1
|
Monreal G, Koenig SC, Huang J, Slaughter MS. Anatomical and Hemodynamic Characterization of Totally Artificial Hearts. ASAIO J 2024; 70:338-347. [PMID: 38557701 DOI: 10.1097/mat.0000000000002209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024] Open
Abstract
We characterize the anatomy and function of never before studied total artificial hearts (TAHs) using established methods for testing mechanical circulatory support (MCS) devices. A historical review of TAHs is also presented to aid in benchmarking performance metrics. Six TAHs, ranging from spooky Halloween beating hearts to a cute colorful plush heart, were imaged, instrumented (mock flow loops) to measure their pressure, volume, and flow, and qualitatively evaluated by 3rd party cardiac surgeons for anatomical accuracy and surgical considerations. Imaging of Claw, Beating, and Frankenstein TAHs revealed internal motors, circuit boards, and speakers. Gummy TAH was ranked favorite TAH for tactile realism, while Frankenstein TAH had the most favorable audible/visual indicators, including an illuminated Jacob's Ladder. Beating TAH demonstrated superior pulsatile hemodynamic performance compared to Claw TAH (16mL vs 1.3mL stroke volume). Light Up TAH and Gummy TAH functioned only as passive compliance chambers. Cute TAH rapidly exsanguinated due to its porosity (-3.0 L/min flow). These TAHs demonstrated a wide range of anatomical accuracy, surgeon appeal, unique features, and hemodynamic performance. While Claw TAH and Beating TAH successfully generated a modicum of pulsatility, we recommend the clinical community continue to support pre-clinical development of emerging or use of clinically-approved TAHs.
Collapse
Affiliation(s)
- Gretel Monreal
- From the Department of Cardiovascular and Thoracic Surgery, University of Louisville, Louisville, Kentucky
| | - Steven C Koenig
- From the Department of Cardiovascular and Thoracic Surgery, University of Louisville, Louisville, Kentucky
- Department of Bioengineering, University of Louisville, Louisville, Kentucky
| | - Jiapeng Huang
- Department of Anesthesiology and Perioperative Medicine, University of Louisville, Louisville, Kentucky
| | - Mark S Slaughter
- From the Department of Cardiovascular and Thoracic Surgery, University of Louisville, Louisville, Kentucky
| |
Collapse
|
2
|
Gülcher OJ, Vis A, Peirlinck M, Kluin J. Balancing the ventricular outputs of pulsatile total artificial hearts. Artif Organs 2023; 47:1809-1817. [PMID: 37702086 DOI: 10.1111/aor.14641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/15/2023] [Accepted: 08/28/2023] [Indexed: 09/14/2023]
Abstract
BACKGROUND Maintaining balanced left and right cardiac outputs in a total artificial heart (TAH) is challenging due to the need for continuous adaptation to changing hemodynamic conditions. Proper balance in ventricular outputs of the left and right ventricles requires a preload-sensitive response and mechanisms to address the higher volumetric efficiency of the right ventricle. METHODS This review provides a comprehensive overview of various methods used to balance left and right ventricular outputs in pulsatile total artificial hearts, categorized based on their actuation mechanism. RESULTS Reported strategies include incorporating compliant materials and/or air cushions inside the ventricles, employing active control mechanisms to regulate ventricular filling state, and utilizing various shunts (such as hydraulic or intra-atrial shunts). Furthermore, reducing right ventricular stroke volume compared to the left often serves to balance the ventricular outputs. Individually controlled actuation of both ventricles in a pulsatile TAH seems to be the simplest and most effective way to achieve proper preload sensitivity and left-right output balance. Pneumatically actuated TAHs have the advantage to respond passively to preload changes. CONCLUSION Therefore, a pneumatic TAH that comprises two individually actuated ventricles appears to be a more desirable option-both in terms of simplicity and efficacy-to respond to changing hemodynamic conditions.
Collapse
Affiliation(s)
- Oskar J Gülcher
- Department of Cardiothoracic Surgery, Amsterdam University Medical Centers, Location University of Amsterdam, Amsterdam, The Netherlands
- Department of Biomechanical Engineering, Delft University of Technology, Delft, The Netherlands
| | - Annemijn Vis
- Department of Cardiothoracic Surgery, Amsterdam University Medical Centers, Location University of Amsterdam, Amsterdam, The Netherlands
| | - Mathias Peirlinck
- Department of Biomechanical Engineering, Delft University of Technology, Delft, The Netherlands
| | - Jolanda Kluin
- Department of Cardiothoracic Surgery, Amsterdam University Medical Centers, Location University of Amsterdam, Amsterdam, The Netherlands
- Department of Cardiothoracic Surgery, Thorax Center, Erasmus MC, Rotterdam, The Netherlands
| |
Collapse
|
3
|
Smith PA, Wang Y, Frazier OH. The Evolution of Durable, Implantable Axial-Flow Rotary Blood Pumps. Tex Heart Inst J 2023; 50:492012. [PMID: 37011366 PMCID: PMC10178652 DOI: 10.14503/thij-22-7908] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Abstract
Left ventricular assist devices (LVADs) are increasingly used to treat patients with end-stage heart failure. Implantable LVADs were initially developed in the 1960s and 1970s. Because of technological constraints, early LVADs had limited durability (eg, membrane or valve failure) and poor biocompatibility (eg, driveline infections and high rates of hemolysis caused by high shear rates). As the technology has improved over the past 50 years, contemporary rotary LVADs have become smaller, more durable, and less likely to result in infection. A better understanding of hemodynamics and end-organ perfusion also has driven research into the enhanced functionality of rotary LVADs. This paper reviews from a historical perspective some of the most influential axial-flow rotary blood pumps to date, from benchtop conception to clinical implementation. The history of mechanical circulatory support devices includes improvements related to the mechanical, anatomical, and physiologic aspects of these devices. In addition, areas for further improvement are discussed, as are important future directions-such as the development of miniature and partial-support LVADs, which are less invasive because of their compact size. The ongoing development and optimization of these pumps may increase long-term LVAD use and promote early intervention in the treatment of patients with heart failure.
Collapse
Affiliation(s)
- P Alex Smith
- Innovative Design and Engineering Applications Laboratory, The Texas Heart Institute, Houston, Texas
| | - Yaxin Wang
- Innovative Design and Engineering Applications Laboratory, The Texas Heart Institute, Houston, Texas
| | - O H Frazier
- Innovative Design and Engineering Applications Laboratory, The Texas Heart Institute, Houston, Texas
| |
Collapse
|
4
|
Vis A, Arfaee M, Khambati H, Slaughter MS, Gummert JF, Overvelde JTB, Kluin J. The ongoing quest for the first total artificial heart as destination therapy. Nat Rev Cardiol 2022; 19:813-828. [PMID: 35668176 DOI: 10.1038/s41569-022-00723-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/09/2022] [Indexed: 12/18/2022]
Abstract
Many patients with end-stage heart disease die because of the scarcity of donor hearts. A total artificial heart (TAH), an implantable machine that replaces the heart, has so far been successfully used in over 1,700 patients as a temporary life-saving technology for bridging to heart transplantation. However, after more than six decades of research on TAHs, a TAH that is suitable for destination therapy is not yet available. High complication rates, bulky devices, poor durability, poor biocompatibility and low patient quality of life are some of the major drawbacks of current TAH devices that must be addressed before TAHs can be used as a destination therapy. Quickly emerging innovations in battery technology, wireless energy transmission, biocompatible materials and soft robotics are providing a promising opportunity for TAH development and might help to solve the drawbacks of current TAHs. In this Review, we describe the milestones in the history of TAH research and reflect on lessons learned during TAH development. We summarize the differences in the working mechanisms of these devices, discuss the next generation of TAHs and highlight emerging technologies that will promote TAH development in the coming decade. Finally, we present current challenges and future perspectives for the field.
