins identify lipopolysaccharides (LPSs), which trigger radical membrane ruffles that gradually change to cup-like structures. The open area of the cups closes to generate vesicles called macropinosomes. The target bacteria are isolated by the cups and engulfed by the cells as the cups close. In addition to its ingestion function, macropinocytosis also regulates the AKT pathway in macrophages. In the current study, we report that macropinocytic cups are critical for LPS-induced AKT phosphorylation (pAKT) and cytokine expression in macrophages. High-resolution scanning electron microscope observations detailed the macropinocytic cup structures induced by LPS stimulation. Confocal microscopy revealed that AKT and the kinase molecule mTORC2 were localized in the cups. The biochemical analysis showed that macropinocytosis inhibition blocked LPS-induced pAKT. RNA sequencing, quantitative polymerase chain reaction, and enzyme-linked immunosorbent assay analyses revealed that the inhibition of macropinocytosis or the AKT pathway causes a decrease in the expression of proinflammatory cytokines interlukin-6 and interlukin-1α. Moreover, activation of the transcription factor nuclear factor κB, which regulates the cytokine expression downstream of the AKT/IκB pathway, was hindered when macropinocytosis or AKT was inhibited. These results indicate that LPS-induced macropinocytic cups function as signal platforms for the AKT pathway to regulate the cytokine expression by modulating nuclear factor κB activity in LPS-stimulated macrophages. Based on these findings, we propose that macropinocytosis may be a good therapeutic target for controlling cytokine expression.
Collapse
Affiliation(s)
- Li Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Frontiers Science Center for Cell Responses, Nankai University, Tianjin, China
| | - Xiaowei Sun
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Frontiers Science Center for Cell Responses, Nankai University, Tianjin, China
| | - Jianan Chen
- School of Medicine, Nankai University, No. 94 Weijin Road, Tianjin, 300071, China
- Organ Transplant Department, Tianjin First Central Hospital, School of Medicine, Nankai University, No. 24 Fukang Road, Tianjin, China
| | - Yanan Li
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Frontiers Science Center for Cell Responses, Nankai University, Tianjin, China
| | - Yuxin He
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Frontiers Science Center for Cell Responses, Nankai University, Tianjin, China
| | - Jinzi Wei
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Frontiers Science Center for Cell Responses, Nankai University, Tianjin, China
| | - Zhongyang Shen
- Organ Transplant Department, Tianjin First Central Hospital, School of Medicine, Nankai University, No. 24 Fukang Road, Tianjin, China
- Tianjin Key Laboratory for Organ Transplantation, No. 20 Keyan West Road, Tianjin, China
- Research Institute of Transplant Medicine, Nankai University, No. 20 Keyan West Road, Tianjin, China
| | - Sei Yoshida
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Frontiers Science Center for Cell Responses, Nankai University, Tianjin, China
| |
Collapse
|
28
|
Wei X, Liu D. Association of triglyceride-glucose index with sarcopenia: NHANES 2011-2014. Front Endocrinol (Lausanne) 2024; 15:1452664. [PMID: 39381437 PMCID: PMC11460544 DOI: 10.3389/fendo.2024.1452664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 09/05/2024] [Indexed: 10/10/2024] Open
Abstract
Background A newly developed technique, the Triglyceride-glucose (TyG) index, supplies a more straightforward method to identify IR than the HOMA-IR (Homeostasis Model Assessment of Insulin Resistance). Yet no methodical analysis has looked into the link involving the TyG index and low muscle mass (LMM), low muscle strength (LMS), and sarcopenia within the US. Thus, this study intended to find any connection concerning the TyG index and LMM, LMS, and sarcopenia. Methods Between 2011 to 2014, data from the NHANES were used to conduct a nationally representative study involving 2,504 participants. LMM, LMS, and sarcopenia were the outcome variables. Moreover, this positive correlation persists irrespective of age and gender. Results The TyG index revealed a significant correlation with the prevalence of developing LMM (OR = 1.63(1.26-2.11), p=0.001), LMS (OR = 1.61(1.36-1.91), p<0.001) and sarcopenia (OR = 1.59 (1.23-2.07), p<0.001), after correcting for all variables. Utilizing smooth curve fitting alongside two-piecewise linear regression models, an inverted U-shaped correlation between the TyG index and the prevalence of LMM, LMS, and sarcopenia. Finally, subgroup analysis revealed that the association between the TyG index and LMM, LMS, and sarcopenia was particularly evident in all gender, age subgroups, and individuals with a normal BMI of 25. Conclusion Sarcopenia and the TyG index reveal an essential positive link. It highlights the potential utility of the TyG index as a screening tool for identifying individuals at risk of sarcopenia earlier.
Collapse
Affiliation(s)
| | - Dandan Liu
- Department of Endocrinology, The Eighth Affiliated Hospital of Sun Yat-sen
University, Shenzhen, Guangdong, China
| |
Collapse
|
29
|
Chen S, Wang P, Guo H, Zhang Y. Deciphering gene expression patterns using large-scale transcriptomic data and its applications. Brief Bioinform 2024; 25:bbae590. [PMID: 39541191 PMCID: PMC11562847 DOI: 10.1093/bib/bbae590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/07/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024] Open
Abstract
Gene expression varies stochastically across genders, racial groups, and health statuses. Deciphering these patterns is crucial for identifying informative genes, classifying samples, and understanding diseases like cancer. This study analyzes 11,252 bulk RNA-seq samples to explore expression patterns of 19,156 genes, including 10,512 cancer tissue samples and 740 normal samples. Additionally, 4,884 single-cell RNA-seq samples are examined. Statistical analysis using 16 probability distributions shows that normal samples display a wider range of distributions compared to cancer samples. Cancer samples tend to favor asymmetric distributions such as generalized extreme value, logarithmic normal, and Gaussian mixture distributions. In contrast, certain genes in normal samples exhibit symmetric distributions. Remarkably, more than 95.5% of genes exhibit non-normal distributions, which challenges traditional assumptions. Furthermore, distributions differ significantly between bulk and single-cell RNA-seq data. Many cancer driver genes exhibit distinct distribution patterns across sample types, suggesting potential for gene selection and classification based on distribution characteristics. A novel skewness-based metric is proposed to quantify distribution variation across datasets, showing genes with significant skewness differences have biological relevance. Finally, an improved naïve Bayes method incorporating gene-specific distributions demonstrates superior performance in simulations over traditional methods. This work enhances understanding of gene expression and its application in omics-based gene selection and sample classification.
Collapse
Affiliation(s)
- Shunjie Chen
- School of Mathematics and Statistics, Henan University, Jinming Avenue, 475004, Kaifeng, China
| | - Pei Wang
- School of Mathematics and Statistics, Henan University, Jinming Avenue, 475004, Kaifeng, China
- Henan Engineering Research Center for Industrial Internet of Things, Henan University, Mingli Road, 450046, Zhengzhou, China
| | - Haiping Guo
- School of Mathematics and Statistics, Henan University, Jinming Avenue, 475004, Kaifeng, China
| | - Yujie Zhang
- School of Mathematics and Statistics, Henan University, Jinming Avenue, 475004, Kaifeng, China
| |
Collapse
|
30
|
Sánchez-Ortega M, Garrido A, Cirauqui C, Sanz-Gonzalez L, Hernández MC, González-García A, Obregon K, Ferrer I, Paz-Ares L, Carrera AC. A potential therapeutic strategy based on acute oxidative stress induction for wild-type NRF2/KEAP1 lung squamous cell carcinoma. Redox Biol 2024; 75:103305. [PMID: 39137583 PMCID: PMC11372719 DOI: 10.1016/j.redox.2024.103305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/31/2024] [Accepted: 08/06/2024] [Indexed: 08/15/2024] Open
Abstract
Extensive efforts have been conducted in the search for new targetable drivers of lung squamous cell carcinoma (LUSC); to date, however, candidates remain mostly unsuccessful. One of the oncogenic pathways frequently found to be active in LUSC is NFE2L2 (NRF2 transcription factor), the levels of which are regulated by KEAP1. Mutations in NFE2L2 or KEAP1 trigger NRF2 activation, an essential protector against reactive oxygen species (ROS). We hypothesized that the frequency of NRF2 activation in LUSC (∼35 %) may reflect a sensitivity of LUSC to ROS. Results from this study reveal that whereas tumors containing active forms of NRF2 were protected, ROS induction in wild-type NFE2L2/KEAP1 LUSC cells triggered ferroptosis. The mechanism of ROS action in normal-NRF2 LUSC cells involved transient NRF2 activation, miR-126-3p/miR-126-5p upregulation, and reduction of p85β and SETD5 levels. SETD5 levels reduction triggered pentose pathway gene levels increase to toxic values. Simultaneous depletion of p85βPI3K and SETD5 triggered LUSC cell death, while p85βPI3K and SETD5 overexpression rescued survival of ROS-treated normal-NRF2 LUSC cells. This shows that the cascade involving NRF2 > miR-126-3p, miR-126-5p > p85βPI3K and SETD5 is responsible for ROS-induced cell death in normal-NRF2 LUSC. Transient ROS-induced cell death is shown in 3D spheroids, patient-derived organoids, and in xenografts of wild-type NFE2L2/KEAP1 LUSC cells, supporting the potential of acute local ROS induction as a therapeutic strategy for LUSC patients with normal-NRF2.
