1
|
Li X, Liu Y, Tang Y, Xia Z. Transformation of macrophages into myofibroblasts in fibrosis-related diseases: emerging biological concepts and potential mechanism. Front Immunol 2024; 15:1474688. [PMID: 39386212 PMCID: PMC11461261 DOI: 10.3389/fimmu.2024.1474688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 09/06/2024] [Indexed: 10/12/2024] Open
Abstract
Macrophage-myofibroblast transformation (MMT) transforms macrophages into myofibroblasts in a specific inflammation or injury microenvironment. MMT is an essential biological process in fibrosis-related diseases involving the lung, heart, kidney, liver, skeletal muscle, and other organs and tissues. This process consists of interacting with various cells and molecules and activating different signal transduction pathways. This review deeply discussed the molecular mechanism of MMT, clarified crucial signal pathways, multiple cytokines, and growth factors, and formed a complex regulatory network. Significantly, the critical role of transforming growth factor-β (TGF-β) and its downstream signaling pathways in this process were clarified. Furthermore, we discussed the significance of MMT in physiological and pathological conditions, such as pulmonary fibrosis and cardiac fibrosis. This review provides a new perspective for understanding the interaction between macrophages and myofibroblasts and new strategies and targets for the prevention and treatment of MMT in fibrotic diseases.
Collapse
Affiliation(s)
- Xiujun Li
- Health Science Center, Chifeng University, Chifeng, China
| | - Yuyan Liu
- Rehabilitation Medicine College, Shandong Second Medical University, Jinan, China
| | - Yongjun Tang
- Department of Emergency, Affiliated Hospital of Chifeng University, Chifeng, China
| | - Zhaoyi Xia
- Department of Library, Children’s Hospital Affiliated to Shandong University, Jinan, China
- Department of Library, Jinan Children’s Hospital, Jinan, China
| |
Collapse
|
2
|
Wang L, Wu H, Liu Z, Sun R, Li Y, Si Y, Nie Y, Qiao Y, Qian X, Zhang S, Li G, Sun W, Pan Y, Akkaya EU. N-Phenyl-2-Pyridone-Derived Endoperoxide Suppressing both Lung Cancer and Idiopathic Pulmonary Fibrosis Progression by Three-Pronged Action. Angew Chem Int Ed Engl 2024; 63:e202408473. [PMID: 38979839 DOI: 10.1002/anie.202408473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 06/18/2024] [Accepted: 07/04/2024] [Indexed: 07/10/2024]
Abstract
We report an endoperoxide compound (E5) which can deliver three therapeutic components by a thermal cycloreversion, namely, singlet oxygen, triplet oxygen and 3-methyl-N-phenyl-2-pyridone (P5), thus targeting multiple mechanisms for treating non-small cell lung cancer and idiopathic pulmonary fibrosis. In aqueous environment, E5 undergoes clean reaction to afford three therapeutic components with a half-life of 8.3 hours without the generation of other by-products, which not only achieves good cytotoxicity toward lung cancer cells and decreases the levels of hypoxia-inducible factor 1α (HIF-1α) protein, but also inhibits the transforming growth factor β1 (TGF-β1) induced fibrosis in vitro. In vivo experiments also demonstrated the efficacy of E5 in inhibiting tumor growth and relieving idiopathic pulmonary fibrosis, while exhibiting good biocompatibility. Many lines of evidence reveal the therapeutic efficacy of singlet oxygen and 3-methyl-N-phenyl-2-pyridone for these two lung diseases, and triplet oxygen could downregulate HIF-1α and relieve tumor hypoxia which is a critical issue in photodynamic therapy (PDT). Unlike other combination therapies, in which multiple therapeutic agents are given in independent formulations, our work demonstrates single molecule endoperoxide prodrugs could be developed as new platforms for treatment of cancers and related diseases.
Collapse
Affiliation(s)
- Lei Wang
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Department of Pharmaceutical Sciences, Dalian University of Technology, 116024, Dalian, China
| | - Hao Wu
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Department of Pharmaceutical Sciences, Dalian University of Technology, 116024, Dalian, China
| | - Ziang Liu
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Department of Pharmaceutical Sciences, Dalian University of Technology, 116024, Dalian, China
| | - Rensong Sun
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Department of Pharmaceutical Sciences, Dalian University of Technology, 116024, Dalian, China
| | - Yanping Li
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Department of Pharmaceutical Sciences, Dalian University of Technology, 116024, Dalian, China
| | - Yu Si
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Department of Pharmaceutical Sciences, Dalian University of Technology, 116024, Dalian, China
| | - Yun Nie
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Department of Pharmaceutical Sciences, Dalian University of Technology, 116024, Dalian, China
| | - Yuan Qiao
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Department of Pharmaceutical Sciences, Dalian University of Technology, 116024, Dalian, China
| | - Xiao Qian
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Department of Pharmaceutical Sciences, Dalian University of Technology, 116024, Dalian, China
| | - Shengli Zhang
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Department of Pharmaceutical Sciences, Dalian University of Technology, 116024, Dalian, China
| | - Guangzhe Li
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Department of Pharmaceutical Sciences, Dalian University of Technology, 116024, Dalian, China
| | - Wen Sun
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Department of Pharmaceutical Sciences, Dalian University of Technology, 116024, Dalian, China
| | - Yue Pan
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Department of Pharmaceutical Sciences, Dalian University of Technology, 116024, Dalian, China
| | - Engin U Akkaya
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Department of Pharmaceutical Sciences, Dalian University of Technology, 116024, Dalian, China
| |
Collapse
|
3
|
Bai X, Chen Q, Li F, Teng Y, Tang M, Huang J, Xu X, Zhang XQ. Optimized inhaled LNP formulation for enhanced treatment of idiopathic pulmonary fibrosis via mRNA-mediated antibody therapy. Nat Commun 2024; 15:6844. [PMID: 39122711 PMCID: PMC11315999 DOI: 10.1038/s41467-024-51056-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 07/24/2024] [Indexed: 08/12/2024] Open
Abstract
Lipid nanoparticle-assisted mRNA inhalation therapy necessitates addressing challenges such as resistance to shear force damage, mucus penetration, cellular internalization, rapid lysosomal escape, and target protein expression. Here, we introduce the innovative "LOOP" platform with a four-step workflow to develop inhaled lipid nanoparticles specifically for pulmonary mRNA delivery. iLNP-HP08LOOP featuring a high helper lipid ratio, acidic dialysis buffer, and excipient-assisted nebulization buffer, demonstrates exceptional stability and enhanced mRNA expression in the lungs. By incorporating mRNA encoding IL-11 single chain fragment variable (scFv), scFv@iLNP-HP08LOOP effectively delivers and secretes IL-11 scFv to the lungs of male mice, significantly inhibiting fibrosis. This formulation surpasses both inhaled and intravenously injected IL-11 scFv in inhibiting fibroblast activation and extracellular matrix deposition. The HP08LOOP system is also compatible with commercially available ALC0315 LNPs. Thus, the "LOOP" method presents a powerful platform for developing inhaled mRNA nanotherapeutics with potential for treating various respiratory diseases, including idiopathic pulmonary fibrosis.
