1
|
Chen J, Liu X, Zhang Z, Su R, Geng Y, Guo Y, Zhang Y, Su M. Early Diagnostic Markers for Esophageal Squamous Cell Carcinoma: Copy Number Alteration Gene Identification and cfDNA Detection. J Transl Med 2024; 104:102127. [PMID: 39182610 DOI: 10.1016/j.labinv.2024.102127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 08/17/2024] [Accepted: 08/19/2024] [Indexed: 08/27/2024] Open
Abstract
The high mortality rate of esophageal squamous cell carcinoma (ESCC) is exacerbated by the absence of early diagnostic markers. The pronounced heterogeneity of mutations in ESCC renders copy number alterations (CNAs) more prevalent among patients. The identification of CNA genes within esophageal squamous dysplasia (ESD), a precancerous stage of ESCC, is crucial for advancing early detection efforts. Utilization of liquid biopsies via droplet-based digital PCR (ddPCR) offers a novel strategy for detecting incipient tumor traces. This study undertook a thorough investigation of CNA profiles across ESCC development stages, integrating data from existing databases and prior investigations to pinpoint and confirm CNA markers conducive to early detection of ESCC. Targeted sequencing was employed to select potential early detection genes, followed by the establishment of prediction models for ESCC early detection using ddPCR. Our analysis revealed widespread CNAs during the ESD stage, mirroring the CNA landscape observed in ESCC. A total of 40 CNA genes were identified as highly frequent in both ESCC and ESD lesions, through a comprehensive gene-level CNA analysis encompassing ESD and ESCC tissues, ESCC cell lines, and pan-cancer data sets. Subsequent validation of 5 candidate markers via ddPCR underscored the efficacy of combined predictive models encompassing PIK3CA, SOX2, EGFR, MYC, and CCND1 in early ESCC screening, as evidenced by the area-under-the-curve values exceeding 0.92 (P < .0001) across various detection contexts. The findings highlighted the significant utility of CNA genes in the early screening of ESCC, presenting robust models that could facilitate early detection, broad-scale population screening, and adjunctive diagnosis.
Collapse
Affiliation(s)
- Jiamin Chen
- Department of Pathology, Institute of Clinical Pathology, Shantou University Medical College, Shantou, China
| | - Xi Liu
- Department of Pathology, Institute of Clinical Pathology, Shantou University Medical College, Shantou, China
| | - Zhihua Zhang
- Department of Pathology, Institute of Clinical Pathology, Shantou University Medical College, Shantou, China
| | - Ruibing Su
- Department of Pathology, Institute of Clinical Pathology, Shantou University Medical College, Shantou, China; Department of Cardiology, The Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Yiqun Geng
- Department of Molecular Pathology, Shantou University Medical College, Shantou, China
| | - Yi Guo
- Department of Endoscopy, Cancer Hospital of Shantou University Medical College, Shantou, China
| | - Yimin Zhang
- Clinical Research Center, Shantou Central Hospital, Shantou, China
| | - Min Su
- Department of Pathology, Institute of Clinical Pathology, Shantou University Medical College, Shantou, China.
| |
Collapse
|
2
|
Singhto N, Pongphitcha P, Jinawath N, Hongeng S, Chutipongtanate S. Extracellular Vesicles for Childhood Cancer Liquid Biopsy. Cancers (Basel) 2024; 16:1681. [PMID: 38730633 PMCID: PMC11083250 DOI: 10.3390/cancers16091681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 04/22/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024] Open
Abstract
Liquid biopsy involves the utilization of minimally invasive or noninvasive techniques to detect biomarkers in biofluids for disease diagnosis, monitoring, or guiding treatments. This approach is promising for the early diagnosis of childhood cancer, especially for brain tumors, where tissue biopsies are more challenging and cause late detection. Extracellular vesicles offer several characteristics that make them ideal resources for childhood cancer liquid biopsy. Extracellular vesicles are nanosized particles, primarily secreted by all cell types into body fluids such as blood and urine, and contain molecular cargos, i.e., lipids, proteins, and nucleic acids of original cells. Notably, the lipid bilayer-enclosed structure of extracellular vesicles protects their cargos from enzymatic degradation in the extracellular milieu. Proteins and nucleic acids of extracellular vesicles represent genetic alterations and molecular profiles of childhood cancer, thus serving as promising resources for precision medicine in cancer diagnosis, treatment monitoring, and prognosis prediction. This review evaluates the recent progress of extracellular vesicles as a liquid biopsy platform for various types of childhood cancer, discusses the mechanistic roles of molecular cargos in carcinogenesis and metastasis, and provides perspectives on extracellular vesicle-guided therapeutic intervention. Extracellular vesicle-based liquid biopsy for childhood cancer may ultimately contribute to improving patient outcomes.
Collapse
Affiliation(s)
- Nilubon Singhto
- Ramathibodi Comprehensive Cancer Center, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand;
| | - Pongpak Pongphitcha
- Bangkok Child Health Center, Bangkok Hospital Headquarters, Bangkok 10130, Thailand;
- Division of Hematology and Oncology, Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand;
| | - Natini Jinawath
- Program in Translational Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand;
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Samut Prakan 10540, Thailand
- Integrative Computational Biosciences Center, Mahidol University, Nakon Pathom 73170, Thailand
| | - Suradej Hongeng
- Division of Hematology and Oncology, Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand;
| | - Somchai Chutipongtanate
- MILCH and Novel Therapeutics Laboratory, Division of Epidemiology, Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
- Extracellular Vesicle Working Group, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| |
Collapse
|
3
|
Dhoundiyal S, Alam MA. Advancements in Biotechnology and Stem Cell Therapies for Breast Cancer Patients. Curr Stem Cell Res Ther 2024; 19:1072-1083. [PMID: 37815191 DOI: 10.2174/011574888x268109230924233850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/09/2023] [Accepted: 08/18/2023] [Indexed: 10/11/2023]
Abstract
This comprehensive review article examines the integration of biotechnology and stem cell therapy in breast cancer diagnosis and treatment. It discusses the use of biotechnological tools such as liquid biopsies, genomic profiling, and imaging technologies for accurate diagnosis and monitoring of treatment response. Stem cell-based approaches, their role in modeling breast cancer progression, and their potential for breast reconstruction post-mastectomy are explored. The review highlights the importance of personalized treatment strategies that combine biotechnological tools and stem cell therapies. Ethical considerations, challenges in clinical translation, and regulatory frameworks are also addressed. The article concludes by emphasizing the potential of integrating biotechnology and stem cell therapy to improve breast cancer outcomes, highlighting the need for continued research and collaboration in this field.
Collapse
Affiliation(s)
- Shivang Dhoundiyal
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar
Pradesh, India
| | - Md Aftab Alam
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar
Pradesh, India
| |
Collapse
|
4
|
Teng T, Yu M. Establishing Single-Cell Clones from In Vitro-Cultured Circulating Tumor Cells. Methods Mol Biol 2024; 2752:119-126. [PMID: 38194031 DOI: 10.1007/978-1-0716-3621-3_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
Cancer is a common health problem with more than 90% of deaths due to metastases. Circulating tumor cells (CTCs) contain precursors that can initiate metastases. However, CTCs are rare, heterogeneous, and difficult to expand in culture. We have previously created CTC-derived cell lines from stage IV breast cancer patients. These CTC lines were used to establish single-cell CTC clones using flow cytometry cell sorting.
Collapse
Affiliation(s)
- Teng Teng
- Department of Stem Cell Biology and Regenerative Medicine, University of Southern California, Los Angeles, CA, USA
- USC Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Min Yu
- Department of Stem Cell Biology and Regenerative Medicine, University of Southern California, Los Angeles, CA, USA.
- USC Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
5
|
Khurram I, Khan MU, Ibrahim S, Saleem A, Khan Z, Mubeen M, Khawar A, Ali Q. Efficacy of cell-free DNA as a diagnostic biomarker in breast cancer patients. Sci Rep 2023; 13:15347. [PMID: 37715016 PMCID: PMC10504267 DOI: 10.1038/s41598-023-42726-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 09/14/2023] [Indexed: 09/17/2023] Open
Abstract
Breast cancer is the most prevalent and leading cause of mortality worldwide among women. Cell-free DNA (cfDNA) analysis is an alternative quantitative approach to conventional methods for cancer diagnosis. The current research project aimed to determine the efficacy of cfDNA as a diagnostic biomarker in breast cancer patients in Pakistan. Eighty-four female breast cancer patients were selected as cases, and 152 healthy females as controls. Immunohistochemistry was performed to identify tumor biomarkers along with clinical profiling. cfDNA was extracted from serum using the phenol-chloroform method. The cfDNA level in the serum was estimated using Agarose Gel Electrophoresis and Nanodrop. SPPS version 25.0 was used to perform statistical analyses. The results showed that the cancer biomarkers were significantly associated with breast cancer. The changes in hematological parameters were insignificant, whereas the biochemical parameter variations between the cases and controls were statistically significant. A significant association of cfDNA level with breast cancer was observed. Further cfDNA levels and cancer biomarkers were not statistically significant. A significant correlation was observed between cfDNA and biochemical parameters, except for creatinine, whereas hematological parameters showed no significant correlation.ROC analysis declared cfDNA as an authentic diagnostic marker for breast cancer. It was concluded that the level of cfDNA is significantly increased in breast cancer patients and can be utilized as a diagnostic biomarker.
Collapse
Affiliation(s)
- Iqra Khurram
- Faculty of Allied Health Sciences, University Institute of Medical Lab Technology, The University of Lahore, Lahore, Pakistan
| | - Muhammad Umer Khan
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan.
| | - Saooda Ibrahim
- Faculty of Allied Health Sciences, University Institute of Medical Lab Technology, The University of Lahore, Lahore, Pakistan
| | - Ayman Saleem
- Faculty of Allied Health Sciences, University Institute of Medical Lab Technology, The University of Lahore, Lahore, Pakistan
| | - Zaman Khan
- Faculty of Allied Health Sciences, University Institute of Medical Lab Technology, The University of Lahore, Lahore, Pakistan
| | - Muhammad Mubeen
- Faculty of Allied Health Sciences, University Institute of Medical Lab Technology, The University of Lahore, Lahore, Pakistan
| | - Arooj Khawar
- Faculty of Allied Health Sciences, University Institute of Medical Lab Technology, The University of Lahore, Lahore, Pakistan
| | - Qurban Ali
- Department of Plant Breeding and Genetics, Faculty of Agricultural Sciences, University of the Punjab, Lahore, Pakistan.
| |
Collapse
|
6
|
Swaminathan H, Saravanamurali K, Yadav SA. Extensive review on breast cancer its etiology, progression, prognostic markers, and treatment. Med Oncol 2023; 40:238. [PMID: 37442848 DOI: 10.1007/s12032-023-02111-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 06/30/2023] [Indexed: 07/15/2023]
Abstract
As the most frequent and vulnerable malignancy among women, breast cancer universally manifests a formidable healthcare challenge. From a biological and molecular perspective, it is a heterogenous disease and is stratified based on the etiological factors driving breast carcinogenesis. Notably, genetic predispositions and epigenetic impacts often constitute the heterogeneity of this disease. Typically, breast cancer is classified intrinsically into histological subtypes in clinical landscapes. These stratifications empower physicians to tailor precise treatments among the spectrum of breast cancer therapeutics. In this pursuit, numerous prognostic algorithms are extensively characterized, drastically changing how breast cancer is portrayed. Therefore, it is a basic requisite to comprehend the multidisciplinary rationales of breast cancer to assist the evolution of novel therapeutic strategies. This review aims at highlighting the molecular and genetic grounds of cancer additionally with therapeutic and phytotherapeutic context. Substantially, it also renders researchers with an insight into the breast cancer cell lines as a model paradigm for breast cancer research interventions.
Collapse
Affiliation(s)
- Harshini Swaminathan
- Department of Biotechnology, Karpagam Academy of Higher Education, Coimbatore, 641021, Tamil Nadu, India
| | - K Saravanamurali
- Virus Research and Diagnostics Laboratory, Department of Microbiology, Coimbatore Medical College, Coimbatore, India
| | - Sangilimuthu Alagar Yadav
- Department of Biotechnology, Karpagam Academy of Higher Education, Coimbatore, 641021, Tamil Nadu, India.
| |
Collapse
|
7
|
Li Z, Song Z, Zhao Y, Wang P, Jiang L, Gong Y, Zhou J, Jian H, Dong X, Zhuang W, Cang S, Yang N, Fang J, Shi J, Lu J, Ma R, Wu P, Zhang Y, Song M, Xu CW, Shi Z, Zhang L, Wang Y, Wang X, Zhang Y, Lu S. D-1553 (Garsorasib), a Potent and Selective Inhibitor of KRAS G12C in Patients With NSCLC: Phase 1 Study Results. J Thorac Oncol 2023; 18:940-951. [PMID: 36948246 DOI: 10.1016/j.jtho.2023.03.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/08/2023] [Accepted: 03/10/2023] [Indexed: 03/24/2023]
Abstract
INTRODUCTION D-1553 (garsorasib) is a potent and selective oral KRASG12C inhibitor. We report results from a phase I dose-escalation and dose-expansion study of D-1553 in patients with KRAS G12C-mutated NSCLC in multiple sites in the People's Republic of China. METHODS Patients with KRAS G12C-mutated NSCLC have administrated D-1553 600 mg orally once daily, 800 mg once daily, 1200 mg once daily, 400 mg twice a day, or 600 mg twice a day in dose escalation. In dose-expansion, all patients received 600 mg twice a day. The safety, pharmacokinetics, and efficacy of D-1553 were evaluated. RESULTS Among a total of 79 treated patients, 75 patients (94.9%) reported treatment-related adverse events with 30 patients experiencing grade 3 or 4 events (38.0%). Most of the adverse events were manageable and the patients tolerated the study treatment well. Among 74 patients assessable for efficacy analysis, 30 patients had a partial response and 38 had stable disease with a confirmed objective response rate (ORR) and disease control rate (DCR) of 40.5% and 91.9%, respectively. The median progression-free survival was 8.2 months, and the median duration of response was 7.1 months. Among 62 patients assessable for response at the recommended phase 2 dose, partial response occurred in 24 patients (ORR, 38.7%) and stable disease in 32 patients (DCR, 90.3%). The median progression-free survival and duration of response were 7.6 months and 6.9 months, respectively. In patients with brain metastasis, ORR and DCR were 17% and 100%, respectively. CONCLUSIONS D-1553 represents a promising therapeutic option for patients with KRAS G12C-mutated NSCLC with a well-tolerated safety profile and encouraging antitumor activity.