Collapse
Affiliation(s)
- M Sánchez-Ortega
- Department of Immunology and Oncology, National Centre for Biotechnology (CNB), Spanish Research Council (CSIC), Autonomous University of Madrid, Cantoblanco, Madrid, E-28049, Spain
| | - A Garrido
- Department of Immunology and Oncology, National Centre for Biotechnology (CNB), Spanish Research Council (CSIC), Autonomous University of Madrid, Cantoblanco, Madrid, E-28049, Spain; Department of Biosciences, School of Biomedical and Health Sciences, European University of Madrid, Villaviciosa de Odón, Madrid, E-28670, Spain.
| | - C Cirauqui
- H12O-CNIO Lung Cancer Clinical Research Unit, Health Research Institute Hospital 12 de Octubre, Spanish National Cancer Research Center (CNIO), Madrid, E28029, Spain
| | - L Sanz-Gonzalez
- Department of Immunology and Oncology, National Centre for Biotechnology (CNB), Spanish Research Council (CSIC), Autonomous University of Madrid, Cantoblanco, Madrid, E-28049, Spain
| | - M C Hernández
- Department of Immunology and Oncology, National Centre for Biotechnology (CNB), Spanish Research Council (CSIC), Autonomous University of Madrid, Cantoblanco, Madrid, E-28049, Spain
| | - A González-García
- Department of Immunology and Oncology, National Centre for Biotechnology (CNB), Spanish Research Council (CSIC), Autonomous University of Madrid, Cantoblanco, Madrid, E-28049, Spain
| | - K Obregon
- Department of Immunology and Oncology, National Centre for Biotechnology (CNB), Spanish Research Council (CSIC), Autonomous University of Madrid, Cantoblanco, Madrid, E-28049, Spain
| | - I Ferrer
- H12O-CNIO Lung Cancer Clinical Research Unit, Health Research Institute Hospital 12 de Octubre, Spanish National Cancer Research Center (CNIO), Madrid, E28029, Spain
| | - L Paz-Ares
- H12O-CNIO Lung Cancer Clinical Research Unit, Health Research Institute Hospital 12 de Octubre, Spanish National Cancer Research Center (CNIO), Madrid, E28029, Spain
| | - A C Carrera
- Department of Immunology and Oncology, National Centre for Biotechnology (CNB), Spanish Research Council (CSIC), Autonomous University of Madrid, Cantoblanco, Madrid, E-28049, Spain.
| |
Collapse
|
31
|
Terán E, Lozano R, Rodríguez CA, Abad M, Figuero L, Muñoz JA, Cigarral B, Rodrígues A, Sancho M, Gómez MA, Morchón D, Montero JC, Sayagués JM, Ludeña MD, Fonseca E. PIK3CA mutational status in tissue and plasma as a prognostic biomarker in HR+/HER2- breast cancer. Cancer Med 2024; 13:e70101. [PMID: 39235099 PMCID: PMC11375731 DOI: 10.1002/cam4.70101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/30/2024] [Accepted: 08/02/2024] [Indexed: 09/06/2024] Open
Abstract
INTRODUCTION Hotspots (HS) mutations in the PIK3CA gene may lead to poorer oncological outcomes and endocrine resistance in advanced breast cancer (BC), but their prognostic role in early-stage disease remains controversial. The overall agreement within plasma and tissue methods has not been well explored. Our aim was to correlate tissue and plasma approaches and to analyze the prognostic impact of PIK3CA mutations (PIK3CAm) in HR+/HER2- BC. METHODS A retrospective and unicentric analysis of PIK3CA mutational status in tissue and plasma samples by Cobas®PIK3CA Mutation Kit in patients with HR+/HER2- BC. RESULTS We analyzed 225 samples from 161 patients with luminal BC. PIK3CA mutations were identified in 62 patients (38.5%), of which 39.6% were found in tissue and 11.8% in plasma. In advanced disease, plasma and tissue correlation rate was performed in 64 cases, with an overall agreement of 70.3%. Eighty patients were treated with CDK4/6 inhibitors + endocrine therapy. We observed a moderately worse progression-free survival (PFS) in PIK3CAm versus wild-type (WT) (24 m vs. 30 m; HR = 1.39, p = 0.26). A subanalysis was carried out based on exons 9 and 20, which showed a statistically poorer PFS in PIK3CAm exon 9 versus 20 population (9.7 m vs. 30.3 m; HR = 2.84; p = 0.024). Furthermore, detection of PIK3CAm in plasma was linked to a worse PFS vs PIK3CAm detection just in tissue (12.4 vs. 29.3; HR = 2.4; p = 0.08). CONCLUSIONS Our findings suggest the PIK3CA evaluation in tissue as the diagnostic method of choice, however, additional investigations are required to improve the role of liquid biopsy in the PIK3CA assessment. PIK3CAm show worse outcomes in advanced luminal BC, especially in exon 9 mutation carriers, despite visceral involvement, prior exposure to endocrine therapy or detection of PIK3CAm in plasma, with an unclear prognosis in early-stage disease. Nonetheless, this should be validated in a prospective cohort study.
Collapse
Affiliation(s)
- Eduardo Terán
- Medical Oncology Department, University Hospital of Salamanca, Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
| | - Rebeca Lozano
- Medical Oncology Department, University Hospital of Salamanca, Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
| | - César A Rodríguez
- Medical Oncology Department, University Hospital of Salamanca, Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
| | - Mar Abad
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
- Pathology Department, University Hospital of Salamanca, Salamanca, Spain
| | - Luis Figuero
- Medical Oncology Department, University Hospital of Salamanca, Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
| | - José Antonio Muñoz
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
- Pathology Department, University Hospital of Salamanca, Salamanca, Spain
| | - Belén Cigarral
- Medical Oncology Department, University Hospital of Salamanca, Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
| | - Aline Rodrígues
- Medical Oncology Department, University Hospital of Salamanca, Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
| | - Magdalena Sancho
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
- Pathology Department, University Hospital of Salamanca, Salamanca, Spain
| | - M Asunción Gómez
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
- Pathology Department, University Hospital of Salamanca, Salamanca, Spain
| | - Daniel Morchón
- Medical Oncology Department, University Hospital of Salamanca, Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
| | - Juan Carlos Montero
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
- Pathology Department, University Hospital of Salamanca, Salamanca, Spain
- Biomedical Research Networking Centers-Oncology (CIBERONC), Madrid, Spain
| | - José María Sayagués
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
- Pathology Department, University Hospital of Salamanca, Salamanca, Spain
| | - M Dolores Ludeña
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
- Pathology Department, University Hospital of Salamanca, Salamanca, Spain
| | - Emilio Fonseca
- Medical Oncology Department, University Hospital of Salamanca, Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
| |
Collapse
|
32
|
Atıcı S, Çizmecioğlu O. Molecular mechanisms of PI3K isoform dependence in embryonic growth. J Turk Ger Gynecol Assoc 2024; 25:159-166. [PMID: 39219229 DOI: 10.4274/jtgga.galenos.2024.2024-6-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
Objective The phosphoinositide 3-kinase (PI3K) pathway is an important signaling mechanism for cell proliferation and metabolism. Mutations that activate PIK3CA may make cells p110α dependent, but when phosphatase tensin homolog (PTEN) is lost, the p110β isoform of PI3Ks becomes more important. However, the exact mechanism underlying the prevalence of p110s remains unclear. In this study, our aim was to elucidate the processes behind PI3K isoform dependency in a cellular model of embryonic development. Material and Methods In order to understand PI3K isoform prevalence, mouse embryonic fibroblasts (MEFs) were used and p110β, PTEN and Rac1 activity was modulated using retroviral plasmids. Expression levels and cellular growth were assessed by performing immunoblots and crystal violet assays. Results The levels of PTEN had only a partial effect on the prevalence of PI3K isoforms in MEFs. The dependency on p110α diminished when PTEN was depleted. Of note, when PTEN expression was repressed, there was no full transition in dependency from one PI3K isoform to the other. Interestingly, the viability of PTEN-depleted MEFs became less dependent on p110α and more dependent on p110β when p110β was overexpressed. Nevertheless, the overexpression of p110β in conjunction with PTEN knock-downs did not result in a complete shift of isoforms in PI3Ks. Finally, we investigated Rac1 activation with a mutant allele and determined a more potent increase in p110β prominence in MEFs. Conclusion These findings suggest that multiple cellular parameters, including PTEN status, PI3K isoform levels, and Rac1 activity, combine to influence PI3K isoform prevalence, rather than a single determinant.