Collapse
Affiliation(s)
- Xin Bai
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, China
- National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, Shanghai, China
| | - Qijing Chen
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, China
- National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, Shanghai, China
| | - Fengqiao Li
- Department of Chemical and Materials Engineering, New Jersey Institute of Technology, Newark, NJ, USA
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, USA
| | - Yilong Teng
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, China
- National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, Shanghai, China
| | - Maoping Tang
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, China
- National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, Shanghai, China
| | - Jia Huang
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, China
- National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoyang Xu
- Department of Chemical and Materials Engineering, New Jersey Institute of Technology, Newark, NJ, USA.
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, USA.
| | - Xue-Qing Zhang
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, China.
- National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
4
|
Gupta N, Paryani M, Patel S, Bariya A, Srivastava A, Pathak Y, Butani S. Therapeutic Strategies for Idiopathic Pulmonary Fibrosis - Thriving Present and Promising Tomorrow. J Clin Pharmacol 2024; 64:779-798. [PMID: 38346921 DOI: 10.1002/jcph.2408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 01/11/2024] [Indexed: 06/27/2024]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a continuous, progressive, and lethal age-related respiratory disease. It is characterized by condensed and rigid lung tissue, which leads to a decline in the normal functioning of the lungs. The pathophysiology of IPF has still not been completely elucidated, so current strategies are lagging behind with respect to improving the condition of patients with IPF and increasing their survival rate. The desire for a better understanding of the pathobiology of IPF and its early detection has led to the identification of various biomarkers associated with IPF. The use of drugs such as pirfenidone and nintedanib as a safe and effective treatment alternative have marked a new chapter in the treatment of IPF. However, nonpharmacological therapies, involving long-term oxygen therapy, transplantation of the lungs, pulmonary rehabilitation, ventilation, and palliative care for cough and dyspnea, are still considered to be beneficial as supplementary methods for IPF therapy. A major risk factor for IPF is aging, with associated hallmarks such as telomere attrition, senescence, epigenetic drift, stem cell exhaustion, loss of proteostasis, and mitochondrial dysfunction. These are promising earmarks for the development of potential therapy for the disease. In this review, we have discussed current and emerging novel therapeutic strategies for IPF, especially for targets associated with age-related mechanisms.
Collapse
Affiliation(s)
- Nikita Gupta
- Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat, India
| | - Mitali Paryani
- Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat, India
| | - Snehal Patel
- Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat, India
| | - Aditi Bariya
- Arihant School of Pharmacy Education and Research, Adalaj, Gandhinagar, Gujarat, India
| | - Anshu Srivastava
- Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat, India
| | - Yashwant Pathak
- USF Health Taneja College of Pharmacy, University of South Florida, Tampa, FL, USA
- Faculty of Pharmacy, Airlangga University, Surabaya, Indonesia
| | - Shital Butani
- Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat, India
| |
Collapse
|
5
|
Ji H, Song X, Lv X, Shao F, Long Y, Song Y, Song W, Qiao P, Gai Y, Jiang D, Lan X. [ 68Ga]FAPI PET for Imaging and Treatment Monitoring in a Preclinical Model of Pulmonary Fibrosis: Comparison to [ 18F]FDG PET and CT. Pharmaceuticals (Basel) 2024; 17:726. [PMID: 38931393 PMCID: PMC11206307 DOI: 10.3390/ph17060726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 04/30/2024] [Accepted: 05/07/2024] [Indexed: 06/28/2024] Open
Abstract
PURPOSE This study aimed to evaluate the feasibility of using [68Ga]-fibroblast-activating protein inhibitor (FAPI) positron emission tomography (PET) imaging for diagnosing pulmonary fibrosis in a mouse model. We also examined its value in monitoring treatment response and compared it with traditional [18F]-fluorodeoxyglucose (FDG) PET and computed tomography (CT) imaging. METHODS A model of idiopathic pulmonary fibrosis was established using intratracheal injection of bleomycin (BLM, 2 mg/kg) into C57BL/6 male mice. For the treatment of IPF, a daily oral dose of 400 mg/kg/day of pirfenidone was administered from 9 to 28 days after the establishment of the model. Disease progression and treatment efficacy were assessed at different stages of the disease every week for four weeks using CT, [18F]FDG PET, and [68Ga]FAPI PET (baseline imaging performed at week 0). Mice were sacrificed and lung tissues were harvested for hematoxylin-eosin staining, picrosirius red staining, and immunohistochemical staining for glucose transporter 1 (GLUT1) and FAP. Expression levels of GLUT1 and FAP in pathological sections were quantified. Correlations between imaging parameters and pathological quantitative values were analyzed. RESULTS CT, [18F]FDG PET and [68Ga]FAPI PET revealed anatomical and functional changes in the lung that reflected progression of pulmonary fibrosis. In untreated mice with pulmonary fibrosis, lung uptake of [18F]FDG peaked on day 14, while [68Ga]FAPI uptake and mean lung density peaked on day 21. In mice treated with pirfenidone, mean lung density and lung uptake of both PET tracers decreased. Mean lung density, [18F]FDG uptake, and [68Ga]FAPI uptake correlated well with quantitative values of picrosirius red staining, GLUT1 expression, and FAP expression, respectively. Conclusions: Although traditional CT and [18F]FDG PET reflect anatomical and metabolic status in fibrotic lung, [68Ga]FAPI PET provides a means of evaluating fibrosis progression and monitoring treatment response.
Collapse
Affiliation(s)
- Hao Ji
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (H.J.); (X.S.); (X.L.); (F.S.); (Y.L.); (Y.S.); (W.S.); (P.Q.); (Y.G.)
- Hubei Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Xiangming Song
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (H.J.); (X.S.); (X.L.); (F.S.); (Y.L.); (Y.S.); (W.S.); (P.Q.); (Y.G.)
- Hubei Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Xiaoying Lv
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (H.J.); (X.S.); (X.L.); (F.S.); (Y.L.); (Y.S.); (W.S.); (P.Q.); (Y.G.)
- Hubei Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Fuqiang Shao
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (H.J.); (X.S.); (X.L.); (F.S.); (Y.L.); (Y.S.); (W.S.); (P.Q.); (Y.G.)
- Hubei Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Yu Long
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (H.J.); (X.S.); (X.L.); (F.S.); (Y.L.); (Y.S.); (W.S.); (P.Q.); (Y.G.)
- Hubei Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Yangmeihui Song
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (H.J.); (X.S.); (X.L.); (F.S.); (Y.L.); (Y.S.); (W.S.); (P.Q.); (Y.G.)
- Hubei Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Wenyu Song
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (H.J.); (X.S.); (X.L.); (F.S.); (Y.L.); (Y.S.); (W.S.); (P.Q.); (Y.G.)
- Hubei Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Pengxin Qiao
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (H.J.); (X.S.); (X.L.); (F.S.); (Y.L.); (Y.S.); (W.S.); (P.Q.); (Y.G.)
- Hubei Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Yongkang Gai
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (H.J.); (X.S.); (X.L.); (F.S.); (Y.L.); (Y.S.); (W.S.); (P.Q.); (Y.G.)
- Hubei Key Laboratory of Molecular Imaging, Wuhan 430022, China
- Key Laboratory of Biological Targeted Therapy of the Ministry of Education, Wuhan 430022, China
| | - Dawei Jiang
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (H.J.); (X.S.); (X.L.); (F.S.); (Y.L.); (Y.S.); (W.S.); (P.Q.); (Y.G.)