Collapse
Affiliation(s)
- Ziming Li
- Shanghai Lung Cancer Center, Shanghai Chest Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, People's Republic of China
| | - Zhengbo Song
- Department of Clinical Trial, Zhejiang Cancer Hospital, Hangzhou, People's Republic of China
| | - Yanqiu Zhao
- Respiratory Department of Internal Medicine, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Pingli Wang
- Respiratory Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Liyan Jiang
- Shanghai Lung Cancer Center, Shanghai Chest Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, People's Republic of China
| | - Yi Gong
- Department of Phase I Clinical Trial Ward, Chongqing University Cancer Hospital, Chongqing, People's Republic of China
| | - Jianying Zhou
- Respiratory Medicine, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Hong Jian
- Shanghai Lung Cancer Center, Shanghai Chest Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, People's Republic of China
| | - Xiaorong Dong
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Wu Zhuang
- Department of Thoracic Oncology, Fujian Provincial Cancer Hospital, Fuzhou, People's Republic of China
| | - Shundong Cang
- Department of Oncology, Henan Provincial People's Hospital, Zhengzhou, People's Republic of China
| | - Nong Yang
- Department of Medical Oncology, Lung Cancer and Gastrointestinal Unit, Hunan Cancer Hospital, Changsha, People's Republic of China
| | - Jian Fang
- Department of Thoracic Oncology II, Beijing Cancer Hospital, Beijing, People's Republic of China
| | - Jianhua Shi
- Department of Medical Oncology II, Linyi Cancer Hospital, Linyi, People's Republic of China
| | - Junguo Lu
- Department of Respiratory Medicine, Nantong Tumor Hospital, Nantong, People's Republic of China
| | - Rui Ma
- Thoracic Medicine Ward Area 2, Liaoning Cancer Hospital & Institute, Shenyang, People's Republic of China
| | - Ping Wu
- Department of Oncology, General Hospital of Ningxia Medical University, Yinchuan, People's Republic of China
| | - Yingqian Zhang
- Department of Translational Medicine, Geneplus-Beijing, Beijing, People's Republic of China
| | - Mengmeng Song
- Department of Translational Medicine, Geneplus-Beijing, Beijing, People's Republic of China
| | - Chun-Wei Xu
- Department of Respiratory Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing, People's Republic of China
| | - Zhe Shi
- R&D, InventisBio Co., Ltd., Shanghai, People's Republic of China
| | - Ling Zhang
- R&D, InventisBio Co., Ltd., Shanghai, People's Republic of China
| | - Yaolin Wang
- R&D, InventisBio Co., Ltd., Shanghai, People's Republic of China
| | - Xicheng Wang
- Department of Oncology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, People's Republic of China
| | - Yiping Zhang
- Department of Clinical Trial, Zhejiang Cancer Hospital, Hangzhou, People's Republic of China
| | - Shun Lu
- Shanghai Lung Cancer Center, Shanghai Chest Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, People's Republic of China.
| |
Collapse
|
8
|
Gahlawat AW, Witte T, Sinn P, Schott S. Circulating cf-miRNA as a more appropriate surrogate liquid biopsy marker than cfDNA for ovarian cancer. Sci Rep 2023; 13:5503. [PMID: 37015943 PMCID: PMC10073086 DOI: 10.1038/s41598-023-32243-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 03/24/2023] [Indexed: 04/06/2023] Open
Abstract
Ovarian cancer (OC) is an aggressive disease, primarily diagnosed in late stages with only 20% of patients surviving more than 5 years. Liquid biopsy markers have great potential to improve current diagnostic and prognostic methods. Here, we compared miRNAs and DNA methylation in matched plasma, whole blood and tissues as a surrogate marker for OC. We found that while both cfDNA and cf-miRNAs levels were upregulated in OC compared to patients with benign lesions or healthy controls, only cf-miRNA levels were an independent prognosticator of survival. Following on our previous work, we found members of the miR-200 family, miR-200c and miR-141 to be upregulated in both plasma and matched tissues of OC patients which correlated with adverse clinical features. We could also show that the upregulation of miR-200c and -141 correlated with promoter DNA hypomethylation in tissues, but not in plasma or matched whole blood samples. As cf-miRNAs are more easily obtained and very stable in blood, we conclude that they might serve as a more appropriate surrogate liquid biopsy marker than cfDNA for OC.
Collapse
Affiliation(s)
- Aoife Ward Gahlawat
- Department of Gynaecology and Obstetrics, University Hospital of Heidelberg, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany.
- National Center for Tumor Diseases (NCT), University Hospital of Heidelberg and German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Tania Witte
- Department of Gynaecology and Obstetrics, University Hospital of Heidelberg, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
| | - Peter Sinn
- Department of Pathology, University Hospital of Heidelberg, Heidelberg, Germany
| | - Sarah Schott
- Department of Gynaecology and Obstetrics, University Hospital of Heidelberg, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
| |
Collapse
|
9
|
Panizzi L, Dittmer KE, Vignes M, Doucet JS, Gedye K, Waterland MR, Rogers CW, Sano H, McIlwraith CW, Riley CB. Plasma and Synovial Fluid Cell-Free DNA Concentrations Following Induction of Osteoarthritis in Horses. Animals (Basel) 2023; 13:ani13061053. [PMID: 36978592 PMCID: PMC10044647 DOI: 10.3390/ani13061053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 03/03/2023] [Accepted: 03/11/2023] [Indexed: 03/17/2023] Open
Abstract
Biomarkers for osteoarthritis (OA) in horses have been extensively investigated, but translation into clinical use has been limited due to cost, limited sensitivity, and practicality. Identifying novel biomarkers that overcome these limitations could facilitate early diagnosis and therapy. This study aimed to compare the concentrations of synovial fluid (SF) and plasma cell-free DNA (cfDNA) over time in control horses with those with induced carpal OA. Following an established model, unilateral carpal OA was induced in 9 of 17 healthy Thoroughbred fillies, while the remainder were sham-operated controls. Synovial fluid and plasma samples were obtained before induction of OA (Day 0) and weekly thereafter until Day 63, and cfDNA concentrations were determined using fluorometry. The SF cfDNA concentrations were significantly higher for OA joints than for sham-operated joints on Days 28 (median 1430 μg/L and 631 μg/L, respectively, p = 0.017) and 63 (median 1537 μg/L and 606 μg/L, respectively, p = 0.021). There were no significant differences in plasma cfDNA between the OA and the sham groups after induction of carpal OA. Plasma cfDNA measurement is not sufficiently sensitive for diagnostic purposes in this induced model of OA. Synovial fluid cfDNA measurement may be used as a biomarker to monitor early disease progression in horses with OA.
Collapse
Affiliation(s)
- Luca Panizzi
- School of Veterinary Science, College of Science, Massey University, Palmerston North 4442, New Zealand; (K.E.D.); (K.G.); (C.W.R.); (H.S.); (C.B.R.)
- Correspondence:
| | - Keren E. Dittmer
- School of Veterinary Science, College of Science, Massey University, Palmerston North 4442, New Zealand; (K.E.D.); (K.G.); (C.W.R.); (H.S.); (C.B.R.)
| | - Matthieu Vignes
- School of Mathematical and Computational Sciences, College of Science, Massey University, Palmerston North 4442, New Zealand;
| | - Jennie S. Doucet
- Department of Biology, Faculty of Science, University of Waterloo, Waterloo, ON N2L 3G1, Canada;
| | - Kristene Gedye
- School of Veterinary Science, College of Science, Massey University, Palmerston North 4442, New Zealand; (K.E.D.); (K.G.); (C.W.R.); (H.S.); (C.B.R.)
| | - Mark R. Waterland
- School of Natural Sciences, College of Science, Massey University, Palmerston North 4442, New Zealand;
| | - Chris W. Rogers
- School of Veterinary Science, College of Science, Massey University, Palmerston North 4442, New Zealand; (K.E.D.); (K.G.); (C.W.R.); (H.S.); (C.B.R.)
- School of Agriculture and Environment, College of Science, Massey University, Palmerston North 4442, New Zealand
| | - Hiroki Sano
- School of Veterinary Science, College of Science, Massey University, Palmerston North 4442, New Zealand; (K.E.D.); (K.G.); (C.W.R.); (H.S.); (C.B.R.)
| | - C. Wayne McIlwraith
- Orthopaedic Research Center, C. Wayne McIlwraith Translational Medicine Institute, School of Veterinary Medicine, Colorado State University, Fort Collins, CO 80523-1601, USA;
| | - Christopher B. Riley
- School of Veterinary Science, College of Science, Massey University, Palmerston North 4442, New Zealand; (K.E.D.); (K.G.); (C.W.R.); (H.S.); (C.B.R.)
- Department of Clinical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
| |
Collapse
|
10
|
Koo B, Kim Y, Jang YO, Liu H, Kim MG, Lee HJ, Woo MK, Kim C, Shin Y. A novel platform using homobifunctional hydrazide for enrichment and isolation of urinary circulating RNAs. Bioeng Transl Med 2023; 8:e10348. [PMID: 36684108 PMCID: PMC9842063 DOI: 10.1002/btm2.10348] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/22/2022] [Accepted: 05/06/2022] [Indexed: 01/25/2023] Open
Abstract
Changes in specific circulating RNA (circRNA) expressions can serve as diagnostic noninvasive biomarkers for prostate cancer (PCa). However, there are still unmet needs, such as unclear types and roles of circRNAs, PCa detection in benign prostatic hyperplasia (BPH) by unstandardized methods, and limitations of sample volume capacity and low circRNA concentrations. This study reports a simple and rapid circRNA enrichment and isolation technique named "HAZIS-CirR" for the analysis of urinary circRNAs. The method utilizes homobifunctional hydrazides with amine-modified zeolite and polyvinylidene fluoride (PVDF) syringe filtration for combining electrostatic and covalent coupling and size-based filtration, and it offers instrument-free isolation of circRNAs in 20 min without volume limitation, thermoregulation, and lysis. HAZIS-CirR has high capture efficiency (82.03%-92.38%) and a 10-fold more sensitive detection limit (20 fM) than before enrichment (200 fM). The clinical utility of HAZIS-CirR is confirmed by analyzing circulating mRNAs and circulating miRNAs in 89 urine samples. Furthermore, three miRNA panels that differentiate PCa from BPH and control, PCa from control, and BPH from control, respectively, are established by comparing miRNA levels. HAZIS-CirR will be used as an optimal and established method for the enrichment and isolation of circRNAs as diagnostic, prognostic, and predictive biomarkers in human cancers.
Collapse
Affiliation(s)
- Bonhan Koo
- Department of Biotechnology, College of Life Science and BiotechnologyYonsei UniversitySeodaemun‐gu, SeoulRepublic of Korea
| | - Yunlim Kim
- Department of Urology, Asan Medical CenterUniversity of Ulsan College of MedicineSongpa‐gu, SeoulRepublic of Korea
| | - Yoon Ok Jang
- Department of Biotechnology, College of Life Science and BiotechnologyYonsei UniversitySeodaemun‐gu, SeoulRepublic of Korea
| | - Huifang Liu
- Department of Biotechnology, College of Life Science and BiotechnologyYonsei UniversitySeodaemun‐gu, SeoulRepublic of Korea
| | - Myoung Gyu Kim
- Department of Biotechnology, College of Life Science and BiotechnologyYonsei UniversitySeodaemun‐gu, SeoulRepublic of Korea
| | - Hyo Joo Lee
- Department of Biotechnology, College of Life Science and BiotechnologyYonsei UniversitySeodaemun‐gu, SeoulRepublic of Korea
| | - Myung Kyun Woo
- Department of Biomedical EngineeringSchool of Electrical Engineering, University of UlsanNam‐gu, UlsanRepublic of Korea
| | - Choung‐Soo Kim
- Department of Urology, Asan Medical CenterUniversity of Ulsan College of MedicineSongpa‐gu, SeoulRepublic of Korea
- Department of UrologyEwha Womans University Mokdong HospitalYangcheon‐gu, SeoulRepublic of Korea
| | - Yong Shin
- Department of Biotechnology, College of Life Science and BiotechnologyYonsei UniversitySeodaemun‐gu, SeoulRepublic of Korea
| |
Collapse
|
11
|
Luo Y, Gao H, Zhou M, Xiao L, Xu T, Zhang X. Integrated Acoustic Chip for Culturing 3D Cell Arrays. ACS Sens 2022; 7:2654-2660. [PMID: 36049227 DOI: 10.1021/acssensors.2c01103] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Three-dimensional (3D) cell arrays provide an in vitro platform for clinical drug screening, but the bulky culture devices limit their application scenarios. Here, we demonstrate an integrated portable device that can realize contact-free construction of 3D cell spheroids. The interaction between the ultrasound generated by the portable device and the capillary results in periodic pressure nodes or anti-nodes, which lead to form a 3D cell array for cell culture. Such a 3D cell array pattern can be constructed in seconds and requires only 1 μL of cell samples. We further assessed the spheroids formed by the portable device and the impact of the acoustic field on spheroids and demonstrated the drug screening with assembled spheroids. More importantly, the integrated acoustic device can be further integrated with other components for more complex cell culture and all-round analysis. This portable and effective integrated device provides a new avenue for clinical biomedicine.
Collapse
Affiliation(s)
- Yong Luo
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, PR China
| | - Hongxiao Gao
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, PR China
| | - Mengyun Zhou
- Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), School of Biomedical Engineering, Shenzhen University, Shenzhen, Guangdong 518060, PR China
| | - Long Xiao
- Department of Urology, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong 518060, PR China
| | - Tailin Xu
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, PR China.,Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), School of Biomedical Engineering, Shenzhen University, Shenzhen, Guangdong 518060, PR China
| | - Xueji Zhang
- Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), School of Biomedical Engineering, Shenzhen University, Shenzhen, Guangdong 518060, PR China
| |
Collapse
|
12
|
Jayasinghe R, Jayarajah U, Seneviratne S. Circulating Biomarkers in the Management of Breast Cancer. Biomark Med 2022. [DOI: 10.2174/9789815040463122010009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Circulating biomarkers have become a promising modality in the
management of many cancers. Similarly, in breast cancer, circulatory biomarkers are
useful, non-invasive methods in the diagnosis, prognostication, and evaluation of
response to treatment. Invasive surgical biopsies can be potentially replaced by “liquid
biopsy,” which involves analysing circulatory biomarkers that may reveal features of
primary and metastatic disease. Therefore, providing an insight into the cancer biology
can be utilised to monitor treatment response, treatment-induced adaptation and tumour
and disease progression through non-invasive means. The objective of this review is to
provide an overview of the current status of the circulating biomarkers highlighting
their promising impact on the management of patients with breast cancer.
