1
|
Zhao L, Wu Q, Long Y, Qu Q, Qi F, Liu L, Zhang L, Ai K. microRNAs: critical targets for treating rheumatoid arthritis angiogenesis. J Drug Target 2024; 32:1-20. [PMID: 37982157 DOI: 10.1080/1061186x.2023.2284097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 11/09/2023] [Indexed: 11/21/2023]
Abstract
Vascular neogenesis, an early event in the development of rheumatoid arthritis (RA) inflammation, is critical for the formation of synovial vascular networks and plays a key role in the progression and persistence of chronic RA inflammation. microRNAs (miRNAs), a class of single-stranded, non-coding RNAs with approximately 21-23 nucleotides in length, regulate gene expression by binding to the 3' untranslated region (3'-UTR) of specific mRNAs. Increasing evidence suggests that miRNAs are differently expressed in diseases associated with vascular neogenesis and play a crucial role in disease-related vascular neogenesis. However, current studies are not sufficient and further experimental studies are needed to validate and establish the relationship between miRNAs and diseases associated with vascular neogenesis, and to determine the specific role of miRNAs in vascular development pathways. To better treat vascular neogenesis in diseases such as RA, we need additional studies on the role of miRNAs and their target genes in vascular development, and to provide more strategic references. In addition, future studies can use modern biotechnological methods such as proteomics and transcriptomics to investigate the expression and regulatory mechanisms of miRNAs, providing a more comprehensive and in-depth research basis for the treatment of related diseases such as RA.
Collapse
Affiliation(s)
- Lingyun Zhao
- College of Acupuncture, Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, China
| | - Qingze Wu
- College of Acupuncture, Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, China
| | - Yiying Long
- Hunan Traditional Chinese Medical College, Zhuzhou, China
| | - Qirui Qu
- College of Acupuncture, Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, China
| | - Fang Qi
- College of Acupuncture, Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, China
| | - Li Liu
- The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Liang Zhang
- College of Acupuncture, Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, China
| | - Kun Ai
- College of Acupuncture, Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
2
|
Okada S, Boonnate P, Panaampon J, Saisuwan K, Ogata-Aoki H, Abe M, Hirabayashi K, Nakagawa R, Kikuta K. Establishment of Biobank and Patient-Derived Xenograft of Soft Tissue and Bone Tumors. Cureus 2024; 16:e74781. [PMID: 39737254 PMCID: PMC11684544 DOI: 10.7759/cureus.74781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/29/2024] [Indexed: 01/01/2025] Open
Abstract
Soft tissue and bone tumors are rare, and their low frequency and diverse histological types make conducting large-scale clinical trials challenging. Patient-derived xenografts (PDX), entailing implantation of cancer specimens in immunocompromised mice, are emerging as a valuable translational model because PDX keeps the original tumors' character and drug sensitivity. We sequentially transplanted 166 surgical and biopsy specimens from orthopedic surgeries, including 138 soft tissue and bone tumors (81 malignant, 23 intermediate, and 34 benign), 16 metastatic bone tumors, 9 hematological malignancies, and 3 non-tumor tissues. Every specimen was cutaneously transplanted into both flanks of BALB/c Rag-2/Jak3 double deficient (BRJ) mice, and tumor formation was observed for up to 6 months. We defined PDX models as successfully generated if the tumors were passaged more than three times while retaining the histological characteristics of the original tumor. The rates of PDX generation were 28.1% (39/138) for all soft tissue and bone tumors, 42.6% (35/81) for malignant tumors, 4.3% (1/23) for intermediate tumors, and 8.8% (3/34) for benign tumors. Our models of PDX would be a useful platform for soft tissue and bone tumor precision medicine.
Collapse
Affiliation(s)
- Seiji Okada
- Division of Hematopoiesis, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, JPN
| | - Piyanard Boonnate
- Division of Hematopoiesis, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, JPN
- Laboratory of Environmental Toxicology, Chulabhorn Research Institute, Bangkok, THA
| | - Jutatip Panaampon
- Division of Hematopoiesis, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, JPN
- Division of Hematologic Neoplasia, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, USA
| | - Krittamate Saisuwan
- Division of Hematopoiesis, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, JPN
| | - Hiromi Ogata-Aoki
- Division of Hematopoiesis, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, JPN
| | - Makoto Abe
- Division of Diagnostic Pathology, Tochigi Cancer Center, Utsunomiya, JPN
| | - Kaoru Hirabayashi
- Division of Diagnostic Pathology, Tochigi Cancer Center, Utsunomiya, JPN
| | - Rumi Nakagawa
- Division of Musculoskeletal Oncology and Orthopaedics Surgery, Tochigi Cancer Center, Utsunomiya, JPN
| | - Kazutaka Kikuta
- Division of Musculoskeletal Oncology and Orthopaedics Surgery, Tochigi Cancer Center, Utsunomiya, JPN
| |
Collapse
|
3
|
Picca F, Giannotta C, Tao J, Giordanengo L, Munir HMW, Botta V, Merlini A, Mogavero A, Garbo E, Poletto S, Bironzo P, Doronzo G, Novello S, Taulli R, Bersani F. From Cancer to Immune Organoids: Innovative Preclinical Models to Dissect the Crosstalk between Cancer Cells and the Tumor Microenvironment. Int J Mol Sci 2024; 25:10823. [PMID: 39409152 PMCID: PMC11476904 DOI: 10.3390/ijms251910823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 10/04/2024] [Accepted: 10/07/2024] [Indexed: 10/20/2024] Open
Abstract
Genomic-oriented oncology has improved tumor classification, treatment options, and patient outcomes. However, genetic heterogeneity, tumor cell plasticity, and the ability of cancer cells to hijack the tumor microenvironment (TME) represent a major roadblock for cancer eradication. Recent biotechnological advances in organotypic cell cultures have revolutionized biomedical research, opening new avenues to explore the use of cancer organoids in functional precision oncology, especially when genomics alone is not a determinant. Here, we outline the potential and the limitations of tumor organoids in preclinical and translational studies with a particular focus on lung cancer pathogenesis, highlighting their relevance in predicting therapy response, evaluating treatment toxicity, and designing novel anticancer strategies. Furthermore, we describe innovative organotypic coculture systems to dissect the crosstalk with the TME and to test the efficacy of different immunotherapy approaches, including adoptive cell therapy. Finally, we discuss the potential clinical relevance of microfluidic mini-organ technology, capable of reproducing tumor vasculature and the dynamics of tumor initiation and progression, as well as immunomodulatory interactions among tumor organoids, cancer-associated fibroblasts (CAFs) and immune cells, paving the way for next-generation immune precision oncology.
Collapse
Affiliation(s)
- Francesca Picca
- Department of Oncology, University of Torino, S. Luigi Gonzaga Hospital, Regione Gonzole 10, 10043 Orbassano, Italy
- Molecular Biotechnology Center ‘Guido Tarone’, University of Torino, Piazza Nizza 44, 10126 Torino, Italy
| | - Claudia Giannotta
- Molecular Biotechnology Center ‘Guido Tarone’, University of Torino, Piazza Nizza 44, 10126 Torino, Italy
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126 Torino, Italy
| | - Jiahao Tao
- Department of Oncology, University of Torino, S. Luigi Gonzaga Hospital, Regione Gonzole 10, 10043 Orbassano, Italy
| | - Lucia Giordanengo
- Department of Oncology, University of Torino, S. Luigi Gonzaga Hospital, Regione Gonzole 10, 10043 Orbassano, Italy
| | - H. M. Waqas Munir
- Department of Oncology, University of Torino, S. Luigi Gonzaga Hospital, Regione Gonzole 10, 10043 Orbassano, Italy
| | - Virginia Botta
- Department of Oncology, University of Torino, S. Luigi Gonzaga Hospital, Regione Gonzole 10, 10043 Orbassano, Italy
| | - Alessandra Merlini
- Thoracic Unit and Medical Oncology Division, Department of Oncology, University of Torino, S. Luigi Gonzaga Hospital, 10043 Orbassano, Italy
| | - Andrea Mogavero
- Department of Oncology, University of Torino, S. Luigi Gonzaga Hospital, Regione Gonzole 10, 10043 Orbassano, Italy
| | - Edoardo Garbo
- Department of Oncology, University of Torino, S. Luigi Gonzaga Hospital, Regione Gonzole 10, 10043 Orbassano, Italy
| | - Stefano Poletto
- Thoracic Unit and Medical Oncology Division, Department of Oncology, University of Torino, S. Luigi Gonzaga Hospital, 10043 Orbassano, Italy
| | - Paolo Bironzo
- Thoracic Unit and Medical Oncology Division, Department of Oncology, University of Torino, S. Luigi Gonzaga Hospital, 10043 Orbassano, Italy
| | - Gabriella Doronzo
- Department of Oncology, University of Torino, S. Luigi Gonzaga Hospital, Regione Gonzole 10, 10043 Orbassano, Italy
| | - Silvia Novello
- Thoracic Unit and Medical Oncology Division, Department of Oncology, University of Torino, S. Luigi Gonzaga Hospital, 10043 Orbassano, Italy
| | - Riccardo Taulli
- Department of Oncology, University of Torino, S. Luigi Gonzaga Hospital, Regione Gonzole 10, 10043 Orbassano, Italy
- Molecular Biotechnology Center ‘Guido Tarone’, University of Torino, Piazza Nizza 44, 10126 Torino, Italy
| | - Francesca Bersani
- Department of Oncology, University of Torino, S. Luigi Gonzaga Hospital, Regione Gonzole 10, 10043 Orbassano, Italy
- Molecular Biotechnology Center ‘Guido Tarone’, University of Torino, Piazza Nizza 44, 10126 Torino, Italy
| |
Collapse
|
4
|
Li Q, Lin Y, Ni B, Geng H, Wang C, Zhao E, Zhu C. Circadian system disorder induced by aberrantly activated EFNB2-EPHB2 axis leads to facilitated liver metastasis in gastric cancer. Cell Oncol (Dordr) 2024:10.1007/s13402-024-00991-1. [PMID: 39298082 DOI: 10.1007/s13402-024-00991-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/30/2024] [Indexed: 09/21/2024] Open
Abstract
BACKGROUND Liver is one of the most preferred destinations for distant metastasis of gastric cancer (GC) and liver metastasis usually predicts poor prognosis. The achievement of liver metastasis requires continued cross-talk of complex members in tumor microenvironment (TME) including tumor associated macrophages (TAMs). METHODS Results from 35 cases of ex vivo cultured living tissues of GC liver metastasis have elucidated that circadian rhythm disorder (CRD) of key molecules involved in circadian timing system (CTS) facilitates niche outgrowth. We next analyzed 69 cases of liver metastasis from patients bearing GC and designed co-culture or 3D cell culture, discovering that TAMs expressing EFNB2 could interact with tumor cell expressing EPHB2 for forward downstream signaling and lead to CRD of tumor cells. Moreover, we performed intrasplenic injection models assessed by CT combined 3D organ reconstruction bioluminescence imaging to study liver metastasis and utilized the clodronate treatment, bone marrow transplantation or EPH inhibitor for in vivo study followed by exploring the clinical therapeutic value of which in patient derived xenograft (PDX) mouse model. RESULTS Ex vivo studies demonstrated that CRD of key CTS molecules facilitates niche outgrowth in liver metastases. In vitro studies revealed that TAMs expressing EFNB2 interact with tumor cells expressing EPHB2, leading to CRD and downstream signaling activation. The underlying mechanism is the enhancement of the Warburg effect in metastatic niches. CONCLUSION Overall, we aim to uncover the mechanism in TAMs induced CRD which promotes liver metastasis of GC and provide novel ideas for therapeutic strategies.
Collapse
Affiliation(s)
- Qing Li
- Department of Gastrointestinal Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, P.R. China
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, P.R. China
| | - Yuxuan Lin
- Department of Gastrointestinal Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, P.R. China
| | - Bo Ni
- Department of Gastrointestinal Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, P.R. China
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, P.R. China
| | - Haigang Geng
- Department of Gastrointestinal Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, P.R. China
| | - Chaojie Wang
- Department of Gastrointestinal Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, P.R. China.
| | - Enhao Zhao
- Department of Gastrointestinal Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, P.R. China.
| | - Chunchao Zhu
- Department of Gastrointestinal Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, P.R. China.
| |
Collapse
|
5
|
Dogan E, Galifi CA, Cecen B, Shukla R, Wood TL, Miri AK. Extracellular matrix regulation of cell spheroid invasion in a 3D bioprinted solid tumor-on-a-chip. Acta Biomater 2024; 186:156-166. [PMID: 39097123 PMCID: PMC11390304 DOI: 10.1016/j.actbio.2024.07.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 07/01/2024] [Accepted: 07/25/2024] [Indexed: 08/05/2024]
Abstract
Tumor organoids and tumors-on-chips can be built by placing patient-derived cells within an engineered extracellular matrix (ECM) for personalized medicine. The engineered ECM influences the tumor response, and understanding the ECM-tumor relationship accelerates translating tumors-on-chips into drug discovery and development. In this work, we tuned the physical and structural characteristics of ECM in a 3D bioprinted soft-tissue sarcoma microtissue. We formed cell spheroids at a controlled size and encapsulated them into our gelatin methacryloyl (GelMA)-based bioink to make perfusable hydrogel-based microfluidic chips. We then demonstrated the scalability and customization flexibility of our hydrogel-based chip via engineering tools. A multiscale physical and structural data analysis suggested a relationship between cell invasion response and bioink characteristics. Tumor cell invasive behavior and focal adhesion properties were observed in response to varying polymer network densities of the GelMA-based bioink. Immunostaining assays and reverse transcription-quantitative polymerase chain reaction (RT-qPCR) helped assess the bioactivity of the microtissue and measure the cell invasion. The RT-qPCR data showed higher expressions of HIF-1α, CD44, and MMP2 genes in a lower polymer density, highlighting the correlation between bioink structural porosity, ECM stiffness, and tumor spheroid response. This work is the first step in modeling STS tumor invasiveness in hydrogel-based microfluidic chips. STATEMENT OF SIGNIFICANCE: We optimized an engineering protocol for making tumor spheroids at a controlled size, embedding spheroids into a gelatin-based matrix, and constructing a perfusable microfluidic device. A higher tumor invasion was observed in a low-stiffness matrix than a high-stiffness matrix. The physical characterizations revealed how the stiffness is controlled by the density of polymer chain networks and porosity. The biological assays revealed how the structural properties of the gelatin matrix and hypoxia in tumor progression impact cell invasion. This work can contribute to personalized medicine by making more effective, tailored cancer models.
Collapse
Affiliation(s)
- Elvan Dogan
- Department of Biomedical Engineering, Newark College of Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA
| | - Christopher A Galifi
- Department of Pharmacology, Physiology, and Neuroscience and Center for Cell Signaling, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - Berivan Cecen
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ 08028, USA
| | - Roshni Shukla
- Department of Biomedical Engineering, Newark College of Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA
| | - Teresa L Wood
- Department of Pharmacology, Physiology, and Neuroscience and Center for Cell Signaling, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - Amir K Miri
- Department of Biomedical Engineering, Newark College of Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA; Department of Mechanical and Industrial Engineering, Newark College of Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA.
| |
Collapse
|
6
|
Chen L, Li F, Li R, Zheng K, Zhang X, Ma H, Li K, Nie L. Thermo-Responsive Hydrogel Based on Lung Decellularized Extracellular Matrix for 3D Culture Model to Enhance Cancer Stem Cell Characteristics. Molecules 2024; 29:4385. [PMID: 39339380 PMCID: PMC11433703 DOI: 10.3390/molecules29184385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 09/05/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
Cancer stem cells (CSCs) are most likely the main cause of lung cancer formation, metastasis, drug resistance, and genetic heterogeneity. Three-dimensional (3D) ex vivo cell culture models can facilitate stemness improvement and CSC enrichment. Considering the critical role of extracellular matrix (ECM) on CSC properties, the present study developed a thermo-responsive hydrogel using the porcine decellularized lung for 3D cell culture, and the cell-laden hydrogel culturing model was used to explore the CSC characteristics and potential utilization in CSC-specific drug evaluation. Results showed that the lung dECM hydrogel (LEH) was composed of the main ECM components and displayed excellent cellular compatibility. In addition, lung cancer cells 3D cultured in LEH displayed the overexpression of metastasis-related genes and enhanced migration properties, as compared with those in two-dimensional (2D) conditions. Notably, the CSC features, including the expression level of stemness-associated genes, colony formation capability, drug resistance, and the proportion of cancer stem-like cells (CD133+), were also enhanced in 3D cells. Furthermore, the attenuation effect of epigallocatechin gallate (EGCG) on CSC properties in the 3D model was observed, confirming the potential practicability of the 3D culture on CSC-targeted drug screening. Overall, our results suggest that the fabricated LEH is an effective and facile platform for 3D cell culture and CSC-specific drug evaluation.
Collapse
Affiliation(s)
- Lei Chen
- Key Laboratory of Tea Plant Biology of Henan Province, College of Life Sciences, Xinyang Normal University, Xinyang 464000, China
| | - Fanglu Li
- Key Laboratory of Tea Plant Biology of Henan Province, College of Life Sciences, Xinyang Normal University, Xinyang 464000, China
| | - Ruobing Li
- Key Laboratory of Tea Plant Biology of Henan Province, College of Life Sciences, Xinyang Normal University, Xinyang 464000, China
| | - Ke Zheng
- Key Laboratory of Tea Plant Biology of Henan Province, College of Life Sciences, Xinyang Normal University, Xinyang 464000, China
| | - Xinyi Zhang
- Key Laboratory of Tea Plant Biology of Henan Province, College of Life Sciences, Xinyang Normal University, Xinyang 464000, China
| | - Huijing Ma
- Library, Xinyang Normal University, Xinyang 464000, China
| | - Kaiming Li
- Key Laboratory of Tea Plant Biology of Henan Province, College of Life Sciences, Xinyang Normal University, Xinyang 464000, China
| | - Lei Nie
- Key Laboratory of Tea Plant Biology of Henan Province, College of Life Sciences, Xinyang Normal University, Xinyang 464000, China
| |
Collapse
|
7
|
Mondal J, Chakraborty K, Bunggulawa EJ, An JM, Revuri V, Nurunnabi M, Lee YK. Recent advancements of hydrogels in immunotherapy: Breast cancer treatment. J Control Release 2024; 372:1-30. [PMID: 38849092 DOI: 10.1016/j.jconrel.2024.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/21/2024] [Accepted: 06/01/2024] [Indexed: 06/09/2024]
Abstract
Breast cancer is the most prevalent cancer among women and the leading cause of cancer-related deaths in this population. Recent advances in Immunotherapy, or combined immunotherapy, offering a more targeted and less toxic approach, expand the survival rate of patients more than conventional treatment. Notably, hydrogels, a versatile platform provided promising avenues to combat breast cancer in preclinical studies and extended to clinical practices. With advantages such as the alternation of tumor microenvironment, immunomodulation, targeted delivery of therapeutic agents, and their sustained release at specific sites of interest, hydrogels can potentially be used for the treatment of breast cancer. This review highlights the advantages, mechanisms of action, stimuli-responsiveness properties, and recent advancements of hydrogels for treating breast cancer immunotherapy. Moreover, post-treatment and its clinical translations are discussed in this review. The integration of hydrogels in immunotherapy strategies may pave the way for more effective, personalized, and patient-friendly approaches to combat breast cancer, ultimately contributing to a brighter future for breast cancer patients.