- Hubei Key Laboratory of Molecular Imaging, Wuhan 430022, China
- Key Laboratory of Biological Targeted Therapy of the Ministry of Education, Wuhan 430022, China
| | - Xiaoli Lan
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (H.J.); (X.S.); (X.L.); (F.S.); (Y.L.); (Y.S.); (W.S.); (P.Q.); (Y.G.)
- Hubei Key Laboratory of Molecular Imaging, Wuhan 430022, China
- Key Laboratory of Biological Targeted Therapy of the Ministry of Education, Wuhan 430022, China
| |
Collapse
|
6
|
Liu W, Zhang JH, Gao L, Xiao JH. Correlation between the dynamic changes of γδT cells, Th17 cells, CD4 +CD25 + regulatory T cells in peripheral blood and pharmacological interventions against bleomycin-induced pulmonary fibrosis progression in mice. Exp Cell Res 2024; 439:114098. [PMID: 38796136 DOI: 10.1016/j.yexcr.2024.114098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 05/16/2024] [Accepted: 05/21/2024] [Indexed: 05/28/2024]
Abstract
The involvement of γδT cells, Th17 cells, and CD4+CD25+ regulatory T cells (Tregs) is crucial in the progression of pulmonary fibrosis (PF), particularly in maintaining immune tolerance and homeostasis. However, the dynamics of these cells in relation to PF progression, especially under pharmacological interventions, remains poorly understood. This study aims to unravel the interplay between the dynamic changes of these cells and the effect of pharmacological agents in a mouse model of PF induced by intratracheal instillation of bleomycin. We analyzed changes in lung histology, lung index, hydroxyproline levels, and the proportions of γδT cells, Th17 cells, and Tregs on the 3rd, 14th, and 28th days following treatment with Neferine, Isoliensinine, Pirfenidone, and Prednisolone. Our results demonstrate that these drugs can partially or dynamically reverse weight loss, decrease lung index and hydroxyproline levels, and ameliorate lung histopathological damage. Additionally, they significantly modulated the abnormal changes in γδT, Th17, and Treg cell proportions. Notably, on day 3, the proportion of γδT cells increased in the Neferine and Prednisolone groups but decreased in the Isoliensinine and Pirfenidone groups, while the proportion of Th17 cells decreased across all treated groups. On day 14, the Neferine group showed an increase in all three cell types, whereas the Pirfenidone group exhibited a decrease. In the Isoliensinine group, γδT and Th17 cells increased, and in the Prednisolone group, only Tregs increased. By day 28, an increase in Th17 cell proportion was observed in all treatment groups, with a decrease in γδT cells noted in the Neferine group. These shifts in cell proportions are consistent with the pathogenesis changes induced by these anti-PF drugs, suggesting a correlation between cellular dynamics and pharmacological interventions in PF progression. Our findings imply potential strategies for assessing the efficacy and timing of anti-PF treatments based on these cellular changes.
Collapse
Affiliation(s)
- Wei Liu
- Center for Stem Cell Research and Application, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jia-Hua Zhang
- Center for Stem Cell Research and Application, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Lu Gao
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jun-Hua Xiao
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
7
|
Pan J, Li Y, Wu X, Pan X, Liu C, Zhang H, Wang L, Jiang X, Wang J, Zang N, Pang L, Lv X. The mechanism of Shenlong Jianji treatment of idiopathic pulmonary fibrosis inhibits fibroblast-to-myofibroblast transformation via the TGF-β1/smads signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 322:117507. [PMID: 38122910 DOI: 10.1016/j.jep.2023.117507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/06/2023] [Accepted: 11/22/2023] [Indexed: 12/23/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Shenlong Jianji (SLJJ) is a Chinese herbal compound composed of traditional medicines for supplementing Qi, nourishing Yin, promoting blood circulation, and removing obstruction in channels. It is widely used to treat idiopathic pulmonary fibrosis (IPF) in China. However, the underlying mechanism of SLJJ remains unclear. AIM OF THIS STUDY To elucidate the efficacy and mechanisms of SLJJ in the treatment of IPF through in vivo and in vitro experiments. MATERIAL AND METHODS 84 Wistar rats were randomly and equally divided into 7 groups: the control group (CTRL), the sham operation group (SHAM), the model group (IPF), the low dose of SLJJ group (L-SLJJ), the middle dose of SLJJ group (M-SLJJ), the high dose of SLJJ group (H-SLJJ), and the pirfenidone group (PFD). The rats in the CTRL, SHAM, and IPF groups were given normal saline each time for 28 days; the SLJJ groups were given Shenlong Jianji (9 g kg-1·d-1, 18 g kg-1·d-1, 36 g kg-1·d-1), and pirfenidone was administered as a sequential dose. After 28 days, the general condition of the rats was evaluated, and samples were collected. The lung coefficient was measured. The pathological changes of lung in each group were observed by H&E staining and Masson staining. α-SMA, collagen 1, and E-cadherin proteins were detected by immunohistochemistry. α-SMA, collagen 1, vimentin, E-cadherin, N-cadherin, TGF-β1, smad2, and smad3 proteins were detected by WB in vivo.In vitro, A scratch test was used to assess the ratio of cell migration. α-SMA, vimentin, E-cadherin, and N-cadherin protein levels were evaluated by a cellular immunofluorescence assay. TGF-β1/smads signaling pathway was detected by WB. HPLC-Q-TOF/MS analysis was used to identify the active compounds in the SLJJ. Molecular docking determined the free binding energy of the compound with the TGF-β1 protein. RESULTS SLJJ significantly improved the respiratory symptoms, heart rate, mental state, and food intake of IPF group rats and decreased the lung coefficient. In the IPF group, inflammatory cells were infiltrated, and the thickened alveoli wall and alveoli collapse were shown, while significantly alleviating pathological changes in the SLJJ and PFD groups. Masson staining showed that SLJJ and PFD decreased the collagen expression. Immunohistochemical results showed that the expressions of α-SMA, collagen 1, and N-cadherin decreased in the SLJJ and PFD groups, while E-cadherin increased significantly compared with the IPF group. SLJJ regulates TGF-β1/smads signaling pathway proteins in vivo. SLJJ decreased the ratio of migration in HFL-1 cells; SLJJ reduced the fluorescence intensity of α-SMA, vimentin, and N-cadherin and increased the fluorescence intensity of E-cadherin in primary rat lung (PRL) fibroblast cells and HFL-1 cells. WB results showed that SLJJ significantly down-regulated α-SMA, Vimentin, N-cadherin, TGF-β1, smad2, and p-smad2/3 proteins expression and up-regulated E-cadherin protein expression in vitro, whereas SRI-011381 (a TGF-β1 agonist) antagonized the effects of SLJJ. CONCLUSION SLJJ inhibits idiopathic pulmonary fibrosis. The TGF- β1/Smads signaling pathway can be the target of SLJJ, which inhibits fibroblast-to-myofibroblast transformation and is expected to be a new drug for the treatment of IPF.
