1
|
Yu X, Faggion S, Liu Y, Wang B, Zeng Q, Lu C, Hu J, Bargelloni L, Fang L, Bao Z. Role of multi-omics in aquaculture genetics and breeding: current status and future perspective. SCIENCE CHINA. LIFE SCIENCES 2025:10.1007/s11427-024-2828-8. [PMID: 40448907 DOI: 10.1007/s11427-024-2828-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 11/26/2024] [Indexed: 06/02/2025]
Abstract
Aquaculture, a fast-growing sector, plays an important role in the supply of nutrient-rich food for humans. Selective breeding is a promising approach to ensure the development and sustainability of intensive aquaculture systems by achieving cumulative and permanent improvements in desirable traits. The advancement of omics technologies offers unprecedented opportunities for genetic improvement, especially in the prioritization of SNPs to be used in the genomic selection and editing of economically important traits. This review highlights novel breeding strategies in aquaculture, emphasizing how multi-omics data can be integrated into selective breeding programs. Specifically, we discuss the current achievements in integrating functional data into conventional genomic prediction models and highlight the potential of artificial intelligence to efficiently map genes and predict phenotypes or genetic merit using multi-omics data. Ultimately, we discuss genome editing methods for their potential to fix existing alleles, introduce alleles from wild populations or related species, and create de novo alleles, with the general goal of improving commercially important traits in aquaculture species.
Collapse
Affiliation(s)
- Xiaofei Yu
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Sara Faggion
- Department of Comparative Biomedicine and Food Science, University of Padova, Legnaro, 35020, Italy
| | - Yuxiang Liu
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Bo Wang
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Qifan Zeng
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Chunzhe Lu
- Groningen Biomolecular Sciences & Biotechnology Institute, University of Groningen, Groningen, 9747 AG, the Netherlands
| | - Jingjie Hu
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Luca Bargelloni
- Department of Comparative Biomedicine and Food Science, University of Padova, Legnaro, 35020, Italy
| | - Lingzhao Fang
- Center for Quantitative Genetics and Genomics, Aarhus University, Aarhus, 8830, Denmark.
| | - Zhenmin Bao
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China.
| |
Collapse
|
2
|
Yang T, Wang M, Wang N, Pan M, Xu Y, You Q, Yao L, Xu J, Gu L, Sun X, Zhang L, Xu J, Li B, Wang G, Cai S, Lv G, Shen F. Cost-Effective Identification of Hepatocellular Carcinoma from Cirrhosis or Chronic Hepatitis Virus Infection Using Eight Methylated Plasma DNA Markers. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2411945. [PMID: 40135830 PMCID: PMC12097027 DOI: 10.1002/advs.202411945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 02/20/2025] [Indexed: 03/27/2025]
Abstract
Early detection of hepatocellular carcinoma (HCC) in patients with liver cirrhosis (LC) and/or hepatitis virus B/C infection (HVI) improves survival, highlighting the need for accurate, affordable diagnostic tools. Here, 11 methylated DNA markers (MDMs) are identified during marker discovery. In phase I, each selected MDM is validated in 175 plasma samples (HCC, n = 85; LC/HVI, n = 72) by the CO-methylation aMplification rEal-Time PCR (COMET) assay. Of these, 8 MDMs are qualified for phase II study, where a logistic regression model (COMET-LR) is trained and validated with 336 plasma samples (HCC, n = 211; LC/HVI, n = 113; training vs validation, 2:1). In the validation, the COMET-LR achieved 90.0% sensitivity at 97.4% specificity. Notably, sensitivity in patients with TNM stage I, diameter<3 cm, AFP-negative (<20 ng mL-1), PIVKA-II-negative (<40 mAU mL-1) is 82.4%, 77.8%, 88.6%, and 85.7%, respectively. The COMET-LR outperformed multiple protein markers (AFP, AFP-L3, and PIVKA-II) and published scores for HCC screening (GALAD, Doylestown, and ASAP), in terms of both sensitivity and specificity. The assay represents a significant advancement in addressing the unmet need for accurate, non-invasive, accessible, and cost-effective early detection tools for LC/HVI individuals. Further validation in a prospective cohort is warranted.
Collapse
Affiliation(s)
- Tian Yang
- Department of Hepatobiliary SurgeryEastern Hepatobiliary Surgery HospitalNaval Medical UniversityShanghai200438China
| | - Mingda Wang
- Department of Hepatobiliary SurgeryEastern Hepatobiliary Surgery HospitalNaval Medical UniversityShanghai200438China
| | - Nanya Wang
- Department of Hepatobiliary and Pancreatic SurgeryGeneral Surgery CenterFirst Hospital of Jilin UniversityChangchunJilin130021China
- Phase I clinical trials unitFirst Hospital of Jilin UniversityChangchunJilin130021China
| | - Mingxin Pan
- Department of Hepatobiliary Surgery IIGeneral Surgery CenterZhujiang HospitalSouthern Medical UniversityGuangzhou510280China
| | - Yu Xu
- Burning Rock BiotechGuangzhou510300China
| | | | - Lanqing Yao
- Department of Hepatobiliary SurgeryEastern Hepatobiliary Surgery HospitalNaval Medical UniversityShanghai200438China
| | - Jiahao Xu
- Department of Hepatobiliary SurgeryEastern Hepatobiliary Surgery HospitalNaval Medical UniversityShanghai200438China
| | - Lihui Gu
- Department of Hepatobiliary SurgeryEastern Hepatobiliary Surgery HospitalNaval Medical UniversityShanghai200438China
| | - Xiaodong Sun
- Department of Hepatobiliary and Pancreatic SurgeryGeneral Surgery CenterFirst Hospital of Jilin UniversityChangchunJilin130021China
| | - Lei Zhang
- Burning Rock BiotechGuangzhou510300China
| | - Jiayue Xu
- Burning Rock BiotechGuangzhou510300China
| | - Bingsi Li
- Burning Rock BiotechGuangzhou510300China
| | | | | | - Guoyue Lv
- Department of Hepatobiliary and Pancreatic SurgeryGeneral Surgery CenterFirst Hospital of Jilin UniversityChangchunJilin130021China
| | - Feng Shen
- Department of Hepatobiliary SurgeryEastern Hepatobiliary Surgery HospitalNaval Medical UniversityShanghai200438China
| |
Collapse
|
3
|
Lønning PE, Nikolaienko O, Knappskog S. Constitutional Epimutations: From Rare Events Toward Major Cancer Risk Factors? JCO Precis Oncol 2025; 9:e2400746. [PMID: 40179326 PMCID: PMC11995855 DOI: 10.1200/po-24-00746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 01/09/2025] [Accepted: 01/14/2025] [Indexed: 04/05/2025] Open
Abstract
Constitutional epimutations are epigenetic aberrations that arise in normal cells prenatally. Two major forms exist: secondary constitutional epimutations (SCEs), associated with cis-acting genetic aberrations, and primary constitutional epimutations (PCEs), for which no associated genetic aberrations were identified. Some SCEs have been associated with risk of cancer (MLH1 and MSH2 with colon or endometrial cancers, BRCA1 with familial breast and ovarian cancers), although such epimutations are rare, with a total of <100 cases reported. This contrasts recent findings for PCE, where low-level mosaic BRCA1 epimutations are recorded in 5%-10% of healthy females across all age groups, including newborns. BRCA1 PCEs predict an elevated risk of high-grade serous ovarian cancer and triple-negative breast cancer (TNBC) and are estimated to account for about 20% of all TNBCs. A similarly high population frequency is observed for mosaic constitutional epimutations in MGMT, occurring as PCE or SCE, but not in MLH1. Contrasting BRCA1 and MLH1, a potential association with cancer risk for MGMT epimutations is yet unclear. In this review, we provide a summary of findings linking constitutional epimutations to cancer risk with emphasis on PCE. We also highlight challenges in detection of PCE exemplified by low-level mosaic epimutations in BRCA1 and indicate the need for further studies, hypothesizing that improved knowledge about PCE may add significantly to our understanding of cancer risk, carcinogenesis, and potentially development of other diseases as well.
Collapse
Affiliation(s)
| | - Oleksii Nikolaienko
- Department of Oncology, Haukeland University Hospital, Bergen, Norway
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Stian Knappskog
- Department of Oncology, Haukeland University Hospital, Bergen, Norway
- Department of Clinical Science, University of Bergen, Bergen, Norway
| |
Collapse
|
4
|
Ke L, Zhao H, Shan H, Chen Y, Cai Y, Wang Y, Wei B, Du M. Highly Sensitive and Specific Lateral Flow Detection for DNA Methylation Based on GIaI-Mediated Specific-Terminal-Mediated Polymerase Chain Reaction. MICROMACHINES 2025; 16:387. [PMID: 40283264 PMCID: PMC12029426 DOI: 10.3390/mi16040387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 03/22/2025] [Accepted: 03/26/2025] [Indexed: 04/29/2025]
Abstract
Sensitive and specific detection of DNA methylation is crucial for the early diagnosis of various human diseases, particularly cancers. However, conventional methylation detection methods often face challenges in balancing both sensitivity and specificity. In this study, we present a novel approach that integrates the high specificity of methylation-dependent restriction endonuclease (GlaI) digestion with the amplification efficiency of specific terminal-mediated polymerase chain reaction (STEM-PCR). This combination enables selective amplification of methylated DNA, which is then detected through lateral flow detection (LFD), providing a simple, visual readout. As a proof of concept, a STEM-PCR-LFD assay was applied to detect methylated Septin 9, a biomarker for colorectal cancer. The assay demonstrated a sensitivity of approximately 0.1% (10 copies of methylated template per reaction), with no cross-reactivity observed when 10,000 copies of unmethylated DNA were included as background. Furthermore, the assay was validated with ten formalin-fixed paraffin-embedded (FFPE) tissue samples, achieving 100% consistency with standard real-time STEM-PCR. This method offers a highly sensitive, specific, and accessible platform for DNA methylation detection, with potential for early disease diagnosis.
Collapse
Affiliation(s)
- Lihui Ke
- Department of Thoracic Surgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China; (L.K.); (Y.C.)
| | - Hang Zhao
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen 518118, China;
| | - Hongbo Shan
- Adicon Clinical Laboratories, Inc., Hangzhou 310023, China;
| | - Yicheng Chen
- Key Laboratory of Biomechanics and Mechanobiology, Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Engineering Medicine, Beihang University, Beijing 100191, China;
| | - Yongsheng Cai
- Department of Thoracic Surgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China; (L.K.); (Y.C.)
- Key Laboratory of Biomechanics and Mechanobiology, Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Engineering Medicine, Beihang University, Beijing 100191, China;
| | - Yang Wang
- Key Laboratory of Biomechanics and Mechanobiology, Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Engineering Medicine, Beihang University, Beijing 100191, China;
| | - Bo Wei
- Department of Thoracic Surgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China; (L.K.); (Y.C.)
| | - Minghua Du
- Department of Emergency, The First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| |
Collapse
|
5
|
Zheng Y, Xing W, BingWei, Liu X, Liang G, Yuan D, Yang K, Wang W, Chen D, Ma J. Detection of a novel DNA methylation marker panel for esophageal cancer diagnosis using circulating tumor DNA. BMC Cancer 2024; 24:1578. [PMID: 39725880 DOI: 10.1186/s12885-024-13301-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 12/05/2024] [Indexed: 12/28/2024] Open
Abstract
BACKGROUND Esophageal cancer (ECa) is one of the most deadly cancers, with increasing incidence worldwide and poor prognosis. While endoscopy is recommended for the detection of ECa in high-risk individuals, it is not suitable for large-scale screening due to its invasiveness and inconvenience. METHODS In this study, a novel gene methylation panel was developed for a blood-based test, and its diagnostic efficacy was evaluated using a cohort of 304 participants (203 cases, 101 controls). The assessment focused on the DNA methylation levels of SEPTIN9, tissue factor pathway inhibitor 2 (TFPI2), and the fragile histidine triad gene (FHIT) in patients with ECa, benign esophageal disease, and healthy controls. The receiver operating characteristic (ROC) curve was generated for the panel to calculate the area under the curve (AUC), sensitivity, specificity, and 95% confidence intervals (CIs), along with a comparison to the gold standard of pathological examination. The consistency between biomarker and pathological diagnosis was evaluated with kappa analysis conducted with IBM SPSS Statistics. The Chi-square test or Fisher's exact test was utilized to assess the association of test positivity with demographic characteristics. RESULTS In patients with ECa, SEPTIN9, TFPI2, and FHIT DNA methylation levels were significantly higher compared to those with benign esophageal disease or healthy controls. The panel demonstrated promising potential as a noninvasive tool for distinguishing malignant tumors from both healthy controls and benign esophageal diseases, achieving an area under the ROC curve of 0.925 (95% CI: 0.889-0.952), with a sensitivity of 79.8% [95% CI 73.6-85.1%] and specificity of 95.0% [95% CI 88.8-98.4%]. In particular, the panel showed exceptional diagnostic efficiency for stage 0, I, and II cancer patients with sensitivity at 69.0, 75.5%, and 78.9%, respectively. The comparison revealed a Kappa value of 0.725 between RT-PCR testing and the established gold standard of pathological examination, indicating a high level of consistency. Additionally, there was no bias in diagnostic efficiency based on age, gender, or the presence of other malignancies (non-esophageal cancers). CONCLUSIONS The study's findings suggested that the DNA methylation biomarkers panel holds promise as a non-invasive and convenient diagnostic test for ECa. The panel's ability to distinguish malignant tumors from benign esophageal diseases, coupled with its high sensitivity and specificity, presented opportunities to enhance the over-all diagnosis of high-risk population when in conjunction with existing detection methods.
Collapse
Affiliation(s)
- Yan Zheng
- Department of Thoracic Surgery, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, Henan, China
| | - Wenqun Xing
- Department of Thoracic Surgery, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, Henan, China
| | - BingWei
- Department of Molecular Pathology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, No 127, Dongming Road, Zhengzhou, 450008, Henan, China
- Henan Key Laboratory of Molecular Pathology, Zhengzhou, Henan, China
| | - Xianben Liu
- Department of Thoracic Surgery, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, Henan, China
| | - Guanghui Liang
- Department of Thoracic Surgery, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, Henan, China
| | - Dongfeng Yuan
- Department of Thoracic Surgery, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, Henan, China
| | - Ke Yang
- Department of Molecular Pathology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, No 127, Dongming Road, Zhengzhou, 450008, Henan, China
- Henan Key Laboratory of Molecular Pathology, Zhengzhou, Henan, China
| | - Weizhen Wang
- Department of Molecular Pathology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, No 127, Dongming Road, Zhengzhou, 450008, Henan, China
- Henan Key Laboratory of Molecular Pathology, Zhengzhou, Henan, China
| | - Dongxu Chen
- Department of Molecular Pathology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, No 127, Dongming Road, Zhengzhou, 450008, Henan, China
- Henan Key Laboratory of Molecular Pathology, Zhengzhou, Henan, China
| | - Jie Ma
- Department of Molecular Pathology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, No 127, Dongming Road, Zhengzhou, 450008, Henan, China.
- Henan Key Laboratory of Molecular Pathology, Zhengzhou, Henan, China.
| |
Collapse
|
6
|
Li W, Chen Y, Zhang Y, Wen W, Lu Y. Comprehensive analysis of the relationship between RNA modification writers and immune microenvironment in head and neck squamous cell carcinoma. BMC Immunol 2024; 25:76. [PMID: 39533178 PMCID: PMC11558979 DOI: 10.1186/s12865-024-00667-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 11/06/2024] [Indexed: 11/16/2024] Open
Abstract
OBJECTIVES Head and neck squamous cell carcinoma (HNSCC) is the sixth most common cancer worldwide. Four types of RNA modification writers (m6A, m1A, A-I editing, and APA) are widely involved in tumorigenesis and the TME. We aimed to comprehensively explore the role of the four RNA modification writers in the progression and immune microenvironment of HNSCC. MATERIALS AND METHODS We first obtained transcription profile data and transcriptional variation of the four types of RNA modification writers from The Cancer Genome Atlas (TCGA) database. HNSCC patients in TCGA dataset were divided into different clusters based on the four types of RNA modification writers. Univariate Cox and Least absolute shrinkage and selection operator (LASSO) analyses were performed to conduct a Writer-score scoring system, which was successfully verified in the GSE65858 dataset and our clinical sample dataset. Finally, we evaluated the relationship between different RNA modification clusters (Writer-score) and immunological characteristics of HNSCC. RESULTS Two different RNA modification clusters (A and B) were obtained. These RNA modification clusters (Writer-score) were strongly associated with immunological characteristics (immunomodulators, cancer immunity cycles, infiltrating immune cells (TIICs), inhibitory immune checkpoints, and T cell inflamed score (TIS)) of HNSCC. CONCLUSIONS This study identified two different RNA modification clusters and explored the potential relationship between RNA modification clusters (Writer-score) and immunological characteristics, offering a new theoretical basis for precision immunotherapy in patients with HNSCC.