Collapse
Affiliation(s)
- Jagannath Mondal
- 4D Convergence Technology Institute, Korea National University of Transportation, Jeungpyeong 27909, Republic of Korea; Department of Green Bioengineering, Korea National University of Transportation, Chungju 27470, Republic of Korea; Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, WA, USA
| | - Kushal Chakraborty
- Department of IT and Energy Convergence (BK21 FOUR), Korea National University of Transportation, Chungju 27469, Republic of Korea
| | - Edwin J Bunggulawa
- Department of Green Bioengineering, Korea National University of Transportation, Chungju 27470, Republic of Korea
| | - Jeong Man An
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Vishnu Revuri
- Department of Green Bioengineering, Korea National University of Transportation, Chungju 27470, Republic of Korea
| | - Md Nurunnabi
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, El Paso, TX 79902, United States; Biomedical Engineering Program, College of Engineering, University of Texas at El Paso, El Paso, TX 79968, United States.
| | - Yong-Kyu Lee
- 4D Convergence Technology Institute, Korea National University of Transportation, Jeungpyeong 27909, Republic of Korea; Department of Green Bioengineering, Korea National University of Transportation, Chungju 27470, Republic of Korea; Department of Chemical & Biological Engineering, Korea National University of Transportation, Chungju 27470, Republic of Korea.
| |
Collapse
|
8
|
Qin T, Hu Z, Zhang L, Lu F, Xiao R, Liu Y, Fan J, Guo E, Yang B, Fu Y, Zhuang X, Kang X, Wu Z, Fang Z, Cui Y, Hu X, Yin J, Yan M, Li F, Song K, Chen G, Sun C. Genomic profiling of a multi-lineage and multi-passage patient-derived xenograft biobank reflects heterogeneity of ovarian cancer. Cell Rep Med 2024; 5:101631. [PMID: 38986623 PMCID: PMC11293341 DOI: 10.1016/j.xcrm.2024.101631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/16/2024] [Accepted: 06/07/2024] [Indexed: 07/12/2024]
Abstract
Ovarian cancer (OC) manifests as a complex disease characterized by inter- and intra-patient heterogeneity. Despite enhanced biological and genetic insights, OC remains a recalcitrant malignancy with minimal survival improvement. Based on multi-site sampling and a multi-lineage patient-derived xenograft (PDX) establishment strategy, we present herein the establishment of a comprehensive PDX biobank from histologically and molecularly heterogeneous OC patients. Comprehensive profiling of matched PDX and patient samples demonstrates that PDXs closely recapitulate parental tumors. By leveraging multi-lineage models, we reveal that the previously reported genomic disparities of PDX could be mainly attributed to intra-patient spatial heterogeneity instead of substantial model-independent genomic evolution. Moreover, DNA damage response pathway inhibitor (DDRi) screening uncovers heterogeneous responses across models. Prolonged iterative drug exposure recapitulates acquired drug resistance in initially sensitive models. Meanwhile, interrogation of induced drug-resistant (IDR) models reveals that suppressed interferon (IFN) response and activated Wnt/β-catenin signaling contribute to acquired DDRi drug resistance.
Collapse
Affiliation(s)
- Tianyu Qin
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China; National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430010, P.R. China
| | - Zhe Hu
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China; National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430010, P.R. China
| | - Li Zhang
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China; National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430010, P.R. China
| | - Funian Lu
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China; National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430010, P.R. China
| | - Rourou Xiao
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Yiting Liu
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China; National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430010, P.R. China
| | - Junpeng Fan
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China; National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430010, P.R. China
| | - Ensong Guo
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China; National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430010, P.R. China
| | - Bin Yang
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China; National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430010, P.R. China
| | - Yu Fu
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China; National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430010, P.R. China
| | - Xucui Zhuang
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China; National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430010, P.R. China
| | - Xiaoyan Kang
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China; National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430010, P.R. China
| | - Zimeng Wu
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China; National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430010, P.R. China
| | - Zixuan Fang
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China; National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430010, P.R. China
| | - Yaoyuan Cui
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China; National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430010, P.R. China
| | - Xingyuan Hu
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China; National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430010, P.R. China
| | - Jingjing Yin
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China; National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430010, P.R. China
| | - Miao Yan
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China; National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430010, P.R. China
| | - Fuxia Li
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Shihezi University School of Medicine, Shihezi, Xinjiang 832008, P.R. China
| | - Kun Song
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China.
| | - Gang Chen
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China; National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430010, P.R. China.
| | - Chaoyang Sun
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China; National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430010, P.R. China; Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China.
| |
Collapse
|
9
|
Vaklavas C, Matsen CB, Chu Z, Boucher KM, Scherer SD, Pathi S, Beck A, Brownson KE, Buys SS, Chittoria N, D'Astous E, Gulbahce HE, Henry NL, Kimani S, Porretta J, Rosenthal R, Ward J, Wei M, Welm BE, Welm AL. TOWARDS Study: Patient-Derived Xenograft Engraftment Predicts Poor Survival in Patients With Newly Diagnosed Triple-Negative Breast Cancer. JCO Precis Oncol 2024; 8:e2300724. [PMID: 39074345 PMCID: PMC11371112 DOI: 10.1200/po.23.00724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 05/04/2024] [Accepted: 05/28/2024] [Indexed: 07/31/2024] Open
Abstract
PURPOSE Assessing risk of recurrence for nonmetastatic triple-negative breast cancer (TNBC) is a key determinant of therapeutic strategy. The best predictor of recurrence risk is failure to achieve a pathologic complete response after preoperative chemotherapy, but it imperfectly correlates with the definitive end points of relapse-free and overall survival (OS). The inability to accurately predict recurrence has led to increasingly toxic treatment regimens for patients with early-stage TNBC. Better assays for recurrence risk are needed to tailor aggressive therapy for patients who need it and avoid overtreatment and unnecessary toxicity for those at low risk. The purpose of this study was to determine if patient-derived xenograft (PDX) engraftment of newly diagnosed breast tumors can serve as an accurate predictor of recurrence and death from breast cancer. METHODS This study was a blinded noninterventional trial comprising 80 patients with newly diagnosed, nonmetastatic, estrogen receptor (ER)-negative or ER-low breast cancer. RESULTS PDX engraftment was strongly associated with relapse in 1 year: 8 of 18 (44.4%) patients whose tumors engrafted relapsed versus 1 of 62 (1.6%) patients whose tumors did not engraft (P < .0001). Patients whose tumors engrafted had a hazard ratio (HR) for relapse of 17.5. HRs for OS and breast cancer-specific survival in PDX+ patients were 21.1 and 39.5, respectively. CONCLUSION We report that the ability of a tumor to engraft as a PDX predicts early recurrence by serving as a functional readout of aggressiveness and prospectively identifies the most devastating tumors. This provides new opportunity to develop surrogate assays, such as biomarkers of engraftment, which will extend the clinical feasibility of this finding.
Collapse
Affiliation(s)
- Christos Vaklavas
- Department of Internal Medicine, Division of Oncology, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT
| | - Cindy B Matsen
- Department of Surgery, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT
| | - Zhengtao Chu
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT
| | - Kenneth M Boucher
- Department of Internal Medicine, Division of Epidemiology, Salt Lake City, UT
| | - Sandra D Scherer
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT
| | - Satya Pathi
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT
| | - Anna Beck
- Department of Internal Medicine, Division of Oncology, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT
| | - Kirstyn E Brownson
- Department of Surgery, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT
| | - Saundra S Buys
- Department of Internal Medicine, Division of Oncology, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT
| | - Namita Chittoria
- Department of Internal Medicine, Division of Oncology, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT
| | - Elyse D'Astous
- Huntsman Cancer Institute Clinical Trials Office, Salt Lake City, UT
| | - H Evin Gulbahce
- Department of Pathology, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT
| | - N Lynn Henry
- Department of Internal Medicine, Division of Oncology, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT
- Current Address: Department of Internal Medicine, University of Michigan, Ann Arbor, MI
| | - Stephen Kimani
- Department of Internal Medicine, Division of Oncology, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT
| | - Jane Porretta
- Department of Surgery, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT
| | - Regina Rosenthal
- Department of Surgery, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT
| | - John Ward
- Department of Internal Medicine, Division of Oncology, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT
| | - Mei Wei
- Department of Internal Medicine, Division of Oncology, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT
| | - Bryan E Welm
- Department of Surgery, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT
| | - Alana L Welm
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT
| |
Collapse
|
10
|
Love JR, Karthaus WR. Next-Generation Modeling of Cancer Using Organoids. Cold Spring Harb Perspect Med 2024; 14:a041380. [PMID: 37734867 PMCID: PMC11146310 DOI: 10.1101/cshperspect.a041380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
In the last decade, organoid technology has become a cornerstone in cancer research. Organoids are long-term primary cell cultures, usually of epithelial origin, grown in a three-dimensional (3D) protein matrix and a fully defined medium. Organoids can be derived from many organs and cancer types and sites, encompassing both murine and human tissues. Importantly, they can be established from various stages during tumor evolution and recapitulate with high accuracy patient genomics and phenotypes in vitro, offering a platform for personalized medicine. Additionally, organoids are remarkably amendable for experimental manipulation. Taken together, these features make organoids a powerful tool with applications in basic cancer research and personalized medicine. Here, we will discuss the origins of organoid culture, applications in cancer research, and how cancer organoids can synergize with other models of cancer to drive basic discoveries as well as to translate these toward clinical solutions.
Collapse
Affiliation(s)
- Jillian R Love
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, EPFL, 1015 Lausanne, Switzerland
| | - Wouter R Karthaus
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, EPFL, 1015 Lausanne, Switzerland
| |
Collapse
|
11
|
Mei J, Liu X, Tian H, Chen Y, Cao Y, Zeng J, Liu Y, Chen Y, Gao Y, Yin J, Wang P. Tumour organoids and assembloids: Patient-derived cancer avatars for immunotherapy. Clin Transl Med 2024; 14:e1656. [PMID: 38664597 PMCID: PMC11045561 DOI: 10.1002/ctm2.1656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 03/24/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND Organoid technology is an emerging and rapidly growing field that shows promise in studying organ development and screening therapeutic regimens. Although organoids have been proposed for a decade, concerns exist, including batch-to-batch variations, lack of the native microenvironment and clinical applicability. MAIN BODY The concept of organoids has derived patient-derived tumour organoids (PDTOs) for personalized drug screening and new drug discovery, mitigating the risks of medication misuse. The greater the similarity between the PDTOs and the primary tumours, the more influential the model will be. Recently, 'tumour assembloids' inspired by cell-coculture technology have attracted attention to complement the current PDTO technology. High-quality PDTOs must reassemble critical components, including multiple cell types, tumour matrix, paracrine factors, angiogenesis and microorganisms. This review begins with a brief overview of the history of organoids and PDTOs, followed by the current approaches for generating PDTOs and tumour assembloids. Personalized drug screening has been practised; however, it remains unclear whether PDTOs can predict immunotherapies, including immune drugs (e.g. immune checkpoint inhibitors) and immune cells (e.g. tumour-infiltrating lymphocyte, T cell receptor-engineered T cell and chimeric antigen receptor-T cell). PDTOs, as cancer avatars of the patients, can be expanded and stored to form a biobank. CONCLUSION Fundamental research and clinical trials are ongoing, and the intention is to use these models to replace animals. Pre-clinical immunotherapy screening using PDTOs will be beneficial to cancer patients. KEY POINTS The current PDTO models have not yet constructed key cellular and non-cellular components. PDTOs should be expandable and editable. PDTOs are promising preclinical models for immunotherapy unless mature PDTOs can be established. PDTO biobanks with consensual standards are urgently needed.
Collapse
Affiliation(s)
- Jie Mei
- Oujiang Laboratory; Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of AgingWenzhou Medical UniversityWenzhouPeople's Republic of China
- Department of Clinical Pharmacology, Xiangya HospitalCentral South UniversityChangshaPeople's Republic of China
- Institute of Clinical Pharmacology, Hunan Key Laboratory of PharmacogeneticsCentral South UniversityChangshaPeople's Republic of China
- Engineering Research Center of Applied Technology of PharmacogenomicsMinistry of EducationChangshaPeople's Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya HospitalCentral South UniversityChangshaPeople's Republic of China
| | - Xingjian Liu
- Oujiang Laboratory; Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of AgingWenzhou Medical UniversityWenzhouPeople's Republic of China
| | - Hui‐Xiang Tian
- Department of Clinical Pharmacology, Xiangya HospitalCentral South UniversityChangshaPeople's Republic of China
- Institute of Clinical Pharmacology, Hunan Key Laboratory of PharmacogeneticsCentral South UniversityChangshaPeople's Republic of China
| | - Yixuan Chen
- Oujiang Laboratory; Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of AgingWenzhou Medical UniversityWenzhouPeople's Republic of China
| | - Yang Cao
- Oujiang Laboratory; Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of AgingWenzhou Medical UniversityWenzhouPeople's Republic of China
| | - Jun Zeng
- Oujiang Laboratory; Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of AgingWenzhou Medical UniversityWenzhouPeople's Republic of China
- Department of Thoracic Surgery, Xiangya HospitalCentral South UniversityChangshaPeople's Republic of China
| | - Yung‐Chiang Liu
- Oujiang Laboratory; Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of AgingWenzhou Medical UniversityWenzhouPeople's Republic of China
| | - Yaping Chen
- Oujiang Laboratory; Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of AgingWenzhou Medical UniversityWenzhouPeople's Republic of China
| | - Yang Gao
- National Clinical Research Center for Geriatric Disorders, Xiangya HospitalCentral South UniversityChangshaPeople's Republic of China
- Department of Thoracic Surgery, Xiangya HospitalCentral South UniversityChangshaPeople's Republic of China
- Hunan Engineering Research Center for Pulmonary Nodules Precise Diagnosis and Treatment, Xiangya HospitalCentral South UniversityChangshaPeople's Republic of China
- Xiangya Lung Cancer Center, Xiangya HospitalCentral South UniversityChangshaPeople's Republic of China
| | - Ji‐Ye Yin
- Department of Clinical Pharmacology, Xiangya HospitalCentral South UniversityChangshaPeople's Republic of China
- Institute of Clinical Pharmacology, Hunan Key Laboratory of PharmacogeneticsCentral South UniversityChangshaPeople's Republic of China
- Engineering Research Center of Applied Technology of PharmacogenomicsMinistry of EducationChangshaPeople's Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya HospitalCentral South UniversityChangshaPeople's Republic of China
| | - Peng‐Yuan Wang
- Oujiang Laboratory; Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of AgingWenzhou Medical UniversityWenzhouPeople's Republic of China
| |
Collapse
|
12
|
Sousa ACDS, Fernandes BLNC, da Silva JPA, Stevanato Filho PR, Coimbra LBDCT, de Oliveira Beserra A, Alvarenga AL, Maida G, Guimaraes CT, Nakamuta IM, Marchi FA, Alves C, Lichtenfels M, de Farias CB, Kupper BEC, Costa FD, de Mello CAL, Carraro DM, Torrezan GT, Lopes A, dos Santos TG. A Case Study of a Rare Undifferentiated Spindle Cell Sarcoma of the Penis: Establishment and Characterization of Patient-Derived Models. Genes (Basel) 2024; 15:424. [PMID: 38674359 PMCID: PMC11049969 DOI: 10.3390/genes15040424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 03/22/2024] [Accepted: 03/24/2024] [Indexed: 04/28/2024] Open
Abstract
Rare sarcomas present significant treatment challenges compared to more prevalent soft tissue sarcomas due to limited treatment options and a poor understanding of their biology. This study investigates a unique case of penile sarcoma, providing a comprehensive morphological and molecular analysis. Through the creation of experimental patient-derived models-including patient-derived xenograft (PDX), 3D, and monolayer primary cultures-we successfully replicated crucial molecular traits observed in the patient's tumor, such as smooth muscle actin and CD99 expression, along with specific mutations in genes like TSC2 and FGFR4. These models are helpful in assessing the potential for an in-depth exploration of this tumor's biology. This comprehensive approach holds promise in identifying potential therapeutic avenues for managing this exceedingly rare soft tissue sarcoma.
Collapse
Affiliation(s)
- Ariane Cavalcante dos Santos Sousa
- Clinical and Functional Genomics Group, A.C. Camargo Cancer Center, Sao Paulo 01508-010, Brazil; (A.C.d.S.S.); (L.B.d.C.T.C.); (A.d.O.B.); (A.L.A.); (G.M.); (C.T.G.); (D.M.C.); (G.T.T.)
- National Institute of Science and Technology in Oncogenomics and Therapeutic Innovation, Sao Paulo 01508-010, Brazil
- Graduate Program of A.C.Camargo Cancer Center, Sao Paulo 01508-020, Brazil;
| | | | | | - Paulo Roberto Stevanato Filho
- Reference Center in Sarcoma, A.C. Camargo Cancer Center, Sao Paulo 01509-900, Brazil; (P.R.S.F.); (B.E.C.K.); (F.D.C.); (A.L.)
| | - Luiza Bitencourt de Carvalho Terci Coimbra
- Clinical and Functional Genomics Group, A.C. Camargo Cancer Center, Sao Paulo 01508-010, Brazil; (A.C.d.S.S.); (L.B.d.C.T.C.); (A.d.O.B.); (A.L.A.); (G.M.); (C.T.G.); (D.M.C.); (G.T.T.)
