1
|
Tong L, Zha ML, Hu J, Li HY, Kuai L, Li B, Dang Y, Zhao Q, Liao R, Lin GQ, He QL. Adenanthin exhibits anti-inflammatory effects by covalently targeting the p65 subunit in the NF-κB signaling pathway. Eur J Med Chem 2024; 280:116946. [PMID: 39383653 DOI: 10.1016/j.ejmech.2024.116946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 09/28/2024] [Accepted: 10/05/2024] [Indexed: 10/11/2024]
Abstract
Adenanthin is a structurally unique ent-kaurane diterpenoid isolated from Rabdosia adenantha, a traditional Chinese medicinal plant with potent anti-cancer and anti-inflammatory activities. However, its anti-inflammatory molecular mechanism remains largely elusive to date. Here, we developed an affinity-based label-free protein profiling (ALFPP) to identify potential covalent targets of electrophilic natural products with ketone or aldehyde groups. Using ALFPP, we identified 27 potential covalent targets of adenanthin, among which p65 (RelA) has been associated with its anti-inflammatory activities. Through a series of experiments, including LC-MS/MS, molecular docking, electrophoretic mobility shift assays (EMSA), and genome editing, we demonstrated that adenanthin could covalently modify the Cys38 residue of p65 to affect the binding of DNA to p65, thereby inhibiting the NF-κB signaling pathway. ALFPP will facilitate the target identification of electrophilic carbonylated natural products, especially those containing α, β-unsaturated keto groups. Furthermore, the elucidation of the molecular mechanism of adenanthin will contribute to new drug development of adenanthin to treat inflammations and cancers, enhancing the possibility for its clinical application.
Collapse
Affiliation(s)
- Lu Tong
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China
| | - Meng-Li Zha
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China
| | - Junchi Hu
- Basic Medicine Research and Innovation Center for Novel Target and Therapeutic Intervention, Ministry of Education, College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China
| | - Hai-Yang Li
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China
| | - Le Kuai
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Bin Li
- Shanghai Skin Disease Hospital, Tongji University, Shanghai, 200443, China
| | - Yongjun Dang
- Basic Medicine Research and Innovation Center for Novel Target and Therapeutic Intervention, Ministry of Education, College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China
| | - Qunfei Zhao
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China
| | - Rijing Liao
- Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125, China.
| | - Guo-Qiang Lin
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China
| | - Qing-Li He
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China.
| |
Collapse
|
2
|
Ding S, Yang F, Lai P, Jiang W, Chen M, Ge Y, Zhou L, Chen S, Zhang J, Ye Y. Association between statin usage and mortality outcomes in aging U.S. cancer survivors: a nationwide cohort study. Aging Clin Exp Res 2024; 36:200. [PMID: 39373829 PMCID: PMC11458640 DOI: 10.1007/s40520-024-02851-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 09/13/2024] [Indexed: 10/08/2024]
Abstract
BACKGROUND The population of Aging cancer survivors in the United States has surged to over 16.9 million. Research on the relationship between statin usage and post-cancer survival rates remains limited. AIMS This study aims to investigate the association between statin use and various causes of mortality among aging cancer survivors. METHODS We analyzed NHANES data from 1999 to 2018, Statin usage, both hydrophilic and lipophilic, was derived from NHANES prescription records. We utilized Cox proportional hazards models to associate statin utilization with mortality, differentiating causes of death according to statin type and patterns of use. RESULTS Within a cohort of 2,968 participants, statin usage was categorized into non-users (1,738), hydrophilic statin users (216), and lipophilic statin users (982). Compared to those who did not use statins, individuals prescribed hydrophilic statins did not show a reduced risk of all-cause mortality (adjusted hazard ratio [HR] 1.01; 95% confidence interval [CI] 0.72-1.41; P = 0.960), as outlined in Model 3. In contrast, the group receiving lipophilic statins exhibited a notable decrease in all-cause mortality risk (adjusted HR, 0.77; P = 0.003). Nonetheless, both hydrophilic and lipophilic statins were effective in diminishing the risk associated with cancer from its onset until death, with hydrophilic statins showing a greater level of efficacy. DISCUSSION The potential of statins to reduce cancer-related mortality may provide avenues for targeted clinical interventions and management strategies. CONCLUSIONS Our study reveals that the use of lipophilic statins is significantly associated with lower all-cause and cancer-cause mortality risks among aging cancer survivors.
Collapse
Affiliation(s)
- Shan Ding
- Zhongshan Hospital (Xiamen), Fudan University, Xiamen, 361015, China
| | - Fengling Yang
- Longyan First Affiliated Hospital of Fujian Medical University, Longyan, 364000, China.
| | - Pan Lai
- Peking University First Hospital, Beijing, 100034, China
| | - Weiwen Jiang
- Zhongshan Hospital (Xiamen), Fudan University, Xiamen, 361015, China
- Shenzhen Campus of Sun Yat-Sen University, Shenzhen, 518107, China
| | - Minze Chen
- Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Yijun Ge
- Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland, 0627, New Zealand
| | - Liting Zhou
- Zhongshan Hospital (Xiamen), Fudan University, Xiamen, 361015, China
| | - Shaozhuang Chen
- Zhongshan Hospital (Xiamen), Fudan University, Xiamen, 361015, China
| | - Jiaqi Zhang
- Zhongshan Hospital (Xiamen), Fudan University, Xiamen, 361015, China
| | - Yanrong Ye
- Zhongshan Hospital (Xiamen), Fudan University, Xiamen, 361015, China.
- Shenzhen Campus of Sun Yat-Sen University, Shenzhen, 518107, China.
| |
Collapse
|
3
|
Tan JF, Kang YC, Hartwig JF. Catalytic undirected methylation of unactivated C(sp 3)-H bonds suitable for complex molecules. Nat Commun 2024; 15:8307. [PMID: 39333063 PMCID: PMC11437150 DOI: 10.1038/s41467-024-52245-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 08/28/2024] [Indexed: 09/29/2024] Open
Abstract
In pharmaceutical discovery, the "magic methyl" effect describes a substantial improvement in the pharmacological properties of a drug candidate with the incorporation of methyl groups. Therefore, to expedite the synthesis of methylated drug analogs, late-stage, undirected methylations of C(sp3)-H bonds in complex molecules would be valuable. However, current methods for site-selective methylations are limited to activated C(sp3)-H bonds. Here we describe a site-selective, undirected methylation of unactivated C(sp3)-H bonds, enabled by photochemically activated peroxides and a nickel(II) complex whose turnover is enhanced by an ancillary ligand. The methodology displays compatibility with a wide range of functional groups and a high selectivity for tertiary C-H bonds, making it suitable for the late-stage methylation of complex organic compounds that contain multiple alkyl C-H bonds, such as terpene natural products, peptides, and active pharmaceutical ingredients. Overall, this method provides a synthetic tool to explore the "magic methyl" effect in drug discovery.
Collapse
Affiliation(s)
- Jin-Fay Tan
- Department of Chemistry, University of California, Berkeley, CA, USA
| | - Yi Cheng Kang
- Department of Chemistry, University of California, Berkeley, CA, USA
| | - John F Hartwig
- Department of Chemistry, University of California, Berkeley, CA, USA.
| |
Collapse
|
4
|
Davison JR, Hadjithomas M, Romeril SP, Choi YJ, Bentley KW, Biggins JB, Chacko N, Castaldi MP, Chan LK, Cumming JN, Downes TD, Eisenhauer EL, Fei F, Fontaine BM, Endalur Gopinarayanan V, Gurnani S, Hecht A, Hosford CJ, Ibrahim A, Jagels A, Joubran C, Kim JN, Lisher JP, Liu DD, Lyles JT, Mannara MN, Murray GJ, Musial E, Niu M, Olivares-Amaya R, Percuoco M, Saalau S, Sharpe K, Sheahan AV, Thevakumaran N, Thompson JE, Thompson DA, Wiest A, Wyka SA, Yano J, Verdine GL. Genomic Discovery and Structure-Activity Exploration of a Novel Family of Enzyme-Activated Covalent Cyclin-Dependent Kinase Inhibitors. J Med Chem 2024; 67:13147-13173. [PMID: 39078366 PMCID: PMC11320645 DOI: 10.1021/acs.jmedchem.4c01095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/03/2024] [Accepted: 07/18/2024] [Indexed: 07/31/2024]
Abstract
Fungi have historically been the source of numerous important medicinal compounds, but full exploitation of their genetic potential for drug development has been hampered in traditional discovery paradigms. Here we describe a radically different approach, top-down drug discovery (TD3), starting with a massive digital search through a database of over 100,000 fully genomicized fungi to identify loci encoding molecules with a predetermined human target. We exemplify TD3 by the selection of cyclin-dependent kinases (CDKs) as targets and the discovery of two molecules, 1 and 2, which inhibit therapeutically important human CDKs. 1 and 2 exhibit a remarkable mechanism, forming a site-selective covalent bond to the CDK active site Lys. We explored the structure-activity relationship via semi- and total synthesis, generating an analog, 43, with improved kinase selectivity, bioavailability, and efficacy. This work highlights the power of TD3 to identify mechanistically and structurally novel molecules for the development of new medicines.
Collapse
Affiliation(s)
- Jack R. Davison
- LifeMine
Therapeutics, 30 Acorn Park Drive, Cambridge, Massachusetts 02140, United States
| | - Michalis Hadjithomas
- LifeMine
Therapeutics, 30 Acorn Park Drive, Cambridge, Massachusetts 02140, United States
| | - Stuart P. Romeril
- LifeMine
Therapeutics, 30 Acorn Park Drive, Cambridge, Massachusetts 02140, United States
| | - Yoon Jong Choi
- LifeMine
Therapeutics, 30 Acorn Park Drive, Cambridge, Massachusetts 02140, United States
| | - Keith W. Bentley
- LifeMine
Therapeutics, 30 Acorn Park Drive, Cambridge, Massachusetts 02140, United States
| | - John B. Biggins
- LifeMine
Therapeutics, 30 Acorn Park Drive, Cambridge, Massachusetts 02140, United States
| | - Nadia Chacko
- LifeMine
Therapeutics, 30 Acorn Park Drive, Cambridge, Massachusetts 02140, United States
| | - M. Paola Castaldi
- LifeMine
Therapeutics, 30 Acorn Park Drive, Cambridge, Massachusetts 02140, United States
| | - Lawrence K. Chan
- LifeMine
Therapeutics, 30 Acorn Park Drive, Cambridge, Massachusetts 02140, United States
| | - Jared N. Cumming
- LifeMine
Therapeutics, 30 Acorn Park Drive, Cambridge, Massachusetts 02140, United States
| | - Thomas D. Downes
- LifeMine
Therapeutics, 30 Acorn Park Drive, Cambridge, Massachusetts 02140, United States
| | - Eric L. Eisenhauer
- LifeMine
Therapeutics, 30 Acorn Park Drive, Cambridge, Massachusetts 02140, United States
| | - Fan Fei
- LifeMine
Therapeutics, 30 Acorn Park Drive, Cambridge, Massachusetts 02140, United States
| | - Benjamin M. Fontaine
- LifeMine
Therapeutics, 30 Acorn Park Drive, Cambridge, Massachusetts 02140, United States
| | | | - Srishti Gurnani
- LifeMine
Therapeutics, 30 Acorn Park Drive, Cambridge, Massachusetts 02140, United States
| | - Audrey Hecht
- LifeMine
Therapeutics, 30 Acorn Park Drive, Cambridge, Massachusetts 02140, United States
| | - Christopher J. Hosford
- LifeMine
Therapeutics, 30 Acorn Park Drive, Cambridge, Massachusetts 02140, United States
| | - Ashraf Ibrahim
- LifeMine
Therapeutics, 30 Acorn Park Drive, Cambridge, Massachusetts 02140, United States
| | - Annika Jagels
- LifeMine
Therapeutics, 30 Acorn Park Drive, Cambridge, Massachusetts 02140, United States
| | - Camil Joubran
- LifeMine
Therapeutics, 30 Acorn Park Drive, Cambridge, Massachusetts 02140, United States
| | - Ji-Nu Kim
- LifeMine
Therapeutics, 30 Acorn Park Drive, Cambridge, Massachusetts 02140, United States
| | - John P. Lisher
- LifeMine
Therapeutics, 30 Acorn Park Drive, Cambridge, Massachusetts 02140, United States
| | - Daniel D. Liu
- LifeMine
Therapeutics, 30 Acorn Park Drive, Cambridge, Massachusetts 02140, United States
| | - James T. Lyles
- LifeMine
Therapeutics, 30 Acorn Park Drive, Cambridge, Massachusetts 02140, United States
| | - Matteo N. Mannara
- LifeMine
Therapeutics, 30 Acorn Park Drive, Cambridge, Massachusetts 02140, United States
| | - Gordon J. Murray
- LifeMine
Therapeutics, 30 Acorn Park Drive, Cambridge, Massachusetts 02140, United States
| | - Emilia Musial
- LifeMine
Therapeutics, 30 Acorn Park Drive, Cambridge, Massachusetts 02140, United States
| | - Mengyao Niu
- LifeMine
Therapeutics, 30 Acorn Park Drive, Cambridge, Massachusetts 02140, United States
| | - Roberto Olivares-Amaya
- LifeMine
Therapeutics, 30 Acorn Park Drive, Cambridge, Massachusetts 02140, United States
| | - Marielle Percuoco
- LifeMine
Therapeutics, 30 Acorn Park Drive, Cambridge, Massachusetts 02140, United States
| | - Susanne Saalau
- LifeMine
Therapeutics, 30 Acorn Park Drive, Cambridge, Massachusetts 02140, United States
| | - Kristen Sharpe
- LifeMine
Therapeutics, 30 Acorn Park Drive, Cambridge, Massachusetts 02140, United States
| | - Anjali V. Sheahan
- LifeMine
Therapeutics, 30 Acorn Park Drive, Cambridge, Massachusetts 02140, United States
| | - Neroshan Thevakumaran
- LifeMine
Therapeutics, 30 Acorn Park Drive, Cambridge, Massachusetts 02140, United States
| | - James E. Thompson
- LifeMine
Therapeutics, 30 Acorn Park Drive, Cambridge, Massachusetts 02140, United States
| | - Dawn A. Thompson
- LifeMine
Therapeutics, 30 Acorn Park Drive, Cambridge, Massachusetts 02140, United States
| | - Aric Wiest
- LifeMine
Therapeutics, 30 Acorn Park Drive, Cambridge, Massachusetts 02140, United States
| | - Stephen A. Wyka
- LifeMine
Therapeutics, 30 Acorn Park Drive, Cambridge, Massachusetts 02140, United States
| | - Jason Yano
- LifeMine
Therapeutics, 30 Acorn Park Drive, Cambridge, Massachusetts 02140, United States
| | - Gregory L. Verdine
- LifeMine
Therapeutics, 30 Acorn Park Drive, Cambridge, Massachusetts 02140, United States
- Departments
of Chemistry and Chemical Biology, and Stem Cell and Regenerative
Biology, Harvard University and Harvard
Medical School, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
5
|
Wu M, Wang T, Ji N, Lu T, Yuan R, Wu L, Zhang J, Li M, Cao P, Zhao J, Li G, Li J, Li Y, Tang Y, Gao Z, Wang X, Cheng W, Ge M, Cui G, Li R, Wu A, You Y, Zhang W, Wang Q, Chen J. Multi-omics and pharmacological characterization of patient-derived glioma cell lines. Nat Commun 2024; 15:6740. [PMID: 39112531 PMCID: PMC11306361 DOI: 10.1038/s41467-024-51214-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 07/31/2024] [Indexed: 08/10/2024] Open
Abstract
Glioblastoma (GBM) is the most common brain tumor and remains incurable. Primary GBM cultures are widely used tools for drug screening, but there is a lack of genomic and pharmacological characterization for these primary GBM cultures. Here, we collect 50 patient-derived glioma cell (PDGC) lines and characterize them by whole genome sequencing, RNA sequencing, and drug response screening. We identify three molecular subtypes among PDGCs: mesenchymal (MES), proneural (PN), and oxidative phosphorylation (OXPHOS). Drug response profiling reveals that PN subtype PDGCs are sensitive to tyrosine kinase inhibitors, whereas OXPHOS subtype PDGCs are sensitive to histone deacetylase inhibitors, oxidative phosphorylation inhibitors, and HMG-CoA reductase inhibitors. PN and OXPHOS subtype PDGCs stably form tumors in vivo upon intracranial transplantation into immunodeficient mice, whereas most MES subtype PDGCs fail to form tumors in vivo. In addition, PDGCs cultured by serum-free medium, especially long-passage PDGCs, carry MYC/MYCN amplification, which is rare in GBM patients. Our study provides a valuable resource for understanding primary glioma cell cultures and clinical translation and highlights the problems of serum-free PDGC culture systems that cannot be ignored.