Collapse
Affiliation(s)
- Wei Li
- The First Clinical College of China Medical University, Shenyang, China
| | - Ying Chen
- Department of Ultrasound, Xiaoshan Traditional Chinese Medical Hospital, Hangzhou, China
| | - Yao Zhang
- Department of Gynaecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Wen Wen
- Department of Laboratory Medicine, Liaoning Clinical Research Center for Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yingying Lu
- The First Clinical College of Jinzhou Medical University, Jinzhou, China.
| |
Collapse
|
7
|
Liu X, Wang J, Yang Z, Xie Q, Diao X, Yao X, Huang S, Chen R, Zhao Y, Li T, Jiang M, Lou Z, Huang C. Upregulated DNMT3a coupling with inhibiting p62-dependent autophagy contributes to NNK tumorigenicity in human bronchial epithelial cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 286:117157. [PMID: 39393198 DOI: 10.1016/j.ecoenv.2024.117157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/27/2024] [Accepted: 10/04/2024] [Indexed: 10/13/2024]
Abstract
NNK, formally known as 4-(methyl nitrosamine)-1-(3-pyridyl)-1-butanoe, is a potent chemical carcinogen prevalent in cigarette smoke and is a key contributor to the development of human lung adenocarcinomas. On the other hand, autophagy plays a complex role in cancer development, acting as a "double-edged sword" whose impact varies depending on the cancer type and stage. Despite this, the relationship between autophagy and NNK-induced lung carcinogenesis remains largely unexplored. Our current study uncovers a marked reduction in p62 protein expression in both lung adenocarcinomas and lung tissues of mice exposed to cigarette smoke. Interestingly, this reduction appears to be contingent upon the activity of extrahepatic cytochrome P450 (CYP450), revealing that NNK metabolic activation by CYP450 enzyme escalates its potential to induce p62 downregulation. Further mechanistic investigations reveal that NNK suppresses autophagy by accelerating the degradation of p62 mRNA, thereby promoting the malignant transformation of human bronchial epithelial cells. This degradation process is facilitated by the hypermethylation of the Human antigen R (HuR) promoter, resulting in the transcriptional repression of HuR - a key regulator responsible for stabilizing p62 mRNA through direct binding. This hypermethylation is triggered by the activation of ribosomal protein S6, which is influenced by NNK exposure and subsequently amplifies the translation of DNA methyltransferase 3 alpha (DNMT3a). These findings provide crucial insights into the nature of p62 in both the development and potential treatment of tobacco-related lung cancer.
Collapse
Affiliation(s)
- Xuelei Liu
- Key Laboratory of Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang 325053, China
| | - Jingjing Wang
- Key Laboratory of Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Ziyi Yang
- Key Laboratory of Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang 325053, China
| | - Qipeng Xie
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang 325053, China; Department of Clinical Laboratory, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Xinqi Diao
- Key Laboratory of Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang 325053, China
| | - Xiaoyan Yao
- Key Laboratory of Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang 325053, China
| | - Shirui Huang
- Key Laboratory of Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Ruifan Chen
- Key Laboratory of Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Yunping Zhao
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang 325053, China
| | - Tengda Li
- Key Laboratory of Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Minghua Jiang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang 325053, China; Department of Clinical Laboratory, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China.
| | - Zhefeng Lou
- Key Laboratory of Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| | - Chuanshu Huang
- Key Laboratory of Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang 325053, China.
| |
Collapse
|
8
|
McLennan E, Li D, Southey M, Dugué P. Epigenetic Ageing and Breast Cancer Risk: A Systematic Review. Cancer Med 2024; 13:e70355. [PMID: 39529385 PMCID: PMC11555139 DOI: 10.1002/cam4.70355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 08/17/2024] [Accepted: 10/11/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Age is one of the strongest risk factors for breast cancer. Measures of biological age based on DNA methylation have gained popularity for their strong association with risk of many diseases, including cancer, which may help to identify high-risk subgroups for targeted prevention. METHODS We carried out a systematic review of prospective studies that examined the association of methylation-based markers of ageing with risk of invasive breast cancer in healthy (breast cancer-free) women, published up to May 2023. The search of three databases (MEDLINE, EMBASE and Web of Science) identified 2913 individual abstracts eligible for screening. Risk of bias assessment was conducted using ROBINS-E. RESULTS Ten prospective studies met the eligibility criteria, and these were heterogeneous in design and findings. The most frequently assessed epigenetic ageing measures were Horvath's first-generation clock, PhenoAge and GrimAge. Four studies reported mainly positive associations, five null associations and one reported a negative association. These associations were generally weak and the results were not consistent across epigenetic ageing measures. CONCLUSION The summarised evidence is insufficient to support a role for current epigenetic ageing measures to stratify breast cancer risk. PROSPERO Registration: This systematic review was registered in the International Prospective Register of Systematic Reviews (PROSPERO: CRD42023417559).
Collapse
Affiliation(s)
- Emily McLennan
- Precision Medicine, School of Clinical Sciences at Monash HealthMonash UniversityClaytonVictoriaAustralia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global HealthThe University of MelbourneParkvilleVictoriaAustralia
| | - Danmeng Lily Li
- Precision Medicine, School of Clinical Sciences at Monash HealthMonash UniversityClaytonVictoriaAustralia
| | - Melissa C. Southey
- Precision Medicine, School of Clinical Sciences at Monash HealthMonash UniversityClaytonVictoriaAustralia
- Cancer Epidemiology Division, Cancer Council VictoriaMelbourneVictoriaAustralia
- Department of Clinical PathologyThe University of MelbourneParkvilleVictoriaAustralia
| | - Pierre‐Antoine Dugué
- Precision Medicine, School of Clinical Sciences at Monash HealthMonash UniversityClaytonVictoriaAustralia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global HealthThe University of MelbourneParkvilleVictoriaAustralia
- Cancer Epidemiology Division, Cancer Council VictoriaMelbourneVictoriaAustralia
| |
Collapse
|
9
|
Zhang Y, Tian L. Advances and challenges in the use of liquid biopsy in gynaecological oncology. Heliyon 2024; 10:e39148. [PMID: 39492906 PMCID: PMC11530831 DOI: 10.1016/j.heliyon.2024.e39148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 10/08/2024] [Accepted: 10/08/2024] [Indexed: 11/05/2024] Open
Abstract
Ovarian cancer, endometrial cancer, and cervical cancer are the three primary gynaecological cancers that pose a significant threat to women's health on a global scale. Enhancing global cancer survival rates necessitates advancements in illness detection and monitoring, with the goal of improving early diagnosis and prognostication of disease recurrence. Conventional methods for identifying and tracking malignancies rely primarily on imaging techniques and, when possible, protein biomarkers found in blood, many of which lack specificity. The process of collecting tumour samples necessitates intrusive treatments that are not suitable for specific purposes, such as screening, predicting, or evaluating the effectiveness of treatment, monitoring the presence of remaining illness, and promptly detecting relapse. Advancements in treatment are being made by the detection of genetic abnormalities in tumours, both inherited and acquired. Newly designed therapeutic approaches can specifically address some of these abnormalities. Liquid biopsy is an innovative technique for collecting samples that examine specific cancer components that are discharged into the bloodstream, such as circulating tumour DNA (ctDNA), circulating tumour cells (CTCs), cell-free RNA (cfRNA), tumour-educated platelets (TEPs), and exosomes. Mounting data indicates that liquid biopsy has the potential to improve the clinical management of gynaecological cancers through enhanced early diagnosis, prognosis prediction, recurrence detection, and therapy response monitoring. Understanding the distinct genetic composition of tumours can also inform therapy choices and the identification of suitable targeted treatments. The main benefits of liquid biopsy are its non-invasive characteristics and practicality, enabling the collection of several samples and the continuous monitoring of tumour changes over time. This review aims to provide an overview of the data supporting the therapeutic usefulness of each component of liquid biopsy. Additionally, it will assess the benefits and existing constraints associated with the use of liquid biopsy in the management of gynaecological malignancies. In addition, we emphasise future prospects in light of the existing difficulties and investigate areas where further research is necessary to clarify its rising clinical capabilities.
Collapse
Affiliation(s)
- Yingfeng Zhang
- University-Town Hospital of Chongqing Medical University, Chongqing, 401331, China
| | - Libi Tian
- University-Town Hospital of Chongqing Medical University, Chongqing, 401331, China
| |
Collapse
|
10
|
Liang W, Tao J, Cheng C, Sun H, Ye Z, Wu S, Guo Y, Zhang J, Chen Q, Liu D, Liu L, Tian H, Teng L, Zhong N, Fan JB, He J. A clinically effective model based on cell-free DNA methylation and low-dose CT for risk stratification of pulmonary nodules. Cell Rep Med 2024; 5:101750. [PMID: 39341207 PMCID: PMC11513810 DOI: 10.1016/j.xcrm.2024.101750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/20/2024] [Accepted: 09/02/2024] [Indexed: 09/30/2024]
Abstract
Accurate, non-invasive, and cost-effective tools are needed to assist pulmonary nodule diagnosis and management due to increasing detection by low-dose computed tomography (LDCT). We perform genome-wide methylation sequencing on malignant and non-malignant lung tissues and designed a panel of 263 differential DNA methylation regions, which is used for targeted methylation sequencing on blood cell-free DNA (cfDNA) in two prospectively collected and retrospectively analyzed multicenter cohorts. We develop and optimize an integrative model for risk stratification of pulmonary nodules based on 40 cfDNA methylation biomarkers, age, and five simple computed tomography (CT) imaging features using machine learning approaches and validate its good performance in two cohorts. Using the two-threshold strategy can effectively reduce unnecessary invasive surgeries, overtreatment costs, and injury for patients with benign nodules while advising immediate treatment for patients with lung cancer, which can potentially improve the overall diagnosis of lung cancer following LDCT/CT screening.
Collapse
Affiliation(s)
- Wenhua Liang
- Department of Thoracic Surgery and Oncology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Respiratory Disease & Health, China State Key Laboratory and National Clinical Research Center for Respiratory Disease, Guangzhou 510120, China.
| | - Jinsheng Tao
- AnchorDx Medical Co., Ltd., Guangzhou 510320, China
| | - Chao Cheng
- Department of Thoracic Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Haitao Sun
- Clinical Biobank Center, Guangdong Provincial Clinical Research Center for Laboratory Medicine, Department of Laboratory Medicine, Microbiome Medicine Center, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Zhujia Ye
- AnchorDx Medical Co., Ltd., Guangzhou 510320, China
| | - Shuangxiu Wu
- AnchorDx Medical Co., Ltd., Guangzhou 510320, China
| | - Yubiao Guo
- Department of Pulmonary Medicine, The First Affiliated Hospital of Sun Yat Sen University, Guangzhou 510080, China
| | - Jiaqing Zhang
- Department of Thoracic Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510280 China
| | - Qunqing Chen
- Department of Thoracic Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510280 China
| | - Dan Liu
- Department of Respiratory Medicine, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Lunxu Liu
- Department of Thoracic Surgery, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Hui Tian
- Department of Thoracic Surgery, QILU Hospital, Shandong University, Jinan 250012 China
| | - Lin Teng
- AnchorDx Medical Co., Ltd., Guangzhou 510320, China
| | - Nanshan Zhong
- Department of Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Respiratory Disease & Health, China State Key Laboratory and National Clinical Research Center for Respiratory Disease, Guangzhou, 510120, China
| | - Jian-Bing Fan
- AnchorDx Medical Co., Ltd., Guangzhou 510320, China; Department of Pathology, School of Basic Medical Science, Southern Medical University, Guangzhou 518055, China.
| | - Jianxing He
- Department of Thoracic Surgery and Oncology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Respiratory Disease & Health, China State Key Laboratory and National Clinical Research Center for Respiratory Disease, Guangzhou 510120, China.
| |
Collapse
|
11
|
Fitton CA, Woodward M, Belch JJ. ASSIGN score and cancer risk in the Scottish Heart Health Extended Cohort (SHHEC) study. BJC REPORTS 2024; 2:75. [PMID: 39516549 PMCID: PMC11523964 DOI: 10.1038/s44276-024-00102-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 09/02/2024] [Accepted: 09/12/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND The aim of this work was to determine whether the ASSIGN cardiovascular disease (CVD) score, a 10-year CVD risk score used in primary care in Scotland, could additionally detect cancer risk. METHODS 18,107 participants were recruited to the Scottish Heart Health Extended Cohort (SHHEC) study between 1982 and 1995. Information on health and lifestyle were collected, along with blood and urine, and participants were followed up via record linkage to 2017. Cox proportional hazards were used to estimate HRs (95% CIs) for time to cancer diagnosis. RESULTS A total of 5046 cases of cancer were reported during the follow up period. ASSIGN was significantly associated with a diagnosis of cancer, with a 2.3-3.4% increase in risk of cancer per 1-point increase of ASSIGN. The components of ASSIGN predominantly associated with the risk of cancer were age (HR 1.52; 95% CI 1.48-1.56, cholesterol level (HR 1.11; 95% CI 1.08-1.13), diabetes status (HR 1.24; 95% CI 1.01-1.53), and systolic blood pressure (HR 1.16; 95% CI 1.13-1.19). CONCLUSION ASSIGN could be used not only to predict CVD, but also to predict cancer risk in patients. This needs to be validated in further cohorts.
Collapse
Affiliation(s)
- Catherine A Fitton
- The Institute of Cardiovascular Research, Division of Molecular and Clinical Medicine, University of Dundee, Ninewells Hospital, Dundee, UK
| | - Mark Woodward
- The Institute of Cardiovascular Research, Division of Molecular and Clinical Medicine, University of Dundee, Ninewells Hospital, Dundee, UK
- The George Institute for Global Health, School of Public Health, Imperial College London, London, UK
- The George Institute for Global Health, University of New South Wales, Sydney, NSW, Australia
| | - Jill Jf Belch
- The Institute of Cardiovascular Research, Division of Molecular and Clinical Medicine, University of Dundee, Ninewells Hospital, Dundee, UK.
| |
Collapse
|
12
|
Lønning PE, Nikolaienko O, Knappskog S. Constitutional BRCA1 Epimutations: A Key for Understanding Basal-Like Breast and High-Grade Serous Ovarian Cancer. Hum Mutat 2024; 2024:7353984. [PMID: 40225940 PMCID: PMC11919088 DOI: 10.1155/2024/7353984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 08/08/2024] [Indexed: 04/15/2025]
Abstract
Germline pathogenic genetic variants in the BRCA1 and BRCA2 genes are the most frequent causes of familial breast and ovarian cancer. Contrasting BRCA2, epimutations in the BRCA1 gene are frequently detected in tissue from triple-negative breast (TNBC) and high-grade serous ovarian cancers (HGSOC). While studies over the last decade have reported BRCA1 epimutations in white blood cells (WBC) from breast and ovarian cancer patients, the potential hazard ratio for incident TNBC and HGSOC was not formally assessed until recently. Conducting a prospective nested case-control study on women participating in the American Women's Health Initiative Study, we provided firm evidence that mosaic WBC BRCA1 epimutations, even at allele frequencies < 0.1%, are associated with a significantly increased risk of both incident HGSOC and TNBC > 5 years after WBC collection. In a second study assessing BRCA1 epimutations in WBC and matched tumor samples from TNBC, our results indicated such epimutations to be the underlying cause of around 20% of TNBC, far exceeding the percentage of cases carrying BRCA1 germline pathogenic genetic variants. We detected primary constitutional BRCA1 epimutations in tissues derived from all three germ layers. They occur independently of BRCA1 promoter haplotypes but are present on the same allele in all WBC within affected individuals. Moreover, epimutations are consistently found on the same allele in normal and tumor breast tissue as well as in WBC. This finding, together with BRCA1 epimutations detected in WBC from newborns, strongly indicates an early embryonic event with clonal expansion affecting all germ layers. Future work in the field must lead to an understanding of exactly when and how the BRCA1 epimutations occur and, most importantly, whether primary constitutional epimutations in genes other than BRCA1 may cause an elevated risk of other cancer types.
Collapse
Affiliation(s)
- Per E. Lønning
- K.G. Jebsen Center for Genome-Directed Cancer TherapyDepartment of OncologyHaukeland University Hospital, Bergen, Norway
| | - Oleksii Nikolaienko
- K.G. Jebsen Center for Genome-Directed Cancer TherapyDepartment of OncologyHaukeland University Hospital, Bergen, Norway
- Department of Clinical ScienceUniversity of Bergen, Bergen, Norway
| | - Stian Knappskog
- K.G. Jebsen Center for Genome-Directed Cancer TherapyDepartment of OncologyHaukeland University Hospital, Bergen, Norway
- Department of Clinical ScienceUniversity of Bergen, Bergen, Norway
| |
Collapse
|
13
|
Long Z, Gao Y, Han Z, Yuan H, Yu Y, Pei B, Jia Y, Ye J, Shi Y, Zhang M, Zhao Y, Wu D, Wang F. Discovery and Validation of Methylation Signatures in Circulating Cell-Free DNA for the Detection of Colorectal Cancer. Biomolecules 2024; 14:996. [PMID: 39199384 PMCID: PMC11353097 DOI: 10.3390/biom14080996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/25/2024] [Accepted: 08/09/2024] [Indexed: 09/01/2024] Open
Abstract
This study was conducted with the primary objective of assessing the performance of cfDNA methylation in the detection of colorectal cancer (CRC). Five tumor tissue, 20 peripheral blood leucocyte, and 169 cfDNA samples were collected for whole-genome bisulfite sequencing (WGBS) analysis. Bioinformatic analysis was conducted to identify differentially methylated regions (DMRs) and their functional characteristics. Quantitative methylation-specific PCR (qMSP) was used to validate the methylation levels of DMRs in the tissues and leucocytes. cfDNA samples from CRC patients and healthy controls were used to evaluate the performance of the DMR analysis. WGBS analysis revealed a decrease in DNA methylation levels in the CpG context in CRC tumor tissues compared with adjacent normal tissues. A total of 132 DMRs in cfDNA were identified as potential markers for diagnosing CRC. In a cohort of 95 CRC patients and 74 healthy controls, a combination of the three DMRs (DAB1, PPP2R5C, and FAM19A5) yielded an AUC of 0.763, achieving 64.21% sensitivity and 78.38% specificity in discriminating CRC patients from healthy controls. This study provides insights into DNA methylation patterns in CRC and identifies a set of DMRs in cfDNA with potential diagnostic value for CRC. These DMRs hold promise as biomarkers for CRC detection, offering promise for non-invasive CRC diagnosis. Further research is warranted to validate these findings in larger cohorts.