- National Institute of Science and Technology in Oncogenomics and Therapeutic Innovation, Sao Paulo 01508-010, Brazil
| | - Adriano de Oliveira Beserra
- Clinical and Functional Genomics Group, A.C. Camargo Cancer Center, Sao Paulo 01508-010, Brazil; (A.C.d.S.S.); (L.B.d.C.T.C.); (A.d.O.B.); (A.L.A.); (G.M.); (C.T.G.); (D.M.C.); (G.T.T.)
- National Institute of Science and Technology in Oncogenomics and Therapeutic Innovation, Sao Paulo 01508-010, Brazil
- Graduate Program of A.C.Camargo Cancer Center, Sao Paulo 01508-020, Brazil;
| | - Ana Luiza Alvarenga
- Clinical and Functional Genomics Group, A.C. Camargo Cancer Center, Sao Paulo 01508-010, Brazil; (A.C.d.S.S.); (L.B.d.C.T.C.); (A.d.O.B.); (A.L.A.); (G.M.); (C.T.G.); (D.M.C.); (G.T.T.)
- National Institute of Science and Technology in Oncogenomics and Therapeutic Innovation, Sao Paulo 01508-010, Brazil
| | - Giovanna Maida
- Clinical and Functional Genomics Group, A.C. Camargo Cancer Center, Sao Paulo 01508-010, Brazil; (A.C.d.S.S.); (L.B.d.C.T.C.); (A.d.O.B.); (A.L.A.); (G.M.); (C.T.G.); (D.M.C.); (G.T.T.)
- National Institute of Science and Technology in Oncogenomics and Therapeutic Innovation, Sao Paulo 01508-010, Brazil
| | - Camila Tokumoto Guimaraes
- Clinical and Functional Genomics Group, A.C. Camargo Cancer Center, Sao Paulo 01508-010, Brazil; (A.C.d.S.S.); (L.B.d.C.T.C.); (A.d.O.B.); (A.L.A.); (G.M.); (C.T.G.); (D.M.C.); (G.T.T.)
- National Institute of Science and Technology in Oncogenomics and Therapeutic Innovation, Sao Paulo 01508-010, Brazil
| | - Ingrid Martinez Nakamuta
- Graduate Program of A.C.Camargo Cancer Center, Sao Paulo 01508-020, Brazil;
- Heart Institute of School of Medicine, University of Sao Paulo, Sao Paulo 05403-900, Brazil
| | - Fabio Albuquerque Marchi
- Center for Translational Research in Oncology, Cancer Institute of the State of Sao Paulo (ICESP), Clinical Hospital of the University of Sao Paulo Medical School (HCFMUSP), Sao Paulo 01246-000, Brazil;
| | - Camila Alves
- Ziel Biosciences, Department of Translational Research, Porto Alegre 90050-170, Brazil; (C.A.); (M.L.); (C.B.d.F.)
| | - Martina Lichtenfels
- Ziel Biosciences, Department of Translational Research, Porto Alegre 90050-170, Brazil; (C.A.); (M.L.); (C.B.d.F.)
| | - Caroline Brunetto de Farias
- Ziel Biosciences, Department of Translational Research, Porto Alegre 90050-170, Brazil; (C.A.); (M.L.); (C.B.d.F.)
| | - Bruna Elisa Catin Kupper
- Reference Center in Sarcoma, A.C. Camargo Cancer Center, Sao Paulo 01509-900, Brazil; (P.R.S.F.); (B.E.C.K.); (F.D.C.); (A.L.)
| | - Felipe D’Almeida Costa
- Reference Center in Sarcoma, A.C. Camargo Cancer Center, Sao Paulo 01509-900, Brazil; (P.R.S.F.); (B.E.C.K.); (F.D.C.); (A.L.)
- Anatomic Pathology Department, A.C. Camargo Cancer Center, Sao Paulo 01509-900, Brazil
| | - Celso Abdon Lopes de Mello
- Reference Center in Sarcoma, A.C. Camargo Cancer Center, Sao Paulo 01509-900, Brazil; (P.R.S.F.); (B.E.C.K.); (F.D.C.); (A.L.)
| | - Dirce Maria Carraro
- Clinical and Functional Genomics Group, A.C. Camargo Cancer Center, Sao Paulo 01508-010, Brazil; (A.C.d.S.S.); (L.B.d.C.T.C.); (A.d.O.B.); (A.L.A.); (G.M.); (C.T.G.); (D.M.C.); (G.T.T.)
- National Institute of Science and Technology in Oncogenomics and Therapeutic Innovation, Sao Paulo 01508-010, Brazil
| | - Giovana Tardin Torrezan
- Clinical and Functional Genomics Group, A.C. Camargo Cancer Center, Sao Paulo 01508-010, Brazil; (A.C.d.S.S.); (L.B.d.C.T.C.); (A.d.O.B.); (A.L.A.); (G.M.); (C.T.G.); (D.M.C.); (G.T.T.)
- National Institute of Science and Technology in Oncogenomics and Therapeutic Innovation, Sao Paulo 01508-010, Brazil
| | - Ademar Lopes
- Reference Center in Sarcoma, A.C. Camargo Cancer Center, Sao Paulo 01509-900, Brazil; (P.R.S.F.); (B.E.C.K.); (F.D.C.); (A.L.)
| | - Tiago Goss dos Santos
- Clinical and Functional Genomics Group, A.C. Camargo Cancer Center, Sao Paulo 01508-010, Brazil; (A.C.d.S.S.); (L.B.d.C.T.C.); (A.d.O.B.); (A.L.A.); (G.M.); (C.T.G.); (D.M.C.); (G.T.T.)
- National Institute of Science and Technology in Oncogenomics and Therapeutic Innovation, Sao Paulo 01508-010, Brazil
| |
Collapse
|
13
|
Wang Y, Cho JW, Kastrunes G, Buck A, Razimbaud C, Culhane AC, Sun J, Braun DA, Choueiri TK, Wu CJ, Jones K, Nguyen QD, Zhu Z, Wei K, Zhu Q, Signoretti S, Freeman GJ, Hemberg M, Marasco WA. Immune-restoring CAR-T cells display antitumor activity and reverse immunosuppressive TME in a humanized ccRCC mouse model. iScience 2024; 27:108879. [PMID: 38327771 PMCID: PMC10847687 DOI: 10.1016/j.isci.2024.108879] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/01/2023] [Accepted: 01/08/2024] [Indexed: 02/09/2024] Open
Abstract
One of the major barriers that have restricted successful use of chimeric antigen receptor (CAR) T cells in the treatment of solid tumors is an unfavorable tumor microenvironment (TME). We engineered CAR-T cells targeting carbonic anhydrase IX (CAIX) to secrete anti-PD-L1 monoclonal antibody (mAb), termed immune-restoring (IR) CAR G36-PDL1. We tested CAR-T cells in a humanized clear cell renal cell carcinoma (ccRCC) orthotopic mouse model with reconstituted human leukocyte antigen (HLA) partially matched human leukocytes derived from fetal CD34+ hematopoietic stem cells (HSCs) and bearing human ccRCC skrc-59 cells under the kidney capsule. G36-PDL1 CAR-T cells, haploidentical to the tumor cells, had a potent antitumor effect compared to those without immune-restoring effect. Analysis of the TME revealed that G36-PDL1 CAR-T cells restored active antitumor immunity by promoting tumor-killing cytotoxicity, reducing immunosuppressive cell components such as M2 macrophages and exhausted CD8+ T cells, and enhancing T follicular helper (Tfh)-B cell crosstalk.
Collapse
Affiliation(s)
- Yufei Wang
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Harvard Medical School, Boston, MA 02215, USA
| | - Jae-Won Cho
- Harvard Medical School, Boston, MA 02215, USA
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Gabriella Kastrunes
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Alicia Buck
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Cecile Razimbaud
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Aedin C. Culhane
- School of Medicine, University of Limerick, V94 T9PX Limerick, Ireland
| | - Jiusong Sun
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - David A. Braun
- Harvard Medical School, Boston, MA 02215, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Center of Molecular and Cellular Oncology, Yale Cancer Center, Yale School of Medicine, New Haven, CT 06525, USA
| | - Toni K. Choueiri
- Harvard Medical School, Boston, MA 02215, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Catherine J. Wu
- Harvard Medical School, Boston, MA 02215, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Kristen Jones
- Lurie Family Imaging Center, Center for Biomedical Imaging in Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Quang-De Nguyen
- Lurie Family Imaging Center, Center for Biomedical Imaging in Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Zhu Zhu
- Harvard Medical School, Boston, MA 02215, USA
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Kevin Wei
- Harvard Medical School, Boston, MA 02215, USA
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Quan Zhu
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Harvard Medical School, Boston, MA 02215, USA
| | - Sabina Signoretti
- Harvard Medical School, Boston, MA 02215, USA
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Gordon J. Freeman
- Harvard Medical School, Boston, MA 02215, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Martin Hemberg
- Harvard Medical School, Boston, MA 02215, USA
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Wayne A. Marasco
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
14
|
Waseem M, Wang BD. Organoids: An Emerging Precision Medicine Model for Prostate Cancer Research. Int J Mol Sci 2024; 25:1093. [PMID: 38256166 PMCID: PMC10816550 DOI: 10.3390/ijms25021093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/12/2024] [Accepted: 01/15/2024] [Indexed: 01/24/2024] Open
Abstract
Prostate cancer (PCa) has been known as the most prevalent cancer disease and the second leading cause of cancer mortality in men almost all over the globe. There is an urgent need for establishment of PCa models that can recapitulate the progress of genomic landscapes and molecular alterations during development and progression of this disease. Notably, several organoid models have been developed for assessing the complex interaction between PCa and its surrounding microenvironment. In recent years, PCa organoids have been emerged as powerful in vitro 3D model systems that recapitulate the molecular features (such as genomic/epigenomic changes and tumor microenvironment) of PCa metastatic tumors. In addition, application of organoid technology in mechanistic studies (i.e., for understanding cellular/subcellular and molecular alterations) and translational medicine has been recognized as a promising approach for facilitating the development of potential biomarkers and novel therapeutic strategies. In this review, we summarize the application of PCa organoids in the high-throughput screening and establishment of relevant xenografts for developing novel therapeutics for metastatic, castration resistant, and neuroendocrine PCa. These organoid-based studies are expected to expand our knowledge from basic research to clinical applications for PCa diseases. Furthermore, we also highlight the optimization of PCa cultures and establishment of promising 3D organoid models for in vitro and in vivo investigations, ultimately facilitating mechanistic studies and development of novel clinical diagnosis/prognosis and therapies for PCa.
Collapse
Affiliation(s)
- Mohammad Waseem
- Department of Pharmaceutical Sciences, School of Pharmacy and Health Professions, University of Maryland Eastern Shore, Princess Anne, MD 21853, USA;
| | - Bi-Dar Wang
- Department of Pharmaceutical Sciences, School of Pharmacy and Health Professions, University of Maryland Eastern Shore, Princess Anne, MD 21853, USA;
- Hormone Related Cancers Program, University of Maryland Greenebaum Comprehensive Cancer Center, Baltimore, MD 21201, USA
| |
Collapse
|
15
|
Xiu Z, Yang Q, Xie F, Han F, He W, Liao W. Revolutionizing digestive system tumor organoids research: Exploring the potential of tumor organoids. J Tissue Eng 2024; 15:20417314241255470. [PMID: 38808253 PMCID: PMC11131411 DOI: 10.1177/20417314241255470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 05/02/2024] [Indexed: 05/30/2024] Open
Abstract
Digestive system tumors are the leading cause of cancer-related deaths worldwide. Despite ongoing research, our understanding of their mechanisms and treatment remain inadequate. One promising tool for clinical applications is the use of gastrointestinal tract tumor organoids, which serve as an important in vitro model. Tumor organoids exhibit a genotype similar to the patient's tumor and effectively mimic various biological processes, including tissue renewal, stem cell, and ecological niche functions, and tissue response to drugs, mutations, or injury. As such, they are valuable for drug screening, developing novel drugs, assessing patient outcomes, and supporting immunotherapy. In addition, innovative materials and techniques can be used to optimize tumor organoid culture systems. Several applications of digestive system tumor organoids have been described and have shown promising results in related aspects. In this review, we discuss the current progress, limitations, and prospects of this model for digestive system tumors.
Collapse
Affiliation(s)
- Zhian Xiu
- Department of Medical Laboratory, Clinical Medical College, Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi, China
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi, China
| | - Qian Yang
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Fusheng Xie
- Department of Medical Laboratory, Clinical Medical College, Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi, China
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi, China
| | - Feng Han
- Department of Medical Laboratory, Clinical Medical College, Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi, China
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi, China
| | - Weiwei He
- Department of Medical Laboratory, Clinical Medical College, Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi, China
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi, China
| | - Weifang Liao
- Department of Medical Laboratory, Clinical Medical College, Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi, China
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi, China
| |
Collapse
|
16
|
Zhu H, Gao Y, Liu L, Tao M, Lin X, Cheng Y, Shen Y, Xue H, Guan L, Zhao H, Liu L, Wang S, Yang F, Zhou Y, Liao H, Sun F, Lin H. A novel TNKS/USP25 inhibitor blocks the Wnt pathway to overcome multi-drug resistance in TNKS-overexpressing colorectal cancer. Acta Pharm Sin B 2024; 14:207-222. [PMID: 38261825 PMCID: PMC10793098 DOI: 10.1016/j.apsb.2023.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 08/29/2023] [Accepted: 10/11/2023] [Indexed: 01/25/2024] Open
Abstract
Modulating Tankyrases (TNKS), interactions with USP25 to promote TNKS degradation, rather than inhibiting their enzymatic activities, is emerging as an alternative/specific approach to inhibit the Wnt/β-catenin pathway. Here, we identified UAT-B, a novel neoantimycin analog isolated from Streptomyces conglobatus, as a small-molecule inhibitor of TNKS-USP25 protein-protein interaction (PPI) to overcome multi-drug resistance in colorectal cancer (CRC). The disruption of TNKS-USP25 complex formation by UAT-B led to a significant decrease in TNKS levels, triggering cell apoptosis through modulation of the Wnt/β-catenin pathway. Importantly, UAT-B successfully inhibited the CRC cells growth that harbored high TNKS levels, as demonstrated in various in vitro and in vivo studies utilizing cell line-based and patient-derived xenografts, as well as APCmin/+ spontaneous CRC models. Collectively, these findings suggest that targeting the TNKS-USP25 PPI using a small-molecule inhibitor represents a compelling therapeutic strategy for CRC treatment, and UAT-B emerges as a promising candidate for further preclinical and clinical investigations.
Collapse
Affiliation(s)
- Hongrui Zhu
- Research Center for Marine Drugs, Department of Pharmacy, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Yamin Gao
- Research Center for Marine Drugs, Department of Pharmacy, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Liyun Liu
- Research Center for Marine Drugs, Department of Pharmacy, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Mengyu Tao
- Department of Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Xiao Lin
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Yijia Cheng
- Research Center for Marine Drugs, Department of Pharmacy, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Yaoyao Shen
- Research Center for Marine Drugs, Department of Pharmacy, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Haitao Xue
- Research Center for Marine Drugs, Department of Pharmacy, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Li Guan
- Research Center for Marine Drugs, Department of Pharmacy, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Huimin Zhao
- Research Center for Marine Drugs, Department of Pharmacy, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Li Liu
- State Key Laboratory of New Drug and Pharmaceutical Process, Shanghai Professional and Technical Ser-vice Center for Biological Material Drug-ability Evaluation, Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, Shanghai 200437, China
| | - Shuping Wang
- Research Center for Marine Drugs, Department of Pharmacy, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Fan Yang
- Research Center for Marine Drugs, Department of Pharmacy, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Yongjun Zhou
- Research Center for Marine Drugs, Department of Pharmacy, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Hongze Liao
- Research Center for Marine Drugs, Department of Pharmacy, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Fan Sun
- Research Center for Marine Drugs, Department of Pharmacy, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Houwen Lin
- Research Center for Marine Drugs, Department of Pharmacy, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
- Institute of Marine Biomedicine, Shenzhen Polytechnic, Shenzhen 518055, China
| |
Collapse
|
17
|
Yáñez-Bartolomé M, Serra-Camprubí Q, Arenas EJ, Escorihuela M, Castet F, Fabregat-Franco C, Querol J, Arribas J, Peiró S, Macarulla T, Tian TV. Generation of Metastatic Cholangiocarcinoma Patient-Derived Xenograft Models. Methods Mol Biol 2024; 2806:139-151. [PMID: 38676801 DOI: 10.1007/978-1-0716-3858-3_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2024]
Abstract
Cholangiocarcinoma (CCA) poses a substantial clinical hurdle as it is often detected at advanced metastatic stages with limited therapeutic options. To enhance our understanding of advanced CCA, it is imperative to establish preclinical models that faithfully recapitulate the disease's characteristics. Patient-derived xenograft (PDX) models have emerged as a valuable approach in cancer research, offering an avenue to reproduce and study the genomic, histologic, and molecular features of the original human tumors. By faithfully preserving the heterogeneity, microenvironmental interactions, and drug responses observed in human tumors, PDX models serve as highly relevant and predictive preclinical tools. Here, we present a comprehensive protocol that outlines the step-by-step process of generating and maintaining PDX models using biopsy samples from patients with advanced metastatic CCA. The protocol encompasses crucial aspects such as tissue processing, xenograft transplantation, and subsequent monitoring of the PDX models. By employing this protocol, we aim to establish a robust collection of PDX models that accurately reflect the genomic landscape, histologic diversity, and therapeutic responses observed in advanced CCA, thereby enabling improved translational research, drug development, and personalized treatment strategies for patients facing this challenging disease.