Collapse
Affiliation(s)
- Ravindri Jayasinghe
- Faculty of Medicine, University of Colombo,Department of Surgery,Department of Surgery, Faculty of Medicine, University of Colombo, Colombo,Sri Lanka
| | - Umesh Jayarajah
- Faculty of Medicine, University of Colombo,Department of Surgery,Department of Surgery, Faculty of Medicine, University of Colombo, Colombo,Sri Lanka
| | - Sanjeewa Seneviratne
- Faculty of Medicine, University of Colombo,Department of Surgery,Department of Surgery, Faculty of Medicine, University of Colombo, Colombo,Sri Lanka
| |
Collapse
|
13
|
Song P, Wu LR, Yan YH, Zhang JX, Chu T, Kwong LN, Patel AA, Zhang DY. Limitations and opportunities of technologies for the analysis of cell-free DNA in cancer diagnostics. Nat Biomed Eng 2022; 6:232-245. [PMID: 35102279 PMCID: PMC9336539 DOI: 10.1038/s41551-021-00837-3] [Citation(s) in RCA: 111] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 05/27/2021] [Indexed: 12/15/2022]
Abstract
Cell-free DNA (cfDNA) in the circulating blood plasma of patients with cancer contains tumour-derived DNA sequences that can serve as biomarkers for guiding therapy, for the monitoring of drug resistance, and for the early detection of cancers. However, the analysis of cfDNA for clinical diagnostic applications remains challenging because of the low concentrations of cfDNA, and because cfDNA is fragmented into short lengths and is susceptible to chemical damage. Barcodes of unique molecular identifiers have been implemented to overcome the intrinsic errors of next-generation sequencing, which is the prevailing method for highly multiplexed cfDNA analysis. However, a number of methodological and pre-analytical factors limit the clinical sensitivity of the cfDNA-based detection of cancers from liquid biopsies. In this Review, we describe the state-of-the-art technologies for cfDNA analysis, with emphasis on multiplexing strategies, and discuss outstanding biological and technical challenges that, if addressed, would substantially improve cancer diagnostics and patient care.
Collapse
Affiliation(s)
- Ping Song
- Department of Bioengineering, Rice University, Houston, TX, USA
| | - Lucia Ruojia Wu
- Department of Bioengineering, Rice University, Houston, TX, USA
| | | | | | - Tianqing Chu
- Department of Respiratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Lawrence N Kwong
- Department of Translational Molecular Pathology, MD Anderson Cancer Center, Houston, TX, USA
| | - Abhijit A Patel
- Department of Therapeutic Radiology, Yale School of Medicine, New Haven, CT, USA
| | | |
Collapse
|
14
|
Altei WF, Pachane BC, Souza C, Marques MMC, Selistre-de-Araújo H. New insights into the discovery of drugs for triple-negative breast cancer metastasis. Expert Opin Drug Discov 2022; 17:365-376. [PMID: 35179448 DOI: 10.1080/17460441.2022.2039619] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
INTRODUCTION Triple-negative breast cancer (TNBC) is of great concern due to its aggressiveness and lack of targeted therapy. For these reasons, TNBC is one of the main causes of death in women, mainly due to metastases. Tumor dissemination has highlighted a set of possible targets, with extensive research into new single-target drugs, in addition to drug repurposing strategies, being undertaken to discover new classes of potential inhibitors of metastasis. AREAS COVERED The authors here describe the main proposed targets and the bases of their pharmacological inhibition with different chemical compounds. The authors also discuss the state-of-the-art from the latest clinical trials and highlight other potential targets for metastatic TNBC. EXPERT OPINION In the last decade, oncology research has changed its focus from primary tumors to moving tumor cells, their products, and to the secondary tumor and its surroundings, for the purpose of finding targets to treat metastasis. Consequently, our comprehension of the complexity of the metastatic process has increased drastically, with, furthermore, the discovery of new potential targets. Although promising, the wide range of strategies is still not effective to suppress TNBC metastasis in terms of increasing patient survival or decreasing the number of metastases. Treating or preventing metastasis continues to be a great challenge.
Collapse
Affiliation(s)
- Wanessa Fernanda Altei
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, Brazil.,Radiotherapy Department, Barretos Cancer Hospital, Barretos, Brazil
| | - Bianca Cruz Pachane
- Graduate Program of Evolutionary Genetics and Molecular Biology, Federal University of São Carlos, São Carlos, Brazil
| | - Cristiano Souza
- Department of Clinical Oncology, Barretos Cancer Hospital, Barretos, Brazil
| | - Márcia Maria Chiquitelli Marques
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, Brazil.,Barretos School of Health Sciences, Dr. Paulo Prata-FACISB, Barretos, Brazil
| | | |
Collapse
|
15
|
Ako S, Kato H, Nouso K, Kinugasa H, Terasawa H, Matushita H, Takada S, Saragai Y, Mizukawa S, Muro S, Uchida D, Tomoda T, Matsumoto K, Horiguchi S, Nobuoka D, Yoshida R, Umeda Y, Yagi T, Okada H. Plasma KRAS mutations predict the early recurrence after surgical resection of pancreatic cancer. Cancer Biol Ther 2021; 22:564-570. [PMID: 34632919 DOI: 10.1080/15384047.2021.1980312] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
BACKGROUND The technique to analyze circulating tumor DNA (ctDNA) in body fluid (so-called "liquid biopsy") is recently developed. AIMS Our aim was to assess the utility of liquid biopsy for predicting progression of pancreatic ductal adenocarcinoma (PDAC) after surgical resection or chemotherapy. METHODS A total of 72 patients with PDAC were retrospectively enrolled for this study, 33 treated surgically and 39 given chemotherapy, either FOLFIRINOX (oxaliplatin/irinotecan/fluorouracil/leucovorin) or gemcitabine plus nab-paclitaxel. Prior to treatment, patients were screened for the presence of KRAS mutations (G12D and G12V) in plasma using droplet digital polymerase chain reaction, and outcomes were compared. RESULTS KRAS mutations were identified in plasma samples of 12 patients (36%) underwent surgical resection. Patients with plasma KRAS mutations had significantly shorter disease-free survival (DFS) and overall survival (p < .01 and p = .01, respectively). Of 10 clinical variables analyzed, plasma KRAS mutation was the factor predictive of DFS in multivariate analysis (RR = 3.58, 95% CI: 1.36-9.60; p = .01). Although 12 patients (31%) given chemotherapy tested positive for plasma KRAS mutations, there was no demonstrable relation between plasma KRAS mutations and progression-free survival (PFS) or overall survival (OS) (p = .35 and p = .68, respectively). CONCLUSIONS In patients with PDAC, detection of KRAS mutations in plasma proved independently predictive of early recurrence after surgical resection but did not correlate with PFS following chemotherapy.
Collapse
Affiliation(s)
- Soichiro Ako
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Hironari Kato
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Kazuhiro Nouso
- Department of Gastroenterology, Okayama City Hospital, Okayama, Japan
| | - Hideaki Kinugasa
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Hiroyuki Terasawa
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Hiroshi Matushita
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Saimon Takada
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Yosuke Saragai
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Sho Mizukawa
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Shinichiro Muro
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Daisuke Uchida
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Takeshi Tomoda
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Kazuyuki Matsumoto
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Shigeru Horiguchi
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Daisuke Nobuoka
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Ryuichi Yoshida
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Yuzo Umeda
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Takahito Yagi
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Hiroyuki Okada
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| |
Collapse
|
16
|
Zhou Y, Xu Y, Wang C, Gong Y, Zhang Y, Yao R, Li P, Zhu X, Bai J, Guan Y, Xia X, Yang L, Yi X, Sun Q. Serial circulating tumor DNA identification associated with the efficacy and prognosis of neoadjuvant chemotherapy in breast cancer. Breast Cancer Res Treat 2021; 188:661-673. [PMID: 34003409 DOI: 10.1007/s10549-021-06247-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 04/27/2021] [Indexed: 12/24/2022]
Abstract
BACKGROUND Circulating tumor DNA (ctDNA) provides a promising noninvasive alternative to evaluate the efficacy of neoadjuvant chemotherapy (NCT) in breast cancer. METHODS Herein, we collected 63 tissue (aspiration biopsies and resected tissues) and 206 blood samples (baseline, during chemotherapy (Chemo), after chemotherapy (Post-Chemo), after operation (Post-Op), during follow-up) from 32 patients, and preformed targeted deep sequencing with a customed 1021-gene panel. RESULTS As the results, TP53 (43.8%) and PIK3CA (40.6%) were the most common mutant genes in the primary tumors. At least one tumor-derived mutation was detected in the following number of blood samples: 21, baseline; 3, Chemo; 9, Post-Chemo; and 5, Post-Op. Four patients with pathologic complete response had no tissue mutation in Chemo and Post-Chemo blood. Compared to patients with mutation-positive Chemo or Post-Chemo blood, the counterparts showed a superior primary tumor decrease (median, 86.5% versus 54.6%) and lymph involvement (median, 1 versus 3.5). All five patients with mutation-positive Post-Op developed distant metastases during follow-up, and the sensitivity of detecting clinically relapsed patients was 71.4% (5/7). The median DFS was 9.8 months for patients with mutation-positive Post-Op but not reached for the others (HR 23.53; 95% CI, 1.904-290.9; p < 0.0001). CONCLUSIONS Our study shows that sequential monitoring of blood ctDNA was an effective method for evaluating NCT efficacy and patient recurrence. Integrating ctDNA profiling into the management of LABC patients might improve clinical outcome. TRIAL REGISTRATION This prospective study recruited LABC patients at Peking Union Medical College Hospital (ClinicalTrials.gov Identifier: NCT02797652).
Collapse
Affiliation(s)
- Yidong Zhou
- Department of Breast Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, No.1 Shuaifu Garden, Dongcheng District, Beijing, 100010, China.
| | - Yaping Xu
- Geneplus-Beijing, Beijing, 102206, China
| | - Changjun Wang
- Department of Breast Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, No.1 Shuaifu Garden, Dongcheng District, Beijing, 100010, China
| | - Yuhua Gong
- Geneplus-Beijing, Beijing, 102206, China
| | | | - Ru Yao
- Department of Breast Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, No.1 Shuaifu Garden, Dongcheng District, Beijing, 100010, China
| | - Peng Li
- Department of Breast Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, No.1 Shuaifu Garden, Dongcheng District, Beijing, 100010, China
| | - Xiuli Zhu
- Geneplus-Beijing, Beijing, 102206, China
| | - Jing Bai
- Geneplus-Beijing, Beijing, 102206, China
| | | | | | - Ling Yang
- Geneplus-Beijing, Beijing, 102206, China
| | - Xin Yi
- Geneplus-Beijing, Beijing, 102206, China
| | - Qiang Sun
- Department of Breast Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, No.1 Shuaifu Garden, Dongcheng District, Beijing, 100010, China.
| |
Collapse
|
17
|
Liu L, Chen X, Wong KC. Early Cancer Detection from Genome-wide Cell-free DNA Fragmentation via Shuffled Frog Leaping Algorithm and Support Vector Machine. Bioinformatics 2021; 37:3099-3105. [PMID: 33837381 DOI: 10.1093/bioinformatics/btab236] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 03/19/2021] [Accepted: 04/08/2021] [Indexed: 01/09/2023] Open
Abstract
MOTIVATION Early cancer detection is significant for the patient mortality rate reduction. Although machine learning has been widely employed in that context, there are still deficiencies. In this work, we studied different machine learning algorithms for early cancer detection and proposed an Adaptive Support Vector Machine (ASVM) method by synergizing Shuffled Frog Leaping Algorithm (SFLA) and Support Vector Machine (SVM) in this paper. RESULTS As ASVM regulates SVM for parameter adaption based on data characteristics, the experimental results demonstrated the robust generalization capability of ASVM on different datasets under different settings; for instance, ASVM can enhance the sensitivity by over 10% for early cancer detection compared with SVM. Besides, our proposed ASVM outperformed Grid Search + SVM and Random Search + SVM by significant margins in terms of the area under the ROC curve (AUC) (0.938 vs. 0.922 vs. 0.921). AVAILABILITY The proposed algorithm and dataset are available at https://github.com/ElaineLIU-920/ASVM-for-Early-Cancer-Detection. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Linjing Liu
- Department of Computer Science, City University of Hong Kong, Hong Kong, China
| | - Xingjian Chen
- Department of Computer Science, City University of Hong Kong, Hong Kong, China
| | - Ka-Chun Wong
- Department of Computer Science, City University of Hong Kong, Hong Kong, China
| |
Collapse
|
18
|
De Mattos-Arruda L, Siravegna G. How to use liquid biopsies to treat patients with cancer. ESMO Open 2021; 6:100060. [PMID: 33647598 PMCID: PMC7921754 DOI: 10.1016/j.esmoop.2021.100060] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/14/2021] [Accepted: 01/20/2021] [Indexed: 12/17/2022] Open
Abstract
Precision medicine is now pivotal to design patients' specific treatment strategies with the aim of prolonging progression and overall survival. In this regard, invasive tumor tissue testing has so far been the golden standard for making cancer diagnosis, but has limitations. Cell-free tumor DNA (ctDNA), a form of liquid biopsy, is a noninvasive biomarker that can be isolated from patients' blood and other biofluids. An increasing body of evidence has demonstrated clinical utility of plasma ctDNA profiling to select patients for genomic-driven therapies. Analyses of mutations in plasma ctDNA have shown high accuracy and more rapid identification of mutations, allowing matching patients for specific therapies with equivalent clinical efficacy to that of the tissue profiling. In the clinical setting, ctDNA has been recently implemented to select patients with specific genomic alterations to targeted treatments, and a few molecular tests have been approved for use in non-small-cell lung, prostate, ovarian, and breast cancers. However, standardization of ctDNA collection, storage, and analysis methods would be critical to facilitate the wide adoption of ctDNA technology in routine clinical practice. This review summarizes how we can exploit ctDNA analysis to treat cancer patients, and explains how the results should be interpreted. In addition, we focus on how ctDNA could be used in the future as a marker of minimal residual disease to guide adjuvant therapy, as an immuno-oncology biomarker in patients treated with immune checkpoint blockade drugs, and as an early cancer detection marker to screen the asymptomatic population.
Collapse
Affiliation(s)
- L De Mattos-Arruda
- IrsiCaixa, Germans Trias i Pujol University Hospital, Badalona, Spain; Germans Trias i Pujol Research Institute (IGTP), Badalona, Spain.
| | - G Siravegna
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, USA
| |
Collapse
|
19
|
Zhou S, Cai Y, Liu X, Jin L, Wang X, Ma W, Zhang T. Role of H2B mono-ubiquitination in the initiation and progression of cancer. Bull Cancer 2021; 108:385-398. [PMID: 33685627 DOI: 10.1016/j.bulcan.2020.12.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 12/04/2020] [Accepted: 12/11/2020] [Indexed: 01/07/2023]
Abstract
Numerous epigenetic alterations are observed in cancer cells, and dysregulation of mono-ubiquitination of histone H2B (H2Bub1) has often been linked to tumorigenesis. H2Bub1 is a dynamic post-translational histone modification associated with transcriptional elongation and DNA damage response. Histone H2B monoubiquitination occurs in the site of lysine 120, written predominantly by E3 ubiquitin ligases RNF20/RNF40 and deubiquitinated by ubiquitin specific peptidase 22 (USP22). RNF20/40 is often altered in the primary tumors including colorectal cancer, breast cancer, ovarian cancer, prostate cancer, and lung cancer, and the loss of H2Bub1 is usually associated with poor prognosis in tumor patients. The purpose of this review is to summarize the current knowledge of H2Bub1 in transcription, DNA damage response and primary tumors. This review also provides novel options for exploiting the potential therapeutic target H2Bub1 in personalized cancer therapy.