Collapse
Affiliation(s)
- Jiaxiang Pan
- The Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, 33 Beiling Street, Shenyang, 110032, Liaoning, China.
| | - Yue Li
- The Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, 33 Beiling Street, Shenyang, 110032, Liaoning, China.
| | - Xize Wu
- Liaoning University of Traditional Chinese Medicine, 79 East of Chongshan Road, Shenyang, 110847, Liaoning, China; Nantong Hospital of Traditional Chinese Medicine, Nantong Hospital Affiliated to Nanjing University of Chinese Medicine, Nantong, 226000, Jiangsu, China.
| | - Xue Pan
- Liaoning University of Traditional Chinese Medicine, 79 East of Chongshan Road, Shenyang, 110847, Liaoning, China; Dazhou Vocational College of Chinese Medicine, Dazhou, 635000, Sichuan, China.
| | - Chuang Liu
- The Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, 33 Beiling Street, Shenyang, 110032, Liaoning, China.
| | - Haoyang Zhang
- The Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, 33 Beiling Street, Shenyang, 110032, Liaoning, China.
| | - Linlin Wang
- The Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, 33 Beiling Street, Shenyang, 110032, Liaoning, China.
| | - Xin Jiang
- The Fourth Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, No. 9, Xuesong Road, Jiefang Street, Sujiatun District, Shenyang, 110101, Liaoning, China.
| | - Jiaran Wang
- Liaoning University of Traditional Chinese Medicine, 79 East of Chongshan Road, Shenyang, 110847, Liaoning, China.
| | - Ningzi Zang
- The Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, 33 Beiling Street, Shenyang, 110032, Liaoning, China.
| | - Lijian Pang
- The Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, 33 Beiling Street, Shenyang, 110032, Liaoning, China.
| | - Xiaodong Lv
- Liaoning University of Traditional Chinese Medicine, 79 East of Chongshan Road, Shenyang, 110847, Liaoning, China.
| |
Collapse
|
8
|
Karande S, Das B, Acharya SS, Kumar A, Patel H, Sharma A, Gupta M, Ahmad I, Bhandare V, Sharma K, Kundu CN, Patil C. Computational and in vitro screening validates the repositioning potential of Coxibs as anti-fibrotic agents. J Biomol Struct Dyn 2024:1-13. [PMID: 38433403 DOI: 10.1080/07391102.2024.2318655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 02/08/2024] [Indexed: 03/05/2024]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a life-threatening disease with a survival rate of <5 years. The TGF-β plays a significant role in the progression and severity of IPF. The TGF-β receptor type1 TGFBR1 antagonists inhibit the process of fibrosis and may have a role in the treatment of IPF. The main objective of the study was to identify promising drug candidates against IPF using In-silico and In-vitro evaluation methods. An in-silico screening was carried out of the marketed Coxibs to find their TGFBR1 inhibitory potential considering their structural resemblance with the JZO-a co-crystalized ligand of the crystal structure of the TGFBR1. The virtual screening yielded rofecoxib as a TGFBR1 ligand with a significant docking score. To further validate the outcome of molecular docking studies, MD simulation of 200 ns was carried out followed by the determination of conformational stability, binding free energy calculation using MMPBSA/MMGBSA, and Free Energy Landscape (FEL). The therapeutic efficacy of rofecoxib was compared with that of nintedanib (a therapeutic agent used in the treatment of IPF) at equimolar concentrations (5 µM). The model of TGF-β1 (1 ng/ml)-induced EMT of A549 was used to determine the effect of rofecoxib on the EMT markers like cellular morphology, cytokine expressions, fibrosis associated protein, E-cadherin, and α-smooth muscle actin. In vitro results indicated that rofecoxib significantly suppresses the TGF-β1-induced EMT of A549 cells and validates the possible preventive/protective role of rofecoxib in pulmonary fibrosis. In conclusion, rofecoxib may be considered for repositioning as an anti-fibrotic agent.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
| | - Biswajit Das
- KIIT School of Biotechnology, KIIT Deemed to be University, Bhubaneswar, India
| | | | - Anoop Kumar
- Department of Pharmacology, DPSRU, New Delhi, India
| | - Harun Patel
- Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, India
| | - Ajay Sharma
- Department of Pharmacognosy, DPSRU, New Delhi, India
| | - Madhu Gupta
- Department of Pharmaceutics, DPSRU, New Delhi, India
| | - Iqrar Ahmad
- Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, India
| | | | | | - Chanakya Nath Kundu
- KIIT School of Biotechnology, KIIT Deemed to be University, Bhubaneswar, India
| | - Chandragouda Patil
- Department of Pharmacology, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, India
| |
Collapse
|
9
|
Barravecchia I, Lee JM, Manassa J, Magnuson B, Ferris SF, Cavanaugh S, Steele NG, Espinoza CE, Galban CJ, Ramnath N, Frankel TL, Pasca di Magliano M, Galban S. Modeling Molecular Pathogenesis of Idiopathic Pulmonary Fibrosis-Associated Lung Cancer in Mice. Mol Cancer Res 2024; 22:295-307. [PMID: 38015750 PMCID: PMC10906012 DOI: 10.1158/1541-7786.mcr-23-0480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 09/25/2023] [Accepted: 11/20/2023] [Indexed: 11/30/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF) is characterized by progressive, often fatal loss of lung function due to overactive collagen production and tissue scarring. Patients with IPF have a sevenfold-increased risk of developing lung cancer. The COVID-19 pandemic has increased the number of patients with lung diseases, and infection can worsen prognoses for those with chronic lung diseases and disease-associated cancer. Understanding the molecular pathogenesis of IPF-associated lung cancer is imperative for identifying diagnostic biomarkers and targeted therapies that will facilitate prevention of IPF and progression to lung cancer. To understand how IPF-associated fibroblast activation, matrix remodeling, epithelial-to-mesenchymal transition (EMT), and immune modulation influences lung cancer predisposition, we developed a mouse model to recapitulate the molecular pathogenesis of pulmonary fibrosis-associated lung cancer using the bleomycin and Lewis lung carcinoma models. We demonstrate that development of pulmonary fibrosis-associated lung cancer is likely linked to increased abundance of tumor-associated macrophages and a unique gene signature that supports an immune-suppressive microenvironment through secreted factors. Not surprisingly, preexisting fibrosis provides a pre-metastatic niche and results in augmented tumor growth, and tumors associated with bleomycin-induced fibrosis are characterized by a dramatic loss of cytokeratin expression, indicative of EMT. IMPLICATIONS This characterization of tumors associated with lung diseases provides new therapeutic targets that may aid in the development of treatment paradigms for lung cancer patients with preexisting pulmonary diseases.