Collapse
Affiliation(s)
- Annemijn Vis
- Cardiothoracic Surgery, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands.,Heart Failure and Arrhythmias, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| | - Maziar Arfaee
- Cardiothoracic Surgery, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands.,Heart Failure and Arrhythmias, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| | - Husain Khambati
- Cardiothoracic Surgery, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands.,Heart Failure and Arrhythmias, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| | - Mark S Slaughter
- Department of Cardiovascular and Thoracic Surgery, University of Louisville, Louisville, KY, USA
| | - Jan F Gummert
- Department of Thoracic and Cardiovascular Surgery, Heart and Diabetes Center NRW, Ruhr-University Bochum, Bad Oeynhausen, Germany
| | - Johannes T B Overvelde
- Autonomous Matter Department, AMOLF, Amsterdam, The Netherlands.,Institute for Complex Molecular Systems and Department of Mechanical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Jolanda Kluin
- Cardiothoracic Surgery, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands. .,Heart Failure and Arrhythmias, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands.
| |
Collapse
|
5
|
Groth T, Stegmayr BG, Ash SR, Kuchinka J, Wieringa FP, Fissell WH, Roy S. Wearable and implantable artificial kidney devices for end-stage kidney disease treatment-Current status and review. Artif Organs 2022; 47:649-666. [PMID: 36129158 DOI: 10.1111/aor.14396] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 08/17/2022] [Accepted: 08/24/2022] [Indexed: 11/27/2022]
Abstract
BACKGROUND Chronic kidney disease (CKD) is a major cause of early death worldwide. By 2030, 14.5 million people will have end-stage kidney disease (ESKD, or CKD stage 5), yet only 5.4 million will receive kidney replacement therapy (KRT) due to economic, social, and political factors. Even for those who are offered KRT by various means of dialysis, the life expectancy remains far too low. OBSERVATION Researchers from different fields of artificial organs collaborate to overcome the challenges of creating products such as Wearable and/or Implantable Artificial Kidneys capable of providing long-term effective physiologic kidney functions such as removal of uremic toxins, electrolyte homeostasis, and fluid regulation. A focus should be to develop easily accessible, safe, and inexpensive KRT options that enable a good quality of life and will also be available for patients in less-developed regions of the world. CONCLUSIONS Hence, it is required to discuss some of the limits and burdens of transplantation and different techniques of dialysis, including those performed at home. Furthermore, hurdles must be considered and overcome to develop wearable and implantable artificial kidney devices that can help to improve the quality of life and life expectancy of patients with CKD.
Collapse
Affiliation(s)
- Thomas Groth
- Department Biomedical Materials, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany.,International Federation for Artificial Organs, Painesville, Ohio, USA
| | - Bernd G Stegmayr
- Department of Public Health and Clinical Medicine, Umea University, Umea, Sweden
| | | | - Janna Kuchinka
- Department Biomedical Materials, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Fokko P Wieringa
- IMEC, Eindhoven, The Netherlands.,Department of Nephrology, University Medical Centre, Utrecht, The Netherlands.,European Kidney Health Alliance, WG3 "Breakthrough Innovation", Brussels, Belgium
| | | | - Shuvo Roy
- University of California, California, San Francisco, USA
| |
Collapse
|
6
|
Rahimi Sardo F, Rayegani A, Matin Nazar A, Balaghiinaloo M, Saberian M, Mohsan SAH, Alsharif MH, Cho HS. Recent Progress of Triboelectric Nanogenerators for Biomedical Sensors: From Design to Application. BIOSENSORS 2022; 12:697. [PMID: 36140082 PMCID: PMC9496147 DOI: 10.3390/bios12090697] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/14/2022] [Accepted: 08/22/2022] [Indexed: 12/22/2022]
Abstract
Triboelectric nanogenerators (TENG) have gained prominence in recent years, and their structural design is crucial for improvement of energy harvesting performance and sensing. Wearable biosensors can receive information about human health without the need for external charging, with energy instead provided by collection and storage modules that can be integrated into the biosensors. However, the failure to design suitable components for sensing remains a significant challenge associated with biomedical sensors. Therefore, design of TENG structures based on the human body is a considerable challenge, as biomedical sensors, such as implantable and wearable self-powered sensors, have recently advanced. Following a brief introduction of the fundamentals of triboelectric nanogenerators, we describe implantable and wearable self-powered sensors powered by triboelectric nanogenerators. Moreover, we examine the constraints limiting the practical uses of self-powered devices.
Collapse
Affiliation(s)
- Fatemeh Rahimi Sardo
- Department of Mining Engineering, Shahid Bahonar University of Kerman, Kerman 7616913439, Iran
| | - Arash Rayegani
- Department of Civil Engineering, Sharif University of Technology, Azadi Ave, Tehran 1458889694, Iran
| | | | | | | | | | - Mohammed H. Alsharif
- Department of Electrical Engineering, College of Electronics and Information Engineering, Sejong University, Seoul 05006, Korea
| | - Ho-Shin Cho
- School of Electronic and Electrical Engineering, Kyungpook National University, Daegu 41566, Korea
| |
Collapse
|
7
|
Nawaz W, Naveed M, Zhang J, Noreen S, Saeed M, Sembatya KR, Ihsan AU, Mohammad IS, Wang G, Zhou X. Cardioprotective effect of silicon-built restraint device (ASD), for left ventricular remodeling in rat heart failure model. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2022; 33:42. [PMID: 35536369 PMCID: PMC9090860 DOI: 10.1007/s10856-022-06663-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 04/13/2022] [Indexed: 06/14/2023]
Abstract
This study aims to evaluate the feasibility and cardio-protective effects of biocompatible silicon-built restraint device (ASD) in the rat's heart failure (HF) model. The performance and compliance characteristics of the ASD device were assessed in vitro by adopting a pneumatic drive and ball burst test. Sprague-Dawley (SD) rats were divided into four groups (n = 6); control, HF, HF + CSD, and HF + ASD groups, respectively. Heart failure was developed by left anterior descending (LAD) coronary artery ligation in all groups except the control group. The ASD and CSD devices were implanted in the heart of HF + ASD and HF + CSD groups, respectively. The ASD's functional and expansion ability was found to be safe and suitable for attenuating ventricular remodeling. ASD-treated rats showed normal heart rhythm, demonstrated by smooth -ST and asymmetrical T-wave. At the same time, hemodynamic parameters of the HF + ASD group improved systolic and diastolic functions, reducing ventricular wall stress, which indicated reverse remodeling. The BNP values were reduced in the HF + ASD group, which confirmed ASD feasibility and reversed remodeling at a molecular level. Furthermore, the HF + ASD group with no fibrosis suggests that ASD has significant curative effects on the heart muscles. In conclusion, ASD was found to be a promising restraint therapy than the previously standard restraint therapies. Stepwise ASD fabrication process (a) 3D computer model of ASD was generated by using Rhinoceros 5.0 software (b) 3D blue wax model of ASD (c) Silicon was prepared by mixing the solutions (as per manufacturer instruction) (d) Blue wax model of ASD was immersed into liquid Silicon (e) ASD model was put into the oven for 3 hours at 50 °C. (f) Blue wax started melting from the ASD model (g) ASD model was built from pure silicon (h) Two access lines were linked to the ASD device, which was connected with an implantable catheter (Port-a-cath), scale bar 100 µm. (Nikon Ldx 2.0).