Collapse
Affiliation(s)
- Sa Zhou
- Tianjin University of Science and Technology, College of Biotechnology, Tianjin 300457, PR China
| | - Yuqiao Cai
- Tianjin University of Science and Technology, College of Biotechnology, Tianjin 300457, PR China
| | - Xinyi Liu
- Tianjin University of Science and Technology, College of Biotechnology, Tianjin 300457, PR China
| | - Lijun Jin
- Tianjin University of Science and Technology, College of Biotechnology, Tianjin 300457, PR China
| | - Xiaoqin Wang
- Beijing University of Agriculture, Key Laboratory of Urban Agriculture (North) of Ministry of Agriculture, Beijing 102206, PR China
| | - Wenjian Ma
- Tianjin University of Science and Technology, College of Biotechnology, Tianjin 300457, PR China; Qilu Institute of Technology, Shandong 250200, PR China.
| | - Tongcun Zhang
- Tianjin University of Science and Technology, College of Biotechnology, Tianjin 300457, PR China; Wuhan University of Science and Technology, Institute of Biology and Medicine, Wuhan 430081, PR China.
| |
Collapse
|
20
|
Dermody SM, Haring CT, Bhambhani C, Tewari M, Brenner JC, Swiecicki PL. Surveillance and Monitoring Techniques for HPV-Related Head and Neck Squamous Cell Carcinoma: Circulating Tumor DNA. Curr Treat Options Oncol 2021; 22:21. [PMID: 33559043 DOI: 10.1007/s11864-021-00821-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/11/2021] [Indexed: 12/11/2022]
Abstract
OPINION STATEMENT Human papilloma virus (HPV) related head and neck cancer is rising in prevalence, preferentially affecting young patients and imparting long term toxicities. Despite this, there are no screening tests or clinical biomarkers for treatment monitoring. HPV circulating tumor DNA (HPV ctDNA) represents a novel circulating biomarker which may provide real-time assessment of tumor response to therapy and recurrence. Early work suggests the promise of this assay as a predictive biomarker in numerous clinical settings, namely risk of recurrence after chemoradiation in locally advanced disease. Advancement of these findings to the clinic will require a collaborative effort in the field, including technical harmonization of assay testing characteristics, understanding of the normal kinetics in patients being treated with standard of care therapies, and appropriately designed phase III trials prior to implementation in the clinic. If successful, HPV ctDNA has the potential to revolutionize clinical trial treatment paradigms and transform patient care.
Collapse
Affiliation(s)
- Sarah M Dermody
- Department of Otolaryngology-Head and Neck Surgery, University of Michigan Health System, Ann Arbor, MI, USA
| | - Catherine T Haring
- Department of Otolaryngology-Head and Neck Surgery, University of Michigan Health System, Ann Arbor, MI, USA
| | - Chandan Bhambhani
- Department of Internal Medicine, Division of Hematology/Oncology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Muneesh Tewari
- Department of Internal Medicine, Division of Hematology/Oncology, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Internal Medicine, Division of Hematology/Oncology, Ann Arbor Veterans Affairs Medical Center, Ann Arbor, MI, USA
| | - J Chad Brenner
- Department of Otolaryngology-Head and Neck Surgery, University of Michigan Health System, Ann Arbor, MI, USA
| | - Paul L Swiecicki
- Department of Internal Medicine, Division of Hematology/Oncology, University of Michigan Medical School, Ann Arbor, MI, USA.
- Department of Internal Medicine, Division of Hematology/Oncology, Ann Arbor Veterans Affairs Medical Center, Ann Arbor, MI, USA.
| |
Collapse
|
21
|
Feng YG, Zhu JH, Wang XY, Wang AJ, Mei LP, Yuan PX, Feng JJ. New advances in accurate monitoring of breast cancer biomarkers by electrochemistry, electrochemiluminescence, and photoelectrochemistry. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
22
|
Mesquita A, Costa JL, Schmitt F. Utility of Circulating Tumor DNA in Different Clinical Scenarios of Breast Cancer. Cancers (Basel) 2020; 12:E3797. [PMID: 33339259 PMCID: PMC7766337 DOI: 10.3390/cancers12123797] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/08/2020] [Accepted: 12/14/2020] [Indexed: 12/22/2022] Open
Abstract
Breast cancer is a complex disease whose molecular mechanisms are not completely understood. Developing target therapies is a promising approach. Therefore, understanding the biological behavior of the tumor is a challenge. Tissue biopsy in the metastatic setting remains the standard method for diagnosis. Nevertheless, it has been associated with some disadvantages: It is an invasive procedure, it may not represent tumor heterogeneity, and it does not allow for treatment efficacy to be assessed or early recurrences to be detected. Analysis of circulating tumor DNA (ctDNA) may help to overcome this as it is a non-invasive method of monitoring the disease. In early-stage disease, it can detect early recurrences and monitor tumors' genomic profiles, identifying the emergence of new genetic alterations which can be related to tumor-acquired resistance. In the metastatic setting, the analysis of ctDNA may also allow for the anticipation of clinical and radiological progression of the disease, selection of targeted therapies, and for a photogram of tumor heterogeneity to be provided. It may also detect disease progression earlier in locally advanced tumors submitted to neoadjuvant treatment, and identify minimal residual disease. ctDNA analysis may guide clinical decision-making in different scenarios, in a precision medicine era, once it acts as a repository of genetic tumor material, allowing for a comprehensive mutation profiling analysis. In this review, we focused on recent advances towards the implementation of ctDNA in a clinical routine for breast cancer.
Collapse
Affiliation(s)
- Alexandra Mesquita
- Medical Oncology Department, Hospital Pedro Hispano, Unidade Local Saúde Matosinhos, 4464-513 Senhora da Hora, Portugal
- Institute of Molecular Pathology and Immunology, University of Porto, 4200-135 Porto, Portugal; (J.L.C.); (F.S.)
- Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| | - José Luís Costa
- Institute of Molecular Pathology and Immunology, University of Porto, 4200-135 Porto, Portugal; (J.L.C.); (F.S.)
- Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| | - Fernando Schmitt
- Institute of Molecular Pathology and Immunology, University of Porto, 4200-135 Porto, Portugal; (J.L.C.); (F.S.)
- Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| |
Collapse
|
23
|
A review of the use of next generation sequencing methodologies to identify biomarkers of resistance to CDK4/6 inhibitors in ER+/HER2- breast cancer. Crit Rev Oncol Hematol 2020; 157:103191. [PMID: 33309572 DOI: 10.1016/j.critrevonc.2020.103191] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 11/30/2020] [Accepted: 12/01/2020] [Indexed: 01/07/2023] Open
Abstract
The development of cyclin-dependent kinases (CDK) 4 and 6 inhibitors represented a substantial breakthrough in the treatment of estrogen receptor positive (ER+), human epidermal growth factor receptor 2 (HER2) negative metastatic breast cancer. These drugs showed a significant clinical benefit in pivotal clinical trials. However, resistance eventually occurs, leading to disease progression. Next Generation Sequencing methodologies have been employed to investigate predictive biomarkers of response or resistance to CDK4/6 inhibitors. Whole exome and targeted sequencing of solid and liquid biopsies have revealed several possible genomic alterations associated with resistance. Notably, genomic alterations identified by DNA-sequencing did not fully recapitulate the entire landscape of resistance to CDK4/6 inhibitors. Gene expression analysis, such as RNA-Seq methodologies, have provided insights into transcriptional profiles and may need further application. Herein, we report the main findings derived from the use of NGS analysis in the context of resistance to CDK4/6 inhibitors in ER + breast cancer.
Collapse
|
24
|
Wei X, Gu L, Heng W. T lymphocytes related biomarkers for predicting immunotherapy efficacy in non-small cell lung cancer. Oncol Lett 2020; 21:89. [PMID: 33376522 PMCID: PMC7751340 DOI: 10.3892/ol.2020.12350] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 11/20/2020] [Indexed: 02/07/2023] Open
Abstract
The immune environment is a determinant of whether patients with cancer can benefit from immunotherapy. Immune checkpoint inhibitors (ICIs) have improved the prognosis of patients with different types of malignancies and have initiated a transformation in tumor therapy. However, some patients cannot achieve a long-term response and several patients even have no response to ICIs therapy. Thus, potential biomarkers that can effectively predict the efficacy of ICIs are essential for their clinical application and for the selection of patients. The accuracy of well-known biomarkers, such as expression of programmed cell death ligand 1 and tumor mutational burden, remains controversial. One of the critical factors for immune responses in the tumor microenvironment is tumor antigen-specific T cell. The density and distribution of tumor-infiltrating lymphocytes, T cells activation and T lymphocytes phenotypes in peripheral blood and serum cytokines have been observed in different types of solid cancer. Although the association with immunotherapy prognosis is in dispute, the prospect of T cell-related biomarkers is encouraged. The present review discusses whether these factors are associated with clinical outcomes of patients with non-small cell lung cancer. The association between several serum cytokines and ICIs therapy efficacy is also discussed.
Collapse
Affiliation(s)
- Xiaoying Wei
- Department of Medicine, Respiratory, Emergency and Intensive Care Medicine, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, P.R. China
| | - Ling Gu
- Department of Medicine, Respiratory, Emergency and Intensive Care Medicine, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, P.R. China
| | - Wei Heng
- Department of Medicine, Respiratory, Emergency and Intensive Care Medicine, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, P.R. China
| |
Collapse
|
25
|
Iida T, Kiya S, Kubota K, Jin T, Seiyama A, Nomura Y. Monte Carlo Modeling of Shortwave-Infrared Fluorescence Photon Migration in Voxelized Media for the Detection of Breast Cancer. Diagnostics (Basel) 2020; 10:E961. [PMID: 33212890 PMCID: PMC7698463 DOI: 10.3390/diagnostics10110961] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/14/2020] [Accepted: 11/15/2020] [Indexed: 02/07/2023] Open
Abstract
Recent progress regarding shortwave-infrared (SWIR) molecular imaging technology has inspired another modality of noninvasive diagnosis for early breast cancer detection in which previous mammography or sonography would be compensated. Although a SWIR fluorescence image of a small breast cancer of several millimeters was obtained from experiments with small animals, detailed numerical analyses before clinical application were required, since various parameters such as size as well as body hair differed between humans and small experimental animals. In this study, the feasibility of SWIR was compared against visible (VIS) and near-infrared (NIR) region, using the Monte Carlo simulation in voxelized media. In this model, due to the implementation of the excitation gradient, fluorescence is based on rational mechanisms, whereas fluorescence within breast cancer is spatially proportional to excitation intensity. The fluence map of SWIR simulation with excitation gradient indicated signals near the upper surface of the cancer, and stronger than those of the NIR. Furthermore, there was a dependency on the fluence signal distribution on the contour of the breast tissue, as well as the internal structure, due to the implementation of digital anatomical data for the Visible Human Project. The fluorescence signal was observed to become weaker in all regions including the VIS, the NIR, and the SWIR region, when fluorescence-labeled cancer either became smaller or was embedded in a deeper area. However, fluorescence in SWIR alone from a cancer of 4 mm diameter was judged to be detectable at a depth of 1.4 cm.
Collapse
Affiliation(s)
- Tatsuto Iida
- Department of Systems Life Engineering, Maebashi Institute of Technology, Maebashi 371-0816, Japan; (T.I.); (S.K.); (K.K.)
| | - Shunsuke Kiya
- Department of Systems Life Engineering, Maebashi Institute of Technology, Maebashi 371-0816, Japan; (T.I.); (S.K.); (K.K.)
| | - Kosuke Kubota
- Department of Systems Life Engineering, Maebashi Institute of Technology, Maebashi 371-0816, Japan; (T.I.); (S.K.); (K.K.)
| | - Takashi Jin
- Laboratory for Nano-Bio Probes, RIKEN Center for Biosystems Dynamics Research, Suita 565-0874, Japan;
| | - Akitoshi Seiyama
- Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan;
| | - Yasutomo Nomura
- Department of Systems Life Engineering, Maebashi Institute of Technology, Maebashi 371-0816, Japan; (T.I.); (S.K.); (K.K.)
- Laboratory for Nano-Bio Probes, RIKEN Center for Biosystems Dynamics Research, Suita 565-0874, Japan;
| |
Collapse
|
26
|
Chen S, Su J, Zhao Z, Shao Y, Dou Y, Li F, Deng W, Shi J, Li Q, Zuo X, Song S, Fan C. DNA Framework-Supported Electrochemical Analysis of DNA Methylation for Prostate Cancers. NANO LETTERS 2020; 20:7028-7035. [PMID: 32857520 DOI: 10.1021/acs.nanolett.0c01898] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Epigenetic alterations hold great promise as biomarkers for early stage cancer diagnosis. Nevertheless, direct identification of rare methylated DNA in the genome remains challenging. Here, we report an ultrasensitive framework nucleic acid-based electrochemical sensor for quantitative and highly selective analysis of DNA methylation. Notably, we can detect 160 fg of methylated DNA in million-fold unmethylated DNA samples using this electrochemical methylation-specific polymerase chain reaction (E-MSP) method. The high sensitivity of E-MSP enables one-step detection of low-abundance methylation at two different genes in patient serum samples. By using a combination test with two methylation alterations, we achieve high accuracy and sensitivity for reliable differentiation of prostate cancer and benign prostate hypertrophy (BPH). This new method sheds new light on translational use in early cancer diagnosis and in monitoring patients' responses to therapeutic agents.