Collapse
Affiliation(s)
- Min Wu
- Chinese Institute for Brain Research, Beijing, Research Unit of Medical Neurobiology, Chinese Academy of Medical Sciences, Beijing, China
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, China
- Shanghai Immune Therapy Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Bioinformatics, Nanjing Medical University, Nanjing, China
- Institute for Brain Tumors, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Tingting Wang
- Chinese Institute for Brain Research, Beijing, Research Unit of Medical Neurobiology, Chinese Academy of Medical Sciences, Beijing, China
- Changping Laboratory, Beijing, China
- Chinese Institute for Brain Research, Beijing, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Nan Ji
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Ting Lu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Ran Yuan
- Chinese Institute for Brain Research, Beijing, Research Unit of Medical Neurobiology, Chinese Academy of Medical Sciences, Beijing, China
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, China
| | - Lingxiang Wu
- Department of Bioinformatics, Nanjing Medical University, Nanjing, China
- Institute for Brain Tumors, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
- The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, China
| | - Junxia Zhang
- Institute for Brain Tumors, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Mengyuan Li
- Chinese Institute for Brain Research, Beijing, Research Unit of Medical Neurobiology, Chinese Academy of Medical Sciences, Beijing, China
- Changping Laboratory, Beijing, China
| | - Penghui Cao
- Chinese Institute for Brain Research, Beijing, Research Unit of Medical Neurobiology, Chinese Academy of Medical Sciences, Beijing, China
| | - Jiarui Zhao
- Chinese Institute for Brain Research, Beijing, Research Unit of Medical Neurobiology, Chinese Academy of Medical Sciences, Beijing, China
| | - Guanzhang Li
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Jianyu Li
- Chinese Institute for Brain Research, Beijing, Research Unit of Medical Neurobiology, Chinese Academy of Medical Sciences, Beijing, China
| | - Yu Li
- Chinese Institute for Brain Research, Beijing, Research Unit of Medical Neurobiology, Chinese Academy of Medical Sciences, Beijing, China
| | - Yujie Tang
- Shanghai Key Laboratory of Reproductive Medicine, Department of Histoembryology, Genetics and Developmental Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhengliang Gao
- Fundamental Research Center, Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai, China
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong, China
- Department of Anesthesiology, Gongli Hospital of Shanghai Pudong New Area, Shanghai, China
| | - Xiuxing Wang
- National Health Commission Key Laboratory of Antibody Techniques, Department of Cell Biology, Jiangsu Provincial Key Laboratory of Human Functional Genomics, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Wen Cheng
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ming Ge
- Department of Neurosurgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Gang Cui
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Rui Li
- Department of Neurosurgery, China-Japan Friendship Hospital, No. 2 Yinghua East Road, Chaoyang District, Beijing, China
| | - Anhua Wu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yongping You
- Institute for Brain Tumors, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| | - Wei Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.
| | - Qianghu Wang
- Department of Bioinformatics, Nanjing Medical University, Nanjing, China.
- Institute for Brain Tumors, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.
- The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, China.
| | - Jian Chen
- Chinese Institute for Brain Research, Beijing, Research Unit of Medical Neurobiology, Chinese Academy of Medical Sciences, Beijing, China.
- Changping Laboratory, Beijing, China.
- Chinese Institute for Brain Research, Beijing, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
| |
Collapse
|
6
|
Yin Y, Liu J, Yu J, Dong D, Gao F, Yu L, Du X, Wu S. ASGR1 is a promising target for lipid reduction in pigs with PON2 as its inhibitor. iScience 2024; 27:110288. [PMID: 39055948 PMCID: PMC11269292 DOI: 10.1016/j.isci.2024.110288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/17/2024] [Accepted: 06/13/2024] [Indexed: 07/28/2024] Open
Abstract
Although the role of asialoglycoprotein receptor 1 (ASGR1) in lowering lipid levels is well established, recent studies indicate that ASGR1 inhibition can cause unexpected liver damage in pigs, raising a serious issue about whether ASGR1 can be a good target for treating ASCVD. Here, we utilized the CRISPR-Cas9 system to regenerate ASGR1-knockout pigs, who displayed decreased lipid profiles without observable liver damage. This was confirmed by the lower levels of serum ALT and AST, reduced expression of inflammation markers, and normal histological morphology. Also, we implemented immunoprecipitation combined with mass spectrometry (IP-MS) and discovered that paraoxonase-2 (PON2) can interact with and significantly degrade ASGR1 in a dose-dependent manner. This degradation reduced lipid levels in mice, accompanied by little inflammation. Our study highlights the effectiveness and safety of degrading ASGR1 to reduce lipid levels in pigs and provides a potential inhibitor of ASGR1.
Collapse
Affiliation(s)
- Yunjun Yin
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Jun Liu
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Jia Yu
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Dingcai Dong
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Fei Gao
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
- Sanya Institute of China Agricultural University, Sanya 572024, China
| | - Libao Yu
- The Eighth Medical Center of PLA General Hospital, Beijing 100094, China
| | - Xuguang Du
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
- Sanya Institute of China Agricultural University, Sanya 572024, China
| | - Sen Wu
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
- Sanya Institute of China Agricultural University, Sanya 572024, China
| |
Collapse
|
7
|
Leshchenko EV, Chingizova EA, Antonov AS, Shlyk NP, Borkunov GV, Berdyshev DV, Chausova VE, Kirichuk NN, Khudyakova YV, Chingizov AR, Kalinovsky AI, Popov RS, Kim NY, Chadova KA, Yurchenko EA, Isaeva MP, Yurchenko AN. New Zosteropenillines and Pallidopenillines from the Seagrass-Derived Fungus Penicillium yezoense KMM 4679. Mar Drugs 2024; 22:317. [PMID: 39057426 PMCID: PMC11277992 DOI: 10.3390/md22070317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/15/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
Ten new decalin polyketides, zosteropenilline M (1), 11-epi-8-hydroxyzosteropenilline M (2), zosteropenilline N (3), 8-hydroxyzosteropenilline G (4), zosteropenilline O (5), zosteropenilline P (6), zosteropenilline Q (7), 13-dehydroxypallidopenilline A (8), zosteropenilline R (9) and zosteropenilline S (10), together with known zosteropenillines G (11) and J (12), pallidopenilline A (13) and 1-acetylpallidopenilline A (14), were isolated from the ethyl acetate extract of the fungus Penicillium yezoense KMM 4679 associated with the seagrass Zostera marina. The structures of isolated compounds were established based on spectroscopic methods. The absolute configurations of zosteropenilline Q (7) and zosteropenilline S (10) were determined using a combination of the modified Mosher's method and ROESY data. The absolute configurations of zosteropenilline M (1) and zosteropenilline N (3) were determined using time-dependent density functional theory (TD-DFT) calculations of the ECD spectra. A biogenetic pathway for compounds 1-14 is proposed. The antimicrobial, cytotoxic and cytoprotective activities of the isolated compounds were also studied. The significant cytoprotective effects of the new zosteropenilline M and zosteropenillines O and R were found in a cobalt chloride (II) mimic in in vitro hypoxia in HEK-293 cells. 1-Acetylpallidopenilline A (14) exhibited high inhibition of human breast cancer MCF-7 cell colony formation with IC50 of 0.66 µM and its anticancer effect was reduced when MCF-7 cells were pretreated with 4-hydroxitamoxifen. Thus, we propose 1-acetylpallidopenilline A as a new xenoestrogen with significant activity against breast cancer.
Collapse
Affiliation(s)
- Elena V. Leshchenko
- G.B. Elyakov Paсific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 159 Prospect 100-letiya Vladivostoka, Vladivostok 690022, Russia
- Institute of High Technologies and Advanced Materials, Far Eastern Federal University, Vladivostok 690922, Russia
| | - Ekaterina A. Chingizova
- G.B. Elyakov Paсific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 159 Prospect 100-letiya Vladivostoka, Vladivostok 690022, Russia
| | - Alexandr S. Antonov
- G.B. Elyakov Paсific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 159 Prospect 100-letiya Vladivostoka, Vladivostok 690022, Russia
| | - Nadezhda P. Shlyk
- Institute of High Technologies and Advanced Materials, Far Eastern Federal University, Vladivostok 690922, Russia
| | - Gleb V. Borkunov
- G.B. Elyakov Paсific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 159 Prospect 100-letiya Vladivostoka, Vladivostok 690022, Russia
- Institute of High Technologies and Advanced Materials, Far Eastern Federal University, Vladivostok 690922, Russia
| | - Dmitrii V. Berdyshev
- G.B. Elyakov Paсific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 159 Prospect 100-letiya Vladivostoka, Vladivostok 690022, Russia
| | - Viktoria E. Chausova
- G.B. Elyakov Paсific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 159 Prospect 100-letiya Vladivostoka, Vladivostok 690022, Russia
| | - Natalya N. Kirichuk
- G.B. Elyakov Paсific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 159 Prospect 100-letiya Vladivostoka, Vladivostok 690022, Russia
| | - Yuliya V. Khudyakova
- G.B. Elyakov Paсific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 159 Prospect 100-letiya Vladivostoka, Vladivostok 690022, Russia
| | - Artur R. Chingizov
- G.B. Elyakov Paсific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 159 Prospect 100-letiya Vladivostoka, Vladivostok 690022, Russia
| | - Anatoly I. Kalinovsky
- G.B. Elyakov Paсific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 159 Prospect 100-letiya Vladivostoka, Vladivostok 690022, Russia
| | - Roman S. Popov
- G.B. Elyakov Paсific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 159 Prospect 100-letiya Vladivostoka, Vladivostok 690022, Russia
| | - Natalya Yu. Kim
- G.B. Elyakov Paсific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 159 Prospect 100-letiya Vladivostoka, Vladivostok 690022, Russia
| | - Ksenia A. Chadova
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch of Russian Academy of Sciences, Vladivostok 690041, Russia
| | - Ekaterina A. Yurchenko
- G.B. Elyakov Paсific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 159 Prospect 100-letiya Vladivostoka, Vladivostok 690022, Russia
| | - Marina P. Isaeva
- G.B. Elyakov Paсific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 159 Prospect 100-letiya Vladivostoka, Vladivostok 690022, Russia
| | - Anton N. Yurchenko
- G.B. Elyakov Paсific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 159 Prospect 100-letiya Vladivostoka, Vladivostok 690022, Russia
| |
Collapse
|
8
|
Lassen FH, Venkatesh SS, Baya N, Hill B, Zhou W, Bloemendal A, Neale BM, Kessler BM, Whiffin N, Lindgren CM, Palmer DS. Exome-wide evidence of compound heterozygous effects across common phenotypes in the UK Biobank. CELL GENOMICS 2024; 4:100602. [PMID: 38944039 PMCID: PMC11293579 DOI: 10.1016/j.xgen.2024.100602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 03/11/2024] [Accepted: 06/07/2024] [Indexed: 07/01/2024]
Abstract
The phenotypic impact of compound heterozygous (CH) variation has not been investigated at the population scale. We phased rare variants (MAF ∼0.001%) in the UK Biobank (UKBB) exome-sequencing data to characterize recessive effects in 175,587 individuals across 311 common diseases. A total of 6.5% of individuals carry putatively damaging CH variants, 90% of which are only identifiable upon phasing rare variants (MAF < 0.38%). We identify six recessive gene-trait associations (p < 1.68 × 10-7) after accounting for relatedness, polygenicity, nearby common variants, and rare variant burden. Of these, just one is discovered when considering homozygosity alone. Using longitudinal health records, we additionally identify and replicate a novel association between bi-allelic variation in ATP2C2 and an earlier age at onset of chronic obstructive pulmonary disease (COPD) (p < 3.58 × 10-8). Genetic phase contributes to disease risk for gene-trait pairs: ATP2C2-COPD (p = 0.000238), FLG-asthma (p = 0.00205), and USH2A-visual impairment (p = 0.0084). We demonstrate the power of phasing large-scale genetic cohorts to discover phenome-wide consequences of compound heterozygosity.
Collapse
Affiliation(s)
- Frederik H Lassen
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK; Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, UK.
| | - Samvida S Venkatesh
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK; Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, UK
| | - Nikolas Baya
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK; Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, UK
| | - Barney Hill
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, UK
| | - Wei Zhou
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA; Analytical and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Alex Bloemendal
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA; Novo Nordisk Center for Genomic Mechanisms of Disease, Broad Institute of MIT and Harvard, Cambridge, MA, USA; Data Sciences Platform, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Benjamin M Neale
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA; Analytical and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Benedikt M Kessler
- Target Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Nicola Whiffin
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK; Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, UK; Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Cecilia M Lindgren
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK; Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, UK; Nuffield Department of Population Health, Medical Sciences Division, University of Oxford, Oxford, UK.
| | - Duncan S Palmer
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, UK; Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA; Nuffield Department of Population Health, Medical Sciences Division, University of Oxford, Oxford, UK.
| |
Collapse
|
9
|
Vanhee C, Jacobs B, Canfyn M, Malysheva SV, Willocx M, Masquelier J, Van Hoorde K. Quality Control and Safety Assessment of Online-Purchased Food Supplements Containing Red Yeast Rice (RYR). Foods 2024; 13:1919. [PMID: 38928859 PMCID: PMC11202976 DOI: 10.3390/foods13121919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/13/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024] Open
Abstract
Dietary supplements containing red yeast rice (RYR), a fermentation product of the fungus Monascus purpureus grown on white rice, remain popular in Europe as proclaimed cholesterol-lowering aids. The cholesterol-lowering effects are due to the occurrence of monacolin K, which is often present as a mixture of monacolin K lactone (MK) and as monacolin K hydroxy acid (MKA). MK is structurally similar to the cholesterol-lowering medicine lovastatin. Recently, due to safety concerns linked to the use of statins, the European Commission prohibited RYR supplements with a maximum serving exceeding 3 mg of total monacolins per day. Moreover, the amount of the mycotoxin citrinin, potentially produced by M. purpureus, was also reduced to 100 µg/kg. Evidently, manufacturers that offer their products on the European market, including the online market, must also be compliant with these limits in order to guarantee the safety of their products. Therefore, thirty-five different RYR supplements, purchased from an EU-bound e-commerce platform or from registered online pharmacies, were screened for their compliance to the European legislation for citrinin content and the amount of total monacolin K. This was conducted by means of a newly developed LC-MS/MS methodology that was validated according to ISO 17025. Moreover, these supplements were also screened for possible adulteration and any contamination by micro-organisms and/or mycotoxins. It was found that at least four of the thirty-five RYR supplements (≈11%) might have reason for concern for the safety of the consumer either due to high total monacolin K concentrations exceeding the European predefined limits for total monacolins or severe bacterial contamination. Moreover, three samples (≈9%) were likely adulterated, and the labeling of six of the seventeen samples (≈35%) originating from an EU-based e-commerce platform was not compliant, as either the mandatory warning was missing or incomplete or the total amount of monacolins was not mentioned.
