1
|
Zhang H, Thai PN, Shivnaraine RV, Ren L, Wu X, Siepe DH, Liu Y, Tu C, Shin HS, Caudal A, Mukherjee S, Leitz J, Wen WTL, Liu W, Zhu W, Chiamvimonvat N, Wu JC. Multiscale drug screening for cardiac fibrosis identifies MD2 as a therapeutic target. Cell 2024:S0092-8674(24)01092-4. [PMID: 39413786 DOI: 10.1016/j.cell.2024.09.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 08/13/2024] [Accepted: 09/19/2024] [Indexed: 10/18/2024]
Abstract
Cardiac fibrosis impairs cardiac function, but no effective clinical therapies exist. To address this unmet need, we employed a high-throughput screening for antifibrotic compounds using human induced pluripotent stem cell (iPSC)-derived cardiac fibroblasts (CFs). Counter-screening of the initial candidates using iPSC-derived cardiomyocytes and iPSC-derived endothelial cells excluded hits with cardiotoxicity. This screening process identified artesunate as the lead compound. Following profibrotic stimuli, artesunate inhibited proliferation, migration, and contraction in human primary CFs, reduced collagen deposition, and improved contractile function in 3D-engineered heart tissues. Artesunate also attenuated cardiac fibrosis and improved cardiac function in heart failure mouse models. Mechanistically, artesunate targeted myeloid differentiation factor 2 (MD2) and inhibited MD2/Toll-like receptor 4 (TLR4) signaling pathway, alleviating fibrotic gene expression in CFs. Our study leverages multiscale drug screening that integrates a human iPSC platform, tissue engineering, animal models, in silico simulations, and multiomics to identify MD2 as a therapeutic target for cardiac fibrosis.
Collapse
Affiliation(s)
- Hao Zhang
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | - Phung N Thai
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of California, Davis, Davis, CA 95616, USA; David Geffen School of Medicine at University of California, Los Angeles, CA 90095, USA
| | | | - Lu Ren
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Xuekun Wu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Dirk H Siepe
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yu Liu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Chengyi Tu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Hye Sook Shin
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Arianne Caudal
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | - Jeremy Leitz
- Greenstone Biosciences, Palo Alto, CA 94305, USA
| | - Wilson Tan Lek Wen
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Wenqiang Liu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Wenjuan Zhu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Nipavan Chiamvimonvat
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of California, Davis, Davis, CA 95616, USA; Department of Basic Medical Sciences and Translational Cardiovascular Research Center, University of Arizona College of Medicine, Phoenix, AZ 85004, USA
| | - Joseph C Wu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
2
|
Li D, Zhang Z, Wang L. Emerging role of tumor microenvironmental nutrients and metabolic molecules in ferroptosis: Mechanisms and clinical implications. Biomed Pharmacother 2024; 179:117406. [PMID: 39255738 DOI: 10.1016/j.biopha.2024.117406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 08/22/2024] [Accepted: 09/02/2024] [Indexed: 09/12/2024] Open
Abstract
In recent years, ferroptosis has gradually attracted increasing attention because of its important role in tumors. Ferroptosis resistance is an important cause of tumor metastasis, recurrence and drug resistance. Exploring the initiating factors and specific mechanisms of ferroptosis has become a key strategy to block tumor progression and improve drug sensitivity. As the external space in direct contact with tumor cells, the tumor microenvironment has a great impact on the biological function of tumor cells. The relationships between abnormal environmental characteristics (hypoxia, lactic acid accumulation, etc.) in the microenvironment and ferroptosis of tumor cells has not been fully characterized. This review focuses on the characteristics of the tumor microenvironment and summarizes the mechanisms of ferroptosis under different environmental factors, aiming to provide new insights for subsequent targeted therapy. Moreover, considering the presence of anticancer drugs in the microenvironment, we further summarize the mechanisms of ferroptosis to provide new strategies for the sensitization of tumor cells to drugs.
Collapse
Affiliation(s)
- Dongyu Li
- Department of VIP In-Patient Ward, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Zhe Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Lei Wang
- Department of Vascular and Thyroid Surgery, the First Hospital of China Medical University, Shenyang, Liaoning 110001, China.
| |
Collapse
|
3
|
Zhang T, Qiao C, Yang Y, Yuan Y, Zhao Z, Miao Y, Zhao Q, Zhang R, Zheng H. Ceftazidime is a potential drug to inhibit cell proliferation by increasing cellular p27. J Antibiot (Tokyo) 2024; 77:697-705. [PMID: 38898184 DOI: 10.1038/s41429-024-00751-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/23/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024]
Abstract
The development of new therapeutic uses for existing drugs is important for the treatment of some diseases. Cephalosporin antibiotics stand as the most extensively utilized antibiotics in clinical practice, effectively combating bacterial infections. Here, we found that the antimicrobial drug ceftazidime strongly upregulates p27 protein levels by inhibiting p27 ubiquitination. The p27 protein is a classic negative regulator of the cell cycle. Next, we demonstrated that ceftazidime can impede the cell cycle from G1 to S phase, thus inhibiting cell proliferation. Furthermore, we found that ceftazidime promotes p27 expression and inhibits cell proliferation by reducing Skp2, which is a substrate recognition component of the Skp2-Cullin-F-box (SCF) ubiquitin ligase. Moreover, ceftazidime downregulates transcriptional expression of Skp2. Importantly, we demonstrated that ceftazidime inhibited the proliferation of tumor cells in vivo. These findings reveal ceftazidime-mediated inhibition of cell proliferation through the Skp2-p27 axis, and could provide a potential strategy for anti-tumor therapy.
Collapse
Affiliation(s)
- Tingting Zhang
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu Province, 215123, China
- Department of Laboratory Medicine, Institute of Laboratory Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, 611731, China
| | - Caixia Qiao
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu Province, 215123, China
| | - Yunshan Yang
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu Province, 215123, China
- The First Clinical Medical School, Soochow University, Suzhou, China
| | - Yukang Yuan
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu Province, 215123, China
- Department of Laboratory Medicine, Institute of Laboratory Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, 611731, China
- International Institute of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Zhenglan Zhao
- Department of Gastroenterology and Hepatology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Ying Miao
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu Province, 215123, China
- Department of Laboratory Medicine, Institute of Laboratory Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, 611731, China
- International Institute of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Qian Zhao
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu Province, 215123, China
| | - Renxia Zhang
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu Province, 215123, China
| | - Hui Zheng
- Department of Laboratory Medicine, Institute of Laboratory Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, 611731, China.
- International Institute of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu, 215123, China.
| |
Collapse
|
4
|
Deng K, Li Q, Lu L, Wang L, Cheng Z, Wang S. Proteasome and PARP1 dual-target inhibitor for multiple myeloma: Fluzoparib. Biochem Biophys Rep 2024; 39:101781. [PMID: 39071914 PMCID: PMC11279668 DOI: 10.1016/j.bbrep.2024.101781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 06/05/2024] [Accepted: 07/05/2024] [Indexed: 07/30/2024] Open
Abstract
One of the current mainstream treatments for multiple myeloma (MM) is chemotherapy. However, due to the high clonal heterogeneity and genomic complexity of MM, single-target drugs have limited efficacy and are prone to drug resistance. Therefore, there is an urgent need to develop multi-target drugs against MM. We screened drugs that simultaneously inhibit poly(ADP-ribose) polymerase 1 (PARP1) and 20S proteasome through computer-aided drug discovery (CADD) techniques, and explored the binding mode and dynamic stability of selected inhibitor to proteasome through Molecular biology (MD) simulation method. Thus, the dual-target inhibition effect of fluzoparib was proposed for the first time, and the ability of dual-target inhibition and tumor killing was explored at the enzyme, cell and animal level, respectively. This provides a theoretical and experimental basis for exploring multi-target inhibitory drugs for cancers.
Collapse
Affiliation(s)
- Kai Deng
- Department of Orthopedics, Shenzhen Longhua District Central Hospital, Shenzhen, Guangdong, China
| | - Qiongqiong Li
- Department of Hematology, Shenzhen Longhua District Central Hospital, Shenzhen, Guangdong, China
| | - Lina Lu
- Department of Hematology, Shenzhen Longhua District Central Hospital, Shenzhen, Guangdong, China
| | - Luting Wang
- Department of Hematology, Shenzhen Longhua District Central Hospital, Shenzhen, Guangdong, China
| | - Zhiyong Cheng
- Department of Hematology, Baoding No.1 Hospital, Baoding, Hebei, China
| | - Suyun Wang
- Department of Hematology, Shenzhen Longhua District Central Hospital, Shenzhen, Guangdong, China
| |
Collapse
|
5
|
Rios-Usuga C, Martinez-Gutierrez M, Ruiz-Saenz J. Antiviral Potential of Azathioprine and Its Derivative 6- Mercaptopurine: A Narrative Literature Review. Pharmaceuticals (Basel) 2024; 17:174. [PMID: 38399389 PMCID: PMC10892228 DOI: 10.3390/ph17020174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/20/2024] [Accepted: 01/24/2024] [Indexed: 02/25/2024] Open
Abstract
The use of azathioprine (AZA) in human medicine dates back to research conducted in 1975 that led to the development of several drugs, including 6-mercaptopurine. In 1958, it was shown that 6-mercaptopurine decreased the production of antibodies against earlier administered antigens, raising the hypothesis of an immunomodulatory effect. AZA is a prodrug that belongs to the thiopurine group of drugs that behave as purine analogs. After absorption, it is converted into 6-mercaptopurine. Subsequently, it can be degraded through various enzymatic pathways into inactive compounds and biologically active compounds related to the mechanism of action, which has been the subject of study to evaluate a possible antiviral effect. This study aims to examine the metabolism, mechanism of action, and antiviral potential of AZA and its derivatives, exploring AZA impact on antiviral targets and adverse effects through a narrative literature review. Ultimately, the review will provide insights into the antiviral mechanism, present evidence of its in vitro effectiveness against various DNA and RNA viruses, and suggest in vivo studies to further demonstrate its antiviral effects.
Collapse
Affiliation(s)
- Carolina Rios-Usuga
- Grupo de Investigación en Ciencias Animales—GRICA, Facultad de Medicina Veterinaria y Zootecnia, Universidad Cooperativa de Colombia, Bucaramanga 680002, Colombia; (C.R.-U.); (M.M.-G.)
| | - Marlen Martinez-Gutierrez
- Grupo de Investigación en Ciencias Animales—GRICA, Facultad de Medicina Veterinaria y Zootecnia, Universidad Cooperativa de Colombia, Bucaramanga 680002, Colombia; (C.R.-U.); (M.M.-G.)
- Grupo de Investigación en Microbiología Veterinaria, Escuela de Microbiología, Universidad de Antioquia UdeA, Medellín 050001, Colombia
| | - Julian Ruiz-Saenz
- Grupo de Investigación en Ciencias Animales—GRICA, Facultad de Medicina Veterinaria y Zootecnia, Universidad Cooperativa de Colombia, Bucaramanga 680002, Colombia; (C.R.-U.); (M.M.-G.)
| |
Collapse
|
6
|
Latif K, Ullah A, Shkodina AD, Boiko DI, Rafique Z, Alghamdi BS, Alfaleh MA, Ashraf GM. Drug reprofiling history and potential therapies against Parkinson's disease. Front Pharmacol 2022; 13:1028356. [PMID: 36386233 PMCID: PMC9643740 DOI: 10.3389/fphar.2022.1028356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 10/03/2022] [Indexed: 12/02/2022] Open
Abstract
Given the high whittling down rates, high costs, and moderate pace of new medication, revelation, and improvement, repurposing "old" drugs to treat typical and uncommon illnesses is progressively becoming an appealing proposition. Drug repurposing is the way toward utilizing existing medications in treating diseases other than the purposes they were initially designed for. Faced with scientific and economic challenges, the prospect of discovering new medication indications is enticing to the pharmaceutical sector. Medication repurposing can be used at various stages of drug development, although it has shown to be most promising when the drug has previously been tested for safety. We describe strategies of drug repurposing for Parkinson's disease, which is a neurodegenerative condition that primarily affects dopaminergic neurons in the substantia nigra. We also discuss the obstacles faced by the repurposing community and suggest new approaches to solve these challenges so that medicine repurposing can reach its full potential.
Collapse
Affiliation(s)
- Komal Latif
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| | - Aman Ullah
- Shifa College of Pharmaceutical Sciences, Shifa Tameer-e-Millet University, Islamabad, Pakistan
| | - Anastasiia D. Shkodina
- Department of Neurological Diseases, Poltava State Medical University, Poltava, Ukraine
- Municipal Enterprise “1 City Clinical Hospital of Poltava City Council”, Poltava, Ukraine
| | - Dmytro I. Boiko
- Department of Psychiatry, Narcology and Medical Psychology, Poltava State Medical University, Poltava, Ukraine
| | - Zakia Rafique
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| | - Badrah S. Alghamdi
- Neuroscience Unit, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
- King Fahd Center for Medical Research, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohamed A. Alfaleh
- Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
- Division of Vaccines and Immunotherapy, King Fahd Center for Medical Research, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ghulam Md. Ashraf
- Department of Medical Laboratory Sciences, College of Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| |
Collapse
|
7
|
Lago SG, Bahn S. The druggable schizophrenia genome: from repurposing opportunities to unexplored drug targets. NPJ Genom Med 2022; 7:25. [PMID: 35338153 PMCID: PMC8956592 DOI: 10.1038/s41525-022-00290-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 02/04/2022] [Indexed: 12/04/2022] Open
Abstract
There have been no new drugs for the treatment of schizophrenia in several decades and treatment resistance represents a major unmet clinical need. The drugs that exist are based on serendipitous clinical observations rather than an evidence-based understanding of disease pathophysiology. In the present review, we address these bottlenecks by integrating common, rare, and expression-related schizophrenia risk genes with knowledge of the druggability of the human genome as a whole. We highlight novel drug repurposing opportunities, clinical trial candidates which are supported by genetic evidence, and unexplored therapeutic opportunities in the lesser-known regions of the schizophrenia genome. By identifying translational gaps and opportunities across the schizophrenia disease space, we discuss a framework for translating increasingly well-powered genetic association studies into personalized treatments for schizophrenia and initiating the vital task of characterizing clinically relevant drug targets in underexplored regions of the human genome.