Collapse
Affiliation(s)
- Ivana Barravecchia
- Center for Molecular Imaging, The University of Michigan Medical School, Ann Arbor, Michigan
- Department of Radiology, The University of Michigan Medical School, Ann Arbor, Michigan
| | - Jennifer M. Lee
- Center for Molecular Imaging, The University of Michigan Medical School, Ann Arbor, Michigan
- Department of Radiology, The University of Michigan Medical School, Ann Arbor, Michigan
| | - Jason Manassa
- Center for Molecular Imaging, The University of Michigan Medical School, Ann Arbor, Michigan
- Department of Radiology, The University of Michigan Medical School, Ann Arbor, Michigan
| | - Brian Magnuson
- Rogel Cancer Center, The University of Michigan Medical School, Ann Arbor, Michigan
- Department of Biostatistics, School of Public Health, The University of Michigan, Ann Arbor, Michigan
| | - Sarah F. Ferris
- Center for Molecular Imaging, The University of Michigan Medical School, Ann Arbor, Michigan
- Department of Radiology, The University of Michigan Medical School, Ann Arbor, Michigan
| | - Sophia Cavanaugh
- Department of Radiology, The University of Michigan Medical School, Ann Arbor, Michigan
| | - Nina G. Steele
- Department of Surgery, Henry Ford Pancreatic Cancer Center, Henry Ford Health, Detroit, Michigan
| | - Carlos E. Espinoza
- Department of Surgery, The University of Michigan Medical School, Ann Arbor, Michigan
| | - Craig J. Galban
- Department of Radiology, The University of Michigan Medical School, Ann Arbor, Michigan
- Department of Biomedical Engineering, The University of Michigan Medical School and College of Engineering, Ann Arbor, Michigan
| | - Nithya Ramnath
- Division of Hematology and Oncology, Department of Internal Medicine, The University of Michigan Medical School, Ann Arbor, Michigan
- Veterans Affairs Ann Arbor Healthcare System, Ann Arbor, Michigan
| | - Timothy L. Frankel
- Rogel Cancer Center, The University of Michigan Medical School, Ann Arbor, Michigan
- Department of Surgery, The University of Michigan Medical School, Ann Arbor, Michigan
| | - Marina Pasca di Magliano
- Rogel Cancer Center, The University of Michigan Medical School, Ann Arbor, Michigan
- Department of Surgery, The University of Michigan Medical School, Ann Arbor, Michigan
- Department of Cell and Developmental Biology, The University of Michigan Medical School, Ann Arbor, Michigan
| | - Stefanie Galban
- Center for Molecular Imaging, The University of Michigan Medical School, Ann Arbor, Michigan
- Department of Radiology, The University of Michigan Medical School, Ann Arbor, Michigan
- Rogel Cancer Center, The University of Michigan Medical School, Ann Arbor, Michigan
| |
Collapse
|
10
|
Manie MF, Fawzy HM, El-Sayed ESM. Hydroxytyrosol Alleviates Methotrexate-Induced Pulmonary Fibrosis in Rats: Involvement of TGF-β1, Tissue Factor, and VEGF. Biol Pharm Bull 2024; 47:303-310. [PMID: 38281774 DOI: 10.1248/bpb.b23-00477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
Methotrexate (MTX) is an indispensable drug used for the treatment of many autoimmune and cancerous diseases. However, its clinical use is associated with serious side effects, such as lung fibrosis. The main objective of this study is to test the hypothesis that hydroxytyrosol (HT) can mitigate MTX-induced lung fibrosis in rats while synergizing MTX anticancer effects. Pulmonary fibrosis was induced in the rats using MTX (14 mg/kg/week, per os (p.o.)). The rats were treated with or without HT (10, 20, and 40 mg/kg/d p.o.) or dexamethasone (DEX; 0.5 mg/kg/d, intraperitoneally (i.p.)) for two weeks concomitantly with MTX. Transforming growth factor beta 1 (TGF-β1), interleukin-4 (IL-4), thromboxane A2 (TXA2), vascular endothelial growth factor (VEGF), 8-hydroxy-2-deoxy-guanosine (8-OHdG), tissue factor (TF) and fibrin were assessed using enzyme-linked immunosorbent assay (ELISA), immunofluorescence, and RT-PCR. Pulmonary fibrosis was manifested by an excessive extracellular matrix (ECM) deposition and a marked increase in TGF-β1 and IL-4 in lung tissues. Furthermore, cotreatment with HT or dexamethasone (DEX) significantly attenuated MTX-induced ECM deposition, TGF-β1, and IL-4 expression. Similarly, HT or DEX notably reduced hydroxyproline contents, TXA2, fibrin, and TF expression in lung tissues. Moreover, using HT or DEX downregulated the gene expression of TF. A significant decrease in lung contents of VEGF, IL-8, and 8-OHdG was also observed in HT + MTX- or DEX + MTX -treated animals in a dose-dependent manner. Collectively, the results of our study suggest that HT might represent a potential protective agent against MTX-induced pulmonary fibrosis.
Collapse
Affiliation(s)
- Mohamed F Manie
- Department of Pharmacology, Egyptian Drug Authority (EDA), formerly known as National Organization for Drug Control and Research
| | - Hala M Fawzy
- Department of Pharmacology, Egyptian Drug Authority (EDA), formerly known as National Organization for Drug Control and Research
| | - El-Sayed M El-Sayed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University
| |
Collapse
|
11
|
Liu Q, Ren Y, Jia H, Yuan H, Tong Y, Kotha S, Mao X, Huang Y, Chen C, Zheng Z, Wang L, He W. Vanadium Carbide Nanosheets with Broad-Spectrum Antioxidant Activity for Pulmonary Fibrosis Therapy. ACS NANO 2023; 17:22527-22538. [PMID: 37933888 DOI: 10.1021/acsnano.3c06105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
Idiopathic pulmonary fibrosis is a chronic and highly lethal lung disease that largely results from oxidative stress; however, effective antioxidant therapy by targeting oxidative stress pathogenesis is still lacking. The big challenge is to develop an ideal antioxidant material with superior antifibrotic effects. Herein, we report that V4C3 nanosheets (NSs) can serve as a potential antioxidant for treatment of pulmonary fibrosis by scavenging reactive oxygen and nitrogen species. Interestingly, subtle autoxidation can adjust the valence composition of V4C3 NSs and significantly improve their antioxidant behavior. Valence engineering triggers multiple antioxidant mechanisms including electron transfer, H atom transfer, and enzyme-like catalysis, thus endowing V4C3 NSs with broad-spectrum, high-efficiency, and persistent antioxidant capacity. Benefiting from antioxidant properties and good biocompatibility, V4C3 NSs can significantly prevent myofibroblast proliferation and extracellular matrix abnormality, thus alleviating the progression of bleomycin-induced pulmonary fibrosis in vivo by scavenging ROS, anti-inflammation, and rebuilding antioxidant defenses. This study not only provides an important strategy for designing excellent antioxidant nanomaterials, but also proposes a proof-of-concept demonstration for the treatment of pulmonary fibrosis and other oxidative stress-related diseases.