Collapse
Affiliation(s)
- Mariana Yáñez-Bartolomé
- Upper GI and Endocrine Tumor Unit, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Queralt Serra-Camprubí
- Upper GI and Endocrine Tumor Unit, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Enrique J Arenas
- Cancer Epigenetics Group, Josep Carreras Leukaemia Research Institute, Barcelona, Spain
| | - Marta Escorihuela
- Growth Factor Group, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Florian Castet
- Upper GI and Endocrine Tumor Unit, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Carles Fabregat-Franco
- Upper GI and Endocrine Tumor Unit, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Jessica Querol
- Upper GI and Endocrine Tumor Unit, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Joaquín Arribas
- Growth Factor Group, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer, Monforte de Lemos, Madrid, Spain
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Cancer Research Program, Hospital de Mar Medical Research Institute (IMIM), Barcelona, Spain
- Institució Catalana de Recerca I Estudis Avançats (ICREA), Barcelona, Spain
| | - Sandra Peiró
- Upper GI and Endocrine Tumor Unit, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Teresa Macarulla
- Upper GI and Endocrine Tumor Unit, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain.
| | - Tian V Tian
- Upper GI and Endocrine Tumor Unit, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain.
| |
Collapse
|
18
|
Song F, Chen Z. Preclinical liver cancer models in the context of immunoprecision therapy: Application and perspectives. Shijie Huaren Xiaohua Zazhi 2023; 31:989-1000. [DOI: 10.11569/wcjd.v31.i24.989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/21/2023] [Accepted: 12/20/2023] [Indexed: 12/28/2023] Open
Abstract
Hepatocellular carcinoma (HCC), ranking as the third leading cause of cancer-related mortality globally, continues to pose challenges in achieving optimal treatment outcomes. The complex nature of HCC, characterized by high spatiotemporal heterogeneity, invasive potential, and drug resistance, presents difficulties in its research. Consequently, an in-depth understanding and accurate simulation of the immune microenvironment of HCC are of paramount importance. This article comprehensively explores the application of preclinical models in HCC research, encompassing cell line models, patient-derived xenograft mouse models, genetically engineered mouse models, chemically induced models, humanized mouse models, organoid models, and microfluidic chip-based patient derived organotypic spheroids models. Each model possesses its distinct advantages and limitations in replicating the biological behavior and immune microenvironment of HCC. By scrutinizing the limitations of existing models, this paper aims to propel the development of next-generation cancer models, enabling more precise emulation of HCC characteristics. This will, in turn, facilitate the optimization of treatment strategies, drug efficacy prediction, and safety assessments, ultimately contributing to the realization of personalized and precision therapies. Additionally, this article also provides insights into future trends and challenges in the fields of tumor biology and preclinical research.
Collapse
Affiliation(s)
- Fei Song
- Department of Hepatobiliary Surgery, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu Province, China
- Medical School of Nantong University, Nantong 226001, Jiangsu Province, China
| | - Zhong Chen
- Department of Hepatobiliary Surgery, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu Province, China
- Medical School of Nantong University, Nantong 226001, Jiangsu Province, China
| |
Collapse
|
19
|
Lee SY, Koo IS, Hwang HJ, Lee DW. WITHDRAWN: In Vitro three-dimensional (3D) cell culture tools for spheroid and organoid models. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2023:100131. [PMID: 38101575 DOI: 10.1016/j.slasd.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 03/20/2023] [Accepted: 03/23/2023] [Indexed: 12/17/2023]
Abstract
The Publisher regrets that this article is an accidental duplication of an article previously published at http://dx.doi.org/10.1016/j.slasd.2023.03.006. This duplication was due to an error in the publishing workflow and was not the responsibility of the authors or editors. As a result, the duplicate article has been withdrawn. The full Elsevier Policy on Article Withdrawal can be found at https://www.elsevier.com/about/our-business/policies/article-withdrawal.
Collapse
Affiliation(s)
- Sang-Yun Lee
- Department of Biomedical Engineering, Gachon University, Seongnam, 13120, Republic of Korea; Central R & D Center, Medical & Bio Decision (MBD) Co., Ltd, Suwon, 16229, Republic of Korea
| | - In-Seong Koo
- Department of Biomedical Engineering, Gachon University, Seongnam, 13120, Republic of Korea
| | - Hyun Ju Hwang
- Central R & D Center, Medical & Bio Decision (MBD) Co., Ltd, Suwon, 16229, Republic of Korea
| | - Dong Woo Lee
- Department of Biomedical Engineering, Gachon University, Seongnam, 13120, Republic of Korea.
| |
Collapse
|
20
|
Hernández Guerrero T, Baños N, del Puerto Nevado L, Mahillo-Fernandez I, Doger De-Speville B, Calvo E, Wick M, García-Foncillas J, Moreno V. Patient Characteristics Associated with Growth of Patient-Derived Tumor Implants in Mice (Patient-Derived Xenografts). Cancers (Basel) 2023; 15:5402. [PMID: 38001663 PMCID: PMC10670531 DOI: 10.3390/cancers15225402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/26/2023] [Accepted: 11/04/2023] [Indexed: 11/26/2023] Open
Abstract
Background: patient-derived xenografts (PDXs) have defined the field of translational cancer research in recent years, becoming one of the most-used tools in early drug development. The process of establishing cancer models in mice has turned out to be challenging, since little research focuses on evaluating which factors impact engraftment success. We sought to determine the clinical, pathological, or molecular factors which may predict better engraftment rates in PDXs. Methods: between March 2017 and January 2021, tumor samples obtained from patients with primary or metastatic cancer were implanted into athymic nude mice. A full comprehensive evaluation of baseline factors associated with the patients and patients' tumors was performed, with the goal of potentially identifying predictive markers of engraftment. We focused on clinical (patient factors) pathological (patients' tumor samples) and molecular (patients' tumor samples) characteristics, analyzed either by immunohistochemistry (IHC) or next-generation sequencing (NGS), which were associated with the likelihood of final engraftment, as well as with tumor growth rates in xenografts. Results: a total of 585 tumor samples were collected and implanted. Twenty-one failed to engraft, due to lack of malignant cells. Of 564 tumor-positive samples, 187 (33.2%) grew at time of analysis. The study was able to find correlation and predictive value for engraftment for the following: the use of systemic antibiotics by the patient within 2 weeks of sampling (38.1% (72/189) antibiotics- group vs. 30.7% (115/375) no-antibiotics) (p = 0.048), and the administration of systemic steroids to the patients within 2 weeks of sampling (41.5% (34/48) steroids vs. 31.7% (153/329), no-steroids) (p = 0.049). Regarding patient's baseline tests, we found certain markers could help predict final engraftment success: for lactate dehydrogenase (LDH) levels, 34.1% (140/411) of tumors derived from patients with baseline blood LDH levels above the upper limit of normality (ULN) achieved growth, against 30.7% (47/153) with normal LDH (p = 0.047). Histological tumor characteristics, such as grade of differentiation, were also correlated. Grade 1: 25.4% (47/187), grade 2: 34.8% (65/187) and grade 3: 40.1% (75/187) tumors achieved successful growth (p = 0.043), suggesting the higher the grade, the higher the likelihood of success. Similarly, higher ki67 levels were also correlated with better engraftment rates: low (Ki67 < 15%): 8.9% (9/45) achieved growth vs. high (Ki67 ≥ 15%): 31% (35/113) (p: 0.002). Other markers of aggressiveness such as the presence of lymphovascular invasion in tumor sample of origin was also predictive: 42.2% (97/230) with lymphovascular vs. 26.9% (90/334) of samples with no invasion (p = 0.0001). From the molecular standpoint, mismatch-repair-deficient (MMRd) tumors showed better engraftment rates: 62.1% (18/29) achieved growth vs. 40.8% (75/184) of proficient tumors (p = 0.026). A total of 84 PDX were breast models, among which 57.9% (11/19) ER-negative models grew, vs. 15.4% (10/65) of ER-positive models (p = 0.0001), also consonant with ER-negative tumors being more aggressive. BRAFmut cancers are more likely to achieve engraftment during the development of PDX models. Lastly, tumor growth rates during first passages can help establish a cutoff point for the decision-making process during PDX development, since the higher the tumor grades, the higher the likelihood of success. Conclusions: tumors with higher grade and Ki67 protein expression, lymphovascular and/or perineural invasion, with dMMR and are negative for ER expression have a higher probability of achieving growth in the process of PDX development. The use of steroids and/or antibiotics in the patient prior to sampling can also impact the likelihood of success in PDX development. Lastly, establishing a cutoff point for tumor growth rates could guide the decision-making process during PDX development.
Collapse
Affiliation(s)
| | - Natalia Baños
- START Madrid—Fundación Jimenez Díaz University Hospital, Avenida Reyes Católicos 2, 28040 Madrid, Spain (I.M.-F.); (B.D.D.-S.); (J.G.-F.); (V.M.)
| | | | - Ignacio Mahillo-Fernandez
- START Madrid—Fundación Jimenez Díaz University Hospital, Avenida Reyes Católicos 2, 28040 Madrid, Spain (I.M.-F.); (B.D.D.-S.); (J.G.-F.); (V.M.)
- Translational Oncology Division, IIS-Fundación Jiménez Díaz-UAM, 28040 Madrid, Spain;
| | - Bernard Doger De-Speville
- START Madrid—Fundación Jimenez Díaz University Hospital, Avenida Reyes Católicos 2, 28040 Madrid, Spain (I.M.-F.); (B.D.D.-S.); (J.G.-F.); (V.M.)
| | - Emiliano Calvo
- START Madrid—CIOCC HM Sanchinarro, C. de Oña, 10, 28050 Madrid, Spain;
| | - Michael Wick
- XENOStart START San Antonio, 4383 Medical Dr, San Antonio, TX 78229, USA;
| | - Jesús García-Foncillas
- START Madrid—Fundación Jimenez Díaz University Hospital, Avenida Reyes Católicos 2, 28040 Madrid, Spain (I.M.-F.); (B.D.D.-S.); (J.G.-F.); (V.M.)
- Translational Oncology Division, IIS-Fundación Jiménez Díaz-UAM, 28040 Madrid, Spain;
| | - Victor Moreno
- START Madrid—Fundación Jimenez Díaz University Hospital, Avenida Reyes Católicos 2, 28040 Madrid, Spain (I.M.-F.); (B.D.D.-S.); (J.G.-F.); (V.M.)
| |
Collapse
|
21
|
Hsieh CC, Yang CY, Peng B, Ho SL, Tsao CH, Lin CK, Lin CS, Lin GJ, Lin HY, Huang HC, Chang SC, Sytwu HK, Chia WT, Chen YW. Allyl Isothiocyanate Suppresses the Proliferation in Oral Squamous Cell Carcinoma via Mediating the KDM8/CCNA1 Axis. Biomedicines 2023; 11:2669. [PMID: 37893043 PMCID: PMC10604360 DOI: 10.3390/biomedicines11102669] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/22/2023] [Accepted: 09/25/2023] [Indexed: 10/29/2023] Open
Abstract
The dysregulated expression of cyclin genes can lead to the uncontrolled proliferation of cancer cells. Histone demethylase Jumonji-C domain-containing protein 5 (KDM8, JMJD5) and cyclin A1 (CCNA1) are pivotal in cell cycle progression. A promising candidate for augmenting cancer treatment is Allyl isothiocyanate (AITC), a natural dietary chemotherapeutic and epigenetic modulator. This study aimed to investigate AITC's impact on the KDM8/CCNA1 axis to elucidate its role in oral squamous cell carcinoma (OSCC) tumorigenesis. The expression of KDM8 and CCNA1 was assessed using a tissue microarray (TMA) immunohistochemistry (IHC) assay. In vitro experiments with OSCC cell lines and in vivo experiments with patient-derived tumor xenograft (PDTX) and SAS subcutaneous xenograft tumor models were conducted to explore AITC's effects on their expression and cell proliferation. The results showed elevated KDM8 and CCNA1 levels in the OSCC patient samples. AITC exhibited inhibitory effects on OSCC tumor growth in vitro and in vivo. Additionally, AITC downregulated KDM8 and CCNA1 expression while inducing histone H3K36me2 expression in oral cancer cells. These findings underscore AITC's remarkable anticancer properties against oral cancer, highlighting its potential as a therapeutic option for oral cancer treatment by disrupting the cell cycle by targeting the KDM8/CCNA1 axis.
Collapse
Grants
- TSGH-C01-109017, TSGH-C05-110035, TSGH-C04-111037, TSGH-D-110148, TSGH-D-110149, TSGH-D-110151, TSGH-D-110152, TSGH-D-110154, TSGH-C02-112032 Tri-Service General Hospital, Taiwan, Republic of China
- MAB-E-109003, MAB-D-110003, MND-MAB-110-043, MND-MAB-110-076, MND-MAB-C-111036, MAB-E-111002, MND-MAB-D-111149, MND-MAB-D-112176, MND-MAB-C08-112033 Ministry of National Defense, Taiwan, Republic of China
- MOST 108-2314-B-016-005 Ministry of Science and Technology, Taiwan, Republic of China
- KAFGH-E-111047, KAFGH_E_112061 Kaohsiung Armed Forces General Hospital, Taiwan, Republic of China
- KSVGH112-135 Kaohsiung Veterans General Hospital, Taiwan, Republic of China
- HAFGH_E_112018 Hualien Armed Forces General Hospital, Taiwan, Republic of China
- CTH107A-2C01 Cardinal Tien Hospital, Taipei, Taiwan, Republic of China
Collapse
Affiliation(s)
- Cheng-Chih Hsieh
- Department of Pharmacy, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan
- School of Pharmacy and Institute of Pharmacy, National Defense Medical Center, Taipei 114, Taiwan
| | - Cheng-Yu Yang
- School of Dentistry, National Defense Medical Center, Taipei 114, Taiwan
- Department of Oral and Maxillofacial Surgery, Tri-Service General Hospital, Taipei 114, Taiwan
| | - Bo Peng
- School of Dentistry, National Defense Medical Center, Taipei 114, Taiwan
- Department of Oral and Maxillofacial Surgery, Tri-Service General Hospital, Taipei 114, Taiwan
| | - Sien-Lin Ho
- Department of Pharmacy, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan
- School of Dentistry, National Defense Medical Center, Taipei 114, Taiwan
| | - Chang-Huei Tsao
- Department of Microbiology and Immunology, National Defense Medical Center, Taipei 114, Taiwan
- Department of Medical Research, Tri-Service General Hospital, Taipei 114, Taiwan
| | - Chih-Kung Lin
- Division of Anatomic Pathology, Taipei Tzu Chi Hospital, New Taipei City 231, Taiwan
| | - Chun-Shu Lin
- Department of Radiation Oncology, Tri-Service General Hospital, National Defense Medical Centre, Taipei 114, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Gu-Jiun Lin
- Department of Biology and Anatomy, National Defense Medical Center, Taipei 114, Taiwan
| | - Heng-Yi Lin
- Department of Dentistry, Cardinal Tien Hospital, New Taipei City 231, Taiwan
| | - Hung-Chi Huang
- School of Dentistry, National Defense Medical Center, Taipei 114, Taiwan
- Department of Dentistry, Hualien Armed Forces General Hospital, Hualien 971, Taiwan
| | - Szu-Chien Chang
- School of Dentistry, National Defense Medical Center, Taipei 114, Taiwan
- Department of Dentistry, Kaohsiung Armed Forces General Hospital, Kaohsiung 813, Taiwan
| | - Huey-Kang Sytwu
- Department of Microbiology and Immunology, National Defense Medical Center, Taipei 114, Taiwan
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Miaoli 350, Taiwan
| | - Wei-Tso Chia
- Department of Orthopedics, National Taiwan University Hospital Hsin-Chu Branch, Hsinchu 302, Taiwan
- Department of Nursing, Yuan Pie University of Medical Technology, Hsinchu 302, Taiwan
- Tri-Service General Hospital, Taipei 114, Taiwan
| | - Yuan-Wu Chen
- School of Dentistry, National Defense Medical Center, Taipei 114, Taiwan
- Department of Oral and Maxillofacial Surgery, Tri-Service General Hospital, Taipei 114, Taiwan
| |
Collapse
|
22
|
Deng Z, Guo T, Bi J, Wang G, Hu Y, Du H, Zhou Y, Jia S, Xing X, Ji J. Transcriptome profiling of patient-derived tumor xenografts suggests novel extracellular matrix-related signatures for gastric cancer prognosis prediction. J Transl Med 2023; 21:638. [PMID: 37726803 PMCID: PMC10510236 DOI: 10.1186/s12967-023-04473-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 08/27/2023] [Indexed: 09/21/2023] Open
Abstract
BACKGROUND A major obstacle to the development of personalized therapies for gastric cancer (GC) is the prevalent heterogeneity at the intra-tumor, intra-patient, and inter-patient levels. Although the pathological stage and histological subtype diagnosis can approximately predict prognosis, GC heterogeneity is rarely considered. The extracellular matrix (ECM), a major component of the tumor microenvironment (TME), extensively interacts with tumor and immune cells, providing a possible proxy to investigate GC heterogeneity. However, ECM consists of numerous protein components, and there are no suitable models to screen ECM-related genes contributing to tumor growth and prognosis. We constructed patient-derived tumor xenograft (PDTX) models to obtain robust ECM-related transcriptomic signatures to improve GC prognosis prediction and therapy design. METHODS One hundred twenty two primary GC tumor tissues were collected to construct PDTX models. The tumorigenesis rate and its relationship with GC prognosis were investigated. Transcriptome profiling was performed for PDTX-originating tumors, and least absolute shrinkage and selection operator (LASSO) Cox regression analysis was applied to extract prognostic ECM signatures and establish PDTX tumorigenicity-related gene (PTG) scores. The predictive ability of the PTG score was validated using two independent cohorts. Finally, we combined PTG score, age, and pathological stage information to establish a robust nomogram for GC prognosis prediction. RESULTS We found that PDTX tumorigenicity indicated a poor prognosis in patients with GC, even at the same pathological stage. Transcriptome profiling of PDTX-originating GC tissues and corresponding normal controls identified 383 differentially expressed genes, with enrichment of ECM-related genes. A robust prognosis prediction model using the PTG score showed robust performance in two validation cohorts. A high PTG score was associated with elevated M2 polarized macrophage and cancer-associated fibroblast infiltration. Finally, combining the PTG score with age and TNM stage resulted in a more effective prognostic model than age or TNM stage alone. CONCLUSIONS We found that ECM-related signatures may contribute to PDTX tumorigenesis and indicate a poor prognosis in GC. A feasible survival prediction model was built based on the PTG score, which was associated with immune cell infiltration. Together with patient ages and pathological TNM stages, PTG score could be a new approach for GC prognosis prediction.