Collapse
Affiliation(s)
- Celine Vanhee
- Service Medicines and Health Products, Scientific Directorate of Chemical and Physical Health Risks, Sciensano, J. Wytsmanstraat 14, B-1050 Brussels, Belgium
| | - Bram Jacobs
- Service of Foodborne Pathogen, Scientific Directorate of Infectious Diseases in Humans, Sciensano, J. Wytsmanstraat 14, B-1050 Brussels, Belgium
| | - Michael Canfyn
- Service Medicines and Health Products, Scientific Directorate of Chemical and Physical Health Risks, Sciensano, J. Wytsmanstraat 14, B-1050 Brussels, Belgium
| | - Svetlana V. Malysheva
- Toxins Unit, Service of Organic Contaminants and Additives, Scientific Directorate of Chemical and Physical Health Risks, Sciensano, Leuvensesteenweg 17, B-3080 Tervuren, Belgium
| | - Marie Willocx
- Service Medicines and Health Products, Scientific Directorate of Chemical and Physical Health Risks, Sciensano, J. Wytsmanstraat 14, B-1050 Brussels, Belgium
| | - Julien Masquelier
- Toxins Unit, Service of Organic Contaminants and Additives, Scientific Directorate of Chemical and Physical Health Risks, Sciensano, Leuvensesteenweg 17, B-3080 Tervuren, Belgium
| | - Koenraad Van Hoorde
- Service of Foodborne Pathogen, Scientific Directorate of Infectious Diseases in Humans, Sciensano, J. Wytsmanstraat 14, B-1050 Brussels, Belgium
| |
Collapse
|
10
|
Wan S, He QY, Yang Y, Liu F, Zhang X, Guo X, Niu H, Wang Y, Liu YX, Ye WL, Li XM, ZhuanSun XM, Sun P, He XS, Hu G, Breuhahn K, Zhao H, Wu GQ, Wu H. SPARC Stabilizes ApoE to Induce Cholesterol-Dependent Invasion and Sorafenib Resistance in Hepatocellular Carcinoma. Cancer Res 2024; 84:1872-1888. [PMID: 38471084 DOI: 10.1158/0008-5472.can-23-2889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 01/11/2024] [Accepted: 03/08/2024] [Indexed: 03/14/2024]
Abstract
Dysregulation of cholesterol homeostasis is implicated in the development and progression of hepatocellular carcinoma (HCC) that is characterized by intrahepatic and early extrahepatic metastases. A better understanding of the underlying mechanisms regulating cholesterol metabolism in HCC could help identify strategies to circumvent the aggressive phenotype. Here, we found that high expression of intracellular SPARC (secreted protein acidic and rich in cysteine) was significantly associated with elevated cholesterol levels and an enhanced invasive phenotype in HCC. SPARC potentiated cholesterol accumulation in HCC cells during tumor progression by stabilizing the ApoE protein. Mechanistically, SPARC competitively bound to ApoE, impairing its interaction with the E3 ligase tripartite motif containing 21 (TRIM21) and preventing its ubiquitylation and subsequent degradation. ApoE accumulation led to cholesterol enrichment in HCC cells, stimulating PI3K-AKT signaling and inducing epithelial-mesenchymal transition (EMT). Importantly, sorafenib-resistant HCC cells were characterized by increased expression of intracellular SPARC, elevated cholesterol levels, and enhanced invasive capacity. Inhibiting SPARC expression or reducing cholesterol levels enhanced the sensitivity of HCC cells to sorafenib treatment. Together, these findings unveil interplay between SPARC and cholesterol homeostasis. Targeting SPARC-triggered cholesterol-dependent oncogenic signaling is a potential therapeutic strategy for advanced HCC. SIGNIFICANCE Intracellular SPARC boosts cholesterol availability to fuel invasion and drug resistance in hepatocellular carcinoma, providing a rational approach to improve the treatment of advanced liver cancer.
Collapse
Affiliation(s)
- Shan Wan
- Suzhou Medical College of Soochow University & Clinical Medicine Research Institute of Soochow University and Suzhou BenQ Medical Center, Soochow University, Suzhou, China
| | - Quan-Yao He
- Suzhou Medical College of Soochow University & Clinical Medicine Research Institute of Soochow University and Suzhou BenQ Medical Center, Soochow University, Suzhou, China
| | - Yun Yang
- Suzhou Medical College of Soochow University & Clinical Medicine Research Institute of Soochow University and Suzhou BenQ Medical Center, Soochow University, Suzhou, China
| | - Feng Liu
- YongDing Clinical Institute of Soochow University, Hygeia Suzhou YongDing Hospital, Suzhou, China
| | - Xue Zhang
- Suzhou Medical College of Soochow University & Clinical Medicine Research Institute of Soochow University and Suzhou BenQ Medical Center, Soochow University, Suzhou, China
| | - Xin Guo
- Suzhou Medical College of Soochow University & Clinical Medicine Research Institute of Soochow University and Suzhou BenQ Medical Center, Soochow University, Suzhou, China
| | - Hui Niu
- Suzhou Medical College of Soochow University & Clinical Medicine Research Institute of Soochow University and Suzhou BenQ Medical Center, Soochow University, Suzhou, China
| | - Yi Wang
- Suzhou Medical College of Soochow University & Clinical Medicine Research Institute of Soochow University and Suzhou BenQ Medical Center, Soochow University, Suzhou, China
| | - Yi-Xuan Liu
- Suzhou Medical College of Soochow University & Clinical Medicine Research Institute of Soochow University and Suzhou BenQ Medical Center, Soochow University, Suzhou, China
| | - Wen-Long Ye
- Suzhou Medical College of Soochow University & Clinical Medicine Research Institute of Soochow University and Suzhou BenQ Medical Center, Soochow University, Suzhou, China
| | - Xiu-Ming Li
- Suzhou Medical College of Soochow University & Clinical Medicine Research Institute of Soochow University and Suzhou BenQ Medical Center, Soochow University, Suzhou, China
| | - Xue-Mei ZhuanSun
- Suzhou Medical College of Soochow University & Clinical Medicine Research Institute of Soochow University and Suzhou BenQ Medical Center, Soochow University, Suzhou, China
| | - Pu Sun
- Department of Bioinformatics, Suzhou Medical College of Soochow University, Soochow University, Suzhou, China
| | - Xiao-Shun He
- Suzhou Medical College of Soochow University & Clinical Medicine Research Institute of Soochow University and Suzhou BenQ Medical Center, Soochow University, Suzhou, China
| | - Guang Hu
- Department of Bioinformatics, Suzhou Medical College of Soochow University, Soochow University, Suzhou, China
| | - Kai Breuhahn
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Hua Zhao
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, China
| | - Guo-Qiang Wu
- Suzhou Medical College of Soochow University & Clinical Medicine Research Institute of Soochow University and Suzhou BenQ Medical Center, Soochow University, Suzhou, China
| | - Hua Wu
- Suzhou Medical College of Soochow University & Clinical Medicine Research Institute of Soochow University and Suzhou BenQ Medical Center, Soochow University, Suzhou, China
| |
Collapse
|
11
|
Dhakal S, Macreadie IG. Simvastatin, Its Antimicrobial Activity and Its Prevention of Alzheimer's Disease. Microorganisms 2024; 12:1133. [PMID: 38930515 PMCID: PMC11205914 DOI: 10.3390/microorganisms12061133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/22/2024] [Accepted: 05/29/2024] [Indexed: 06/28/2024] Open
Abstract
Simvastatin, a blockbuster drug for treating hypercholesterolemia, has multifactorial benefits as an antimicrobial agent and plays a preventative role in reducing the incidence of Alzheimer's Disease (AD). Although most of the beneficial effects of simvastatin have been attributed to its ability to reduce cholesterol levels, recent scientific studies have suggested that its benefits are largely due to its pleiotropic effects in targeting other pathways, e.g., by inhibiting protein lipidation. There are certain pleiotropic effects that can be predicted from the inhibition of the mevalonate pathway; however, some of the effects of simvastatin in proteostasis lead to reduced levels of amyloid beta, the key contributor to AD. This review discusses the use of simvastatin as an antimicrobial agent and anti-AD drug.
Collapse
Affiliation(s)
- Sudip Dhakal
- Health and Biosecurity, Commonwealth Scientific and Industrial Research Organization (CSIRO), Geelong, VIC 3220, Australia;
| | - Ian G. Macreadie
- School of Science, RMIT University, Bundoora, VIC 3063, Australia
| |
Collapse
|
12
|
Luo Y, Liu Z, Luo J, Li R, Wei Z, Yang L, Li J, He L, Su Y, Peng X, Hu X. BMI Trajectories in Late Middle Age, Genetic Risk, and Incident Diabetes in Older Adults: Evidence From a 26-Year Longitudinal Study. Am J Epidemiol 2024; 193:685-694. [PMID: 37016424 PMCID: PMC11484589 DOI: 10.1093/aje/kwad080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 11/16/2022] [Accepted: 04/02/2023] [Indexed: 04/06/2023] Open
Abstract
This study investigated the association between body mass index (BMI) trajectories in late middle age and incident diabetes in later years. A total of 11,441 participants aged 50-60 years from the Health and Retirement Study with at least 2 self-reported BMI records were included. Individual BMI trajectories representing average BMI changes per year were generated using multilevel modeling. Adjusted risk ratios (ARRs) and 95% confidence intervals (95% CIs) were calculated. Associations between BMI trajectories and diabetes risk in participants with different genetic risks were estimated for 5,720 participants of European ancestry. BMI trajectories were significantly associated with diabetes risk in older age (slowly increasing vs. stable: ARR = 1.31, 95% CI: 1.12, 1.54; rapidly increasing vs. stable: ARR = 1.5, 95% CI: 1.25, 1.79). This association was strongest for normal-initial-BMI participants (slowly increasing: ARR = 1.34, 95% CI: 0.96, 1.88; rapidly increasing: ARR = 2.06, 95% CI: 1.37, 3.11). Participants with a higher genetic liability to diabetes and a rapidly increasing BMI trajectory had the highest risk for diabetes (ARR = 2.15, 95% CI: 1.67, 2.76). These findings confirmed that BMI is the leading risk factor for diabetes and that although the normal BMI group has the lowest incidence rate for diabetes, people with normal BMI are most sensitive to changes in BMI.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Yonglin Su
- Corresponding to Dr. Xiaolin Hu, Department of Nursing, West China Hospital, Sichuan University, No. 37 Guo Xue Alley, Chengdu, Sichuan (610041), PR China. (e-mail: ); Dr. Xingchen Peng, Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, No. 37 Guo Xue Alley, Chengdu, Sichuan (610041), People's Republic of China (e-mail: ); Dr. Yonglin Su, Department of Rehabilitation, West China Hospital, Sichuan University, No. 37 Guo Xue Alley, Chengdu, Sichuan (610041), People's Republic of China (e-mail: )
| | - Xingchen Peng
- Corresponding to Dr. Xiaolin Hu, Department of Nursing, West China Hospital, Sichuan University, No. 37 Guo Xue Alley, Chengdu, Sichuan (610041), PR China. (e-mail: ); Dr. Xingchen Peng, Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, No. 37 Guo Xue Alley, Chengdu, Sichuan (610041), People's Republic of China (e-mail: ); Dr. Yonglin Su, Department of Rehabilitation, West China Hospital, Sichuan University, No. 37 Guo Xue Alley, Chengdu, Sichuan (610041), People's Republic of China (e-mail: )
| | - Xiaolin Hu
- Corresponding to Dr. Xiaolin Hu, Department of Nursing, West China Hospital, Sichuan University, No. 37 Guo Xue Alley, Chengdu, Sichuan (610041), PR China. (e-mail: ); Dr. Xingchen Peng, Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, No. 37 Guo Xue Alley, Chengdu, Sichuan (610041), People's Republic of China (e-mail: ); Dr. Yonglin Su, Department of Rehabilitation, West China Hospital, Sichuan University, No. 37 Guo Xue Alley, Chengdu, Sichuan (610041), People's Republic of China (e-mail: )
| |
Collapse
|
13
|
Ma S, Ming Y, Wu J, Cui G. Cellular metabolism regulates the differentiation and function of T-cell subsets. Cell Mol Immunol 2024; 21:419-435. [PMID: 38565887 PMCID: PMC11061161 DOI: 10.1038/s41423-024-01148-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 02/23/2024] [Indexed: 04/04/2024] Open
Abstract
T cells are an important component of adaptive immunity and protect the host from infectious diseases and cancers. However, uncontrolled T cell immunity may cause autoimmune disorders. In both situations, antigen-specific T cells undergo clonal expansion upon the engagement and activation of antigens. Cellular metabolism is reprogrammed to meet the increase in bioenergetic and biosynthetic demands associated with effector T cell expansion. Metabolites not only serve as building blocks or energy sources to fuel cell growth and expansion but also regulate a broad spectrum of cellular signals that instruct the differentiation of multiple T cell subsets. The realm of immunometabolism research is undergoing swift advancements. Encapsulating all the recent progress within this concise review in not possible. Instead, our objective is to provide a succinct introduction to this swiftly progressing research, concentrating on the metabolic intricacies of three pivotal nutrient classes-lipids, glucose, and amino acids-in T cells. We shed light on recent investigations elucidating the roles of these three groups of metabolites in mediating the metabolic and immune functions of T cells. Moreover, we delve into the prospect of "editing" metabolic pathways within T cells using pharmacological or genetic approaches, with the aim of synergizing this approach with existing immunotherapies and enhancing the efficacy of antitumor and antiinfection immune responses.
Collapse
Affiliation(s)
- Sicong Ma
- Key Laboratory of Immune Response and Immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230601, China
| | - Yanan Ming
- Key Laboratory of Immune Response and Immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230601, China
| | - Jingxia Wu
- Key Laboratory of Immune Response and Immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230601, China.
| | - Guoliang Cui
- Key Laboratory of Immune Response and Immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230601, China.
| |
Collapse
|
14
|
Rybak JM, Xie J, Martin-Vicente A, Guruceaga X, Thorn HI, Nywening AV, Ge W, Souza ACO, Shetty AC, McCracken C, Bruno VM, Parker JE, Kelly SL, Snell HM, Cuomo CA, Rogers PD, Fortwendel JR. A secondary mechanism of action for triazole antifungals in Aspergillus fumigatus mediated by hmg1. Nat Commun 2024; 15:3642. [PMID: 38684680 PMCID: PMC11059170 DOI: 10.1038/s41467-024-48029-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 04/17/2024] [Indexed: 05/02/2024] Open
Abstract
Triazole antifungals function as ergosterol biosynthesis inhibitors and are frontline therapy for invasive fungal infections, such as invasive aspergillosis. The primary mechanism of action of triazoles is through the specific inhibition of a cytochrome P450 14-α-sterol demethylase enzyme, Cyp51A/B, resulting in depletion of cellular ergosterol. Here, we uncover a clinically relevant secondary mechanism of action for triazoles within the ergosterol biosynthesis pathway. We provide evidence that triazole-mediated inhibition of Cyp51A/B activity generates sterol intermediate perturbations that are likely decoded by the sterol sensing functions of HMG-CoA reductase and Insulin-Induced Gene orthologs as increased pathway activity. This, in turn, results in negative feedback regulation of HMG-CoA reductase, the rate-limiting step of sterol biosynthesis. We also provide evidence that HMG-CoA reductase sterol sensing domain mutations previously identified as generating resistance in clinical isolates of Aspergillus fumigatus partially disrupt this triazole-induced feedback. Therefore, our data point to a secondary mechanism of action for the triazoles: induction of HMG-CoA reductase negative feedback for downregulation of ergosterol biosynthesis pathway activity. Abrogation of this feedback through acquired mutations in the HMG-CoA reductase sterol sensing domain diminishes triazole antifungal activity against fungal pathogens and underpins HMG-CoA reductase-mediated resistance.
Collapse
Affiliation(s)
- Jeffrey M Rybak
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jinhong Xie
- Graduate Program in Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, USA
- Department of Clinical Pharmacy and Translational Science, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Adela Martin-Vicente
- Department of Clinical Pharmacy and Translational Science, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Xabier Guruceaga
- Department of Clinical Pharmacy and Translational Science, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Harrison I Thorn
- Graduate Program in Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, USA
- Department of Clinical Pharmacy and Translational Science, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Ashley V Nywening
- Department of Clinical Pharmacy and Translational Science, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, USA
- Integrated Program in Biomedical Sciences, College of Graduate Health Sciences, University of Tennessee Health Science Center, Memphis, TN, USA
- Department of Microbiology, Immunology, and Biochemistry, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Wenbo Ge
- Department of Clinical Pharmacy and Translational Science, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Ana C O Souza
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Amol C Shetty
- Institute of Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Carrie McCracken
- Institute of Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Vincent M Bruno
- Institute of Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Josie E Parker
- Molecular Biosciences Division, School of Biosciences, Cardiff University, Cardiff, Wales, UK
| | - Steven L Kelly
- Institute of Life Science, Swansea University Medical School, Swansea, Wales, UK
| | - Hannah M Snell
- Infectious Diseases and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Christina A Cuomo
- Infectious Diseases and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - P David Rogers
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jarrod R Fortwendel
- Department of Clinical Pharmacy and Translational Science, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, USA.
- Department of Microbiology, Immunology, and Biochemistry, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA.
| |
Collapse
|
15
|
Yan D, Matsuda Y. Methyltransferase Domain-Focused Genome Mining for Fungal Polyketide Synthases. SMALL METHODS 2024:e2400107. [PMID: 38644685 DOI: 10.1002/smtd.202400107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/05/2024] [Indexed: 04/23/2024]
Abstract
A comparison of substrate-binding site amino acid residues in the C-methyltransferase (MT) domains of fungal nonreducing polyketide synthases (NR-PKSs) suggests that these residues are correlated with the methylation modes used by the PKSs. A PKS, designated as AsbPKS, with substrate-binding site residues distinct from those of other known PKSs is focused on. The characterization of AsbPKS revealed that it yields an isocoumarin derivative, anhydrosclerotinin B (1), the biosynthesis of which involves a previously unreported methylation pattern. This study demonstrates the utility of MT domain-focused genome mining for the discovery of PKSs with new functions.