Collapse
Affiliation(s)
- Santiago G Lago
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK.
| | - Sabine Bahn
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK.
| |
Collapse
|
8
|
Wen Q, Liu R, Zhang P. Clinical connectivity map for drug repurposing: using laboratory results to bridge drugs and diseases. BMC Med Inform Decis Mak 2021; 21:263. [PMID: 34560862 PMCID: PMC8461864 DOI: 10.1186/s12911-021-01617-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 08/23/2021] [Indexed: 11/10/2022] Open
Abstract
Background Drug repurposing, the process of identifying additional therapeutic uses for existing drugs, has attracted increasing attention from both the pharmaceutical industry and the research community. Many existing computational drug repurposing methods rely on preclinical data (e.g., chemical structures, drug targets), resulting in translational problems for clinical trials. Results In this study, we propose a novel framework based on clinical connectivity mapping for drug repurposing to analyze therapeutic effects of drugs on diseases. We firstly establish clinical drug effect vectors (i.e., drug-laboratory results associations) by applying a continuous self-controlled case series model on a longitudinal electronic health record data, then establish clinical disease sign vectors (i.e., disease-laboratory results associations) by applying a Wilcoxon rank sum test on a large-scale national survey data. Eventually, a repurposing possibility score for each drug-disease pair is computed by applying a dot product-based scoring function on clinical disease sign vectors and clinical drug effect vectors. During the experiment, we comprehensively evaluate 392 drugs for 6 important chronic diseases (include asthma, coronary heart disease, congestive heart failure, heart attack, type 2 diabetes, and stroke). The experiment results not only reflect known associations between diseases and drugs, but also include some hidden drug-disease associations. The code for this paper is available at: https://github.com/HoytWen/CCMDR Conclusions The proposed clinical connectivity map framework uses laboratory results found from electronic clinical information to bridge drugs and diseases, which make their relations explainable and has better translational power than existing computational methods. Experimental results demonstrate the effectiveness of our proposed framework, further case analysis also proves our method can be used to repurposing existing drugs opportunities.
Collapse
Affiliation(s)
- Qianlong Wen
- Department of Electrical and Computer Engineering, The Ohio State University, 2015 Neil Ave, Columbus, Ohio, 43210, USA
| | - Ruoqi Liu
- Department of Computer Science and Engineering, The Ohio State University, 2015 Neil Ave, Columbus, Ohio, 43210, USA
| | - Ping Zhang
- Department of Computer Science and Engineering, The Ohio State University, 2015 Neil Ave, Columbus, Ohio, 43210, USA. .,Department of Biomedical Informatics, The Ohio State University, 1800 Cannon Drive, Columbus, Ohio, 43210, USA.
| |
Collapse
|
9
|
Mitoxantrone Shows In Vitro, but Not In Vivo Antiviral Activity against Human Respiratory Syncytial Virus. Biomedicines 2021; 9:biomedicines9091176. [PMID: 34572362 PMCID: PMC8472696 DOI: 10.3390/biomedicines9091176] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/02/2021] [Accepted: 09/05/2021] [Indexed: 01/10/2023] Open
Abstract
Human respiratory syncytial virus (HRSV) is the most common cause of severe respiratory infections in infants and young children, often leading to hospitalization. In addition, this virus poses a serious health risk in immunocompromised individuals and the elderly. HRSV is also a major nosocomial hazard in healthcare service units for patients of all ages. Therefore, the development of antiviral treatments against HRSV is a global health priority. In this study, mitoxantrone, a synthetic anthraquinone with previously reported in vitro antiprotozoal and antiviral activities, inhibits HRSV replication in vitro, but not in vivo in a mice model. These results have implications for preclinical studies of some drug candidates.
Collapse
|
10
|
Kerstjens M, Garrido Castro P, Pinhanços SS, Schneider P, Wander P, Pieters R, Stam RW. Irinotecan Induces Disease Remission in Xenograft Mouse Models of Pediatric MLL-Rearranged Acute Lymphoblastic Leukemia. Biomedicines 2021; 9:biomedicines9070711. [PMID: 34201500 PMCID: PMC8301450 DOI: 10.3390/biomedicines9070711] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/09/2021] [Accepted: 06/15/2021] [Indexed: 01/27/2023] Open
Abstract
Acute lymphoblastic leukemia (ALL) in infants (<1 year of age) remains one of the most aggressive types of childhood hematologic malignancy. The majority (~80%) of infant ALL cases are characterized by chromosomal translocations involving the MLL (or KMT2A) gene, which confer highly dismal prognoses on current combination chemotherapeutic regimens. Hence, more adequate therapeutic strategies are urgently needed. To expedite clinical transition of potentially effective therapeutics, we here applied a drug repurposing approach by performing in vitro drug screens of (mostly) clinically approved drugs on a variety of human ALL cell line models. Out of 3685 compounds tested, the alkaloid drug Camptothecin (CPT) and its derivatives 10-Hydroxycamtothecin (10-HCPT) and 7-Ethyl-10-hydroxycamtothecin (SN-38: the active metabolite of the drug Irinotecan) appeared most effective at very low nanomolar concentrations in all ALL cell lines, including models of MLL-rearranged ALL (n = 3). Although the observed in vitro anti-leukemic effects of Camptothecin and its derivatives certainly were not specific to MLL-rearranged ALL, we decided to further focus on this highly aggressive type of leukemia. Given that Irinotecan (the pro-drug of SN-38) has been increasingly used for the treatment of various pediatric solid tumors, we specifically chose this agent for further pre-clinical evaluation in pediatric MLL-rearranged ALL. Interestingly, shortly after engraftment, Irinotecan completely blocked leukemia expansion in mouse xenografts of a pediatric MLL-rearranged ALL cell line, as well as in two patient-derived xenograft (PDX) models of MLL-rearranged infant ALL. Also, from a more clinically relevant perspective, Irinotecan monotherapy was able to induce sustainable disease remissions in MLL-rearranged ALL xenotransplanted mice burdened with advanced leukemia. Taken together, our data demonstrate that Irinotecan exerts highly potent anti-leukemia effects against pediatric MLL-rearranged ALL, and likely against other, more favorable subtypes of childhood ALL as well.
Collapse
Affiliation(s)
- Mark Kerstjens
- Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands; (M.K.); (P.G.C.); (S.S.P.); (P.S.); (P.W.); (R.P.)
- Pediatric Oncology/Hematology, Erasmus MC-Sophia Children’s Hospital, 3015 GD Rotterdam, The Netherlands
| | - Patricia Garrido Castro
- Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands; (M.K.); (P.G.C.); (S.S.P.); (P.S.); (P.W.); (R.P.)
| | - Sandra S. Pinhanços
- Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands; (M.K.); (P.G.C.); (S.S.P.); (P.S.); (P.W.); (R.P.)
| | - Pauline Schneider
- Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands; (M.K.); (P.G.C.); (S.S.P.); (P.S.); (P.W.); (R.P.)
| | - Priscilla Wander
- Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands; (M.K.); (P.G.C.); (S.S.P.); (P.S.); (P.W.); (R.P.)
| | - Rob Pieters
- Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands; (M.K.); (P.G.C.); (S.S.P.); (P.S.); (P.W.); (R.P.)
| | - Ronald W. Stam
- Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands; (M.K.); (P.G.C.); (S.S.P.); (P.S.); (P.W.); (R.P.)
- Pediatric Oncology/Hematology, Erasmus MC-Sophia Children’s Hospital, 3015 GD Rotterdam, The Netherlands
- Correspondence: ; Tel.: +31-(0)88-9727672
| |
Collapse
|
11
|
Datta A, Matlock MK, Le Dang N, Moulin T, Woeltje KF, Yanik EL, Joshua Swamidass S. 'Black Box' to 'Conversational' Machine Learning: Ondansetron Reduces Risk of Hospital-Acquired Venous Thromboembolism. IEEE J Biomed Health Inform 2021; 25:2204-2214. [PMID: 33095721 DOI: 10.1109/jbhi.2020.3033405] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Machine learning, combined with a proliferation of electronic healthcare records (EHR), has the potential to transform medicine by identifying previously unknown interventions that reduce the risk of adverse outcomes. To realize this potential, machine learning must leave the conceptual 'black box' in complex domains to overcome several pitfalls, like the presence of confounding variables. These variables predict outcomes but are not causal, often yielding uninformative models. In this work, we envision a 'conversational' approach to design machine learning models, which couple modeling decisions to domain expertise. We demonstrate this approach via a retrospective cohort study to identify factors which affect the risk of hospital-acquired venous thromboembolism (HA-VTE). Using logistic regression for modeling, we have identified drugs that reduce the risk of HA-VTE. Our analysis reveals that ondansetron, an anti-nausea and anti-emetic medication, commonly used in treating side-effects of chemotherapy and post-general anesthesia period, substantially reduces the risk of HA-VTE when compared to aspirin (11% vs. 15% relative risk reduction or RRR, respectively). The low cost and low morbidity of ondansetron may justify further inquiry into its use as a preventative agent for HA-VTE. This case study highlights the importance of engaging domain expertise while applying machine learning in complex domains.
Collapse
|
12
|
Coban MA, Morrison J, Maharjan S, Hernandez Medina DH, Li W, Zhang YS, Freeman WD, Radisky ES, Le Roch KG, Weisend CM, Ebihara H, Caulfield TR. Attacking COVID-19 Progression Using Multi-Drug Therapy for Synergetic Target Engagement. Biomolecules 2021; 11:biom11060787. [PMID: 34071060 PMCID: PMC8224684 DOI: 10.3390/biom11060787] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/19/2021] [Accepted: 05/20/2021] [Indexed: 12/23/2022] Open
Abstract
COVID-19 is a devastating respiratory and inflammatory illness caused by a new coronavirus that is rapidly spreading throughout the human population. Over the past 12 months, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus responsible for COVID-19, has already infected over 160 million (>20% located in United States) and killed more than 3.3 million people around the world (>20% deaths in USA). As we face one of the most challenging times in our recent history, there is an urgent need to identify drug candidates that can attack SARS-CoV-2 on multiple fronts. We have therefore initiated a computational dynamics drug pipeline using molecular modeling, structure simulation, docking and machine learning models to predict the inhibitory activity of several million compounds against two essential SARS-CoV-2 viral proteins and their host protein interactors-S/Ace2, Tmprss2, Cathepsins L and K, and Mpro-to prevent binding, membrane fusion and replication of the virus, respectively. All together, we generated an ensemble of structural conformations that increase high-quality docking outcomes to screen over >6 million compounds including all FDA-approved drugs, drugs under clinical trial (>3000) and an additional >30 million selected chemotypes from fragment libraries. Our results yielded an initial set of 350 high-value compounds from both new and FDA-approved compounds that can now be tested experimentally in appropriate biological model systems. We anticipate that our results will initiate screening campaigns and accelerate the discovery of COVID-19 treatments.
Collapse
Affiliation(s)
- Mathew A. Coban
- Department of Cancer Biology, Mayo Clinic, 4500 San Pablo Road South, Jacksonville, FL 32224, USA; (M.A.C.); (E.S.R.)
| | - Juliet Morrison
- Department of Microbiology and Plant Pathology, University of California, 900 University, Riverside, CA 92521, USA;
| | - Sushila Maharjan
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, 65 Landsdowne St, Cambridge, MA 02139, USA; (S.M.); (D.H.H.M.); (W.L.); (Y.S.Z.)
| | - David Hyram Hernandez Medina
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, 65 Landsdowne St, Cambridge, MA 02139, USA; (S.M.); (D.H.H.M.); (W.L.); (Y.S.Z.)
| | - Wanlu Li
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, 65 Landsdowne St, Cambridge, MA 02139, USA; (S.M.); (D.H.H.M.); (W.L.); (Y.S.Z.)
| | - Yu Shrike Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, 65 Landsdowne St, Cambridge, MA 02139, USA; (S.M.); (D.H.H.M.); (W.L.); (Y.S.Z.)
| | - William D. Freeman
- Department of Neurology, Mayo Clinic, 4500 San Pablo South, Jacksonville, FL 32224, USA;
| | - Evette S. Radisky
- Department of Cancer Biology, Mayo Clinic, 4500 San Pablo Road South, Jacksonville, FL 32224, USA; (M.A.C.); (E.S.R.)
| | - Karine G. Le Roch
- Department of Molecular, Cell and Systems Biology, University of California, 900 University, Riverside, CA 92521, USA;
| | - Carla M. Weisend
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA; (C.M.W.); (H.E.)
| | - Hideki Ebihara
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA; (C.M.W.); (H.E.)
| | - Thomas R. Caulfield
- Department of Cancer Biology, Mayo Clinic, 4500 San Pablo Road South, Jacksonville, FL 32224, USA; (M.A.C.); (E.S.R.)