Collapse
Affiliation(s)
- Waqas Nawaz
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Muhammad Naveed
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
- Department of Clinical Pharmacology, School of Pharmacy, Nanjing University, Nanjing, China
| | - Jing Zhang
- Department of Clinical Pharmacology, School of Pharmacy, Nanjing University, Nanjing, China
| | - Sobia Noreen
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Muhammad Saeed
- The Cholistan University of Veterinary and Animal Sciences, Bahawalpur, Pakistan
| | - Kiganda Raymond Sembatya
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Awais Ullah Ihsan
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | | | - Gang Wang
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Xiaohui Zhou
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China.
- Department of Heart Surgery, Nanjing Shuiximen Hospital, Nanjing, China.
- Department of Cardiothoracic Surgery, Zhongda Hospital affiliated with Southeast University, Nanjing, China.
| |
Collapse
|
8
|
Guo Z, Fan D, Liu FY, Ma SQ, An P, Yang D, Wang MY, Yang Z, Tang QZ. NEU1 Regulates Mitochondrial Energy Metabolism and Oxidative Stress Post-myocardial Infarction in Mice via the SIRT1/PGC-1 Alpha Axis. Front Cardiovasc Med 2022; 9:821317. [PMID: 35548408 PMCID: PMC9081506 DOI: 10.3389/fcvm.2022.821317] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 03/22/2022] [Indexed: 12/11/2022] Open
Abstract
Objective Neuraminidase 1 (NEU1) participates in the response to multiple receptor signals and regulates various cellular metabolic behaviors. Importantly, it is closely related to the occurrence and progression of cardiovascular diseases. Because ischemic heart disease is often accompanied by impaired mitochondrial energy metabolism and oxidative stress. The purpose of this study was to investigate the functions and possible mechanisms of NEU1 in myocardial remodeling and mitochondrial metabolism induced by myocardial infarction (MI). Methods In this study, the MI-induced mouse mode, hypoxia-treated H9C2 cells model, and hypoxia-treated neonatal rat cardiomyocytes (NRCMs) model were constructed. Echocardiography and histological analysis were adopted to evaluate the morphology and function of the heart at the whole heart level. Western blot was adopted to determine the related expression level of signaling pathway proteins and mitochondria. Mitochondrial energy metabolism and oxidative stress were detected by various testing kits. Results Neuraminidase 1 was markedly upregulated in MI cardiac tissue. Cardiomyocyte-specific NEU1 deficiency restored cardiac function, cardiac hypertrophy, and myocardial interstitial fibrosis. What is more, cardiomyocyte-specific NEU1 deficiency inhibited mitochondrial dysfunction and oxidative stress induced by MI. Further experiments found that the sirtuin-1/peroxisome proliferator-activated receptor γ coactivator α (SIRT1/PGC-1α) protein level in MI myocardium was down-regulated, which was closely related to the above-mentioned mitochondrial changes. Cardiomyocyte-specific NEU1 deficiency increased the expression of SIRT1, PGC-1α, and mitochondrial transcription factor A (TFAM); which improved mitochondrial metabolism and oxidative stress. Inhibition of SIRT1 activity or PGC-1α activity eliminated the beneficial effects of cardiomyocyte-specific NEU1 deficiency. PGC-1α knockout mice experiments verified that NEU1 inhibition restored cardiac function induced by MI through SIRT1/PGC-1α signaling pathway. Conclusion Cardiomyocyte-specific NEU1 deficiency can alleviate MI-induced myocardial remodeling, oxidative stress, and mitochondrial energy metabolism disorder. In terms of mechanism, the specific deletion of NEU1 may play a role by enhancing the SIRT1/PGC-1α signaling pathway. Therefore, cardiomyocyte-specific NEU1 may provide an alternative treatment strategy for heart failure post-MI.
Collapse
Affiliation(s)
- Zhen Guo
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China
| | - Di Fan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China
| | - Fang-Yuan Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China
| | - Shu-Qing Ma
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China
| | - Peng An
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China
| | - Dan Yang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China
| | - Min-Yu Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China
| | - Zheng Yang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China
| | - Qi-Zhu Tang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China
- *Correspondence: Qi-Zhu Tang
| |
Collapse
|
9
|
Zheng X, Li Z, Li W, Zhu M, Zhang L, Zhu Z, Yang H. Biomechanical properties of erythrocytes circulating in artificial hearts measured by dielectrophoretic method. J Biomech 2021; 129:110822. [PMID: 34736085 DOI: 10.1016/j.jbiomech.2021.110822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 09/28/2021] [Accepted: 10/16/2021] [Indexed: 11/16/2022]
Abstract
Blood damage is recognized as one of the major problems caused by non-physiological shear force induced by artificial hearts. At present, the generally accepted manifestation of mechanical blood damage is the amount of free hemoglobin released into the blood. However, there is little research on the changes of blood cell state after circulating in artificial hearts at the single-cell level. It is well known that the mechanical properties of cells are of enormous relevance in the regulation of cellular physiological and pathological processes. In this regard, it is highly needed to study the mechanical properties of blood cells affected by non-physiological shear force. In this paper, a dielectrophoresis-based method of measuring the mechanical properties of erythrocytes circulating in artificial hearts was proposed, which was quantified with some crucial parameters such as strain, elongation index (EI), and Young's modulus. Experimental results indicated that with the increase of the working time of artificial hearts, the deformability of erythrocytes decreased, the stiffness substantially increased, and the mechanical stability decreased, particularly at long exposure times. The proposed method provides a deep insight into the mechanism of subhemolytic damage at the single-cell level and has a great potential to serve as a new tool for in vitro evaluation of potential blood damage in artificial hearts.
Collapse
Affiliation(s)
- Xinyu Zheng
- Medical College of Soochow University, China
| | - Zhiwei Li
- Robotics and Microsystems Center, School of Mechanical and Electric Engineering, Soochow University, China
| | - Wanting Li
- Robotics and Microsystems Center, School of Mechanical and Electric Engineering, Soochow University, China
| | - Mingjie Zhu
- Robotics and Microsystems Center, School of Mechanical and Electric Engineering, Soochow University, China
| | - Liudi Zhang
- Artificial Organ Technology Lab, School of Mechanical and Electric Engineering, Soochow University, China
| | - Zhenhong Zhu
- Children's Hospital of Soochow University, China.
| | - Hao Yang
- Robotics and Microsystems Center, School of Mechanical and Electric Engineering, Soochow University, China.
| |
Collapse
|
10
|
Martinolli M, Biasetti J, Zonca S, Polverelli L, Vergara C. Extended finite element method for fluid-structure interaction in wave membrane blood pump. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2021; 37:e3467. [PMID: 33884770 DOI: 10.1002/cnm.3467] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 03/06/2021] [Accepted: 04/14/2021] [Indexed: 06/12/2023]
Abstract
Numerical simulations of cardiac blood pump systems are integral to the optimization of device design, hydraulic performance and hemocompatibility. In wave membrane blood pumps, blood propulsion arises from the wave propagation along an oscillating immersed membrane, which generates small pockets of fluid that are pushed towards the outlet against an adverse pressure gradient. We studied the Fluid-Structure Interaction between the oscillating membrane and the blood flow via three-dimensional simulations using the Extended Finite Element Method (XFEM), an unfitted numerical technique that avoids remeshing by using a fluid fixed mesh. Our three-dimensional numerical simulations in a realistic pump geometry highlighted, for the first time in this field of application, that XFEM is a reliable strategy to handle complex industrial problems. Moreover, they showed the role of the membrane deformation in promoting a blood flow towards the outlet despite an adverse pressure gradient. We also simulated the pump system at different pressure conditions and we validated the numerical results against in-vitro experimental data.