Collapse
Affiliation(s)
- Dexiu Yan
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China
| | - Yudai Matsuda
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China
| |
Collapse
|
16
|
Yin N, Wu X, Ren R, Luo J. The effect of acupoint catgut embedding and drug therapy on hyperlipidemia: a meta-analysis of randomized controlled trials. Biotechnol Genet Eng Rev 2024; 40:664-677. [PMID: 36880486 DOI: 10.1080/02648725.2023.2186559] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 02/24/2023] [Indexed: 03/08/2023]
Abstract
There is no consensus on whether acupoint catgut embedding should be widely used as a treatment for hyperlipidemia. Acupoint catgut embedding is also not included in the guidelines for the treatment of hyperlipidemia. The purpose of this study was of two aspects: 1) to review recent research advances in the relationship between acupoint catgut embedding and hyperlipidemia, 2) to make a meta-analysis of the effects of acupoint catgut embedding on hyperlipidemia. We conducted a meta-analysis of studies extracted from PubMed, the Cochrane Library, Embase CNKI, Wanfang Data and VIP to identify randomized controlled trials (RCTs) evaluating the efficacy of acupoint catgut embedding on hyperlipidemia evaluated through screening, inclusion, data extraction and quality assessment. We performed a meta-analysis using Review Manager 5.3 software. A total of 9 RCTs, involving more than 500 adults over 18 years old, were included. Compared with acupoint catgut embedding, drugs resulted in TC [MD = -0.08, 95% CI (-0.20, 0.05), p = 0.41, I2 = 2%], in TG [MD =-0.04, 95% CI (-0.20, 0.11), p = 0.09, I2 = 43%], in HDL-C [MD = 0.02, 95% CI (-0.12, 0.16), p = 0.07, I2 = 50%], in LDL-C [MD = 0.16, 95% CI (0.02, 0.29), p = 0.17, I2 = 34%]. Based on the current evidence, acupoint catgut embedding is not significantly more effective than drugs in reducing hyperlipidemia. More randomized trials are needed to confirm this conclusion.
Collapse
Affiliation(s)
- Na Yin
- Gynaecology and Operating Room, Shanghai University of Traditional Chinese Medicine Taizhou Hospital, Taizhou, Zhejiang, China
| | - Xiaoping Wu
- Taizhou Central Hospital, Neurology department, California Baptist University, Zhejiang, China
| | - Rongrong Ren
- Gynaecology and Operating Room, Shanghai University of Traditional Chinese Medicine Taizhou Hospital, Taizhou, Zhejiang, China
| | - Jing Luo
- Gynaecology and Operating Room, Shanghai University of Traditional Chinese Medicine Taizhou Hospital, Taizhou, Zhejiang, China
| |
Collapse
|
17
|
Zhang Y, Song Z, Zhang Z, Zhang T, Gu P, Feng Z, Xu S, Yang Y, Wang D, Liu Z. Preparation and characterization of pickering emulsion stabilized by lovastatin nanoparticles for vaccine adjuvants. Int J Pharm 2024; 653:123901. [PMID: 38368969 DOI: 10.1016/j.ijpharm.2024.123901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/11/2024] [Accepted: 02/08/2024] [Indexed: 02/20/2024]
Abstract
While research on mevalonate inhibitors as vaccine adjuvants has made great progress to enhance the effectiveness of the vaccine, co delivery of lovastatin and antigens (OVA) remains an enormous challenge. Here, we encapsulated lovastatin into PLGA nanoparticles. PLGA loading lovastatin was further emulsified with squalene to prepare Pickering emulsion. The emulsification conditions of Pickering emulsion were optimized, and the optimal preparation conditions were obtained. After loading lovastatin and OVA, the size and zeta potential of LS-PPAS/OVA was 1043.33 nm and -22.07 mv, the adsorption rate of OVA was 63.34 %. The adsorbing of LS-PLGA nanoparticles on the surface of squalene in Pickering emulsions was demonstrated by Fluorescent confocal microscopy. After immunization, LS-PPAS enhanced the activation of dendritic cells in lymph nodes, further study found LS-PPAS not only elicited elevated levels of OVA-specific IgG and its subtypes, but also promoted the secretion of TNF-α, IFN-γ, and IL-6 in serum as a marker of cellular immunity. Importantly, LS-PPAS showed sufficient security through monitoring levels of biochemical parameters in serum and pathological observation of organ following vaccinations. LS-PPAS may act as a promising vaccine carrier to produce strong humoral and cellular immunity with acceptable safety.
Collapse
Affiliation(s)
- Yue Zhang
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Zuchen Song
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Zhimin Zhang
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Tao Zhang
- Beijing Key Laboratory of Traditional Chinese Veterinary Medicine, Beijing University of Agriculture, Beijing 102206, PR China
| | - Pengfei Gu
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Zian Feng
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Shuwen Xu
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Yang Yang
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Deyun Wang
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Zhenguang Liu
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China.
| |
Collapse
|
18
|
Bejenari M, Spedtsberg EML, Mathiesen J, Jeppesen AC, Cernat L, Toussaint A, Apostol C, Stoianov V, Pedersen TB, Nielsen MR, Sørensen JL. First-class - biosynthesis of 6-MSA and bostrycoidin type I polyketides in Yarrowia lipolytica. FRONTIERS IN FUNGAL BIOLOGY 2024; 5:1327777. [PMID: 38586602 PMCID: PMC10995274 DOI: 10.3389/ffunb.2024.1327777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 02/09/2024] [Indexed: 04/09/2024]
Abstract
Fungal polyketides are a large group of secondary metabolites, valuable due to their diverse spectrum of pharmacological activities. Polyketide biosynthesis in filamentous fungi presents some challenges: small yield and low-purity titers. To tackle these issues, we switched to the yeast Yarrowia lipolytica, an easily cultivable heterologous host. As an oleaginous yeast, Y. lipolytica displays a high flux of acetyl- and malonyl-CoA precursors used in lipid synthesis. Likewise, acetyl- and malonyl-CoA are the building blocks of many natural polyketides, and we explored the possibility of redirecting this flux toward polyketide production. Despite its promising prospect, Y. lipolytica has so far only been used for heterologous expression of simple type III polyketide synthases (PKSs) from plants. Therefore, we decided to evaluate the potential of Y. lipolytica by targeting the more complex fungal polyketides synthesized by type I PKSs. We employed a CRISPR-Cas9-mediated genome editing method to achieve markerless gene integration of the genes responsible for bostrycoidin biosynthesis in Fusarium solani (fsr1, fsr2, and fsr3) and 6-methylsalicylic acid (6-MSA) biosynthesis in Aspergillus hancockii (6MSAS). Moreover, we attempted titer optimization through metabolic engineering by overexpressing two enzymes, TGL4 and AOX2, involved in lipid β-oxidation, but we did not observe an effect on polyketide production. With maximum titers of 403 mg/L 6-MSA and 35 mg/L bostrycoidin, the latter being substantially higher than our previous results in Saccharomyces cerevisiae (2.2 mg/L), this work demonstrates the potential of Y. lipolytica as a platform for heterologous production of complex fungal polyketides.
Collapse
Affiliation(s)
- Mihaela Bejenari
- Department of Chemistry and Bioscience, Aalborg University, Esbjerg, Denmark
| | - Eva Mie Lang Spedtsberg
- Department of Chemistry and Bioscience, Aalborg University, Esbjerg, Denmark
- Department of Energy, Aalborg University, Esbjerg, Denmark
| | - Julie Mathiesen
- Department of Chemistry and Bioscience, Aalborg University, Esbjerg, Denmark
| | | | - Lucia Cernat
- Department of Chemistry and Bioscience, Aalborg University, Esbjerg, Denmark
| | - Aouregane Toussaint
- Université Grenoble Alpes, Laboratoire de Physiologie Cellulaire Végétale, CEA, CNRS, INRA, IRIG-LPCV, Grenoble, France
| | - Cristina Apostol
- Department of Chemistry and Bioscience, Aalborg University, Esbjerg, Denmark
| | - Victor Stoianov
- Department of Chemistry and Bioscience, Aalborg University, Esbjerg, Denmark
| | | | - Mikkel Rank Nielsen
- Department of Chemistry and Bioscience, Aalborg University, Esbjerg, Denmark
| | | |
Collapse
|
19
|
Luo Z, Yin F, Wang X, Kong L. Progress in approved drugs from natural product resources. Chin J Nat Med 2024; 22:195-211. [PMID: 38553188 DOI: 10.1016/s1875-5364(24)60582-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Indexed: 04/02/2024]
Abstract
Natural products (NPs) have consistently played a pivotal role in pharmaceutical research, exerting profound impacts on the treatment of human diseases. A significant proportion of approved molecular entity drugs are either directly derived from NPs or indirectly through modifications of NPs. This review presents an overview of NP drugs recently approved in China, the United States, and other countries, spanning various disease categories, including cancers, cardiovascular and cerebrovascular diseases, central nervous system disorders, and infectious diseases. The article provides a succinct introduction to the origin, activity, development process, approval details, and mechanism of action of these NP drugs.
Collapse
Affiliation(s)
- Zhongwen Luo
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Fucheng Yin
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Xiaobing Wang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Lingyi Kong
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| |
Collapse
|
20
|
Wang J, Kunze M, Villoria-González A, Weinhofer I, Berger J. Peroxisomal Localization of a Truncated HMG-CoA Reductase under Low Cholesterol Conditions. Biomolecules 2024; 14:244. [PMID: 38397481 PMCID: PMC10886633 DOI: 10.3390/biom14020244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/07/2024] [Accepted: 02/16/2024] [Indexed: 02/25/2024] Open
Abstract
3-hydroxy-3-methylglutaryl-CoA reductase (HMG-CoA reductase, HMGCR) is one of the rate-limiting enzymes in the mevalonate pathway required for cholesterol biosynthesis. It is an integral membrane protein of the endoplasmic reticulum (ER) but has occasionally been described in peroxisomes. By co-immunofluorescence microscopy using different HMGCR antibodies, we present evidence for a dual localization of HMGCR in the ER and peroxisomes in differentiated human monocytic THP-1 cells, primary human monocyte-derived macrophages and human primary skin fibroblasts under conditions of low cholesterol and statin treatment. Using density gradient centrifugation and Western blot analysis, we observed a truncated HMGCR variant of 76 kDa in the peroxisomal fractions, while a full-length HMGCR of 96 kDa was contained in fractions of the ER. In contrast to primary human control fibroblasts, peroxisomal HMGCR was not found in fibroblasts from patients suffering from type-1 rhizomelic chondrodysplasia punctata, who lack functional PEX7 and, thus, cannot import peroxisomal matrix proteins harboring a type-2 peroxisomal targeting signal (PTS2). Moreover, in the N-terminal region of the soluble 76 kDa C-terminal catalytic domain, we identified a PTS2-like motif, which was functional in a reporter context. We propose that under sterol-depleted conditions, part of the soluble HMGCR domain, which is released from the ER by proteolytic processing for further turnover, remains sufficiently long in the cytosol for peroxisomal import via a PTS2/PEX7-dependent mechanism. Altogether, our findings describe a dual localization of HMGCR under combined lipid depletion and statin treatment, adding another puzzle piece to the complex regulation of HMGCR.
Collapse
Affiliation(s)
| | | | | | | | - Johannes Berger
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
21
|
Su XZ, Zhang LF, Hu K, An Y, Zhang QP, Tang JW, Yan BC, Li XR, Cai J, Li XN, Sun HD, Jiang SY, Puno PT. Discovery of Natural Potent HMG-CoA Reductase Degraders for Lowering Cholesterol. Angew Chem Int Ed Engl 2024; 63:e202313859. [PMID: 38055195 DOI: 10.1002/anie.202313859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 11/13/2023] [Accepted: 12/05/2023] [Indexed: 12/07/2023]
Abstract
Exploitation of key protected wild plant resources makes great sense, but their limited populations become the major barrier. A particular strategy for breaking this barrier was inspired by the exploration of a resource-saving fungal endophyte Penicillium sp. DG23, which inhabits the key protected wild plant Schisandra macrocarpa. Chemical studies on the cultures of this strain afforded eight novel indole diterpenoids, schipenindolenes A-H (1-8), belonging to six diverse skeleton types. Importantly, semisyntheses suggested some key nonenzymatic reactions constructing these molecules and provided targeted compounds, in particular schipenindolene A (Spid A, 1) with low natural abundance. Remarkably, Spid A was the most potent HMG-CoA reductase (HMGCR) degrader among the indole diterpenoid family. It degraded statin-induced accumulation of HMGCR protein, decreased cholesterol levels and acted synergistically with statin to further lower cholesterol. Mechanistically, transcriptomic and proteomic profiling suggested that Spid A potentially activated the endoplasmic reticulum-associated degradation (ERAD) pathway to enhance the degradation of HMGCR, while simultaneously inhibiting the statin-activated expression of many key enzymes in the cholesterol and fatty acid synthesis pathways, thereby strengthening the efficacy of statins and potentially reducing the side effects of statins. Collectively, this study suggests the potential of Spid A for treating cardiovascular disease.
Collapse
Affiliation(s)
- Xiao-Zheng Su
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Kunming, 650201, China
| | - Lin-Fei Zhang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Kunming, 650201, China
| | - Kun Hu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Kunming, 650201, China
| | - Yang An
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University Shanghai 201210 (China)
| | - Qiao-Peng Zhang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Kunming, 650201, China
| | - Jian-Wei Tang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Kunming, 650201, China
| | - Bing-Chao Yan
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Kunming, 650201, China
| | - Xing-Ren Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Kunming, 650201, China
| | - Jie Cai
- The Germplasm Bank of Wild Species, Kunming Institute of Botany, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Kunming, 650201, China
| | - Xiao-Nian Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Kunming, 650201, China
| | - Han-Dong Sun
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Kunming, 650201, China
| | - Shi-You Jiang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Kunming, 650201, China
| | - Pema-Tenzin Puno
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Kunming, 650201, China
| |
Collapse
|
22
|
Ai JY, Zhao PC, Zhang W, Rao GW. Research Progress in the Clinical Treatment of Familial Hypercholesterolemia. Curr Med Chem 2024; 31:1082-1106. [PMID: 36733200 DOI: 10.2174/0929867330666230202111849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 11/30/2022] [Accepted: 12/15/2022] [Indexed: 02/04/2023]
Abstract
Familial hypercholesterolemia (FH) is an autosomal dominant inheritable disease with severe disorders of lipid metabolism. It is mainly marked by increasing levels of plasma total cholesterol (TC) and low-density lipoprotein cholesterol (LDL-C), xanthoma, corneal arch, and early-onset coronary heart disease (CHD). The prevalence of FH is high, and it is dangerous and clinically underdiagnosed. The clinical treatment for FH includes both pharmacological and non-pharmacological treatment, of which non-pharmacological treatment mainly includes therapeutic lifestyle change and dietary therapy, LDL apheresis, liver transplantation and gene therapy. In recent years, many novel drugs have been developed to treat FH more effectively. In addition, the continuous maturity of non-pharmacological treatment techniques has also brought more hope for the treatment of FH. This paper analyzes the pathogenic mechanism and the progress in clinical treatment of FH. Furthermore, it also summarizes the mechanism and structure-activity relationship of FH therapeutic drugs that have been marketed. In a word, this article provides a reference value for the research and development of FH therapeutic drugs.