Collapse
Affiliation(s)
- Quan Liu
- Key Laboratory of Micro-Nano Materials for Energy Storage and Conversion of Henan Province, Institute of Surface Micro and Nano Materials, College of Chemical and Materials Engineering, Xuchang University, Xuchang, Henan 461000, P. R. China
- School of Materials, North China University of Water Resources and Electric Power, Zhengzhou, Henan 450045, P. R. China
| | - Yaping Ren
- Key Laboratory of Micro-Nano Materials for Energy Storage and Conversion of Henan Province, Institute of Surface Micro and Nano Materials, College of Chemical and Materials Engineering, Xuchang University, Xuchang, Henan 461000, P. R. China
- Laboratory for NanoMedical Photonics, School of Basic Medical Science, Henan University, Zhengzhou 450046, P. R. China
| | - Huimin Jia
- Key Laboratory of Micro-Nano Materials for Energy Storage and Conversion of Henan Province, Institute of Surface Micro and Nano Materials, College of Chemical and Materials Engineering, Xuchang University, Xuchang, Henan 461000, P. R. China
| | - Hao Yuan
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS-HKU Joint Laboratory of Metallomics on Health and Environment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yuping Tong
- School of Materials, North China University of Water Resources and Electric Power, Zhengzhou, Henan 450045, P. R. China
| | - Sumasri Kotha
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Xiaobo Mao
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Yongwei Huang
- Laboratory for NanoMedical Photonics, School of Basic Medical Science, Henan University, Zhengzhou 450046, P. R. China
| | - Chunying Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
| | - Zhi Zheng
- Key Laboratory of Micro-Nano Materials for Energy Storage and Conversion of Henan Province, Institute of Surface Micro and Nano Materials, College of Chemical and Materials Engineering, Xuchang University, Xuchang, Henan 461000, P. R. China
| | - Liming Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS-HKU Joint Laboratory of Metallomics on Health and Environment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Weiwei He
- Key Laboratory of Micro-Nano Materials for Energy Storage and Conversion of Henan Province, Institute of Surface Micro and Nano Materials, College of Chemical and Materials Engineering, Xuchang University, Xuchang, Henan 461000, P. R. China
| |
Collapse
|
12
|
Jiang Y, Shi J, Zhou J, He C, Gu R. ErbB4 promotes M2 activation of macrophages in idiopathic pulmonary fibrosis. Open Life Sci 2023; 18:20220692. [PMID: 37800117 PMCID: PMC10549971 DOI: 10.1515/biol-2022-0692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 07/21/2023] [Accepted: 07/30/2023] [Indexed: 10/07/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is the most common and fatal diffuse fibrotic lung disease accompanied by macrophage M2 activation. ErbB4 is involved in and affects the process of inflammation. In this study, we determined that the mRNA level and protein expression of ErbB4 and M2 cytokine members were increased in the serum of IPF patients. In mouse alveolar macrophage MH-S cells, after knocking down ErbB4 by siRNA, the mRNA level and protein expression of M2 activator induced by interleukin (IL)-4 were decreased compared with the control group. Activating by ErbB4 agonist neuromodulatory protein (NRG)-1, IL-4-induced M2 program was promoted. Mechanistically, treated with NRG-1 in MH-S cells, the phosphorylation level of Akt did not change, while the phosphorylation level of ERK increased. Using SCH772984 to inhibit ERK pathway, the increasing IL-4-induced M2 activation by NRG-1 was inhibited, and the high level of M2 activator protein expression and mRNA expression was restored. Collectively, our data support that ErbB4 and M2 programs are implicated in IPF, and ErbB4 participates in the regulation of M2 activation induced by IL-4 through the ERK pathway.
Collapse
Affiliation(s)
- Yu Jiang
- School of Medicine, Shaoxing University, Shaoxing 312000, Zhejiang, China
| | - Jialin Shi
- School of Medicine, Shaoxing University, Shaoxing 312000, Zhejiang, China
| | - Junhao Zhou
- Shaoxing Traditional Chinese Medicine Hospital, Shaoxing 312000, Zhejiang, China
| | - Chunxiao He
- Shaoxing People’s Hospital, Shaoxing 312000, Zhejiang, China
| | - Ruinan Gu
- School of Medicine, Shaoxing University, Shaoxing 312000, Zhejiang, China
| |
Collapse
|
13
|
Mehryab F, Taghizadeh F, Goshtasbi N, Merati F, Rabbani S, Haeri A. Exosomes as cutting-edge therapeutics in various biomedical applications: An update on engineering, delivery, and preclinical studies. Biochimie 2023; 213:139-167. [PMID: 37207937 DOI: 10.1016/j.biochi.2023.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 04/29/2023] [Accepted: 05/16/2023] [Indexed: 05/21/2023]
Abstract
Exosomes are cell-derived nanovesicles, circulating in different body fluids, and acting as an intercellular mechanism. They can be purified from culture media of different cell types and carry an enriched content of various protein and nucleic acid molecules originating from their parental cells. It was indicated that the exosomal cargo can mediate immune responses via many signaling pathways. Over recent years, the therapeutic effects of various exosome types were broadly investigated in many preclinical studies. Herein, we present an update on recent preclinical studies on exosomes as therapeutic and/or delivery agents for various applications. The exosome origin, structural modifications, natural or loaded active ingredients, size, and research outcomes were summarized for various diseases. Overall, the present article provides an overview of the latest exosome research interests and developments to clear the way for the clinical study design and application.
Collapse
Affiliation(s)
- Fatemeh Mehryab
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Taghizadeh
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nazanin Goshtasbi
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Faezeh Merati
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shahram Rabbani
- Research Center for Advanced Technologies in Cardiovascular Medicine, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Azadeh Haeri
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Protein Technology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
14
|
Fu S, Song X, Hu Y, Zhu Q, Lv X, Tang X, Zhang M. Neotuberostemonine and tuberostemonine ameliorate pulmonary fibrosis through suppressing TGF-β and SDF-1 secreted by macrophages and fibroblasts via the PI3K-dependent AKT and ERK pathways. Chin J Nat Med 2023; 21:527-539. [PMID: 37517820 DOI: 10.1016/s1875-5364(23)60444-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Indexed: 08/01/2023]
Abstract
Activated fibroblasts and M2-polarized macrophages may contribute to the progression of pulmonary fibrosis by forming a positive feedback loop. This study was aimed to investigate whether fibroblasts and macrophages form this loop by secreting SDF-1 and TGF-β and the impacts of neotuberostemonine (NTS) and tuberostemonine (TS). Mice were intratracheally injected with 3 U·kg-1 bleomycin and orally administered with 30 mg·kg-1 NTS or TS. Primary pulmonary fibroblasts (PFBs) and MH-S cells (alveolar macrophages) were used in vitro. The animal experiments showed that NTS and TS improved fibrosis related indicators, inhibited fibroblast activation and macrophage M2 polarization, and reduced the levels of TGF-β and SDF-1 in alveolar lavage fluid. Cell experiments showed that TGF-β1 may activated fibroblasts into myofibroblasts secreting SDF-1 by activating the PI3K/AKT/HIF-1α and PI3K/PAK/RAF/ERK/HIF-1α pathways. It was also found for the first time that SDF-1 was able to directly polarize macrophages into M2 phenotype secreting TGF-β through the same pathways as mentioned above. Moreover, the results of the cell coculture confirmed that fibroblasts and macrophages actually developed a feedback loop to promote fibrosis, and the secretion of TGF-β and SDF-1 was crucial for maintaining this loop. NTS and TS may disturb this loop through inhibiting both the PI3K/AKT/HIF-1α and PI3K/PAK/RAF/ERK/HIF-1α pathways to improve pulmonary fibrosis. NTS and TS are stereoisomeric alkaloids with pyrrole[1,2-a]azapine skeleton, and their effect on improving pulmonary fibrosis may be largely attributed to their parent nucleus. Moreover, this study found that inhibition of both the AKT and ERK pathways is essential for maximizing the improvement of pulmonary fibrosis.
Collapse
Affiliation(s)
- San Fu
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| | - Xianrui Song
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Yingying Hu
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Qingwei Zhu
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Xinmiao Lv
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Xiaoyan Tang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Mian Zhang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| |
Collapse
|
15
|
Yao M, Sun M, Chen C, Jin L, Yang H, Li Y, Yin S. Novel pirfenidone derivatives: synthesis and biological evaluation. RSC Med Chem 2023; 14:1158-1164. [PMID: 37360397 PMCID: PMC10285743 DOI: 10.1039/d3md00072a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 04/25/2023] [Indexed: 06/28/2023] Open
Abstract
In order to discover novel anti-pulmonary fibrosis agents, a series of novel pirfenidone derivatives were designed and synthesized. All compounds were investigated for their anti-pulmonary activity and characterized by 13C and 1H nuclear magnetic resonance and high-resolution mass spectrometry. Preliminary studies on their biological activity showed that all target compounds showed different degrees of inhibition on pulmonary fibrosis, and most of the derivatives were significantly better than pirfenidone.