Collapse
Affiliation(s)
- Marco Martinolli
- MOX, Dipartimento di Matematica, Politecnico di Milano, Milan, Italy
| | | | - Stefano Zonca
- MOX, Dipartimento di Matematica, Politecnico di Milano, Milan, Italy
| | | | - Christian Vergara
- LaBS, Dipartimento di Chimica, Materiali e Ingegneria Chimica "Giulio Natta", Politecnico di Milano, Milan, Italy
| |
Collapse
|
11
|
A perfusable, multifunctional epicardial device improves cardiac function and tissue repair. Nat Med 2021; 27:480-490. [PMID: 33723455 DOI: 10.1038/s41591-021-01279-9] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 02/04/2021] [Indexed: 02/07/2023]
Abstract
Despite advances in technologies for cardiac repair after myocardial infarction (MI), new integrated therapeutic approaches still need to be developed. In this study, we designed a perfusable, multifunctional epicardial device (PerMed) consisting of a biodegradable elastic patch (BEP), permeable hierarchical microchannel networks (PHMs) and a system to enable delivery of therapeutic agents from a subcutaneously implanted pump. After its implantation into the epicardium, the BEP is designed to provide mechanical cues for ventricular remodeling, and the PHMs are designed to facilitate angiogenesis and allow for infiltration of reparative cells. In a rat model of MI, implantation of the PerMed improved ventricular function. When connected to a pump, the PerMed enabled targeted, sustained and stable release of platelet-derived growth factor-BB, amplifying the efficacy of cardiac repair as compared to the device without a pump. We also demonstrated the feasibility of minimally invasive surgical PerMed implantation in pigs, demonstrating its promise for clinical translation to treat heart disease.
Collapse
|
12
|
Shin W, Kim JS, Choi HJ, Kim H, Park S, Lee HJ, Choi MK, Chung K. 3D Antidrying Antifreezing Artificial Skin Device with Self-Healing and Touch Sensing Capability. Macromol Rapid Commun 2021; 42:e2100011. [PMID: 33690960 DOI: 10.1002/marc.202100011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/04/2021] [Indexed: 12/12/2022]
Abstract
Hydrogels are attractive, active materials for various e-skin devices based on their unique functionalities such as flexibility and biocompatibility. Still, e-skin devices are generally limited to simple structures, and the realization of optimal-shaped 3D e-skin devices for target applications is an intriguing issue of interest. Furthermore, hydrogels intrinsically suffer from drying and freezing issues in operational capability for practical applications. Herein, 3D artificial skin devices are demonstrated with highly improved device stability. The devices are fabricated in a target-oriented 3D structure by extrusion-based 3D printing, spontaneously heal mechanical damage, and enable stable device operation over time and under freezing conditions. Based on the material design to improve drying and freezing resistance, an organohydrogel, prepared by solvent displacement of hydrogel with ethylene glycol for 3 h, exhibits excellent drying resistance over 1000 h and improved freezing resistance by showing no phase transition down to -60 °C while maintaining its self-healing functionality. Based on the improved drying and freezing resistance, artificial skin devices in target-oriented optimal 3D structures are presented, which enable accurate positioning of touchpoints even on a complicated 3D structure stably over time and excellent operation at temperatures below 0 °C without losing their flexibility.
Collapse
Affiliation(s)
- Woohyeon Shin
- Composites Research Division, Korea Institute of Materials Science(KIMS), Changwon, 51508, South Korea.,School of Materials Science and Engineering, Ulsan National Institute of Science and Technology(UNIST), Ulsan, 44919, South Korea
| | - Jun Seop Kim
- Composites Research Division, Korea Institute of Materials Science(KIMS), Changwon, 51508, South Korea
| | - Hui Ju Choi
- Composites Research Division, Korea Institute of Materials Science(KIMS), Changwon, 51508, South Korea
| | - Heesung Kim
- Composites Research Division, Korea Institute of Materials Science(KIMS), Changwon, 51508, South Korea
| | - Sulbin Park
- Composites Research Division, Korea Institute of Materials Science(KIMS), Changwon, 51508, South Korea
| | - Hee Jung Lee
- Composites Research Division, Korea Institute of Materials Science(KIMS), Changwon, 51508, South Korea
| | - Moon Kee Choi
- School of Materials Science and Engineering, Ulsan National Institute of Science and Technology(UNIST), Ulsan, 44919, South Korea.,Center for Multidimensional Programmable Matter, Ulsan National Institute of Science and Technology(UNIST), Ulsan, 44919, South Korea
| | - Kyeongwoon Chung
- Composites Research Division, Korea Institute of Materials Science(KIMS), Changwon, 51508, South Korea
| |
Collapse
|
13
|
Luraghi G, De Gaetano F, Rodriguez Matas JF, Dubini G, Costantino ML, De Castilla H, Griffaton N, Vignale D, Palmisano A, Gentile G, Esposito A, Migliavacca F. A numerical investigation to evaluate the washout of blood compartments in a total artificial heart. Artif Organs 2020; 44:976-986. [DOI: 10.1111/aor.13717] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/28/2020] [Accepted: 04/23/2020] [Indexed: 12/31/2022]
Affiliation(s)
- Giulia Luraghi
- Laboratory of Biological Structure Mechanics (LaBS), Department of Chemistry, Materials and Chemical Engineering “Giulio Natta” Politecnico di Milano Milan Italy
| | - Francesco De Gaetano
- Laboratory of Biological Structure Mechanics (LaBS), Department of Chemistry, Materials and Chemical Engineering “Giulio Natta” Politecnico di Milano Milan Italy
| | - José Félix Rodriguez Matas
- Laboratory of Biological Structure Mechanics (LaBS), Department of Chemistry, Materials and Chemical Engineering “Giulio Natta” Politecnico di Milano Milan Italy
| | - Gabriele Dubini
- Laboratory of Biological Structure Mechanics (LaBS), Department of Chemistry, Materials and Chemical Engineering “Giulio Natta” Politecnico di Milano Milan Italy
| | - Maria Laura Costantino
- Laboratory of Biological Structure Mechanics (LaBS), Department of Chemistry, Materials and Chemical Engineering “Giulio Natta” Politecnico di Milano Milan Italy
| | | | | | - Davide Vignale
- Experimental Imaging Center IRCCS Ospedale San Raffaele Milan Italy
- Università Vita‐Salute San Raffaele Milan Italy
| | - Anna Palmisano
- Experimental Imaging Center IRCCS Ospedale San Raffaele Milan Italy
- Università Vita‐Salute San Raffaele Milan Italy
| | - Giuseppe Gentile
- Experimental Imaging Center IRCCS Ospedale San Raffaele Milan Italy
| | - Antonio Esposito
- Experimental Imaging Center IRCCS Ospedale San Raffaele Milan Italy
- Università Vita‐Salute San Raffaele Milan Italy
| | - Francesco Migliavacca
- Laboratory of Biological Structure Mechanics (LaBS), Department of Chemistry, Materials and Chemical Engineering “Giulio Natta” Politecnico di Milano Milan Italy
| |
Collapse
|
14
|
Miller L, Birks E, Guglin M, Lamba H, Frazier OH. Use of Ventricular Assist Devices and Heart Transplantation for Advanced Heart Failure. Circ Res 2020; 124:1658-1678. [PMID: 31120817 DOI: 10.1161/circresaha.119.313574] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
There are only 2 treatments for the thousands of patients who progress to the most advanced form of heart failure despite the application of guideline-based medical therapy, use of ventricular assist devices and heart transplantation. There has been a great deal of progress in both of these therapies that have led to improved outcomes including significant improvement in survival and functional capacity. Heart transplantation offers the best short- and long-term survival for patients with end-stage heart failure, and the majority of these recipients achieve relatively limitless functional capacity for their age. However, the chronic shortage of available donors limits the number of recipients in the United States to an only 2500 patients/y or only a fraction of potential candidates. The significant improvement in outcomes now possible with durable ventricular assist devices has led to a significant increase in their use, which now exceeds the volume of heart transplants in the United States, with the greatest growth in use for those not considered to be candidates for heart transplantation, previously referred to as destination therapy. This article will review the substantial progress that has taken place for both of these life-saving treatment options, as well as the future directions.