Collapse
Affiliation(s)
- Jing-Yan Ai
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, P.R. China
| | - Peng-Cheng Zhao
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, P.R. China
| | - Wen Zhang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, P.R. China
| | - Guo-Wu Rao
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, P.R. China
| |
Collapse
|
23
|
Kumari P, Dang S. Evaluation of Enhanced Cytotoxicity Effect of Repurposed Drug Simvastatin/Thymoquinone Combination against Breast Cancer Cell Line. Cardiovasc Hematol Agents Med Chem 2024; 22:348-366. [PMID: 37907488 DOI: 10.2174/0118715257259037231012182741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 08/02/2023] [Accepted: 09/15/2023] [Indexed: 11/02/2023]
Abstract
INTRODUCTION Repurposing of drugs for their anticancer potential is gaining a lot of importance in drug discovery. AIMS The present study aims to explore the potential of Simvastatin (SIM), a drug used in the treatment of high cholesterol, and Thymoquinone (Nigella Sativa) (THY) for its anti-cancer activity on breast cancer cell lines. Thymoquinone is reported to have many potential medicinal properties exhibiting antioxidant, antiinflammatory, anti-cancer, activities like inhibition of tissue growth and division. METHODS In this analysis, we explored the inhibitory effects of the combination of Simvastatin ad Thymoquinone on two breast cancer cell lines viz MCF-7 and MDA-MB-231 cells. The combined effect of Simvastatin and Thymoquinone on Cell viability, Colony formation, Cell migration, and orientation of more programmed cell death in vitro was studied. Cell cycle arrest in the G2/M phase was concomitant with the combined effect of SIM and THY persuading apoptosis and generating reactive oxygen species (ROS). RESULTS The cell cycle arrest with combined treatment was observed that only 1.8% and 1.1% cells gated in G2/M phase in MCF-7 & MDA-MB-231 cell. An increased apoptosis was observed when cells were treated in combination which was about 76.20% and 58.15% respectively for MCF-7 and MDA-MB-231 cells. CONCLUSION It was concluded that the combined effect of simvastatin and thymoquinone stimulates apoptosis in breast cancer cells.
Collapse
Affiliation(s)
- Pallavi Kumari
- Department of Biotechnology, Jaypee Institute of Information Technology, A-10, Noida, Sector 62, U.P., 201309, India
| | - Shweta Dang
- Department of Biotechnology, Jaypee Institute of Information Technology, A-10, Noida, Sector 62, U.P., 201309, India
| |
Collapse
|
24
|
Al-Shalchi RF, Mohammad FK. Oxidative Stress-Induced Adverse Effects of Three Statins Following Single or Repetitive Treatments in Mice. Cureus 2024; 16:e51433. [PMID: 38298275 PMCID: PMC10828976 DOI: 10.7759/cureus.51433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/01/2024] [Indexed: 02/02/2024] Open
Abstract
Background and objective The hypolipidemic statins have been associated with various side effects, and in some cases, adverse reactions in humans and experimental animals, such as myotoxicity, neurobehavioral toxicity, as well as liver and kidney injuries. The purpose of the present study was to examine the possibility of the induction of oxidative stress in the brain and plasma of mice dosed with single or repetitive doses of three statins (atorvastatin, simvastatin, and rosuvastatin). Methods Male Swiss-origin mice were dosed orally with single doses of each of the three statins at 500 or 1000 mg/kg of body weight. Other groups of mice were dosed orally with repeated daily doses of each of the statins at 200 mg/kg of body weight/day for 14 or 28 consecutive days. These doses of statins were chosen to not produce overt toxicity in mice within the time frame allocated for each experiment. Brain and plasma glutathione (GSH) and malondialdehyde (MDA) levels, as well as liver enzymes activities alanine transaminase (ALT) and aspartate transaminase (AST), were determined using commercial kits. Results Single-dose treatments of the mice with the statins at either 500 or 1000 mg/kg significantly and dose-dependently (p < 0.05) reduced the GSH level in the plasma and the whole brain when compared with respective control values. Atorvastatin was the least effective statin, as only the high dose achieved a significant reduction in brain GSH level in comparison with the respective control value. Repetitive administration of the three statins at 200 mg/kg of body weight/day for 14 or 28 consecutive days significantly and time-dependently reduced plasma and brain GSH levels in comparison with respective control values. The oxidative stress biomarker MDA level significantly increased in the plasma and brain of mice following single or repetitive treatments with the three statins, and the most effective one was rosuvastatin. In association with these changes, activities of the liver enzymes ALT and AST were also increased in the plasma with single and repetitive statin treatments, and the most effective one was rosuvastatin. Conclusion The data suggest an association of high doses of three statins (atorvastatin, simvastatin, and rosuvastatin) with the induction of oxidative stress manifested as GSH reduction and MDA elevation as adverse effects in the brain and plasma of mice, which suffered from the additional burden of liver injury. These effects could be the basis of an in-depth exploration of statin adverse effects in experimental animals and to find an animal model, probably the mice, for the induction of adverse effects of statins that target the brain, as well as to shed light on potential statin intolerance outcomes following single-dose treatments in this species.
Collapse
Affiliation(s)
- Rawnaq F Al-Shalchi
- Department of Physiology, Biochemistry and Pharmacology, College of Veterinary Medicine, University of Mosul, Mosul, IRQ
| | - Fouad K Mohammad
- Department of Physiology, Biochemistry and Pharmacology, College of Veterinary Medicine, University of Mosul, Mosul, IRQ
- College of Nursing, The American University of Kurdistan, Duhok, IRQ
| |
Collapse
|
25
|
Hannon KM, Sabala JD, Mantha M, Lorenz LM, Roetting Ii JP, Perini M, Pianezze S, Kubachka KM. Using stable carbon isotope ratio analysis to detect adulteration in red yeast rice dietary supplements. Talanta 2024; 266:125076. [PMID: 37625290 DOI: 10.1016/j.talanta.2023.125076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/09/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023]
Abstract
Red yeast rice (RYR) is marketed as a dietary supplement because it contains natural 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors (statins), including monacolin K. However, there is concern that some RYR supplements may be adulterated with the pharmaceutical drug lovastatin to enhance health claims. We have developed an optimized method to isolate monacolin K/lovastatin from complex RYR dietary supplement matrices to then test for adulteration in RYR supplements using stable carbon isotope (δ13C) analysis. Samples were initially screened for monacolin K/lovastatin using liquid chromatography with mass spectrometric detection (LC-MS). To ensure the extraction process did not affect the measured isotopic values (i.e., isotopic fractionation effects), neat lovastatin standards were spiked into two types of blank RYR matrices (powder and gel). The monacolin K/lovastatin peaks were detected using high performance liquid chromatography with ultraviolet detection (HPLC-UV) and isolated using fraction collection. Residual matrix components were removed from targeted fractions by solid phase extraction (SPE) using graphitized carbon black cartridges. The resulting isolates were then analyzed using elemental analyzer-isotope ratio mass spectrometry (EA-IRMS) to measure δ13C values. The δ13C values of the extracted lovastatin standards were compared to their respective neat lovastatin δ13C values and demonstrated negligible isotopic fractionation effects. Using this optimized clean up method and carbon isotope analysis, thirty-one samples were screened. Eight RYR dietary supplement samples had >0.8 mg/g of monacolin K/lovastatin, our minimum threshold for analyzing samples using this method. Four of these eight samples had δ13C values greater than -28.3‰, a previously proposed cutoff value for natural monacolin K, indicating likely adulteration. Additionally, five RYR powder samples were analyzed as part of a collaborative study using in-house methods from two laboratories and the data shows acceptable agreement in the δ13C values of monacolin K/lovastatin (differences ranging from ±0.02‰ to ±0.76‰). This optimized method represents a robust, reproducible procedure for detecting lovastatin adulteration in dietary supplements with minimal isotopic fractionation.
Collapse
Affiliation(s)
- Kristen M Hannon
- US FDA/ORA/ORS/OMPSLO, Forensic Chemistry Center, 6751 Steger Drive, Cincinnati, OH, 45237, USA
| | - Joshua D Sabala
- US FDA/ORA/ORS/OMPSLO, Forensic Chemistry Center, 6751 Steger Drive, Cincinnati, OH, 45237, USA
| | - Madhavi Mantha
- US FDA/ORA/ORS/OMPSLO, Forensic Chemistry Center, 6751 Steger Drive, Cincinnati, OH, 45237, USA
| | - Lisa M Lorenz
- US FDA/ORA/ORS/OMPSLO, Forensic Chemistry Center, 6751 Steger Drive, Cincinnati, OH, 45237, USA
| | - John P Roetting Ii
- US FDA/ORA/ORS/OMPSLO, Forensic Chemistry Center, 6751 Steger Drive, Cincinnati, OH, 45237, USA
| | - Matteo Perini
- Fondazione Edmund Mach, Via E. Mach 1, 38098, San Michele All'Adige, TN, Italy
| | - Silvia Pianezze
- Fondazione Edmund Mach, Via E. Mach 1, 38098, San Michele All'Adige, TN, Italy
| | - Kevin M Kubachka
- US FDA/ORA/ORS/OMPSLO, Forensic Chemistry Center, 6751 Steger Drive, Cincinnati, OH, 45237, USA.
| |
Collapse
|
26
|
Zahedipour F, Hosseini SA, Reiner Ž, Tedeschi-Reiner E, Jamialahmadi T, Sahebkar A. Therapeutic Effects of Statins: Promising Drug for Topical and Transdermal Administration. Curr Med Chem 2024; 31:3149-3166. [PMID: 37157198 DOI: 10.2174/0929867330666230508141434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 03/19/2023] [Accepted: 03/28/2023] [Indexed: 05/10/2023]
Abstract
Statins are HMG-CoA reductase inhibitors and decrease plasma low-density lipoprotein cholesterol (LDL-C) levels. They are well tolerated, and because of their LDL-C-lowering effect, they are utilized to decrease the risk of atherosclerosis and cardiovascular disease. However, statins have pleiotropic effects, including immunomodulatory, anti-inflammatory, antioxidant, and anticancer. Currently, oral administration is the only Food and Drug Administration (FDA)-approved route of administration for statins. However, other administration routes have demonstrated promising results in different pre-clinical and clinical studies. For instance, statins also seem beneficial in dermatitis, psoriasis, vitiligo, hirsutism, uremic pruritus, and graft-versus-host disease. Topically applied statins have been studied to treat seborrhea, acne, rhinophyma, and rosacea. They also have beneficial effects in contact dermatitis and wound healing in animal studies, (HIV) infection, osseointegration, porokeratosis, and some ophthalmologic diseases. Topical and transdermal application of statins is a non-invasive drug administration method that has shown significant results in bypassing the first-pass metabolism in the liver, thereby reducing possible adverse effects. This study reviews the multifaceted molecular and cellular impacts of statins, their topical and transdermal application, novel delivery systems, such as nanosystems for topical and transdermal administration and the challenges concerning this approach.
Collapse
Affiliation(s)
- Fatemeh Zahedipour
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyede Atefe Hosseini
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Željko Reiner
- University Hospital Center Zagreb, Department of Internal Medicine, Zagreb, Croatia
- Polish Mother's Memorial Hospital Research Institute, Lodz, Poland
| | | | - Tannaz Jamialahmadi
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
27
|
Wu Z, Zhang T, Ma X, Guo S, Zhou Q, Zahoor A, Deng G. Recent advances in anti-inflammatory active components and action mechanisms of natural medicines. Inflammopharmacology 2023; 31:2901-2937. [PMID: 37947913 DOI: 10.1007/s10787-023-01369-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 09/16/2023] [Indexed: 11/12/2023]
Abstract
Inflammation is a series of reactions caused by the body's resistance to external biological stimuli. Inflammation affects the occurrence and development of many diseases. Anti-inflammatory drugs have been used widely to treat inflammatory diseases, but long-term use can cause toxic side-effects and affect human functions. As immunomodulators with long-term conditioning effects and no drug residues, natural products are being investigated increasingly for the treatment of inflammatory diseases. In this review, we focus on the inflammatory process and cellular mechanisms in the development of diseases such as inflammatory bowel disease, atherosclerosis, and coronavirus disease-2019. Also, we focus on three signaling pathways (Nuclear factor-kappa B, p38 mitogen-activated protein kinase, Janus kinase/signal transducer and activator of transcription-3) to explain the anti-inflammatory effect of natural products. In addition, we also classified common natural products based on secondary metabolites and explained the association between current bidirectional prediction progress of natural product targets and inflammatory diseases.
Collapse
Affiliation(s)
- Zhimin Wu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Tao Zhang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Xiaofei Ma
- College of Veterinary Medicine, Gansu Agriculture University, Lanzhou, China
| | - Shuai Guo
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Qingqing Zhou
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Arshad Zahoor
- College of Veterinary Sciences, The University of Agriculture Peshawar, Peshawar, Pakistan
| | - Ganzhen Deng
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.
| |
Collapse
|
28
|
Hong X, Guo T, Xu X, Lin J. Multiplex metabolic pathway engineering of Monascus pilosus enhances lovastatin production. Appl Microbiol Biotechnol 2023; 107:6541-6552. [PMID: 37672068 DOI: 10.1007/s00253-023-12747-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/30/2023] [Accepted: 08/11/2023] [Indexed: 09/07/2023]
Abstract
Monascus sp. is an important food microbial resource with the production of cholesterol-lowering agent lovastatin and other healthy metabolites. However, the mycotoxin citrinin naturally produced by Monascus sp. and the insufficient productivity of lovastatin limit its large-scale use in food industry. The aim of this paper is to modify a lovastatin-producing strain Monascus pilosus GN-01 through metabolic engineering to obtain a citrinin-free M. pilosus strain with higher yield of lovastatin. The citrinin synthesis regulator gene ctnR was firstly disrupted to obtain GN-02 without citrinin production. Based on that, the lovastatin biosynthesis genes (mokC, mokD, mokE, mokF, mokH, mokI, and LaeA) were, respectively, overexpressed, and pigment-regulatory gene (pigR) was knocked out to improve lovastatin production. The results indicated ctnR inactivation effectively disrupted the citrinin release by M. pilosus GN-01. The overexpression of lovastatin biosynthesis genes and pigR knockout could lead higher contents of lovastatin, of which pigR knockout strain achieved 76.60% increase in the yield of lovastatin compared to GN-02. These studies suggest that such multiplex metabolic pathway engineering in M. pilosus GN-01 is promising for high lovastatin production by a safe strain for application in Monascus-related food. KEY POINTS: • Disruption of the regulator gene ctnR inhibited citrinin production of M. pilosus. • Synchronous overexpression of biosynthesis gene enhanced lovastatin production. • pigR knockout enhanced lovastatin of ΔctnR strain of M. pilosus.
Collapse
Affiliation(s)
- Xiaokun Hong
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350116, Fujian, China
| | - Tianlong Guo
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350116, Fujian, China
| | - Xinqi Xu
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350116, Fujian, China.
| | - Juan Lin
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350116, Fujian, China.
| |
Collapse
|
29
|
Gentreau M, Rukh G, Miguet M, Clemensson LE, Alsehli AM, Titova OE, Schiöth HB. The Effects of Statins on Cognitive Performance Are Mediated by Low-Density Lipoprotein, C-Reactive Protein, and Blood Glucose Concentrations. J Gerontol A Biol Sci Med Sci 2023; 78:1964-1972. [PMID: 37431946 PMCID: PMC10613010 DOI: 10.1093/gerona/glad163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Indexed: 07/12/2023] Open
Abstract
Statins are widely used for cardiovascular disease prevention but their effects on cognition remain unclear. Statins reduce cholesterol concentration and have been suggested to provide both beneficial and detrimental effects. Our aim was to investigate the cross-sectional and longitudinal association between statin use and cognitive performance, and whether blood low-density lipoprotein, high-density lipoprotein, triglycerides, glucose, C-reactive protein, and vitamin D biomarkers mediated this association. We used participants from the UK biobank aged 40-69 without neurological and psychiatric disorders (n = 147 502 and n = 24 355, respectively). We performed linear regression to evaluate the association between statin use and cognitive performance and, mediation analysis to quantify the total, direct, indirect effects and the proportion meditated by blood biomarkers. Statin use was associated with lower cognitive performance at baseline (β = -0.40 [-0.53, -0.28], p = <.0001), and this association was mediated by low-density lipoprotein (proportion mediated = 51.4%, p = .002), C-reactive protein (proportion mediated = -11%, p = .006) and blood glucose (proportion mediated = 2.6%, p = .018) concentrations. However, statin use was not associated with cognitive performance, measured 8 years later (β = -0.003 [-0.11, 0.10], p = .96). Our findings suggest that statins are associated with lower short-term cognitive performance by lowering low-density lipoprotein and raising blood glucose concentrations, and better performance by lowering C-reactive protein concentrations. In contrast, statins have no effect on long-term cognition and remain beneficial in reducing cardiovascular risk factors.