Collapse
Affiliation(s)
- Ziqian Deng
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Division of Gastrointestinal Cancer Translational Research Laboratory, Peking University Cancer Hospital and Institute, Beijing, 100142, People's Republic of China
| | - Ting Guo
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Division of Gastrointestinal Cancer Translational Research Laboratory, Peking University Cancer Hospital and Institute, Beijing, 100142, People's Republic of China
| | - Jiwang Bi
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Division of Gastrointestinal Cancer Translational Research Laboratory, Peking University Cancer Hospital and Institute, Beijing, 100142, People's Republic of China
| | - Gangjian Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Division of Gastrointestinal Cancer Translational Research Laboratory, Peking University Cancer Hospital and Institute, Beijing, 100142, People's Republic of China
| | - Ying Hu
- Biological Sample Bank, Peking University Cancer Hospital and Institute, Beijing, 100142, People's Republic of China
| | - Hong Du
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Division of Gastrointestinal Cancer Translational Research Laboratory, Peking University Cancer Hospital and Institute, Beijing, 100142, People's Republic of China
| | - Yuan Zhou
- Department of Biomedical Informatics, School of Basic Medical Sciences, Peking University, Beijing, 100191, People's Republic of China.
| | - Shuqin Jia
- Department of Molecular Diagnosis, Peking University Cancer Hospital and Institute, Beijing, 100142, People's Republic of China.
| | - Xiaofang Xing
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Division of Gastrointestinal Cancer Translational Research Laboratory, Peking University Cancer Hospital and Institute, Beijing, 100142, People's Republic of China.
| | - Jiafu Ji
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Division of Gastrointestinal Cancer Translational Research Laboratory, Peking University Cancer Hospital and Institute, Beijing, 100142, People's Republic of China.
- Department of Gastrointestinal Surgery, Peking University Cancer Hospital and Institute, Beijing, 100142, People's Republic of China.
| |
Collapse
|
23
|
Deng L, Bao W, Zhang B, Zhang S, Chen Z, Zhu X, He B, Wu L, Chen X, Deng T, Chen B, Yu Z, Wang Y, Chen G. AZGP1 activation by lenvatinib suppresses intrahepatic cholangiocarcinoma epithelial-mesenchymal transition through the TGF-β1/Smad3 pathway. Cell Death Dis 2023; 14:590. [PMID: 37669935 PMCID: PMC10480466 DOI: 10.1038/s41419-023-06092-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 08/08/2023] [Accepted: 08/21/2023] [Indexed: 09/07/2023]
Abstract
Intrahepatic cholangiocarcinoma (ICC) is a primary liver malignancy and is characterized by highly aggressive and malignant biological behavior. Currently, effective treatment strategies are limited. The effect of lenvatinib on ICC is unknown. In this study, we found that AZGP1 was the key target of lenvatinib in ICC, and its low expression in ICC cancer tissues was associated with a poor prognosis in patients. Lenvatinib is a novel AZGP1 agonist candidate for ICC that inhibits ICC-EMT by regulating the TGF-β1/Smad3 signaling pathway in an AZGP1-dependent manner. Furthermore, we found that lenvatinib could increase AZGP1 expression by increasing the acetylation level of H3K27Ac in the promoter region of the AZGP1 gene, thereby inhibiting EMT in ICC cells. In conclusion, lenvatinib activates AZGP1 by increasing the acetylation level of H3K27Ac on the AZGP1 promoter region and regulates the TGF-β1/Smad3 signaling pathway in an AZGP1-dependent manner to inhibit ICC-EMT. This study offers new insight into the mechanism of lenvatinib in the treatment of ICC and provides a theoretical basis for new treatment methods.
Collapse
Affiliation(s)
- Liming Deng
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China
- The Second Affiliated Hospital, Department of General Surgery, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Wenming Bao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China
| | - Baofu Zhang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China
| | - Sina Zhang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China
| | - Ziyan Chen
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China
| | - Xuewen Zhu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China
| | - Bangjie He
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China
| | - Lijun Wu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China
| | - Xiaohu Chen
- Department of Pathology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China
| | - Tuo Deng
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China
| | - Bo Chen
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China
| | - Zhengping Yu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China
| | - Yi Wang
- Department of Epidemiology and Biostatistics, School of Public Health and Management, Wenzhou Medical University, Wenzhou, 325035, China.
| | - Gang Chen
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China.
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China.
- Hepatobiliary Pancreatic Tumor Bioengineering Cross International Joint Laboratory of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China.
| |
Collapse
|
24
|
Lang Y, Lyu Y, Tan Y, Hu Z. Progress in construction of mouse models to investigate the pathogenesis and immune therapy of human hematological malignancy. Front Immunol 2023; 14:1195194. [PMID: 37646021 PMCID: PMC10461088 DOI: 10.3389/fimmu.2023.1195194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 07/27/2023] [Indexed: 09/01/2023] Open
Abstract
Hematological malignancy is a disease arisen by complicate reasons that seriously endangers human health. The research on its pathogenesis and therapies depends on the usage of animal models. Conventional animal model cannot faithfully mirror some characteristics of human features due to the evolutionary divergence, whereas the mouse models hosting human hematological malignancy are more and more applied in basic as well as translational investigations in recent years. According to the construction methods, they can be divided into different types (e.g. cell-derived xenograft (CDX) and patient-derived xenograft model (PDX) model) that have diverse characteristics and application values. In addition, a variety of strategies have been developed to improve human hematological malignant cell engraftment and differentiation in vivo. Moreover, the humanized mouse model with both functional human immune system and autologous human hematological malignancy provides a unique tool for the evaluation of the efficacy of novel immunotherapeutic drugs/approaches. Herein, we first review the evolution of the mouse model of human hematological malignancy; Then, we analyze the characteristics of different types of models and summarize the ways to improve the models; Finally, the way and value of humanized mouse model of human immune system in the immunotherapy of human hematological malignancy are discussed.
Collapse
Affiliation(s)
- Yue Lang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, The First Hospital, Jilin University, Changchun, China
- Department of Dermatology, The First Hospital, Jilin University, Changchun, China
| | - Yanan Lyu
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, The First Hospital, Jilin University, Changchun, China
| | - Yehui Tan
- Department of Hematology, The First Hospital, Jilin University, Changchun, China
| | - Zheng Hu
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, The First Hospital, Jilin University, Changchun, China
| |
Collapse
|
25
|
Singhal SS, Garg R, Mohanty A, Garg P, Ramisetty SK, Mirzapoiazova T, Soldi R, Sharma S, Kulkarni P, Salgia R. Recent Advancement in Breast Cancer Research: Insights from Model Organisms-Mouse Models to Zebrafish. Cancers (Basel) 2023; 15:cancers15112961. [PMID: 37296923 DOI: 10.3390/cancers15112961] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023] Open
Abstract
Animal models have been utilized for decades to investigate the causes of human diseases and provide platforms for testing novel therapies. Indeed, breakthrough advances in genetically engineered mouse (GEM) models and xenograft transplantation technologies have dramatically benefited in elucidating the mechanisms underlying the pathogenesis of multiple diseases, including cancer. The currently available GEM models have been employed to assess specific genetic changes that underlay many features of carcinogenesis, including variations in tumor cell proliferation, apoptosis, invasion, metastasis, angiogenesis, and drug resistance. In addition, mice models render it easier to locate tumor biomarkers for the recognition, prognosis, and surveillance of cancer progression and recurrence. Furthermore, the patient-derived xenograft (PDX) model, which involves the direct surgical transfer of fresh human tumor samples to immunodeficient mice, has contributed significantly to advancing the field of drug discovery and therapeutics. Here, we provide a synopsis of mouse and zebrafish models used in cancer research as well as an interdisciplinary 'Team Medicine' approach that has not only accelerated our understanding of varied aspects of carcinogenesis but has also been instrumental in developing novel therapeutic strategies.
Collapse
Affiliation(s)
- Sharad S Singhal
- Department of Medical Oncology and Therapeutic Research, Beckman Research Institute, City of Hope Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA
| | - Rachana Garg
- Department of Surgery, Beckman Research Institute, City of Hope Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA
| | - Atish Mohanty
- Department of Medical Oncology and Therapeutic Research, Beckman Research Institute, City of Hope Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA
| | - Pankaj Garg
- Department of Chemistry, GLA University, Mathura 281406, Uttar Pradesh, India
| | - Sravani Keerthi Ramisetty
- Department of Medical Oncology and Therapeutic Research, Beckman Research Institute, City of Hope Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA
| | - Tamara Mirzapoiazova
- Department of Medical Oncology and Therapeutic Research, Beckman Research Institute, City of Hope Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA
| | - Raffaella Soldi
- Translational Genomics Research Institute, Phoenix, AZ 85338, USA
| | - Sunil Sharma
- Translational Genomics Research Institute, Phoenix, AZ 85338, USA
| | - Prakash Kulkarni
- Department of Medical Oncology and Therapeutic Research, Beckman Research Institute, City of Hope Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA
- Department of Systems Biology, Beckman Research Institute, City of Hope Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA
| | - Ravi Salgia
- Department of Medical Oncology and Therapeutic Research, Beckman Research Institute, City of Hope Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA
| |
Collapse
|
26
|
Zhu Z, Hu E, Shen H, Tan J, Zeng S. The functional and clinical roles of liquid biopsy in patient-derived models. J Hematol Oncol 2023; 16:36. [PMID: 37031172 PMCID: PMC10082989 DOI: 10.1186/s13045-023-01433-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 03/28/2023] [Indexed: 04/10/2023] Open
Abstract
The liquid biopsy includes the detection of circulating tumor cells (CTCs) and CTC clusters in blood, as well as the detection of, cell-free DNA (cfDNA)/circulating tumor DNA (ctDNA) and extracellular vesicles (EVs) in the patient's body fluid. Liquid biopsy has important roles in translational research. But its clinical utility is still under investigation. Newly emerged patient-derived xenograft (PDX) and CTC-derived xenograft (CDX) faithfully recapitulate the genetic and morphological features of the donor patients' tumor and patient-derived organoid (PDO) can mostly mimic tumor growth, tumor microenvironment and its response to drugs. In this review, we describe how the development of these patient-derived models has assisted the studies of CTCs and CTC clusters in terms of tumor biological behavior exploration, genomic analysis, and drug testing, with the help of the latest technology. We then summarize the studies of EVs and cfDNA/ctDNA in PDX and PDO models in early cancer diagnosis, tumor burden monitoring, drug test and response monitoring, and molecular profiling. The challenges faced and future perspectives of research related to liquid biopsy using patient-derived models are also discussed.
Collapse
Affiliation(s)
- Ziqing Zhu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
- Key Laboratory for Molecular Radiation Oncology of Hunan Province, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Erya Hu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
- Key Laboratory for Molecular Radiation Oncology of Hunan Province, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Hong Shen
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
- Key Laboratory for Molecular Radiation Oncology of Hunan Province, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Jun Tan
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China.
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China.
| | - Shan Zeng
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China.
- Key Laboratory for Molecular Radiation Oncology of Hunan Province, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China.
| |
Collapse
|
27
|
Tan J, Zhou X, Zhang S. Iron-doped cross-linked lipoic acid nano-aggregates for ferroptosis-mediated cancer treatment. Acta Biomater 2023; 159:289-299. [PMID: 36706854 DOI: 10.1016/j.actbio.2023.01.029] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 12/26/2022] [Accepted: 01/11/2023] [Indexed: 01/26/2023]
Abstract
Recently, Fenton reaction-mediated ferroptosis has attracted great attention in cancer treatment while the metabolism loss of iron and the limited endogenous H2O2 level imped its clinical application. Here, a new ferroptosis inducer (Fe@cLANAs) constructed only by Fe(II) and (R)-(+)-lipoic acid (LA) was developed for tumor ablation. After entering the tumor cells, the Fe@cLANAs dissociated into disdihydrolipoic acid (DHLA) and released iron, which would regenerate each other to continuously provide iron and H2O2 to enhance ferroptosis. The Fe@cLANAs demonstrated the IC50Fe below 10 μM against various tumor cells, an anti-tumor effect comparable to many chemotherapy drugs. In vivo antitumor evaluation based on the tumor cell-derived xenograft model showed a tumor inhibitory rate (TIR) of 97.4% at the iron usage of 1.53 mg/kg, the lowest iron usage reported so far in ferrotherapy using iron as the main agent to treat tumors. Notably, the good anti-tumor effect of Fe@cLANAs was further achieved in the glioma patient-derived xenograft (PDX) model. This strategy utilizing the reciprocal circulation of metal iron and LA to delay the metabolism loss of iron and increase the H2O2 level in the tumor cells holds a great potential for ferroptosis-mediated cancer treatment. STATEMENT OF SIGNIFICANCE: The metabolism loss of iron and the limited endogenous H2O2 level are key factors to impede the clinical application of ferroptosis-mediated cancer treatment. Herein, a new ferroptosis inducer constructed only by lipoic acid and iron is developed to delay the metabolism loss of iron and increase the level of endogenous H2O2 by causing a cyclic regeneration of Fe(II)/Fe(III) and LA/DHLA in the tumor cells. According to the previous reports, at least 75 mg/kg of iron dosage was needed to achieve effective antitumor efficacy, here, the use of only 1.53 mg/kg iron in Fe@cLANAs achieved the TIR of 97.4% and 62.8% in the U251 CDX and glioma PDX models, showing the good prospect of Fe@cLANAs in clinic.
Collapse
Affiliation(s)
- Juan Tan
- College of Biomedical Engineering and National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu 610064, China
| | - Xueying Zhou
- College of Biomedical Engineering and National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu 610064, China
| | - Shiyong Zhang
- College of Biomedical Engineering and National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu 610064, China.
| |
Collapse
|
28
|
Lee SY, Koo IS, Hwang HJ, Lee DW. In Vitro Three-dimensional (3D) Cell Culture Tools for Spheroid and Organoid Models. SLAS DISCOVERY 2023:S2472-5552(23)00028-X. [PMID: 36997090 DOI: 10.1016/j.slasd.2023.03.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 03/20/2023] [Accepted: 03/23/2023] [Indexed: 03/30/2023]
Abstract
Three-dimensional (3D) cell culture technology has been steadily studied since the 1990's due to its superior biocompatibility compared to the conventional two-dimensional (2D) cell culture technology, and has recently developed into an organoid culture technology that further improved biocompatibility. Since the 3D culture of human cell lines in artificial scaffolds was demonstrated in the early 90's, 3D cell culture technology has been actively developed owing to various needs in the areas of disease research, precision medicine, new drug development, and some of these technologies have been commercialized. In particular, 3D cell culture technology is actively being applied and utilized in drug development and cancer-related precision medicine research. Drug development is a long and expensive process that involves multiple steps-from target identification to lead discovery and optimization, preclinical studies, and clinical trials for approval for clinical use. Cancer ranks first among life-threatening diseases owing to intra-tumoral heterogeneity associated with metastasis, recurrence, and treatment resistance, ultimately contributing to treatment failure and adverse prognoses. Therefore, there is an urgent need for the development of efficient drugs using 3D cell culture techniques that can closely mimic in vivo cellular environments and customized tumor models that faithfully represent the tumor heterogeneity of individual patients. This review discusses 3D cell culture technology focusing on research trends, commercialization status, and expected effects developed until recently. We aim to summarize the great potential of 3D cell culture technology and contribute to expanding the base of this technology.
Collapse
|
29
|
Duan J, Wang Y. Modeling nervous system tumors with human stem cells and organoids. CELL REGENERATION (LONDON, ENGLAND) 2023; 12:4. [PMID: 36854987 PMCID: PMC9975125 DOI: 10.1186/s13619-022-00150-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 11/05/2022] [Indexed: 03/02/2023]
Abstract
Nervous system cancers are the 10th leading cause of death worldwide, many of which are difficult to diagnose and exhibit varying degrees of treatment resistance. The limitations of existing cancer models, such as patient-derived xenograft (PDX) models and genetically engineered mouse (GEM) models, call for the development of novel preclinical cancer models to more faithfully mimic the patient's cancer and offer additional insights. Recent advances in human stem cell biology, organoid, and genome-editing techniques allow us to model nervous system tumors in three types of next-generation tumor models: cell-of-origin models, tumor organoids, and 3D multicellular coculture models. In this review, we introduced and compared different human stem cell/organoid-derived models, and comprehensively summarized and discussed the recently developed models for various primary tumors in the central and peripheral nervous systems, including glioblastoma (GBM), H3K27M-mutant Diffuse Midline Glioma (DMG) and H3G34R-mutant High-grade Glioma (HGG), Low-grade Glioma (LGG), Neurofibromatosis Type 1 (NF1), Neurofibromatosis Type 2 (NF2), Medulloblastoma (MB), Atypical Teratoid/rhabdoid Tumor (AT/RT), and meningioma. We further compared these models with PDX and GEM models, and discussed the opportunities and challenges of precision nervous cancer modeling with human stem cells and organoids.
Collapse
Affiliation(s)
- Jie Duan
- grid.412901.f0000 0004 1770 1022Department of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and National Collaborative Innovation Center, Chengdu, 610041 China
| | - Yuan Wang
- Department of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and National Collaborative Innovation Center, Chengdu, 610041, China.
| |
Collapse
|
30
|
Al-Hamaly MA, Turner LT, Rivera-Martinez A, Rodriguez A, Blackburn JS. Zebrafish Cancer Avatars: A Translational Platform for Analyzing Tumor Heterogeneity and Predicting Patient Outcomes. Int J Mol Sci 2023; 24:2288. [PMID: 36768609 PMCID: PMC9916713 DOI: 10.3390/ijms24032288] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 01/17/2023] [Accepted: 01/19/2023] [Indexed: 01/26/2023] Open
Abstract
The increasing number of available anti-cancer drugs presents a challenge for oncologists, who must choose the most effective treatment for the patient. Precision cancer medicine relies on matching a drug with a tumor's molecular profile to optimize the therapeutic benefit. However, current precision medicine approaches do not fully account for intra-tumoral heterogeneity. Different mutation profiles and cell behaviors within a single heterogeneous tumor can significantly impact therapy response and patient outcomes. Patient-derived avatar models recapitulate a patient's tumor in an animal or dish and provide the means to functionally assess heterogeneity's impact on drug response. Mouse xenograft and organoid avatars are well-established, but the time required to generate these models is not practical for clinical decision-making. Zebrafish are emerging as a time-efficient and cost-effective cancer avatar model. In this review, we highlight recent developments in zebrafish cancer avatar models and discuss the unique features of zebrafish that make them ideal for the interrogation of cancer heterogeneity and as part of precision cancer medicine pipelines.