Collapse
Affiliation(s)
- Leslie Miller
- From the Division of Cardiovascular Medicine, Texas Heart Institute, Houston (L.M., H.L., O.H.F.)
| | - Emma Birks
- Division of Cardiology, University of Louisville, KY (E.B.)
| | - Maya Guglin
- Division of Cardiology, University of Kentucky, Lexington (M.G.)
| | - Harveen Lamba
- From the Division of Cardiovascular Medicine, Texas Heart Institute, Houston (L.M., H.L., O.H.F.)
| | - O H Frazier
- From the Division of Cardiovascular Medicine, Texas Heart Institute, Houston (L.M., H.L., O.H.F.)
| |
Collapse
|
15
|
Park S, Shin BG, Jang S, Chung K. Three-Dimensional Self-Healable Touch Sensing Artificial Skin Device. ACS APPLIED MATERIALS & INTERFACES 2020; 12:3953-3960. [PMID: 31858779 DOI: 10.1021/acsami.9b19272] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Human skin is a unique functional material that perfectly covers body parts having various complicated shapes, spontaneously heals mechanical damage, and senses a touch. E-skin devices have been actively researched, focusing on the sensing functionality of skin. However, most e-skin devices still have limitations in their shapes, and it is a challenging issue of interest to realize multiple functionalities in one device as human skin does. Here, new artificial skin devices are demonstrated in application-oriented three-dimensional (3D) shapes, which can sense exact touch location and heal mechanical damage spontaneously. Beyond the conventional film-type e-skin devices, the artificial skin devices are fabricated in optimal three-dimensional structures, via systematic material design and characterization of ion-conductive self-healing hydrogel system and its extrusion-based 3D printing. The ring-shaped and fingertip-shaped artificial skin devices are successfully fabricated to fit perfectly on finger models, and shows large electronic signal contrast, ∼5.4 times increase in current, upon a human finger contact. Furthermore, like human skin, the device provides the exact positional information of an arbitrary touch location on a three-dimensional artificial skin device without complicated device fabrication or data processing.
Collapse
Affiliation(s)
- Sulbin Park
- 3D Printing Materials Center , Korea Institute of Materials Science (KIMS) , Changwon 51508 , South Korea
| | - Byeong-Gwang Shin
- 3D Printing Materials Center , Korea Institute of Materials Science (KIMS) , Changwon 51508 , South Korea
| | - Seongwan Jang
- 3D Printing Materials Center , Korea Institute of Materials Science (KIMS) , Changwon 51508 , South Korea
| | - Kyeongwoon Chung
- 3D Printing Materials Center , Korea Institute of Materials Science (KIMS) , Changwon 51508 , South Korea
| |
Collapse
|
16
|
Are we close to bioengineering a human-sized, functional heart? J Thorac Cardiovasc Surg 2019; 159:1357-1360. [PMID: 31668610 DOI: 10.1016/j.jtcvs.2019.06.135] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 06/07/2019] [Accepted: 06/16/2019] [Indexed: 11/23/2022]
|
17
|
Pediatric ventricular assist device support as a permanent therapy: Clinical reality. J Thorac Cardiovasc Surg 2019; 158:1438-1441. [DOI: 10.1016/j.jtcvs.2019.02.145] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Revised: 02/15/2019] [Accepted: 02/22/2019] [Indexed: 02/01/2023]
|
18
|
Sonntag SJ, Meyns B, Ahn HC, Pahlm F, Hellers G, Najar A, Pieper IL. Virtual implantations to transition from porcine to bovine animal models for a total artificial heart. Artif Organs 2019; 44:384-393. [PMID: 31596507 DOI: 10.1111/aor.13578] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 09/27/2019] [Accepted: 09/30/2019] [Indexed: 12/14/2022]
Abstract
Realheart total artificial heart (TAH) is a novel, pulsatile, four-chamber total artificial heart which had been successfully tested acutely in a porcine animal model. However, the bovine model is better suited for long-term testing and thus an evaluation of how the design would fit the bovine anatomy was required. Virtual implantation is a method that enables a computer simulated implantation based on anatomical 3D-models created from computer tomography images. This method is used clinically, but not yet adopted for animal studies. Herein, we evaluated its suitability in the redesign of the outer dimensions and vessel connections of Realheart TAH to transition from the porcine to the bovine animal model. Virtual implantations in combination with bovine cadaver studies enabled a series of successful acute bovine implantations. Virtual implantations are a useful tool to replace the use of animals in early device development and refine subsequent necessary in vivo experiments. The next steps are to carry out human virtual implantations and cadaver studies to ensure the design is optimized for all stages of testing as well as the final recipient.
Collapse
Affiliation(s)
- Simon J Sonntag
- Virtonomy.io, Munich, Germany.,enmodes GmbH, Aachen, Germany
| | - Bart Meyns
- Department of Cardiovascular Sciences, Katholieke Universiteit (KU) Leuven, Leuven, Belgium.,Department of Cardiac Surgery, University Hospitals Leuven, Leuven, Belgium
| | - Henrik C Ahn
- Division of Cardiovascular Medicine, Department of Medical and Health Sciences, Faculty of Health Sciences, Linköping University, Linköping, Sweden.,Department of Thoracic and Vascular Surgery, Heart and Medicine Center, Linköping, Sweden
| | | | | | - Azad Najar
- R&D, Scandinavian Real Heart AB, Västerås, Sweden.,Region Västmanland, Västmanlands sjukhus, Västerås, Sweden
| | | |
Collapse
|
19
|
Suarez-Pierre A, Kilic A. Surgical considerations for cardiac allograft rejection. Cardiovasc Pathol 2019; 42:59-63. [PMID: 31351216 DOI: 10.1016/j.carpath.2019.06.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 06/24/2019] [Accepted: 06/25/2019] [Indexed: 01/06/2023] Open
Abstract
This article reviews the surgical considerations of cardiac allograft rejection after heart transplantation and describes current treatment modalities for the failing graft. Cardiac allograft rejection can be a moribund diagnosis, especially when it is acute and high grade. It is broadly categorized into hyperacute, acute cellular, and antibody-mediated rejection. Treatment includes a multitude of medical and immunomodulation therapies for graft recovery. Severe rejection requires mechanical circulatory support for hemodynamic stability to maintain end-organ function. Retransplantation for graft loss is the ultimate therapy; however, it portends poor outcomes.