Collapse
Affiliation(s)
- Zhiping Long
- Department of Epidemiology, School of Public Health, Harbin Medical University, Harbin 150028, China; (Z.L.); (Y.G.); (Z.H.); (H.Y.); (Y.Y.); (B.P.); (Y.J.); (J.Y.); (Y.S.); (M.Z.)
| | - Yu Gao
- Department of Epidemiology, School of Public Health, Harbin Medical University, Harbin 150028, China; (Z.L.); (Y.G.); (Z.H.); (H.Y.); (Y.Y.); (B.P.); (Y.J.); (J.Y.); (Y.S.); (M.Z.)
| | - Zhen Han
- Department of Epidemiology, School of Public Health, Harbin Medical University, Harbin 150028, China; (Z.L.); (Y.G.); (Z.H.); (H.Y.); (Y.Y.); (B.P.); (Y.J.); (J.Y.); (Y.S.); (M.Z.)
| | - Heli Yuan
- Department of Epidemiology, School of Public Health, Harbin Medical University, Harbin 150028, China; (Z.L.); (Y.G.); (Z.H.); (H.Y.); (Y.Y.); (B.P.); (Y.J.); (J.Y.); (Y.S.); (M.Z.)
| | - Yue Yu
- Department of Epidemiology, School of Public Health, Harbin Medical University, Harbin 150028, China; (Z.L.); (Y.G.); (Z.H.); (H.Y.); (Y.Y.); (B.P.); (Y.J.); (J.Y.); (Y.S.); (M.Z.)
| | - Bing Pei
- Department of Epidemiology, School of Public Health, Harbin Medical University, Harbin 150028, China; (Z.L.); (Y.G.); (Z.H.); (H.Y.); (Y.Y.); (B.P.); (Y.J.); (J.Y.); (Y.S.); (M.Z.)
| | - Yanjie Jia
- Department of Epidemiology, School of Public Health, Harbin Medical University, Harbin 150028, China; (Z.L.); (Y.G.); (Z.H.); (H.Y.); (Y.Y.); (B.P.); (Y.J.); (J.Y.); (Y.S.); (M.Z.)
| | - Jingyu Ye
- Department of Epidemiology, School of Public Health, Harbin Medical University, Harbin 150028, China; (Z.L.); (Y.G.); (Z.H.); (H.Y.); (Y.Y.); (B.P.); (Y.J.); (J.Y.); (Y.S.); (M.Z.)
| | - Ying Shi
- Department of Epidemiology, School of Public Health, Harbin Medical University, Harbin 150028, China; (Z.L.); (Y.G.); (Z.H.); (H.Y.); (Y.Y.); (B.P.); (Y.J.); (J.Y.); (Y.S.); (M.Z.)
| | - Min Zhang
- Department of Epidemiology, School of Public Health, Harbin Medical University, Harbin 150028, China; (Z.L.); (Y.G.); (Z.H.); (H.Y.); (Y.Y.); (B.P.); (Y.J.); (J.Y.); (Y.S.); (M.Z.)
| | - Yashuang Zhao
- Department of Epidemiology, School of Public Health, Harbin Medical University, Harbin 150028, China; (Z.L.); (Y.G.); (Z.H.); (H.Y.); (Y.Y.); (B.P.); (Y.J.); (J.Y.); (Y.S.); (M.Z.)
| | - Di Wu
- Department of Colorectal Surgery, Tumor Hospital of Harbin Medical University, Harbin Medical University, Harbin 150081, China
| | - Fan Wang
- Department of Epidemiology, School of Public Health, Harbin Medical University, Harbin 150028, China; (Z.L.); (Y.G.); (Z.H.); (H.Y.); (Y.Y.); (B.P.); (Y.J.); (J.Y.); (Y.S.); (M.Z.)
| |
Collapse
|
14
|
Zhang S, Xiao X, Yi Y, Wang X, Zhu L, Shen Y, Lin D, Wu C. Tumor initiation and early tumorigenesis: molecular mechanisms and interventional targets. Signal Transduct Target Ther 2024; 9:149. [PMID: 38890350 PMCID: PMC11189549 DOI: 10.1038/s41392-024-01848-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 04/23/2024] [Accepted: 04/27/2024] [Indexed: 06/20/2024] Open
Abstract
Tumorigenesis is a multistep process, with oncogenic mutations in a normal cell conferring clonal advantage as the initial event. However, despite pervasive somatic mutations and clonal expansion in normal tissues, their transformation into cancer remains a rare event, indicating the presence of additional driver events for progression to an irreversible, highly heterogeneous, and invasive lesion. Recently, researchers are emphasizing the mechanisms of environmental tumor risk factors and epigenetic alterations that are profoundly influencing early clonal expansion and malignant evolution, independently of inducing mutations. Additionally, clonal evolution in tumorigenesis reflects a multifaceted interplay between cell-intrinsic identities and various cell-extrinsic factors that exert selective pressures to either restrain uncontrolled proliferation or allow specific clones to progress into tumors. However, the mechanisms by which driver events induce both intrinsic cellular competency and remodel environmental stress to facilitate malignant transformation are not fully understood. In this review, we summarize the genetic, epigenetic, and external driver events, and their effects on the co-evolution of the transformed cells and their ecosystem during tumor initiation and early malignant evolution. A deeper understanding of the earliest molecular events holds promise for translational applications, predicting individuals at high-risk of tumor and developing strategies to intercept malignant transformation.
Collapse
Affiliation(s)
- Shaosen Zhang
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
- Key Laboratory of Cancer Genomic Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
| | - Xinyi Xiao
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
- Key Laboratory of Cancer Genomic Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
| | - Yonglin Yi
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
- Key Laboratory of Cancer Genomic Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
| | - Xinyu Wang
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
- Key Laboratory of Cancer Genomic Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
| | - Lingxuan Zhu
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
- Key Laboratory of Cancer Genomic Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
- Changping Laboratory, 100021, Beijing, China
| | - Yanrong Shen
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
- Key Laboratory of Cancer Genomic Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
| | - Dongxin Lin
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China.
- Key Laboratory of Cancer Genomic Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China.
- Changping Laboratory, 100021, Beijing, China.
- Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, 211166, China.
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangzhou, 510060, China.
| | - Chen Wu
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China.
- Key Laboratory of Cancer Genomic Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China.
- Changping Laboratory, 100021, Beijing, China.
- Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, 211166, China.
- CAMS Oxford Institute, Chinese Academy of Medical Sciences, 100006, Beijing, China.
| |
Collapse
|
15
|
Herzog C, Jones A, Evans I, Raut JR, Zikan M, Cibula D, Wong A, Brenner H, Richmond RC, Widschwendter M. Cigarette Smoking and E-cigarette Use Induce Shared DNA Methylation Changes Linked to Carcinogenesis. Cancer Res 2024; 84:1898-1914. [PMID: 38503267 PMCID: PMC11148547 DOI: 10.1158/0008-5472.can-23-2957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/30/2023] [Accepted: 03/11/2024] [Indexed: 03/21/2024]
Abstract
Tobacco use is a major modifiable risk factor for adverse health outcomes, including cancer, and elicits profound epigenetic changes thought to be associated with long-term cancer risk. While electronic cigarettes (e-cigarettes) have been advocated as harm reduction alternatives to tobacco products, recent studies have revealed potential detrimental effects, highlighting the urgent need for further research into the molecular and health impacts of e-cigarettes. Here, we applied computational deconvolution methods to dissect the cell- and tissue-specific epigenetic effects of tobacco or e-cigarette use on DNA methylation (DNAme) in over 3,500 buccal/saliva, cervical, or blood samples, spanning epithelial and immune cells at directly and indirectly exposed sites. The 535 identified smoking-related DNAme loci [cytosine-phosphate-guanine sites (CpG)] clustered into four functional groups, including detoxification or growth signaling, based on cell type and anatomic site. Loci hypermethylated in buccal epithelial cells of smokers associated with NOTCH1/RUNX3/growth factor receptor signaling also exhibited elevated methylation in cancer tissue and progressing lung carcinoma in situ lesions, and hypermethylation of these sites predicted lung cancer development in buccal samples collected from smokers up to 22 years prior to diagnosis, suggesting a potential role in driving carcinogenesis. Alarmingly, these CpGs were also hypermethylated in e-cigarette users with a limited smoking history. This study sheds light on the cell type-specific changes to the epigenetic landscape induced by smoking-related products. SIGNIFICANCE The use of both cigarettes and e-cigarettes elicits cell- and exposure-specific epigenetic effects that are predictive of carcinogenesis, suggesting caution when broadly recommending e-cigarettes as aids for smoking cessation.
Collapse
Affiliation(s)
- Chiara Herzog
- European Translational Oncology Prevention and Screening (EUTOPS) Institute, Universität Innsbruck, Innsbruck, Austria
- Research Institute for Biomedical Aging, Universität Innsbruck, Innsbruck, Austria
| | - Allison Jones
- Department of Women's Cancer, UCL EGA Institute for Women's Health, University College London, London, United Kingdom
| | - Iona Evans
- Department of Women's Cancer, UCL EGA Institute for Women's Health, University College London, London, United Kingdom
| | - Janhavi R. Raut
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Michal Zikan
- Department of Gynecology and Obstetrics, First Faculty of Medicine and Hospital Na Bulovce, Charles University in Prague, Prague, Czech Republic
| | - David Cibula
- Gynecologic Oncology Center, Department of Obstetrics and Gynecology, First Faculty of Medicine, Charles University in Prague, General University Hospital in Prague, Prague, Czech Republic
| | - Andrew Wong
- MRC Unit for Lifelong Health and Ageing, Institute of Cardiovascular Science, University College London, London, United Kingdom
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Rebecca C. Richmond
- MRC Integrative Epidemiology Unit at the University of Bristol, Bristol, United Kingdom
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Martin Widschwendter
- European Translational Oncology Prevention and Screening (EUTOPS) Institute, Universität Innsbruck, Innsbruck, Austria
- Research Institute for Biomedical Aging, Universität Innsbruck, Innsbruck, Austria
- Department of Women's Cancer, UCL EGA Institute for Women's Health, University College London, London, United Kingdom
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
16
|
Ayub H, Khan MA, Shehryar Ali Naqvi S, Faseeh M, Kim J, Mehmood A, Kim YJ. Unraveling the Potential of Attentive Bi-LSTM for Accurate Obesity Prognosis: Advancing Public Health towards Sustainable Cities. Bioengineering (Basel) 2024; 11:533. [PMID: 38927769 PMCID: PMC11200407 DOI: 10.3390/bioengineering11060533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/13/2024] [Accepted: 05/19/2024] [Indexed: 06/28/2024] Open
Abstract
The global prevalence of obesity presents a pressing challenge to public health and healthcare systems, necessitating accurate prediction and understanding for effective prevention and management strategies. This article addresses the need for improved obesity prediction models by conducting a comprehensive analysis of existing machine learning (ML) and deep learning (DL) approaches. This study introduces a novel hybrid model, Attention-based Bi-LSTM (ABi-LSTM), which integrates attention mechanisms with bidirectional Long Short-Term Memory (Bi-LSTM) networks to enhance interpretability and performance in obesity prediction. Our study fills a crucial gap by bridging healthcare and urban planning domains, offering insights into data-driven approaches to promote healthier living within urban environments. The proposed ABi-LSTM model demonstrates exceptional performance, achieving a remarkable accuracy of 96.5% in predicting obesity levels. Comparative analysis showcases its superiority over conventional approaches, with superior precision, recall, and overall classification balance. This study highlights significant advancements in predictive accuracy and positions the ABi-LSTM model as a pioneering solution for accurate obesity prognosis. The implications extend beyond healthcare, offering a precise tool to address the global obesity epidemic and foster sustainable development in smart cities.
Collapse
Affiliation(s)
- Hina Ayub
- Interdisciplinary Graduate Program in Advance Convergence Technology and Science, Jeju National University, Jeju 63243, Republic of Korea;
| | - Murad-Ali Khan
- Department of Computer Engineering, Jeju National University, Jeju 63243, Republic of Korea;
| | - Syed Shehryar Ali Naqvi
- Department of Electronics Engineering, Jeju National University, Jeju 63243, Republic of Korea; (S.S.A.N.)
| | - Muhammad Faseeh
- Department of Electronics Engineering, Jeju National University, Jeju 63243, Republic of Korea; (S.S.A.N.)
| | - Jungsuk Kim
- Department of Biomedical Engineering, College of IT Convergence, Gachon University, 1342 Seongnamdaero, Sujeong-gu, Seongnam-si 13120, Republic of Korea;
| | - Asif Mehmood
- Department of Biomedical Engineering, College of IT Convergence, Gachon University, 1342 Seongnamdaero, Sujeong-gu, Seongnam-si 13120, Republic of Korea;
| | - Young-Jin Kim
- Medical Device Development Center, Osong Medical Innovation Foundation, Cheongju 28160, Republic of Korea
| |
Collapse
|
17
|
Tanić M, Ecker S, Lyskjær I. Editorial: Epigenetic biomarkers for cancer risk stratification and patient management. Front Genet 2024; 15:1421500. [PMID: 38779155 PMCID: PMC11109439 DOI: 10.3389/fgene.2024.1421500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 04/23/2024] [Indexed: 05/25/2024] Open
Affiliation(s)
- Miljana Tanić
- Department of Experimental Oncology, Institute for Oncology and Radiology of Serbia, Belgrade, Serbia
- Department of Cancer Biology, UCL Cancer Institute, University College London, London, United Kingdom
| | - Simone Ecker
- Department of Cancer Biology, UCL Cancer Institute, University College London, London, United Kingdom
| | - Iben Lyskjær
- Department of Cancer Biology, UCL Cancer Institute, University College London, London, United Kingdom
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus University, Aarhus, Denmark
| |
Collapse
|
18
|
Arai S. Editorial Comment on Epigenetic alterations in urothelial bladder cancer associated with disease outcomes. Int J Urol 2024; 31:229-230. [PMID: 38071741 DOI: 10.1111/iju.15361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Affiliation(s)
- Seiji Arai
- Department of Urology, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| |
Collapse
|
19
|
Xu D, Lai Y, Liu H, Li H, Feng N, Liu Y, Gong C, Zhang Y, Zhou J, Shen Y. A diagnostic model based on DNA methylation haplotype block characteristics for identifying papillary thyroid carcinoma from thyroid adenoma. Transl Res 2024; 264:76-84. [PMID: 37863284 DOI: 10.1016/j.trsl.2023.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/28/2023] [Accepted: 10/16/2023] [Indexed: 10/22/2023]
Abstract
Papillary thyroid carcinoma (PTC) is the most prevalent form of thyroid cancer. Methylation of some genes plays a crucial role in the tendency to malignancy as well as poor prognosis of thyroid cancer, suggesting that methylation features can serve as complementary markers for molecular diagnosis. In this study, we aimed to develop and validate a diagnostic model for PTC based on DNA methylation markers. A total of 142 thyroid nodule tissue samples containing 84 cases of PTC and 58 cases of thyroid adenoma (TA) were collected for reduced representation bisulfite sequencing (RRBS) and subsequent analysis. The diagnostic model was constructed by the logistic regression (LR) method followed by 5-cross validation and based on 94 tissue methylation haplotype block (MHB) markers. The model achieved an area under the receiver operating characteristic curve (AUROC) of 0.974 (95% CI, 0.964-0.981) on 108 training samples and 0.917 (95% CI, 0.864-0.973) on 27 independent testing samples. The diagnostic model scores showed significantly high in males (P = 0.0016), age ≤ 45 years (P = 0.026), high body mass index (BMI) (P = 0.040), lymph node metastasis (P = 0.00052) and larger nodules (P = 0.0017) in the PTC group, and the risk score of this diagnostic model showed significantly high in recurrent PTC group (P = 0.0005). These results suggest that the diagnostic model can be expected to be a powerful tool for PTC diagnosis and there are more potential clinical applications of methylation markers to be excavated.