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
- Department of Quantitative Health Science, Division of Computational Biology, Mayo Clinic, Jacksonville, FL 32224, USA
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN 55905, USA
- Department of Biochemistry & Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
- Correspondence: ; Tel.: +1-904-953-6072
| |
Collapse
|
13
|
Sivák L, Šubr V, Kovářová J, Dvořáková B, Šírová M, Říhová B, Randárová E, Kraus M, Tomala J, Studenovský M, Vondráčková M, Sedláček R, Makovický P, Fučíková J, Vošáhlíková Š, Špíšek R, Kostka L, Etrych T, Kovář M. Polymer-ritonavir derivate nanomedicine with pH-sensitive activation possesses potent anti-tumor activity in vivo via inhibition of proteasome and STAT3 signaling. J Control Release 2021; 332:563-580. [PMID: 33722611 DOI: 10.1016/j.jconrel.2021.03.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 03/07/2021] [Accepted: 03/10/2021] [Indexed: 12/22/2022]
Abstract
Drug repurposing is a promising strategy for identifying new applications for approved drugs. Here, we describe a polymer biomaterial composed of the antiretroviral drug ritonavir derivative (5-methyl-4-oxohexanoic acid ritonavir ester; RD), covalently bound to HPMA copolymer carrier via a pH-sensitive hydrazone bond (P-RD). Apart from being more potent inhibitor of P-glycoprotein in comparison to ritonavir, we found RD to have considerable cytostatic activity in six mice (IC50 ~ 2.3-17.4 μM) and six human (IC50 ~ 4.3-8.7 μM) cancer cell lines, and that RD inhibits the migration and invasiveness of cancer cells in vitro. Importantly, RD inhibits STAT3 phosphorylation in CT26 cells in vitro and in vivo, and expression of the NF-κB p65 subunit, Bcl-2 and Mcl-1 in vitro. RD also dampens chymotrypsin-like and trypsin-like proteasome activity and induces ER stress as documented by induction of PERK phosphorylation and expression of ATF4 and CHOP. P-RD nanomedicine showed powerful antitumor activity in CT26 and B16F10 tumor-bearing mice, which, moreover, synergized with IL-2-based immunotherapy. P-RD proved very promising therapeutic activity also in human FaDu xenografts and negligible toxicity predetermining these nanomedicines as side-effect free nanosystem. The therapeutic potential could be highly increased using the fine-tuned combination with other drugs, i.e. doxorubicin, attached to the same polymer system. Finally, we summarize that described polymer nanomedicines fulfilled all the requirements as potential candidates for deep preclinical investigation.
Collapse
Affiliation(s)
- Ladislav Sivák
- Institute of Microbiology, Czech Academy of Sciences, v.v.i., Videnska 1083, 14220 Prague, Czech Republic
| | - Vladimír Šubr
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, v.v.i., Heyrovskeho nam. 2, 16206 Prague, Czech Republic
| | - Jiřina Kovářová
- Institute of Microbiology, Czech Academy of Sciences, v.v.i., Videnska 1083, 14220 Prague, Czech Republic
| | - Barbora Dvořáková
- Institute of Microbiology, Czech Academy of Sciences, v.v.i., Videnska 1083, 14220 Prague, Czech Republic
| | - Milada Šírová
- Institute of Microbiology, Czech Academy of Sciences, v.v.i., Videnska 1083, 14220 Prague, Czech Republic
| | - Blanka Říhová
- Institute of Microbiology, Czech Academy of Sciences, v.v.i., Videnska 1083, 14220 Prague, Czech Republic
| | - Eva Randárová
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, v.v.i., Heyrovskeho nam. 2, 16206 Prague, Czech Republic
| | - Michal Kraus
- Institute of Microbiology, Czech Academy of Sciences, v.v.i., Videnska 1083, 14220 Prague, Czech Republic
| | - Jakub Tomala
- Institute of Microbiology, Czech Academy of Sciences, v.v.i., Videnska 1083, 14220 Prague, Czech Republic
| | - Martin Studenovský
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, v.v.i., Heyrovskeho nam. 2, 16206 Prague, Czech Republic
| | - Michaela Vondráčková
- Institute of Microbiology, Czech Academy of Sciences, v.v.i., Videnska 1083, 14220 Prague, Czech Republic
| | - Radislav Sedláček
- Czech Center of Phenogenomics, Institute of Molecular Genetics, Czech Academy of Sciences, v.v.i., Prumyslova 595, 25250 Vestec, Czech Republic
| | - Petr Makovický
- Czech Center of Phenogenomics, Institute of Molecular Genetics, Czech Academy of Sciences, v.v.i., Prumyslova 595, 25250 Vestec, Czech Republic
| | - Jitka Fučíková
- Department of Immunology, Charles University, 2(nd) Faculty of Medicine and University Hospital Motol, V uvalu 84, 15006 Prague, Czech Republic; Sotio, Jankovcova 1518, 17000 Prague, Czech Republic
| | | | - Radek Špíšek
- Department of Immunology, Charles University, 2(nd) Faculty of Medicine and University Hospital Motol, V uvalu 84, 15006 Prague, Czech Republic; Sotio, Jankovcova 1518, 17000 Prague, Czech Republic
| | - Libor Kostka
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, v.v.i., Heyrovskeho nam. 2, 16206 Prague, Czech Republic
| | - Tomáš Etrych
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, v.v.i., Heyrovskeho nam. 2, 16206 Prague, Czech Republic.
| | - Marek Kovář
- Institute of Microbiology, Czech Academy of Sciences, v.v.i., Videnska 1083, 14220 Prague, Czech Republic.
| |
Collapse
|
14
|
Wander P, Arentsen-Peters STCJM, Pinhanҫos SS, Koopmans B, Dolman MEM, Ariese R, Bos FL, Castro PG, Jones L, Schneider P, Navarro MG, Molenaar JJ, Rios AC, Zwaan CM, Stam RW. High-throughput drug screening reveals Pyrvinium pamoate as effective candidate against pediatric MLL-rearranged acute myeloid leukemia. Transl Oncol 2021; 14:101048. [PMID: 33667892 PMCID: PMC7933809 DOI: 10.1016/j.tranon.2021.101048] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/12/2021] [Accepted: 02/17/2021] [Indexed: 12/27/2022] Open
Abstract
Drug library screening identified pyrvinium to be effective against MLL-rearranged AML. Pyrvinium targets the mitochondria of MLL-rearranged AML cells. Pyrvinium does not antagonize with standard chemotherapy in MLL-rearranged AML.
Pediatric MLL-rearranged acute myeloid leukemia (AML) has a generally unfavorable outcome, primarily due to relapse and drug resistance. To overcome these difficulties, new therapeutic agents are urgently needed. Yet, implementing novel drugs for clinical use is a time-consuming, laborious, costly and high-risk process. Therefore, we applied a drug-repositioning strategy by screening drug libraries, comprised of >4000 compounds that are mostly FDA-approved, in a high-throughput format on primary MLL-rearranged AML cells. Here we identified pyrvinium pamoate (pyrvinium) as a novel candidate drug effective against MLL-rearranged AML, eliminating all cell viability at <1000 nM. Additional screening of identified drug hits on non-leukemic bone marrow samples, resulted in a decrease in cell viability of ∼50% at 1000 nM pyrvinium, suggesting a therapeutic window for targeting leukemic cells specifically. Validation of pyrvinium on an extensive panel of AML cell lines and primary AML samples showed comparable viabilities as the drug screen data, with pyrvinium achieving IC50 values of <80 nM in these samples. Remarkably, pyrvinium also induced cell toxicity in primary MLL-AF10+ AML cells, an MLL-rearrangement associated with a poor outcome. While pyrvinium is able to inhibit the Wnt pathway in other diseases, this unlikely explains the efficacy we observed as β-catenin was not expressed in the AML cells tested. Rather, we show that pyrvinium co-localized with the mitochondrial stain in cells, and hence may act by inhibiting mitochondrial respiration. Overall, this study shows that pyrvinium is highly effective against MLL-rearranged AML in vitro, and therefore represents a novel potential candidate for further studies in MLL-rearranged AML.
Collapse
Affiliation(s)
- Priscilla Wander
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584CS Utrecht, Netherlands; Department of Pediatric Oncology/Hematology, Erasmus MC-Sophia Children's Hospital, Rotterdam, Netherlands
| | | | - Sandra S Pinhanҫos
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584CS Utrecht, Netherlands; CNC-Center for Neurosciences and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Bianca Koopmans
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584CS Utrecht, Netherlands
| | - M Emmy M Dolman
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584CS Utrecht, Netherlands
| | - Rijndert Ariese
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584CS Utrecht, Netherlands; Oncode Institute, Utrecht, Netherlands
| | - Frank L Bos
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584CS Utrecht, Netherlands; Oncode Institute, Utrecht, Netherlands
| | - Patricia Garrido Castro
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584CS Utrecht, Netherlands
| | - Luke Jones
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584CS Utrecht, Netherlands
| | - Pauline Schneider
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584CS Utrecht, Netherlands
| | - Miriam Guillen Navarro
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584CS Utrecht, Netherlands
| | - Jan J Molenaar
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584CS Utrecht, Netherlands
| | - Anne C Rios
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584CS Utrecht, Netherlands; Oncode Institute, Utrecht, Netherlands
| | - C Michel Zwaan
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584CS Utrecht, Netherlands; Department of Pediatric Oncology/Hematology, Erasmus MC-Sophia Children's Hospital, Rotterdam, Netherlands
| | - Ronald W Stam
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584CS Utrecht, Netherlands.
| |
Collapse
|
15
|
Cunniffe N, Vuong KA, Ainslie D, Baker D, Beveridge J, Bickley S, Camilleri P, Craner M, Fitzgerald D, de la Fuente AG, Giovannoni G, Gray E, Hazlehurst L, Kapoor R, Kaur R, Kozlowski D, Lumicisi B, Mahad D, Neumann B, Palmer A, Peruzzotti-Jametti L, Pluchino S, Robertson J, Rothaul A, Shellard L, Smith KJ, Wilkins A, Williams A, Coles A. Systematic approach to selecting licensed drugs for repurposing in the treatment of progressive multiple sclerosis. J Neurol Neurosurg Psychiatry 2021; 92:295-302. [PMID: 33184094 DOI: 10.1136/jnnp-2020-324286] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 09/08/2020] [Accepted: 10/13/2020] [Indexed: 12/20/2022]
Abstract
OBJECTIVE To establish a rigorous, expert-led, evidence-based approach to the evaluation of licensed drugs for repurposing and testing in clinical trials of people with progressive multiple sclerosis (MS). METHODS We long-listed licensed drugs with evidence of human safety, blood-brain barrier penetrance and demonstrable efficacy in at least one animal model, or mechanistic target, agreed by a panel of experts and people with MS to be relevant to the pathogenesis of progression. We systematically reviewed the preclinical and clinical literature for each compound, condensed this into a database of summary documents and short-listed drugs by scoring each one of them. Drugs were evaluated for immediate use in a clinical trial, and our selection was scrutinised by a final independent expert review. RESULTS From a short list of 55 treatments, we recommended four treatments for immediate testing in progressive MS: R-α-lipoic acid, metformin, the combination treatment of R-α-lipoic acid and metformin, and niacin. We also prioritised clemastine, lamotrigine, oxcarbazepine, nimodipine and flunarizine. CONCLUSIONS We report a standardised approach for the identification of candidate drugs for repurposing in the treatment of progressive MS.
Collapse
Affiliation(s)
- Nick Cunniffe
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | | | - Debbie Ainslie
- Research Network, Multiple Sclerosis Society, London, UK
| | - David Baker
- Blizard Institute, Queen Mary University of London, London, UK
| | - Judy Beveridge
- Research Network, Multiple Sclerosis Society, London, UK
| | | | | | - Matthew Craner
- Department of Neurology, University of Oxford, Oxford, UK
| | - Denise Fitzgerald
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's Univeristy, Belfast, UK
| | - Alerie G de la Fuente
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's Univeristy, Belfast, UK
| | | | - Emma Gray
- Multiple Sclerosis Society, London, UK
| | | | - Raj Kapoor
- Faculty of Brain Sciences, Queen Square Institute of Neurology, University College London, London, UK
| | - Ranjit Kaur
- Research Network, Multiple Sclerosis Society, London, UK
| | | | | | - Don Mahad
- Centre for Clinical Brain Sciences, Anne Rowling Regenerative Neurology Clinic, University of Edinburgh, Edinburgh, UK
| | - Björn Neumann
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Alan Palmer
- University of Reading, Reading, Berkshire, UK
| | | | - Stefano Pluchino
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | | | - Alan Rothaul
- Independent consultant, Woodstock, Oxfordshire, UK
| | | | - Kenneth J Smith
- Department of Neuroinflammation, Queen Square Institute of Neurology, University College London, London, UK
| | | | - Anna Williams
- MS Centre, Centre for regenerative medicine, University of Edinburgh, Edinburgh, UK
| | - Alasdair Coles
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| |
Collapse
|
16
|
Roy S, Dhaneshwar S, Bhasin B. Drug Repurposing: An Emerging Tool for Drug Reuse, Recycling and Discovery. Curr Drug Res Rev 2021; 13:101-119. [PMID: 33573567 DOI: 10.2174/2589977513666210211163711] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 09/07/2020] [Accepted: 10/26/2020] [Indexed: 11/22/2022]
Abstract
Drug repositioning or repurposing is a revolutionary breakthrough in drug development that focuses on rediscovering new uses for old therapeutic agents. Drug repositioning can be defined more precisely as the process of exploring new indications for an already approved drug while drug repurposing includes overall re-development approaches grounded in the identical chemical structure of the active drug moiety as in the original product. The repositioning approach accelerates the drug development process, curtails the cost and risk inherent to drug development. The strategy focuses on the polypharmacology of drugs to unlocks novel opportunities for logically designing more efficient therapeutic agents for unmet medical disorders. Drug repositioning also expresses certain regulatory challenges that hamper its further utilization. The review outlines the eminent role of drug repositioning in new drug discovery, methods to predict the molecular targets of a drug molecule, advantages that the strategy offers to the pharmaceutical industries, explaining how the industrial collaborations with academics can assist in the discovering more repositioning opportunities. The focus of the review is to highlight the latest applications of drug repositioning in various disorders. The review also includes a comparison of old and new therapeutic uses of repurposed drugs, assessing their novel mechanisms of action and pharmacological effects in the management of various disorders. Various restrictions and challenges that repurposed drugs come across during their development and regulatory phases are also highlighted.
Collapse
Affiliation(s)
- Supriya Roy
- Amity Institute of Pharmacy, Amity University Uttar Pradesh, Lucknow Campus, India
| | - Suneela Dhaneshwar
- Amity Institute of Pharmacy, Amity University Uttar Pradesh, Lucknow Campus, India
| | - Bhavya Bhasin
- Poona College of Pharmacy, Bharati Vidyapeeth University, Pune, India
| |
Collapse
|
17
|
Roessler HI, Knoers NVAM, van Haelst MM, van Haaften G. Drug Repurposing for Rare Diseases. Trends Pharmacol Sci 2021; 42:255-267. [PMID: 33563480 DOI: 10.1016/j.tips.2021.01.003] [Citation(s) in RCA: 99] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 01/13/2021] [Accepted: 01/19/2021] [Indexed: 12/17/2022]
Abstract
Currently, there are about 7000 identified rare diseases, together affecting 10% of the population. However, fewer than 6% of all rare diseases have an approved treatment option, highlighting their tremendous unmet needs in drug development. The process of repurposing drugs for new indications, compared with the development of novel orphan drugs, is a time-saving and cost-efficient method resulting in higher success rates, which can therefore drastically reduce the risk of drug development for rare diseases. Although drug repurposing is not novel, new strategies have been developed in recent years to do it in a systematic and rational way. Here, we review applied methodologies, recent accomplished progress, and the challenges associated in drug repurposing for rare diseases.