Collapse
Affiliation(s)
- Alejandro Suarez-Pierre
- Division of Cardiac Surgery, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Ahmet Kilic
- Division of Cardiac Surgery, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD.
| |
Collapse
|
20
|
Simon MA, Bachman TN, Watson J, Baldwin JT, Wagner WR, Borovetz HS. Current and Future Considerations in the Use of Mechanical Circulatory Support Devices: An Update, 2008–2018. Annu Rev Biomed Eng 2019; 21:33-60. [DOI: 10.1146/annurev-bioeng-062117-121120] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Our review in the 2008 volume of this journal detailed the use of mechanical circulatory support (MCS) for treatment of heart failure (HF). MCS initially utilized bladder-based blood pumps generating pulsatile flow; these pulsatile flow pumps have been supplanted by rotary blood pumps, in which cardiac support is generated via the high-speed rotation of computationally designed blading. Different rotary pump designs have been evaluated for their safety, performance, and efficacy in clinical trials both in the United States and internationally. The reduced size of the rotary pump designs has prompted research and development toward the design of MCS suitable for infants and children. The past decade has witnessed efforts focused on tissue engineering–based therapies for the treatment of HF. This review explores the current state and future opportunities of cardiac support therapies within our larger understanding of the treatment options for HF.
Collapse
Affiliation(s)
- Marc A. Simon
- Department of Medicine, Vascular Medicine Institute, and Heart and Vascular Institute, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA
| | - Timothy N. Bachman
- Department of Medicine, Vascular Medicine Institute, and Heart and Vascular Institute, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA
| | - John Watson
- Department of Bioengineering, University of California, San Diego, La Jolla, California 92093, USA
| | - J. Timothy Baldwin
- National Heart, Blood, and Lung Institute, Bethesda, Maryland 20892, USA
| | - William R. Wagner
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA
| | - Harvey S. Borovetz
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA
| |
Collapse
|
21
|
Dal Sasso E, Bagno A, Scuri STG, Gerosa G, Iop L. The Biocompatibility Challenges in the Total Artificial Heart Evolution. Annu Rev Biomed Eng 2019; 21:85-110. [PMID: 30795701 DOI: 10.1146/annurev-bioeng-060418-052432] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
There are limited therapeutic options for final treatment of end-stage heart failure. Among them, implantation of a total artificial heart (TAH) is an acceptable strategy when suitable donors are not available. TAH development began in the 1930s, followed by a dramatic evolution of the actuation mechanisms operating the mechanical pumps. Nevertheless, the performance of TAHs has not yet been optimized, mainly because of the low biocompatibility of the blood-contacting surfaces. Low hemocompatibility, calcification, and sensitivity to infections seriously affect the success of TAHs. These unsolved issues have led to the withdrawal of many prototypes during preclinical phases of testing. This review offers a comprehensive analysis of the pathophysiological events that may occur in the materials that compose TAHs developed to date. In addition, this review illustrates bioengineering strategies to prevent these events and describes the most significant steps toward the achievement of a fully biocompatible TAH.
Collapse
Affiliation(s)
- Eleonora Dal Sasso
- Cardiovascular Regenerative Medicine Group, Department of Cardiac, Thoracic and Vascular Sciences and Public Health, University of Padua and Veneto Institute of Molecular Medicine, 35128 Padua, Italy; , , .,Padua Heart Project, Division of Cardiac Surgery, University Hospital of Padua, 35128 Padua, Italy;
| | - Andrea Bagno
- Department of Industrial Engineering, University of Padua, 35128 Padua, Italy;
| | - Silvia T G Scuri
- Padua Heart Project, Division of Cardiac Surgery, University Hospital of Padua, 35128 Padua, Italy;
| | - Gino Gerosa
- Cardiovascular Regenerative Medicine Group, Department of Cardiac, Thoracic and Vascular Sciences and Public Health, University of Padua and Veneto Institute of Molecular Medicine, 35128 Padua, Italy; , , .,Padua Heart Project, Division of Cardiac Surgery, University Hospital of Padua, 35128 Padua, Italy;
| | - Laura Iop
- Cardiovascular Regenerative Medicine Group, Department of Cardiac, Thoracic and Vascular Sciences and Public Health, University of Padua and Veneto Institute of Molecular Medicine, 35128 Padua, Italy; , , .,Padua Heart Project, Division of Cardiac Surgery, University Hospital of Padua, 35128 Padua, Italy;
| |
Collapse
|
22
|
Choi HM, Park MS, Youn JC. Update on heart failure management and future directions. Korean J Intern Med 2019; 34:11-43. [PMID: 30612416 PMCID: PMC6325445 DOI: 10.3904/kjim.2018.428] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 12/09/2018] [Indexed: 12/11/2022] Open
Abstract
Heart failure (HF) is an important cardiovascular disease because of its increasing prevalence, significant morbidity, high mortality, and rapidly expanding health care cost. The number of HF patients is increasing worldwide, and Korea is no exception. There have been marked advances in definition, diagnostic modalities, and treatment of HF over the past four decades. There is continuing effort to improve risk stratification of HF using biomarkers, imaging and genetic testing. Newly developed medications and devices for HF have been widely adopted in clinical practice. Furthermore, definitive treatment for end-stage heart failure including left ventricular assist device and heart transplantation are rapidly evolving as well. This review summarizes the current state-of-the-art management for HF and the emerging diagnostic and therapeutic modalities to improve the outcome of HF patients.
Collapse
Affiliation(s)
- Hong-Mi Choi
- Division of Cardiology, Hallym University Sacred Heart Hospital, Anyang, Korea
| | - Myung-Soo Park
- Division of Cardiology, Hallym University Dongtan Sacred Heart Hospital, Hwaseong, Korea
| | - Jong-Chan Youn
- Division of Cardiology, Hallym University Dongtan Sacred Heart Hospital, Hwaseong, Korea
| |
Collapse
|
23
|
Luraghi G, Wu W, De Castilla H, Rodriguez Matas JF, Dubini G, Dubuis P, Grimmé M, Migliavacca F. Numerical Approach to Study the Behavior of an Artificial Ventricle: Fluid-Structure Interaction Followed By Fluid Dynamics With Moving Boundaries. Artif Organs 2018; 42:E315-E324. [DOI: 10.1111/aor.13316] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Giulia Luraghi
- Laboratory of Biological Structure Mechanics, Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”; Politecnico di Milano; Milan Italy
| | - Wei Wu
- Laboratory of Biological Structure Mechanics, Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”; Politecnico di Milano; Milan Italy
- Department of Mechanical Engineering; University of Texas at San Antonio; San Antonio TX USA
| | | | - José Félix Rodriguez Matas
- Laboratory of Biological Structure Mechanics, Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”; Politecnico di Milano; Milan Italy
| | - Gabriele Dubini
- Laboratory of Biological Structure Mechanics, Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”; Politecnico di Milano; Milan Italy
| | | | | | - Francesco Migliavacca
- Laboratory of Biological Structure Mechanics, Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”; Politecnico di Milano; Milan Italy
| |
Collapse
|
24
|
Miller LW, Rogers JG. Evolution of Left Ventricular Assist Device Therapy for Advanced Heart Failure. JAMA Cardiol 2018; 3:650-658. [DOI: 10.1001/jamacardio.2018.0522] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
| | - Joseph G. Rogers
- Division of Cardiology, Duke University Medical Center, Durham, North Carolina
| |
Collapse
|
25
|
Ventricular assist device therapy and heart transplantation: Benefits, drawbacks, and outlook. Herz 2018; 43:406-414. [DOI: 10.1007/s00059-018-4713-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
26
|
An D, Yang M, Gu X, Meng F, Yang T, Lin S. Noninvasive estimation of assist pressure for direct mechanical ventricular actuation. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2018; 89:025108. [PMID: 29495802 DOI: 10.1063/1.5005043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Direct mechanical ventricular actuation is effective to reestablish the ventricular function with non-blood contact. Due to the energy loss within the driveline of the direct cardiac compression device, it is necessary to acquire the accurate value of assist pressure acting on the heart surface. To avoid myocardial trauma induced by invasive sensors, the noninvasive estimation method is developed and the experimental device is designed to measure the sample data for fitting the estimation models. By examining the goodness of fit numerically and graphically, the polynomial model presents the best behavior among the four alternative models. Meanwhile, to verify the effect of the noninvasive estimation, the simplified lumped parameter model is utilized to calculate the pre-support and the post-support left ventricular pressure. Furthermore, by adjusting the driving pressure beyond the range of the sample data, the assist pressure is estimated with the similar waveform and the post-support left ventricular pressure approaches the value of the adult healthy heart, indicating the good generalization ability of the noninvasive estimation method.