Collapse
Affiliation(s)
- Sena Atıcı
- Department of Molecular Biology and Genetics, Bilkent University Faculty of Medicine, Ankara, Turkey
- Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, Würzburg, Germany
| | - Onur Çizmecioğlu
- Department of Molecular Biology and Genetics, Bilkent University Faculty of Medicine, Ankara, Turkey
| |
Collapse
|
33
|
Hu Y, Wang C, Liang H, Li J, Yang Q. The treatment landscape of triple-negative breast cancer. Med Oncol 2024; 41:236. [PMID: 39210220 DOI: 10.1007/s12032-024-02456-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/18/2024] [Indexed: 09/04/2024]
Abstract
Triple-negative breast cancer (TNBC) tumors are biologically aggressive breast cancer. On the molecular level, TNBC is a highly heterogeneous disease; more biotechnologies are gradually being used to advance the understanding of TNBC subtypes and help establish more targeted therapies. Multiple TNBC target-related agents are already approved by the Food and Drug Administration for clinical use, including PI3K/AKT/mTOR inhibitors, PRAP inhibitors, and antibody-drug conjugates. Some innovative approaches, like peptide strategies, also promise to treat TNBC. Currently, the interplay between TNBC tumors and their tumor microenvironment provides a promising prospect for improving the efficacy of immunotherapy. In this review, we summarize the prevalent TNBC subtype methodologies, discuss the evolving therapeutic strategies, and propose new therapeutic possibilities based on existing foundational theories, with the attempt to serve as a reference to further advance tailoring treatment of TNBC.
Collapse
Affiliation(s)
- Yi Hu
- Beijing Key Laboratory of Gene Resource and Molecular Development, Beijing Normal University, Beijing, China
| | - Chen Wang
- Beijing Key Laboratory of Gene Resource and Molecular Development, Beijing Normal University, Beijing, China
| | - Huishi Liang
- Beijing Key Laboratory of Gene Resource and Molecular Development, Beijing Normal University, Beijing, China
| | - Jie Li
- Beijing Key Laboratory of Gene Resource and Molecular Development, Beijing Normal University, Beijing, China.
| | - Qiong Yang
- Beijing Key Laboratory of Gene Resource and Molecular Development, Beijing Normal University, Beijing, China.
| |
Collapse
|
34
|
Peng S, Li H, Cui W, Xiong T, Hu J, Qi H, Lin S, Wu D, Ji M, Xu H. Design, synthesis and biological evaluation of a novel PSMA-PI3K small molecule drug conjugate. RSC Med Chem 2024:d4md00246f. [PMID: 39246749 PMCID: PMC11378010 DOI: 10.1039/d4md00246f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 08/10/2024] [Indexed: 09/10/2024] Open
Abstract
Small molecule drug conjugates are an emerging targeted therapy for cancer treatment. Building upon the overexpressed prostate-specific membrane antigen (PSMA) in prostate cancer, we herein report the design and synthesis of a novel PSMA-PI3K small molecule drug conjugate 1. Conjugate 1 demonstrates potent inhibition against PI3K with an IC50 value of 0.40 nM and simultaneously targets PSMA, giving rise to selective growth inhibition activity for PSMA-positive cancer cells. Conjugate 1 also potently inhibits the phosphorylation of PI3K main downstream effectors and arrests the cell cycle in the G0/G1 phase in PSMA-positive 22Rv1 prostate cancer cells. Further in vivo evaluation shows that conjugate 1 has favorable efficacy and tolerability in a 22Rv1 xenograft model, demonstrating its potential application in targeted cancer therapy.
Collapse
Affiliation(s)
- Shouguo Peng
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College Beijing 100050 China
- Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College Beijing 100050 China
- CAMS Key Laboratory of Small Molecule Immuno-Oncology Drug Discovery, Chinese Academy of Medical Sciences Beijing 100050 China
| | - Haixia Li
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences Beijing 100053 China
| | - Weilu Cui
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences Beijing 100053 China
| | - Tianning Xiong
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College Beijing 100050 China
- Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College Beijing 100050 China
- CAMS Key Laboratory of Small Molecule Immuno-Oncology Drug Discovery, Chinese Academy of Medical Sciences Beijing 100050 China
| | - Jiaqi Hu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College Beijing 100050 China
- Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College Beijing 100050 China
- CAMS Key Laboratory of Small Molecule Immuno-Oncology Drug Discovery, Chinese Academy of Medical Sciences Beijing 100050 China
| | - Haixiang Qi
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College Beijing 100050 China
- Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College Beijing 100050 China
- CAMS Key Laboratory of Small Molecule Immuno-Oncology Drug Discovery, Chinese Academy of Medical Sciences Beijing 100050 China
| | - Songwen Lin
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College Beijing 100050 China
- Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College Beijing 100050 China
- CAMS Key Laboratory of Small Molecule Immuno-Oncology Drug Discovery, Chinese Academy of Medical Sciences Beijing 100050 China
| | - Deyu Wu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College Beijing 100050 China
- Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College Beijing 100050 China
- CAMS Key Laboratory of Small Molecule Immuno-Oncology Drug Discovery, Chinese Academy of Medical Sciences Beijing 100050 China
| | - Ming Ji
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College Beijing 100050 China
- CAMS Key Laboratory of Small Molecule Immuno-Oncology Drug Discovery, Chinese Academy of Medical Sciences Beijing 100050 China
| | - Heng Xu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College Beijing 100050 China
- Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College Beijing 100050 China
- CAMS Key Laboratory of Small Molecule Immuno-Oncology Drug Discovery, Chinese Academy of Medical Sciences Beijing 100050 China
| |
Collapse
|
35
|
Koh DS, Stratiievska A, Jana S, Otto SC, Swanson TM, Nhim A, Carlson S, Raza M, Naves LA, Senning EN, Mehl RA, Gordon SE. Genetic code expansion, click chemistry, and light-activated PI3K reveal details of membrane protein trafficking downstream of receptor tyrosine kinases. eLife 2024; 12:RP91012. [PMID: 39162616 PMCID: PMC11335347 DOI: 10.7554/elife.91012] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024] Open
Abstract
Ligands such as insulin, epidermal growth factor, platelet-derived growth factor, and nerve growth factor (NGF) initiate signals at the cell membrane by binding to receptor tyrosine kinases (RTKs). Along with G-protein-coupled receptors, RTKs are the main platforms for transducing extracellular signals into intracellular signals. Studying RTK signaling has been a challenge, however, due to the multiple signaling pathways to which RTKs typically are coupled, including MAP/ERK, PLCγ, and Class 1A phosphoinositide 3-kinases (PI3K). The multi-pronged RTK signaling has been a barrier to isolating the effects of any one downstream pathway. Here, we used optogenetic activation of PI3K to decouple its activation from other RTK signaling pathways. In this context, we used genetic code expansion to introduce a click chemistry noncanonical amino acid into the extracellular side of membrane proteins. Applying a cell-impermeant click chemistry fluorophore allowed us to visualize delivery of membrane proteins to the plasma membrane in real time. Using these approaches, we demonstrate that activation of PI3K, without activating other pathways downstream of RTK signaling, is sufficient to traffic the TRPV1 ion channels and insulin receptors to the plasma membrane.