Collapse
Affiliation(s)
- Helen I Roessler
- Department of Genetics, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Nine V A M Knoers
- Department of Genetics, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands; Department of Genetics, University Medical Center Groningen, Groningen, The Netherlands
| | - Mieke M van Haelst
- Department of Clinical Genetics, Amsterdam University Medical Center, Location AMC, University of Amsterdam, Amsterdam, The Netherlands; Department of Clinical Genetics, Amsterdam University Medical Center, Location VUMC, VU University Amsterdam, Amsterdam, The Netherlands
| | - Gijs van Haaften
- Department of Genetics, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
18
|
Tuli HS, Sood S, Kaur J, Kumar P, Seth P, Punia S, Yadav P, Sharma AK, Aggarwal D, Sak K. Mechanistic insight into anti-COVID-19 drugs: recent trends and advancements. 3 Biotech 2021; 11:110. [PMID: 33552835 PMCID: PMC7851641 DOI: 10.1007/s13205-021-02644-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 01/03/2021] [Indexed: 12/27/2022] Open
Abstract
The Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV-2) has been established now to be a deadly disease afflicting the whole world with worst consequences on healthcare, economy and day-to-day life activities. Being a communicable disease, which is highly pathogenic in humans, causing cough, throat infection, breathing problems, high fever, muscle pain, and may lead to death in some cases especially those having other comorbid conditions such as heart or kidney problems, and diabetes. Finding an appropriate drug and vaccine candidate against coronavirus disease (COVID-19) remains an ultimate and immediate goal for the global scientific community. Based on previous studies in the literature on SARS-CoV infection, there are a number of drugs that may inhibit the replication of SARS-CoV-2 and its infection. Such drugs comprise of inhibitors of Angiotensin-Converting Enzyme 2 (ACE2), transmembrane Serine Protease 2 (TMPRSS2), nonstructural protein 3C-like protease, nonstructural RNA-dependent RNA polymerase (RdRp) and many more. The antiviral drugs such as chloroquine and hydroxychloroquine, lopinavir and ritonavir as inhibitors for HIV protease, nucleotide analogue remdesivir, and broad-spectrum antiviral drugs are available to treat the SARS-CoV-2-infected patients. Therefore, this review article is planned to gain insight into the mechanism for blocking the entry of SARS-CoV-2, its validation, other inhibition mechanisms, and development of therapeutic drugs and vaccines against SARS-CoV-2.
Collapse
Affiliation(s)
- Hardeep Singh Tuli
- Department of Biotechnology, Maharishi Markandeshwar (Deemed To Be University), Mullana, Ambala, 133207 India
| | - Shivani Sood
- Department of Biotechnology, Mukand Lal National College, Yamuna Nagar, Haryana India
| | - Jagjit Kaur
- Graduate School of Biomedical Engineering, ARC Centre of Excellence in Nanoscale Biophotonics (CNBP), Faculty of Engineering, The University of New South Wales, Sydney, 2052 Australia
| | - Pawan Kumar
- Institute of Plant Sciences, Agricultural Research Organisation (ARO), The Volcani Center, 7505101 Rishon LeZion, Israel
| | - Prachi Seth
- Department of Biotechnology, Mukand Lal National College, Yamuna Nagar, Haryana India
| | - Sandeep Punia
- Department of Biotechnology, Multani Mal Modi College, Patiala, India
| | - Priya Yadav
- Department of Biotechnology, Maharishi Markandeshwar (Deemed To Be University), Mullana, Ambala, 133207 India
| | - Anil Kumar Sharma
- Department of Biotechnology, Maharishi Markandeshwar (Deemed To Be University), Mullana, Ambala, 133207 India
| | - Diwakar Aggarwal
- Department of Biotechnology, Maharishi Markandeshwar (Deemed To Be University), Mullana, Ambala, 133207 India
| | | |
Collapse
|
19
|
From Homology Modeling to the Hit Identification and Drug Repurposing: A Structure-Based Approach in the Discovery of Novel Potential Anti-Obesity Compounds. Methods Mol Biol 2021; 2266:263-277. [PMID: 33759132 DOI: 10.1007/978-1-0716-1209-5_15] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Although science and technology have progressed rapidly, de novo drug development has been a costly and time-consuming process over the past decades. In this scenario, drug repurposing has appeared as an alternative tool to accelerate the drug development process. Herein, we applied such an approach to the highly popular human Carbonic Anhydrase (hCA) VA drug target, that is involved in ureagenesis, gluconeogenesis, lipogenesis, and in the metabolism regulation. Albeit several hCA inhibitors have been designed and are currently in clinical use, serious drug interactions have been reported due to their poor selectivity. In this perspective, the drug repurposing approach could be a useful tool for investigating the drug promiscuity/polypharmacology profile. In this chapter, we describe a combination of virtual screening techniques and in vitro assays aimed to identify novel selective hCA VA inhibitors and to repurpose drugs known for other clinical indications.
Collapse
|
20
|
Pérez-Villanueva J, Yépez-Mulia L, Rodríguez-Villar K, Cortés-Benítez F, Palacios-Espinosa JF, Soria-Arteche O. The giardicidal activity of lobendazole, fabomotizole, tenatoprazole and ipriflavone: A ligand-based virtual screening and in vitro study. Eur J Med Chem 2020; 211:113110. [PMID: 33360795 DOI: 10.1016/j.ejmech.2020.113110] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 12/03/2020] [Accepted: 12/13/2020] [Indexed: 01/05/2023]
Abstract
A ligand-based virtual screening study to search for giardicidal compounds on a 6551 ChEMBL drugs database was carried out using molecular similarity. Three fingerprints implemented in MayaChemTools with different design and validated by ROC curves, were used. Twelve compounds were retrieved from this screening, from which, four representative compounds were selected to carry out biological assays. Whereas two compounds were commercially available, the additional two compounds were synthesized during the development of this work. The biological assays revealed that the compounds possess in vitro activity against five strains of Giardia intestinalis, each with different susceptibility/resistance rates to metronidazole, albendazole and nitazoxanide. Particularly, tenatoprazole showed the best effect against the WB and IMSS strains. Furthermore, fabomotizole, tenatoprazole and ipriflavone showed a higher activity against resistant strains than the reference drugs: metronidazole, albendazole and nitazoxanide.
Collapse
Affiliation(s)
- Jaime Pérez-Villanueva
- Departamento de Sistemas Biológicos, División de Ciencias Biológicas y de La Salud, Universidad Autónoma Metropolitana-Xochimilco (UAM-X), Ciudad de México, 04960, Mexico.
| | - Lilián Yépez-Mulia
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, UMAE Hospital de Pediatría, Centro Médico Siglo XXI, Instituto Mexicano Del Seguro Social, Ciudad de México, 06720, Mexico
| | - Karen Rodríguez-Villar
- Doctorado en Ciencias Biológicas y de La Salud, Universidad Autónoma Metropolitana (UAM), Ciudad de México, 04960, Mexico
| | - Francisco Cortés-Benítez
- Departamento de Sistemas Biológicos, División de Ciencias Biológicas y de La Salud, Universidad Autónoma Metropolitana-Xochimilco (UAM-X), Ciudad de México, 04960, Mexico
| | - Juan Francisco Palacios-Espinosa
- Departamento de Sistemas Biológicos, División de Ciencias Biológicas y de La Salud, Universidad Autónoma Metropolitana-Xochimilco (UAM-X), Ciudad de México, 04960, Mexico
| | - Olivia Soria-Arteche
- Departamento de Sistemas Biológicos, División de Ciencias Biológicas y de La Salud, Universidad Autónoma Metropolitana-Xochimilco (UAM-X), Ciudad de México, 04960, Mexico
| |
Collapse
|
21
|
Amare GG, Meharie BG, Belayneh YM. A drug repositioning success: The repositioned therapeutic applications and mechanisms of action of thalidomide. J Oncol Pharm Pract 2020; 27:673-678. [PMID: 33249990 DOI: 10.1177/1078155220975825] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
BACKGROUND Thalidomide is the most teratogenic human medicine ever marketed and was associated with birth defects in approximately 10,000 children in the 1960s. The pharmacological effects of thalidomide are attributed to its anti-angiogenic, anti-inflammatory and modulatory effect on cytokines principally tumor necrosis factor-α, while the teratogenic effects are linked to two molecular targets, namely cereblon and tubulin. Teratogenicity is the gravest adverse effect of thalidomide depending on the dose and time of exposure. Nonetheless, with System for Thalidomide Education and Prescribing Safety program, the possibility of teratogenicity can be completely avoided. The sensitive period during pregnancy for thalidomide teratogenicity in humans is approximately 20-34 days after fertilization. METHODS Relevant articles were identified from Google scholar and PubMed (MEDLINE) using different search strategies. CONCLUSION Clinical trials showed that thalidomide has been found effective in the treatment of advanced renal cancer, esophageal cancer, chemotherapy refractory endometrial cancer and pancreatic cancer, which can suggest its future therapeutic potential in cancer treatment. Thalidomide is also used in the treatment of inflammatory skin disorders and has shown promising effect in the treatment of autoimmune disorders and inflammatory bowel disease. Despite thalidomide being a renowned teratogen and neurotoxin, it has been successfully repositioned and FDA approved for the treatment of erythema nodosum leprosum and multiple myeloma under strict control.
Collapse
Affiliation(s)
- Gedefaw Getnet Amare
- Department of Pharmacy, College of Medicine and Health Sciences, 256197Wollo University, Dessie, Ethiopia
| | - Birhanu Geta Meharie
- Department of Pharmacy, College of Medicine and Health Sciences, 256197Wollo University, Dessie, Ethiopia
| | - Yaschilal Muche Belayneh
- Department of Pharmacy, College of Medicine and Health Sciences, 256197Wollo University, Dessie, Ethiopia
| |
Collapse
|
22
|
Shi H, Suo Y, Zhang Z, Liu R, Liu H, Cheng Z. Copper(II)-disulfiram loaded melanin-dots for cancer theranostics. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2020; 32:102340. [PMID: 33227540 DOI: 10.1016/j.nano.2020.102340] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 11/02/2020] [Accepted: 11/11/2020] [Indexed: 12/24/2022]
Abstract
Copper(II) diethyldithiocarbamate complex (CuET), the metabolite of disulfiram complexed with copper, is the component responsible for cancer treatment efficacy of disulfiram. But the hydrophobic property of CuET limits its use in vivo, and an appropriate drug delivery system needs to be developed. Ultrasmall melanin nanoparticle (M-Dot) with excellent biosafety and biocompatibility properties has been synthesized in our previous studies. Herein we prepared CuET loaded with M-Dots through hydrophobic interaction, which could enhance the water solubility significantly. After the administration of M-Dots-CuET in mice tumor models, the nanoparticles showed good tumor accumulation as evidenced by the enhanced photoacoustic signal in tumor regions. M-Dots-CuET also displayed excellent tumor inhibition capability, and the tumor growth inhibition value (TGI) was 45.1%. When combined with photothermal therapy, the TGI reached up to 78.6%. In summary, M-Dots-CuET provide a new potential strategy for cancer theranostics.
Collapse
Affiliation(s)
- Hui Shi
- Institute of Molecular Medicine, College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Yongkuan Suo
- Institute of Molecular Medicine, College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Zhiling Zhang
- Institute of Molecular Medicine, College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Ruiqi Liu
- Institute of Molecular Medicine, College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Hongguang Liu
- Institute of Molecular Medicine, College of Life and Health Sciences, Northeastern University, Shenyang, China.
| | - Zhen Cheng
- Molecular Imaging Program at Stanford, Stanford University, Palo Alto, CA, USA.
| |
Collapse
|
23
|
Cadegiani FA. Repurposing existing drugs for COVID-19: an endocrinology perspective. BMC Endocr Disord 2020; 20:149. [PMID: 32993622 PMCID: PMC7523486 DOI: 10.1186/s12902-020-00626-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 09/14/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Coronavirus Disease 2019 (COVID-19) is a multi-systemic infection caused by the novel Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), that has become a pandemic. Although its prevailing symptoms include anosmia, ageusia, dry couch, fever, shortness of brief, arthralgia, myalgia, and fatigue, regional and methodological assessments vary, leading to heterogeneous clinical descriptions of COVID-19. Aging, uncontrolled diabetes, hypertension, obesity, and exposure to androgens have been correlated with worse prognosis in COVID-19. Abnormalities in the renin-angiotensin-aldosterone system (RAAS), angiotensin-converting enzyme-2 (ACE2) and the androgen-driven transmembrane serine protease 2 (TMPRSS2) have been elicited as key modulators of SARS-CoV-2. MAIN TEXT While safe and effective therapies for COVID-19 lack, the current moment of pandemic urges for therapeutic options. Existing drugs should be preferred over novel ones for clinical testing due to four inherent characteristics: 1. Well-established long-term safety profile, known risks and contraindications; 2. More accurate predictions of clinical effects; 3. Familiarity of clinical management; and 4. Affordable costs for public health systems. In the context of the key modulators of SARS-CoV-2 infectivity, endocrine targets have become central as candidates for COVID-19. The only endocrine or endocrine-related drug class with already existing emerging evidence for COVID-19 is the glucocorticoids, particularly for the use of dexamethasone for severely affected patients. Other drugs that are more likely to present clinical effects despite the lack of specific evidence for COVID-19 include anti-androgens (spironolactone, eplerenone, finasteride and dutasteride), statins, N-acetyl cysteine (NAC), ACE inhibitors (ACEi), angiotensin receptor blockers (ARB), and direct TMPRSS-2 inhibitors (nafamostat and camostat). Several other candidates show less consistent plausibility. In common, except for dexamethasone, all candidates have no evidence for COVID-19, and clinical trials are needed. CONCLUSION While dexamethasone may reduce mortality in severely ill patients with COVID-19, in the absence of evidence of any specific drug for mild-to-moderate COVID-19, researchers should consider testing existing drugs due to their favorable safety, familiarity, and cost profile. However, except for dexamethasone in severe COVID-19, drug treatments for COVID-19 patients must be restricted to clinical research studies until efficacy has been extensively proven, with favorable outcomes in terms of reduction in hospitalization, mechanical ventilation, and death.