Collapse
Affiliation(s)
- Dawei An
- Department of Instrument Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ming Yang
- Department of Instrument Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaotong Gu
- Department of Instrument Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Fan Meng
- Department of Instrument Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Tianyue Yang
- Department of Instrument Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shujing Lin
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
27
|
Trivella MG, Capobianco E, L'Abbate A. Editorial: Physiology in Extreme Conditions: Adaptations and Unexpected Reactions. Front Physiol 2017; 8:748. [PMID: 29033848 PMCID: PMC5626853 DOI: 10.3389/fphys.2017.00748] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 09/14/2017] [Indexed: 01/09/2023] Open
Affiliation(s)
- Maria G Trivella
- Consiglio Nazionale delle Ricerche, Istituto di Fisiologia Clinica, Pisa, Italy
| | - Enrico Capobianco
- Center for Computational Science, University of Miami, Miami, FL, United States
| | | |
Collapse
|
28
|
Cohrs NH, Petrou A, Loepfe M, Yliruka M, Schumacher CM, Kohll AX, Starck CT, Schmid Daners M, Meboldt M, Falk V, Stark WJ. A Soft Total Artificial Heart-First Concept Evaluation on a Hybrid Mock Circulation. Artif Organs 2017; 41:948-958. [DOI: 10.1111/aor.12956] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 03/21/2017] [Accepted: 03/27/2017] [Indexed: 11/27/2022]
Affiliation(s)
- Nicholas H. Cohrs
- Institute for Chemical and Bioengineering; ETH Zurich; Zurich Switzerland
| | - Anastasios Petrou
- Product Development Group Zurich, Department of Mechanical and Process Engineering; ETH Zurich; Zurich Switzerland
| | - Michael Loepfe
- Institute for Chemical and Bioengineering; ETH Zurich; Zurich Switzerland
| | - Maria Yliruka
- Institute for Chemical and Bioengineering; ETH Zurich; Zurich Switzerland
| | | | - A. Xavier Kohll
- Institute for Chemical and Bioengineering; ETH Zurich; Zurich Switzerland
| | - Christoph T. Starck
- Department for Cardiothoracic and Vascular Surgery; Deutsches Herzzentrum Berlin; Berlin Germany
| | - Marianne Schmid Daners
- Product Development Group Zurich, Department of Mechanical and Process Engineering; ETH Zurich; Zurich Switzerland
| | - Mirko Meboldt
- Product Development Group Zurich, Department of Mechanical and Process Engineering; ETH Zurich; Zurich Switzerland
| | - Volkmar Falk
- Department for Cardiothoracic and Vascular Surgery; Deutsches Herzzentrum Berlin; Berlin Germany
| | - Wendelin J. Stark
- Institute for Chemical and Bioengineering; ETH Zurich; Zurich Switzerland
| |
Collapse
|
29
|
Coselli JS. Denton A. Cooley: In memoriam. J Thorac Cardiovasc Surg 2017. [DOI: 10.1016/j.jtcvs.2017.01.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
30
|
DeMartino ES, Wordingham SE, Stulak JM, Boilson BA, Fuechtmann KR, Singh N, Sulmasy DP, Pajaro OE, Mueller PS. Ethical Analysis of Withdrawing Total Artificial Heart Support. Mayo Clin Proc 2017; 92:719-725. [PMID: 28473036 PMCID: PMC5653372 DOI: 10.1016/j.mayocp.2017.01.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 12/21/2016] [Accepted: 01/16/2017] [Indexed: 10/19/2022]
Abstract
OBJECTIVES To describe the characteristics of patients who undergo withdrawal of total artificial heart support and to explore the ethical aspects of withdrawing this life-sustaining treatment. PATIENTS AND METHODS We retrospectively reviewed the medical records of all adult recipients of a total artificial heart at Mayo Clinic from the program's inception in 2007 through June 30, 2015. Management of other life-sustaining therapies, approach to end-of-life decision making, engagement of ethics and palliative care consultation, and causes of death were analyzed. RESULTS Of 47 total artificial heart recipients, 14 patients or their surrogates (30%) requested withdrawal of total artificial heart support. No request was denied by treatment teams. All 14 patients were supported with at least 1 other life-sustaining therapy. Only 1 patient was able to participate in decision making. CONCLUSION It is widely held to be ethically permissible to withdraw a life-sustaining treatment when the treatment no longer meets the patient's health care-related goals (ie, the burdens outweigh the benefits). These data suggest that some patients, surrogates, physicians, and other care providers believe that this principle extends to the withdrawal of total artificial heart support.
Collapse
Affiliation(s)
- Erin S DeMartino
- Division of Pulmonary and Critical Care Medicine, Mayo Clinic, Rochester, MN
| | - Sara E Wordingham
- Division of Hematology and Medical Oncology, Mayo Clinic Hospital, Phoenix, AZ
| | - John M Stulak
- Division of Cardiovascular Surgery, Mayo Clinic, Rochester, MN
| | - Barry A Boilson
- Division of Cardiovascular Diseases, Mayo Clinic, Rochester, MN
| | | | | | - Daniel P Sulmasy
- MacLean Center for Clinical Medical Ethics, University of Chicago, Chicago, IL
| | - Octavio E Pajaro
- Division of Cardiovascular and Thoracic Surgery, Mayo Clinic Hospital, Phoenix, AZ
| | - Paul S Mueller
- Division of General Internal Medicine, Mayo Clinic, Rochester, MN.
| |
Collapse
|
31
|
Debate: creating adequate pulse with a continuous flow ventricular assist device: can it be done and should it be done? Probably not, it may cause more problems than benefits! Curr Opin Cardiol 2017; 31:337-42. [PMID: 26998788 DOI: 10.1097/hco.0000000000000289] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
PURPOSE OF REVIEW The feasibility and benefits of creating adequate pulsatility with continuous flow left ventricular assist devices (LVADs) have long been debated. This review discusses recent technical and clinical findings to answer whether such intervention should be implemented in the standard patient management. RECENT FINDINGS Only a limited amount of pulsatility can be generated by periodic speed steps, both considerably smaller in flow increase and in pace rate than the natural circulation. Organ systems are not impeded in their normal function and even not in recovery by a continuous flow. Known problems such as gastrointestinal bleeding are not necessarily due to pulsatility per se, or not important for therapeutic progress, such as minor modifications of the arterial walls. SUMMARY The speculative benefits of augmented pulsatility with continuous flow LVADs could be overrated and are still incompletely evaluated. Potential risks that might arise from this strategy should be carefully weighed before implementing extensive pulsatility as standard patient management.