Collapse
Affiliation(s)
- Duk-Su Koh
- University of Washington, Department of Physiology & BiophysicsSeattleUnited States
| | | | - Subhashis Jana
- Department of Biochemistry and Biophysics, Oregon State UniversityCorvallisUnited States
| | - Shauna C Otto
- University of Washington, Department of Physiology & BiophysicsSeattleUnited States
| | - Teresa M Swanson
- University of Washington, Department of Physiology & BiophysicsSeattleUnited States
| | - Anthony Nhim
- University of Washington, Department of Physiology & BiophysicsSeattleUnited States
| | - Sara Carlson
- University of Washington, Department of Physiology & BiophysicsSeattleUnited States
| | - Marium Raza
- University of Washington, Department of Physiology & BiophysicsSeattleUnited States
| | - Ligia Araujo Naves
- University of Washington, Department of Physiology & BiophysicsSeattleUnited States
| | - Eric N Senning
- Department of Neuroscience, University of Texas at AustinAustinUnited States
| | - Ryan A Mehl
- Department of Biochemistry and Biophysics, Oregon State UniversityCorvallisUnited States
| | - Sharona E Gordon
- University of Washington, Department of Physiology & BiophysicsSeattleUnited States
| |
Collapse
|
36
|
Gerasimovskaya E, Patil RS, Davies A, Maloney ME, Simon L, Mohamed B, Cherian-Shaw M, Verin AD. Extracellular purines in lung endothelial permeability and pulmonary diseases. Front Physiol 2024; 15:1450673. [PMID: 39234309 PMCID: PMC11372795 DOI: 10.3389/fphys.2024.1450673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 08/05/2024] [Indexed: 09/06/2024] Open
Abstract
The purinergic signaling system is an evolutionarily conserved and critical regulatory circuit that maintains homeostatic balance across various organ systems and cell types by providing compensatory responses to diverse pathologies. Despite cardiovascular diseases taking a leading position in human morbidity and mortality worldwide, pulmonary diseases represent significant health concerns as well. The endothelium of both pulmonary and systemic circulation (bronchial vessels) plays a pivotal role in maintaining lung tissue homeostasis by providing an active barrier and modulating adhesion and infiltration of inflammatory cells. However, investigations into purinergic regulation of lung endothelium have remained limited, despite widespread recognition of the role of extracellular nucleotides and adenosine in hypoxic, inflammatory, and immune responses within the pulmonary microenvironment. In this review, we provide an overview of the basic aspects of purinergic signaling in vascular endothelium and highlight recent studies focusing on pulmonary microvascular endothelial cells and endothelial cells from the pulmonary artery vasa vasorum. Through this compilation of research findings, we aim to shed light on the emerging insights into the purinergic modulation of pulmonary endothelial function and its implications for lung health and disease.
Collapse
Affiliation(s)
| | - Rahul S. Patil
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Adrian Davies
- Department of Internal Medicine, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - McKenzie E. Maloney
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, United States
- Office of Academic Affairs, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Liselle Simon
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Basmah Mohamed
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Mary Cherian-Shaw
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Alexander D. Verin
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, United States
- Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA, United States
| |
Collapse
|
37
|
Limonta P, Chiaramonte R, Casati L. Unveiling the Dynamic Interplay between Cancer Stem Cells and the Tumor Microenvironment in Melanoma: Implications for Novel Therapeutic Strategies. Cancers (Basel) 2024; 16:2861. [PMID: 39199632 PMCID: PMC11352669 DOI: 10.3390/cancers16162861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/07/2024] [Accepted: 08/13/2024] [Indexed: 09/01/2024] Open
Abstract
Cutaneous melanoma still represents a significant health burden worldwide, being responsible for the majority of skin cancer deaths. Key advances in therapeutic strategies have significantly improved patient outcomes; however, most patients experience drug resistance and tumor relapse. Cancer stem cells (CSCs) are a small subpopulation of cells in different tumors, including melanoma, endowed with distinctive capacities of self-renewal and differentiation into bulk tumor cells. Melanoma CSCs are characterized by the expression of specific biomarkers and intracellular pathways; moreover, they play a pivotal role in tumor onset, progression and drug resistance. In recent years, great efforts have been made to dissect the molecular mechanisms underlying the protumor activities of melanoma CSCs to provide the basis for novel CSC-targeted therapies. Herein, we highlight the intricate crosstalk between melanoma CSCs and bystander cells in the tumor microenvironment (TME), including immune cells, endothelial cells and cancer-associated fibroblasts (CAFs), and its role in melanoma progression. Specifically, we discuss the peculiar capacities of melanoma CSCs to escape the host immune surveillance, to recruit immunosuppressive cells and to educate immune cells toward an immunosuppressive and protumor phenotype. We also address currently investigated CSC-targeted strategies that could pave the way for new promising therapeutic approaches for melanoma care.
Collapse
Affiliation(s)
- Patrizia Limonta
- Department of Pharmacological and Biomolecular Sciences “R. Paoletti”, Università degli Studi di Milano, 20133 Milan, Italy
| | - Raffaella Chiaramonte
- Department of Health Sciences, Università degli Studi di Milano, 20142 Milan, Italy;
| | - Lavinia Casati
- Department of Health Sciences, Università degli Studi di Milano, 20142 Milan, Italy;
| |
Collapse
|
38
|
Li H, Wen X, Ren Y, Fan Z, Zhang J, He G, Fu L. Targeting PI3K family with small-molecule inhibitors in cancer therapy: current clinical status and future directions. Mol Cancer 2024; 23:164. [PMID: 39127670 DOI: 10.1186/s12943-024-02072-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
The Phosphatidylinositol-3-kinase (PI3K) family is well-known to comprise three classes of intracellular enzymes. Class I PI3Ks primarily function in signaling by responding to cell surface receptor stimulation, while class II and III are more involved in membrane transport. Under normal physiological conditions, the PI3K signaling network orchestrates cell growth, division, migration and survival. Aberrant activation of the PI3K signaling pathway disrupts cellular activity and metabolism, often marking the onset of cancer. Currently, the Food and Drug Administration (FDA) has approved the clinical use of five class I PI3K inhibitors. These small-molecule inhibitors, which exhibit varying selectivity for different class I PI3K family members, are primarily used in the treatment of breast cancer and hematologic malignancies. Therefore, the development of novel class I PI3K inhibitors has been a prominent research focus in the field of oncology, aiming to enhance potential therapeutic selectivity and effectiveness. In this review, we summarize the specific structures of PI3Ks and their functional roles in cancer progression. Additionally, we critically evaluate small molecule inhibitors that target class I PI3K, with a particular focus on their clinical applications in cancer treatment. Moreover, we aim to analyze therapeutic approaches for different types of cancers marked by aberrant PI3K activation and to identify potential molecular targets amenable to intervention with small-molecule inhibitors. Ultimately, we propose future directions for the development of therapeutic strategies that optimize cancer treatment outcomes by modulating the PI3K family.
Collapse
Affiliation(s)
- Hongyao Li
- Institute of Precision Drug Innovation and Cancer Center, the Second Hospital of Dalian Medical University, Dalian, 116023, China
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
- Department of Dermatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Sichuan University, Chengdu, 610041, China
| | - Xiang Wen
- Department of Dermatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Sichuan University, Chengdu, 610041, China
| | - Yueting Ren
- Department of Dermatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Sichuan University, Chengdu, 610041, China
- Department of Brain Science, Faculty of Medicine, Imperial College, London, SW72AZ, UK
| | - Zhichao Fan
- Institute of Precision Drug Innovation and Cancer Center, the Second Hospital of Dalian Medical University, Dalian, 116023, China
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
- Department of Dermatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Sichuan University, Chengdu, 610041, China
| | - Jin Zhang
- School of Pharmaceutical Sciences of Medical School, Shenzhen University, Shenzhen, 518000, China.
| | - Gu He
- Department of Dermatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Sichuan University, Chengdu, 610041, China.
| | - Leilei Fu
- Institute of Precision Drug Innovation and Cancer Center, the Second Hospital of Dalian Medical University, Dalian, 116023, China.