Collapse
Affiliation(s)
- Flavio A Cadegiani
- Adrenal and Hypertension Unit, Division of Endocrinology and Metabolism, Department of Medicine, Escola Paulista de Medicina, Universidade Federal de São Paulo (EPM/UNIFESP), Rua Pedro de Toledo 781 - 13th floor, São Paulo, SP, 04039-032, Brazil.
| |
Collapse
|
24
|
Badran A, tul-Wahab A, Zafar H, Mohammad N, Imad R, Ashfaq Khan M, Baydoun E, Choudhary MI. Antipsychotics drug aripiprazole as a lead against breast cancer cell line (MCF-7) in vitro. PLoS One 2020; 15:e0235676. [PMID: 32746451 PMCID: PMC7398703 DOI: 10.1371/journal.pone.0235676] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 06/21/2020] [Indexed: 11/19/2022] Open
Abstract
Breast cancer is the second leading cause of death among women globally. The existing treatment options for breast cancer are largely associated with severe toxicities, and lower efficacies. Therefore, there is an urgent need for the development of non-toxic effective drugs against breast cancer. For this purpose, drug repositioning strategy was used to evaluate the anti-cancer potential of a library of heterocyclic drugs. The major advantage of drug repurposing is that the pharmacokinetic, pharmacodynamic, and toxicity profiles of drugs are well documented. In the current study, we screened 97 drugs of different chemical classes, and among them aripiprazole, an antipsychotic drug, was found to be sufficiently active against breast cancer cell line MCF-7. Aripiprazole showed a cytotoxicity (IC50 = 12.1 ± 0.40 μM) to MCF-7 cells, comparable to the standard anticancer drug doxorubicin (IC50 = 1.25 ± 0.34 μM). Aripiprazole was also found to be active against other cancer cell lines, including MDA-MB-231 (IC50 = 19.83 ± 0.27 μM), AU565 (IC50 = 18.02 ± 0.44 μM), and BT-474 (IC50 = 36.42 ± 0.12 μM). Aripiprazole significantly inhibited the cell cycle progression at subG0G1 phase, and enhanced apoptosis in MCF-7 breast cancer cells. The drug was also able to significantly increase the nuclear condensation, and modulated the expression of certain genes involved in breast cancer, such as caspases 3, and 9, BAK-1, C-MYC, BCL2L1, BCL-10, and BCL-2. Further studies are needed to explore the effect of aripiprazole on intrinsic and extrinsic pathways of apoptosis in cancer cells.
Collapse
Affiliation(s)
- Adnan Badran
- Faculty of Pharmacy and Medical Sciences, University of Petra, Amman, Jordan
| | - Atia tul-Wahab
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center of Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Humaira Zafar
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center of Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Nayab Mohammad
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center of Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Rehan Imad
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center of Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Mariam Ashfaq Khan
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center of Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Elias Baydoun
- Department of Biology, American University of Beirut, Beirut, Lebanon
| | - M. Iqbal Choudhary
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center of Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
- Department of Chemistry, Faculty of Science and Technology, Universitas Airlangga, Surabaya, Indonesia
- * E-mail:
| |
Collapse
|
25
|
Repurposed Drugs in Treating Glioblastoma Multiforme: Clinical Trials Update. ACTA ACUST UNITED AC 2020; 25:139-146. [PMID: 30896537 DOI: 10.1097/ppo.0000000000000365] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
26
|
Du J, Guo J, Kang D, Li Z, Wang G, Wu J, Zhang Z, Fang H, Hou X, Huang Z, Li G, Lu X, Liu X, Ouyang L, Rao L, Zhan P, Zhang X, Zhang Y. New techniques and strategies in drug discovery. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2020.03.028] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
27
|
Prakash AV, Park JW, Seong JW, Kang TJ. Repositioned Drugs for Inflammatory Diseases such as Sepsis, Asthma, and Atopic Dermatitis. Biomol Ther (Seoul) 2020; 28:222-229. [PMID: 32133828 PMCID: PMC7216745 DOI: 10.4062/biomolther.2020.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 02/11/2020] [Accepted: 02/17/2020] [Indexed: 12/14/2022] Open
Abstract
The process of drug discovery and drug development consumes billions of dollars to bring a new drug to the market. Drug development is time consuming and sometimes, the failure rates are high. Thus, the pharmaceutical industry is looking for a better option for new drug discovery. Drug repositioning is a good alternative technology that has demonstrated many advantages over de novo drug development, the most important one being shorter drug development timelines. In the last two decades, drug repositioning has made tremendous impact on drug development technologies. In this review, we focus on the recent advances in drug repositioning technologies and discuss the repositioned drugs used for inflammatory diseases such as sepsis, asthma, and atopic dermatitis.
Collapse
Affiliation(s)
- Annamneedi Venkata Prakash
- Convergence Research Center, Department of Pharmacy and Institute of Chronic Disease, Sahmyook University, Seoul 01795, Republic of Korea
| | - Jun Woo Park
- Convergence Research Center, Department of Pharmacy and Institute of Chronic Disease, Sahmyook University, Seoul 01795, Republic of Korea
| | - Ju-Won Seong
- Convergence Research Center, Department of Pharmacy and Institute of Chronic Disease, Sahmyook University, Seoul 01795, Republic of Korea
| | - Tae Jin Kang
- Convergence Research Center, Department of Pharmacy and Institute of Chronic Disease, Sahmyook University, Seoul 01795, Republic of Korea
| |
Collapse
|
28
|
Jiao Y, Preston S, Hofmann A, Taki A, Baell J, Chang BCH, Jabbar A, Gasser RB. A perspective on the discovery of selected compounds with anthelmintic activity against the barber's pole worm-Where to from here? ADVANCES IN PARASITOLOGY 2020; 108:1-45. [PMID: 32291083 DOI: 10.1016/bs.apar.2019.12.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Parasitic roundworms (nematodes) cause substantial morbidity and mortality in animals worldwide. Anthelmintic treatment is central to controlling these worms, but widespread resistance to most of the commercially available anthelmintics for veterinary and agricultural use is compromising control, such that there is an urgency to discover new and effective drugs. The purpose of this article is to review information on parasitic nematodes, the treatment and control of parasitic nematode infections and aspects of discovering new anthelmintics in the context of anthelmintic resistance problems, and then to discuss some progress that our group has made in identifying selected compounds with activity against nematodes. The focus of our recent work has been on discovering new chemical entities and known drugs with anthelmintic activities against Haemonchus contortus as well as other socioeconomically important parasitic nematodes for subsequent development. Using whole worm-based phenotypic assays, we have been screening compound collections obtained via product-development-partnerships and/or collaborators, and active compounds have been assessed for their potential as anthelmintic candidates. Following the screening of 15,333 chemicals from five distinct compound collections against H. contortus, we have discovered one new chemical entity (designated SN00797439), two human kinase inhibitors (SNS-032 and AG-1295), 14 tetrahydroquinoxaline analogues, one insecticide (tolfenpyrad) and two tolfenpyrad (pyrazole-5-carboxamide) derivatives (a-15 and a-17) with anthelmintic activity in vitro. Some of these 20 'hit' compounds have selectivity against H. contortus in vitro when compared to particular human cell lines. In our opinion, some of these compounds could represent starting points for 'lead' development. Accordingly, the next research steps to be pursued include: (i) chemical optimisation of representative chemicals via structure-activity relationship (SAR) evaluations; (ii) assessment of the breadth of spectrum of anthelmintic activity on a range of other parasitic nematodes, such as strongyloids, ascaridoids, enoplids and filarioids; (iii) detailed investigations of the absorption, distribution, metabolism, excretion and toxicity (ADMET) of optimised chemicals with broad nematocidal or nematostatic activity; and (iv) establishment of the modes of action of lead candidates.
Collapse
Affiliation(s)
- Yaqing Jiao
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia
| | - Sarah Preston
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia; Faculty of Science and Technology, Federation University, Ballarat, VIC, Australia
| | - Andreas Hofmann
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia
| | - Aya Taki
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia
| | - Jonathan Baell
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Bill C H Chang
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia
| | - Abdul Jabbar
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia.
| | - Robin B Gasser
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
29
|
Montes-Grajales D, Puerta-Guardo H, Espinosa DA, Harris E, Caicedo-Torres W, Olivero-Verbel J, Martínez-Romero E. In silico drug repurposing for the identification of potential candidate molecules against arboviruses infection. Antiviral Res 2019; 173:104668. [PMID: 31786251 DOI: 10.1016/j.antiviral.2019.104668] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 11/27/2019] [Indexed: 01/09/2023]
Abstract
Arboviral diseases caused by dengue (DENV), Zika (ZIKV) and chikungunya (CHIKV) viruses represent a major public health problem worldwide, especially in tropical areas where millions of infections occur every year. The aim of this research was to identify candidate molecules for the treatment of these diseases among the drugs currently available in the market, through in silico screening and subsequent in vitro evaluation with cell culture models of DENV and ZIKV infections. Numerous pharmaceutical compounds from antibiotics to chemotherapeutic agents presented high in silico binding affinity for the viral proteins, including ergotamine, antrafenine, natamycin, pranlukast, nilotinib, itraconazole, conivaptan and novobiocin. These five last compounds were tested in vitro, being pranlukast the one that exhibited the best antiviral activity. Further in vitro assays for this compound showed a significant inhibitory effect on DENV and ZIKV infection of human monocytic cells and human hepatocytes (Huh-7 cells) with potential abrogation of virus entry. Finally, intrinsic fluorescence analyses suggest that pranlukast may have some level of interaction with three viral proteins of DENV: envelope, capsid, and NS1. Due to its promising results, suitable accessibility in the market and reduced restrictions compared to other pharmaceuticals; the anti-asthmatic pranlukast is proposed as a drug candidate against DENV, ZIKV, and CHIKV, supporting further in vitro and in vivo assessment of the potential of this and other lead compounds that exhibited good affinity scores in silico as therapeutic agents or scaffolds for the development of new drugs against arboviral diseases.
Collapse
Affiliation(s)
- Diana Montes-Grajales
- Environmental and Computational Chemistry Group, School of Pharmaceutical Sciences, Zaragocilla Campus, University of Cartagena, Cartagena, 130015, Colombia.
| | - Henry Puerta-Guardo
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, 94720-3370, USA
| | - Diego A Espinosa
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, 94720-3370, USA
| | - Eva Harris
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, 94720-3370, USA
| | - William Caicedo-Torres
- Grupo de Investigación de Tecnologías Aplicadas y Sistemas de Información, School of Engineering, Universidad Tecnológica de Bolívar, Cartagena, 130010, Colombia
| | - Jesus Olivero-Verbel
- Environmental and Computational Chemistry Group, School of Pharmaceutical Sciences, Zaragocilla Campus, University of Cartagena, Cartagena, 130015, Colombia
| | - Esperanza Martínez-Romero
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca-Morelos 565-A, Mexico
| |
Collapse
|
30
|
Durán C, Daminelli S, Thomas JM, Haupt VJ, Schroeder M, Cannistraci CV. Pioneering topological methods for network-based drug-target prediction by exploiting a brain-network self-organization theory. Brief Bioinform 2019; 19:1183-1202. [PMID: 28453640 PMCID: PMC6291778 DOI: 10.1093/bib/bbx041] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Indexed: 01/03/2023] Open
Abstract
The bipartite network representation of the drug–target interactions (DTIs) in a biosystem enhances understanding of the drugs’ multifaceted action modes, suggests therapeutic switching for approved drugs and unveils possible side effects. As experimental testing of DTIs is costly and time-consuming, computational predictors are of great aid. Here, for the first time, state-of-the-art DTI supervised predictors custom-made in network biology were compared—using standard and innovative validation frameworks—with unsupervised pure topological-based models designed for general-purpose link prediction in bipartite networks. Surprisingly, our results show that the bipartite topology alone, if adequately exploited by means of the recently proposed local-community-paradigm (LCP) theory—initially detected in brain-network topological self-organization and afterwards generalized to any complex network—is able to suggest highly reliable predictions, with comparable performance with the state-of-the-art-supervised methods that exploit additional (non-topological, for instance biochemical) DTI knowledge. Furthermore, a detailed analysis of the novel predictions revealed that each class of methods prioritizes distinct true interactions; hence, combining methodologies based on diverse principles represents a promising strategy to improve drug–target discovery. To conclude, this study promotes the power of bio-inspired computing, demonstrating that simple unsupervised rules inspired by principles of topological self-organization and adaptiveness arising during learning in living intelligent systems (like the brain) can efficiently equal perform complicated algorithms based on advanced, supervised and knowledge-based engineering.