Collapse
Affiliation(s)
- Majd A. Al-Hamaly
- Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY 40356, USA
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA
| | - Logan T. Turner
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA
- Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY 40356, USA
| | | | - Analiz Rodriguez
- Department of Neurosurgery, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Jessica S. Blackburn
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA
- Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY 40356, USA
| |
Collapse
|
31
|
Forsberg EMV, Riise R, Saellström S, Karlsson J, Alsén S, Bucher V, Hemminki AE, Olofsson Bagge R, Ny L, Nilsson LM, Rönnberg H, Nilsson JA. Treatment with Anti-HER2 Chimeric Antigen Receptor Tumor-Infiltrating Lymphocytes (CAR-TILs) Is Safe and Associated with Antitumor Efficacy in Mice and Companion Dogs. Cancers (Basel) 2023; 15:cancers15030648. [PMID: 36765608 PMCID: PMC9913266 DOI: 10.3390/cancers15030648] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 01/25/2023] Open
Abstract
Patients with metastatic melanoma have a historically poor prognosis, but recent advances in treatment options, including targeted therapy and immunotherapy, have drastically improved the outcomes for some of these patients. However, not all patients respond to available treatments, and around 50% of patients with metastatic cutaneous melanoma and almost all patients with metastases of uveal melanoma die of their disease. Thus, there is a need for novel treatment strategies for patients with melanoma that do not benefit from the available therapies. Chimeric antigen receptor-expressing T (CAR-T) cells are largely unexplored in melanoma. Traditionally, CAR-T cells have been produced by transducing blood-derived T cells with a virus expressing CAR. However, tumor-infiltrating lymphocytes (TILs) can also be engineered to express CAR, and such CAR-TILs could be dual-targeting. To this end, tumor samples and autologous TILs from metastasized human uveal and cutaneous melanoma were expanded in vitro and transduced with a lentiviral vector encoding an anti-HER2 CAR construct. When infused into patient-derived xenograft (PDX) mouse models carrying autologous tumors, CAR-TILs were able to eradicate melanoma, even in the absence of antigen presentation by HLA. To advance this concept to the clinic and assess its safety in an immune-competent and human-patient-like setting, we treated four companion dogs with autologous anti-HER2 CAR-TILs. We found that these cells were tolerable and showed signs of anti-tumor activity. Taken together, CAR-TIL therapy is a promising avenue for broadening the tumor-targeting capacity of TILs in patients with checkpoint immunotherapy-resistant melanoma.
Collapse
Affiliation(s)
- Elin M. V. Forsberg
- Sahlgrenska Translational Melanoma Group, Sahlgrenska Center for Cancer Research, Departments of Surgery and Oncology, Institute of Clinical Sciences, University of Gothenburg, Sahlgrenska University Hospital, 40530 Gothenburg, Sweden
| | - Rebecca Riise
- Sahlgrenska Translational Melanoma Group, Sahlgrenska Center for Cancer Research, Departments of Surgery and Oncology, Institute of Clinical Sciences, University of Gothenburg, Sahlgrenska University Hospital, 40530 Gothenburg, Sweden
| | - Sara Saellström
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, 75007 Uppsala, Sweden
| | - Joakim Karlsson
- Sahlgrenska Translational Melanoma Group, Sahlgrenska Center for Cancer Research, Departments of Surgery and Oncology, Institute of Clinical Sciences, University of Gothenburg, Sahlgrenska University Hospital, 40530 Gothenburg, Sweden
- Harry Perkins Institute of Medical Research, University of Western Australia, Perth, WA 6009, Australia
| | - Samuel Alsén
- Sahlgrenska Translational Melanoma Group, Sahlgrenska Center for Cancer Research, Departments of Surgery and Oncology, Institute of Clinical Sciences, University of Gothenburg, Sahlgrenska University Hospital, 40530 Gothenburg, Sweden
| | - Valentina Bucher
- Sahlgrenska Translational Melanoma Group, Sahlgrenska Center for Cancer Research, Departments of Surgery and Oncology, Institute of Clinical Sciences, University of Gothenburg, Sahlgrenska University Hospital, 40530 Gothenburg, Sweden
| | - Akseli E. Hemminki
- Cancer Gene Therapy Group, Translational Immunology Research Program, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland
- Department of Oncology, Comprehensive Cancer Centre, Helsinki University Hospital, 00290 Helsinki, Finland
| | - Roger Olofsson Bagge
- Sahlgrenska Translational Melanoma Group, Sahlgrenska Center for Cancer Research, Departments of Surgery and Oncology, Institute of Clinical Sciences, University of Gothenburg, Sahlgrenska University Hospital, 40530 Gothenburg, Sweden
| | - Lars Ny
- Sahlgrenska Translational Melanoma Group, Sahlgrenska Center for Cancer Research, Departments of Surgery and Oncology, Institute of Clinical Sciences, University of Gothenburg, Sahlgrenska University Hospital, 40530 Gothenburg, Sweden
| | - Lisa M. Nilsson
- Sahlgrenska Translational Melanoma Group, Sahlgrenska Center for Cancer Research, Departments of Surgery and Oncology, Institute of Clinical Sciences, University of Gothenburg, Sahlgrenska University Hospital, 40530 Gothenburg, Sweden
- Harry Perkins Institute of Medical Research, University of Western Australia, Perth, WA 6009, Australia
| | - Henrik Rönnberg
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, 75007 Uppsala, Sweden
| | - Jonas A. Nilsson
- Sahlgrenska Translational Melanoma Group, Sahlgrenska Center for Cancer Research, Departments of Surgery and Oncology, Institute of Clinical Sciences, University of Gothenburg, Sahlgrenska University Hospital, 40530 Gothenburg, Sweden
- Harry Perkins Institute of Medical Research, University of Western Australia, Perth, WA 6009, Australia
- Correspondence: or ; Tel.: +61-08-6151-0979
| |
Collapse
|
32
|
Liu W, Cui Y, Zheng X, Yu K, Sun G. Application status and future prospects of the PDX model in lung cancer. Front Oncol 2023; 13:1098581. [PMID: 37035154 PMCID: PMC10080030 DOI: 10.3389/fonc.2023.1098581] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 03/13/2023] [Indexed: 04/11/2023] Open
Abstract
Lung cancer is one of the most prevalent, fatal, and highly heterogeneous diseases that, seriously threaten human health. Lung cancer is primarily caused by the aberrant expression of multiple genes in the cells. Lung cancer treatment options include surgery, radiation, chemotherapy, targeted therapy, and immunotherapy. In recent decades, significant progress has been made in developing therapeutic agents for lung cancer as well as a biomarker for its early diagnosis. Nonetheless, the alternative applications of traditional pre-clinical models (cell line models) for diagnosis and prognosis prediction are constrained by several factors, including the lack of microenvironment components necessary to affect cancer biology and drug response, and the differences between laboratory and clinical results. The leading reason is that substantial shifts accrued to cell biological behaviors, such as cell proliferative, metastatic, invasive, and gene expression capabilities of different cancer cells after decades of growing indefinitely in vitro. Moreover, the introduction of individualized treatment has prompted the development of appropriate experimental models. In recent years, preclinical research on lung cancer has primarily relied on the patient-derived tumor xenograft (PDX) model. The PDX provides stable models with recapitulate characteristics of the parental tumor such as the histopathology and genetic blueprint. Additionally, PDXs offer valuable models for efficacy screening of new cancer drugs, thus, advancing the understanding of tumor biology. Concurrently, with the heightened interest in the PDX models, potential shortcomings have gradually emerged. This review summarizes the significant advantages of PDXs over the previous models, their benefits, potential future uses and interrogating open issues.
Collapse
|
33
|
Li S, Lee W, Heo W, Son HY, Her Y, Kim JI, Moon HG. AKR1C2 Promotes Metastasis and Regulates the Molecular Features of Luminal Androgen Receptor Subtype in Triple Negative Breast Cancer Cells. J Breast Cancer 2022; 26:60-76. [PMID: 36762781 PMCID: PMC9981988 DOI: 10.4048/jbc.2023.26.e1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 11/12/2022] [Accepted: 11/18/2022] [Indexed: 01/07/2023] Open
Abstract
PURPOSE Patients with triple-negative breast cancer (TNBC) have an increased risk of distant metastasis compared to those with other subtypes. In this study, we aimed to identify the genes associated with distant metastasis in TNBC and their underlying mechanisms. METHODS We established patient-derived xenograft (PDX) models using surgically resected breast cancer tissues from 31 patients with TNBC. Among these, 15 patients subsequently developed distant metastases. Candidate metastasis-associated genes were identified using RNA sequencing. In vitro wound healing, proliferation, migration, and invasion assays and in vivo tumor xenograft and metastasis assays were performed to determine the functional importance of aldo-keto reductase family 1 member C2 (AKR1C2). Additionally, we used the METABRIC dataset to investigate the potential role of AKR1C2 in regulating TNBC subtypes and their downstream signaling activities. RESULTS RNA sequencing of primary and PDX tumors showed that genes involved in steroid hormone biosynthesis, including AKR1C2, were significantly upregulated in patients who subsequently developed metastasis. In vitro and in vivo assays showed that silencing of AKR1C2 resulted in reduced cell proliferation, migration, invasion, tumor growth, and incidence of lung metastasis. AKR1C2 was upregulated in the luminal androgen receptor (LAR) subtype of TNBC in the METABRIC dataset, and AKR1C2 silencing resulted in the downregulation of LAR classifier genes in TNBC cell lines. The androgen receptor (AR) gene was a downstream mediator of AKR1C2-associated phenotypes in TNBC cells. AKR1C2 expression was associated with gene expression pathways that regulate AR expression, including JAK-STAT signaling or interleukin 6 (IL-6). The levels of phospho-signal transducer and activator of transcription and IL-6, along with secreted IL-6, were significantly downregulated in AKR1C2-silenced TNBC cells. CONCLUSION Our data indicate that AKR1C2 is an important regulator of cancer growth and metastasis in TNBC and may be a critical determinant of LAR subtype features.
Collapse
Affiliation(s)
- Songbin Li
- Interdisciplinary Graduate Program in Cancer Biology, Seoul National University College of Medicine, Seoul, Korea
| | - Woochan Lee
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea.,Genomic Medicine Institute, Medical Research Center, Seoul, Korea
| | - Woohang Heo
- Center for Medical Innovation, Seoul National University Hospital, Seoul, Korea
| | - Hye-Youn Son
- Center for Medical Innovation, Seoul National University Hospital, Seoul, Korea
| | - Yujeong Her
- Interdisciplinary Graduate Program in Cancer Biology, Seoul National University College of Medicine, Seoul, Korea
| | - Jong-Il Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea.,Genomic Medicine Institute, Medical Research Center, Seoul, Korea
| | - Hyeong-Gon Moon
- Cancer Research Institute, Seoul National University, Seoul, Korea.,Department of Surgery, Seoul National University Hospital, Seoul, Korea.,Department of Surgery, Seoul National University College of Medicine, Seoul, Korea.
| |
Collapse
|
34
|
Kang Y, Deng J, Ling J, Li X, Chiang YJ, Koay EJ, Wang H, Burks JK, Chiao PJ, Hurd MW, Bhutani MS, Lee JH, Weston BR, Maitra A, Ikoma N, Tzeng CWD, Lee JE, DePinho RA, Wolff RA, Pant S, McAllister F, Katz MH, Fleming JB, Kim MP. 3D imaging analysis on an organoid-based platform guides personalized treatment in pancreatic ductal adenocarcinoma. J Clin Invest 2022; 132:e151604. [PMID: 36282600 PMCID: PMC9753992 DOI: 10.1172/jci151604] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 10/21/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUNDPancreatic ductal adenocarcinoma (PDAC) is one of the most lethal malignancies, with unpredictable responses to chemotherapy. Approaches to assay patient tumors before treatment and identify effective treatment regimens based on tumor sensitivities are lacking. We developed an organoid-based platform (OBP) to visually quantify patient-derived organoid (PDO) responses to drug treatments and associated tumor-stroma modulation for personalized PDAC therapy.METHODSWe retrospectively quantified apoptotic responses and tumor-stroma cell proportions in PDOs via 3D immunofluorescence imaging through annexin A5, α-smooth muscle actin (α-SMA), and cytokeratin 19 (CK-19) levels. Simultaneously, an ex vivo organoid drug sensitivity assay (ODSA) was used to measure responses to standard-of-care regimens. Differences between ODSA results and patient tumor responses were assessed by exact McNemar's test.RESULTSImmunofluorescence signals, organoid growth curves, and Ki-67 levels were measured and authenticated through the OBP for up to 14 days. ODSA drug responses were not different from patient tumor responses, as reflected by CA19-9 reductions following neoadjuvant chemotherapy (P = 0.99). PDOs demonstrated unique apoptotic and tumor-stroma modulation profiles (P < 0.0001). α-SMA/CK-19 ratio levels of more than 1.0 were associated with improved outcomes (P = 0.0179) and longer parental patient survival by Kaplan-Meier analysis (P = 0.0046).CONCLUSIONHeterogenous apoptotic drug responses and tumor-stroma modulation are present in PDOs after standard-of-care chemotherapy. Ratios of α-SMA and CK-19 levels in PDOs are associated with patient survival, and the OBP could aid in the selection of personalized therapies to improve the efficacy of systemic therapy in patients with PDAC.FUNDINGNIH/National Cancer Institute grants (K08CA218690, P01 CA117969, R50 CA243707-01A1, U54CA224065), the Skip Viragh Foundation, the Bettie Willerson Driver Cancer Research Fund, and a Cancer Center Support Grant for the Flow Cytometry and Cellular Imaging Core Facility (P30CA16672).
Collapse
Affiliation(s)
- Ya’an Kang
- Department of Surgical Oncology
- Department of Experimental Therapeutics
| | | | | | | | | | | | - Huamin Wang
- Department of Translational Molecular Pathology
| | | | | | - Mark W. Hurd
- Sheikh Ahmed Center for Pancreatic Cancer Research
| | | | - Jeffrey H. Lee
- Department of Gastroenterology, Hepatology and Nutrition
| | | | | | | | | | | | | | | | - Shubham Pant
- Department of GI Medical Oncology
- Department of Cancer Therapeutics, and
| | - Florencia McAllister
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | | | - Jason B. Fleming
- Department of Gastrointestinal Oncology, Moffitt Cancer Center, Tampa, Florida, USA
| | - Michael P. Kim
- Department of Surgical Oncology
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
35
|
Griffin KH, Fok SW, Kent Leach J. Strategies to capitalize on cell spheroid therapeutic potential for tissue repair and disease modeling. NPJ Regen Med 2022; 7:70. [PMID: 36494368 PMCID: PMC9734656 DOI: 10.1038/s41536-022-00266-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 11/29/2022] [Indexed: 12/13/2022] Open
Abstract
Cell therapies offer a tailorable, personalized treatment for use in tissue engineering to address defects arising from trauma, inefficient wound repair, or congenital malformation. However, most cell therapies have achieved limited success to date. Typically injected in solution as monodispersed cells, transplanted cells exhibit rapid cell death or insufficient retention at the site, thereby limiting their intended effects to only a few days. Spheroids, which are dense, three-dimensional (3D) aggregates of cells, enhance the beneficial effects of cell therapies by increasing and prolonging cell-cell and cell-matrix signaling. The use of spheroids is currently under investigation for many cell types. Among cells under evaluation, spheroids formed of mesenchymal stromal cells (MSCs) are particularly promising. MSC spheroids not only exhibit increased cell survival and retained differentiation, but they also secrete a potent secretome that promotes angiogenesis, reduces inflammation, and attracts endogenous host cells to promote tissue regeneration and repair. However, the clinical translation of spheroids has lagged behind promising preclinical outcomes due to hurdles in their formation, instruction, and use that have yet to be overcome. This review will describe the current state of preclinical spheroid research and highlight two key examples of spheroid use in clinically relevant disease modeling. It will highlight techniques used to instruct the phenotype and function of spheroids, describe current limitations to their use, and offer suggestions for the effective translation of cell spheroids for therapeutic treatments.
Collapse
Affiliation(s)
- Katherine H Griffin
- Department of Orthopaedic Surgery, UC Davis Health, Sacramento, CA, 95817, USA
- School of Veterinary Medicine, University of California, Davis, Davis, CA, 95616, USA
| | - Shierly W Fok
- Department of Orthopaedic Surgery, UC Davis Health, Sacramento, CA, 95817, USA
| | - J Kent Leach
- Department of Orthopaedic Surgery, UC Davis Health, Sacramento, CA, 95817, USA.
- Department of Biomedical Engineering, University of California, Davis, Davis, CA, 95616, USA.
| |
Collapse
|
36
|
Li L, Zhang Y, Zhou Y, Hu H, Hu Y, Georgiades C, Mao HQ, Selaru FM. Quaternary nanoparticles enable sustained release of bortezomib for hepatocellular carcinoma. Hepatology 2022; 76:1660-1672. [PMID: 35596926 DOI: 10.1002/hep.32584] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 05/12/2022] [Accepted: 05/13/2022] [Indexed: 01/10/2023]
Abstract
BACKGROUND AND AIMS Hepatocellular carcinoma (HCC) represents the third leading cause of cancer-related mortality in the world. Over the past two decades, there has been minimal improvement in therapies as well as clinical outcomes for patients with Barcelona Clinic Liver Cancer (BCLC)-B. These patients are treated with local interventions, including transarterial chemoembolization. Current methodologies only allow sustained intratumoral release measured in hours. Methodologies to allow sustained local release of the drug cargo over days to weeks are acutely needed. We hypothesize that tumor response as well as outcomes of patients with BCLC-B can be improved through utilization of a highly cytotoxic agent delivered with a sustained release platform. APPROACH AND RESULTS High-throughput drug screening across 40 HCC patient-derived organoids identified bortezomib (BTZ) as a highly cytotoxic small molecule for HCC. We designed and manufactured sustained release BTZ nanoparticles (BTZ-NP) using a flash nanocomplexation/nanoprecipitation process. We quantified the release profile and tested the anti-tumoral effects in vivo. The BTZ-NP formulation demonstrated a sustained release of BTZ of 30 days. This BTZ-NP formulation was highly effective in controlling tumor size and improved survival in vivo in three animal models of HCC, including when delivered via the hepatic artery, as we envision its delivery in patients. In addition, the BTZ-NP formulation was superior to treatment with doxorubicin-drug eluting beads. CONCLUSIONS The BTZ-NP formulation provides a potent and safe treatment of HCC via a localized delivery approach. These results warrant additional preclinical studies to advance this technology to human clinical trials.