Collapse
Affiliation(s)
- Maoling Yao
- Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University Chengdu 610041 China
| | - Maoru Sun
- Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University Chengdu 610041 China
| | - Congdi Chen
- College of Chemistry and Life Science, Chengdu Normal University Chengdu 611130 China
| | - Liming Jin
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian Minzu University Dalian 116600 China
| | - Hongjun Yang
- Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University Chengdu 610041 China
| | - Yong Li
- Innovation Center of Nursing Research, Nursing Key Laboratoryof Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and, Collaborative Innovation Center of Biotherapy, Sichuan University Chengdu 610041 China
| | - Shufan Yin
- College of Chemistry, Sichuan University Chengdu 610000 China
| |
Collapse
|
16
|
Kraven LM, Taylor AR, Molyneaux PL, Maher TM, McDonough JE, Mura M, Yang IV, Schwartz DA, Huang Y, Noth I, Ma SF, Yeo AJ, Fahy WA, Jenkins RG, Wain LV. Cluster analysis of transcriptomic datasets to identify endotypes of idiopathic pulmonary fibrosis. Thorax 2023; 78:551-558. [PMID: 35534152 PMCID: PMC9643664 DOI: 10.1136/thoraxjnl-2021-218563] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 04/14/2022] [Indexed: 11/04/2022]
Abstract
BACKGROUND Considerable clinical heterogeneity in idiopathic pulmonary fibrosis (IPF) suggests the existence of multiple disease endotypes. Identifying these endotypes would improve our understanding of the pathogenesis of IPF and could allow for a biomarker-driven personalised medicine approach. We aimed to identify clinically distinct groups of patients with IPF that could represent distinct disease endotypes. METHODS We co-normalised, pooled and clustered three publicly available blood transcriptomic datasets (total 220 IPF cases). We compared clinical traits across clusters and used gene enrichment analysis to identify biological pathways and processes that were over-represented among the genes that were differentially expressed across clusters. A gene-based classifier was developed and validated using three additional independent datasets (total 194 IPF cases). FINDINGS We identified three clusters of patients with IPF with statistically significant differences in lung function (p=0.009) and mortality (p=0.009) between groups. Gene enrichment analysis implicated mitochondrial homeostasis, apoptosis, cell cycle and innate and adaptive immunity in the pathogenesis underlying these groups. We developed and validated a 13-gene cluster classifier that predicted mortality in IPF (high-risk clusters vs low-risk cluster: HR 4.25, 95% CI 2.14 to 8.46, p=3.7×10-5). INTERPRETATION We have identified blood gene expression signatures capable of discerning groups of patients with IPF with significant differences in survival. These clusters could be representative of distinct pathophysiological states, which would support the theory of multiple endotypes of IPF. Although more work must be done to confirm the existence of these endotypes, our classifier could be a useful tool in patient stratification and outcome prediction in IPF.
Collapse
Affiliation(s)
- Luke M Kraven
- Department of Health Sciences, University of Leicester, Leicester, UK
- Research & Development, GlaxoSmithKline, Stevenage, UK
| | - Adam R Taylor
- Research & Development, GlaxoSmithKline, Stevenage, UK
| | - Philip L Molyneaux
- Guy's and St Thomas' NHS Foundation Trust, Royal Brompton and Harefield Hospitals, London, UK
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Toby M Maher
- Guy's and St Thomas' NHS Foundation Trust, Royal Brompton and Harefield Hospitals, London, UK
- National Heart and Lung Institute, Imperial College London, London, UK
- Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - John E McDonough
- Division of Pulmonary, Critical Care & Sleep Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Marco Mura
- Division of Respirology, Western University, London, Ontario, Canada
| | - Ivana V Yang
- Department of Medicine, University of Colorado, Denver, Colorado, USA
| | - David A Schwartz
- Department of Medicine, University of Colorado, Denver, Colorado, USA
| | - Yong Huang
- Division of Pulmonary & Critical Care Medicine, University of Virginia, Charlottesville, Virginia, USA
| | - Imre Noth
- Division of Pulmonary & Critical Care Medicine, University of Virginia, Charlottesville, Virginia, USA
| | - Shwu Fan Ma
- Division of Pulmonary & Critical Care Medicine, University of Virginia, Charlottesville, Virginia, USA
| | - Astrid J Yeo
- Research & Development, GlaxoSmithKline, Stevenage, UK
| | | | - R Gisli Jenkins
- National Heart and Lung Institute, Imperial College London, London, UK
- National Institute for Health Research Respiratory Clinical Research Facility, Royal Brompton Hospital, London, UK
| | - Louise V Wain
- Department of Health Sciences, University of Leicester, Leicester, UK
- National Institute for Health Research, Glenfield Hospital, Leicester, UK
| |
Collapse
|
17
|
Jia M, Rosas L, Kapetanaki MG, Tabib T, Sebrat J, Cruz T, Bondonese A, Mora AL, Lafyatis R, Rojas M, Benos PV. Early events marking lung fibroblast transition to profibrotic state in idiopathic pulmonary fibrosis. Respir Res 2023; 24:116. [PMID: 37085855 PMCID: PMC10122312 DOI: 10.1186/s12931-023-02419-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 04/12/2023] [Indexed: 04/23/2023] Open
Abstract
BACKGROUND Idiopathic Pulmonary Fibrosis (IPF) is an age-associated progressive lung disease with accumulation of scar tissue impairing gas exchange. Previous high-throughput studies elucidated the role of cellular heterogeneity and molecular pathways in advanced disease. However, critical pathogenic pathways occurring in the transition of fibroblasts from normal to profibrotic have been largely overlooked. METHODS We used single cell transcriptomics (scRNA-seq) from lungs of healthy controls and IPF patients (lower and upper lobes). We identified fibroblast subclusters, genes and pathways associated with early disease. Immunofluorescence assays validated the role of MOXD1 early in fibrosis. RESULTS We identified four distinct fibroblast subgroups, including one marking the normal-to-profibrotic state transition. Our results show for the first time that global downregulation of ribosomal proteins and significant upregulation of the majority of copper-binding proteins, including MOXD1, mark the IPF transition. We find no significant differences in gene expression in IPF upper and lower lobe samples, which were selected to have low and high degree of fibrosis, respectively. CONCLUSIONS Early events during IPF onset in fibroblasts include dysregulation of ribosomal and copper-binding proteins. Fibroblasts in early stage IPF may have already acquired a profibrotic phenotype while hallmarks of advanced disease, including fibroblast foci and honeycomb formation, are still not evident. The new transitional fibroblasts we discover could prove very important for studying the role of fibroblast plasticity in disease progression and help develop early diagnosis tools and therapeutic interventions targeting earlier disease states.