Collapse
Affiliation(s)
| | - Simone Daminelli
- Corresponding authors: Carlo Cannistraci, Biomedical Cybernetics Group at Biotechnology Center (BIOTEC), Center for Molecular and Cellular Bioengineering (CMCB), Department of Physics, Technische Universität Dresden (TUD), Tatzberg 47-49, 01307 Dresden, Germany, Tel.: +49 (0)351 463 40080; E-mail: ; Simone Daminelli, Bioinformatics Group at Biotechnology Center (BIOTEC), Center of Molecular Cellular Bioengineering (CMCB), TUD, Tatzberg 47-49, 01307 Dresden, Germany, Tel.: +49 (0)351 463 40060; E-mail: ; Michael Schroeder, Bioinformatics Group at Biotechnology Center (BIOTEC), Center of Molecular and Cellular Bioengineering (CMCB), TUD Tatzberg 47-49, 01307 Dresden, Germany, Tel.: +49 (0)351 463 40062; E-mail:
| | | | | | - Michael Schroeder
- Corresponding authors: Carlo Cannistraci, Biomedical Cybernetics Group at Biotechnology Center (BIOTEC), Center for Molecular and Cellular Bioengineering (CMCB), Department of Physics, Technische Universität Dresden (TUD), Tatzberg 47-49, 01307 Dresden, Germany, Tel.: +49 (0)351 463 40080; E-mail: ; Simone Daminelli, Bioinformatics Group at Biotechnology Center (BIOTEC), Center of Molecular Cellular Bioengineering (CMCB), TUD, Tatzberg 47-49, 01307 Dresden, Germany, Tel.: +49 (0)351 463 40060; E-mail: ; Michael Schroeder, Bioinformatics Group at Biotechnology Center (BIOTEC), Center of Molecular and Cellular Bioengineering (CMCB), TUD Tatzberg 47-49, 01307 Dresden, Germany, Tel.: +49 (0)351 463 40062; E-mail:
| | - Carlo Vittorio Cannistraci
- Corresponding authors: Carlo Cannistraci, Biomedical Cybernetics Group at Biotechnology Center (BIOTEC), Center for Molecular and Cellular Bioengineering (CMCB), Department of Physics, Technische Universität Dresden (TUD), Tatzberg 47-49, 01307 Dresden, Germany, Tel.: +49 (0)351 463 40080; E-mail: ; Simone Daminelli, Bioinformatics Group at Biotechnology Center (BIOTEC), Center of Molecular Cellular Bioengineering (CMCB), TUD, Tatzberg 47-49, 01307 Dresden, Germany, Tel.: +49 (0)351 463 40060; E-mail: ; Michael Schroeder, Bioinformatics Group at Biotechnology Center (BIOTEC), Center of Molecular and Cellular Bioengineering (CMCB), TUD Tatzberg 47-49, 01307 Dresden, Germany, Tel.: +49 (0)351 463 40062; E-mail:
| |
Collapse
|
31
|
Lago SG, Bahn S. Clinical Trials and Therapeutic Rationale for Drug Repurposing in Schizophrenia. ACS Chem Neurosci 2019; 10:58-78. [PMID: 29944339 DOI: 10.1021/acschemneuro.8b00205] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
There is a paucity of efficacious novel drugs to address high rates of treatment resistance and refractory symptoms in schizophrenia. The identification of novel therapeutic indications for approved drugs-drug repurposing-has the potential to expedite clinical trials and reduce the costly risk of failure which currently limits central nervous system drug discovery efforts. In the present Review we discuss the historical role of drug repurposing in schizophrenia drug discovery and review the main classes of repurposing candidates currently in clinical trials for schizophrenia in terms of their therapeutic rationale, mechanisms of action, and preliminary results from clinical trials. Subsequently we outline the challenges and limitations which face the clinical repurposing pipeline and how novel technologies might serve to address these.
Collapse
Affiliation(s)
- Santiago G. Lago
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, U.K
| | - Sabine Bahn
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, U.K
| |
Collapse
|
32
|
Chan JD, Day TA, Marchant JS. Coalescing beneficial host and deleterious antiparasitic actions as an antischistosomal strategy. eLife 2018; 7:35755. [PMID: 30059006 PMCID: PMC6095690 DOI: 10.7554/elife.35755] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 07/24/2018] [Indexed: 12/28/2022] Open
Abstract
Conventional approaches for antiparasitic drug discovery center upon discovering selective agents that adversely impact parasites with minimal host side effects. Here, we show that agents with a broad polypharmacology, often considered ‘dirtier’ drugs, can have unique efficacy if they combine deleterious effects on the parasite with beneficial actions in the host. This principle is evidenced through a screen for drugs to treat schistosomiasis, a parasitic flatworm disease that impacts over 230 million people. A target-based screen of a Schistosoma serotoninergic G protein coupled receptor yielded the potent agonist, ergotamine, which disrupted worm movement. In vivo, ergotamine decreased mortality, parasite load and intestinal egg counts but also uniquely reduced organ pathology through engagement of host GPCRs that repressed hepatic stellate cell activation, inflammatory damage and fibrosis. The unique ability of ergotamine to engage both host and parasite GPCRs evidences a future strategy for anthelmintic drug design that coalesces deleterious antiparasitic activity with beneficial host effects. More than 200 million people worldwide are infected with parasitic worms that cause the disease schistosomiasis. Most cases occur in sub-Saharan Africa. Long-term infections can damage organs, and children who are affected may suffer delayed growth and learning difficulties. Despite its significant health and economic impact, schistosomiasis is still considered a ‘neglected’ tropical disease. This means there has not been adequate investment into developing new treatments or cures. A drug called praziquantel is currently the only treatment for schistosomiasis. However, the drug has unpleasant side effects, cannot cure all infected individuals, and there is a concern that worms may develop resistance to its effects. This means there is an urgent need to develop new therapies. One possible approach would be to develop drugs that interfere with the worm’s ability to move. Chan et al. screened thousands of existing chemicals for interactions with a protein that is known to control how the worms move. A drug called ergotamine, which is currently used to treat migraines, strongly interacted with the protein. Treating infected mice with ergotamine eliminated the parasites and reduced the organ damage caused by the infection. Praziquantel also reduced the number of parasites in the mice but it did not prevent organ damage. The results presented by Chan et al. show that a single drug can interact with targets in both the worm and the animals it infects. Searching for drugs that have this dual effect may help to develop more effective treatments for schistosomiasis and other diseases caused by parasites. Ergotamine itself is unlikely to be used to treat people for schistosomiasis because of the side effects produced when using it repeatedly. However, these findings will help researchers identify and develop safer drugs with similar benefits.
Collapse
Affiliation(s)
- John D Chan
- Department of Biomedical Sciences, Iowa State University, Ames, United States
| | - Timothy A Day
- Department of Biomedical Sciences, Iowa State University, Ames, United States
| | - Jonathan S Marchant
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, United States
| |
Collapse
|
33
|
Lu T, Zou Y, Xu G, Potter JA, Taylor GL, Duan Q, Yang Q, Xiong H, Qiu H, Ye D, Zhang P, Yu S, Yuan X, Zhu F, Wang Y, Xiong H. PRIMA-1Met suppresses colorectal cancer independent of p53 by targeting MEK. Oncotarget 2018; 7:83017-83030. [PMID: 27806324 PMCID: PMC5347749 DOI: 10.18632/oncotarget.12940] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2015] [Accepted: 10/10/2016] [Indexed: 01/06/2023] Open
Abstract
PRIMA-1Met is the methylated PRIMA-1 (p53 reactivation and induction of massive apoptosis) and could restore tumor suppressor function of mutant p53 and induce p53 dependent apoptosis in cancer cells harboring mutant p53. However, p53 independent activity of PRIMA-1Met remains elusive. Here we reported that PRIMA-1Met attenuated colorectal cancer cell growth irrespective of p53 status. Kinase profiling revealed that mitogen-activated or extracellular signal-related protein kinase (MEK) might be a potential target of PRIMA-1Met. Pull-down binding and ATP competitive assay showed that PRIMA-1Met directly bound MEK in vitro and in cells. Furthermore, the direct binding sites of PRIMA-1Met were explored by using a computational docking model. Treatment of colorectal cancer cells with PRIMA-1Met inhibited p53-independent phosphorylation of MEK, which in turn impaired anchorage-independent cell growth in vitro. Moreover, PRIMA-1Met suppressed colorectal cancer growth in xenograft mouse model by inhibiting MEK1 activity. Taken together, our findings demonstrate a novel p53-independent activity of PRIMA-1Met to inhibit MEK and suppress colorectal cancer growth.
Collapse
Affiliation(s)
- Tao Lu
- Department of Biochemistry and molecular biology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yanmei Zou
- Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Guogang Xu
- Nanlou Respiratory Department, Chinese PLA General Hospital, Beijing, 10083, China
| | - Jane A Potter
- BioMedical Research Complex, University of St Andrews, St Andrews, KY16 9ST, UK
| | - Garry L Taylor
- BioMedical Research Complex, University of St Andrews, St Andrews, KY16 9ST, UK
| | - Qiuhong Duan
- Department of Biochemistry and molecular biology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Qin Yang
- Department of Pathology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Huihua Xiong
- Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Hong Qiu
- Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Dawei Ye
- Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Peng Zhang
- Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Shiying Yu
- Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xianglin Yuan
- Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Feng Zhu
- Department of Biochemistry and molecular biology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yihua Wang
- Biological Sciences, Faculty of Natural and Environmental Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - Hua Xiong
- Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, 430030, China
| |
Collapse
|
34
|
Lee IC, Bae JS. Antiseptic effects of dabrafenib on TGFBIp-induced septic responses. Chem Biol Interact 2017; 278:92-100. [PMID: 29042256 DOI: 10.1016/j.cbi.2017.10.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Revised: 09/18/2017] [Accepted: 10/13/2017] [Indexed: 12/27/2022]
Abstract
Transforming growth factor-β-induced protein (TGFBIp), an extracellular protein, is expressed on several cell types in response to TGF-β stimulation. Human umbilical vein endothelial cell (HUVEC)-derived TGFBIp functions as a mediator of sepsis. Screening of bioactive compound libraries is an effective approach for repositioning FDA-approved drugs or discovering new treatments for human diseases (drug repositioning). Dabrafenib (DAB), a B-Raf inhibitor, was initially used for treating metastatic melanoma. The present study determined whether DAB modulated TGFBIp-mediated septic responses in HUVECs and in mice. Antiseptic functions of DAB were examined by measuring permeability, leukocyte adhesion and migration, and proinflammatory protein activation in TGFBIp-stimulated HUVECs and mice. In addition, beneficial effects of DAB on survival rate were examined using a mouse model of sepsis. We found that DAB inhibited TGFBIp-induced vascular barrier disruption, cell adhesion molecule (CAM) expression, and neutrophil adhesion/transendothelial migration toward human endothelial cells. DAB also suppressed TGFBIp-induced hyperpermeability and leukocyte migration in vivo. These results suggest that DAB exerts anti-inflammatory effects by inhibiting hyperpermeability, CAM expression, and leukocyte adhesion and migration, indicating its utility for treating vascular inflammatory diseases.
Collapse
Affiliation(s)
- In-Chul Lee
- Department of Cosmetic Science and Technology, Seowon University, Cheongju 28674, Republic of Korea
| | - Jong-Sup Bae
- College of Pharmacy, CMRI, Research Institute of Pharmaceutical Sciences, BK21 Plus KNU Multi-Omics based Creative Drug Research Team, Kyungpook National University, Daegu 41566, Republic of Korea.
| |
Collapse
|
35
|
Labay E, Mauceri HJ, Efimova EV, Flor AC, Sutton HG, Kron SJ, Weichselbaum RR. Repurposing cephalosporin antibiotics as pro-senescent radiosensitizers. Oncotarget 2017; 7:33919-33. [PMID: 27129153 PMCID: PMC5085128 DOI: 10.18632/oncotarget.8984] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 04/13/2016] [Indexed: 12/11/2022] Open
Abstract
Radiation therapy remains a significant therapeutic modality in the treatment of cancer. An attractive strategy would be to enhance the benefits of ionizing radiation (IR)with radiosensitizers. A high-content drug repurposing screen of approved and investigational agents, natural products and other small molecules has identified multiple candidates that blocked repair of IR damage in vitro. Here, we validated a subset of these hits in vitro and then examined effects on tumor growth after IR in a murine tumor model. Based on robust radiosensitization in vivo and other favorable properties of cephalexin, we conducted additional studies with other beta-lactam antibiotics. When combined with IR, each cephalosporin tested increased DNA damage and slowed tumor growth without affecting normal tissue toxicity. Our data implicate reactive oxygen species in the mechanism by which cephalosporins augment the effects of IR. This work provides a rationale for using commonly prescribed beta-lactam antibiotics as non-toxic radiosensitizers to enhance the therapeutic ratio of radiotherapy.
Collapse
Affiliation(s)
- Edwardine Labay
- Department of Radiation and Cellular Oncology, The University of Chicago, Chicago, IL, USA
| | - Helena J Mauceri
- Department of Radiation and Cellular Oncology, The University of Chicago, Chicago, IL, USA
| | - Elena V Efimova
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL, USA
| | - Amy C Flor
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL, USA
| | - Harold G Sutton
- Department of Radiation and Cellular Oncology, The University of Chicago, Chicago, IL, USA
| | - Stephen J Kron
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL, USA.,Ludwig Center for Metastasis Research, The University of Chicago, Chicago, IL, USA
| | - Ralph R Weichselbaum
- Department of Radiation and Cellular Oncology, The University of Chicago, Chicago, IL, USA.,Ludwig Center for Metastasis Research, The University of Chicago, Chicago, IL, USA
| |
Collapse
|
36
|
Butler KV, MacDonald IA, Hathaway NA, Jin J. Report and Application of a Tool Compound Data Set. J Chem Inf Model 2017; 57:2699-2706. [PMID: 29035535 PMCID: PMC5705340 DOI: 10.1021/acs.jcim.7b00343] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
![]()
Small molecule tool compounds have
enabled profound advances in
life science research. These chemicals are potent, cell active, and
selective, and, thus, are suitable for interrogating biological processes.
For these chemicals to be useful they must be correctly characterized
and researchers must be aware of them. We mined the ChEMBL bioactivity
database to identify high quality tool compounds in an unbiased way.
We identified 407 best-in-class compounds for 278 protein targets,
and these are reported in an annotated data set. Additionally, we
developed informatics functions and a web application for data visualization
and automated pharmacological hypothesis generation. These functions
were used to predict inhibitors of the Chromobox Protein Homologue
5 (CBX5) mediated gene repression pathway that currently lacks appropriate
inhibitors. The predictions were subsequently validated by a highly
specific cell based assay, revealing new chemical modulators of CBX5-mediated
heterochromatin formation. This data set and associated functions
will help researchers make the best use of these valuable compounds.