Collapse
Affiliation(s)
- Shixing Chen
- CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
- Shanghai Institute of Microsystem and information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Jing Su
- CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
- Institute for Personalized Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Zhihan Zhao
- CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Yuan Shao
- Department of Urology, Ruijin Hospital North, School of Medicine, Shanghai Jiao Tong University, Shanghai 201801, China
| | - Yanzhi Dou
- CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Fuwu Li
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Wangping Deng
- CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Jiye Shi
- CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Qian Li
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaolei Zuo
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shiping Song
- CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, China
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acids Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| |
Collapse
|
27
|
Sebastião MM, Ho RS, de Carvalho JPV, Nussbaum M. Diagnostic Accuracy of Next Generation Sequencing Panel using Circulating Tumor DNA in Patients with Advanced Non-Small Cell Lung Cancer: A Systematic Review and Meta-Analysis. JOURNAL OF HEALTH ECONOMICS AND OUTCOMES RESEARCH 2020; 7:158-163. [PMID: 33043062 PMCID: PMC7539761 DOI: 10.36469/jheor.2020.17088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/18/2020] [Accepted: 08/21/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND/OBJECTIVES Until now, no meta-analysis has been published to evaluate the diagnostic performance of next-generation sequencing (NGS) panel using circulating tumor (ctDNA) in patients with advanced non-small cell lung cancer (aNSCLC). The aim of the study was to carry out a systematic review and a meta-analysis in order to determine the accuracy of NGS of ctDNA to detect six oncogenic driver alterations: epidermal growth factor receptor (EGFR); anaplastic lymphoma kinase (ALK); ROS proto-oncogene 1, receptor tyrosine kinase (ROS-1); serine/threonine-protein kinase B-RAF (BRAF); RET proto-oncogene (RET); and MET proto-oncogene, receptor tyrosine kinase (MET) exon 14 in patients with aNSCLC. METHODS MEDLINE/PubMed, Cochrane Library, Latin American and Caribbean Health Sciences Literature (LILACS), and Centre for Reviews and Dissemination databases and articles obtained from other sources were searched for relevant studies that evaluate the accuracy (sensitivity and specificity) of NGS using ctDNA in patients with aNSCLC. The studies were eligible when NGS of ctDNA was compared with tissue tests to detect at least one of the six oncogenic driver alterations. Diagnostic measures (sensitivity and specificity) were pooled with a bivariate diagnostic random effect. All statistical analyses were performed with software R, v.4.0.0. RESULTS Ten studies were eligible for data extraction. The overall pooled estimates of sensitivity and specificity were 0.766 (95% CI: 0.678-0.835); 0.999 (95% CI: 0.990-1.000), respectively. CONCLUSIONS The analysis has demonstrated that the NGS panel using ctDNA has a high accuracy to identify the six actionable oncogenic driver alterations in patients with aNSCLC. Therefore, it can be considered a reliable alternative to guide the patients with aNSCLC to the right treatment who cannot undergo an invasive procedure or have insufficient tissue material for molecular tests.
Collapse
|
28
|
Lopez EM, Tanner AM, Du E, Patel SN, Weiss J, Weissler MC, Hackman T, Gupta GP, Zevallos J, Elmore S, Betancourt R, Thorne L, Sheth S, Gulley ML. Decline in circulating viral and human tumor markers after resection of head and neck carcinoma. Head Neck 2020; 43:27-34. [PMID: 32860343 DOI: 10.1002/hed.26444] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 07/12/2020] [Accepted: 08/14/2020] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND DNA sequencing panels can simultaneously quantify human and viral tumor markers in blood. We explored changes in levels of plasma tumor markers following surgical resection of head and neck carcinoma. METHODS In preresection and postresection plasmas, targeted DNA sequencing quantified variants in 28 human cancer genes and levels of oncogenic pathogens (human papillomavirus [HPV], Epstein-Barr virus [EBV], Helicobacter pylori) from 21 patients with head and neck squamous cell carcinoma. RESULTS Preresection, 11 of 21 patients (52%) had detectable tumor markers in plasma, most commonly TP53 mutation or HPV genome. Several days postresection, levels fell to undetectable in 8 of 10 evaluable patients, while two high-stage patients retained circulating tumor markers. CONCLUSIONS Modern sequencing technology can simultaneously quantify human gene variants and oncogenic viral genomes in plasma. Falling levels of cancer-specific markers upon resection can help identify viral and human markers to track at subsequent timepoints as a means to evaluate efficacy of interventions.
Collapse
Affiliation(s)
- Erin M Lopez
- Department of Otolaryngology-Head and Neck Surgery, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - April Michelle Tanner
- Department of Otolaryngology-Head and Neck Surgery, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Eugenie Du
- Department of Otolaryngology-Head and Neck Surgery, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Samip N Patel
- Department of Otolaryngology-Head and Neck Surgery, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Jared Weiss
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.,Department of Medicine, Oncology Division, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Mark C Weissler
- Department of Otolaryngology-Head and Neck Surgery, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Trevor Hackman
- Department of Otolaryngology-Head and Neck Surgery, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Gaorav P Gupta
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.,Department of Radiation Oncology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Jose Zevallos
- Department of Otolaryngology-Head and Neck Surgery, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Sandra Elmore
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.,Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Renee Betancourt
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Leigh Thorne
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.,Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Siddharth Sheth
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.,Department of Medicine, Oncology Division, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Margaret L Gulley
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.,Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
29
|
Plasma Cell-Free Human Papillomavirus Oncogene E6 and E7 DNA Predicts Outcome in Oropharyngeal Squamous Cell Carcinoma. J Mol Diagn 2020; 22:1333-1343. [PMID: 32822851 DOI: 10.1016/j.jmoldx.2020.08.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 07/30/2020] [Accepted: 08/03/2020] [Indexed: 12/24/2022] Open
Abstract
Persistent human papillomavirus (HPV) infection is associated with the development of oropharyngeal squamous cell carcinoma (OPSCC), and increasing incidences of OPSCC are reported. The generally favorable treatment outcome in patients with HPV-driven OPSCC has brought de-escalation of treatment into discussion. Nevertheless, 13% to 25% develop a relapse within two years after current standard treatment. New biomarkers are urgently required to monitor therapy response, tumor burden, and minimal residual disease during follow-up. This observational study examined 50 patients with OPSCC to investigate plasma cell-free (cf) HPV-DNA derived from tumor cells before therapy and during follow-up. Real-time PCR was applied to quantify the DNA concentration of HPV oncogenes E6 and E7. A total of 85.7% of pretreatment samples from patients with HPV-driven OPSCC (n = 28) were positive for at least one marker, and cfHPV-DNA concentration increased with tumor size. Virtually no signals were detected in HPV-negative OPSCC patients (n = 20; P ≤ 0.001). Patients without clinical evidence of recurrence had significantly reduced cfHPV-DNA concentrations after therapy (P ≤ 0.001). Conversely, cfHPV-DNA levels increased or remained above threshold in five patients who had residual disease or developed recurrence. In conclusion, plasma cfHPV-DNA detection correlates with the clinical course of disease in patients with HPV-driven OPSCC. Consequently, extensive clinical investigation should be considered if cfHPV-DNA is detected during follow-up of patients with HPV-driven OPSCC.
Collapse
|
30
|
Rahat B, Ali T, Sapehia D, Mahajan A, Kaur J. Circulating Cell-Free Nucleic Acids as Epigenetic Biomarkers in Precision Medicine. Front Genet 2020; 11:844. [PMID: 32849827 PMCID: PMC7431953 DOI: 10.3389/fgene.2020.00844] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 07/13/2020] [Indexed: 12/20/2022] Open
Abstract
The circulating cell-free nucleic acids (ccfNAs) are a mixture of single- or double-stranded nucleic acids, released into the blood plasma/serum by different tissues via apoptosis, necrosis, and secretions. Under healthy conditions, ccfNAs originate from the hematopoietic system, whereas under various clinical scenarios, the concomitant tissues release ccfNAs into the bloodstream. These ccfNAs include DNA, RNA, microRNA (miRNA), long non-coding RNA (lncRNA), fetal DNA/RNA, and mitochondrial DNA/RNA, and act as potential biomarkers in various clinical conditions. These are associated with different epigenetic modifications, which show disease-related variations and so finding their role as epigenetic biomarkers in clinical settings. This field has recently emerged as the latest advance in precision medicine because of its clinical relevance in diagnostic, prognostic, and predictive values. DNA methylation detected in ccfDNA has been widely used in personalized clinical diagnosis; furthermore, there is also the emerging role of ccfRNAs like miRNA and lncRNA as epigenetic biomarkers. This review focuses on the novel approaches for exploring ccfNAs as epigenetic biomarkers in personalized clinical diagnosis and prognosis, their potential as therapeutic targets and disease progression monitors, and reveals the tremendous potential that epigenetic biomarkers present to improve precision medicine. We explore the latest techniques for both quantitative and qualitative detection of epigenetic modifications in ccfNAs. The data on epigenetic modifications on ccfNAs are complex and often milieu-specific posing challenges for its understanding. Artificial intelligence and deep networks are the novel approaches for decoding complex data and providing insight into the decision-making in precision medicine.
Collapse
Affiliation(s)
- Beenish Rahat
- National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| | - Taqveema Ali
- Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Divika Sapehia
- Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Aatish Mahajan
- Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Jyotdeep Kaur
- Postgraduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
31
|
Chen H, Li Y, Zhang Z, Wang S. Immunomagnetic separation of circulating tumor cells with microfluidic chips and their clinical applications. BIOMICROFLUIDICS 2020; 14:041502. [PMID: 32849973 PMCID: PMC7440929 DOI: 10.1063/5.0005373] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 08/04/2020] [Indexed: 06/11/2023]
Abstract
Circulating tumor cells (CTCs) are tumor cells detached from the original lesion and getting into the blood and lymphatic circulation systems. They potentially establish new tumors in remote areas, namely, metastasis. Isolation of CTCs and following biological molecular analysis facilitate investigating cancer and coming out treatment. Since CTCs carry important information on the primary tumor, they are vital in exploring the mechanism of cancer, metastasis, and diagnosis. However, CTCs are very difficult to separate due to their extreme heterogeneity and rarity in blood. Recently, advanced technologies, such as nanosurfaces, quantum dots, and Raman spectroscopy, have been integrated with microfluidic chips. These achievements enable the next generation isolation technologies and subsequent biological analysis of CTCs. In this review, we summarize CTCs' separation with microfluidic chips based on the principle of immunomagnetic isolation of CTCs. Fundamental insights, clinical applications, and potential future directions are discussed.
Collapse
Affiliation(s)
- Hongmei Chen
- School of Mathematics and Physics of Science and Engineering, Anhui University of Technology, Maanshan 243002, China
| | - Yong Li
- School of Mathematics and Physics of Science and Engineering, Anhui University of Technology, Maanshan 243002, China
| | - Zhifeng Zhang
- Department of Engineering Science and Mechanics, The Pennsylvania State University, State College, Pennsylvania 16802, USA
| | - Shuangshou Wang
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan 243002, China
| |
Collapse
|
32
|
Zakka K, Nagy R, Drusbosky L, Akce M, Wu C, Alese OB, El-Rayes BF, Kasi PM, Mody K, Starr J, Shaib WL. Blood-based next-generation sequencing analysis of neuroendocrine neoplasms. Oncotarget 2020; 11:1749-1757. [PMID: 32477464 PMCID: PMC7233805 DOI: 10.18632/oncotarget.27588] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 04/10/2020] [Indexed: 12/16/2022] Open
Abstract
Background: Neuroendocrine neoplasms (NENs) are a heterogeneous group of neoplasms that span from well-differentiated neuroendocrine tumors (NETs) to highly aggressive neoplasms classified as neuroendocrine carcinomas (NECs). The genomic landscape of NENs has not been well studied. The aim of this study is to confirm the feasibility of next generation sequencing (NGS) testing circulating tumor DNA (ctDNA) in patients with NENs and characterize common alterations in the genomic landscape.
Results: Of the 320 NEN patients, 182 (57%) were male with a median age of 63 years (range: 8-93) years. Tumor type included pancreatic NET (N = 165, 52%), gastrointestinal NEC (N = 52, 16%), large cell lung NEC (N = 21, 7%), nasopharyngeal NEC (N = 16, 5%) and NEC/NET not otherwise specified (N = 64, 20%). ctDNA NGS testing was performed on 338 plasma samples; 14 patients had testing performed twice and 2 patients had testing performed three times. Genomic alterations were defined in 280 (87.5%) samples with a total of 1,012 alterations identified after excluding variants of uncertain significance (VUSs) and synonymous mutations. Of the 280 samples with alterations, TP53 associated genes were most commonly altered (N = 145, 52%), followed by KRAS (N = 61, 22%), EGFR (N = 33, 12%), PIK3CA (N = 30, 11%), BRAF (N = 28, 10%), MYC (N = 28, 10%), CCNE1 (N = 28, 10%), CDK6 (N = 22, 8%), RB1 (N = 19, 7%), NF1 (N = 19, 7%), MET (N = 19, 7%), FGFR1 (N = 19, 7%), APC (N = 19, 7%), ERBB2 (N = 16, 6%) and PTEN (N = 14, 5%).
Conclusions: Evaluation of ctDNA was feasible among individuals with NEN. Liquid biopsies are non-invasive methods that can provide personalized options for targeted therapies in NEN patients.
Patients and Methods: Molecular alterations in 338 plasma samples from 320 patients with NEN were evaluated using clinical-grade NGS of ctDNA (Guardant360®) across multiple institutions. The test detects single nucleotide variants in 54-73 genes, copy number amplifications, fusions, and indels in selected genes.
Collapse
Affiliation(s)
- Katerina Zakka
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | | | | | - Mehmet Akce
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Christina Wu
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Olatunji B Alese
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Bassel F El-Rayes
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Pashtoon Murtaza Kasi
- Department of Hematology and Medical Oncology, University of Iowa, Iowa City, IA, USA
| | - Kabir Mody
- Department of Hematology and Medical Oncology, Mayo Clinic, Jacksonville, FL, USA
| | - Jason Starr
- Department of Hematology and Medical Oncology, Mayo Clinic, Jacksonville, FL, USA
| | - Walid L Shaib
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, GA, USA
| |
Collapse
|
33
|
Azizi M, Dianat-Moghadam H, Salehi R, Farshbaf M, Iyengar D, Sau S, Iyer AK, Valizadeh H, Mehrmohammadi M, Hamblin MR. Interactions Between Tumor Biology and Targeted Nanoplatforms for Imaging Applications. ADVANCED FUNCTIONAL MATERIALS 2020; 30:1910402. [PMID: 34093104 PMCID: PMC8174103 DOI: 10.1002/adfm.201910402] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Indexed: 05/04/2023]
Abstract
Although considerable efforts have been conducted to diagnose, improve, and treat cancer in the past few decades, existing therapeutic options are insufficient, as mortality and morbidity rates remain high. Perhaps the best hope for substantial improvement lies in early detection. Recent advances in nanotechnology are expected to increase the current understanding of tumor biology, and will allow nanomaterials to be used for targeting and imaging both in vitro and in vivo experimental models. Owing to their intrinsic physicochemical characteristics, nanostructures (NSs) are valuable tools that have received much attention in nanoimaging. Consequently, rationally designed NSs have been successfully employed in cancer imaging for targeting cancer-specific or cancer-associated molecules and pathways. This review categorizes imaging and targeting approaches according to cancer type, and also highlights some new safe approaches involving membrane-coated nanoparticles, tumor cell-derived extracellular vesicles, circulating tumor cells, cell-free DNAs, and cancer stem cells in the hope of developing more precise targeting and multifunctional nanotechnology-based imaging probes in the future.