Collapse
|
32
|
Hutchison K, Sparrow R. What Pacemakers Can Teach Us about the Ethics of Maintaining Artificial Organs. Hastings Cent Rep 2016; 46:14-24. [DOI: 10.1002/hast.644] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
33
|
Coselli JS. Competition: Perspiration to inspiration "Aut inveniam viam aut faciam". J Thorac Cardiovasc Surg 2016; 152:1215-1222. [PMID: 27650005 DOI: 10.1016/j.jtcvs.2016.07.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 07/11/2016] [Indexed: 10/21/2022]
Affiliation(s)
- Joseph S Coselli
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, and the Texas Heart Institute, Houston, Tex.
| |
Collapse
|
34
|
In vitro performance investigation of SynCardia™ Freedom® driver via patient simulator mock loop. Int J Artif Organs 2016; 39:502-508. [PMID: 27768204 DOI: 10.5301/ijao.5000524] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/22/2016] [Indexed: 12/31/2022]
Abstract
PURPOSE The gold standard therapy for patients with advanced heart failure is heart transplant. The gap between donors and patients in waiting lists promoted the development of circulatory support devices, such as the total artificial heart (TAH). Focusing on in vitro tests performed with CardioWest™ TAH (CW) driven by the SynCardia Freedom® portable driver (FD) the present study goals are: i) prove the reliability of a hydraulic circuit used as patient simulator to replicate a quasi-physiological scenario for various hydrodynamic conditions, ii) investigate the hydrodynamic performance of the CW FD, iii) help clinicians in possible interpretation of clinical cases outcomes. METHODS In vitro tests were performed using a mechanic-hydraulic patient simulator. Cardiac output (CO), CW ventricles filling, atrial, ventricles, aortic and pulmonary artery pressures were measured for different values of vascular resistance in both systemic (SVR) and pulmonary (PVR) physiological range. RESULTS After increasing the PVR, the left atrial pressure decreased according to the expected physiological trend, while aortic pressure remained almost stable, proving the ability of the simulator to mimic a physiological scenario. Unexpectedly, the mean pulmonary artery pressure (PPA) was found to increase above 30 mmHg in the range of physiological PVR (2.6 WU) and for constant CO. CONCLUSIONS The increase in PPA is probably associated with the pre-set driving setup of the FD. The finding suggests a possible explanation of the clinical course of a patient who experienced complications soon after being supported by the FD, with the occurrence of dyspnea and pulmonary edema despite a high cardiac index.
Collapse
|
35
|
Kleinheyer M, Timms DL, Tansley GD, Nestler F, Greatrex NA, Frazier OH, Cohn WE. Rapid Speed Modulation of a Rotary Total Artificial Heart Impeller. Artif Organs 2016; 40:824-33. [DOI: 10.1111/aor.12827] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Revised: 07/05/2016] [Accepted: 07/06/2016] [Indexed: 12/25/2022]
Affiliation(s)
- Matthias Kleinheyer
- School of Engineering; Griffith University; Southport Queensland Australia
- Department of Engineering; BiVACOR Inc.; Houston TX USA
| | | | | | - Frank Nestler
- Department of Engineering; BiVACOR Inc.; Houston TX USA
- School of Information Technology and Electrical Engineering; The University of Queensland; St. Lucia, Queensland Australia
| | | | - O. Howard Frazier
- Department of Engineering; BiVACOR Inc.; Houston TX USA
- Department of Cardiovascular Surgery; Texas Heart Institute; Houston TX USA
| | - William E. Cohn
- Department of Engineering; BiVACOR Inc.; Houston TX USA
- Department of Cardiovascular Surgery; Texas Heart Institute; Houston TX USA
| |
Collapse
|
36
|
Shekar K, Gregory SD, Fraser JF. Mechanical circulatory support in the new era: an overview. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2016; 20:66. [PMID: 26984504 PMCID: PMC4794944 DOI: 10.1186/s13054-016-1235-3] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
This article is one of ten reviews selected from the Annual Update in Intensive Care and Emergency medicine 2016. Other selected articles can be found online at http://www.biomedcentral.com/collections/annualupdate2016. Further information about the Annual Update in Intensive Care and Emergency Medicine is available from http://www.springer.com/series/8901.
Collapse
Affiliation(s)
- Kiran Shekar
- The University of Queensland, School of Medicine, 4072, Brisbane, Queensland, Australia. .,The Prince Charles Hospital, Innovative Cardiovascular Engineering and Technology Laboratory, Critical Care Research Group, 4032, Chermside, Queensland, Australia.
| | - Shaun D Gregory
- The University of Queensland, School of Medicine, 4072, Brisbane, Queensland, Australia.,The Prince Charles Hospital, Innovative Cardiovascular Engineering and Technology Laboratory, Critical Care Research Group, 4032, Chermside, Queensland, Australia
| | - John F Fraser
- The University of Queensland, School of Medicine, 4072, Brisbane, Queensland, Australia.,The Prince Charles Hospital, Innovative Cardiovascular Engineering and Technology Laboratory, Critical Care Research Group, 4032, Chermside, Queensland, Australia
| |
Collapse
|
37
|
Sunagawa G, Horvath DJ, Karimov JH, Moazami N, Fukamachi K. Future Prospects for the Total Artificial Heart. Expert Rev Med Devices 2016; 13:191-201. [PMID: 26732059 DOI: 10.1586/17434440.2016.1136212] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
A total artificial heart (TAH) is the sole remaining option for patients with biventricular failure who cannot be rescued by left ventricular assist devices (LVADs) alone. However, the pulsatile TAH in clinical use today has limitations: large pump size, unknown durability, required complex anticoagulation regimen, and association with significant postsurgical complications. That pump is noisy; its large pneumatic driving lines traverse the body, with bulky external components for its drivers. Continuous-flow pumps, which caused a paradigm shift in the LVAD field, have already contributed to the rapidly evolving development of TAHs. Novel continuous-flow TAHs are only in preclinical testing or developmental stages. We here review the current state of TAHs, with recommended requirements for the TAH of the future.
Collapse
Affiliation(s)
- Gengo Sunagawa
- a Department of Biomedical Engineering , Lerner Research Institute, Cleveland Clinic , Cleveland , OH , USA
| | - David J Horvath
- a Department of Biomedical Engineering , Lerner Research Institute, Cleveland Clinic , Cleveland , OH , USA
| | - Jamshid H Karimov
- a Department of Biomedical Engineering , Lerner Research Institute, Cleveland Clinic , Cleveland , OH , USA
| | - Nader Moazami
- a Department of Biomedical Engineering , Lerner Research Institute, Cleveland Clinic , Cleveland , OH , USA.,b Department of Thoracic and Cardiovascular Surgery, Kaufman Center for Heart Failure, Cardiac Transplantation and Mechanical Circulatory Support, Miller Family Heart and Vascular Institute , Cleveland Clinic , Cleveland , OH , USA
| | - Kiyotaka Fukamachi
- a Department of Biomedical Engineering , Lerner Research Institute, Cleveland Clinic , Cleveland , OH , USA
| |
Collapse
|
38
|
Pagani FD. The quest toward the Holy Grail of mechanical circulatory support. J Thorac Cardiovasc Surg 2015; 150:694-5. [PMID: 26234457 DOI: 10.1016/j.jtcvs.2015.06.072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 06/25/2015] [Indexed: 10/23/2022]
Affiliation(s)
- Francis D Pagani
- Department of Cardiac Surgery, Cardiovascular Center, University of Michigan Health Systems, Ann Arbor, Mich.
| |
Collapse
|