Collapse
Affiliation(s)
- Kyle V Butler
- Center for Chemical Biology and Drug Discovery, Departments of Pharmacological Sciences and Oncological Sciences, Icahn School of Medicine at Mount Sinai , New York, New York 10029, United States
| | - Ian A MacDonald
- Division of Chemical Biology and Medicinal Chemistry, Center for Integrative Chemical Biology and Drug Discovery, UNC Eshelman School of Pharmacy , Chapel Hill, North Carolina 27599, United States.,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill , Chapel Hill, North Carolina 27599, United States
| | - Nathaniel A Hathaway
- Division of Chemical Biology and Medicinal Chemistry, Center for Integrative Chemical Biology and Drug Discovery, UNC Eshelman School of Pharmacy , Chapel Hill, North Carolina 27599, United States.,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill , Chapel Hill, North Carolina 27599, United States
| | - Jian Jin
- Center for Chemical Biology and Drug Discovery, Departments of Pharmacological Sciences and Oncological Sciences, Icahn School of Medicine at Mount Sinai , New York, New York 10029, United States
| |
Collapse
|
37
|
Efimova EV, Ricco N, Labay E, Mauceri HJ, Flor AC, Ramamurthy A, Sutton HG, Weichselbaum RR, Kron SJ. HMG-CoA Reductase Inhibition Delays DNA Repair and Promotes Senescence After Tumor Irradiation. Mol Cancer Ther 2017; 17:407-418. [PMID: 29030460 DOI: 10.1158/1535-7163.mct-17-0288] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 07/07/2017] [Accepted: 08/30/2017] [Indexed: 12/19/2022]
Abstract
Despite significant advances in combinations of radiotherapy and chemotherapy, altered fractionation schedules and image-guided radiotherapy, many cancer patients fail to benefit from radiation. A prevailing hypothesis is that targeting repair of DNA double strand breaks (DSB) can enhance radiation effects in the tumor and overcome therapeutic resistance without incurring off-target toxicities. Unrepaired DSBs can block cancer cell proliferation, promote cancer cell death, and induce cellular senescence. Given the slow progress to date translating novel DSB repair inhibitors as radiosensitizers, we have explored drug repurposing, a proven route to improving speed, costs, and success rates of drug development. In a prior screen where we tracked resolution of ionizing radiation-induced foci (IRIF) as a proxy for DSB repair, we had identified pitavastatin (Livalo), an HMG-CoA reductase inhibitor commonly used for lipid lowering, as a candidate radiosensitizer. Here, we report that pitavastatin and other lipophilic statins are potent inhibitors of DSB repair in breast and melanoma models both in vitro and in vivo When combined with ionizing radiation, pitavastatin increased persistent DSBs, induced senescence, and enhanced acute effects of radiation on radioresistant melanoma tumors. shRNA knockdown implicated HMG-CoA reductase, farnesyl diphosphate synthase, and protein farnesyl transferase in IRIF resolution, DSB repair, and senescence. These data confirm on-target activity of statins, although via inhibition of protein prenylation rather than cholesterol biosynthesis. In light of prior studies demonstrating enhanced efficacy of radiotherapy in patients taking statins, this work argues for clinical evaluation of lipophilic statins as nontoxic radiosensitizers to enhance the benefits of image-guided radiotherapy. Mol Cancer Ther; 17(2); 407-18. ©2017 AACRSee all articles in this MCT Focus section, "Developmental Therapeutics in Radiation Oncology."
Collapse
Affiliation(s)
- Elena V Efimova
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, Illinois
| | - Natalia Ricco
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, Illinois
| | - Edwardine Labay
- Department of Radiation and Cellular Oncology, The University of Chicago, Chicago, Illinois
| | - Helena J Mauceri
- Department of Radiation and Cellular Oncology, The University of Chicago, Chicago, Illinois
| | - Amy C Flor
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, Illinois
| | - Aishwarya Ramamurthy
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, Illinois
| | - Harold G Sutton
- Department of Radiation and Cellular Oncology, The University of Chicago, Chicago, Illinois
| | - Ralph R Weichselbaum
- Department of Radiation and Cellular Oncology, The University of Chicago, Chicago, Illinois
- Ludwig Center for Metastasis Research, The University of Chicago, Chicago, Illinois
| | - Stephen J Kron
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, Illinois.
- Ludwig Center for Metastasis Research, The University of Chicago, Chicago, Illinois
| |
Collapse
|
38
|
Li GB, Yu ZJ, Liu S, Huang LY, Yang LL, Lohans CT, Yang SY. IFPTarget: A Customized Virtual Target Identification Method Based on Protein–Ligand Interaction Fingerprinting Analyses. J Chem Inf Model 2017; 57:1640-1651. [PMID: 28661143 DOI: 10.1021/acs.jcim.7b00225] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Guo-Bo Li
- Key
Laboratory of Drug Targeting and Drug Delivery System of Ministry
of Education, West China School of Pharmacy, Sichuan University, Sichuan 610041, China
| | - Zhu-Jun Yu
- Key
Laboratory of Drug Targeting and Drug Delivery System of Ministry
of Education, West China School of Pharmacy, Sichuan University, Sichuan 610041, China
| | - Sha Liu
- Key
Laboratory of Drug Targeting and Drug Delivery System of Ministry
of Education, West China School of Pharmacy, Sichuan University, Sichuan 610041, China
| | - Lu-Yi Huang
- Laboratory
of Biotherapy and Cancer Center, West China Hospital, West China Medical
School, Sichuan University, Sichuan 610041, China
| | - Ling-Ling Yang
- College
of Food and Bioengineering, Xihua University, Sichuan 610039, China
| | - Christopher T. Lohans
- Department
of Chemistry, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, United Kingdom
| | - Sheng-Yong Yang
- Laboratory
of Biotherapy and Cancer Center, West China Hospital, West China Medical
School, Sichuan University, Sichuan 610041, China
| |
Collapse
|
39
|
Chen L, Wolff DW, Xie Y, Lin MF, Tu Y. Cyproterone acetate enhances TRAIL-induced androgen-independent prostate cancer cell apoptosis via up-regulation of death receptor 5. BMC Cancer 2017; 17:179. [PMID: 28270124 PMCID: PMC5341373 DOI: 10.1186/s12885-017-3153-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 02/22/2017] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Virtually all prostate cancer deaths occur due to obtaining the castration-resistant phenotype after prostate cancer cells escaped from apoptosis and/or growth suppression initially induced by androgen receptor blockade. TNF-related apoptosis-inducing ligand (TRAIL) was an attractive cancer therapeutic agent due to its minimal toxicity to normal cells and remarkable apoptotic activity in tumor cells. However, most localized cancers including prostate cancer are resistant to TRAIL-induced apoptosis, thereby creating a therapeutic challenge of inducing TRAIL sensitivity in cancer cells. Herein the effects of cyproterone acetate, an antiandrogen steroid, on the TRAIL-induced apoptosis of androgen receptor-negative prostate cancer cells are reported. METHODS Cell apoptosis was assessed by both annexin V/propidium iodide labeling and poly (ADP-ribose) polymerase cleavage assays. Gene and protein expression changes were determined by quantitative real-time PCR and western blot assays. The effect of cyproterone acetate on gene promoter activity was determined by luciferase reporter assay. RESULTS Cyproterone acetate but not AR antagonist bicalutamide dramatically increased the susceptibility of androgen receptor-negative human prostate cancer PC-3 and DU145 cells to TRAIL-induced apoptosis but no effects on immortalized human prostate stromal PS30 cells and human embryonic kidney HEK293 cells. Further investigation of the TRAIL-induced apoptosis pathway revealed that cyproterone acetate exerted its effect by selectively increasing death receptor 5 (DR5) mRNA and protein expression. Cyproterone acetate treatment also increased DR5 gene promoter activity, which could be abolished by mutation of a consensus binding domain of transcription factor CCAAT-enhancer-binding protein homologous protein (CHOP) in the DR5 gene promoter. Cyproterone acetate increases CHOP expression in a concentration and time-dependent manner and endoplasmic reticulum stress reducer 4-phenylbutyrate could block cyproterone acetate-induced CHOP and DR5 up-regulation. More importantly, siRNA silencing of CHOP significantly reduced cyproterone acetate-induced DR5 up-regulation and TRAIL sensitivity in prostate cancer cells. CONCLUSIONS Our study shows a novel effect of cyproterone acetate on apoptosis pathways in prostate cancer cells and raises the possibility that a combination of TRAIL with cyproterone acetate could be a promising strategy for treating castration-resistant prostate cancer.
Collapse
Affiliation(s)
- Linjie Chen
- Department of Pharmacology, Creighton University School of Medicine, 2500 California Plaza, Omaha, NE 68178 USA
| | - Dennis W. Wolff
- Department of Biomedical Sciences, University of South Carolina School of Medicine Greenville, Greenville, SC USA
| | - Yan Xie
- Department of Pharmacology, Creighton University School of Medicine, 2500 California Plaza, Omaha, NE 68178 USA
| | - Ming-Fong Lin
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198 USA
| | - Yaping Tu
- Department of Pharmacology, Creighton University School of Medicine, 2500 California Plaza, Omaha, NE 68178 USA
| |
Collapse
|
40
|
Abstract
Designing drugs that can simultaneously interact with multiple targets is a promising approach for treating complicated diseases. Compared to using combinations of single target drugs, multitarget drugs have advantages of higher efficacy, improved safety profile, and simpler administration. Many in silico methods have been developed to approach different aspects of this polypharmacology-guided drug design, particularly for drug repurposing and multitarget drug design. In this review, we summarize recent progress in computational multitarget drug design and discuss their advantages and limitations. Perspectives for future drug development will also be discussed.
Collapse
Affiliation(s)
- Weilin Zhang
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies (AAIS), Peking University , Beijing 100871, People's Republic of China
| | - Jianfeng Pei
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies (AAIS), Peking University , Beijing 100871, People's Republic of China
| | - Luhua Lai
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies (AAIS), Peking University , Beijing 100871, People's Republic of China.,Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies (AAIS), Peking University , Beijing 100871, People's Republic of China.,BNLMS, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University , Beijing 100871, People's Republic of China
| |
Collapse
|
41
|
Lee EY, Hwang YG, Lee HS. Hypothalamic neuronal origin of neuropeptide Y (NPY) or cocaine- and amphetamine-regulated transcript (CART) fibers projecting to the tuberomammillary nucleus of the rat. Brain Res 2017; 1657:16-28. [DOI: 10.1016/j.brainres.2016.11.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 11/17/2016] [Accepted: 11/21/2016] [Indexed: 12/25/2022]
|
42
|
Jung B, Kang H, Lee W, Noh HJ, Kim YS, Han MS, Baek MC, Kim J, Bae JS. Anti-septic effects of dabrafenib on HMGB1-mediated inflammatory responses. BMB Rep 2017; 49:214-9. [PMID: 26592934 PMCID: PMC4915240 DOI: 10.5483/bmbrep.2016.49.4.220] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Indexed: 12/26/2022] Open
Abstract
A nucleosomal protein, high mobility group box 1 (HMGB1) is known to be a late mediator of sepsis. Dabrafenib is a B-Raf inhibitor and initially used for the treatment of metastatic melanoma therapy. Inhibition of HMGB1 and renewal of vascular integrity is appearing as an engaging therapeutic strategy in the administration of severe sepsis or septic shock. Here, we examined the effects of dabrafenib (DAB) on the modulation of HMGB1-mediated septic responses. DAB inhibited the release of HMGB1 and downregulated HMGB1-dependent inflammatory responses by enhancing the expressions of cell adhesion molecules (CAMs) in human endothelial cells. In addition, treatment with DAB inhibited the HMGB1 secretion by CLP and sepsis-related mortality and pulmonary injury. This study demonstrated that DAB could be alternative therapeutic options for sepsis or septic shock via the inhibition of the HMGB1 signaling pathway. [BMB Reports 2016; 49(4): 214-219].
Collapse
Affiliation(s)
- Byeongjin Jung
- College of Pharmacy, CMRI, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Korea
| | - Hyejin Kang
- College of Pharmacy, CMRI, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Korea
| | - Wonhwa Lee
- College of Pharmacy, CMRI, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566; Department of Biochemistry and Cell Biology, BK21 Plus KNU Biomedical Convergence Program, School of Medicine, Kyungpook National University, Daegu 41944, Korea
| | - Hyun Jin Noh
- Department of Biochemistry and Department of Biomedical Sciences, Ajou University School of Medicine, Suwon 16499, Korea
| | - You-Sun Kim
- Department of Biochemistry and Department of Biomedical Sciences, Ajou University School of Medicine, Suwon 16499, Korea
| | - Min-Su Han
- Laboratory for Arthritis and Bone Biology, Fatima Research Institute, Fatima Hospital, Daegu 41199, Korea
| | - Moon-Chang Baek
- Department of Molecular Medicine, CMRI, School of Medicine, Kyungpook National University, Daegu 41944, Korea
| | - Jaehong Kim
- Department of Biochemistry, School of Medicine, Gachon University, Incheon 21999, Korea
| | - Jong-Sup Bae
- College of Pharmacy, CMRI, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Korea
| |
Collapse
|
43
|
Cardone L. Biocomputing drug repurposing toward targeted therapies. Aging (Albany NY) 2016; 8:2609-2610. [PMID: 27920407 PMCID: PMC5191858 DOI: 10.18632/aging.101135] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 11/29/2016] [Indexed: 11/25/2022]
Affiliation(s)
- Luca Cardone
- Department of Research, Advanced Diagnostic, and Technological Innovation, Regina Elena National Cancer Institute - IRCCS, 00144 Rome, Italy
| |
Collapse
|
44
|
Rezaei Kolahchi A, Khadem Mohtaram N, Pezeshgi Modarres H, Mohammadi MH, Geraili A, Jafari P, Akbari M, Sanati-Nezhad A. Microfluidic-Based Multi-Organ Platforms for Drug Discovery. MICROMACHINES 2016; 7:E162. [PMID: 30404334 PMCID: PMC6189912 DOI: 10.3390/mi7090162] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 08/23/2016] [Accepted: 08/24/2016] [Indexed: 12/18/2022]
Abstract
Development of predictive multi-organ models before implementing costly clinical trials is central for screening the toxicity, efficacy, and side effects of new therapeutic agents. Despite significant efforts that have been recently made to develop biomimetic in vitro tissue models, the clinical application of such platforms is still far from reality. Recent advances in physiologically-based pharmacokinetic and pharmacodynamic (PBPK-PD) modeling, micro- and nanotechnology, and in silico modeling have enabled single- and multi-organ platforms for investigation of new chemical agents and tissue-tissue interactions. This review provides an overview of the principles of designing microfluidic-based organ-on-chip models for drug testing and highlights current state-of-the-art in developing predictive multi-organ models for studying the cross-talk of interconnected organs. We further discuss the challenges associated with establishing a predictive body-on-chip (BOC) model such as the scaling, cell types, the common medium, and principles of the study design for characterizing the interaction of drugs with multiple targets.