Collapse
Affiliation(s)
- Mehdi Azizi
- Proteomics Research Centre, Tabriz University of Medical Sciences, Tabriz 5165665811, Iran
| | - Hassan Dianat-Moghadam
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz 5165665621, Iran
| | - Roya Salehi
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Golgasht Street, Tabriz 516615731, Iran
| | - Masoud Farshbaf
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz 6581151656, Iran
| | - Disha Iyengar
- U-BiND Systems Laboratory, Department of Pharmaceutical Sciences, Wayne State University, Detroit, MI 48201, USA
| | - Samaresh Sau
- U-BiND Systems Laboratory, Department of Pharmaceutical Sciences, Wayne State University, Detroit, MI 48201, USA
| | - Arun K Iyer
- U-BiND Systems Laboratory, Department of Pharmaceutical Sciences, Wayne State University, Detroit, MI 48201, USA
| | - Hadi Valizadeh
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Golgasht Street, Tabriz 516615731, Iran
| | | | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
34
|
Loyez M, Hassan EM, Lobry M, Liu F, Caucheteur C, Wattiez R, DeRosa MC, Willmore WG, Albert J. Rapid Detection of Circulating Breast Cancer Cells Using a Multiresonant Optical Fiber Aptasensor with Plasmonic Amplification. ACS Sens 2020; 5:454-463. [PMID: 31967461 DOI: 10.1021/acssensors.9b02155] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The detection of circulating tumor cells (CTCs), which are responsible for metastasis in several forms of cancer, represents an important goal in oncological diagnosis and treatment. These cells remain extremely challenging to detect, despite numerous previous studies, due to their low concentration (1-10 cells/mL of blood). In this work, an all-fiber plasmonic aptasensor featuring multiple narrowband resonances in the near-infrared wavelength range was developed to detect metastatic breast cancer cells. To this aim, specific aptamers against mammaglobin-A were selected and immobilized as receptors on the sensor surface. In vitro assays confirm that the label-free and real-time detection of cancer cells [limit of detection (LOD) of 49 cells/mL] occurs within 5 min, while the additional use of functionalized gold nanoparticles allows a 2-fold amplification of the biosensor response. Differential measurements on selected optical resonances were used to process the sensor response, and results were confirmed by microscopy. The detection of only 10 cancer cells/mL was achieved with relevant specificity against control cells and with quick response time.
Collapse
Affiliation(s)
- Médéric Loyez
- Proteomics and Microbiology Department, University of Mons, Champ de Mars 6, 7000 Mons, Belgium
| | - Eman M. Hassan
- Institute of Biochemistry, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada
| | - Maxime Lobry
- Electromagnetism and Telecommunications Department, University of Mons, Boulevard Dolez 31, 7000 Mons, Belgium
| | - Fu Liu
- Department of Electronics, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada
| | - Christophe Caucheteur
- Electromagnetism and Telecommunications Department, University of Mons, Boulevard Dolez 31, 7000 Mons, Belgium
| | - Ruddy Wattiez
- Proteomics and Microbiology Department, University of Mons, Champ de Mars 6, 7000 Mons, Belgium
| | - Maria C. DeRosa
- Institute of Biochemistry, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada
| | - William G. Willmore
- Institute of Chemistry, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada
| | - Jacques Albert
- Department of Electronics, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada
| |
Collapse
|
35
|
Ma G, Wang J, Huang H, Han X, Xu J, Veeramootoo JS, Xia T, Wang S. Identification of the plasma total cfDNA level before and after chemotherapy as an indicator of the neoadjuvant chemotherapy response in locally advanced breast cancer. Cancer Med 2020; 9:2271-2282. [PMID: 32017472 PMCID: PMC7131846 DOI: 10.1002/cam4.2906] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 01/03/2020] [Accepted: 01/22/2020] [Indexed: 02/06/2023] Open
Abstract
This study aimed to retrospectively evaluate the circulating free DNA (cfDNA) level in patients with locally advanced breast cancer (LABC) having different neoadjuvant chemotherapy (NCT) responses and to investigate whether dynamic changes in cfDNA level could predict the effectiveness of NCT in patients with LABC. Data on 61 patients with LABC were included. NCT responses were evaluated using the response evaluation criteria. Blood samples were collected for cfDNA detection before treatment and after the first and eighth courses of chemotherapy. The Alu 111‐bp and 260‐bp fragment levels were evaluated by polymerase chain reaction, and the predictive value of the cfDNA level in the NCT response was determined. In vitro, the MCF‐7 and MCF‐7/ADR cell lines were applied to simulate the phenomenon of drug resistance and explain the underlying mechanism. The Alu 111‐bp level increased after the first NCT course (P = .014) and then remained high after NCT in the high‐R group (P = .047), but it remained steady in the low‐R group during NCT. A similar tendency in the Alu 260‐bp level was revealed in different groups. The ∆∆Ct value of Alu 260‐bp had good diagnostic efficiency in assessing predictive ability. The area under the curve for the ∆∆Ct1 and ∆∆Ct2 of Alu 260‐bp was 0.697 and 0.647, respectively. The cfDNA level was closely related to epirubicin‐induced apoptosis and changes in the Ki‐67 index in vitro. The elevation of cfDNA after one chemotherapy cycle was mediated by the apoptosis of tumor cells and related to the improved chemotherapy response.
Collapse
Affiliation(s)
- Ge Ma
- Department of Breast Surgery, The Firsft Affiliated Hospital with Nanjing Medical University, Nanjing, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Jingyi Wang
- Department of Breast Surgery, The Firsft Affiliated Hospital with Nanjing Medical University, Nanjing, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Huaxing Huang
- The First Clinical Medical College, Nanjing Medical University, Nanjing, China
| | - Xu Han
- Department of Breast Surgery, The Firsft Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - Jin Xu
- Department of Breast and Thyroid Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | | | - Tiansong Xia
- Department of Breast Surgery, The Firsft Affiliated Hospital with Nanjing Medical University, Nanjing, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Shui Wang
- Department of Breast Surgery, The Firsft Affiliated Hospital with Nanjing Medical University, Nanjing, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, China
| |
Collapse
|
36
|
Ramón y Cajal S, Sesé M, Capdevila C, Aasen T, De Mattos-Arruda L, Diaz-Cano SJ, Hernández-Losa J, Castellví J. Clinical implications of intratumor heterogeneity: challenges and opportunities. J Mol Med (Berl) 2020; 98:161-177. [PMID: 31970428 PMCID: PMC7007907 DOI: 10.1007/s00109-020-01874-2] [Citation(s) in RCA: 275] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 11/05/2019] [Accepted: 01/07/2020] [Indexed: 02/06/2023]
Abstract
In this review, we highlight the role of intratumoral heterogeneity, focusing on the clinical and biological ramifications this phenomenon poses. Intratumoral heterogeneity arises through complex genetic, epigenetic, and protein modifications that drive phenotypic selection in response to environmental pressures. Functionally, heterogeneity provides tumors with significant adaptability. This ranges from mutual beneficial cooperation between cells, which nurture features such as growth and metastasis, to the narrow escape and survival of clonal cell populations that have adapted to thrive under specific conditions such as hypoxia or chemotherapy. These dynamic intercellular interplays are guided by a Darwinian selection landscape between clonal tumor cell populations and the tumor microenvironment. Understanding the involved drivers and functional consequences of such tumor heterogeneity is challenging but also promises to provide novel insight needed to confront the problem of therapeutic resistance in tumors.
Collapse
Affiliation(s)
- Santiago Ramón y Cajal
- Translational Molecular Pathology, Vall d’Hebron Institute of Research (VHIR), Universitat Autònoma de Barcelona, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain
- Pathology Department, Vall d’Hebron Hospital, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain
- Spanish Biomedical Research Network Centre in Oncology (CIBERONC), Barcelona, Spain
- Department of Pathology, Vall d’Hebron University Hospital, Autonomous University of Barcelona, Pg. Vall d’Hebron, 119-129, 08035 Barcelona, Spain
| | - Marta Sesé
- Translational Molecular Pathology, Vall d’Hebron Institute of Research (VHIR), Universitat Autònoma de Barcelona, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain
- Spanish Biomedical Research Network Centre in Oncology (CIBERONC), Barcelona, Spain
| | - Claudia Capdevila
- Translational Molecular Pathology, Vall d’Hebron Institute of Research (VHIR), Universitat Autònoma de Barcelona, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain
- Department of Genetics and Development, Columbia University Medical Center, New York, NY 10032 USA
| | - Trond Aasen
- Translational Molecular Pathology, Vall d’Hebron Institute of Research (VHIR), Universitat Autònoma de Barcelona, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain
- Spanish Biomedical Research Network Centre in Oncology (CIBERONC), Barcelona, Spain
| | - Leticia De Mattos-Arruda
- Vall d’Hebron Institute of Oncology, Vall d’Hebron University Hospital, c/Natzaret, 115-117, 08035 Barcelona, Spain
| | - Salvador J. Diaz-Cano
- Department of Histopathology, King’s College Hospital and King’s Health Partners, London, UK
| | - Javier Hernández-Losa
- Translational Molecular Pathology, Vall d’Hebron Institute of Research (VHIR), Universitat Autònoma de Barcelona, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain
- Pathology Department, Vall d’Hebron Hospital, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain
- Spanish Biomedical Research Network Centre in Oncology (CIBERONC), Barcelona, Spain
| | - Josep Castellví
- Translational Molecular Pathology, Vall d’Hebron Institute of Research (VHIR), Universitat Autònoma de Barcelona, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain
- Pathology Department, Vall d’Hebron Hospital, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain
- Spanish Biomedical Research Network Centre in Oncology (CIBERONC), Barcelona, Spain
| |
Collapse
|
37
|
Urooj T, Wasim B, Mushtaq S, Shah SNN, Shah M. Cancer Cell-derived Secretory Factors in Breast Cancer-associated Lung Metastasis: Their Mechanism and Future Prospects. Curr Cancer Drug Targets 2020; 20:168-186. [PMID: 31858911 PMCID: PMC7516334 DOI: 10.2174/1568009620666191220151856] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 12/09/2019] [Accepted: 12/18/2019] [Indexed: 02/07/2023]
Abstract
In Breast cancer, Lung is the second most common site of metastasis after the bone. Various factors are responsible for Lung metastasis occurring secondary to Breast cancer. Cancer cellderived secretory factors are commonly known as 'Cancer Secretomes'. They exhibit a prompt role in the mechanism of Breast cancer lung metastasis. They are also major constituents of hostassociated tumor microenvironment. Through cross-talk between cancer cells and the extracellular matrix components, cancer cell-derived extracellular matrix components (CCECs) such as hyaluronan, collagens, laminin and fibronectin cause ECM remodeling at the primary site (breast) of cancer. However, at the secondary site (lung), tenascin C, periostin and lysyl oxidase, along with pro-metastatic molecules Coco and GALNT14, contribute to the formation of pre-metastatic niche (PMN) by promoting ECM remodeling and lung metastatic cells colonization. Cancer cell-derived secretory factors by inducing cancer cell proliferation at the primary site, their invasion through the tissues and vessels and early colonization of metastatic cells in the PMN, potentiate the mechanism of Lung metastasis in Breast cancer. On the basis of biochemical structure, these secretory factors are broadly classified into proteins and non-proteins. This is the first review that has highlighted the role of cancer cell-derived secretory factors in Breast cancer Lung metastasis (BCLM). It also enumerates various researches that have been conducted to date in breast cancer cell lines and animal models that depict the prompt role of various types of cancer cell-derived secretory factors involved in the process of Breast cancer lung metastasis. In the future, by therapeutically targeting these cancer driven molecules, this specific type of organ-tropic metastasis in breast cancer can be successfully treated.
Collapse
Affiliation(s)
- Tabinda Urooj
- Anatomy Department, Ziauddin University, Clifton Karachi, Sindh, Pakistan
| | - Bushra Wasim
- Anatomy Department, Ziauddin University, Clifton Karachi, Sindh, Pakistan
| | - Shamim Mushtaq
- Biochemistry Department, Ziauddin University, Clifton Karachi, Sindh, Pakistan
| | | | - Muzna Shah
- Anatomy Department, Ziauddin University, Clifton Karachi, Sindh, Pakistan
| |
Collapse
|
38
|
Shaib WL, Zakka K, Staley C, Roberts A, Akce M, Wu C, Alese OB, El-Rayes BF. Blood-Based Next-Generation Sequencing Analysis of Appendiceal Cancers. Oncologist 2019; 25:414-421. [PMID: 31784493 DOI: 10.1634/theoncologist.2019-0558] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 10/16/2019] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Appendiceal cancers (ACs) are rare. The genomic landscape of ACs has not been well studied. The aim of this study was to confirm the feasibility of next-generation sequencing (NGS) using circulating tumor DNA (ctDNA) in ACs and characterize common genomic alterations. MATERIALS AND METHODS Molecular alterations in 372 plasma samples from 303 patients with AC using clinical-grade NGS of ctDNA (Guardant360) across multiple institutions were evaluated. Test detects single nucleotide variants in 54-73 genes, copy number amplifications, fusions, and indels in selected genes. RESULTS A total of 303 patients with AC were evaluated, of which 169 (56%) were female. Median age was 56.8 (25-83) years. ctDNA NGS testing was performed on 372 plasma samples; 48 patients had testing performed twice, 9 patients had testing performed three times, and 1 patient had testing performed four times. Genomic alterations were defined in 207 (n = 207/372, 55.6%) samples, and 288 alterations were identified excluding variants of uncertain significance and synonymous mutations. Alterations were identified in at least one sample from 184 patients; TP53-associated genes (n = 71, 38.6%), KRAS (n = 33, 17.9%), APC (n = 14, 7.6%), EGFR (n = 12, 6.5%), BRAF (n = 11, 5.9%), NF1 (n = 10, 5.4%), MYC (n = 9, 4.9%), GNAS (n = 8, 4.3%), MET (n = 6, 3.3%), PIK3CA (n = 5, 2.7%), and ATM (n = 5, 2.7%). Other low-frequency but clinically relevant genomic alterations were as follows: AR (n = 4, 2.2%), TERT (n = 4, 2.2%), ERBB2 (n = 4, 2.2%), SMAD4 (n = 3, 1.6%), CDK4 (n = 2, 1.1%), NRAS (n = 2, 1.1%), FGFR1 (n = 2, 1.1%), FGFR2 (n = 2, 1.1%), PTEN (n = 2, 1.1%), RB1 (n = 2, 1.1%), and CDK6, CDKN2A, BRCA1, BRCA2, JAK2, IDH2, MAPK, NTRK1, CDH1, ARID1A, and PDGFRA (n = 1, 0.5%). CONCLUSION Evaluation of ctDNA is feasible among patients with AC. The frequency of genomic alterations is similar to that previously reported in tissue NGS. Liquid biopsies are not invasive and can provide personalized options for targeted therapies in patients with AC. IMPLICATIONS FOR PRACTICE The complexity of appendiceal cancer and its unique genomic characteristics suggest that customized combination therapy may be required for many patients. Theoretically, as more oncogenic pathways are discovered and more targeted therapies are approved, customized treatment based on the patient's unique molecular profile will lead to personalized care and improve patient outcomes. Liquid biopsies are noninvasive, cost-effective, and promising methods that provide patients with access to personalized treatment.