Collapse
Affiliation(s)
- Mélissa Gentreau
- Functional Pharmacology and Neuroscience, Department of Surgical Sciences, University of Uppsala, Uppsala, Sweden
| | - Gull Rukh
- Functional Pharmacology and Neuroscience, Department of Surgical Sciences, University of Uppsala, Uppsala, Sweden
| | - Maud Miguet
- Functional Pharmacology and Neuroscience, Department of Surgical Sciences, University of Uppsala, Uppsala, Sweden
| | - Laura E Clemensson
- Functional Pharmacology and Neuroscience, Department of Surgical Sciences, University of Uppsala, Uppsala, Sweden
| | - Ahmed M Alsehli
- Department of Physiology, Faculty of Medicine, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| | - Olga E Titova
- Medical Epidemiology, Department of Surgical Sciences, University of Uppsala, Uppsala, Sweden
| | - Helgi B Schiöth
- Functional Pharmacology and Neuroscience, Department of Surgical Sciences, University of Uppsala, Uppsala, Sweden
| |
Collapse
|
30
|
Zhou X, Luo J, Lin S, Wang Y, Yan Z, Ren Q, Liu X, Li X. Efficacy of Poria cocos and Alismatis rhizoma against diet-induced hyperlipidemia in rats based on transcriptome sequencing analysis. Sci Rep 2023; 13:17493. [PMID: 37840052 PMCID: PMC10577139 DOI: 10.1038/s41598-023-43954-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 09/30/2023] [Indexed: 10/17/2023] Open
Abstract
Hyperlipidemia, a common metabolic disease, is a risk factor for cardiovascular diseases, Poria cocos (PC) and Alismatis rhizoma (AR) serve as a potential treatment. A systematic approach based on transcriptome sequencing analysis and bioinformatics methods was developed to explore the synergistic effects of PC-AR and identify major compounds and potential targets. The phenotypic characteristics results indicated that the high dose (4.54 g/kg) of PC-AR reduced total cholesterol (TC), elevated high-density lipoprotein cholesterol (HDL-C) levels, and improved hepatocyte morphology, as assessed via hematoxylin and eosin (H&E) staining. Transcriptomic profiling processing results combined with GO enrichment analysis to identify the overlapping genes were associated with inflammatory responses. The cytokine-cytokine receptor interaction pathway was found as a potential key pathway using geneset enrichment analysis. Core enrichment targets were selected according to the PC-AR's fold change versus the model. Real-time quantitative PCR analysis validated that PC-AR significantly downregulated the expression of Cxcl10, Ccl2, Ccl4, Cd40 and Il-1β mRNA (P < 0.05). Molecular docking analysis revealed the significant compounds of PC-AR and the potential binding patterns of the critical compounds and targets. This study provides further evidence that the therapeutic effects of PC-AR on hyperlipidemia in rats through the regulation of inflammation-related targets.
Collapse
Affiliation(s)
- Xiaowen Zhou
- The Second School of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Jingbiao Luo
- Laboratory of TCM Syndrome Essence and Objectification, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, No. 232, East Waihuan Road, Guangzhou Higher Education Mega Centre, Panyu District, Guangzhou City, 510006, China
| | - Shuxian Lin
- Laboratory of TCM Syndrome Essence and Objectification, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, No. 232, East Waihuan Road, Guangzhou Higher Education Mega Centre, Panyu District, Guangzhou City, 510006, China
| | - Yaxin Wang
- Laboratory of TCM Syndrome Essence and Objectification, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, No. 232, East Waihuan Road, Guangzhou Higher Education Mega Centre, Panyu District, Guangzhou City, 510006, China
| | - Zhenqian Yan
- Laboratory of TCM Syndrome Essence and Objectification, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, No. 232, East Waihuan Road, Guangzhou Higher Education Mega Centre, Panyu District, Guangzhou City, 510006, China
| | - Qi Ren
- Department of Rheumatology and Immunology, Southwest Hospital, Army Medical University, Chongqing, 400038, China
| | | | - Xiantao Li
- Laboratory of TCM Syndrome Essence and Objectification, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, No. 232, East Waihuan Road, Guangzhou Higher Education Mega Centre, Panyu District, Guangzhou City, 510006, China.
| |
Collapse
|
31
|
Ali W, Ali N, Ullah A, Rahman SU, Ahmad S. Pitavastatin and Lovastatin Exhibit Calcium Channel Blocking Activity Which Potentiate Vasorelaxant Effects of Amlodipine: A New Futuristic Dimension in Statin's Pleiotropy. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1805. [PMID: 37893523 PMCID: PMC10608486 DOI: 10.3390/medicina59101805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/24/2023] [Accepted: 10/08/2023] [Indexed: 10/29/2023]
Abstract
Background and Objectives: We have recently reported that Fluvastatin, Atorvastatin, Simvastatin and Rosuvastatin have calcium channel antagonistic activities using rabbits' intestinal preparations. The current study is focused on the effects of Pitavastatin and Lovastatin for possible inhibition of vascular L-Type calcium channels, which may have vasorelaxant effect(s). Combined effects of Pitavastatin and Lovastatin in the presence of Amlodipine were also tested for vasorelaxation. Materials and Methods: Possible relaxing effects of Pitavastatin and Lovastatin on 80 mM Potassium chloride (KCL)-induced contractions and on 1 µM norepinephrine (N.E)-induced contractions were studied in isolated rabbit's aortic strips preparations. Relaxing effects on 80 mM KCL-induced vascular contractions were further verified by constructing Calcium Concentration Response Curves (CCRCs), in the absence and presence of three different concentrations of Pitavastatin and Lovastatin using CCRCs as negative control. Verapamil was used as a standard drug that has L-Type calcium channel binding activity. In other series of experiments, we studied drug interaction(s) among Pitavastatin, Lovastatin, and amlodipine. Results: The results of this study imply that Lovastatin is more potent than Pitavastatin for having comparatively lower EC50 (7.44 × 10-5 ± 0.16 M) in intact and (4.55 × 10-5 ± 0.10 M) in denuded aortae for KCL-induced contractions. Lovastatin amplitudes in intact and denuded aortae for KCL-induced contractions were, respectively, 24% and 35.5%; whereas amplitudes for Pitavastatin in intact and denuded aortae for KCL-induced contractions were 34% and 40%, respectively. A left shift in the EC50 values for the statins was seen when we added amlodipine in EC50 (Log Ca++ M). Right shift for CCRCs state that Pitavastatin and Lovastatin have calcium channel antagonistic effects. Lovastatin in test concentration (6.74 × 10-7 M) produced a right shift in relatively lower EC50 (-2.5 ± 0.10) Log Ca++ M as compared to Pitavastatin, which further confirms that lovastatin is relatively more potent. The right shift in EC50 resembles the right shift of Verapamil. Additive effect of Pitavastatin and Lovastatin was noted in presence of amlodipine (p < 0.05). Conclusions: KCL (80 mM)-induced vascular contractions were relaxed by Pitavastatin and Lovastatin via inhibitory effects on L-Type voltage-gated calcium channels. Lovastatin and Pitavastatin also relaxed Norepinephrine (1 µM)-induced contractions giving an insight for involvement of dual mode of action of Pitavastatin and Lovastatin.
Collapse
Affiliation(s)
- Wajid Ali
- Department of Pharmacology, Institute of Pharmaceutical Sciences, Khyber Medical University, Hayatabad, Peshawar 25100, Khyber Pakhtunkhwa, Pakistan;
| | - Niaz Ali
- Department of Pharmacology, Institute of Pharmaceutical Sciences, Khyber Medical University, Hayatabad, Peshawar 25100, Khyber Pakhtunkhwa, Pakistan;
- Department of Pharmacology, College of Medicine, Shaqra University, Shaqra 11961, Saudi Arabia
| | - Abid Ullah
- Department of Pharmacy, Shaheed Benazir Bhutto University, Sheringal, Dir 18200, Khyber Pakhtunkhwa, Pakistan; (A.U.); (S.U.R.); (S.A.)
| | - Shafiq Ur Rahman
- Department of Pharmacy, Shaheed Benazir Bhutto University, Sheringal, Dir 18200, Khyber Pakhtunkhwa, Pakistan; (A.U.); (S.U.R.); (S.A.)
| | - Shujaat Ahmad
- Department of Pharmacy, Shaheed Benazir Bhutto University, Sheringal, Dir 18200, Khyber Pakhtunkhwa, Pakistan; (A.U.); (S.U.R.); (S.A.)
| |
Collapse
|
32
|
Abla KK, Mehanna MM. Lipid-based nanocarriers challenging the ocular biological barriers: Current paradigm and future perspectives. J Control Release 2023; 362:70-96. [PMID: 37591463 DOI: 10.1016/j.jconrel.2023.08.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 08/09/2023] [Accepted: 08/10/2023] [Indexed: 08/19/2023]
Abstract
Eye is the most specialized and sensory body organ and treating eye diseases efficiently is necessary. Despite various attempts, the design of a consummate ophthalmic drug delivery system remains unsolved because of anatomical and physiological barriers that hinder drug transport into the desired ocular tissues. It is important to advance new platforms to manage ocular disorders, whether they exist in the anterior or posterior cavities. Nanotechnology has piqued the interest of formulation scientists because of its capability to augment ocular bioavailability, control drug release, and minimize inefficacious drug absorption, with special attention to lipid-based nanocarriers (LBNs) because of their cellular safety profiles. LBNs have greatly improved medication availability at the targeted ocular site in the required concentration while causing minimal adverse effects on the eye tissues. Nevertheless, the exact mechanisms by which lipid-based nanocarriers can bypass different ocular barriers are still unclear and have not been discussed. Thus, to bridge this gap, the current work aims to highlight the applications of LBNs in the ocular drug delivery exploring the different ocular barriers and the mechanisms viz. adhesion, fusion, endocytosis, and lipid exchange, through which these platforms can overcome the barrier characteristics challenges.
Collapse
Affiliation(s)
- Kawthar K Abla
- Pharmaceutical Nanotechnology Research lab, Faculty of Pharmacy, Beirut Arab University, Beirut, Lebanon
| | - Mohammed M Mehanna
- Department of Industrial Pharmacy, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt; Department of Pharmaceutical Sciences, School of Pharmacy, Lebanese American University, Byblos, Lebanon.
| |
Collapse
|
33
|
Zhang B, Xu Y, Liu J, Wu C, Zhao X, Zhou L, Xie Y. Oral Intake of Inosine 5'-Monophosphate in Mice Promotes the Absorption of Exogenous Fatty Acids and Their Conversion into Triglycerides though Enhancing the Phosphorylation of Adenosine 5'-Monophosphate-Activated Protein Kinase in the Liver, Leading to Lipohyperplasia. Int J Mol Sci 2023; 24:14588. [PMID: 37834038 PMCID: PMC10572334 DOI: 10.3390/ijms241914588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/09/2023] [Accepted: 09/10/2023] [Indexed: 10/15/2023] Open
Abstract
Inosine 5'-monophoaphate (IMP) is a food additive that promotes serious lipohyperplasia in the liver of C57/KsJ-db/db (db/db) mice. Thus, IMP taken orally by healthy mice might also damage their health. To date, how IMP affects health after being taken by healthy animals is still unclear. Therefore, we investigated the health of C57BL/6J mice affected by IMP intake. Our data revealed that C57BL/6J mice administered 255 μM IMP daily via oral gavage for 4 months caused hyperlipidemia and an increase in body fat rate. The expressions of acetyl-CoA carboxylase 1 (ACC1) and phosphorylated acetyl-CoA carboxylase 2 (ACC2) in hepatocytes increased though the administration of IMP, promoting the phosphorylation of adenosine 5'-monophosphate-activated protein kinase (AMPK). The conversion of acetyl-CoA into triglycerides (TGs) was promoted by ACC1. These TGs were transported from the hepatocytes to avoid the development of non-alcoholic fatty liver disease (NAFLD), causing a deficiency of acetyl-CoA in the liver, and then, the increased phosphorylated ACC2 promoted the cytoplasm fatty acids entering the mitochondria and conversion into acetyl-CoA through the fatty acid β-oxidation pathway, causing a deficiency in fatty acids. Therefore, the liver showed enhanced absorption of exogenous fatty acids, which were converted into TGs, causing lipohyperplasia. In conclusion, an excessive IMP intake promotes metabolic dysfunction in adipose tissue.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yong Xie
- Institute of Medicinal Plant Development, Chinese Academy of Medical Science & Peking Union Medical College, Malianwa North Road No. 151, Haidian District, Beijing 100193, China; (B.Z.); (Y.X.); (J.L.); (C.W.); (X.Z.); (L.Z.)
| |
Collapse
|
34
|
Wang J, Deng Z, Liang J, Wang Z. Structural enzymology of iterative type I polyketide synthases: various routes to catalytic programming. Nat Prod Rep 2023; 40:1498-1520. [PMID: 37581222 DOI: 10.1039/d3np00015j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2023]
Abstract
Time span of literature covered: up to mid-2023Iterative type I polyketide synthases (iPKSs) are outstanding natural chemists: megaenzymes that repeatedly utilize their catalytic domains to synthesize complex natural products with diverse bioactivities. Perhaps the most fascinating but least understood question about type I iPKSs is how they perform the iterative yet programmed reactions in which the usage of domain combinations varies during the synthetic cycle. The programmed patterns are fulfilled by multiple factors, and strongly influence the complexity of the resulting natural products. This article reviews selected reports on the structural enzymology of iPKSs, focusing on the individual domain structures followed by highlighting the representative programming activities that each domain may contribute.
Collapse
Affiliation(s)
- Jialiang Wang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Science & Biotechnology, Shanghai Jiao Tong University, Shanghai, China.
| | - Zixin Deng
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Science & Biotechnology, Shanghai Jiao Tong University, Shanghai, China.
| | - Jingdan Liang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Science & Biotechnology, Shanghai Jiao Tong University, Shanghai, China.
| | - Zhijun Wang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Science & Biotechnology, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
35
|
McCullough TM, Dhar A, Akey DL, Konwerski JR, Sherman DH, Smith JL. Structure of a modular polyketide synthase reducing region. Structure 2023; 31:1109-1120.e3. [PMID: 37348494 PMCID: PMC10527585 DOI: 10.1016/j.str.2023.05.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/04/2023] [Accepted: 05/26/2023] [Indexed: 06/24/2023]
Abstract
The chemical scaffolds of numerous therapeutics are polyketide natural products, many formed by bacterial modular polyketide synthases (PKS). The large and flexible dimeric PKS modules have distinct extension and reducing regions. Structures are known for all individual enzyme domains and several extension regions. Here, we report the structure of the full reducing region from a modular PKS, the ketoreductase (KR), dehydratase (DH), and enoylreductase (ER) domains of module 5 of the juvenimicin PKS. The modular PKS-reducing region has a different architecture than the homologous fatty acid synthase (FAS) and iterative PKS systems in its arrangement of domains and dimer interface. The structure reveals a critical role for linker peptides in the domain interfaces, leading to discovery of key differences in KR domains dependent on module composition. Finally, our studies provide insight into the mechanism underlying modular PKS intermediate shuttling by carrier protein (ACP) domains.
Collapse
Affiliation(s)
- Tyler M McCullough
- Life Sciences Institute, University of Michigan, Ann Arbor MI 48109, USA; Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Anya Dhar
- Life Sciences Institute, University of Michigan, Ann Arbor MI 48109, USA
| | - David L Akey
- Life Sciences Institute, University of Michigan, Ann Arbor MI 48109, USA; Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jamie R Konwerski
- Life Sciences Institute, University of Michigan, Ann Arbor MI 48109, USA
| | - David H Sherman
- Life Sciences Institute, University of Michigan, Ann Arbor MI 48109, USA; Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI 48109, USA; Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Janet L Smith
- Life Sciences Institute, University of Michigan, Ann Arbor MI 48109, USA; Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
36
|
Al-Salihi SAA, Alberti F. Genomic Based Analysis of the Biocontrol Species Trichoderma harzianum: A Model Resource of Structurally Diverse Pharmaceuticals and Biopesticides. J Fungi (Basel) 2023; 9:895. [PMID: 37755004 PMCID: PMC10532697 DOI: 10.3390/jof9090895] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/03/2023] [Accepted: 08/06/2023] [Indexed: 09/28/2023] Open
Abstract
Fungi represents a rich repository of taxonomically restricted, yet chemically diverse, secondary metabolites that are synthesised via specific metabolic pathways. An enzyme's specificity and biosynthetic gene clustering are the bottleneck of secondary metabolite evolution. Trichoderma harzianum M10 v1.0 produces many pharmaceutically important molecules; however, their specific biosynthetic pathways remain uncharacterised. Our genomic-based analysis of this species reveals the biosynthetic diversity of its specialised secondary metabolites, where over 50 BGCs were predicted, most of which were listed as polyketide-like compounds associated clusters. Gene annotation of the biosynthetic candidate genes predicted the production of many medically/industrially important compounds including enterobactin, gramicidin, lovastatin, HC-toxin, tyrocidine, equisetin, erythronolide, strobilurin, asperfuranone, cirtinine, protoilludene, germacrene, and epi-isozizaene. Revealing the biogenetic background of these natural molecules is a step forward towards the expansion of their chemical diversification via engineering their biosynthetic genes heterologously, and the identification of their role in the interaction between this fungus and its biotic/abiotic conditions as well as its role as bio-fungicide.