Collapse
Affiliation(s)
- Ahmad Rezaei Kolahchi
- BioMEMS and Bioinspired Microfluidic Laboratory, Department of Mechanical and Manufacturing Engineering, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada.
| | - Nima Khadem Mohtaram
- Laboratory for Innovations in MicroEngineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, BC V8P 5C2, Canada.
- Division of Medical Sciences, University of Victoria, Victoria, BC V8P 5C2, Canada.
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA.
| | - Hassan Pezeshgi Modarres
- BioMEMS and Bioinspired Microfluidic Laboratory, Department of Mechanical and Manufacturing Engineering, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada.
| | - Mohammad Hossein Mohammadi
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Azadi Ave., Tehran 11155-9516, Iran.
| | - Armin Geraili
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Azadi Ave., Tehran 11155-9516, Iran.
| | - Parya Jafari
- Department of Electrical Engineering, Sharif University of Technology, Azadi Ave., Tehran 11155-9516, Iran.
| | - Mohsen Akbari
- Laboratory for Innovations in MicroEngineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, BC V8P 5C2, Canada.
- Division of Medical Sciences, University of Victoria, Victoria, BC V8P 5C2, Canada.
| | - Amir Sanati-Nezhad
- BioMEMS and Bioinspired Microfluidic Laboratory, Department of Mechanical and Manufacturing Engineering, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada.
- Center for Bioengineering Research and Education, Biomedical Engineering Program, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada.
| |
Collapse
|
45
|
Lee HG, Kim H, Kim EJ, Park PG, Dong SM, Choi TH, Kim H, Chong CR, Liu JO, Chen J, Ambinder RF, Hayward SD, Park JH, Lee JM. Targeted therapy for Epstein-Barr virus-associated gastric carcinoma using low-dose gemcitabine-induced lytic activation. Oncotarget 2016; 6:31018-29. [PMID: 26427042 PMCID: PMC4741585 DOI: 10.18632/oncotarget.5041] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 08/24/2015] [Indexed: 12/26/2022] Open
Abstract
The constant presence of the viral genome in Epstein-Barr virus (EBV)-associated gastric cancers (EBVaGCs) suggests the applicability of novel EBV-targeted therapies. The antiviral nucleoside drug, ganciclovir (GCV), is effective only in the context of the viral lytic cycle in the presence of EBV-encoded thymidine kinase (TK)/protein kinase (PK) expression. In this study, screening of the Johns Hopkins Drug Library identified gemcitabine as a candidate for combination treatment with GCV. Pharmacological induction of EBV-TK or PK in EBVaGC-originated tumor cells were used to study combination treatment with GCV in vitro and in vivo. Gemcitabine was found to be a lytic inducer via activation of the ataxia telangiectasia-mutated (ATM)/p53 genotoxic stress pathway in EBVaGC. Using an EBVaGC mouse model and a [125I] fialuridine (FIAU)-based lytic activation imaging system, we evaluated gemcitabine-induced lytic activation in an in vivo system and confirmed the efficacy of gemcitabine-GCV combination treatment. This viral enzyme-targeted anti-tumor strategy may provide a new therapeutic approach for EBVaGCs.
Collapse
Affiliation(s)
- Hyun Gyu Lee
- Department of Microbiology and Immunology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hyemi Kim
- Department of Microbiology and Immunology, Yonsei University College of Medicine, Seoul, Republic of Korea.,Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Eun Jung Kim
- Radiopharmaceutical Research Team, Korea Institute of Radiological and Medical Sciences, Seoul, Republic of Korea
| | - Pil-Gu Park
- Department of Microbiology and Immunology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Seung Myung Dong
- Research Institute, National Cancer Center, Goyang, Gyeonggi-do, Republic of Korea
| | - Tae Hyun Choi
- Radiopharmaceutical Research Team, Korea Institute of Radiological and Medical Sciences, Seoul, Republic of Korea
| | - Hyunki Kim
- Department of Pathology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Curtis R Chong
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, MA, USA.,Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, MA, USA
| | - Jun O Liu
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jianmeng Chen
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Richard F Ambinder
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - S Diane Hayward
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jeon Han Park
- Department of Microbiology and Immunology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jae Myun Lee
- Department of Microbiology and Immunology, Yonsei University College of Medicine, Seoul, Republic of Korea.,Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
46
|
Lee S, Ku SK, Bae JS. Anti-inflammatory effects of dabrafenib on polyphosphate-mediated vascular disruption. Chem Biol Interact 2016; 256:266-73. [DOI: 10.1016/j.cbi.2016.07.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 07/09/2016] [Accepted: 07/21/2016] [Indexed: 12/14/2022]
|
47
|
Min G, Ku SK, Jeong S, Baek MC, Bae JS. Suppressive effects of methylthiouracil on polyphosphate-mediated vascular inflammatory responses. J Cell Mol Med 2016; 20:2333-2340. [PMID: 27421058 PMCID: PMC5134378 DOI: 10.1111/jcmm.12925] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Accepted: 06/13/2016] [Indexed: 12/13/2022] Open
Abstract
Drug repositioning is used to discover drug candidates to treat human diseases, through the application of drugs or compounds that are approved for the treatment of other diseases. This method can significantly reduce the time required and cost of discovering new drug candidates for human diseases. Previous studies have reported pro‐inflammatory responses of endothelial cells to the release of polyphosphate (PolyP). In this study, we examined the anti‐inflammatory responses and mechanisms of methylthiouracil (MTU), which is an antithyroid drug, and its effects on PolyP‐induced septic activities in human umbilical vein endothelial cells (HUVECs) and mice. The survival rates, septic biomarker levels, behaviour of human neutrophils and vascular permeability were determined in PolyP‐activated HUVECs and mice. MTU suppressed the PolyP‐mediated vascular barrier permeability, up‐regulation of inflammatory biomarkers, adhesion/migration of leucocytes, and activation and/or production of nuclear factor‐κB, tumour necrosis factor‐α and interleukin‐6. Furthermore, MTU demonstrated protective effects on PolyP‐mediated lethal death and the levels of the related septic biomarkers. Therefore, these results indicated the therapeutic potential of MTU on various systemic inflammatory diseases, such as sepsis or septic shock.
Collapse
Affiliation(s)
- Gahee Min
- College of Pharmacy, CMRI, Research Institute of Pharmaceutical Sciences, BK21 Plus KNU Multi-Omics based Creative Drug Research Team, Kyungpook National University, Daegu, Korea
| | - Sae-Kwang Ku
- Department of Anatomy and Histology, College of Korean Medicine, Daegu Haany University, Gyeongsan, Korea
| | - Seongdo Jeong
- College of Pharmacy, CMRI, Research Institute of Pharmaceutical Sciences, BK21 Plus KNU Multi-Omics based Creative Drug Research Team, Kyungpook National University, Daegu, Korea
| | - Moon-Chang Baek
- Department of Molecular Medicine, CMRI, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Jong-Sup Bae
- College of Pharmacy, CMRI, Research Institute of Pharmaceutical Sciences, BK21 Plus KNU Multi-Omics based Creative Drug Research Team, Kyungpook National University, Daegu, Korea
| |
Collapse
|
48
|
Bongiorno-Borbone L, Giacobbe A, Compagnone M, Eramo A, De Maria R, Peschiaroli A, Melino G. Anti-tumoral effect of desmethylclomipramine in lung cancer stem cells. Oncotarget 2016. [PMID: 26219257 PMCID: PMC4627282 DOI: 10.18632/oncotarget.4700] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Lung cancer is the most feared of all cancers because of its heterogeneity and resistance to available treatments. Cancer stem cells (CSCs) are the cell population responsible for lung cancer chemoresistance and are a very good model for testing new targeted therapies. Clomipramine is an FDA-approved antidepressant drug, able to inhibit in vitro the E3 ubiquitin ligase Itch and potentiate the pro-apoptotic effects of DNA damaging induced agents in several cancer cell lines. Here, we investigated the potential therapeutic effect of desmethylclomipramine (DCMI), the active metabolite of Clomipramine, on the CSCs homeostasis. We show that DCMI inhibits lung CSCs growth, decreases their stemness potential and increases the cytotoxic effect of conventional chemotherapeutic drugs. Being DCMI an inhibitor of the E3 ubiquitin ligase Itch, we also verified the effect of Itch deregulation on CSCs survival. We found that the siRNA-mediated depletion of Itch induces similar anti-proliferative effects on lung CSCs, suggesting that DCMI might exert its effect, at least in part, by inhibiting Itch. Notably, Itch expression is a negative prognostic factor in two primary lung tumors datasets, supporting the potential clinical relevance of Itch inhibition to circumvent drug resistance in the treatment of lung cancer.
Collapse
Affiliation(s)
- Lucilla Bongiorno-Borbone
- Department of Experimental Medicine and Surgery, University of Rome "Tor Vergata", Via Montpellier, Rome, Italy
| | - Arianna Giacobbe
- Department of Experimental Medicine and Surgery, University of Rome "Tor Vergata", Via Montpellier, Rome, Italy
| | - Mirco Compagnone
- Department of Experimental Medicine and Surgery, University of Rome "Tor Vergata", Via Montpellier, Rome, Italy
| | - Adriana Eramo
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | | | | | - Gerry Melino
- Department of Experimental Medicine and Surgery, University of Rome "Tor Vergata", Via Montpellier, Rome, Italy.,Medical Research Council, Toxicology Unit, Hodgkin Building, Leicester University, Leicester, United Kingdom
| |
Collapse
|
49
|
Generating Gene Ontology-Disease Inferences to Explore Mechanisms of Human Disease at the Comparative Toxicogenomics Database. PLoS One 2016; 11:e0155530. [PMID: 27171405 PMCID: PMC4865041 DOI: 10.1371/journal.pone.0155530] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 04/29/2016] [Indexed: 12/20/2022] Open
Abstract
Strategies for discovering common molecular events among disparate diseases hold promise for improving understanding of disease etiology and expanding treatment options. One technique is to leverage curated datasets found in the public domain. The Comparative Toxicogenomics Database (CTD; http://ctdbase.org/) manually curates chemical-gene, chemical-disease, and gene-disease interactions from the scientific literature. The use of official gene symbols in CTD interactions enables this information to be combined with the Gene Ontology (GO) file from NCBI Gene. By integrating these GO-gene annotations with CTD’s gene-disease dataset, we produce 753,000 inferences between 15,700 GO terms and 4,200 diseases, providing opportunities to explore presumptive molecular underpinnings of diseases and identify biological similarities. Through a variety of applications, we demonstrate the utility of this novel resource. As a proof-of-concept, we first analyze known repositioned drugs (e.g., raloxifene and sildenafil) and see that their target diseases have a greater degree of similarity when comparing GO terms vs. genes. Next, a computational analysis predicts seemingly non-intuitive diseases (e.g., stomach ulcers and atherosclerosis) as being similar to bipolar disorder, and these are validated in the literature as reported co-diseases. Additionally, we leverage other CTD content to develop testable hypotheses about thalidomide-gene networks to treat seemingly disparate diseases. Finally, we illustrate how CTD tools can rank a series of drugs as potential candidates for repositioning against B-cell chronic lymphocytic leukemia and predict cisplatin and the small molecule inhibitor JQ1 as lead compounds. The CTD dataset is freely available for users to navigate pathologies within the context of extensive biological processes, molecular functions, and cellular components conferred by GO. This inference set should aid researchers, bioinformaticists, and pharmaceutical drug makers in finding commonalities in disease mechanisms, which in turn could help identify new therapeutics, new indications for existing pharmaceuticals, potential disease comorbidities, and alerts for side effects.
Collapse
|
50
|
Lee HM, Kim Y. Drug Repurposing Is a New Opportunity for Developing Drugs against Neuropsychiatric Disorders. SCHIZOPHRENIA RESEARCH AND TREATMENT 2016; 2016:6378137. [PMID: 27073698 PMCID: PMC4814692 DOI: 10.1155/2016/6378137] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 02/24/2016] [Indexed: 01/03/2023]
Abstract
Better the drugs you know than the drugs you do not know. Drug repurposing is a promising, fast, and cost effective method that can overcome traditional de novo drug discovery and development challenges of targeting neuropsychiatric and other disorders. Drug discovery and development targeting neuropsychiatric disorders are complicated because of the limitations in understanding pathophysiological phenomena. In addition, traditional de novo drug discovery and development are risky, expensive, and time-consuming processes. One alternative approach, drug repurposing, has emerged taking advantage of off-target effects of the existing drugs. In order to identify new opportunities for the existing drugs, it is essential for us to understand the mechanisms of action of drugs, both biologically and pharmacologically. By doing this, drug repurposing would be a more effective method to develop drugs against neuropsychiatric and other disorders. Here, we review the difficulties in drug discovery and development in neuropsychiatric disorders and the extent and perspectives of drug repurposing.
Collapse
Affiliation(s)
- Hyeong-Min Lee
- Department of Cell Biology & Physiology, School of Medicine, University of North Carolina, 115 Mason Farm Road, Chapel Hill, NC 27599, USA
| | - Yuna Kim
- Department of Pediatrics, School of Medicine, Duke University, 905 S. LaSalle Street, Durham, NC 27710, USA
| |
Collapse
|