Collapse
Affiliation(s)
- Walid L Shaib
- Department of Hematology and Oncology, Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
| | - Katerina Zakka
- Department of Hematology and Oncology, Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
| | - Charles Staley
- Division of Surgical Oncology, Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
| | - Ali Roberts
- Guardant Health, Redwood City, California, USA
| | - Mehmet Akce
- Department of Hematology and Oncology, Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
| | - Christina Wu
- Department of Hematology and Oncology, Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
| | - Olatunji B Alese
- Department of Hematology and Oncology, Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
| | - Bassel F El-Rayes
- Department of Hematology and Oncology, Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
39
|
Dekaliuk M, Qiu X, Troalen F, Busson P, Hildebrandt N. Discrimination of the V600E Mutation in BRAF by Rolling Circle Amplification and Förster Resonance Energy Transfer. ACS Sens 2019; 4:2786-2793. [PMID: 31577130 DOI: 10.1021/acssensors.9b01420] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The quantification of very low concentrations of circulating tumor DNA (ctDNA) biomarkers from liquid biopsies has become an important requirement for clinical diagnostics and personalized medicine. In particular, the simultaneous detection of wild-type (WT) dsDNA and their cancer-related counterparts presenting single-point mutations with simple, sensitive, specific, and reproducible technologies is paramount for ctDNA assays in clinical practice. Here, we present the development and evaluation of an amplified dsDNA assay based on a combination of isothermal rolling circle amplification (RCA) and time-gated Förster resonance energy transfer (TG-FRET) between a Tb donor and two dye (Cy3.5 and Cy5.5) acceptors. The RCA-FRET assay is free of washing and separation steps and can quantify both WT and mutated (MT) (V600E) dsDNA in the BRAF gene from a single sample in the 75 fM to 4.5 pM (4.5 × 105 to 2.7 × 107 copies) concentration range. This assay includes all steps from denaturation of the dsDNA targets to the final duplexed quantification of WT and MT targets. High assay performance at different dsDNA sequence lengths and high target specificity even in the presence of a large excess of nonspecific cell-free DNA from human plasma samples demonstrated the applicability to clinical samples. The RCA-FRET single-point mutation sensor has the potential to become an important complementary technique for analyzing liquid biopsies in advanced cancer diagnostics.
Collapse
Affiliation(s)
- Mariia Dekaliuk
- NanoBioPhotonics (nanofret.com), Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, Université Paris-Sud, CNRS, CEA, 91405 Orsay Cedex, France
- Department of Neurochemistry, O. V. Palladin Institute of Biochemistry, Kyiv, 01030, Ukraine
| | - Xue Qiu
- NanoBioPhotonics (nanofret.com), Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, Université Paris-Sud, CNRS, CEA, 91405 Orsay Cedex, France
| | - Frédéric Troalen
- Gustave Roussy, Université Paris-Saclay, CNRS, UMR 8126, 94805 Villejuif, France
| | - Pierre Busson
- Gustave Roussy, Université Paris-Saclay, CNRS, UMR 8126, 94805 Villejuif, France
- Université Paris-Sud, Université Paris-Saclay, 94270 Le Kremlin-Bicêtre, France
| | - Niko Hildebrandt
- NanoBioPhotonics (nanofret.com), Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, Université Paris-Sud, CNRS, CEA, 91405 Orsay Cedex, France
- Laboratoire Chimie Organique, Bioorganique, Réactivité et Analyse (COBRA), Université de Rouen Normandie, CNRS, INSA, 76821 Mont Saint-Aignan, France
| |
Collapse
|
40
|
Emami SS, Akbari A, Zare AA, Agah S, Masoodi M, Talebi A, Minaeian S, Fattahi A, Moghadamnia F. MicroRNA Expression Levels and Histopathological Features of Colorectal Cancer. J Gastrointest Cancer 2019; 50:276-284. [PMID: 29404790 DOI: 10.1007/s12029-018-0055-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
INTRODUCTION Non-coding RNAs have opened a new window in cancer biology. MicroRNAs (miRNAs), as a family of non-coding RNAs, play an important role in the gene regulation. The aberrant expression of these small molecules has been documented to involve in colorectal cancer (CRC) pathogenesis. This study aimed to examine the expression of miRNAs in CRC and to correlate their expression levels with histological markers (Ki-67 and CD34). MATERIALS AND METHODS Tumor tissues and matched normal adjacent tissues were collected from 36 patients with newly diagnosed CRC. Immunohistochemical (IHC) staining of tumor tissues was performed for Ki-67 (proliferation) and CD34 (angiogenesis) markers, and the immunoexpression staining scores were obtained. A polyadenylation SYBER Green quantitative real-time PCR technique was used to quantify the expression of a panel of five CRC-related miRNAs (hsa-miR-21, 31, 20a, 133b, and 145). Histopathological (H) scores and miRNA expression levels were correlated with clinicopathological features including the degree of differentiation, staging, and lymphovascular invasion. RESULTS Our results showed the significant difference between the two groups for the expression level of hsa-miR-21, hsa-miR-31, hsa-miR-145, and miR-20a (P < 0.001), but not for hsa-miR-133b (P = 0.57). Further analysis revealed an inverse significant correlation between hsa-miR-145 and Ki-67 (r = - 0.942, P < 0.001). While a positive correlation was observed between hsa-miR-21 and Ki-67 (r = 0.920, P < 0.001), and hsa-miR-21 and CD34 (r = 0.981, P < 0.001). Also, a positive correlation between hsa-miR-31 and Ki-67 (r = 0.913, P < 0.001), hsa-miR-31 and CD34 (r = 0.798, P < 0.05), hsa-miR-20a and Ki-67 (r = 0.871, P < 0.001), and hsa-miR-20a and CD34 (r = 0.890, P < 0.001) was found. CONCLUSION Dysregulation of miRNAs and correlation with molecular histopathology indicate a biological role for miRNAs in various cellular processes including cell proliferation and angiogenesis in CRC development. On the other hand, the pattern of miRNA expression and its correlation with histological markers are potentially valuable to apply as diagnostic biomarkers for CRC.
Collapse
Affiliation(s)
- Sahar Sarmasti Emami
- Department of Medical Biotechnology, School of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Abolfazl Akbari
- Colorectal Research Center, Iran University of Medical Sciences, Tehran, Iran.
| | - Ali-Akbar Zare
- Young Researchers and Elites Club, Science and Research Branch, Islamic Azad University, Tehran, Iran. .,Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran.
| | - Shahram Agah
- Colorectal Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mohsen Masoodi
- Colorectal Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Atefeh Talebi
- Colorectal Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Sara Minaeian
- Antimicrobial Resistance Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Azam Fattahi
- Research Center of Pediatric Infectious Diseases, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Farahnaz Moghadamnia
- Department of Genetics, Tehran Medical Sciences Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
41
|
Ramón Y Cajal S, Hümmer S, Peg V, Guiu XM, De Torres I, Castellvi J, Martinez-Saez E, Hernandez-Losa J. Integrating clinical, molecular, proteomic and histopathological data within the tissue context: tissunomics. Histopathology 2019; 75:4-19. [PMID: 30667539 PMCID: PMC6851567 DOI: 10.1111/his.13828] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 01/19/2019] [Indexed: 12/14/2022]
Abstract
Malignant tumours show a marked degree of morphological, molecular and proteomic heterogeneity. This variability is closely related to microenvironmental factors and the location of the tumour. The activation of genetic alterations is very tissue‐dependent and only few tumours have distinct genetic alterations. Importantly, the activation state of proteins and signaling factors is heterogeneous in the primary tumour and in metastases and recurrences. The molecular diagnosis based only on genetic alterations can lead to treatments with unpredictable responses, depending on the tumour location, such as the tumour response in melanomas versus colon carcinomas with BRAF mutations. Therefore, we understand that the correct evaluation of tumours requires a system that integrates both morphological, molecular and protein information in a clinical and pathological context, where intratumoral heterogeneity can be assessed. Thus, we propose the term ‘tissunomics’, where the diagnosis will be contextualised in each tumour based on the complementation of the pathological, molecular, protein expression, environmental cells and clinical data.
Collapse
Affiliation(s)
- Santiago Ramón Y Cajal
- Translational Molecular Pathology, Vall d'Hebron Institute of Research (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain.,Department of Pathology, Vall d'Hebron University Hospital, Barcelona, Spain.,Spanish Biomedical Research Network Centre in Oncology (CIBERONC), Barcelona, Spain
| | - Stefan Hümmer
- Translational Molecular Pathology, Vall d'Hebron Institute of Research (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain.,Spanish Biomedical Research Network Centre in Oncology (CIBERONC), Barcelona, Spain
| | - Vicente Peg
- Department of Pathology, Vall d'Hebron University Hospital, Barcelona, Spain.,Spanish Biomedical Research Network Centre in Oncology (CIBERONC), Barcelona, Spain
| | - Xavier M Guiu
- Spanish Biomedical Research Network Centre in Oncology (CIBERONC), Barcelona, Spain.,Department of Pathology, Bellvitge University Hospital, Barcelona, Spain
| | - Inés De Torres
- Department of Pathology, Vall d'Hebron University Hospital, Barcelona, Spain
| | - Josep Castellvi
- Department of Pathology, Vall d'Hebron University Hospital, Barcelona, Spain.,Spanish Biomedical Research Network Centre in Oncology (CIBERONC), Barcelona, Spain
| | - Elena Martinez-Saez
- Department of Pathology, Vall d'Hebron University Hospital, Barcelona, Spain
| | - Javier Hernandez-Losa
- Translational Molecular Pathology, Vall d'Hebron Institute of Research (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain.,Department of Pathology, Vall d'Hebron University Hospital, Barcelona, Spain.,Spanish Biomedical Research Network Centre in Oncology (CIBERONC), Barcelona, Spain
| |
Collapse
|
42
|
Wang Z, Xu D, Wang X, Jin Y, Huo B, Wang Y, He C, Fu X, Lu N. Size-matching hierarchical micropillar arrays for detecting circulating tumor cells in breast cancer patients' whole blood. NANOSCALE 2019; 11:6677-6684. [PMID: 30899928 DOI: 10.1039/c9nr00173e] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Circulating tumor cells (CTCs) are important markers for cancer diagnosis and treatment, but it is still a challenge to recognize and isolate CTCs because they are very rare in the blood. To selectively recognize CTCs and improve the capture efficiency, micro/nanostructured substrates have been fabricated for this application; however the size of CTCs is often ignored in designing and engineering micro/nanostructured substrates. Herein, a spiky polymer micropillar array is fabricated for capturing CTCs with high efficiency. The surface of the micropillar is cactus-like, and is composed of nanospikes. This hierarchical polymer array is designed according to the size of CTCs, which allows for more interactions of the CTCs with the array by setting the size of gaps among the micropillars to match with the CTCs. This polymer array is created by molding on an ordered silicon array, and then it is coated with an antiepithelial cell adhesion molecule antibody (anti-EpCAM). After co-culture with MCF-7 cells for 45 min, the capture efficiency of this array for CTCs is up to 91% ± 2%. Moreover, the anti-EpCAM modified polymer micropillar arrays present an excellent capacity to isolate CTCs from the whole blood samples of breast cancer patients. This study may provide a new concept for capturing target cells by designing and engineering micro/nanostructured substrates according to the size of target cells.
Collapse
Affiliation(s)
- Zhongshun Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China.
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Xie W, Xie L, Song X. The diagnostic accuracy of circulating free DNA for the detection of KRAS mutation status in colorectal cancer: A meta-analysis. Cancer Med 2019; 8:1218-1231. [PMID: 30791218 PMCID: PMC6434340 DOI: 10.1002/cam4.1989] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 12/17/2018] [Accepted: 01/04/2019] [Indexed: 02/06/2023] Open
Abstract
KRAS mutations have been reported as a reliable biomarker for epidermal growth factor receptor (EGFR) targeted therapy and are also associated with poor prognosis in colorectal cancer (CRC) patients. However, limitations of detecting KRAS mutations in tissues are obvious. KRAS mutations in the peripheral blood can be detected as an alternative to tissue analysis. The objective of this meta‐analysis was to evaluate the diagnostic value of cfDNA (circulating free DNA) compared with tissues and to investigate the prognostic potential of cfDNA KRAS mutations in CRC patients. Searches were performed in PubMed, Embase, and Cochrane Library for published studies. We extracted true‐positive (TP), false‐positive (FP), false‐negative (FN), true‐negative (TN) values, survival rate of CRC patients with mutant and wild‐type KRAS and calculated pooled sensitivity and specificity, positive/negative likelihood ratios [PLRs/NLRs], diagnostic odds ratios [DORs], and corresponding 95% confidence intervals [95% CIs]. We also generated a summary receiver operating characteristic (SROC) curve to evaluate the overall diagnostic potential. Totally, 31 relevant studies were recruited and used for the meta‐analysis on the efficacy of cfDNA testing in detecting KRAS mutations. The pooled sensitivity, specificity, PLR, NLR, and DOR were 0.637 (95% CI: 0.607‐0.666), 0.943 (95% CI: 0.930‐0.954), 10.024 (95% CI: 6.912‐14.535), 0.347 (95% CI: 0.269‐0.447), and 37.882 (95% CI: 22.473‐63.857), respectively. The area under the SROC curve was 0.9392. Together, the results suggest that detecting KRAS mutations in cfDNA has adequate diagnostic efficacy in terms of specificity. There is a promising role for cfDNA in the detection of KRAS mutations in CRC patients. However, prospective studies with larger patient cohorts are still required before definitive conclusions of the prognostic potential of cfDNA KRAS mutations in CRC patients were drawn.