Collapse
Affiliation(s)
- Dong Xu
- Department of Head and Neck Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, No. 160 Pujian Road, Shanghai, 200127, China
| | - Yi Lai
- Department of Head and Neck Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, No. 160 Pujian Road, Shanghai, 200127, China; Department of Traditional Chinese Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, No. 160 Pujian Road, Shanghai, 200127, China
| | - Hongmei Liu
- Singlera Genomics (Shanghai) Ltd., 8th Floor, Building 1, Lane 500, Furonghua Road, Pudong, Shanghai 201328, China
| | - He Li
- Department of Traditional Chinese Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, No. 160 Pujian Road, Shanghai, 200127, China
| | - Ningning Feng
- Singlera Genomics (Shanghai) Ltd., 8th Floor, Building 1, Lane 500, Furonghua Road, Pudong, Shanghai 201328, China
| | - Yiying Liu
- Singlera Genomics (Shanghai) Ltd., 8th Floor, Building 1, Lane 500, Furonghua Road, Pudong, Shanghai 201328, China
| | - Chengxiang Gong
- Singlera Genomics (Shanghai) Ltd., 8th Floor, Building 1, Lane 500, Furonghua Road, Pudong, Shanghai 201328, China
| | - Yunzhi Zhang
- Singlera Genomics (Shanghai) Ltd., 8th Floor, Building 1, Lane 500, Furonghua Road, Pudong, Shanghai 201328, China
| | - Jiaqing Zhou
- Department of Head and Neck Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, No. 160 Pujian Road, Shanghai, 200127, China.
| | - Yuling Shen
- Department of Head and Neck Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, No. 160 Pujian Road, Shanghai, 200127, China.
| |
Collapse
|
20
|
Nikolaienko O, Eikesdal HP, Ognedal E, Gilje B, Lundgren S, Blix ES, Espelid H, Geisler J, Geisler S, Janssen EAM, Yndestad S, Minsaas L, Leirvaag B, Lillestøl R, Knappskog S, Lønning PE. Prenatal BRCA1 epimutations contribute significantly to triple-negative breast cancer development. Genome Med 2023; 15:104. [PMID: 38053165 PMCID: PMC10698991 DOI: 10.1186/s13073-023-01262-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 11/16/2023] [Indexed: 12/07/2023] Open
Abstract
BACKGROUND Normal cell BRCA1 epimutations have been associated with increased risk of triple-negative breast cancer (TNBC). However, the fraction of TNBCs that may have BRCA1 epimutations as their underlying cause is unknown. Neither are the time of occurrence and the potential inheritance patterns of BRCA1 epimutations established. METHODS To address these questions, we analyzed BRCA1 methylation status in breast cancer tissue and matched white blood cells (WBC) from 408 patients with 411 primary breast cancers, including 66 TNBCs, applying a highly sensitive sequencing assay, allowing allele-resolved methylation assessment. Furthermore, to assess the time of origin and the characteristics of normal cell BRCA1 methylation, we analyzed umbilical cord blood of 1260 newborn girls and 200 newborn boys. Finally, we assessed BRCA1 methylation status among 575 mothers and 531 fathers of girls with (n = 102) and without (n = 473) BRCA1 methylation. RESULTS We found concordant tumor and mosaic WBC BRCA1 epimutations in 10 out of 66 patients with TNBC and in four out of six patients with estrogen receptor (ER)-low expression (< 10%) tumors (combined: 14 out of 72; 19.4%; 95% CI 11.1-30.5). In contrast, we found concordant WBC and tumor methylation in only three out of 220 patients with 221 ER ≥ 10% tumors and zero out of 114 patients with 116 HER2-positive tumors. Intraindividually, BRCA1 epimutations affected the same allele in normal and tumor cells. Assessing BRCA1 methylation in umbilical WBCs from girls, we found mosaic, predominantly monoallelic BRCA1 epimutations, with qualitative features similar to those in adults, in 113/1260 (9.0%) of individuals, but no correlation to BRCA1 methylation status either in mothers or fathers. A significantly lower fraction of newborn boys carried BRCA1 methylation (9/200; 4.5%) as compared to girls (p = 0.038). Similarly, WBC BRCA1 methylation was found less common among fathers (16/531; 3.0%), as compared to mothers (46/575; 8.0%; p = 0.0003). CONCLUSIONS Our findings suggest prenatal BRCA1 epimutations might be the underlying cause of around 20% of TNBC and low-ER expression breast cancers. Such constitutional mosaic BRCA1 methylation likely arise through gender-related mechanisms in utero, independent of Mendelian inheritance.
Collapse
Affiliation(s)
- Oleksii Nikolaienko
- K.G. Jebsen Center for Genome-Directed Cancer Therapy, Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Oncology, Haukeland University Hospital, Jonas Lies Vei 65, N5021, Bergen, Norway
| | - Hans P Eikesdal
- K.G. Jebsen Center for Genome-Directed Cancer Therapy, Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Oncology, Haukeland University Hospital, Jonas Lies Vei 65, N5021, Bergen, Norway
| | - Elisabet Ognedal
- K.G. Jebsen Center for Genome-Directed Cancer Therapy, Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Oncology, Haukeland University Hospital, Jonas Lies Vei 65, N5021, Bergen, Norway
| | - Bjørnar Gilje
- Department of Hematology and Oncology, Stavanger University Hospital, Stavanger, Norway
| | - Steinar Lundgren
- Cancer Clinic, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Egil S Blix
- Department of Oncology, University Hospital of North Norway, Tromsø, Norway
| | - Helge Espelid
- Department of Surgery, Haugesund Hospital, Haugesund, Norway
| | - Jürgen Geisler
- Department of Oncology, Akershus University Hospital, Lørenskog, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Stephanie Geisler
- Department of Oncology, Akershus University Hospital, Lørenskog, Norway
| | - Emiel A M Janssen
- Department of Pathology, Stavanger University Hospital, Stavanger, Norway
- Department of Chemistry, Bioscience and Environmental Engineering, Stavanger University, Stavanger, Norway
| | - Synnøve Yndestad
- K.G. Jebsen Center for Genome-Directed Cancer Therapy, Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Oncology, Haukeland University Hospital, Jonas Lies Vei 65, N5021, Bergen, Norway
| | - Laura Minsaas
- K.G. Jebsen Center for Genome-Directed Cancer Therapy, Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Oncology, Haukeland University Hospital, Jonas Lies Vei 65, N5021, Bergen, Norway
| | - Beryl Leirvaag
- K.G. Jebsen Center for Genome-Directed Cancer Therapy, Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Oncology, Haukeland University Hospital, Jonas Lies Vei 65, N5021, Bergen, Norway
| | - Reidun Lillestøl
- K.G. Jebsen Center for Genome-Directed Cancer Therapy, Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Oncology, Haukeland University Hospital, Jonas Lies Vei 65, N5021, Bergen, Norway
| | - Stian Knappskog
- K.G. Jebsen Center for Genome-Directed Cancer Therapy, Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Oncology, Haukeland University Hospital, Jonas Lies Vei 65, N5021, Bergen, Norway
| | - Per E Lønning
- K.G. Jebsen Center for Genome-Directed Cancer Therapy, Department of Clinical Science, University of Bergen, Bergen, Norway.
- Department of Oncology, Haukeland University Hospital, Jonas Lies Vei 65, N5021, Bergen, Norway.
| |
Collapse
|
21
|
Sandman L, Liliemark J. Should Severity Assessments in Healthcare Priority Setting be Risk- and Time-Sensitive? HEALTH CARE ANALYSIS 2023; 31:169-185. [PMID: 37526761 PMCID: PMC10693510 DOI: 10.1007/s10728-023-00460-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/09/2023] [Indexed: 08/02/2023]
Abstract
BACKGROUND Severity plays an essential role in healthcare priority setting. Still, severity is an under-theorised concept. One controversy concerns whether severity should be risk- and/or time-sensitive. The aim of this article is to provide a normative analysis of this question. METHODS A reflective equilibrium approach is used, where judgements and arguments concerning severity in preventive situations are related to overall normative judgements and background theories in priority-setting, aiming for consistency. Analysis, discussion, and conclusions: There is an argument for taking the risk of developing a condition into account, and we do this when we consider the risk of dying in the severity assessment. If severity is discounted according to risk, this will 'dilute' severity, depending on how well we are able to delineate the population, which is dependent on the current level of knowledge. This will potentially have a more far-reaching effect when considering primary prevention, potentially the de-prioritisation of effective preventive treatments in relation to acute, less-effective treatments. The risk arguments are dependent on which population is being assessed. If we focus on the whole population at risk, with T0 as the relevant population, this supports the risk argument. If we instead focus on the population of as-yet (at T0) unidentified individuals who will develop the condition at T1, risk will become irrelevant, and severity will not be risk sensitive. The strongest argument for time-sensitive severity (or for discounting future severity) is the future development of technology. On a short timescale, this will differ between different diagnoses, supporting individualised discounting. On a large timescale, a more general discounting might be acceptable. However, we need to also consider the systemic effects of allowing severity to be risk- and time-sensitive.
Collapse
Affiliation(s)
- Lars Sandman
- Department of Health, Medicine and Caring Sciences, National Centre for Priorities in Health, Linköping University, Linköping, SE-581 83, Sweden.
| | - Jan Liliemark
- Department of Health, Medicine and Caring Sciences, National Centre for Priorities in Health, Linköping University, Linköping, SE-581 83, Sweden
| |
Collapse
|
22
|
Liu C, Tang H, Hu N, Li T. Methylomics and cancer: the current state of methylation profiling and marker development for clinical care. Cancer Cell Int 2023; 23:242. [PMID: 37840147 PMCID: PMC10577916 DOI: 10.1186/s12935-023-03074-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 09/20/2023] [Indexed: 10/17/2023] Open
Abstract
Epigenetic modifications have long been recognized as an essential level in transcriptional regulation linking behavior and environmental conditions or stimuli with biological processes and disease development. Among them, methylation is the most abundant of these reversible epigenetic marks, predominantly occurring on DNA, RNA, and histones. Methylation modification is intimately involved in regulating gene transcription and cell differentiation, while aberrant methylation status has been linked with cancer development in several malignancies. Early detection and precise restoration of dysregulated methylation form the basis for several epigenetics-based therapeutic strategies. In this review, we summarize the current basic understanding of the regulation and mechanisms responsible for methylation modification and cover several cutting-edge research techniques for detecting methylation across the genome and transcriptome. We then explore recent advances in clinical diagnostic applications of methylation markers of various cancers and address the current state and future prospects of methylation modifications in therapies for different diseases, especially comparing pharmacological methylase/demethylase inhibitors with the CRISPRoff/on methylation editing systems. This review thus provides a resource for understanding the emerging role of epigenetic methylation in cancer, the use of methylation-based biomarkers in cancer detection, and novel methylation-targeted drugs.
Collapse
Affiliation(s)
- Chengyin Liu
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Georgetown University, Washington, DC, USA
| | - Han Tang
- BioChain (Beijing) Science & Technology Inc., Beijing, People's Republic of China
| | - Nana Hu
- BioChain (Beijing) Science & Technology Inc., Beijing, People's Republic of China
| | - Tianbao Li
- Department of Molecular Medicine, The University of Texas Health, San Antonio, USA.
| |
Collapse
|
23
|
Gao T, Sang X, Huang X, Gu P, Liu J, Liu Y, Zhang N. Macrophage-camouflaged epigenetic nanoinducers enhance chemoimmunotherapy in triple negative breast cancer. Acta Pharm Sin B 2023; 13:4305-4317. [PMID: 37799382 PMCID: PMC10548052 DOI: 10.1016/j.apsb.2022.11.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 10/08/2022] [Accepted: 10/25/2022] [Indexed: 11/18/2022] Open
Abstract
Chemoimmunotherapy has been approved as standard treatment for triple-negative breast cancer (TNBC), but the clinical outcomes remain unsatisfied. Abnormal epigenetic regulation is associated with acquired drug resistance and T cell exhaustion, which is a critical factor for the poor response to chemoimmunotherapy in TNBC. Herein, macrophage-camouflaged nanoinducers co-loaded with paclitaxel (PTX) and decitabine (DAC) (P/D-mMSNs) were prepared in combination with PD-1 blockade therapy, hoping to improve the efficacy of chemoimmunotherapy through the demethylation of tumor tissue. Camouflage of macrophage vesicle confers P/D-mMSNs with tumor-homing properties. First, DAC can achieve demethylation of tumor tissue and enhance the sensitivity of tumor cells to PTX. Subsequently, PTX induces immunogenic death of tumor cells, promotes phagocytosis of dead cells by dendritic cells, and recruits cytotoxic T cells to infiltrate tumors. Finally, DAC reverses T cell depletion and facilitates immune checkpoint blockade therapy. P/D-mMSNs may be a promising candidate for future drug delivery design and cancer combination therapy in TNBC.
Collapse
Affiliation(s)
- Tong Gao
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Xiao Sang
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Xinyan Huang
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Panpan Gu
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Jie Liu
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Yongjun Liu
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Na Zhang
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| |
Collapse
|
24
|
Jassim A, Rahrmann EP, Simons BD, Gilbertson RJ. Cancers make their own luck: theories of cancer origins. Nat Rev Cancer 2023; 23:710-724. [PMID: 37488363 DOI: 10.1038/s41568-023-00602-5] [Citation(s) in RCA: 92] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/20/2023] [Indexed: 07/26/2023]
Abstract
Cancer has been a leading cause of death for decades. This dismal statistic has increased efforts to prevent the disease or to detect it early, when treatment is less invasive, relatively inexpensive and more likely to cure. But precisely how tissues are transformed continues to provoke controversy and debate, hindering cancer prevention and early intervention strategies. Various theories of cancer origins have emerged, including the suggestion that it is 'bad luck': the inevitable consequence of random mutations in proliferating stem cells. In this Review, we discuss the principal theories of cancer origins and the relative importance of the factors that underpin them. The body of available evidence suggests that developing and ageing tissues 'walk a tightrope', retaining adequate levels of cell plasticity to generate and maintain tissues while avoiding overstepping into transformation. Rather than viewing cancer as 'bad luck', understanding the complex choreography of cell intrinsic and extrinsic factors that characterize transformation holds promise to discover effective new ways to prevent, detect and stop cancer before it becomes incurable.
Collapse
Affiliation(s)
- Amir Jassim
- CRUK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Eric P Rahrmann
- CRUK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Ben D Simons
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
- Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, University of Cambridge, Cambridge, UK
| | - Richard J Gilbertson
- CRUK Cambridge Institute, University of Cambridge, Cambridge, UK.
- Department of Oncology, University of Cambridge, Cambridge, UK.
| |
Collapse
|
25
|
Goswami M, Schlom J, Donahue RN. Peripheral surrogates of tumor burden to guide chemotherapeutic and immunotherapeutic strategies for HPV-associated malignancies. Oncotarget 2023; 14:758-774. [PMID: 38958745 PMCID: PMC11221564 DOI: 10.18632/oncotarget.28487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 07/22/2023] [Indexed: 07/04/2024] Open
Abstract
With the rapid adoption of immunotherapy into clinical practice for HPV-associated malignancies, assessing tumor burden using "liquid biopsies" would further our understanding of clinical outcomes mediated by immunotherapy and allow for tailoring of treatment based on real-time tumor dynamics. In this review, we examine translational studies on peripheral surrogates of tumor burden derived from peripheral blood in HPV-associated malignancies, including levels and methylation of circulating tumor DNA (ctDNA), miRNA derived from extracellular vesicles, circulating tumor cells (CTCs), and HPV-specific antibodies and T cell responses. We review their utility as prognostic and predictive biomarkers of response to chemotherapy and radiation, with a focus on how they may inform and guide immunotherapies to treat locally advanced and metastatic HPV-associated malignancies. We also highlight unanswered questions that must be addressed to translate and integrate these peripheral tumor biomarkers into the clinic.
Collapse
Affiliation(s)
- Meghali Goswami
- Center for Immuno-Oncology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jeffrey Schlom
- Center for Immuno-Oncology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Renee N. Donahue
- Center for Immuno-Oncology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
26
|
Han X, Guo J, Wang M, Zhang N, Ren J, Yang Y, Chi X, Chen Y, Yao H, Zhao YL, Yang YG, Sun Y, Xu J. Dynamic DNA 5-hydroxylmethylcytosine and RNA 5-methycytosine Reprogramming During Early Human Development. GENOMICS, PROTEOMICS & BIOINFORMATICS 2023; 21:805-822. [PMID: 35644351 PMCID: PMC10787118 DOI: 10.1016/j.gpb.2022.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 04/18/2022] [Accepted: 05/05/2022] [Indexed: 06/15/2023]
Abstract
After implantation, complex and highly specialized molecular events render functionally distinct organ formation, whereas how the epigenome shapes organ-specific development remains to be fully elucidated. Here, nano-hmC-Seal, RNA bisulfite sequencing (RNA-BisSeq), and RNA sequencing (RNA-Seq) were performed, and the first multilayer landscapes of DNA 5-hydroxymethylcytosine (5hmC) and RNA 5-methylcytosine (m5C) epigenomes were obtained in the heart, kidney, liver, and lung of the human foetuses at 13-28 weeks with 123 samples in total. We identified 70,091 and 503 organ- and stage-specific differentially hydroxymethylated regions (DhMRs) and m5C-modified mRNAs, respectively. The key transcription factors (TFs), T-box transcription factor 20 (TBX20), paired box 8 (PAX8), krueppel-like factor 1 (KLF1), transcription factor 21 (TCF21), and CCAAT enhancer binding protein beta (CEBPB), specifically contribute to the formation of distinct organs at different stages. Additionally, 5hmC-enriched Alu elements may participate in the regulation of expression of TF-targeted genes. Our integrated studies reveal a putative essential link between DNA modification and RNA methylation, and illustrate the epigenetic maps during human foetal organogenesis, which provide a foundation for for an in-depth understanding of the epigenetic mechanisms underlying early development and birth defects.