Collapse
Affiliation(s)
| | - Fabrizio Alberti
- School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK
| |
Collapse
|
37
|
Ali S, Zhou J. Highlights on U.S. FDA-approved fluorinated drugs over the past five years (2018-2022). Eur J Med Chem 2023; 256:115476. [PMID: 37207534 PMCID: PMC10247436 DOI: 10.1016/j.ejmech.2023.115476] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/02/2023] [Accepted: 05/08/2023] [Indexed: 05/21/2023]
Abstract
The objective of this review is to provide an update on the fluorine-containing drugs approved by U.S. Food and Drug Administration in the span of past five years (2018-2022). The agency accepted a total of fifty-eight fluorinated entities to diagnose, mitigate and treat a plethora of diseases. Among them, thirty drugs are for therapy of various types of cancers, twelve for infectious diseases, eleven for CNS disorders, and six for some other diseases. These are categorized and briefly discussed based on their therapeutic areas. In addition, this review gives a glimpse about their trade name, date of approval, active ingredients, company developers, indications, and drug mechanisms. We anticipate that this review may inspire the drug discovery and medicinal chemistry community in both industrial and academic settings to explore the fluorinated molecules leading to the discovery of new drugs in the near future.
Collapse
Affiliation(s)
- Saghir Ali
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch (UTMB), Galveston, TX, 77555, United States
| | - Jia Zhou
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch (UTMB), Galveston, TX, 77555, United States.
| |
Collapse
|
38
|
Lassen FH, Venkatesh SS, Baya N, Zhou W, Bloemendal A, Neale BM, Kessler BM, Whiffin N, Lindgren CM, Palmer DS. Exome-wide evidence of compound heterozygous effects across common phenotypes in the UK Biobank. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.06.29.23291992. [PMID: 37461573 PMCID: PMC10350147 DOI: 10.1101/2023.06.29.23291992] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
Exome-sequencing association studies have successfully linked rare protein-coding variation to risk of thousands of diseases. However, the relationship between rare deleterious compound heterozygous (CH) variation and their phenotypic impact has not been fully investigated. Here, we leverage advances in statistical phasing to accurately phase rare variants (MAF ~ 0.001%) in exome sequencing data from 175,587 UK Biobank (UKBB) participants, which we then systematically annotate to identify putatively deleterious CH coding variation. We show that 6.5% of individuals carry such damaging variants in the CH state, with 90% of variants occurring at MAF < 0.34%. Using a logistic mixed model framework, systematically accounting for relatedness, polygenic risk, nearby common variants, and rare variant burden, we investigate recessive effects in common complex diseases. We find six exome-wide significant (P < 1.68 × 10 - 7 ) and 17 nominally significant (P < 5.25 × 10 - 5 ) gene-trait associations. Among these, only four would have been identified without accounting for CH variation in the gene. We further incorporate age-at-diagnosis information from primary care electronic health records, to show that genetic phase influences lifetime risk of disease across 20 gene-trait combinations (FDR < 5%). Using a permutation approach, we find evidence for genetic phase contributing to disease susceptibility for a collection of gene-trait pairs, including FLG-asthma (P = 0.00205 ) and USH2A-visual impairment (P = 0.0084 ). Taken together, we demonstrate the utility of phasing large-scale genetic sequencing cohorts for robust identification of the phenome-wide consequences of compound heterozygosity.
Collapse
Affiliation(s)
- Frederik H. Lassen
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, United Kingdom
| | - Samvida S. Venkatesh
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, United Kingdom
| | - Nikolas Baya
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, United Kingdom
| | - Wei Zhou
- Program in Medical and Population Genetics Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Stanley Center for Psychiatric Research Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Analytical and Translational Genetics Unit, Department of Medicine Massachusetts General Hospital, Boston, MA, USA
| | - Alex Bloemendal
- Program in Medical and Population Genetics Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Novo Nordisk Center for Genomic Mechanisms of Disease Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Data Sciences Platform Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Benjamin M. Neale
- Program in Medical and Population Genetics Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Stanley Center for Psychiatric Research Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Analytical and Translational Genetics Unit, Department of Medicine Massachusetts General Hospital, Boston, MA, USA
| | - Benedikt M. Kessler
- Target Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Nicola Whiffin
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, United Kingdom
- Program in Medical and Population Genetics Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Cecilia M. Lindgren
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, United Kingdom
- Nuffield Department of Population Health Health, Medical Sciences Division University of Oxford, Oxford, United Kingdom
| | - Duncan S. Palmer
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
39
|
Zhao WT, Zhang JX, Chen BH, Shu W. Ligand-enabled Ni-catalysed enantioconvergent intermolecular Alkyl-Alkyl cross-coupling between distinct Alkyl halides. Nat Commun 2023; 14:2938. [PMID: 37217551 DOI: 10.1038/s41467-023-38702-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 05/10/2023] [Indexed: 05/24/2023] Open
Abstract
α-Tertiary aliphatic amides are key elements in organic molecules, which are abundantly present in natural products, pharmaceuticals, agrochemicals, and functional organic materials. Enantioconvergent alkyl-alkyl bond-forming process is one of the most straightforward and efficient, yet highly challenging ways to build such stereogenic carbon centers. Herein, we report an enantioselective alkyl-alkyl cross-coupling between two different alkyl electrophiles to access α-tertiary aliphatic amides. With a newly-developed chiral tridentate ligand, two distinct alkyl halides were successfully cross-coupled together to forge an alkyl-alkyl bond enantioselectively under reductive conditions. Mechanistic investigations reveal that one alkyl halides exclusively undergo oxidative addition with nickel versus in-situ formation of alkyl zinc reagents from the other alkyl halides, rendering formal reductive alkyl-alkyl cross-coupling from easily available alkyl electrophiles without preformation of organometallic reagents.
Collapse
Affiliation(s)
- Wen-Tao Zhao
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, P. R. China
| | - Jian-Xin Zhang
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, P. R. China
| | - Bi-Hong Chen
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, P. R. China
| | - Wei Shu
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, P. R. China.
- State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, P. R. China.
| |
Collapse
|
40
|
Chen S, Lv J, Luo Y, Chen H, Ma S, Zhang L. Bioinformatic Analysis of Key Regulatory Genes in Adult Asthma and Prediction of Potential Drug Candidates. Molecules 2023; 28:molecules28104100. [PMID: 37241840 DOI: 10.3390/molecules28104100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/11/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
Asthma is a common chronic disease that is characterized by respiratory symptoms including cough, wheeze, shortness of breath, and chest tightness. The underlying mechanisms of this disease are not fully elucidated, so more research is needed to identify better therapeutic compounds and biomarkers to improve disease outcomes. In this present study, we used bioinformatics to analyze the gene expression of adult asthma in publicly available microarray datasets to identify putative therapeutic molecules for this disease. We first compared gene expression in healthy volunteers and adult asthma patients to obtain differentially expressed genes (DEGs) for further analysis. A final gene expression signature of 49 genes, including 34 upregulated and 15 downregulated genes, was obtained. Protein-protein interaction and hub analyses showed that 10 genes, including POSTN, CPA3, CCL26, SERPINB2, CLCA1, TPSAB1, TPSB2, MUC5B, BPIFA1, and CST1, may be hub genes. Then, the L1000CDS2 search engine was used for drug repurposing studies. The top approved drug candidate predicted to reverse the asthma gene signature was lovastatin. Clustergram results showed that lovastatin may perturb MUC5B expression. Moreover, molecular docking, molecular dynamics simulation, and computational alanine scanning results supported the notion that lovastatin may interact with MUC5B via key residues such as Thr80, Thr91, Leu93, and Gln105. In summary, by analyzing gene expression signatures, hub genes, and therapeutic perturbation, we show that lovastatin is an approved drug candidate that may have potential for treating adult asthma.
Collapse
Affiliation(s)
- Shaojun Chen
- Department of Traditional Chinese Medicine, Zhejiang Pharmaceutical University, Ningbo 315000, China
| | - Jiahao Lv
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yiyuan Luo
- Department of Traditional Chinese Medicine, Zhejiang Pharmaceutical University, Ningbo 315000, China
| | - Hongjiang Chen
- Department of Traditional Chinese Medicine, Zhejiang Pharmaceutical University, Ningbo 315000, China
| | - Shuwei Ma
- Department of Traditional Chinese Medicine, Zhejiang Pharmaceutical University, Ningbo 315000, China
| | - Lihua Zhang
- Department of Food Science, Zhejiang Pharmaceutical University, Ningbo 315000, China
| |
Collapse
|
41
|
Byhamre ML, Eliasson M, Söderberg S, Wennberg P, Oskarsson V. Association between snus use and lipid status in Swedish men. Scand J Clin Lab Invest 2023:1-10. [PMID: 37167481 DOI: 10.1080/00365513.2023.2209915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Snus is a common tobacco product in Sweden, but the cardiovascular risk profile for snus users is less known than for cigarette smokers. We examined the association of snus use with lipid status, particularly in comparison to non-tobacco use and cigarette smoking, using data from 5930 men in the Northern Sweden MONICA study. Tobacco use was self-reported in 1986 to 2014 (24.4% used snus) and blood samples were collected at the same time. Harmonized analyses on non-high-density lipoprotein (non-HDL) cholesterol, HDL cholesterol, and triglycerides were conducted in 2016 to 2018. Three hundred eighty-one snus users had also been examined more than once, allowing us to study the effect of discontinued use (achieved by 21.0%). In multivariable linear regression models, snus use was associated with higher HDL cholesterol and triglyceride concentrations compared to non-tobacco use (p values ≤ 0.04), and it was associated with higher HDL cholesterol concentrations and lower triglyceride concentrations compared to cigarette smoking (p values ≤ 0.02). Snus use was not associated with non-HDL cholesterol concentrations, irrespective of the comparison group (p values ≥ 0.07). There was no indication that higher intensity of snus use led to a worse lipid profile, given that high-consumers had higher HDL cholesterol concentrations than low-consumers (p value = 0.02), or that discontinuation of snus use led to a better lipid profile, given that continued users had lower triglyceride concentrations than discontinued users (p value = 0.03). Further studies are needed to confirm or refute our findings.
Collapse
Affiliation(s)
- Marja Lisa Byhamre
- Department of Public Health and Clinical Medicine, Family Medicine, Umeå University, Umeå, Sweden
| | - Mats Eliasson
- Department of Public Health and Clinical Medicine, Section of Medicine, Umeå University, Umeå, Sweden
| | - Stefan Söderberg
- Department of Public Health and Clinical Medicine, Section of Medicine, Umeå University, Umeå, Sweden
| | - Patrik Wennberg
- Department of Public Health and Clinical Medicine, Family Medicine, Umeå University, Umeå, Sweden
| | - Viktor Oskarsson
- Department of Public Health and Clinical Medicine, Section of Medicine, Umeå University, Umeå, Sweden
| |
Collapse
|
42
|
Lee SM, Ahn YM, Park SH, Shin S, Jung J. Reshaping the gut microbiome and bile acid composition by Gyejibongnyeong-hwan ameliorates western diet-induced dyslipidemia. Biomed Pharmacother 2023; 163:114826. [PMID: 37148862 DOI: 10.1016/j.biopha.2023.114826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/22/2023] [Accepted: 04/30/2023] [Indexed: 05/08/2023] Open
Abstract
Gyejibongnyeong-hwan (GBH), a traditional Chinese medicine, is used in clinical practice to treat blood stasis in metabolic diseases. Herein, we examined the effects of GBH on dyslipidemia and investigated the underlying mechanisms by focusing on modulation of the gut microbiota-bile acid axis by GBH. We utilized a Western diet-induced dyslipidemia mouse model and divided animals into the following four groups (n = 5 each): the normal chow diet, vehicle control (WD), simvastatin (Sim, 10 mg/kg/day simvastatin; positive control), and GBH (GBH, 300 mg/kg/day) groups. The drugs were administered for 10 weeks, and morphological changes in the liver and aorta were analyzed. The mRNA expression of genes related to cholesterol metabolism, gut microbiota, and bile acid profiles were also evaluated. The GBH group showed significantly lower levels of total cholesterol, accumulation of lipids, and inflammatory markers in the liver and aorta of Western diet-fed mice. Low-density lipoprotein cholesterol levels were significantly lower in the GBH group than in the WD group (P < 0.001). The expression of cholesterol excretion-associated genes such as liver X receptor alpha and ATP-binding cassette subfamily G member 8, as well as the bile acid synthesis gene cholesterol 7 alpha-hydroxylase, which lowers cholesterol in circulation, was increased. Furthermore, GBH inhibited the intestinal farnesoid X receptor (FXR)-fibroblast growth factor 15 signaling pathway through the interactions of gut microbiota with bile acids acting as FXR ligands, which included chenodeoxycholic acid and lithocholic acid. Overall, GBH improved dyslipidemia induced by a Western diet by modulating the gut microbiota-bile acid axis.
Collapse
Affiliation(s)
- So Min Lee
- KM Science Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea
| | - You Mee Ahn
- KM Convergence Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea
| | - Seong-Hwan Park
- KM Convergence Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea
| | - Sarah Shin
- KM Convergence Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea
| | - Jeeyoun Jung
- KM Convergence Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea.
| |
Collapse
|
43
|
Krishnamurthy S, Maru P, Wang Y, Bitew MA, Mukhopadhyay D, Yamaryo-Botté Y, Paredes-Santos TC, Sangaré LO, Swale C, Botté CY, Saeij JPJ. CRISPR Screens Identify Toxoplasma Genes That Determine Parasite Fitness in Interferon Gamma-Stimulated Human Cells. mBio 2023; 14:e0006023. [PMID: 36916910 PMCID: PMC10128063 DOI: 10.1128/mbio.00060-23] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 01/11/2023] [Indexed: 03/16/2023] Open
Abstract
Toxoplasma virulence depends on its ability to evade or survive the toxoplasmacidal mechanisms induced by interferon gamma (IFNγ). While many Toxoplasma genes involved in the evasion of the murine IFNγ response have been identified, genes required to survive the human IFNγ response are largely unknown. In this study, we used a genome-wide loss-of-function screen to identify Toxoplasma genes important for parasite fitness in IFNγ-stimulated primary human fibroblasts. We generated gene knockouts for the top six hits from the screen and confirmed their importance for parasite growth in IFNγ-stimulated human fibroblasts. Of these six genes, three have homology to GRA32, localize to dense granules, and coimmunoprecipitate with each other and GRA32, suggesting they might form a complex. Deletion of individual members of this complex leads to early parasite egress in IFNγ-stimulated cells. Thus, prevention of early egress is an important Toxoplasma fitness determinant in IFNγ-stimulated human cells. IMPORTANCE Toxoplasma infection causes serious complications in immunocompromised individuals and in the developing fetus. During infection, certain immune cells release a protein called interferon gamma that activates cells to destroy the parasite or inhibit its growth. While most Toxoplasma parasites are cleared by this immune response, some can survive by blocking or evading the IFNγ-induced restrictive environment. Many Toxoplasma genes that determine parasite survival in IFNγ-activated murine cells are known but parasite genes conferring fitness in IFNγ-activated human cells are largely unknown. Using a Toxoplasma adapted genome-wide loss-of-function screen, we identified many Toxoplasma genes that determine parasite fitness in IFNγ-activated human cells. The gene products of four top hits play a role in preventing early parasite egress in IFNγ-stimulated human cells. Understanding how IFNγ-stimulated human cells inhibit Toxoplasma growth and how Toxoplasma counteracts this, could lead to the development of novel therapeutics.