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China.
| |
Collapse
|
39
|
Mehrtabar E, Khalaji A, Pandeh M, Farhoudian A, Shafiee N, Shafiee A, Ojaghlou F, Mahdavi P, Soleymani-Goloujeh M. Impact of microRNA variants on PI3K/AKT signaling in triple-negative breast cancer: comprehensive review. Med Oncol 2024; 41:222. [PMID: 39120634 DOI: 10.1007/s12032-024-02469-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 07/30/2024] [Indexed: 08/10/2024]
Abstract
Breast cancer (BC) is a significant cause of cancer-related mortality, and triple-negative breast cancer (TNBC) is a particularly aggressive subtype associated with high mortality rates, especially among younger females. TNBC poses a considerable clinical challenge due to its aggressive tumor behavior and limited therapeutic options. Aberrations within the PI3K/AKT pathway are prevalent in TNBC and correlate with increased therapeutic intervention resistance and poor outcomes. MicroRNAs (miRs) have emerged as crucial PI3K/AKT pathway regulators influencing various cellular processes involved in TNBC pathogenesis. The levels of miRs, including miR-193, miR-4649-5p, and miR-449a, undergo notable changes in TNBC tumor tissues, emphasizing their significance in cancer biology. This review explored the intricate interplay between miR variants and PI3K/AKT signaling in TNBC. The review focused on the molecular mechanisms underlying miR-mediated dysregulation of this pathway and highlighted specific miRs and their targets. In addition, we explore the clinical implications of miR dysregulation in TNBC, particularly its correlation with TNBC prognosis and therapeutic resistance. Elucidating the roles of miRs in modulating the PI3K/AKT signaling pathway will enhance our understanding of TNBC biology and unveil potential therapeutic targets. This comprehensive review aims to discuss current knowledge and open promising avenues for future research, ultimately facilitating the development of precise and effective treatments for patients with TNBC.
Collapse
Affiliation(s)
- Ehsan Mehrtabar
- Advanced Diagnostic and Interventional Radiology Research Center (ADIR), Tehran University of Medical Sciences, Tehran, Iran
| | - Amirreza Khalaji
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Connective Tissue Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mojtaba Pandeh
- School of Medicine, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Aram Farhoudian
- School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Nadia Shafiee
- Children's Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Atefe Shafiee
- Board-Certified Cardiologist, Rajaie Cardiovascular Medical and Research Center, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Ojaghlou
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parinaz Mahdavi
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
| | - Mehdi Soleymani-Goloujeh
- Diabetes Center, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA.
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| |
Collapse
|
40
|
Lunardi F, Nardo G, Lazzarini E, Tzorakoleftheraki SE, Comacchio GM, Fonzi E, Tebaldi M, Vedovelli L, Pezzuto F, Fortarezza F, Schiavon M, Rea F, Indraccolo S, Calabrese F. Is There a Link between Chronic Obstructive Pulmonary Disease and Lung Adenocarcinoma? A Clinico-Pathological and Molecular Study. J Pers Med 2024; 14:839. [PMID: 39202030 PMCID: PMC11355616 DOI: 10.3390/jpm14080839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/03/2024] [Accepted: 08/06/2024] [Indexed: 09/03/2024] Open
Abstract
Chronic Obstructive Pulmonary Disease (COPD) and lung cancer are strictly related. To date, it is unknown if COPD-associated cancers are different from the tumors of non-COPD patients. The main goal of the study was to compare the morphological/molecular profiles of lung adenocarcinoma (LUAD) samples of COPD, non-COPD/smokers and non-COPD/non-smokers, and to investigate if a genetic instability also characterized non-pathological areas. This study included 110 patients undergoing surgery for a LUAD, divided into three groups: COPD/smoker LUAD (38), non-COPD/smoker LUAD (54) and non-COPD/non-smoker LUAD (18). The tissue samples were systemically evaluated by pathologists and analyzed using a 30-gene Next Generation Sequencing (NGS) panel. In a subset of patients, tissues taken far from the neoplasia were also included. The non-COPD/smoker LUAD were characterized by a higher proliferative index (p = 0.001), while the non-COPD/non-smoker LUAD showed higher percentages of lepidic pattern (p = 0.008), lower necrosis, higher fibrosis, and a significantly lower mutation rate in the KRAS and PIK3CA genes. Interestingly, the same gene mutations were found in pathological and normal areas exclusively in the COPD/smokers and non-COPD/smokers. COPD/smoker LUAD seem to be similar to non-COPD/smoker LUAD, particularly for the genetic background. A less aggressive cancer phenotype was confirmed in non-COPD/non-smokers. The genetic alterations detected in normal lungs from smokers with and without COPD reinforce the importance of screening to detect early neoplastic lesions.
Collapse
Affiliation(s)
- Francesca Lunardi
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, 35128 Padova, Italy; (F.L.); (G.M.C.); (L.V.); (F.P.); (F.F.); (M.S.); (F.R.)
| | - Giorgia Nardo
- Basic and Translational Oncology Unit, Istituto Oncologico Veneto IOV—IRCCS, 35128 Padova, Italy; (G.N.); (E.L.); (S.I.)
| | - Elisabetta Lazzarini
- Basic and Translational Oncology Unit, Istituto Oncologico Veneto IOV—IRCCS, 35128 Padova, Italy; (G.N.); (E.L.); (S.I.)
| | | | - Giovanni Maria Comacchio
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, 35128 Padova, Italy; (F.L.); (G.M.C.); (L.V.); (F.P.); (F.F.); (M.S.); (F.R.)
| | - Eugenio Fonzi
- IRCCS Istituto Tumori “Dino Amadori” IRST, 47014 Meldola, Italy; (E.F.); (M.T.)
| | - Michela Tebaldi
- IRCCS Istituto Tumori “Dino Amadori” IRST, 47014 Meldola, Italy; (E.F.); (M.T.)
| | - Luca Vedovelli
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, 35128 Padova, Italy; (F.L.); (G.M.C.); (L.V.); (F.P.); (F.F.); (M.S.); (F.R.)
| | - Federica Pezzuto
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, 35128 Padova, Italy; (F.L.); (G.M.C.); (L.V.); (F.P.); (F.F.); (M.S.); (F.R.)
| | - Francesco Fortarezza
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, 35128 Padova, Italy; (F.L.); (G.M.C.); (L.V.); (F.P.); (F.F.); (M.S.); (F.R.)
| | - Marco Schiavon
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, 35128 Padova, Italy; (F.L.); (G.M.C.); (L.V.); (F.P.); (F.F.); (M.S.); (F.R.)
| | - Federico Rea
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, 35128 Padova, Italy; (F.L.); (G.M.C.); (L.V.); (F.P.); (F.F.); (M.S.); (F.R.)
| | - Stefano Indraccolo
- Basic and Translational Oncology Unit, Istituto Oncologico Veneto IOV—IRCCS, 35128 Padova, Italy; (G.N.); (E.L.); (S.I.)
- Department of Surgery Oncology and Gastroenterology, University of Padova, 35124 Padova, Italy
| | - Fiorella Calabrese
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, 35128 Padova, Italy; (F.L.); (G.M.C.); (L.V.); (F.P.); (F.F.); (M.S.); (F.R.)
| |
Collapse
|
41
|
Lv XL, Li WL, Sun FJ, An YZ, Sun N, Lv XP, Gao XL. Investigation of the mutual crosstalk between ER stress and PI3K/AKT/mTOR signaling pathway in iron overload-induced liver injury in chicks. Biometals 2024; 37:955-969. [PMID: 38483766 DOI: 10.1007/s10534-024-00588-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 01/26/2024] [Indexed: 07/18/2024]
Abstract
Iron is an essential element for the normal functioning of living organisms, but excessive iron deposition can lead to organ damage. This study aims to investigate the interaction between the endoplasmic reticulum stress signaling pathway and the PI3K/AKT/mTOR signaling pathway in liver injury induced by iron overload in chicks. Rspectively, 150 one-day-old broilers were divided into three groups and supplemented with 50 (C), 500 (E1), and 1000 (E2) mg ferrous sulfate monohydrate/kg in the basal diet. Samples were taken after continuous feeding for 14 days. The results showed that iron overload could upregulate the levels of ALT and AST. Histopathological examination revealed bleeding in the central vein of the liver accompanied by inflammatory cell infiltration. Hoechst staining showed that the iron overload group showed significant bright blue fluorescence, and ultrastructural observations showed chromatin condensation as well as mitochondrial swelling and cristae disorganization in the iron overload group. RT-qPCR and Western blot results showed that iron overload upregulated the expression of Bax, Caspase-3, Caspase-9, GRP78, GRP94, P-PERK, ATF4, eIF2α, IRE1, and ATF6, while downregulating the expression of Bcl-2 and the PI3K/AKT/mTOR pathway. XBP-1 splicing experiment showed significant splicing of XBP-1 gene after iron overload. PCA and correlation analysis suggested a potential association between endoplasmic reticulum stress, the PI3K/AKT/mTOR signaling pathway, and liver injury in chicks. In summary, iron overload can induce cell apoptosis and liver injury by affecting endoplasmic reticulum stress and the PI3K/AKT/mTOR signaling pathway.