Collapse
Affiliation(s)
- Ling Li
- Division of Gastroenterology and HepatologySchool of MedicineJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Yicheng Zhang
- Institute for NanoBioTechnologyJohns Hopkins UniversityBaltimoreMarylandUSA.,Department of Materials Science and EngineeringWhiting School of EngineeringJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Yang Zhou
- Institute for NanoBioTechnologyJohns Hopkins UniversityBaltimoreMarylandUSA.,Department of Materials Science and EngineeringWhiting School of EngineeringJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Haijie Hu
- Division of Gastroenterology and HepatologySchool of MedicineJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Yizong Hu
- Institute for NanoBioTechnologyJohns Hopkins UniversityBaltimoreMarylandUSA.,Department of Biomedical EngineeringSchool of MedicineJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Christos Georgiades
- Division of Radiology & Radiological SciencesSchool of MedicineJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Hai-Quan Mao
- Institute for NanoBioTechnologyJohns Hopkins UniversityBaltimoreMarylandUSA.,Department of Materials Science and EngineeringWhiting School of EngineeringJohns Hopkins UniversityBaltimoreMarylandUSA.,Department of Biomedical EngineeringSchool of MedicineJohns Hopkins UniversityBaltimoreMarylandUSA.,Translational Tissue Engineering CenterSchool of MedicineJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Florin M Selaru
- Division of Gastroenterology and HepatologySchool of MedicineJohns Hopkins UniversityBaltimoreMarylandUSA.,Department of OncologySidney Kimmel Cancer CenterSchool of MedicineJohns Hopkins UniversityBaltimoreMarylandUSA
| |
Collapse
|
37
|
Chen F, Zhang Z, Shen R, Chen M, Li G, Zhu X. Generation and characterization of patient-derived xenografts from patients with osteosarcoma. Tissue Cell 2022; 79:101911. [DOI: 10.1016/j.tice.2022.101911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 06/03/2022] [Accepted: 08/28/2022] [Indexed: 02/07/2023]
|
38
|
Zanella ER, Grassi E, Trusolino L. Towards precision oncology with patient-derived xenografts. Nat Rev Clin Oncol 2022; 19:719-732. [PMID: 36151307 DOI: 10.1038/s41571-022-00682-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/17/2022] [Indexed: 11/09/2022]
Abstract
Under the selective pressure of therapy, tumours dynamically evolve multiple adaptive mechanisms that make static interrogation of genomic alterations insufficient to guide treatment decisions. Clinical research does not enable the assessment of how various regulatory circuits in tumours are affected by therapeutic insults over time and space. Likewise, testing different precision oncology approaches informed by composite and ever-changing molecular information is hard to achieve in patients. Therefore, preclinical models that incorporate the biology and genetics of human cancers, facilitate analyses of complex variables and enable adequate population throughput are needed to pinpoint randomly distributed response predictors. Patient-derived xenograft (PDX) models are dynamic entities in which cancer evolution can be monitored through serial propagation in mice. PDX models can also recapitulate interpatient diversity, thus enabling the identification of response biomarkers and therapeutic targets for molecularly defined tumour subgroups. In this Review, we discuss examples from the past decade of the use of PDX models for precision oncology, from translational research to drug discovery. We elaborate on how and to what extent preclinical observations in PDX models have confirmed and/or anticipated findings in patients. Finally, we illustrate emerging methodological efforts that could broaden the application of PDX models by honing their predictive accuracy or improving their versatility.
Collapse
Affiliation(s)
| | - Elena Grassi
- Candiolo Cancer Institute - FPO IRCCS, Candiolo, Italy.,Department of Oncology, University of Torino, Candiolo, Italy
| | - Livio Trusolino
- Candiolo Cancer Institute - FPO IRCCS, Candiolo, Italy. .,Department of Oncology, University of Torino, Candiolo, Italy.
| |
Collapse
|
39
|
Zhang C, Wang H. Accurate treatment of small cell lung cancer: Current progress, new challenges and expectations. Biochim Biophys Acta Rev Cancer 2022; 1877:188798. [PMID: 36096336 DOI: 10.1016/j.bbcan.2022.188798] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 08/19/2022] [Accepted: 09/05/2022] [Indexed: 11/28/2022]
Abstract
Small cell lung cancer (SCLC) is a deadly disease with poor prognosis. Fast growing speed, inclination to metastasis, enrichment in cancer stem cells altogether constitute its aggressive nature. In stark contrast to non-small cell lung cancer (NSCLC) that strides vigorously on the road to precision oncology, SCLC has been on the embryonic path to achieve effective personalized treatments. The survival of patients with SCLC have not been improved greatly, which could be possibly due to our inadequate understanding of genetic alterations of SCLC. Recently, encouraging effects have been observed in patients with SCLC undergoing immunotherapy. However, exciting results have only been observed in a small fraction of patients with SCLC, warranting biomarkers predictive of responses as well as novel therapeutic strategies. In addition, SCLC has previously been viewed to be homogeneous. However, perspectives have been changed thanks to the advances in sequencing techniques and platforms, which unfolds the complex heterogeneity of SCLC both genetically and non-genetically, rendering the treatment of SCLC a further step forward into the precision era. To outline the road of SCLC towards precision oncology, we summarize the progresses and achievements made in precision treatment in SCLC in genomic, transcriptomic, epigenetic, proteomic and metabolic dimensions. Moreover, we conclude relevant therapeutic vulnerabilities in SCLC. Clinically tested drugs and clinical trials have also been demonstrated. Ultimately, we look into the opportunities and challenges ahead to advance the individualized treatment in pursuit of improved survival for patients with SCLC.
Collapse
Affiliation(s)
- Chenyue Zhang
- Department of Integrated Therapy, Fudan University Shanghai Cancer Center, Shanghai Medical College, Shanghai, China
| | - Haiyong Wang
- Department of Internal Medicine-Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China.
| |
Collapse
|
40
|
Kim Y, Ko J, Shin N, Park S, Lee SR, Kim S, Song J, Lee S, Kang KS, Lee J, Jeon NL. All-in-One microfluidic design to integrate vascularized tumor spheroid into high-throughput platform. Biotechnol Bioeng 2022; 119:3678-3693. [PMID: 36043394 DOI: 10.1002/bit.28221] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 07/01/2022] [Accepted: 07/30/2022] [Indexed: 12/24/2022]
Abstract
The development of a scalable and highly reproducible in vitro tumor microenvironment (TME) platform still sheds light on new insights into cancer metastasis mechanisms and anticancer therapeutic strategies. Here, we present an all-in-one injection molded plastic array 3D culture platform (All-in-One-IMPACT) that integrates vascularized tumor spheroids for highly reproducible, high-throughput experimentation. This device allows the formation of self-assembled cell spheroids on a chip by applying the hanging drop method to the cell culture channel. Then, when the hydrogel containing endothelial cells and fibroblasts is injected, the spheroid inside the droplet can be patterned together in three dimensions along the culture channel. In just two steps above, we can build a vascularized TME within a defined area. This process does not require specialized user skill and minimizes error-inducing steps, enabling both reproducibility and high-throughput of the experiment. We have successfully demonstrated the process, from spheroid formation to tumor vascularization, using patient-derived cancer cells (PDCs) as well as various cancer cell lines. Furthermore, we performed combination therapies with Taxol (paclitaxel) and Avastin (bevacizumab), which are used in standard care for metastatic cancer. The All-in-One IMPACT is a powerful tool for establishing various anticancer treatment strategies through the development of a complex TME for use in high-throughput experiments. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Youngtaek Kim
- Department of Mechanical Engineering, Seoul National University, Seoul, Republic of Korea
| | - Jihoon Ko
- Department of Mechanical Engineering, Seoul National University, Seoul, Republic of Korea.,Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Nari Shin
- Adult Stem Cell Research Center and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea
| | - Seonghyuk Park
- Department of Mechanical Engineering, Seoul National University, Seoul, Republic of Korea
| | - Seung-Ryeol Lee
- Department of Mechanical Engineering, Seoul National University, Seoul, Republic of Korea
| | - Suryong Kim
- Department of Mechanical Engineering, Seoul National University, Seoul, Republic of Korea
| | - Jiyoung Song
- Department of Mechanical Engineering, Seoul National University, Seoul, Republic of Korea
| | - Seokjun Lee
- Department of Mechanical Engineering, Seoul National University, Seoul, Republic of Korea
| | - Kyung-Sun Kang
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Jeeyun Lee
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea.,Department of Health Sciences and Technology, Samsung Advanced Institute for Health Science and Technology, Sungkyunkwan University, Seoul, Republic of Korea
| | - Noo Li Jeon
- Department of Mechanical Engineering, Seoul National University, Seoul, Republic of Korea.,Institute of Advanced Machinery and Design Seoul National University, Seoul, Republic of Korea.,Institute of Bioengineering, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
41
|
Genta S, Coburn B, Cescon DW, Spreafico A. Patient-derived cancer models: Valuable platforms for anticancer drug testing. Front Oncol 2022; 12:976065. [PMID: 36033445 PMCID: PMC9413077 DOI: 10.3389/fonc.2022.976065] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 07/12/2022] [Indexed: 11/13/2022] Open
Abstract
Molecularly targeted treatments and immunotherapy are cornerstones in oncology, with demonstrated efficacy across different tumor types. Nevertheless, the overwhelming majority metastatic disease is incurable due to the onset of drug resistance. Preclinical models including genetically engineered mouse models, patient-derived xenografts and two- and three-dimensional cell cultures have emerged as a useful resource to study mechanisms of cancer progression and predict efficacy of anticancer drugs. However, variables including tumor heterogeneity and the complexities of the microenvironment can impair the faithfulness of these platforms. Here, we will discuss advantages and limitations of these preclinical models, their applicability for drug testing and in co-clinical trials and potential strategies to increase their reliability in predicting responsiveness to anticancer medications.
Collapse
Affiliation(s)
- Sofia Genta
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Bryan Coburn
- Division of Infectious Diseases, Toronto General Hospital, University Health Network, Toronto, ON, Canada
| | - David W. Cescon
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Anna Spreafico
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
42
|
Dozzo A, Galvin A, Shin JW, Scalia S, O'Driscoll CM, Ryan KB. Modelling acute myeloid leukemia (AML): What's new? A transition from the classical to the modern. Drug Deliv Transl Res 2022:10.1007/s13346-022-01189-4. [PMID: 35930221 DOI: 10.1007/s13346-022-01189-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2022] [Indexed: 11/24/2022]
Abstract
Acute myeloid leukemia (AML) is a heterogeneous malignancy affecting myeloid cells in the bone marrow (BM) but can spread giving rise to impaired hematopoiesis. AML incidence increases with age and is associated with poor prognostic outcomes. There has been a disconnect between the success of novel drug compounds observed in preclinical studies of hematological malignancy and less than exceptional therapeutic responses in clinical trials. This review aims to provide a state-of-the-art overview on the different preclinical models of AML available to expand insights into disease pathology and as preclinical screening tools. Deciphering the complex physiological and pathological processes and developing predictive preclinical models are key to understanding disease progression and fundamental in the development and testing of new effective drug treatments. Standard scaffold-free suspension models fail to recapitulate the complex environment where AML occurs. To this end, we review advances in scaffold/matrix-based 3D models and outline the most recent advances in on-chip technology. We also provide an overview of clinically relevant animal models and review the expanding use of patient-derived samples, which offer the prospect to create more "patient specific" screening tools either in the guise of 3D matrix models, microphysiological "organ-on-chip" tools or xenograft models and discuss representative examples.
Collapse
Affiliation(s)
| | - Aoife Galvin
- School of Pharmacy, University College Cork, Cork, Ireland
| | - Jae-Won Shin
- Department of Pharmacology and Regenerative Medicine, University of Illinois at Chicago College of Medicine, 909 S. Wolcott Ave, Chicago, IL, 5091 COMRB, USA
| | - Santo Scalia
- Università degli Studi di Ferrara, Via Luigi Borsari 46, 44121, Ferrara, Italy
| | - Caitriona M O'Driscoll
- School of Pharmacy, University College Cork, Cork, Ireland.,SSPC Centre for Pharmaceutical Research, School of Pharmacy, University College Cork, Cork, Ireland
| | - Katie B Ryan
- School of Pharmacy, University College Cork, Cork, Ireland. .,SSPC Centre for Pharmaceutical Research, School of Pharmacy, University College Cork, Cork, Ireland.
| |
Collapse
|
43
|
Parekh A, Das S, Das CK, Mandal M. Progressing Towards a Human-Centric Approach in Cancer Research. Front Oncol 2022; 12:896633. [PMID: 35928861 PMCID: PMC9343698 DOI: 10.3389/fonc.2022.896633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 06/21/2022] [Indexed: 11/17/2022] Open
Abstract
Despite the advancement in research methodologies and technologies for cancer research, there is a high rate of anti-cancer drug attrition. In this review, we discuss different conventional and modern approaches in cancer research and how human-centric models can improve on the voids conferred by more traditional animal-centric models, thereby offering a more reliable platform for drug discovery. Advanced three-dimensional cell culture methodologies, along with in silico computational analysis form the core of human-centric cancer research. This can provide a holistic understanding of the research problems and help design specific and accurate experiments that could lead to the development of better cancer therapeutics. Here, we propose a new human-centric research roadmap that promises to provide a better platform for cancer research and drug discovery.
Collapse
Affiliation(s)
- Aditya Parekh
- School of Design, Anant National University, Ahmedabad, India
- Genetics and Development, National Centre For Biological Sciences, Bengaluru, India
- *Correspondence: Aditya Parekh,
| | - Subhayan Das
- School of Medical Science and Technology (SMST), Indian Institute of Technology, Kharagpur, India
| | - Chandan K. Das
- Cancer Biology, University of Pennsylvania, Philadelphia, PA, United States
| | - Mahitosh Mandal
- School of Medical Science and Technology (SMST), Indian Institute of Technology, Kharagpur, India
| |
Collapse
|
44
|
Miyamoto S, Tanaka T, Hirosuna K, Nishie R, Ueda S, Hashida S, Terada S, Konishi H, Kogata Y, Taniguchi K, Komura K, Ohmichi M. Validation of a Patient-Derived Xenograft Model for Cervical Cancer Based on Genomic and Phenotypic Characterization. Cancers (Basel) 2022; 14:cancers14122969. [PMID: 35740635 PMCID: PMC9221029 DOI: 10.3390/cancers14122969] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/09/2022] [Accepted: 06/14/2022] [Indexed: 12/04/2022] Open
Abstract
Simple Summary The rate of total tumor engraftment of patient-derived xenografts is 50% in cervical cancer. These cancers retain their histopathological characteristics. The gene mutations and expression patterns associated with carcinogenesis and infiltration and the expression levels of genes in extracellular vesicles released from the tumors are similar between patient-derived xenograft models and primary tumors. Patient-derived xenograft models of cervical cancer could be potentially useful tools for translational research. Abstract Patient-derived xenograft (PDX) models are useful tools for preclinical drug evaluation, biomarker identification, and personalized medicine strategies, and can be developed by the heterotopic or orthotopic grafting of surgically resected tumors into immunodeficient mice. We report the PDX models of cervical cancer and demonstrate the similarities among original and different generations of PDX tumors. Fresh tumor tissues collected from 22 patients with primary cervical cancer were engrafted subcutaneously into NOD.CB17-PrkdcSCID/J mice. Histological and immunohistochemical analyses were performed to compare primary and different generations of PDX tumors. DNA and RNA sequencing were performed to verify the similarity between the genetic profiles of primary and PDX tumors. Total RNA in extracellular vesicles (EVs) released from primary and PDX tumors was also quantified to evaluate gene expression. The total tumor engraftment rate was 50%. Histologically, no major differences were observed between the original and PDX tumors. Most of the gene mutations and expression patterns related to carcinogenesis and infiltration were similar between the primary tumor and xenograft. Most genes associated with carcinogenesis and infiltration showed similar expression levels in the primary tumor and xenograft EVs. Therefore, compared with primary tumors, PDX models could be potentially more useful for translational research.
Collapse
Affiliation(s)
- Shunsuke Miyamoto
- Department of Obstetrics and Gynecology, Educational Foundation of Osaka Medical and Pharmaceutical University, 2-7, Daigaku-machi, Takatsuki 569-8686, Osaka, Japan; (S.M.); (R.N.); (S.U.); (S.H.); (S.T.); (H.K.); (Y.K.); (M.O.)
- Translational Research Program, Educational Foundation of Osaka Medical and Pharmaceutical University, 2-7, Daigaku-machi, Takatsuki 569-8686, Osaka, Japan; (K.H.); (K.T.); (K.K.)
| | - Tomohito Tanaka
- Department of Obstetrics and Gynecology, Educational Foundation of Osaka Medical and Pharmaceutical University, 2-7, Daigaku-machi, Takatsuki 569-8686, Osaka, Japan; (S.M.); (R.N.); (S.U.); (S.H.); (S.T.); (H.K.); (Y.K.); (M.O.)
- Translational Research Program, Educational Foundation of Osaka Medical and Pharmaceutical University, 2-7, Daigaku-machi, Takatsuki 569-8686, Osaka, Japan; (K.H.); (K.T.); (K.K.)