Collapse
Affiliation(s)
- Xiao Han
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Jia Guo
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Mengke Wang
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Nan Zhang
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Jie Ren
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
| | - Ying Yang
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, China; Institute of Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Xu Chi
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
| | - Yusheng Chen
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huan Yao
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yong-Liang Zhao
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yun-Gui Yang
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, China; Institute of Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China.
| | - Yingpu Sun
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China.
| | - Jiawei Xu
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China.
| |
Collapse
|
27
|
Dugué PA, Yu C, Hodge AM, Wong EM, Joo JE, Jung CH, Schmidt D, Makalic E, Buchanan DD, Severi G, English DR, Hopper JL, Milne RL, Giles GG, Southey MC. Methylation scores for smoking, alcohol consumption and body mass index and risk of seven types of cancer. Int J Cancer 2023; 153:489-498. [PMID: 36919377 DOI: 10.1002/ijc.34513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/16/2021] [Accepted: 03/22/2021] [Indexed: 03/16/2023]
Abstract
Methylation marks of exposure to health risk factors may be useful markers of cancer risk as they might better capture current and past exposures than questionnaires, and reflect different individual responses to exposure. We used data from seven case-control studies nested within the Melbourne Collaborative Cohort Study of blood DNA methylation and risk of colorectal, gastric, kidney, lung, prostate and urothelial cancer, and B-cell lymphoma (N cases = 3123). Methylation scores (MS) for smoking, body mass index (BMI), and alcohol consumption were calculated based on published data as weighted averages of methylation values. Rate ratios (RR) and 95% confidence intervals for association with cancer risk were estimated using conditional logistic regression and expressed per SD increase of the MS, with and without adjustment for health-related confounders. The contribution of MS to discriminate cases from controls was evaluated using the area under the curve (AUC). After confounder adjustment, we observed: large associations (RR = 1.5-1.7) with lung cancer risk for smoking MS; moderate associations (RR = 1.2-1.3) with urothelial cancer risk for smoking MS and with mature B-cell neoplasm risk for BMI and alcohol MS; moderate to small associations (RR = 1.1-1.2) for BMI and alcohol MS with several cancer types and cancer overall. Generally small AUC increases were observed after inclusion of several MS in the same model (colorectal, gastric, kidney, urothelial cancers: +3%; lung cancer: +7%; B-cell neoplasms: +8%). Methylation scores for smoking, BMI and alcohol consumption show independent associations with cancer risk, and may provide some improvements in risk prediction.
Collapse
Affiliation(s)
- Pierre-Antoine Dugué
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Victoria, Australia
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Victoria, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Chenglong Yu
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Victoria, Australia
| | - Allison M Hodge
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Victoria, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Ee Ming Wong
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Victoria, Australia
- Department of Clinical Pathology, Melbourne Medical School, The University of Melbourne, Parkville, Victoria, Australia
| | - JiHoon E Joo
- Colorectal Oncogenomics Group, Department of Clinical Pathology, Melbourne Medical School, The University of Melbourne, Parkville, Victoria, Australia
| | - Chol-Hee Jung
- Melbourne Bioinformatics, University of Melbourne, Parkville, Victoria, Australia
| | - Daniel Schmidt
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, Victoria, Australia
- Department of Data Science and AI, Faculty of IT, Monash University, Clayton, Victoria, Australia
| | - Enes Makalic
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Daniel D Buchanan
- Colorectal Oncogenomics Group, Department of Clinical Pathology, Melbourne Medical School, The University of Melbourne, Parkville, Victoria, Australia
- Melbourne Bioinformatics, University of Melbourne, Parkville, Victoria, Australia
- Genomic Medicine and Family Cancer Clinic, Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - Gianluca Severi
- Centre de Recherche en Epidémiologie et Santé des Populations (CESP, Inserm U1018), Facultés de Médecine Universités Paris-Saclay, UVSQ, Gustave Roussy, Villejuif, France
| | - Dallas R English
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Victoria, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, Victoria, Australia
| | - John L Hopper
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Roger L Milne
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Victoria, Australia
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Victoria, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Graham G Giles
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Victoria, Australia
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Victoria, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Melissa C Southey
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Victoria, Australia
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Victoria, Australia
- Department of Clinical Pathology, Melbourne Medical School, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
28
|
Nuñez-Corona D, Contreras-Sanzón E, Puente-Rivera J, Arreola R, Camacho-Nuez M, Cruz Santiago J, Estrella-Parra EA, Torres-Romero JC, López-Camarillo C, Alvarez-Sánchez ME. Epigenetic Factors and ncRNAs in Testicular Cancer. Int J Mol Sci 2023; 24:12194. [PMID: 37569569 PMCID: PMC10418327 DOI: 10.3390/ijms241512194] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/26/2023] [Accepted: 07/28/2023] [Indexed: 08/13/2023] Open
Abstract
Testicular cancer is the most prevalent tumor among males aged 15 to 35, resulting in a significant number of newly diagnosed cases and fatalities annually. Non-coding RNAs (ncRNAs) have emerged as key regulators in various cellular processes and pathologies, including testicular cancer. Their involvement in gene regulation, coding, decoding, and overall gene expression control suggests their potential as targets for alternative treatment approaches for this type of cancer. Furthermore, epigenetic modifications, such as histone modifications, DNA methylation, and the regulation by microRNA (miRNA), have been implicated in testicular tumor progression and treatment response. Epigenetics may also offer critical insights for prognostic evaluation and targeted therapies in patients with testicular germ cell tumors (TGCT). This comprehensive review aims to present the latest discoveries regarding the involvement of some proteins and ncRNAs, mainly miRNAs and lncRNA, in the epigenetic aspect of testicular cancer, emphasizing their relevance in pathogenesis and their potential, given the fact that their specific expression holds promise for prognostic evaluation and targeted therapies.
Collapse
Affiliation(s)
- David Nuñez-Corona
- Posgrado en Ciencias Genómicas, Universidad Autónoma De México (UACM), San Lorenzo 290, Col. Del Valle, México City 03100, Mexico
| | - Estefania Contreras-Sanzón
- Posgrado en Ciencias Genómicas, Universidad Autónoma De México (UACM), San Lorenzo 290, Col. Del Valle, México City 03100, Mexico
| | | | - Rodrigo Arreola
- Departamento De Genética, Instituto Nacional De Psiquiatría “Ramón De la Fuente Muñiz”, Calz. Mexico, Xochimilco 101, Col. Huipulco, Tlalpan, México City 14370, Mexico
| | - Minerva Camacho-Nuez
- Posgrado en Ciencias Genómicas, Universidad Autónoma De México (UACM), San Lorenzo 290, Col. Del Valle, México City 03100, Mexico
| | - José Cruz Santiago
- Hospital De Especialidades Centro Médico Nacional La Raza, IMSS, México City 02990, Mexico
| | - Edgar Antonio Estrella-Parra
- Laboratorio De Fitoquímica, UBIPRO, FES-Iztacala, Unidad Nacional Autónoma de México, Av. De los Barrios No.1, Los Reyes Iztacala, Tlalnepantla 54090, Mexico
| | - Julio César Torres-Romero
- Laboratorio De Bioquímica y Genética Molecular, Facultad De Química, Universidad Autónoma De Yucatán, Calle 43 s/n x Calle 96, Paseo De las Fuentes y 40, Col. Inalambrica, Yucatán 97069, Mexico
| | - César López-Camarillo
- Posgrado en Ciencias Genómicas, Universidad Autónoma De México (UACM), San Lorenzo 290, Col. Del Valle, México City 03100, Mexico
| | - María Elizbeth Alvarez-Sánchez
- Posgrado en Ciencias Genómicas, Universidad Autónoma De México (UACM), San Lorenzo 290, Col. Del Valle, México City 03100, Mexico
| |
Collapse
|
29
|
Maié T, Schmidt M, Erz M, Wagner W, G Costa I. CimpleG: finding simple CpG methylation signatures. Genome Biol 2023; 24:161. [PMID: 37430364 DOI: 10.1186/s13059-023-03000-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 06/28/2023] [Indexed: 07/12/2023] Open
Abstract
DNA methylation signatures are usually based on multivariate approaches that require hundreds of sites for predictions. Here, we propose a computational framework named CimpleG for the detection of small CpG methylation signatures used for cell-type classification and deconvolution. We show that CimpleG is both time efficient and performs as well as top performing methods for cell-type classification of blood cells and other somatic cells, while basing its prediction on a single DNA methylation site per cell type. Altogether, CimpleG provides a complete computational framework for the delineation of DNAm signatures and cellular deconvolution.
Collapse
Affiliation(s)
- Tiago Maié
- Institute for Computational Genomics, Joint Research Center for Computational Biomedicine, RWTH Aachen University Medical School, Pauwelsstr. 19, Aachen, 52074, NRW, Germany.
| | - Marco Schmidt
- Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Pauwelsstr. 19, Aachen, 52074, NRW, Germany
- Institute for Stem Cell Biology, RWTH Aachen University Medical School, Pauwelsstr. 19, Aachen, 52074, NRW, Germany
| | - Myriam Erz
- Institute for Computational Genomics, Joint Research Center for Computational Biomedicine, RWTH Aachen University Medical School, Pauwelsstr. 19, Aachen, 52074, NRW, Germany
| | - Wolfgang Wagner
- Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Pauwelsstr. 19, Aachen, 52074, NRW, Germany
- Institute for Stem Cell Biology, RWTH Aachen University Medical School, Pauwelsstr. 19, Aachen, 52074, NRW, Germany
| | - Ivan G Costa
- Institute for Computational Genomics, Joint Research Center for Computational Biomedicine, RWTH Aachen University Medical School, Pauwelsstr. 19, Aachen, 52074, NRW, Germany.
| |
Collapse
|
30
|
Liu Z, Li X, Gao Y, Liu J, Feng Y, Liu Y, Wang J, Wang C, Wang D, He J, Han W, Mei Q, Sun Y. Epigenetic reprogramming of Runx3 reinforces CD8 + T-cell function and improves the clinical response to immunotherapy. Mol Cancer 2023; 22:84. [PMID: 37189103 DOI: 10.1186/s12943-023-01768-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 03/24/2023] [Indexed: 05/17/2023] Open
Abstract
BACKGROUND Checkpoint blockade immunotherapy, represented by PD-1 or PD-L1 antibody treatment, has been of tremendous success in clinical practice. However, the low clinical response rate and lack of biomarkers for prediction of the immune response limit the clinical application of anti-PD-1 immunotherapy. Our recent work showed that a combination of low-dose decitabine and PD-1-ab significantly improved the complete response (CR) rate of cHL patients from 32 to 71%, which indicates that there is a significant correlation between epigenetic regulation and the clinical response to immunotherapy. METHODS We recruited two groups of Hodgkin lymphoma patients who were treated with anti-PD-1 and DAC+anti-PD-1. CD8+ T cells were isolated from the patients' peripheral blood, DNA methylation was analyzed by EPIC, the expression profile was analyzed by RNA-seq, and multigroup analysis was performed with IPA and GSEA functional annotations. We explored the effect of DAC on the function of CD8+ T cells in the blood, spleen, tumor and lymph nodes using a mouse model. Furthermore, we explored the function of Tils in the tumor microenvironment. Then, we constructed Runx3-knockout mice to confirm the T-cell-specific function of Runx3 in CD8+ T cells and analyzed various subtypes of T cells and cytokines using mass cytometry (CyTOF). RESULTS Multiomics analysis identified that DNA methylation reprogramming of Runx3 was a crucial mediator of CD8+ T-cell function. Multiomics data showed that reversal of methylation of the Runx3 promoter promoted the infiltration of CD8+ TILs and mitigated the exhaustion of CD8+ T cells. Furthermore, experiments on tissue-specific Runx3-knockout mice showed that Runx3 deficiency reduced CD8+ T infiltration and the differentiation of effector T and memory T cells. Furthermore, Runx3 deficiency significantly decreased CCR3 and CCR5 levels. Immunotherapy experiments in Runx3 conditional knockout mice showed that DAC could not reverse the resistance of anti-PD-1 in the absence of Runx3. Moreover, both our clinical data and data from TISIDB showed that Runx3 could be a potential biomarker for immunotherapy to predict the clinical response rate. CONCLUSION We demonstrate that the DNA methylation of Runx3 plays a critical role in CD8+ T-cell infiltration and differentiation during decitabine-primed PD-1-ab immunotherapy, which provides a supporting mechanism for the essential role of epiregulation in immunotherapy.
Collapse
Affiliation(s)
- Zongzhi Liu
- Central Laboratory, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academic of Medical Sciences and Peking Union Medical College, Shenzhen, 518116, China
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 518055, Shenzhen, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
- Changping Laboratory, Yard 28, Science Park Road, Changping District, 102206, Beijing, China
| | - Xiang Li
- Changping Laboratory, Yard 28, Science Park Road, Changping District, 102206, Beijing, China
- Department of Bio-therapeutic, the First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Yibo Gao
- Central Laboratory, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academic of Medical Sciences and Peking Union Medical College, Shenzhen, 518116, China
| | - Jiejie Liu
- Changping Laboratory, Yard 28, Science Park Road, Changping District, 102206, Beijing, China
- Department of Bio-therapeutic, the First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Yating Feng
- Central Laboratory, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academic of Medical Sciences and Peking Union Medical College, Shenzhen, 518116, China
| | - Yang Liu
- Changping Laboratory, Yard 28, Science Park Road, Changping District, 102206, Beijing, China
- Department of Bio-therapeutic, the First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Junyun Wang
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Chunmeng Wang
- Changping Laboratory, Yard 28, Science Park Road, Changping District, 102206, Beijing, China
- Department of Bio-therapeutic, the First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Dongrui Wang
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310058, China.
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, 310058, China.
| | - Jie He
- Central Laboratory, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academic of Medical Sciences and Peking Union Medical College, Shenzhen, 518116, China.
| | - Weidong Han
- Changping Laboratory, Yard 28, Science Park Road, Changping District, 102206, Beijing, China.
- Department of Bio-therapeutic, the First Medical Center, Chinese PLA General Hospital, Beijing, China.
| | - Qian Mei
- Changping Laboratory, Yard 28, Science Park Road, Changping District, 102206, Beijing, China.
- Department of Bio-therapeutic, the First Medical Center, Chinese PLA General Hospital, Beijing, China.
| | - Yingli Sun
- Central Laboratory, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academic of Medical Sciences and Peking Union Medical College, Shenzhen, 518116, China.
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
31
|
Ji TT, Xie NB, Ding JH, Wang M, Guo X, Chen YY, Yu SY, Feng YQ, Yuan BF. Enzymatic Cleavage-Mediated Extension Stalling Enables Accurate Recognition and Quantification of Locus-Specific Uracil Modification in DNA. Anal Chem 2023; 95:8384-8392. [PMID: 37192336 DOI: 10.1021/acs.analchem.3c01410] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Chemical modifications in DNA have profound influences on the structures and functions of DNA. Uracil, a naturally occurring DNA modification, can originate from the deamination of cytosine or arise from misincorporation of dUTP into DNA during DNA replication. Uracil in DNA will imperil genomic stability due to their potential in producing detrimental mutations. An in-depth understanding of the functions of uracil modification requires the accurate determination of its site as well as content in genomes. Herein, we characterized that a new member of the uracil-DNA glycosylase (UDG) family enzyme (UdgX-H109S) could selectively cleave both uracil-containing single-stranded DNA (ssDNA) and double-stranded DNA (dsDNA). Based on this unique property of UdgX-H109S, we developed an enzymatic cleavage-mediated extension stalling (ECES) method for the locus-specific detection and quantification of uracil in genomic DNA. In the ECES method, UdgX-H109S specifically recognizes and cleaves the N-glycosidic bond of uracil from dsDNA and generates an apurinic/apyrimidinic (AP) site, which could be broken by APE1 to form a one-nucleotide gap. The specific cleavage by UdgX-H109S is then evaluated and quantified by qPCR. With the developed ECES approach, we demonstrated that the level of uracil at position Chr4:50566961 in genomic DNA of breast cancer tissues was significantly decreased. Collectively, the ECES method has been proved to be accurate and reproducible in the locus-specific quantification of uracil in genomic DNA from biological and clinical samples.