Collapse
Affiliation(s)
- Xiang-Long Lv
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Wen-Lei Li
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Feng-Jiao Sun
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Yu-Zhi An
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Ning Sun
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Xiao-Ping Lv
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Xue-Li Gao
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China.
| |
Collapse
|
42
|
Sirico M, Jacobs F, Molinelli C, Nader-Marta G, Debien V, Dewhurst HF, Palleschi M, Merloni F, Gianni C, De Giorgi U, de Azambuja E. Navigating the complexity of PI3K/AKT pathway in HER-2 negative breast cancer: biomarkers and beyond. Crit Rev Oncol Hematol 2024; 200:104404. [PMID: 38815877 DOI: 10.1016/j.critrevonc.2024.104404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 05/27/2024] [Accepted: 05/27/2024] [Indexed: 06/01/2024] Open
Abstract
The results of the SOLAR-1 and CAPItello-291, highlight the benefit of the ɑ-selective phosphoinositide 3-Kinase Pathway inhibitor (PI3Ki) alpelisib and the AKT inhibitor (AKTi) capivasertib in patients with hormone receptor-positive (HR+)/Human Epidermal Growth Factor Receptor 2 (HER2)- negative metastatic breast cancer (mBC) that have PIK3CA/AKT1/PTEN tumour alterations. Although effective, these drugs are associated with significant toxicities, which often limit their use, particularly in frail patients. Following the recent incorporation of these agents into clinical practice, and with many others currently in development, significant challenges have emerged, particularly those regarding biomarkers for patient selection. This review will discuss biomarkers of response and their resistance to PI3K/AKT inhibitors (PI3K/AKTis) in HR+/HER- BC in early and advanced settings to ascertain which populations will most benefit from these drugs. Of the biomarkers that were analysed, such as PIK3CA, AKT, PTEN mutations, insulin levels, 18 F-FDG-PET/TC, only the PIK3CA-mutations (PIK3CA-mut) and the AKT pathway alterations seem to have a predictive value for treatments with alpelisib and capivasertib. However, due to the retrospective and exploratory nature of the study, the data did not provide conclusive results. In addition, the different methods used to detect PIK3CA/AKT1/PTEN alterations underline the fact that the optimal diagnostic companion has yet to be established. We have summarised the clinical data on the approved and discontinued agents targeting this pathway and have assessed the drugs development, successes, and failures. Finally, because of tumour heterogeneity, we emphasise the importance of reassessing the mutational status of PI3KCA in both metastatic tissue and blood at the time of disease progression to better tailor treatment for patients.
Collapse
Affiliation(s)
- M Sirico
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy.
| | - F Jacobs
- Humanitas Clinical and Research Center - IRCCS, Humanitas Cancer Center, via Manzoni 56, 20089 Rozzano, Milan, Italy; Early Phase Trials Unit Institut Bergonié Bordeaux, France
| | - C Molinelli
- Early Phase Trials Unit Institut Bergonié Bordeaux, France; Department of Internal Medicine and Medical Specialties (DiMI), School of Medicine, University of Genova, Genova, Italy; Department of Medical Oncology, U.O. Clinical di Oncologia Medica, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | | | - V Debien
- Early Phase Trials Unit Institut Bergonié Bordeaux, France
| | - H Faith Dewhurst
- Faculty of Medicine, Department of Surgery and Cancer, Imperial College London, United Kingdom
| | - M Palleschi
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - F Merloni
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - C Gianni
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - U De Giorgi
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | | |
Collapse
|
43
|
Alimohammadi M, Rahimzadeh P, Khorrami R, Bonyadi M, Daneshi S, Nabavi N, Raesi R, Farani MR, Dehkhoda F, Taheriazam A, Hashemi M. A comprehensive review of the PTEN/PI3K/Akt axis in multiple myeloma: From molecular interactions to potential therapeutic targets. Pathol Res Pract 2024; 260:155401. [PMID: 38936094 DOI: 10.1016/j.prp.2024.155401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/02/2024] [Accepted: 06/09/2024] [Indexed: 06/29/2024]
Abstract
Phosphatase and tensin homolog (PTEN), phosphatidylinositol 3-kinase (PI3K), and protein kinase B (Akt) signaling pathways contribute to the development of several cancers, including multiple myeloma (MM). PTEN is a tumor suppressor that influences the PI3K/Akt/mTOR pathway, which in turn impacts vital cellular processes like growth, survival, and treatment resistance. The current study aims to present the role of PTEN and PI3K/Akt/mTOR signaling in the development of MM and its response to treatment. In addition, the molecular interactions in MM that underpin the PI3K/Akt/mTOR pathway and address potential implications for the development of successful treatment plans are also discussed in detail. We investigate their relationship to both upstream and downstream regulators, highlighting new developments in combined therapies that target the PTEN/PI3K/Akt axis to overcome drug resistance, including the use of PI3K and mitogen-activated protein kinase (MAPK) inhibitors. We also emphasize that PTEN/PI3K/Akt pathway elements may be used in MM diagnosis, prognosis, and therapeutic targets.
Collapse
Affiliation(s)
- Mina Alimohammadi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Islamic Republic of Iran.
| | - Payman Rahimzadeh
- Surgical Research Society (SRS), Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Ramin Khorrami
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, University of Tehran, Tehran, Islamic Republic of Iran
| | - Mojtaba Bonyadi
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, University of Tehran, Tehran, Islamic Republic of Iran
| | - Salman Daneshi
- Department of Public Health, School of Health, Jiroft University of Medical Sciences, Jiroft, Islamic Republic of Iran
| | - Noushin Nabavi
- Independent Researcher, Victoria, British Columbia V8V 1P7, Canada
| | - Rasoul Raesi
- Department of Health Services Management, Mashhad University of Medical Sciences, Mashhad, Islamic Republic of Iran; Department of Nursing, Torbat Jam Faculty of Medical Sciences, Torbat Jam, Iran
| | - Marzieh Ramezani Farani
- NanoBio High-Tech Materials Research Center, Department of Biological Sciences and Bioengineering, Inha University, 100 Inha-ro, Incheon 22212, Republic of Korea
| | - Farshid Dehkhoda
- Department of Orthopedics, Shahid Beheshti University of Medical Sciences, Tehran, Islamic Republic of Iran.
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Islamic Republic of Iran; Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Islamic Republic of Iran.
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Islamic Republic of Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Islamic Republic of Iran.
| |
Collapse
|
44
|
Bastos IM, Rebelo S, Silva VLM. A comprehensive review on phosphatidylinositol-3-kinase (PI3K) and its inhibitors bearing pyrazole or indazole core for cancer therapy. Chem Biol Interact 2024; 398:111073. [PMID: 38823538 DOI: 10.1016/j.cbi.2024.111073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 05/27/2024] [Indexed: 06/03/2024]
Abstract
Cancer is a complex and multifaceted group of diseases with a high mortality rate characterized by uncontrolled proliferation of abnormal cells. Dysregulation of normal signalling pathways in cancer contributes to the different hallmarks of this disease. The signalling pathway of which phosphatidylinositol 3-kinase (PI3K) is a part is not an exception. In fact, dysregulated activation of PI3K signalling pathways can result in unbridled cellular proliferation and enhanced cell survival, thereby fostering the onset and advancement of cancer. Therefore, there is substantial interest in developing targeted therapies specifically aimed at inhibiting the PI3K enzyme and its associated pathways. Also, the therapeutic interest on pyrazoles and indazoles has been growing due to their various medicinal properties, namely, anticancer activity. Derivatives of these compounds have been studied as PI3K inhibitors, and they showed promising results. There are already some PI3K inhibitors approved by Food and Drug Administration (FDA), such as Idelalisib (Zydelig®) and Alpelisib (Piqray®). In this context, this review aims to address the importance of PI3K in cellular processes and its role in cancer. Additionally, it aims to report a comprehensive literature review of PI3K inhibitors, containing the pyrazole and indazole scaffolds, published in the last fifteen years, focusing on structure-activity relationship aspects, thus providing important insights for the design of novel and more effective PI3K inhibitors.