- Correspondence: ; Tel.: +81-726-83-1221
| | - Kensuke Hirosuna
- Translational Research Program, Educational Foundation of Osaka Medical and Pharmaceutical University, 2-7, Daigaku-machi, Takatsuki 569-8686, Osaka, Japan; (K.H.); (K.T.); (K.K.)
| | - Ruri Nishie
- Department of Obstetrics and Gynecology, Educational Foundation of Osaka Medical and Pharmaceutical University, 2-7, Daigaku-machi, Takatsuki 569-8686, Osaka, Japan; (S.M.); (R.N.); (S.U.); (S.H.); (S.T.); (H.K.); (Y.K.); (M.O.)
| | - Shoko Ueda
- Department of Obstetrics and Gynecology, Educational Foundation of Osaka Medical and Pharmaceutical University, 2-7, Daigaku-machi, Takatsuki 569-8686, Osaka, Japan; (S.M.); (R.N.); (S.U.); (S.H.); (S.T.); (H.K.); (Y.K.); (M.O.)
| | - Sousuke Hashida
- Department of Obstetrics and Gynecology, Educational Foundation of Osaka Medical and Pharmaceutical University, 2-7, Daigaku-machi, Takatsuki 569-8686, Osaka, Japan; (S.M.); (R.N.); (S.U.); (S.H.); (S.T.); (H.K.); (Y.K.); (M.O.)
| | - Shinichi Terada
- Department of Obstetrics and Gynecology, Educational Foundation of Osaka Medical and Pharmaceutical University, 2-7, Daigaku-machi, Takatsuki 569-8686, Osaka, Japan; (S.M.); (R.N.); (S.U.); (S.H.); (S.T.); (H.K.); (Y.K.); (M.O.)
| | - Hiromi Konishi
- Department of Obstetrics and Gynecology, Educational Foundation of Osaka Medical and Pharmaceutical University, 2-7, Daigaku-machi, Takatsuki 569-8686, Osaka, Japan; (S.M.); (R.N.); (S.U.); (S.H.); (S.T.); (H.K.); (Y.K.); (M.O.)
| | - Yuhei Kogata
- Department of Obstetrics and Gynecology, Educational Foundation of Osaka Medical and Pharmaceutical University, 2-7, Daigaku-machi, Takatsuki 569-8686, Osaka, Japan; (S.M.); (R.N.); (S.U.); (S.H.); (S.T.); (H.K.); (Y.K.); (M.O.)
| | - Kohei Taniguchi
- Translational Research Program, Educational Foundation of Osaka Medical and Pharmaceutical University, 2-7, Daigaku-machi, Takatsuki 569-8686, Osaka, Japan; (K.H.); (K.T.); (K.K.)
| | - Kazumasa Komura
- Translational Research Program, Educational Foundation of Osaka Medical and Pharmaceutical University, 2-7, Daigaku-machi, Takatsuki 569-8686, Osaka, Japan; (K.H.); (K.T.); (K.K.)
| | - Masahide Ohmichi
- Department of Obstetrics and Gynecology, Educational Foundation of Osaka Medical and Pharmaceutical University, 2-7, Daigaku-machi, Takatsuki 569-8686, Osaka, Japan; (S.M.); (R.N.); (S.U.); (S.H.); (S.T.); (H.K.); (Y.K.); (M.O.)
| |
Collapse
|
45
|
Gene-independent therapeutic interventions to maintain and restore light sensitivity in degenerating photoreceptors. Prog Retin Eye Res 2022; 90:101065. [PMID: 35562270 DOI: 10.1016/j.preteyeres.2022.101065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/08/2022] [Accepted: 04/18/2022] [Indexed: 12/14/2022]
Abstract
Neurodegenerative retinal diseases are a prime cause of blindness in industrialized countries. In many cases, there are no therapeutic treatments, although they are essential to improve patients' quality of life. A set of disease-causing genes, which primarily affect photoreceptors, has already been identified and is of major interest for developing gene therapies. Nevertheless, depending on the nature and the state of the disease, gene-independent strategies are needed. Various strategies to halt disease progression or maintain function of the retina are under research. These therapeutic interventions include neuroprotection, direct reprogramming of affected photoreceptors, the application of non-coding RNAs, the generation of artificial photoreceptors by optogenetics and cell replacement strategies. During recent years, major breakthroughs have been made such as the first optogenetic application to a blind patient whose visual function partially recovered by targeting retinal ganglion cells. Also, RPE cell transplantation therapies are under clinical investigation and show great promise to improve visual function in blind patients. These cells are generated from human stem cells. Similar therapies for replacing photoreceptors are extensively tested in pre-clinical models. This marks just the start of promising new cures taking advantage of developments in the areas of genetic engineering, optogenetics, and stem-cell research. In this review, we present the recent therapeutic advances of gene-independent approaches that are currently under clinical evaluation. Our main focus is on photoreceptors as these sensory cells are highly vulnerable to degenerative diseases, and are crucial for light detection.
Collapse
|
46
|
Luo CK, Chou PH, Ng SK, Lin WY, Wei TT. Cannabinoids orchestrate cross-talk between cancer cells and endothelial cells in colorectal cancer. Cancer Gene Ther 2022; 29:597-611. [PMID: 34007062 DOI: 10.1038/s41417-021-00346-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/26/2021] [Accepted: 05/06/2021] [Indexed: 02/07/2023]
Abstract
Medical marijuana has been approved by the FDA for treating chemotherapy-induced nausea and vomiting. However, less is known about its direct effects on tumor cells and the tumor microenvironment. In this study, RNA-sequencing datasets in the NCBI GEO repository were first analyzed; upregulation of cannabinoid receptors was observed in both primary and metastatic colorectal cancer (CRC) tumor tissues. An increase of cannabinoid receptors was also found in patients with CRC, azoxymethane/dextran sulfate sodium-induced CRC and CRC metastatic mouse models. Δ9-Tetrahydrocannabinol (Δ9-THC)-induced tumor progression in both primary and metastatic mouse models and also increased angiogenesis. A human growth factor antibody array indicated that Δ9-THC promoted the secretion of angiogenic growth factors in CRC, leading to the induction of tube formation and migration in human-induced pluripotent stem cell-derived vascular endothelial cells. The nuclear translocation of STAT1 played important roles in Δ9-THC-induced angiogenesis and tumor progression. Pharmacological treatment with STAT1 antagonist or abrogation of STAT1 with CRISPR/Cas9-based strategy rescued those effects of Δ9-THC in CRC. This study demonstrates that marijuana might increase the risk of CRC progression and that inhibition of STAT1 is a potential strategy for attenuating these side effects.
Collapse
Affiliation(s)
- Cong-Kai Luo
- Department and Graduate Institute of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Pei-Hsuan Chou
- Department and Graduate Institute of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Shang-Kok Ng
- Department and Graduate Institute of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Wen-Yen Lin
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Tzu-Tang Wei
- Department and Graduate Institute of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
47
|
Biomimetic hydrogel supports initiation and growth of patient-derived breast tumor organoids. Nat Commun 2022; 13:1466. [PMID: 35304464 PMCID: PMC8933543 DOI: 10.1038/s41467-022-28788-6] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 02/01/2022] [Indexed: 12/15/2022] Open
Abstract
Patient-derived tumor organoids (PDOs) are a highly promising preclinical model that recapitulates the histology, gene expression, and drug response of the donor patient tumor. Currently, PDO culture relies on basement-membrane extract (BME), which suffers from batch-to-batch variability, the presence of xenogeneic compounds and residual growth factors, and poor control of mechanical properties. Additionally, for the development of new organoid lines from patient-derived xenografts, contamination of murine host cells poses a problem. We propose a nanofibrillar hydrogel (EKGel) for the initiation and growth of breast cancer PDOs. PDOs grown in EKGel have histopathologic features, gene expression, and drug response that are similar to those of their parental tumors and PDOs in BME. In addition, EKGel offers reduced batch-to-batch variability, a range of mechanical properties, and suppressed contamination from murine cells. These results show that EKGel is an improved alternative to BME matrices for the initiation, growth, and maintenance of breast cancer PDOs. Patient-derived tumour organoids are important preclinical models but suffer from variability from the use of basement-membrane extract and cell contamination. Here, the authors report on the development of mimetic nanofibrilar hydrogel which supports tumour organoid growth with reduced batch variability and cell contamination.
Collapse
|
48
|
Beserra AO, Estevan EC, Bezerra SM, Torrezan GT, Ikegami A, Dellê H, Cunha IW, Meira IT, Carraro DM, Lara PN, Zequi SC, Martins VR, Santos TG. Patient-Derived Renal Cell Carcinoma Xenografts Capture Tumor Genetic Profiles and Aggressive Behaviors. KIDNEY CANCER 2022. [DOI: 10.3233/kca-210011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND: Patient-derived xenografts (PDX) have emerged as one of the most promising model systems to study cancer biology and to develop new antineoplastic drugs. Renal cell carcinoma (RCC) represents up to 90% of all kidney tumors, exhibits aggressive behavior, and has a propensity for metastasis. At diagnosis, 30% of patients with RCC have metastases, while up to 50% of those with localized disease treated with curative protocols experience recurrence. OBJECTIVE: This study aimed to establish an RCC PDX platform to identify novel clinical and molecular biomarkers of recurrence risk in order to facilitate precision medicine. METHODS: Tumor samples were obtained from surgical specimens of 87 RCC patients; fragments were implanted in immunodeficient NOD/SCID/gamma (NSG) mice. Seventeen fragments were implanted subcutaneously in an initial group while a second group of 70 samples were implanted orthotopically in the subcapsular space. RESULTS: A total of 19 PDX developed only after orthotopic implantation, and included 15 cases of clear cell RCC subtype, 3 cases of papillary subtype, and one unclassifiable tumor. One PDX of clear cell RCC recapitulated the phenotype of vena caval tumor thrombus extension that had been diagnosed in the source patient. PDX characterization by immunohistochemistry and targeted sequencing indicated that all PDXs preserved RCC identity and major molecular alterations. Moreover, the capacity of tumor engraftment was a strong prognostic indicator for patients with locally advanced disease. CONCLUSION: Taken together, these results suggest that the orthotopic xenograft model of RCC represents a suitable tool to study RCC biology, identify biomarkers, and to test therapeutic candidates.
Collapse
Affiliation(s)
- Adriano O. Beserra
- International Research Center, A.C. Camargo Cancer Center, São Paulo – Brazil
- National Institute for Science and Technology in Oncogenomics and Therapeutic Innovation, São Paulo – Brazil
| | - Ethiene C. Estevan
- International Research Center, A.C. Camargo Cancer Center, São Paulo – Brazil
- National Institute for Science and Technology in Oncogenomics and Therapeutic Innovation, São Paulo – Brazil
| | | | - Giovana T. Torrezan
- International Research Center, A.C. Camargo Cancer Center, São Paulo – Brazil
- National Institute for Science and Technology in Oncogenomics and Therapeutic Innovation, São Paulo – Brazil
| | - Amanda Ikegami
- International Research Center, A.C. Camargo Cancer Center, São Paulo – Brazil
- National Institute for Science and Technology in Oncogenomics and Therapeutic Innovation, São Paulo – Brazil
| | - Humberto Dellê
- Graduate Program in Medicine, Universidade Nove de Julho, São Paulo – Brazil
| | - Isabela W. Cunha
- Institute of Pathology, Rede D’OR-São Luiz and D’Or Institute for Research and Education (IDOR), São Paulo – Brazil
| | - Isabella T. Meira
- International Research Center, A.C. Camargo Cancer Center, São Paulo – Brazil
- National Institute for Science and Technology in Oncogenomics and Therapeutic Innovation, São Paulo – Brazil
| | - Dirce M. Carraro
- International Research Center, A.C. Camargo Cancer Center, São Paulo – Brazil
- National Institute for Science and Technology in Oncogenomics and Therapeutic Innovation, São Paulo – Brazil
| | - Primo N. Lara
- University of California Davis Comprehensive Cancer Center, Sacramento, CA – USA
| | - Stenio C. Zequi
- National Institute for Science and Technology in Oncogenomics and Therapeutic Innovation, São Paulo – Brazil
- Reference Center of Urology, A.C. Camargo Cancer Center, São Paulo – Brazil
- LARCG -Latin American Renal Cancer Group
| | - Vilma R. Martins
- International Research Center, A.C. Camargo Cancer Center, São Paulo – Brazil
- National Institute for Science and Technology in Oncogenomics and Therapeutic Innovation, São Paulo – Brazil
| | - Tiago G. Santos
- International Research Center, A.C. Camargo Cancer Center, São Paulo – Brazil
- National Institute for Science and Technology in Oncogenomics and Therapeutic Innovation, São Paulo – Brazil
| |
Collapse
|
49
|
Furbo S, Urbano PCM, Raskov HH, Troelsen JT, Kanstrup Fiehn AM, Gögenur I. Use of Patient-Derived Organoids as a Treatment Selection Model for Colorectal Cancer: A Narrative Review. Cancers (Basel) 2022; 14:cancers14041069. [PMID: 35205817 PMCID: PMC8870458 DOI: 10.3390/cancers14041069] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/17/2022] [Accepted: 02/18/2022] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Colorectal cancer (CRC) is the third most common type of cancer globally. Despite successful treatment, it has a 40% chance of recurrence within five years after surgery. While neoadjuvant chemotherapy is offered for stage IV cancers, it comes with a risk of resistance and disease progression. CRC tumors vary biologically, recur frequently, and pose a significant risk for cancer-related mortality, making it increasingly relevant to develop methods to study personalized treatment. A tumor organoid is a miniature, multicellular, and 3D replica of a tumor in vitro that retains its characteristics. Here, we discuss the current methods of culturing organoids and the correlation of drug response in organoids with clinical responses in patients. This helps us to determine whether organoids can be used for treatment selection in a clinical setting. Based on the studies included, there was a strong correlation between treatment responses of organoids and clinical treatment responses. Abstract Surgical resection is the mainstay in intended curative treatment of colorectal cancer (CRC) and may be accompanied by adjuvant chemotherapy. However, 40% of the patients experience recurrence within five years of treatment, highlighting the importance of improved, personalized treatment options. Monolayer cell cultures and murine models, which are generally used to study the biology of CRC, are associated with certain drawbacks; hence, the use of organoids has been emerging. Organoids obtained from tumors display similar genotypic and phenotypic characteristics, making them ideal for investigating individualized treatment strategies and for integration as a core platform to be used in prediction models. Here, we review studies correlating the clinical response in patients with CRC with the therapeutic response in patient-derived organoids (PDO), as well as the limitations and potentials of this model. The studies outlined in this review reported strong associations between treatment responses in the PDO model and clinical treatment responses. However, as PDOs lack the tumor microenvironment, they do not genuinely account for certain crucial characteristics that influence therapeutic response. To this end, we reviewed studies investigating PDOs co-cultured with tumor-infiltrating lymphocytes. This model is a promising method allowing evaluation of patient-specific tumors and selection of personalized therapies. Standardized methodologies must be implemented to reach a “gold standard” for validating the use of this model in larger cohorts of patients. The introduction of this approach to a clinical scenario directing neoadjuvant treatment and in other curative and palliative treatment strategies holds incredible potential for improving personalized treatment and its outcomes.
Collapse
Affiliation(s)
- Sara Furbo
- Center for Surgical Science, Department of Surgery, Zealand University Hospital, Lykkebækvej 1, 4600 Køge, Denmark; (S.F.); (P.C.M.U.); (H.H.R.); (A.-M.K.F.)
| | - Paulo César Martins Urbano
- Center for Surgical Science, Department of Surgery, Zealand University Hospital, Lykkebækvej 1, 4600 Køge, Denmark; (S.F.); (P.C.M.U.); (H.H.R.); (A.-M.K.F.)
| | - Hans Henrik Raskov
- Center for Surgical Science, Department of Surgery, Zealand University Hospital, Lykkebækvej 1, 4600 Køge, Denmark; (S.F.); (P.C.M.U.); (H.H.R.); (A.-M.K.F.)
| | - Jesper Thorvald Troelsen
- Department of Science and Environment, Roskilde University, Universitetsvej 1, 4000 Roskilde, Denmark;
- Enhanced Perioperative Oncology (EPeOnc) Consortium, Zealand University Hospital, 4600 Køge, Denmark
| | - Anne-Marie Kanstrup Fiehn
- Center for Surgical Science, Department of Surgery, Zealand University Hospital, Lykkebækvej 1, 4600 Køge, Denmark; (S.F.); (P.C.M.U.); (H.H.R.); (A.-M.K.F.)
- Department of Pathology, Zealand University Hospital, Sygehusvej 10, 4000 Roskilde, Denmark
- Department of Clinical Medicine, University of Copenhagen, Blegdamsvej 3B, 2200 København, Denmark
| | - Ismail Gögenur
- Center for Surgical Science, Department of Surgery, Zealand University Hospital, Lykkebækvej 1, 4600 Køge, Denmark; (S.F.); (P.C.M.U.); (H.H.R.); (A.-M.K.F.)
- Enhanced Perioperative Oncology (EPeOnc) Consortium, Zealand University Hospital, 4600 Køge, Denmark
- Department of Clinical Medicine, University of Copenhagen, Blegdamsvej 3B, 2200 København, Denmark
- Correspondence: ; Tel.: +45-2633-6426
| |
Collapse
|
50
|
Shin HY, Lee EJ, Yang W, Kim HS, Chung D, Cho H, Kim JH. Identification of Prognostic Markers of Gynecologic Cancers Utilizing Patient-Derived Xenograft Mouse Models. Cancers (Basel) 2022; 14:cancers14030829. [PMID: 35159096 PMCID: PMC8834149 DOI: 10.3390/cancers14030829] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/28/2022] [Accepted: 01/30/2022] [Indexed: 02/04/2023] Open
Abstract
Patient-derived xenografts (PDXs) are important in vivo models for the development of precision medicine. However, challenges exist regarding genetic alterations and relapse after primary treatment. Thus, PDX models are required as a new approach for preclinical and clinical studies. We established PDX models of gynecologic cancers and analyzed their clinical information. We subcutaneously transplanted 207 tumor tissues from patients with gynecologic cancer into nude mice from 2014 to 2019. The successful engraftment rate of ovarian, cervical, and uterine cancer was 47%, 64%, and 56%, respectively. The subsequent passages (P2 and P3) showed higher success and faster growth rates than the first passage (P1). Using gynecologic cancer PDX models, the tumor grade is a common clinical factor affecting PDX establishment. We found that the PDX success rate correlated with the patient’s prognosis, and also that ovarian cancer patients with a poor prognosis had a faster PDX growth rate (p < 0.0001). Next, the gene sets associated with inflammation and immune responses were shown in high-ranking successful PDX engraftment through gene set enrichment analysis and RNA sequencing. Up-regulated genes in successful engraftment were found to correlate with ovarian clear cell cancer patient outcomes via Gene Expression Omnibus dataset analysis.
Collapse
Affiliation(s)
- Ha-Yeon Shin
- Department of Obstetrics and Gynecology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06273, Korea; (H.-Y.S.); (E.-j.L.); (H.S.K.); (D.C.); (H.C.)
| | - Eun-ju Lee
- Department of Obstetrics and Gynecology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06273, Korea; (H.-Y.S.); (E.-j.L.); (H.S.K.); (D.C.); (H.C.)
| | - Wookyeom Yang
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul 03722, Korea;
| | - Hyo Sun Kim
- Department of Obstetrics and Gynecology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06273, Korea; (H.-Y.S.); (E.-j.L.); (H.S.K.); (D.C.); (H.C.)
| | - Dawn Chung
- Department of Obstetrics and Gynecology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06273, Korea; (H.-Y.S.); (E.-j.L.); (H.S.K.); (D.C.); (H.C.)
| | - Hanbyoul Cho
- Department of Obstetrics and Gynecology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06273, Korea; (H.-Y.S.); (E.-j.L.); (H.S.K.); (D.C.); (H.C.)
| | - Jae-Hoon Kim
- Department of Obstetrics and Gynecology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06273, Korea; (H.-Y.S.); (E.-j.L.); (H.S.K.); (D.C.); (H.C.)
- Correspondence: ; Tel.: +82-02-2019-3430
| |
Collapse
|