Collapse
Affiliation(s)
- Tong-Tong Ji
- College of Chemistry and Molecular Sciences, Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, Hubei 430071, China
| | - Neng-Bin Xie
- College of Chemistry and Molecular Sciences, Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, Hubei 430071, China
- School of Public Health, Research Center of Public Health, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei 430060, China
| | - Jiang-Hui Ding
- College of Chemistry and Molecular Sciences, Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, Hubei 430071, China
| | - Min Wang
- College of Chemistry and Molecular Sciences, Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, Hubei 430071, China
| | - Xia Guo
- College of Chemistry and Molecular Sciences, Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, Hubei 430071, China
| | - Ying-Ying Chen
- College of Chemistry and Molecular Sciences, Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, Hubei 430071, China
| | - Si-Yu Yu
- School of Public Health, Research Center of Public Health, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei 430060, China
| | - Yu-Qi Feng
- College of Chemistry and Molecular Sciences, Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, Hubei 430071, China
- School of Public Health, Research Center of Public Health, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei 430060, China
| | - Bi-Feng Yuan
- College of Chemistry and Molecular Sciences, Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, Hubei 430071, China
- School of Public Health, Research Center of Public Health, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei 430060, China
- Cancer Precision Diagnosis and Treatment and Translational Medicine Hubei Engineering Research Center, Wuhan Research Center for Infectious Diseases and Cancer, Zhongnan Hospital of Wuhan University, Chinese Academy of Medical Sciences, Wuhan, Hubei 430071, China
| |
Collapse
|
32
|
Barrett JE, Jones A, Evans I, Herzog C, Reisel D, Olaitan A, Mould T, MacDonald N, Doufekas K, Newton C, Crosbie EJ, Bjørge L, Colombo N, Dostalek L, Costas L, Peremiquel-Trillas P, Ponce J, Matias-Guiu X, Zikan M, Cibula D, Wang J, Sundström K, Dillner J, Widschwendter M. The WID-EC test for the detection and risk prediction of endometrial cancer. Int J Cancer 2023; 152:1977-1988. [PMID: 36533702 DOI: 10.1002/ijc.34406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 11/15/2022] [Accepted: 12/01/2022] [Indexed: 12/23/2022]
Abstract
The incidence of endometrial cancer is rising. Measures to identify women at risk and to detect endometrial cancer earlier are required to reduce the morbidity triggered by the aggressive treatment required for advanced endometrial cancer. We developed the WID-EC (Women's cancer risk IDentification-Endometrial Cancer) test, which is based on DNA methylation at 500 CpG sites, in a discovery set of cervical liquid-based cytology samples from 1086 women with and without an endometrial cancer (217 cancer cases and 869 healthy controls) with a worse prognosis (grade 3 or ≥stage IB). We validated the WID-EC test in an independent external validation set of 64 endometrial cancer cases and 225 controls. We further validated the test in 150 healthy women (prospective set) who provided a cervical sample as part of the routine Swedish cervical screening programme, 54 of whom developed endometrial cancer within 3 years of sample collection. The WID-EC test identified women with endometrial cancer with a receiver operator characteristic area under the curve (AUC) of 0.92 (95% CI: 0.88-0.97) in the external set and of 0.82 (95% CI: 0.74-0.89) in the prospective validation set. Using an optimal cutoff, cancer cases were detected with a sensitivity of 86% and a specificity of 90% in the external validation set, and a sensitivity and specificity of 52% and 98% respectively in the prospective validation set. The WID-EC test can identify women with or at risk of endometrial cancer.
Collapse
Affiliation(s)
- James E Barrett
- European Translational Oncology Prevention and Screening (EUTOPS) Institute, Hall in Tirol, Austria.,Department of Women's Cancer, UCL EGA Institute for Women's Health, University College London, London, UK.,Research Institute for Biomedical Aging Research, Universität Innsbruck, Innsbruck, Austria
| | - Allison Jones
- Department of Women's Cancer, UCL EGA Institute for Women's Health, University College London, London, UK
| | - Iona Evans
- Department of Women's Cancer, UCL EGA Institute for Women's Health, University College London, London, UK
| | - Chiara Herzog
- European Translational Oncology Prevention and Screening (EUTOPS) Institute, Hall in Tirol, Austria
| | - Daniel Reisel
- Department of Women's Cancer, UCL EGA Institute for Women's Health, University College London, London, UK
| | - Adeola Olaitan
- Department of Women's Cancer, UCL EGA Institute for Women's Health, University College London, London, UK
| | - Tim Mould
- Department of Women's Cancer, UCL EGA Institute for Women's Health, University College London, London, UK
| | - Nicola MacDonald
- Department of Women's Cancer, UCL EGA Institute for Women's Health, University College London, London, UK
| | - Konstantinos Doufekas
- Department of Women's Cancer, UCL EGA Institute for Women's Health, University College London, London, UK
| | - Claire Newton
- University Hospitals Bristol NHS Foundation Trust, Bristol, UK.,University of Bristol, Bristol, UK
| | - Emma J Crosbie
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.,Division of Gynaecology, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Line Bjørge
- Department of Obstetrics and Gynecology, Haukeland University Hospital, Bergen, Norway.,Centre for Cancer Biomarkers CCBIO, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Nicoletta Colombo
- Istituto Europeo di Oncologia, Milan, Italy.,University of Milano-Bicocca, Milan, Italy
| | - Lukas Dostalek
- Hospital Na Bulovce, Prague, Czech Republic.,Department of Obstetrics and Gynecology, General University Hospital in Prague, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Laura Costas
- Unit of Molecular Epidemiology and Genetics in Infections and Cancer, Cancer Epidemiology Research Programme, IDIBELL, Catalan Institute of Oncology, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Paula Peremiquel-Trillas
- Unit of Molecular Epidemiology and Genetics in Infections and Cancer, Cancer Epidemiology Research Programme, IDIBELL, Catalan Institute of Oncology, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Jordi Ponce
- Department of Gynecology and Obstetrics, Hospital Universitari de Bellvitge, IDIBELL. Hospitalet de Llobregat, Barcelona, Spain
| | - Xavier Matias-Guiu
- Department of Pathology, Hospital Universitari de Bellvitge, IDIBELL, CIBERONC. Hospitalet de Llobregat, Barcelona, Spain
| | - Michal Zikan
- Hospital Na Bulovce, Prague, Czech Republic.,Department of Obstetrics and Gynecology, General University Hospital in Prague, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - David Cibula
- Department of Obstetrics and Gynecology, General University Hospital in Prague, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Jiangrong Wang
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Karin Sundström
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Joakim Dillner
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Martin Widschwendter
- European Translational Oncology Prevention and Screening (EUTOPS) Institute, Hall in Tirol, Austria.,Department of Women's Cancer, UCL EGA Institute for Women's Health, University College London, London, UK.,Research Institute for Biomedical Aging Research, Universität Innsbruck, Innsbruck, Austria
| |
Collapse
|
33
|
Lehtinen M, Pimenoff VN, Nedjai B, Louvanto K, Verhoef L, Heideman DAM, El‐Zein M, Widschwendter M, Dillner J. Assessing the risk of cervical neoplasia in the post-HPV vaccination era. Int J Cancer 2023; 152:1060-1068. [PMID: 36093582 PMCID: PMC10091767 DOI: 10.1002/ijc.34286] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/30/2022] [Accepted: 08/03/2022] [Indexed: 01/21/2023]
Abstract
This review is based on the recent EUROGIN scientific session: "Assessing risk of cervical cancer in the post-vaccination era," which addressed the demands of cervical intraepithelial neoplasia (CIN)/squamous intraepithelial lesion (SIL) triage now that the prevalence of vaccine-targeted oncogenic high-risk (hr) human papillomaviruses (HPVs) is decreasing. Change in the prevalence distribution of oncogenic HPV types that follows national HPV vaccination programs is setting the stage for loss of positive predictive value of conventional but possibly also new triage modalities. Understanding the contribution of the latter, most notably hypermethylation of cellular and viral genes in a new setting where most oncogenic HPV types are no longer present, requires studies on their performance in vaccinated women with CIN/SIL that are associated with nonvaccine HPV types. Lessons learned from this research may highlight the potential of cervical cells for risk prediction of all women's cancers.
Collapse
Affiliation(s)
- Matti Lehtinen
- Medical FacultyTampere UniversityTampereFinland
- Department of Laboratory MedicineKarolinska InstituteStockholmSweden
| | - Ville N. Pimenoff
- Department of Laboratory MedicineKarolinska InstituteStockholmSweden
| | - Belinda Nedjai
- Wolfson Institute of Population HealthQueen Mary University of LondonLondonUK
| | - Karolina Louvanto
- Medical FacultyTampere UniversityTampereFinland
- Department of Obstetrics and GynecologyTampere University HospitalTampereFinland
| | - Lisanne Verhoef
- Department of PathologyAmsterdam UMC, Vrije Universiteit AmsterdamAmsterdamThe Netherlands
- Cancer Center Amsterdam, Imaging and BiomarkersAmsterdamThe Netherlands
| | - Daniëlle A. M. Heideman
- Department of PathologyAmsterdam UMC, Vrije Universiteit AmsterdamAmsterdamThe Netherlands
- Cancer Center Amsterdam, Imaging and BiomarkersAmsterdamThe Netherlands
| | - Mariam El‐Zein
- Division of Cancer EpidemiologyMcGill UniversityMontrealCanada
| | - Martin Widschwendter
- European Translational Oncology Prevention and Screening (EUTOPS) InstituteUniversität InnsbruckHall in TirolAustria
- Research Institute for Biomedical Aging ResearchUniversität InnsbruckInnsbruckAustria
- Department of Women's Cancer, UCL EGA Institute for Women's HealthUniversity College LondonLondonUK
- Department of Women's and Children's Health, Division of Obstetrics and GynecologyKarolinska Institute and Karolinska University HospitalStockholmSweden
| | - Joakim Dillner
- Department of Laboratory MedicineKarolinska InstituteStockholmSweden
| |
Collapse
|
34
|
Xu G, Yang H, Qiu J, Reboud J, Zhen L, Ren W, Xu H, Cooper JM, Gu H. Sequence terminus dependent PCR for site-specific mutation and modification detection. Nat Commun 2023; 14:1169. [PMID: 36859350 PMCID: PMC9978023 DOI: 10.1038/s41467-023-36884-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 02/21/2023] [Indexed: 03/03/2023] Open
Abstract
The detection of changes in nucleic acid sequences at specific sites remains a critical challenge in epigenetics, diagnostics and therapeutics. To date, such assays often require extensive time, expertise and infrastructure for their implementation, limiting their application in clinical settings. Here we demonstrate a generalizable method, named Specific Terminal Mediated Polymerase Chain Reaction (STEM-PCR) for the detection of DNA modifications at specific sites, in a similar way as DNA sequencing techniques, but using simple and widely accessible PCR-based workflows. We apply the technique to both for site-specific methylation and co-methylation analysis, importantly using a bisulfite-free process - so providing an ease of sample processing coupled with a sensitivity 20-fold better than current gold-standard techniques. To demonstrate the clinical applicability through the detection of single base mutations with high sensitivity and no-cross reaction with the wild-type background, we show the bisulfite-free detection of SEPTIN9 and SFRP2 gene methylation in patients (as key biomarkers in the prognosis and diagnosis of tumours).
Collapse
Affiliation(s)
- Gaolian Xu
- School of Biomedical Engineering/Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Hao Yang
- School of Biomedical Engineering/Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Jiani Qiu
- School of Biomedical Engineering/Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Julien Reboud
- Division of Biomedical Engineering, University of Glasgow, G12 8LT, Glasgow, United Kingdom
| | - Linqing Zhen
- School of Biomedical Engineering/Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Wei Ren
- School of Biomedical Engineering/Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Hong Xu
- School of Biomedical Engineering/Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, 200030, China.
| | - Jonathan M Cooper
- Division of Biomedical Engineering, University of Glasgow, G12 8LT, Glasgow, United Kingdom.
| | - Hongchen Gu
- School of Biomedical Engineering/Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, 200030, China.
| |
Collapse
|
35
|
Gao Q, Lin YP, Li BS, Wang GQ, Dong LQ, Shen BY, Lou WH, Wu WC, Ge D, Zhu QL, Xu Y, Xu JM, Chang WJ, Lan P, Zhou PH, He MJ, Qiao GB, Chuai SK, Zang RY, Shi TY, Tan LJ, Yin J, Zeng Q, Su XF, Wang ZD, Zhao XQ, Nian WQ, Zhang S, Zhou J, Cai SL, Zhang ZH, Fan J. Unintrusive multi-cancer detection by circulating cell-free DNA methylation sequencing (THUNDER): development and independent validation studies. Ann Oncol 2023; 34:486-495. [PMID: 36849097 DOI: 10.1016/j.annonc.2023.02.010] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 02/10/2023] [Accepted: 02/20/2023] [Indexed: 02/27/2023] Open
Abstract
BACKGROUND Early detection of cancer offers the opportunity to identify candidates when curative treatments are achievable. The THUNDER study (THe UNintrusive Detection of EaRly-stage cancers, NCT04820868) aimed to evaluate the performance of ELSA-seq, a previously described cfDNA methylation-based technology, in the early detection and localization of six types of cancers in the colorectum, esophagus, liver, lung, ovary and pancreas. PATIENTS AND METHODS A customized panel of 161,984 CpG sites was constructed and validated by public and in-house (cancer: n=249; non-cancer: n=288) methylome data, respectively. The cfDNA samples from 1,693 participants (cancer: n=735; non-cancer: n=958) were retrospectively collected to train and validate two multi-cancer detection blood test models (MCDBT-1/2) for different clinical scenarios. The models were validated on a prospective and independent cohort of age-matched 1,010 participants (cancer: n=505; non-cancer: n=505). Simulation using the cancer incidence in China was applied to infer stage-shift and survival benefits to demonstrate the potential utility of the models in the real world. RESULTS MCDBT-1 yielded a sensitivity of 69.1% (64.8%‒73.3%), a specificity of 98.9% (97.6%‒99.7%) and tissue origin accuracy of 83.2% (78.7%‒87.1%) in the independent validation set. For early stage (I‒III) patients, the sensitivity of MCDBT-1 was 59.8% (54.4%‒65.0%). In the real-world simulation, MCDBT-1 achieved the sensitivity of 70.6% in detecting the six cancers, thus decreasing late-stage incidence by 38.7%‒46.4%, and increasing 5-year survival rate by 33.1%‒40.4%, respectively. In parallel, MCDBT-2 was generated at a slightly low specificity of 95.1% (92.8%-96.9%) but a higher sensitivity of 75.1% (71.9%-79.8%) than MCDBT-1 for populations at relatively high risk of cancers, and also had ideal performance. CONCLUSION In this large-scale clinical validation study, MCDBT-1/2 models showed a high sensitivity, specificity, and accuracy of predicted origin in detecting six types of cancers.
Collapse
Affiliation(s)
- Q Gao
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Fudan University, Shanghai 200032, China; Key Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Y P Lin
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Fudan University, Shanghai 200032, China; Key Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - B S Li
- Burning Rock Biotech, Guangzhou 510300, China
| | - G Q Wang
- Burning Rock Biotech, Guangzhou 510300, China
| | - L Q Dong
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Fudan University, Shanghai 200032, China; Key Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - B Y Shen
- Department of General Surgery, Pancreatic Disease Center, Research Institute of Pancreatic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 20025, China
| | - W H Lou
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - W C Wu
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - D Ge
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Q L Zhu
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Y Xu
- Burning Rock Biotech, Guangzhou 510300, China
| | - J M Xu
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - W J Chang
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - P Lan
- Department of Colorectal Surgery, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510655, China
| | - P H Zhou
- Endoscopy Center and Endoscopy Research Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - M J He
- Endoscopy Center and Endoscopy Research Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - G B Qiao
- Department of Thoracic Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - S K Chuai
- Burning Rock Biotech, Guangzhou 510300, China
| | - R Y Zang
- Ovarian Cancer Program, Department of Gynaecologic Oncology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - T Y Shi
- Ovarian Cancer Program, Department of Gynaecologic Oncology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - L J Tan
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - J Yin
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Q Zeng
- Health Management Institute, The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing 100853, China
| | - X F Su
- Department of Cardiothoracic Surgery, Linfen People's Hospital, Shanxi 041000, China
| | - Z D Wang
- Clinical Research Center, Linfen People's Hospital, Shanxi 041000, China
| | - X Q Zhao
- Department of Pathology, Linfen People's Hospital, Shanxi 041000, China
| | - W Q Nian
- Phase I ward, Chongqing University Cancer Hospital, Chongqing 400030, China
| | - S Zhang
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Fudan University, Shanghai 200032, China
| | - J Zhou
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Fudan University, Shanghai 200032, China; Key Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - S L Cai
- Burning Rock Biotech, Guangzhou 510300, China
| | - Z H Zhang
- Burning Rock Biotech, Guangzhou 510300, China
| | - J Fan
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Fudan University, Shanghai 200032, China; Key Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China.
| |
Collapse
|
36
|
Takahashi Y, Morales Valencia M, Yu Y, Ouchi Y, Takahashi K, Shokhirev MN, Lande K, Williams AE, Fresia C, Kurita M, Hishida T, Shojima K, Hatanaka F, Nuñez-Delicado E, Esteban CR, Izpisua Belmonte JC. Transgenerational inheritance of acquired epigenetic signatures at CpG islands in mice. Cell 2023; 186:715-731.e19. [PMID: 36754048 DOI: 10.1016/j.cell.2022.12.047] [Citation(s) in RCA: 100] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 08/19/2022] [Accepted: 12/29/2022] [Indexed: 02/10/2023]
Abstract
Transgenerational epigenetic inheritance in mammals remains a debated subject. Here, we demonstrate that DNA methylation of promoter-associated CpG islands (CGIs) can be transmitted from parents to their offspring in mice. We generated DNA methylation-edited mouse embryonic stem cells (ESCs), in which CGIs of two metabolism-related genes, the Ankyrin repeat domain 26 and the low-density lipoprotein receptor, were specifically methylated and silenced. DNA methylation-edited mice generated by microinjection of the methylated ESCs exhibited abnormal metabolic phenotypes. Acquired methylation of the targeted CGI and the phenotypic traits were maintained and transmitted across multiple generations. The heritable CGI methylation was subjected to reprogramming in parental PGCs and subsequently reestablished in the next generation at post-implantation stages. These observations provide a concrete step toward demonstrating transgenerational epigenetic inheritance in mammals, which may have implications in our understanding of evolutionary biology as well as the etiology, diagnosis, and prevention of non-genetically inherited human diseases.