Collapse
Affiliation(s)
- Wenli Xie
- Shandong Cancer Hospital Affiliated to Shandong University, Shandong University, Shandong Province, Jinan, P.R. China
| | - Li Xie
- Shandong Cancer Hospital Affiliated to Shandong University, Shandong Academy of Medical Sciences, Shandong Province, Jinan, P.R. China
| | - Xianrang Song
- Shandong Cancer Hospital Affiliated to Shandong University, Shandong University, Shandong Province, Jinan, P.R. China.,Shandong Cancer Hospital Affiliated to Shandong University, Shandong Academy of Medical Sciences, Shandong Province, Jinan, P.R. China
| |
Collapse
|
44
|
Ward Gahlawat A, Lenhardt J, Witte T, Keitel D, Kaufhold A, Maass KK, Pajtler KW, Sohn C, Schott S. Evaluation of Storage Tubes for Combined Analysis of Circulating Nucleic Acids in Liquid Biopsies. Int J Mol Sci 2019; 20:ijms20030704. [PMID: 30736351 PMCID: PMC6387045 DOI: 10.3390/ijms20030704] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 01/29/2019] [Accepted: 01/30/2019] [Indexed: 02/06/2023] Open
Abstract
In the last decade, circulating nucleic acids such as microRNAs (miRNAs) and cell-free DNA (cfDNA) have become increasingly important in serving as potential novel biomarkers for a variety of human diseases. If cell-free nucleic acids are to become routinely used in diagnostics, the difference in plasma miRNA and cfDNA levels between healthy and diseased subjects must exceed pre-analytical and analytical variability. Until now, few studies have addressed the time limitations of pre-processing or explored the potential use of long-term blood storage tubes, which might need to be implemented in real-life diagnostics. In this study, we analyzed the stability of four breast cancer-associated miRNAs and two cancer-associated genes under various storage conditions, to test their limitations for potential application in clinical diagnostics. In two consecutive experiments, we tested the limits of conventional EDTA tubes, as well as long-term storage blood collection tubes (BCTs) from four different manufacturers. We found that circulating miRNAs are relatively stable when stored in EDTA monovettes for up to 12 h before processing. When stored in BCTs, circulating miRNAs and cfDNA are stable for up to 7 days, depending on the manufacturer. Norgen tubes were superior for cfDNA yield, while Streck tubes performed the worst in our study with hemolysis induction. In conclusion, plasma prepared from whole blood is suitable for the quantification of both cf-miRNAs and cfDNA simultaneously.
Collapse
Affiliation(s)
- Aoife Ward Gahlawat
- Department of Gynecology and Obstetrics, University Hospital of Heidelberg, 69120 Heidelberg, Germany.
| | - Judith Lenhardt
- Department of Gynecology and Obstetrics, University Hospital of Heidelberg, 69120 Heidelberg, Germany.
| | - Tania Witte
- Department of Gynecology and Obstetrics, University Hospital of Heidelberg, 69120 Heidelberg, Germany.
| | - Denise Keitel
- Department of Gynecology and Obstetrics, University Hospital of Heidelberg, 69120 Heidelberg, Germany.
| | - Anna Kaufhold
- Division of Pediatric Neuro-oncology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany.
| | - Kendra K Maass
- Division of Pediatric Neuro-oncology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany.
| | - Kristian W Pajtler
- Division of Pediatric Neuro-oncology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany.
- Department of Pediatric Oncology, Hematology and Immunology, University Hospital of Heidelberg, 69120 Heidelberg, Germany.
| | - Christof Sohn
- Department of Gynecology and Obstetrics, University Hospital of Heidelberg, 69120 Heidelberg, Germany.
| | - Sarah Schott
- Department of Gynecology and Obstetrics, University Hospital of Heidelberg, 69120 Heidelberg, Germany.
| |
Collapse
|
45
|
Seoane J, De Mattos-Arruda L, Le Rhun E, Bardelli A, Weller M. Cerebrospinal fluid cell-free tumour DNA as a liquid biopsy for primary brain tumours and central nervous system metastases. Ann Oncol 2019; 30:211-218. [PMID: 30576421 DOI: 10.1093/annonc/mdy544] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Challenges in obtaining tissue specimens from patients with brain tumours limit the diagnosis and molecular characterisation and impair the development of better therapeutic approaches. The analysis of cell-free tumour DNA in plasma (considered a liquid biopsy) has facilitated the characterisation of extra-cranial tumours. However, cell-free tumour DNA in plasma is limited in quantity and may not reliably capture the landscape of genomic alterations of brain tumours. Here, we review recent work assessing the relevance of cell-free tumour DNA from cerebrospinal fluid in the characterisation of brain cancer. We focus on the advances in the use of the cerebrospinal fluid as a source of cell-free tumour DNA to facilitate diagnosis, reveal actionable genomic alterations, monitor responses to therapy, and capture tumour heterogeneity in patients with primary brain tumours and brain and leptomeningeal metastases. Profiling cerebrospinal fluid cell-free tumour DNA provides the opportunity to precisely acquire and monitor genomic information in real time and guide precision therapies.
Collapse
Affiliation(s)
- J Seoane
- Vall d'Hebron Institute of Oncology, Vall d'Hebron University Hospital, Barcelona; Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona; CIBERONC, Barcelona; Universitat Autònoma de Barcelona, Cerdanyola del Vallès.
| | - L De Mattos-Arruda
- Vall d'Hebron Institute of Oncology, Vall d'Hebron University Hospital, Barcelona
| | - E Le Rhun
- Lille University, Inserm U1192 PRISM, Villeneuve d'Ascq; Neuro-oncology, Department of Neurosurgery, University Hospital, Lille; Neuro-oncology, Breast Unit, Department of Medical Oncology, Oscar Lambret Center, Lille, France
| | - A Bardelli
- Candiolo Cancer Institute-FPO, IRCCS, Candiolo (TO); Department of Oncology, University of Torino, Candiolo (TO), Italy
| | - M Weller
- Department of Neurology, University Hospital and University of Zurich, Zurich, Switzerland
| |
Collapse
|
46
|
Li T, Li N, Ma Y, Bai YJ, Xing CM, Gong YK. A blood cell repelling and tumor cell capturing surface for high-purity enrichment of circulating tumor cells. J Mater Chem B 2019; 7:6087-6098. [DOI: 10.1039/c9tb01649j] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A red blood cell membrane mimetic surface decorated with FA and RGD ligands can efficiently capture tumor cells with high selectivity.
Collapse
Affiliation(s)
- Tong Li
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education
- College of Chemistry and Materials Science
- Northwest University
- Xi'an 710127
- P. R. China
| | - Nan Li
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education
- College of Chemistry and Materials Science
- Northwest University
- Xi'an 710127
- P. R. China
| | - Yao Ma
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education
- College of Chemistry and Materials Science
- Northwest University
- Xi'an 710127
- P. R. China
| | - Yun-Jie Bai
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education
- College of Chemistry and Materials Science
- Northwest University
- Xi'an 710127
- P. R. China
| | - Cheng-Mei Xing
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education
- College of Chemistry and Materials Science
- Northwest University
- Xi'an 710127
- P. R. China
| | - Yong-Kuan Gong
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education
- College of Chemistry and Materials Science
- Northwest University
- Xi'an 710127
- P. R. China
| |
Collapse
|
47
|
Shang M, Chang C, Pei Y, Guan Y, Chang J, Li H. Potential Management of Circulating Tumor DNA as a Biomarker in Triple-Negative Breast Cancer. J Cancer 2018; 9:4627-4634. [PMID: 30588246 PMCID: PMC6299380 DOI: 10.7150/jca.28458] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 09/11/2018] [Indexed: 12/18/2022] Open
Abstract
As a specific subtype of breast cancer, Triple-negative breast cancer (TNBC) is associated with worse prognosis and higher tumor aggressiveness than HER2-amplified or hormone receptor positive breast cancers. Circulating tumor DNA (ctDNA), as a non-invasive “liquid biopsy”, is an emerging original blood-based biomarker for early breast cancer diagnosis, monitoring treatment response, and determining prognosis. In TNBC patients, ctDNA has an inherent tendency to characterize tumor heterogeneity and metastasis-specific mutations providing a key alternative to tumor tissue profiling. Several studies have already demonstrated the potential of ctDNA in TNBC patients from early to advanced stages of the disease including diagnosis, therapy decisions and assessment of prognosis. This review provides a critical brief summary of the evidence that gives credence to the utility of ctDNA as a biomarker for its role into clinical management in TNBC.
Collapse
Affiliation(s)
- Mao Shang
- School of Medicine and Life Sciences, University of Jinan Shandong Academy of Medical Sciences, Jinan, Shandong, China.,Department of Radiation Oncology, Shandong Cancer Hospital Affiliated to Shandong University, Shandong Academy of Medical Sciences, Jinan, Shandong Province, China. 250117
| | - Chunxiao Chang
- Department of Medical Oncology, Shandong Cancer Hospital Affiliated to Shandong University, Shandong Academy of Medical Sciences, Jinan, Shandong Province, China. 250117
| | - Yanqing Pei
- Department of Quality Management Office, Shandong Cancer Hospital Affiliated to Shandong University, Shandong Academy of Medical Sciences, Jinan, Shandong Province, China. 250117
| | - Yin Guan
- Department of Medical Oncology, Beijing Chao-Yang Hospital, Beijing, China
| | - Jin Chang
- Oncology department, Affiliated Hospital of Taishan Medical university
| | - HuiHui Li
- Department of Medical Oncology, Shandong Cancer Hospital Affiliated to Shandong University, Shandong Academy of Medical Sciences, Jinan, Shandong Province, China. 250117
| |
Collapse
|
48
|
Hussein NA, Mohamed SN, Ahmed MA. Plasma ALU-247, ALU-115, and cfDNA Integrity as Diagnostic and Prognostic Biomarkers for Breast Cancer. Appl Biochem Biotechnol 2018; 187:1028-1045. [PMID: 30151636 DOI: 10.1007/s12010-018-2858-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Accepted: 08/01/2018] [Indexed: 01/05/2023]
Abstract
Diagnosis of breast cancer (BC) by using sensitive and specific biomarkers is necessary. Cell-free DNA is a candidate biomarker in various cancers. Contrasting, shorted uniformed DNA released from apoptotic non-diseased cells, DNA released from malignant cells varies in size. DNA integrity is a ratio between 247 and 115 bp. So, this study was designed to investigate the role of plasma ALU-247, ALU-115, and DNA integrity as possible diagnostic and prognostic markers in BC patients as compared to plasma CA15.3. The concentrations of selected parameters were determined for 40 patients with BC (2 stage I, 31 stage II, 2 stage III, and 5 stage IV) and 10 healthy volunteers by quantitative real-time PCR and ELISA. The sensitivities of ALU-247, ALU-115, and cfDI as biomarkers for BC were evaluated and compared with CA15.3. Also, disease-free survival and overall survival were estimated. For all parameters, the concentrations in patients were significantly higher than in the control group; association with tumor stage and high sensitivities was observed. The studied parameters failed to predict survival or relapse in BC patients before surgery. Plasma ALU-247, ALU-115, and DNA integrity may prove to have clinical utility in BC diagnosis. Elevated preoperative CA15.3 was shown to be directly related to tumor burden, which may improve its diagnostic capability. Those selected parameters could be effectively used together with plasma CA15.3 for BC screening at early stage. Furthermore, both ALU-247 and ALU-115 seem to be preoperative prognostic markers for BC.
Collapse
Affiliation(s)
- Neveen A Hussein
- Applied Medical Chemistry Department, Medical Research Institute, Alexandria University, Alexandria, Egypt.
| | - Salwa N Mohamed
- Cancer Management and Research Department, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Mohamed A Ahmed
- Clinical Pathology Department, Medical Military Academy, Alexandria, Egypt
| |
Collapse
|
49
|
Khatami F, Tavangar SM. Circulating tumor DNA (ctDNA) in the era of personalized cancer therapy. J Diabetes Metab Disord 2018; 17:19-30. [PMID: 30288382 PMCID: PMC6154523 DOI: 10.1007/s40200-018-0334-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 01/17/2018] [Indexed: 02/07/2023]
Abstract
The heterogeneity of tumor is considered as a major difficulty to victorious personalized cancer medicine. There is an extremeneed of consistent response evaluation for in vivo tumor heterogeneity anditscoupledconflict mechanisms. In this occasion researchers will be able to keep pace withpredictive, preventive, personalized, and Participatory (P4) medicine for cancer managements. In fact tumor heterogeneity is a central part of cancer evolution,soin order to progress in understanding of the dynamics within a tumor some diagnostic apparatus should be improved. Latest molecular techniques like Next generation Sequencing (NGS) and ultra-deep sequencing could disclose some clones within a liquid tumor biopsy which mainly responsible of treatment resistance. Circulating tumor DNA (ctDNA) as a main component of liquid biopsy is agifted biomarker for cancer mutation tracking as well as profiling. Personalized medicine facilitate learning regarding to genetic pools of tumor and their possible respond to treatment which could be much easier by using of ctDNA.With this information, cliniciansarelooking forward to find the best strategies for prevention, screening, and treatment in the way of precision medicine. Currently, numerous clinical efficacy of such informative improved treatment are in hand. Here we represent the review of plasma-derived ctDNA studies use in personalized cancer managements.
Collapse
Affiliation(s)
- Fatemeh Khatami
- Chronic Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Mohammad Tavangar
- Chronic Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- Departments of Pathology, Doctor Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
50
|
Gorgannezhad L, Umer M, Islam MN, Nguyen NT, Shiddiky MJA. Circulating tumor DNA and liquid biopsy: opportunities, challenges, and recent advances in detection technologies. LAB ON A CHIP 2018; 18:1174-1196. [PMID: 29569666 DOI: 10.1039/c8lc00100f] [Citation(s) in RCA: 195] [Impact Index Per Article: 27.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Cell-free DNA (cfDNA) refers to short fragments of acellular nucleic acids detectable in almost all body fluids, including blood, and is involved in various physiological and pathological phenomena such as immunity, coagulation, aging, and cancer. In cancer patients, a fraction of hematogenous cfDNA originates from tumors, termed circulating tumor DNA (ctDNA), and may carry the same mutations and genetic alterations as those of a primary tumor. Thus, ctDNA potentially provides an opportunity for noninvasive assessment of cancer. Recent advances in ctDNA analysis methods will potentially lead to the development of a liquid biopsy tool for the diagnosis, prognosis, therapy response monitoring, and tracking the rise of new mutant sub-clones in cancer patients. Over the past few decades, cancer-specific mutations in ctDNA have been detected using a variety of untargeted methods such as digital karyotyping, personalized analysis of rearranged ends (PARE), whole-genome sequencing of ctDNA, and targeted approaches such as conventional and digital PCR-based methods and deep sequencing-based technologies. More recently, several chip-based electrochemical sensors have been developed for the analysis of ctDNA in patient samples. This paper aims to comprehensively review the diagnostic, prognostic, and predictive potential of ctDNA as a minimally invasive liquid biopsy for cancer patients. We also present an overview of current advances in the analytical sensitivity and accuracy of ctDNA analysis methods as well as biological and technical challenges, which need to be resolved for the integration of ctDNA analysis into routine clinical practice.
Collapse
Affiliation(s)
- Lena Gorgannezhad
- School of Environment and Science, Griffith University, Nathan Campus, QLD 4111, Australia. and Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan Campus, QLD 4111, Australia
| | - Muhammad Umer
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan Campus, QLD 4111, Australia
| | - Md Nazmul Islam
- School of Environment and Science, Griffith University, Nathan Campus, QLD 4111, Australia. and Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan Campus, QLD 4111, Australia
| | - Nam-Trung Nguyen
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan Campus, QLD 4111, Australia
| | - Muhammad J A Shiddiky
- School of Environment and Science, Griffith University, Nathan Campus, QLD 4111, Australia. and Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan Campus, QLD 4111, Australia
| |
Collapse
|