Collapse
Affiliation(s)
- Shruthi Krishnamurthy
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California Davis, Davis, California, USA
| | - Parag Maru
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California Davis, Davis, California, USA
| | - Yifan Wang
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California Davis, Davis, California, USA
| | - Mebratu A. Bitew
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California Davis, Davis, California, USA
| | - Debanjan Mukhopadhyay
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California Davis, Davis, California, USA
| | - Yoshiki Yamaryo-Botté
- Apicolipid Team, Institute for Advanced Biosciences, CNRS UMR5309, INSERM U1209, Université Grenoble Alpes, Batiment Jean Roget, Grenoble, France
| | - Tatiana C. Paredes-Santos
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California Davis, Davis, California, USA
| | - Lamba O. Sangaré
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California Davis, Davis, California, USA
| | - Christopher Swale
- Team Host-Pathogen Interactions and Immunity to Infection, Institute for Advanced Biosciences (IAB), INSERM U1209, CNRS UMR5309, University Grenoble Alpes, Grenoble, France
| | - Cyrille Y. Botté
- Apicolipid Team, Institute for Advanced Biosciences, CNRS UMR5309, INSERM U1209, Université Grenoble Alpes, Batiment Jean Roget, Grenoble, France
| | - Jeroen P. J. Saeij
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California Davis, Davis, California, USA
| |
Collapse
|
44
|
Sobhia ME, Kumar H, Kumari S. Bifunctional robots inducing targeted protein degradation. Eur J Med Chem 2023; 255:115384. [PMID: 37119667 DOI: 10.1016/j.ejmech.2023.115384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/13/2023] [Accepted: 04/14/2023] [Indexed: 05/01/2023]
Abstract
The gaining importance of Targeted Protein Degradation (TPD) and PROTACs (PROteolysis-TArgeting Chimeras) have drawn the scientific community's attention. PROTACs are considered bifunctional robots owing to their avidity for the protein of interest (POI) and E3-ligase, which induce the ubiquitination of POI. These molecules are based on event-driven pharmacology and are applicable in different conditions such as oncology, antiviral, neurodegenerative disease, acne etc., offering tremendous scope to researchers. In this review, primarily, we attempted to compile the recent works available in the literature on PROTACs for various targeted proteins. We summarized the design and development strategies with a focus on molecular information of protein residues and linker design. Rationalization of the ternary complex formation using Artificial Intelligence including machine & deep learning models and traditionally followed computational tools are also included in this study. Moreover, details describing the optimization of PROTACs chemistry and pharmacokinetic properties are added. Advanced PROTAC designs and targeting complex proteins, is summed up to cover the wide spectrum.
Collapse
Affiliation(s)
- M Elizabeth Sobhia
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research (NIPER), Sector - 67, S. A. S. Nagar, Mohali, Punjab, 160062, India.
| | - Harish Kumar
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research (NIPER), Sector - 67, S. A. S. Nagar, Mohali, Punjab, 160062, India
| | - Sonia Kumari
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research (NIPER), Sector - 67, S. A. S. Nagar, Mohali, Punjab, 160062, India
| |
Collapse
|
45
|
Ali AU, Abd-Elkareem M, Kamel AA, Abou Khalil NS, Hamad D, Nasr NEH, Hassan MA, El Faham TH. Impact of porous microsponges in minimizing myotoxic side effects of simvastatin. Sci Rep 2023; 13:5790. [PMID: 37031209 PMCID: PMC10082807 DOI: 10.1038/s41598-023-32545-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 03/29/2023] [Indexed: 04/10/2023] Open
Abstract
Simvastatin (SV) is a poorly soluble drug; its oral administration is associated with a significant problem: Myopathy. The present study aims to formulate SV microsponges that have the potential to minimize the myotoxicity accompanying the oral administration of the drug. SV microsponges were prepared by exploiting the emulsion solvent evaporation technique. The % entrapment efficiency (%EE) of the drug approached 82.54 ± 1.27%, the mean particle size of SV microsponges ranged from 53.80 ± 6.35 to 86.03 ± 4.79 µm in diameter, and the % cumulative drug release (%CDR) of SV from microsponges was significantly higher than that from free drug dispersion much more, the specific surface area of the optimized microsponges formulation was found to be 16.6 m2/g revealed the porosity of prepared microsponges. Histological and glycogen histochemical studies in the skeletal muscles of male albino rats revealed that microsponges were safer than free SV in minimizing myotoxicity. These findings were proven by Gene expression of Mitochondrial fusion and fission (Mfn1) & (Fis1) and (Peroxisome proliferator-activated receptor gamma co-activator 1α) PGC-1α. Finally, our study ascertained that SV microsponges significantly decreased the myotoxicity of SV.
Collapse
Affiliation(s)
- Ahmed U Ali
- Department of Pharmaceutics, Faculty of Pharmacy, Merit University, Sohag, Egypt.
| | - Mahmoud Abd-Elkareem
- Department of Cell and Tissues, Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt
| | - Amira A Kamel
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Nasser S Abou Khalil
- Department of Medical Physiology, Faculty of Medicine, Assiut University, Assiut, Egypt.
| | - D Hamad
- Department of Physics, Faculty of Science, Assiut University, Assiut, Egypt
| | | | - Maha A Hassan
- Department of Pharmaceutics, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| | - Tahani H El Faham
- Department of Pharmaceutics, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| |
Collapse
|
46
|
Gao J, Hu J, Yu F, Wang C, Sheng D, Liu W, Hu A, Yu K, Xiao X, Kuang Y, Zacksenhaus E, Gajendran B, Ben-David Y. Lovastatin inhibits erythroleukemia progression through KLF2-mediated suppression of MAPK/ERK signaling. BMC Cancer 2023; 23:306. [PMID: 37016335 PMCID: PMC10071686 DOI: 10.1186/s12885-023-10742-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 03/15/2023] [Indexed: 04/06/2023] Open
Abstract
BACKGROUND Lovastatin, an HMG-CoA inhibitor and an effective cholesterol lowering drug, exhibits anti-neoplastic activity towards several types of cancer, although the underlying mechanism is still not fully understood. Herein, we investigated mechanism of growth inhibition of leukemic cells by lovastatin. METHODS RNAseq analysis was used to explore the effect of lovastatin on gene expression in leukemic cells. An animal model of leukemia was used to test the effect of this statin in vivo. FAM83A and DDIT4 expression was knocked-downed in leukemia cells via lentivirus-shRNA. Western blotting, RT-qPCR, cell cycle analysis and apoptosis assays were used to determine the effect of lovastatin-induced growth suppression in leukemic cells in vitro. RESULTS Lovastatin treatment strongly inhibited cancer progression in a mouse model of erythroleukemia induced by Friend virus. In tissue culture, lovastatin inhibited cell proliferation through induction of G1 phase cell cycle arrest and apoptosis. Interestingly, lovastatin induced most known genes associated with cholesterol biosynthesis in leukemic cells. Moreover, it suppressed ERK1/2 phosphorylation by downregulating FAM83A and DDIT4, two mediators of MAP-Kinase signaling. RNAseq analysis of lovastatin treated leukemic cells revealed a strong induction of the tumor suppressor gene KLF2. Accordingly, lentivirus-mediated knockdown of KLF2 antagonized leukemia cell suppression induced by lovastatin, associated with higher ERK1/2 phosphorylation compared to control. We further show that KLF2 induction by lovastatin is responsible for lower expression of the FAM83A and DDIT4 oncogenes, involved in the activation of ERK1/2. KLF2 activation by lovastatin also activated a subset of cholesterol biosynthesis genes that may further contribute to leukemia suppression. CONCLUSIONS These results implicate KLF2-mediated FAM83A/DDIT4/MAPK suppression and activation of cholesterol biosynthesis as the mechanism of leukemia cell growth inhibition by lovastatin.
Collapse
Affiliation(s)
- Jian Gao
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, Guizhou, 550014, People's Republic of China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese, Academic of Sciences, Guiyang, Guizhou, People's Republic of China
| | - Jifen Hu
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, Guizhou, 550014, People's Republic of China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese, Academic of Sciences, Guiyang, Guizhou, People's Republic of China
| | - Fang Yu
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, Guizhou, 550014, People's Republic of China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese, Academic of Sciences, Guiyang, Guizhou, People's Republic of China
| | - Chunlin Wang
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, Guizhou, 550014, People's Republic of China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese, Academic of Sciences, Guiyang, Guizhou, People's Republic of China
| | - Danmei Sheng
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, Guizhou, 550014, People's Republic of China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese, Academic of Sciences, Guiyang, Guizhou, People's Republic of China
| | - Wuling Liu
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, Guizhou, 550014, People's Republic of China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese, Academic of Sciences, Guiyang, Guizhou, People's Republic of China
| | - Anling Hu
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, Guizhou, 550014, People's Republic of China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese, Academic of Sciences, Guiyang, Guizhou, People's Republic of China
| | - Kunling Yu
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, Guizhou, 550014, People's Republic of China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese, Academic of Sciences, Guiyang, Guizhou, People's Republic of China
| | - Xiao Xiao
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, Guizhou, 550014, People's Republic of China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese, Academic of Sciences, Guiyang, Guizhou, People's Republic of China
| | - Yi Kuang
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, Guizhou, 550014, People's Republic of China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese, Academic of Sciences, Guiyang, Guizhou, People's Republic of China
| | - Eldad Zacksenhaus
- Department of Medicine, University of Toronto, Toronto, ON, Canada
- Division of Advanced Diagnostics, Toronto General Research Institute, University Health Network, Toronto, ON, Canada
| | - Babu Gajendran
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, Guizhou, 550014, People's Republic of China.
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese, Academic of Sciences, Guiyang, Guizhou, People's Republic of China.
- School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, Guizhou Province, 550025, People's Republic of China.
| | - Yaacov Ben-David
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, Guizhou, 550014, People's Republic of China.
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese, Academic of Sciences, Guiyang, Guizhou, People's Republic of China.
| |
Collapse
|
47
|
Belmir H, Bouchafra H, Abbouriche A, Saffaj T, Ait Lhaj R, El karbane M, Ihssane B. Use of an Uncertainty Profile to Validate High-Performance Liquid Chromatography (HPLC) for the Simultaneous Determination of Statins in Synthetic Pharmaceutical Products. ANAL LETT 2023. [DOI: 10.1080/00032719.2023.2177664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Affiliation(s)
- Hamza Belmir
- Laboratory of Analytical and Molecular Chemistry, Faculty of Sciences Ben M'Sik, University Hassan II- Casablanca, Casablanca, Morocco
| | - Houda Bouchafra
- Laboratory of Drug Sciences, Biomedical and Biotechnological Research, Faculty of Medicine and Pharmacy, University Hassan II- Casablanca, Casablanca, Morocco
| | - Abdelmajid Abbouriche
- Laboratory of Analytical and Molecular Chemistry, Faculty of Sciences Ben M'Sik, University Hassan II- Casablanca, Casablanca, Morocco
| | - Taoufiq Saffaj
- Laboratory of Applied Organic Chemistry, Faculty of Sciences and Techniques, University Sidi Mohamed Ben Abdellah-Fes, Fes, Morocco
| | - Rajae Ait Lhaj
- Laboratory of Applied Organic Chemistry, Faculty of Sciences and Techniques, University Sidi Mohamed Ben Abdellah-Fes, Fes, Morocco
| | - Miloud El karbane
- Laboratory of Analytical Chemistry and Bromatology, Faculty of Medicine and Pharmacy, University Mohammed V- Rabat, Rabat, Morocco
| | - Bouchaib Ihssane
- Laboratory of Applied Organic Chemistry, Faculty of Sciences and Techniques, University Sidi Mohamed Ben Abdellah-Fes, Fes, Morocco
| |
Collapse
|
48
|
Santos JC, Profitós-Pelejà N, Sánchez-Vinces S, Roué G. RHOA Therapeutic Targeting in Hematological Cancers. Cells 2023; 12:cells12030433. [PMID: 36766776 PMCID: PMC9914237 DOI: 10.3390/cells12030433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/19/2023] [Accepted: 01/26/2023] [Indexed: 02/03/2023] Open
Abstract
Primarily identified as an important regulator of cytoskeletal dynamics, the small GTPase Ras homolog gene family member A (RHOA) has been implicated in the transduction of signals regulating a broad range of cellular functions such as cell survival, migration, adhesion and proliferation. Deregulated activity of RHOA has been linked to the growth, progression and metastasis of various cancer types. Recent cancer genome-wide sequencing studies have unveiled both RHOA gain and loss-of-function mutations in primary leukemia/lymphoma, suggesting that this GTPase may exert tumor-promoting or tumor-suppressive functions depending on the cellular context. Based on these observations, RHOA signaling represents an attractive therapeutic target for the development of selective anticancer strategies. In this review, we will summarize the molecular mechanisms underlying RHOA GTPase functions in immune regulation and in the development of hematological neoplasms and will discuss the current strategies aimed at modulating RHOA functions in these diseases.
Collapse
Affiliation(s)
- Juliana Carvalho Santos
- Lymphoma Translational Group, Josep Carreras Leukaemia Research Institute (IJC), 08916 Badalona, Spain
| | - Núria Profitós-Pelejà
- Lymphoma Translational Group, Josep Carreras Leukaemia Research Institute (IJC), 08916 Badalona, Spain
| | - Salvador Sánchez-Vinces
- Laboratory of Immunopharmacology and Molecular Biology, Sao Francisco University Medical School, Braganca Paulista 01246-100, São Paulo, Brazil
| | - Gaël Roué
- Lymphoma Translational Group, Josep Carreras Leukaemia Research Institute (IJC), 08916 Badalona, Spain
- Correspondence: ; Tel.: +34-935572835
| |
Collapse
|
49
|
Singh G. Linking Lichen Metabolites to Genes: Emerging Concepts and Lessons from Molecular Biology and Metagenomics. J Fungi (Basel) 2023; 9:160. [PMID: 36836275 PMCID: PMC9964704 DOI: 10.3390/jof9020160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/19/2023] [Accepted: 01/21/2023] [Indexed: 01/26/2023] Open
Abstract
Lichen secondary metabolites have tremendous pharmaceutical and industrial potential. Although more than 1000 metabolites have been reported from lichens, less than 10 have been linked to the genes coding them. The current biosynthetic research focuses strongly on linking molecules to genes as this is fundamental to adapting the molecule for industrial application. Metagenomic-based gene discovery, which bypasses the challenges associated with culturing an organism, is a promising way forward to link secondary metabolites to genes in non-model, difficult-to-culture organisms. This approach is based on the amalgamation of the knowledge of the evolutionary relationships of the biosynthetic genes, the structure of the target molecule, and the biosynthetic machinery required for its synthesis. So far, metagenomic-based gene discovery is the predominant approach by which lichen metabolites have been linked to their genes. Although the structures of most of the lichen secondary metabolites are well-documented, a comprehensive review of the metabolites linked to their genes, strategies implemented to establish this link, and crucial takeaways from these studies is not available. In this review, I address the following knowledge gaps and, additionally, provide critical insights into the results of these studies, elaborating on the direct and serendipitous lessons that we have learned from them.
Collapse
Affiliation(s)
- Garima Singh
- Department of Biology, University of Padova, 35122 Padova, Italy
| |
Collapse
|
50
|
Guo XW, Yu ZQ, Xi J, Ren H, Xiang XY, Wu J, Fang J, Wu QX. Isolation and Identification of Novel Antioxidant Polyketides from an Endophytic Fungus Ophiobolus cirsii LZU-1509. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:1593-1606. [PMID: 36634077 DOI: 10.1021/acs.jafc.2c07386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Sixteen new polyketides, ophicirsins A-P (1-16), including four novel carbon skeletons (5-9, 14, 15, and 16), were isolated from the extract of an endophytic fungus Ophiobolus cirsii LZU-1509. The unique frameworks of ophicirsin N (14) and O (15) feature a different cyclic ether connected with an aromatic ring system. Ophicirsin P (16) is characterized by the unprecedented heterozygote of a polyketide and an alkaloid. The absolute stereochemistries of those polyketides were characterized via single-crystal X-ray diffraction analysis and the experimental and computational electric circular dichroism spectra comparison. Theoretical reaction pathways in the fermentation to generate different novel skeletons starting from acetyl CoA and malonyl CoA helped to assign their structures. Compounds 1-16 appear almost nontoxic in HepG2 and HT-1080 tumor cells. Their antioxidant effects were further evaluated, and 15 exhibits an excellent protection activity in hydrogen peroxide-stimulated oxidative damage in neuron-like PC12 cells via screening all compounds. Moreover, 15 displays a greater ability to scavenge the 2,2-diphenyl-1-picrylhydrazyl free radicals than resveratrol. Taken together, these findings suggest that the novel polyketides could serve as potential antioxidant agents for neuroprotection.
Collapse
Affiliation(s)
- Xiao-Wei Guo
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Zhen-Qing Yu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Junmin Xi
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Hao Ren
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Xin-Yu Xiang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Jia Wu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Jianguo Fang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People's Republic of China
- School of Chemistry and Chemical Engineering, Nanjing University of Science & Technology, Nanjing, Jiangsu 210094, China
| | - Quan-Xiang Wu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People's Republic of China
| |
Collapse
|