Collapse
Affiliation(s)
- Yuta Takahashi
- Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA; Altos Labs, 5510 Morehouse Drive, Suite 300, San Diego, CA 92121, USA
| | - Mariana Morales Valencia
- Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA; Altos Labs, 5510 Morehouse Drive, Suite 300, San Diego, CA 92121, USA
| | - Yang Yu
- Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA; Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology and Key Laboratory of Assisted Reproduction, Ministry of Education, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China; Stem Cell Research Center, Peking University Third Hospital, Beijing 100191, China
| | - Yasuo Ouchi
- Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA; Altos Labs, 5510 Morehouse Drive, Suite 300, San Diego, CA 92121, USA; Department of Regenerative Medicine, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chuou-ku, Chiba 260-8670, Japan
| | - Kazuki Takahashi
- Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA; Altos Labs, 5510 Morehouse Drive, Suite 300, San Diego, CA 92121, USA
| | - Maxim Nikolaievich Shokhirev
- Integrative Genomics and Bioinformatics Core, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Kathryn Lande
- Integrative Genomics and Bioinformatics Core, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - April E Williams
- Integrative Genomics and Bioinformatics Core, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Chiara Fresia
- Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Masakazu Kurita
- Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA; Department of Plastic, Reconstructive and Aesthetic Surgery, The University of Tokyo Hospital, Tokyo, Japan
| | - Tomoaki Hishida
- Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA; Laboratory of Biological Chemistry, School of Pharmaceutical Sciences, Wakayama Medical University, 25-1 Shitibancho, Wakayama, Wakayama, Japan
| | - Kensaku Shojima
- Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Fumiyuki Hatanaka
- Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA; Altos Labs, 5510 Morehouse Drive, Suite 300, San Diego, CA 92121, USA
| | - Estrella Nuñez-Delicado
- Universidad Católica San Antonio de Murcia (UCAM), Campus de los Jerónimos, no. 135 Guadalupe 30107, Murcia, Spain
| | - Concepcion Rodriguez Esteban
- Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA; Altos Labs, 5510 Morehouse Drive, Suite 300, San Diego, CA 92121, USA
| | - Juan Carlos Izpisua Belmonte
- Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA; Altos Labs, 5510 Morehouse Drive, Suite 300, San Diego, CA 92121, USA.
| |
Collapse
|
37
|
Jie C, Li R, Cheng Y, Wang Z, Wu Q, Xie C. Prospects and feasibility of synergistic therapy with radiotherapy, immunotherapy, and DNA methyltransferase inhibitors in non-small cell lung cancer. Front Immunol 2023; 14:1122352. [PMID: 36875059 PMCID: PMC9981667 DOI: 10.3389/fimmu.2023.1122352] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 02/09/2023] [Indexed: 02/19/2023] Open
Abstract
The morbidity and mortality of lung cancer are increasing, seriously threatening human health and life. Non-small cell lung cancer (NSCLC) has an insidious onset and is not easy to be diagnosed in its early stage. Distant metastasis often occurs and the prognosis is poor. Radiotherapy (RT) combined with immunotherapy, especially with immune checkpoint inhibitors (ICIs), has become the focus of research in NSCLC. The efficacy of immunoradiotherapy (iRT) is promising, but further optimization is necessary. DNA methylation has been involved in immune escape and radioresistance, and becomes a game changer in iRT. In this review, we focused on the regulation of DNA methylation on ICIs treatment resistance and radioresistance in NSCLC and elucidated the potential synergistic effects of DNA methyltransferases inhibitors (DNMTis) with iRT. Taken together, we outlined evidence suggesting that a combination of DNMTis, RT, and immunotherapy could be a promising treatment strategy to improve NSCLC outcomes.
Collapse
Affiliation(s)
- Chen Jie
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Rumeng Li
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yajie Cheng
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zhihao Wang
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Qiuji Wu
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Conghua Xie
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
38
|
Tian X, Shi C, Liu S, Zhao C, Wang X, Cao Y. Methylation related genes are associated with prognosis of patients with head and neck squamous cell carcinoma via altering tumor immune microenvironment. J Dent Sci 2023; 18:57-64. [PMID: 36643267 PMCID: PMC9831828 DOI: 10.1016/j.jds.2022.07.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/12/2022] [Indexed: 01/18/2023] Open
Abstract
Background/purpose Analysis of methylomes may enable prognostic stratification in patients with head and neck squamous cell carcinoma (HNSCC). This study aimed to identify methylation-related differentially expressed genes (mrDEGs), and to assess their efficacy in predicting patients' survival, tumor immune microenvironment alterations and immune checkpoints in patients with HNSCC. Materials and methods The methylome and transcriptome data of 528 HNSCC and 50 normal samples from TCGA database were used as training cohort. We identified mrDEGs and constituted a risk score model using Kaplan-Meier analysis and multivariate Cox regression. The prognostic efficacy of the risk score was validated in GSE65858 and GSE41613. We determined the enrichment of previously defined biological processes of mrDEGs. We separated the HNSCC patients into low-risk and high-risk groups and compared their immune cell infiltration and immune checkpoints' expressions. Results The risk score model was constituted by nine prognostic mrDEGs, including LIMD2, SYCP2, EPHX3, UCLH1, STC2, PRAME, SLC7A4, PLOD2, and ACADL. The risk score was a significant prognostic factor both in training (P < 0.001) and validation dataset (GSE65858: P = 0.008; GSE41613 = 0.015). The prognostic mrDEGs were enriched in multiple immune-associated pathways. Effector immune cells were increased in low-risk patients, including CD8+ T cells, activated CD4+ T cells, and plasma cells, whereas tumor associated M2 macrophages were recruited in the high-risk group. Expressions of immune checkpoints were generally higher in low-risk patients, including CTLA-4, PD-1 and LAG3. Conclusion The mrDEGs can stratify HNSCC patients' prognosis, which correlates with alterations in tumor immune infiltrations and immune checkpoints.
Collapse
Affiliation(s)
- Xudong Tian
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China,Department of Head and Neck Oncology, West China College of Stomatology, Sichuan University, Chengdu, China
| | - Congyu Shi
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China,Department of Head and Neck Oncology, West China College of Stomatology, Sichuan University, Chengdu, China
| | - Shan Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China,Department of Head and Neck Oncology, West China College of Stomatology, Sichuan University, Chengdu, China
| | - Chengzhi Zhao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China,Department of Oral and Maxillofacial Surgery, West China College of Stomatology, Sichuan University, Chengdu, China
| | - Xiaoyi Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China,Department of Head and Neck Oncology, West China College of Stomatology, Sichuan University, Chengdu, China
| | - Yubin Cao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China,Department of Oral and Maxillofacial Surgery, West China College of Stomatology, Sichuan University, Chengdu, China,Corresponding author. State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Head and Neck Oncology, West China College of Stomatology, Sichuan University, No. 14, 3rd Section of Ren Min Nan Rd, Chengdu, 610041, China.,
| |
Collapse
|
39
|
Pancancer Analysis of the Prognostic and Immunotherapeutic Value of Progestin and AdipoQ Receptor 4. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:2528164. [PMID: 36573110 PMCID: PMC9789910 DOI: 10.1155/2022/2528164] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/09/2022] [Accepted: 11/10/2022] [Indexed: 12/23/2022]
Abstract
AdipoQ receptor 4 (PAQR4) belongs to the family of progestin and AdipoQ receptors. PAQR4 plays an oncogenic role in lung and breast cancer. However, systematic pancancer analyses of PAQR4 have not been performed. The purpose was to investigate the prognostic and immunological significance of PAQR4 across 31 tumor types. Data were obtained from the following sources: TCGA, GEO, UALCAN, TIMER, GEPIA2, KM plotter, and TISIDB databases. The results proved that PAQR4 expression was significantly elevatory in most cancer types. We then explored the utility of PAQR4 as a prognostic indicator across all cancers. Using Cox proportional risk regression models, it has been demonstrated that PAQR4 is an independent risk factor in. High PAQR4 expression was not associated with other prognostic indicators, including overall survival, disease-free interval, disease-specific survival, and progression-free period. Subsequently, we explored the immunological value of PAQR4 and found that PAQR4 expression significantly correlated with tumor mutational burden, microsatellite instability, neoantigen, and immune checkpoint genes in tumors. It also significantly negatively correlated with most tumors' ESTIMATE scores, indicating that PAQR4 can influence the cellular composition of the tumor microenvironment. Our findings suggest the immunotherapeutic potential of PAQR4 in tumors. Finally, we explored the role of PAQR4 in tumor drug resistance and found that PAQR4 expression affected the sensitivity to multiple chemotherapeutic agents. A significant role for PAQR4 in tumor immunity is evident in these studies, as well as its potential role in cancer diagnosis, prognosis, and treatment precision.
Collapse
|
40
|
Zhou X, Cheng Z, Dong M, Liu Q, Yang W, Liu M, Tian J, Cheng W. Tumor fractions deciphered from circulating cell-free DNA methylation for cancer early diagnosis. Nat Commun 2022; 13:7694. [PMID: 36509772 PMCID: PMC9744803 DOI: 10.1038/s41467-022-35320-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 11/28/2022] [Indexed: 12/14/2022] Open
Abstract
Tumor-derived circulating cell-free DNA (cfDNA) provides critical clues for cancer early diagnosis, yet it often suffers from low sensitivity. Here, we present a cancer early diagnosis approach using tumor fractions deciphered from circulating cfDNA methylation signatures. We show that the estimated fractions of tumor-derived cfDNA from cancer patients increase significantly as cancer progresses in two independent datasets. Employing the predicted tumor fractions, we establish a Bayesian diagnostic model in which training samples are only derived from late-stage patients and healthy individuals. When validated on early-stage patients and healthy individuals, this model exhibits a sensitivity of 86.1% for cancer early detection and an average accuracy of 76.9% for tumor localization at a specificity of 94.7%. By highlighting the potential of tumor fractions on cancer early diagnosis, our approach can be further applied to cancer screening and tumor progression monitoring.
Collapse
Affiliation(s)
- Xiao Zhou
- grid.12527.330000 0001 0662 3178Department of Automation, Tsinghua University, Beijing, 100084 China
| | - Zhen Cheng
- grid.12527.330000 0001 0662 3178Department of Automation, Tsinghua University, Beijing, 100084 China
| | - Mingyu Dong
- grid.12527.330000 0001 0662 3178Department of Automation, Tsinghua University, Beijing, 100084 China
| | - Qi Liu
- grid.12527.330000 0001 0662 3178Department of Automation, Tsinghua University, Beijing, 100084 China
| | - Weiyang Yang
- grid.12527.330000 0001 0662 3178Department of Automation, Tsinghua University, Beijing, 100084 China
| | - Min Liu
- grid.12527.330000 0001 0662 3178Department of Automation, Tsinghua University, Beijing, 100084 China ,grid.413405.70000 0004 1808 0686Institute for Healthcare Artificial Intelligence Application, Guangdong Second Provincial General Hospital, Guangzhou, 510317 China
| | - Junzhang Tian
- grid.413405.70000 0004 1808 0686Institute for Healthcare Artificial Intelligence Application, Guangdong Second Provincial General Hospital, Guangzhou, 510317 China
| | - Weibin Cheng
- grid.413405.70000 0004 1808 0686Institute for Healthcare Artificial Intelligence Application, Guangdong Second Provincial General Hospital, Guangzhou, 510317 China
| |
Collapse
|
41
|
Zhang G, Wang Z, Song P, Zhan X. DNA and histone modifications as potent diagnostic and therapeutic targets to advance non-small cell lung cancer management from the perspective of 3P medicine. EPMA J 2022; 13:649-669. [PMID: 36505890 PMCID: PMC9727004 DOI: 10.1007/s13167-022-00300-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 10/11/2022] [Indexed: 12/12/2022]
Abstract
Lung cancer has a very high mortality in females and males. Most (~ 85%) of lung cancers are non-small cell lung cancers (NSCLC). When lung cancer is diagnosed, most of them have either local or distant metastasis, with a poor prognosis. In order to achieve better outcomes, it is imperative to identify the molecular signature based on genetic and epigenetic variations for different NSCLC subgroups. We hypothesize that DNA and histone modifications play significant roles in the framework of predictive, preventive, and personalized medicine (PPPM; 3P medicine). Epigenetics has a significant impact on tumorigenicity, tumor heterogeneity, and tumor resistance to chemotherapy, targeted therapy, and immunotherapy. An increasing interest is that epigenomic regulation is recognized as a potential treatment option for NSCLC. Most attention has been paid to the epigenetic alteration patterns of DNA and histones. This article aims to review the roles DNA and histone modifications play in tumorigenesis, early detection and diagnosis, and advancements and therapies of NSCLC, and also explore the connection between DNA and histone modifications and PPPM, which may provide an important contribution to improve the prognosis of NSCLC. We found that the success of targeting DNA and histone modifications is limited in the clinic, and how to combine the therapies to improve patient outcomes is necessary in further studies, especially for predictive diagnostics, targeted prevention, and personalization of medical services in the 3P medicine approach. It is concluded that DNA and histone modifications are potent diagnostic and therapeutic targets to advance non-small cell lung cancer management from the perspective of 3P medicine.
Collapse
Affiliation(s)
- Guodong Zhang
- Thoracic Surgery Department, Shandong Cancer Hospital and Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, 440 Jiyan Road, Shandong 250117 Jinan, People’s Republic of China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, 6699 Qingdao Road, Jinan, Shandong 250117 People’s Republic of China
| | - Zhengdan Wang
- Thoracic Surgery Department, Shandong Cancer Hospital and Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, 440 Jiyan Road, Shandong 250117 Jinan, People’s Republic of China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, 6699 Qingdao Road, Jinan, Shandong 250117 People’s Republic of China
| | - Pingping Song
- Thoracic Surgery Department, Shandong Cancer Hospital and Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, 440 Jiyan Road, Shandong 250117 Jinan, People’s Republic of China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, 6699 Qingdao Road, Jinan, Shandong 250117 People’s Republic of China
| | - Xianquan Zhan
- Thoracic Surgery Department, Shandong Cancer Hospital and Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, 440 Jiyan Road, Shandong 250117 Jinan, People’s Republic of China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, 6699 Qingdao Road, Jinan, Shandong 250117 People’s Republic of China
| |
Collapse
|
42
|
Barrett JE, Sundström K, Jones A, Evans I, Wang J, Herzog C, Dillner J, Widschwendter M. The WID-CIN test identifies women with, and at risk of, cervical intraepithelial neoplasia grade 3 and invasive cervical cancer. Genome Med 2022; 14:116. [PMID: 36258199 PMCID: PMC9580141 DOI: 10.1186/s13073-022-01116-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 09/21/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Cervical screening is transitioning from primary cytology to primary human papillomavirus (HPV) testing. HPV testing is highly sensitive but there is currently no high-specificity triage method for colposcopy referral to detect cervical intraepithelial neoplasia grade 3 or above (CIN3+) in women positive for high-risk (hr) HPV subtypes. An objective, automatable test that could accurately perform triage, independently of sample heterogeneity and age, is urgently required. METHODS We analyzed DNA methylation at ~850,000 CpG sites across the genome in a total of 1254 cervical liquid-based cytology (LBC) samples from cases of screen-detected histologically verified CIN1-3+ (98% hrHPV-positive) and population-based control women free from any cervical disease (100% hrHPV-positive). Samples were provided by a state-of-the-art population-based cohort biobank and consisted of (i) a discovery set of 170 CIN3+ cases and 202 hrHPV-positive/cytology-negative controls; (ii) a diagnostic validation set of 87 CIN3+, 90 CIN2, 166 CIN1, and 111 hrHPV-positive/cytology-negative controls; and (iii) a predictive validation set of 428 cytology-negative samples (418 hrHPV-positive) of which 210 were diagnosed with CIN3+ in the upcoming 1-4 years and 218 remained disease-free. RESULTS We developed the WID-CIN (Women's cancer risk IDentification-Cervical Intraepithelial Neoplasia) test, a DNA methylation signature consisting of 5000 CpG sites. The receiver operating characteristic area under the curve (AUC) in the independent diagnostic validation set was 0.92 (95% CI 0.88-0.96). At 75% specificity (≤CIN1), the overall sensitivity to detect CIN3+ is 89.7% (83.3-96.1) in all and 92.7% (85.9-99.6) and 65.6% (49.2-82.1) in women aged ≥30 and <30. In hrHPV-positive/cytology-negative samples in the predictive validation set, the WID-CIN detected 54.8% (48.0-61.5) cases developing 1-4 years after sample donation in all ages or 56.9% (47.6-66.2) and 53.5% (43.7-63.2) in ≥30 and <30-year-old women, at a specificity of 75%. CONCLUSIONS The WID-CIN test identifies the vast majority of hrHPV-positive women with current CIN3+ lesions. In the absence of cytologic abnormalities, a positive WID-CIN test result is likely to indicate a significantly increased risk of developing CIN3+ in the near future.
Collapse
Affiliation(s)
- James E Barrett
- European Translational Oncology Prevention and Screening (EUTOPS) Institute, Universität Innsbruck, Milser Straße 10, 6060, Hall in Tirol, Austria
- Research Institute for Biomedical Aging Research, Universität Innsbruck, 6020, Innsbruck, Austria
- Department of Women's Cancer, UCL EGA Institute for Women's Health, University College London, 74 Huntley Street, London, WC1E 6AU, UK
| | - Karin Sundström
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet, Stockholm, Sweden
- Medical Diagnostics Karolinska, Karolinska University Hospital, Stockholm, Sweden
| | - Allison Jones
- Department of Women's Cancer, UCL EGA Institute for Women's Health, University College London, 74 Huntley Street, London, WC1E 6AU, UK
| | - Iona Evans
- Department of Women's Cancer, UCL EGA Institute for Women's Health, University College London, 74 Huntley Street, London, WC1E 6AU, UK
| | - Jiangrong Wang
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Chiara Herzog
- European Translational Oncology Prevention and Screening (EUTOPS) Institute, Universität Innsbruck, Milser Straße 10, 6060, Hall in Tirol, Austria
| | - Joakim Dillner
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet, Stockholm, Sweden
- Medical Diagnostics Karolinska, Karolinska University Hospital, Stockholm, Sweden
| | - Martin Widschwendter
- European Translational Oncology Prevention and Screening (EUTOPS) Institute, Universität Innsbruck, Milser Straße 10, 6060, Hall in Tirol, Austria.