Collapse
Affiliation(s)
- Inês M Bastos
- LAQV-REQUIMTE and Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Sandra Rebelo
- Institute of Biomedicine-iBiMED, Department of Medical Sciences, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Vera L M Silva
- LAQV-REQUIMTE and Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal.
| |
Collapse
|
45
|
Vasuki A, Christy HJ, Renugadevi K, Dammalli M. Structure-based pharmacophore modeling and DFT studies of Indian Ocean-derived red algal compounds as PI3Kα inhibitors. Mol Divers 2024; 28:2563-2581. [PMID: 37466805 DOI: 10.1007/s11030-023-10695-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 06/30/2023] [Indexed: 07/20/2023]
Abstract
Phosphoinositide kinases (PIKs) are a type of lipid kinase that acts as an upstream activator of oncogenic signaling. Presently accessible therapeutic compounds have downsides, such as toxicity and dubious efficacy, as well as lengthy treatment durations, which have bred resistance. Here we attempt to screen the Indian Ocean-derived red algal compounds to be used as a promising lead for PI3Kα inhibitor development. Experimental structure of the PI3K alpha Isoform-Specific Inhibitor alpelisib complex-based pharmacophore model was constructed and used as key to mark off the suitable lead compounds from the pool of marine-derived red algal compounds of Indian Ocean. Besides, the study encompasses pharmacophore scaffold screening as well as physicochemical and pharmacokinetic parameter assessment. We employed molecular docking and molecular dynamics simulation to assess the binding type and stability of 21 red algal derivatives. Twelve compounds demonstrated a sustained binding mode within the PI3Kα binding pocket with an optimal protein backbone root-mean-square deviation, also prompted hydrogen bonding throughout the simulations, and also implies that these MNPs have firmly mediated the interaction with prime hinge region residues in the PI3Kα ATP binding pocket. DFT studies revealed that proposed compounds had the greatest occupied molecular orbital electrophilicity index, basicity, and dipole moment, all of which attributed their stability as well as binding affinity at the PI3Kα active site. Our study's findings revealed that CMNPD31054, CMNPD4798, CMNPD27861, CMNPD4799, CMNPD27860, CMNPD9533, CMNPD3732, CMNPD4221, CMNPD31058, CMNPD31052, CMNPD29281, and CMNPD31055 can be used as lead compounds for PI3KΑ isoform inhibitors design.
Collapse
Affiliation(s)
- Archana Vasuki
- Department of Bioinformatics, Sathyabama Institute of Science and Technology, Chennai, India
| | - H Jemmy Christy
- Department of Bioinformatics, Sathyabama Institute of Science and Technology, Chennai, India.
| | - K Renugadevi
- Department of Biotechnology, Sathyabama Institute of Science and Technology, Chennai, India
| | - Manjunath Dammalli
- Department of Biotechnology, Siddaganga Institute of Technology, Tumkur, Karnataka, India
| |
Collapse
|
46
|
E L, Shan Y, Luo Y, Feng L, Dai Y, Gao M, Lv Y, Zhang C, Liu H, Wen N, Zhang R. Insulin promotes the bone formation capability of human dental pulp stem cells through attenuating the IIS/PI3K/AKT/mTOR pathway axis. Stem Cell Res Ther 2024; 15:227. [PMID: 39075596 PMCID: PMC11287875 DOI: 10.1186/s13287-024-03843-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 07/11/2024] [Indexed: 07/31/2024] Open
Abstract
BACKGROUND Insulin has been known to regulate bone metabolism, yet its specific molecular mechanisms during the proliferation and osteogenic differentiation of dental pulp stem cells (DPSCs) remain poorly understood. This study aimed to explore the effects of insulin on the bone formation capability of human DPSCs and to elucidate the underlying mechanisms. METHODS Cell proliferation was assessed using a CCK-8 assay. Cell phenotype was analyzed by flow cytometry. Colony-forming unit-fibroblast ability and multilineage differentiation potential were evaluated using Toluidine blue, Oil red O, Alizarin red, and Alcian blue staining. Gene and protein expressions were quantified by real-time quantitative polymerase chain reaction and Western blotting, respectively. Bone metabolism and biochemical markers were analyzed using electrochemical luminescence and chemical colorimetry. Cell adhesion and growth on nano-hydroxyapatite/collagen (nHAC) were observed with a scanning electron microscope. Bone regeneration was assessed using micro-CT, fluorescent labeling, immunohistochemical and hematoxylin and eosin staining. RESULTS Insulin enhanced the proliferation of human DPSCs as well as promoted mineralized matrix formation in a concentration-dependent manner. 10- 6 M insulin significantly up-regulated osteogenic differentiation-related genes and proteins markedly increased the secretion of bone metabolism and biochemical markers, and obviously stimulated mineralized matrix formation. However, it also significantly inhibited the expression of genes and proteins of receptors and receptor substrates associated with insulin/insulin-like growth factor-1 signaling (IIS) pathway, obviously reduced the expression of the phosphorylated PI3K and the ratios of the phosphorylated PI3K/total PI3K, and notably increased the expression of the total PI3K, phosphorylated AKT, total AKT and mTOR. The inhibitor LY294002 attenuated the responsiveness of 10- 6 M insulin to IIS/PI3K/AKT/mTOR pathway axis, suppressing the promoting effect of insulin on cell proliferation, osteogenic differentiation and bone formation. Implantation of 10- 6 M insulin treated DPSCs into the backs of severe combined immunodeficient mice and the rabbit jawbone defects resulted in enhanced bone formation. CONCLUSIONS Insulin induces insulin resistance in human DPSCs and effectively promotes their proliferation, osteogenic differentiation and bone formation capability through gradually inducing the down-regulation of IIS/PI3K/AKT/mTOR pathway axis under insulin resistant states.
Collapse
Affiliation(s)
- Lingling E
- Institute of Stomatology & Oral Maxilla Facial Key Laboratory, First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yanbo Shan
- Institute of Stomatology & Oral Maxilla Facial Key Laboratory, First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yuxi Luo
- Institute of Stomatology & Oral Maxilla Facial Key Laboratory, First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Lin Feng
- Institute of Stomatology & Oral Maxilla Facial Key Laboratory, First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yawen Dai
- Institute of Stomatology & Oral Maxilla Facial Key Laboratory, First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Mingzhu Gao
- Institute of Stomatology & Oral Maxilla Facial Key Laboratory, First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yan Lv
- Institute of Stomatology & Oral Maxilla Facial Key Laboratory, First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Chaoran Zhang
- Institute of Stomatology & Oral Maxilla Facial Key Laboratory, First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Hongchen Liu
- Institute of Stomatology & Oral Maxilla Facial Key Laboratory, First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Ning Wen
- Institute of Stomatology & Oral Maxilla Facial Key Laboratory, First Medical Center of Chinese PLA General Hospital, Beijing, China.
| | - Rong Zhang
- Institute of Stomatology & Oral Maxilla Facial Key Laboratory, First Medical Center of Chinese PLA General Hospital, Beijing, China.
- Department of Temporomandibular Joint, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction & Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
47
|
Ding Y, Li H, Cao S, Yu Y. Effects of catechin on the malignant biological behavior of gastric cancer cells through the PI3K/Akt signaling pathway. Toxicol Appl Pharmacol 2024; 490:117036. [PMID: 39009138 DOI: 10.1016/j.taap.2024.117036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/11/2024] [Accepted: 07/11/2024] [Indexed: 07/17/2024]
Abstract
Catechin is a kind of flavonoids, mainly derived from the plant Camellia sinensis. It has a strong antioxidant effect, and it also has significant therapeutic effects on anti-cancer, anti-diabetes, and anti-infection. This study was intended to look at how catechin affected the malignant biological activity of gastric cancer cells. We used databases to predict the targets of catechin and the pathogenic targets of gastric cancer. Venn diagram was used to find the intersection genes, the Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) enrichment analyses were performed on intersection genes. Using the STRING database, the Protein-Protein Interaction (PPI) network was built. The top 8 genes were screened by Cytoscape 3.9.1, then their binding was verified by molecular docking. The proliferation ability, cell cycle, apoptosis and migration of gastric cancer cells were detected, as well as the protein expression levels of PI3K, p-AKT, and AKT and the mRNA expression levels of AKT1, VEGFA, EGFR, HRAS, and HSP90AA1 in gastric cancer cells. Our research revealed that different concentrations of catechin could effectively inhibit the proliferation and migration of gastric cancer cells, regulate the cell cycle, and promote the death of these cells, and it's possible that the PI3K/Akt pathway was crucial in mediating this impact. Moreover, adding the PI3K/Akt pathway agonist significantly reduced the promoting effect of catechin on the apoptosis of gastric cancer cells. This study suggested that catechin was a potential drug for the treatment of gastric cancer.
Collapse
Affiliation(s)
- Ye Ding
- Henan Key Laboratory of Helicobacter Pylori & Microbiota and Gastrointestinal Cancer, Marshall Medical Research Center, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China; Department of Gastroenterology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Hao Li
- Henan Key Laboratory of Helicobacter Pylori & Microbiota and Gastrointestinal Cancer, Marshall Medical Research Center, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China; Department of Gastroenterology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Saisai Cao
- Henan Key Laboratory of Helicobacter Pylori & Microbiota and Gastrointestinal Cancer, Marshall Medical Research Center, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China; Department of Gastroenterology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Yong Yu
- Henan Key Laboratory of Helicobacter Pylori & Microbiota and Gastrointestinal Cancer, Marshall Medical Research Center, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China; Department of Gastroenterology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China.
| |
Collapse
|
48
|
Yin X, Wang J, Ge M, Feng X, Zhang G. Designing Small Molecule PI3Kγ Inhibitors: A Review of Structure-Based Methods and Computational Approaches. J Med Chem 2024; 67:10530-10547. [PMID: 38988222 DOI: 10.1021/acs.jmedchem.4c00347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
The PI3K/AKT/mTOR pathway plays critical roles in a wide array of biological processes. Phosphatidylinositol 3-kinase gamma (PI3Kγ), a class IB PI3K family member, represents a potential therapeutic opportunity for the treatment of cancer, inflammation, and autoimmunity. In this Perspective, we provide a comprehensive overview of the structure, biological function, and regulation of PI3Kγ. We also focus on the development of PI3Kγ inhibitors over the past decade and emphasize their binding modes, structure-activity relationships, and pharmacological activities. The application of computational technologies and artificial intelligence in the discovery of novel PI3Kγ inhibitors is also introduced. This review aims to provide a timely and updated overview on the strategies for targeting PI3Kγ.
Collapse
Affiliation(s)
- Xiaoming Yin
- Hebei University of Science & Technology, Shijiazhuang 050018, People's Republic of China
- Hebei Research Center of Pharmaceutical and Chemical Engineering, Shijiazhuang 050018, People's Republic of China
| | - Jiaying Wang
- Hebei University of Science & Technology, Shijiazhuang 050018, People's Republic of China
- Hebei Research Center of Pharmaceutical and Chemical Engineering, Shijiazhuang 050018, People's Republic of China
| | - Minghao Ge
- Hebei University of Science & Technology, Shijiazhuang 050018, People's Republic of China
- Hebei Research Center of Pharmaceutical and Chemical Engineering, Shijiazhuang 050018, People's Republic of China
| | - Xue Feng
- Hebei University of Science & Technology, Shijiazhuang 050018, People's Republic of China
| | - Guogang Zhang
- Hebei University of Science & Technology, Shijiazhuang 050018, People's Republic of China
- Hebei Research Center of Pharmaceutical and Chemical Engineering, Shijiazhuang 050018, People's Republic of China
| |
Collapse
|
49
|
Khezri MR, Hsueh H, Mohammadipanah S, Khalili Fard J, Ghasemnejad‐Berenji M. The interplay between the PI3K/AKT pathway and circadian clock in physiologic and cancer-related pathologic conditions. Cell Prolif 2024; 57:e13608. [PMID: 38336976 PMCID: PMC11216939 DOI: 10.1111/cpr.13608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 12/15/2023] [Accepted: 01/25/2024] [Indexed: 02/12/2024] Open
Abstract
The circadian clock is responsible for the regulation of different cellular processes, and its disturbance has been linked to the development of different diseases, such as cancer. The main molecular mechanism for this issue has been linked to the crosstalk between core clock regulators and intracellular pathways responsible for cell survival. The PI3K/AKT signalling pathway is one of the most known intracellular pathways in the case of cancer initiation and progression. This pathway regulates different aspects of cell survival including proliferation, apoptosis, metabolism, and response to environmental stimuli. Accumulating evidence indicates that there is a link between the PI3K/AKT pathway activity and circadian rhythm in physiologic and cancer-related pathogenesis. Different classes of PI3Ks and AKT isoforms are involved in regulating circadian clock components in a transcriptional and functional manner. Reversely, core clock components induce a rhythmic fashion in PI3K and AKT activity in physiologic and pathogenic conditions. The aim of this review is to re-examine the interplay between this pathway and circadian clock components in normal condition and cancer pathogenesis, which provides a better understanding of how circadian rhythms may be involved in cancer progression.
Collapse
Affiliation(s)
- Mohammad Rafi Khezri
- Reproductive Health Research Center, Clinical Research InstituteUrmia University of Medical SciencesUrmiaIran
| | - Hsiang‐Yin Hsueh
- The Ohio State University Graduate Program in Molecular, Cellular and Developmental BiologyThe Ohio State UniversityColumbusOhioUSA
| | - Somayeh Mohammadipanah
- Reproductive Health Research Center, Clinical Research InstituteUrmia University of Medical SciencesUrmiaIran
| | - Javad Khalili Fard
- Department of Pharmacology and Toxicology, Faculty of PharmacyTabriz University of Medical SciencesTabrizIran
| | - Morteza Ghasemnejad‐Berenji
- Department of Pharmacology and Toxicology, Faculty of PharmacyUrmia University of Medical SciencesUrmiaIran
- Research Center for Experimental and Applied Pharmaceutical SciencesUrmia University of Medical SciencesUrmiaIran
| |
Collapse
|
50
|
Iranpanah A, Majnooni MB, Biganeh H, Amirian R, Rastegari-Pouyani M, Filosa R, Cheang WS, Fakhri S, Khan H. Exploiting new strategies in combating head and neck carcinoma: A comprehensive review on phytochemical approaches passing through PI3K/Akt/mTOR signaling pathway. Phytother Res 2024; 38:3736-3762. [PMID: 38776136 DOI: 10.1002/ptr.8228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 04/02/2024] [Accepted: 04/20/2024] [Indexed: 07/12/2024]
Abstract
Recently, malignant neoplasms have growingly caused human morbidity and mortality. Head and neck cancer (HNC) constitutes a substantial group of malignancies occurring in various anatomical regions of the head and neck, including lips, mouth, throat, larynx, nose, sinuses, oropharynx, hypopharynx, nasopharynx, and salivary glands. The present study addresses the phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR) pathway as a possible therapeutic target in cancer therapy. Finding new multitargeting agents capable of modulating PI3K/Akt/mTOR and cross-linked mediators could be viewed as an effective strategy in combating HNC. Recent studies have introduced phytochemicals as multitargeting agents and rich sources for finding and developing new therapeutic agents. Phytochemicals have exhibited immense anticancer effects, including targeting different stages of HNC through the modulation of several signaling pathways. Moreover, phenolic/polyphenolic compounds, alkaloids, terpenes/terpenoids, and other secondary metabolites have demonstrated promising anticancer activities because of their diverse pharmacological and biological properties like antiproliferative, antineoplastic, antioxidant, and anti-inflammatory activities. The current review is mainly focused on new therapeutic strategies for HNC passing through the PI3K/Akt/mTOR pathway as new strategies in combating HNC.
Collapse
Affiliation(s)
- Amin Iranpanah
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | | | - Hossein Biganeh
- Department of Pharmacognosy, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Roshanak Amirian
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
- USERN Office, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohsen Rastegari-Pouyani
- Department of Immunology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Rosanna Filosa
- Department of Science and Technology, University of Sannio, Benevento, Italy
| | - Wai San Cheang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University, Mardan, Pakistan
| |
Collapse
|