- Research Institute for Biomedical Aging Research, Universität Innsbruck, 6020, Innsbruck, Austria.
- Department of Women's Cancer, UCL EGA Institute for Women's Health, University College London, 74 Huntley Street, London, WC1E 6AU, UK.
| |
Collapse
|
43
|
Li J, Zhang C, Guo H, Li S, You Y, Zheng P, Zhang H, Wang H, Bai J. Non-invasive measurement of tumor immune microenvironment and prediction of survival and chemotherapeutic benefits from 18F fluorodeoxyglucose PET/CT images in gastric cancer. Front Immunol 2022; 13:1019386. [PMID: 36311742 PMCID: PMC9606753 DOI: 10.3389/fimmu.2022.1019386] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 09/23/2022] [Indexed: 02/11/2024] Open
Abstract
BACKGROUND The tumor immune microenvironment could provide prognostic and predictive information. It is necessary to develop a noninvasive radiomics-based biomarker of a previously validated tumor immune microenvironment signature of gastric cancer (GC) with immunohistochemistry staining. METHODS A total of 230 patients (training (n = 153) or validation (n = 77) cohort) with gastric cancer were subjected to (Positron Emission Tomography-Computed Tomography) radiomics feature extraction (80 features). A radiomics tumor immune microenvironment score (RTIMS) was developed to predict the tumor immune microenvironment signature with LASSO logistic regression. Furthermore, we evaluated its relation with prognosis and chemotherapy benefits. RESULTS A 8-feature radiomics signature was established and validated (area under the curve=0.692 and 0.713). The RTIMS signature was significantly associated with disease-free survival and overall survival both in the training and validation cohort (all P<0.001). RTIMS was an independent prognostic factor in the Multivariate analysis. Further analysis revealed that high RTIMS patients benefitted from adjuvant chemotherapy (for DFS, stage II: HR 0.208(95% CI 0.061-0.711), p=0.012; stage III: HR 0.321(0.180-0.570), p<0.001, respectively); while there were no benefits from chemotherapy in a low RTIMS patients. CONCLUSION This PET/CT radiomics model provided a promising way to assess the tumor immune microenvironment and to predict clinical outcomes and chemotherapy response. The RTIMS signature could be useful in estimating tumor immune microenvironment and predicting survival and chemotherapy benefit for patients with gastric cancer, when validated by further prospective randomized trials.
Collapse
Affiliation(s)
- Junmeng Li
- Department of Gastrointestinal Surgery, Henan Provincial People’s Hospital, Zhengzhou University People’s Hospital, Henan University People’s Hospital, Zhengzhou, China
| | - Chao Zhang
- Department of Gastrointestinal Surgery, Henan Provincial People’s Hospital, Zhengzhou University People’s Hospital, Henan University People’s Hospital, Zhengzhou, China
| | - Huihui Guo
- Department of Radiology, Henan Provincial People’s Hospital, Zhengzhou University People’s Hospital, Henan University People’s Hospital, Zhengzhou, Henan, China
| | - Shuang Li
- Department of Pathology, Henan Provincial People’s Hospital, Zhengzhou University People’s Hospital, Henan University People’s Hospital, Zhengzhou, China
| | - Yang You
- Department of Nuclear Medicine, Henan Provincial People’s Hospital, Zhengzhou University People’s Hospital, Henan University People’s Hospital, Zhengzhou, Henan, China
| | - Peiming Zheng
- Department of Clinical Laboratory, Henan Provincial People’s Hospital, Zhengzhou University People’s Hospital, Henan University People’s Hospital, Zhengzhou, China
| | - Hongquan Zhang
- Department of Thoracic Surgery, The First Hospital Affiliated of Xinxiang Medical University, Xinxiang, China
| | - Huanan Wang
- Department of Gastrointestinal Surgery, The First Hospital Affiliated of Zhengzhou University, Zhengzhou, China
| | - Junwei Bai
- Department of Gastrointestinal Surgery, Henan Provincial People’s Hospital, Zhengzhou University People’s Hospital, Henan University People’s Hospital, Zhengzhou, China
| |
Collapse
|
44
|
Zare Harofte S, Soltani M, Siavashy S, Raahemifar K. Recent Advances of Utilizing Artificial Intelligence in Lab on a Chip for Diagnosis and Treatment. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2203169. [PMID: 36026569 DOI: 10.1002/smll.202203169] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 07/16/2022] [Indexed: 05/14/2023]
Abstract
Nowadays, artificial intelligence (AI) creates numerous promising opportunities in the life sciences. AI methods can be significantly advantageous for analyzing the massive datasets provided by biotechnology systems for biological and biomedical applications. Microfluidics, with the developments in controlled reaction chambers, high-throughput arrays, and positioning systems, generate big data that is not necessarily analyzed successfully. Integrating AI and microfluidics can pave the way for both experimental and analytical throughputs in biotechnology research. Microfluidics enhances the experimental methods and reduces the cost and scale, while AI methods significantly improve the analysis of huge datasets obtained from high-throughput and multiplexed microfluidics. This review briefly presents a survey of the role of AI and microfluidics in biotechnology. Also, the incorporation of AI with microfluidics is comprehensively investigated. Specifically, recent studies that perform flow cytometry cell classification, cell isolation, and a combination of them by gaining from both AI methods and microfluidic techniques are covered. Despite all current challenges, various fields of biotechnology can be remarkably affected by the combination of AI and microfluidic technologies. Some of these fields include point-of-care systems, precision, personalized medicine, regenerative medicine, prognostics, diagnostics, and treatment of oncology and non-oncology-related diseases.
Collapse
Affiliation(s)
- Samaneh Zare Harofte
- Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran, 19967-15433, Iran
| | - Madjid Soltani
- Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran, 19967-15433, Iran
- Department of Electrical and Computer Engineering, Faculty of Engineering, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
- Centre for Biotechnology and Bioengineering (CBB), University of Waterloo, Waterloo, ON, N2L 3G1, Canada
- Advanced Bioengineering Initiative Center, Multidisciplinary International Complex, K. N. Toosi University of Technology, Tehran, 14176-14411, Iran
- Cancer Biology Research Center, Cancer Institute of Iran, Tehran University of Medical Sciences, Tehran, 14197-33141, Iran
| | - Saeed Siavashy
- Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran, 19967-15433, Iran
| | - Kaamran Raahemifar
- Data Science and Artificial Intelligence Program, College of Information Sciences and Technology (IST), Penn State University, State College, PA, 16801, USA
- School of Optometry and Vision Science, Faculty of Science, University of Waterloo, 200 University Ave. W, Waterloo, ON, N2L 3G1, Canada
- Department of Chemical Engineering, Faculty of Engineering, University of Waterloo, 200 University Ave. W, Waterloo, ON, N2L 3G1, Canada
| |
Collapse
|
45
|
Identification and Validation of a Prognostic Signature Based on Methylation Profiles and Methylation-Driven Gene DAB2 as a Prognostic Biomarker in Differentiated Thyroid Carcinoma. DISEASE MARKERS 2022; 2022:1686316. [DOI: 10.1155/2022/1686316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 09/05/2022] [Indexed: 11/17/2022]
Abstract
Recurrence is the major death cause of differentiated thyroid carcinoma (DTC), and a better understanding of recurrence risk at early stage may lead to make the optimal medical decision to improve patients’ prognosis. The 2015 American Thyroid Association (ATA) risk stratification system primary based on clinic-pathologic features is the most commonly used to describe the initial risk of persistent/recurrent disease. Besides, multiple prognostics models based on multigenes expression profiles have been developed to predict the recurrence risk of DTC patients. Recent evidences indicated that aberrant DNA methylation is involved in the initiation and progression of DTC and can be useful biomarkers for clinical diagnosis and prognosis prediction of DTC. Therefore, there is a need for integrating gene methylation feature to assess the recurrence risk of DTC. Gene methylation profile from The Cancer Genome Atlas (TCGA) was used to construct a recurrence risk model of DTC by successively performed univariate Cox regression, LASSO regression, and multivariate Cox regression. Two Gene Expression Omnibus (GEO) methylation cohorts of DTC were utilized to validate the predictive value of the methylation profiles model as external cohort by receiver operating characteristic (ROC) curve and survival analysis. Besides, CCK-8, colony-formation assay, transwell, and scratch-wound assay were used to investigate the biological significance of critical gene in the model. In our study, we constructed and validated a prognostic signature based on methylation profiles of SPTA1, APCS, and DAB2 and constructed a nomogram based on the methylation-related model, age, and AJCC_T stage that could provide evidence for the long-term treatment and management of DTC patients. Besides, in vitro experiments showed that DAB2 inhibited proliferation, colony-formation, and migration of BCPAP cells and the gene set enrichment analysis and immune infiltration analysis showed that DAB2 may promote antitumor immunity in DTC. In conclusion, promoter hypermethylation and loss expression of DAB2 in DTC may be a biomarker of unfavorable prognosis and poor response to immune therapy.
Collapse
|
46
|
Gholami N, Haghparast A, Alipourfard I, Nazari M. Prostate cancer in omics era. Cancer Cell Int 2022; 22:274. [PMID: 36064406 PMCID: PMC9442907 DOI: 10.1186/s12935-022-02691-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 08/22/2022] [Indexed: 11/18/2022] Open
Abstract
Recent advances in omics technology have prompted extraordinary attempts to define the molecular changes underlying the onset and progression of a variety of complex human diseases, including cancer. Since the advent of sequencing technology, cancer biology has become increasingly reliant on the generation and integration of data generated at these levels. The availability of multi-omic data has transformed medicine and biology by enabling integrated systems-level approaches. Multivariate signatures are expected to play a role in cancer detection, screening, patient classification, assessment of treatment response, and biomarker identification. This review reports current findings and highlights a number of studies that are both novel and groundbreaking in their application of multi Omics to prostate cancer.
Collapse
Affiliation(s)
- Nasrin Gholami
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Iraj Alipourfard
- Institutitue of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia, Katowice, Poland
| | - Majid Nazari
- Department of Medical Genetics, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
- , P.O. Box 14155-6117, Shiraz, Iran.
| |
Collapse
|
47
|
Sensitive GlaI digestion and terminal transferase PCR for DNA methylation detection. Talanta 2022; 247:123616. [DOI: 10.1016/j.talanta.2022.123616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/23/2022] [Accepted: 05/25/2022] [Indexed: 11/30/2022]
|
48
|
Visvanathan K, Cimino-Mathews A, Fackler MJ, Karia PS, VandenBussche CJ, Orellana M, May B, White MJ, Habibi M, Lange J, Euhus D, Stearns V, Fetting J, Camp M, Jacobs L, Sukumar S. Evaluating DNA Methylation in Random Fine Needle Aspirates from the Breast to Inform Cancer Risk. Breast J 2022; 2022:9533461. [PMID: 39741654 PMCID: PMC11401740 DOI: 10.1155/2022/9533461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 07/04/2022] [Indexed: 01/03/2025]
Abstract
Introduction Critical regulatory genes are functionally silenced by DNA hypermethylation in breast cancer and premalignant lesions. The objective of this study was to examine whether DNA methylation assessed in random fine needle aspirates (rFNA) can be used to inform breast cancer risk. Methods In 20 women with invasive breast cancer scheduled for surgery at Johns Hopkins Hospital, cumulative methylation status was assessed in a comprehensive manner. rFNA was performed on tumors, adjacent normal tissues, and all remaining quadrants. Pathology review was conducted on blocks from all excised tissue. The cumulative methylation index (CMI) for 12 genes was assessed by a highly sensitive QM-MSP assay in 280 aspirates and tissue from 11 incidental premalignant lesions. Mann-Whitney and Kruskal Wallis tests were used to compare median CMI by patient, location, and tumor characteristics. Results The median age of participants was 49 years (interquartile range [IQR]: 44-58). DNA methylation was detectable at high levels in all tumor aspirates (median CMI = 252, IQR: 75-111). Methylation was zero or low in aspirates from adjacent tissue (median CMI = 11, IQR: 0-13), and other quadrants (median CMI = 2, IQR: 1-5). Nineteen incidental lesions were identified in 13 women (4 malignant and 15 premalignant). Median CMI levels were not significantly different in aspirates from quadrants (p = 0.43) or adjacent tissue (p = 0.93) in which 11 methylated incidental lesions were identified. Conclusions The diagnostic accuracy of methylation based on rFNA alone to detect premalignant lesions or at-risk quadrants is poor and therefore should not be used to evaluate cancer risk. A more targeted approach needs to be evaluated.
Collapse
Affiliation(s)
- Kala Visvanathan
- Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- Women's Malignancy Program, Johns Hopkins Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | | | - Mary Jo Fackler
- Women's Malignancy Program, Johns Hopkins Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Pritesh S. Karia
- Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | | | | | - Betty May
- Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Marissa J. White
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Mehran Habibi
- Department of Surgical Oncology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Julie Lange
- Department of Surgical Oncology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - David Euhus
- Department of Surgical Oncology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Vered Stearns
- Women's Malignancy Program, Johns Hopkins Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - John Fetting
- Women's Malignancy Program, Johns Hopkins Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Melissa Camp
- Department of Surgical Oncology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Lisa Jacobs
- Department of Surgical Oncology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Saraswati Sukumar
- Women's Malignancy Program, Johns Hopkins Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA
| |
Collapse
|
49
|
Prognostic and therapeutic prediction by screening signature combinations from transcriptome-methylome interactions in oral squamous cell carcinoma. Sci Rep 2022; 12:11400. [PMID: 35794182 PMCID: PMC9259703 DOI: 10.1038/s41598-022-15534-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 06/24/2022] [Indexed: 02/05/2023] Open
Abstract
DNA methylation pattern in oral squamous cell carcinoma (OSCC) remains poorly described. This study aimed to perform a genome-wide integrated analysis of the transcriptome and methylome and assess the efficacy of their prognostic signature model in patients with OSCC. We analyzed transcriptome and methylome data from 391 OSCC samples and 41 adjacent normal samples. A total of 8074 differentially expressed genes (DEGs) and 10,084 differentially expressed CpGs (DMCpGs) were identified. Then 241 DEGs with DMCpGs were identified. According to the prognostic analysis, the prognostic signature of methylation-related differentially expressed genes (mrDEGPS) was established. mrDEGPS consisted of seven prognostic methylation-related genes, including ESRRG, CCNA1, SLC20A1, COL6A6, FCGBP, CDKN2A, and ZNF43. mrDEGPS was a significant stratification factor of survival (P < 0.00001) irrespective of the clinical stage. The immune effector components, including B cells, CD4+ T cells, and CD8+ T cells, were decreased in the tumor environment of patients with high mrDEGPS. Immune checkpoint expressions, including CTLA-4, PD-1, LAG3, LGALS9, HAVCR2, and TIGHT, were comprehensively elevated (P < 0.001). The estimated half-maximal inhibitory concentration difference between low- and high-risk patients was inconsistent among chemotherapeutic drugs. In conclusion, the transcriptome–methylome interaction pattern in OSCC is complex. mrDEGPS can predict patient survival and responses to immunotherapy and chemotherapy and facilitate clinical decision-making in patients with OSCC.
Collapse
|
50
|
Age-Related DNA Methylation in Normal Kidney Tissue Identifies Epigenetic Cancer Risk Susceptibility Loci in the ANKRD34B and ZIC1 Genes. Int J Mol Sci 2022; 23:ijms23105327. [PMID: 35628134 PMCID: PMC9141100 DOI: 10.3390/ijms23105327] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/02/2022] [Accepted: 05/05/2022] [Indexed: 02/01/2023] Open
Abstract
Both age-dependent and age-independent alteration of DNA methylation in human tissues are functionally associated with the development of many malignant and non-malignant human diseases. TCGA-KIRC data were biometrically analyzed to identify new loci with age-dependent DNA methylation that may contribute to tumor risk in normal kidney tissue. ANKRD34B and ZIC1 were evaluated as candidate genes by pyrosequencing of 539 tissues, including 239 normal autopsy, 157 histopathologically tumor-adjacent normal, and 143 paired tumor kidney samples. All candidate CpG loci demonstrated a strong correlation between relative methylation levels and age (R = 0.70−0.88, p < 2 × 10−16) and seven out of 10 loci were capable of predicting chronological age in normal kidney tissues, explaining 84% of the variance (R = 0.92). Moreover, significantly increased age-independent methylation was found for 9 out of 10 CpG loci in tumor-adjacent tissues, compared to normal autopsy tissues (p = 0.001−0.028). Comparing tumor and paired tumor-adjacent tissues revealed two patient clusters showing hypermethylation, one cluster without significant changes in methylation, and a smaller cluster demonstrating hypomethylation in the tumors (p < 1 × 10−10). Taken together, our results show the presence of additional methylation risk factors besides age for renal cancer in normal kidney tissue. Concurrent tumor-specific hypermethylation suggests a subset of these loci are candidates for epigenetic renal cancer susceptibility.
Collapse
|