Collapse
Affiliation(s)
- Minxue Jia
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, USA
- Joint Carnegie Mellon University – University of Pittsburgh PhD Program in Computational Biology, Pittsburgh, USA
| | - Lorena Rosas
- Department of Internal Medicine, Division Pulmonary, Critical Care and Sleep Medicine, The Ohio State University, Columbus, USA
| | - Maria G. Kapetanaki
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, USA
| | - Tracy Tabib
- Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, USA
| | - John Sebrat
- Department of Internal Medicine, Division Pulmonary, Critical Care and Sleep Medicine, The Ohio State University, Columbus, USA
| | - Tamara Cruz
- Department of Internal Medicine, Division Pulmonary, Critical Care and Sleep Medicine, The Ohio State University, Columbus, USA
| | - Anna Bondonese
- Department of Internal Medicine, Division Pulmonary, Critical Care and Sleep Medicine, The Ohio State University, Columbus, USA
| | - Ana L. Mora
- Department of Internal Medicine, Division Pulmonary, Critical Care and Sleep Medicine, The Ohio State University, Columbus, USA
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, USA
| | - Robert Lafyatis
- Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, USA
| | - Mauricio Rojas
- Department of Internal Medicine, Division Pulmonary, Critical Care and Sleep Medicine, The Ohio State University, Columbus, USA
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, USA
| | - Panayiotis V. Benos
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, USA
- Joint Carnegie Mellon University – University of Pittsburgh PhD Program in Computational Biology, Pittsburgh, USA
- Department of Epidemiology, University of Florida, 2004 Mowry Rd, Gainesville, FL 32610 USA
| |
Collapse
|
18
|
He X, Zhong Z, Wang Q, Jia Z, Lu J, Chen J, Liu P. Pharmacokinetics and tissue distribution of bleomycin-induced idiopathic pulmonary fibrosis rats treated with cryptotanshinone. Front Pharmacol 2023; 14:1127219. [PMID: 36969870 PMCID: PMC10034131 DOI: 10.3389/fphar.2023.1127219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 02/27/2023] [Indexed: 03/12/2023] Open
Abstract
Introduction: Cryptotanshinone(CTS), a compound derived from the root of Salvia miltiorrhiza, has been linked to various of diseases, particularly pulmonary fibrosis. In the current study, we investigated the benefit of CTS on Sprague-Dawley (SD) rats induced by bleomycin (BLM) and established high performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) methods to compare pharmacokinetics and tissue distribution in subsequent normal and modulated SD rats.Methods: The therapeutic effect of CTS on BLM-induced SD rats was evaluated using histopathology, lung function and hydroxyproline content measurement, revealing that CTS significantly improved SD rats induced by BLM. Additionally, a simple, rapid, sensitive and specific HPLC-MS/MS method was developed to determine the pharmacokinetics of various components in rat plasma.Results: Pharmacokinetic studies indicated that CTS was slowly absorbed by oral administration and had low bioavailability and a slow clearance rate. The elimination of pulmonary fibrosis in 28-day rats was slowed down, and the area under the curve was increased compared to the control group. Long-term oral administration of CTS did not accumulate in vivo, but the clearance was slowed down, and the steady-state blood concentration was increased. The tissue distribution study revealed that CTS exposure in the lungs and liver.Discussion: The lung CTS exposure was significantly higher in the model group than in the control group, suggesting that the pathological changes of pulmonary fibrosis were conducive to the lung exposure of CTS and served as the target organ of CTS.
Collapse
Affiliation(s)
- Xiangjun He
- National and Local United Engineering Lab of Druggability and New Drugs Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Zhi Zhong
- National and Local United Engineering Lab of Druggability and New Drugs Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Quan Wang
- National and Local United Engineering Lab of Druggability and New Drugs Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Zhenmao Jia
- National and Local United Engineering Lab of Druggability and New Drugs Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Jing Lu
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
- *Correspondence: Jing Lu, ; Jianwen Chen, ; Peiqing Liu,
| | - Jianwen Chen
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
- *Correspondence: Jing Lu, ; Jianwen Chen, ; Peiqing Liu,
| | - Peiqing Liu
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
- *Correspondence: Jing Lu, ; Jianwen Chen, ; Peiqing Liu,
| |
Collapse
|
19
|
Differences in Treatment Response in Bronchial Epithelial Cells from Idiopathic Pulmonary Fibrosis (IPF) Patients: A First Step towards Personalized Medicine? Antioxidants (Basel) 2023; 12:antiox12020443. [PMID: 36830000 PMCID: PMC9952618 DOI: 10.3390/antiox12020443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/27/2023] [Accepted: 02/01/2023] [Indexed: 02/12/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) has a detrimental prognosis despite antifibrotic therapies to which individual responses vary. IPF pathology is associated with oxidative stress, inflammation and increased activation of SRC family kinases (SFK). This pilot study evaluates individual responses to pirfenidone, nintedanib and SFK inhibitor saracatinib, markers of redox homeostasis, fibrosis and inflammation, in IPF-derived human bronchial epithelial (HBE) cells. Differentiated HBE cells from patients with and without IPF were analyzed for potential alterations in redox and profibrotic genes and pro-inflammatory cytokine secretion. Additionally, the effects of pirfenidone, nintedanib and saracatinib on these markers were determined. HBE cells were differentiated into a bronchial epithelium containing ciliated epithelial, basal, goblet and club cells. NOX4 expression was increased in IPF-derived HBE cells but differed on an individual level. In patients with higher NOX4 expression, pirfenidone induced antioxidant gene expression. All drugs significantly decreased NOX4 expression. IL-6 (p = 0.09) and IL-8 secretion (p = 0.014) were increased in IPF-derived HBE cells and significantly reduced by saracatinib. Finally, saracatinib significantly decreased TGF-β gene expression. Our results indicate that treatment responsiveness varies between IPF patients in relation to their oxidative and inflammatory status. Interestingly, saracatinib tends to be more effective in IPF than standard antifibrotic drugs.
Collapse
|
20
|
Comparative Study of Ectopic Lymphoid Aggregates in Sheep and Murine Models of Bleomycin-Induced Pulmonary Fibrosis. Can Respir J 2023; 2023:1522593. [PMID: 36710924 PMCID: PMC9876680 DOI: 10.1155/2023/1522593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 12/16/2022] [Accepted: 12/22/2022] [Indexed: 01/19/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic disease characterized by excessive deposition of extracellular matrix in the interstitial lung parenchyma, often manifested by dyspnea and progressive loss of lung function. The role of inflammation in the pathogenesis of IPF is not well understood. This study evaluated the histopathological and inflammatory components of bleomycin-induced pulmonary fibrosis in mouse and sheep models, in terms of their ability to translate to the human IPF. Merino sheep (n = 8) were bronchoscopically administered with two bleomycin infusions, two weeks apart, into a caudal lung segment, with a saline (control) administered into a caudal segment in the opposite lung. Balb/c mice were twice intranasally instilled, one week apart, with either bleomycin (n = 7); or saline (control, n = 7). Lung samples were taken for the histopathological assessment 28 days in sheep and 21 days in mice after the first bleomycin administration. We observed tertiary lymphoid aggregates, in the fibrotic lung parenchyma of sheep, but not in mouse lung tissues exposed to bleomycin. B-cell and T-cell infiltration significantly increased in sheep lung tissues compared to mouse lung tissues due to bleomycin injury. Statistical analysis showed that the fibrotic score, fibrotic fraction, and tissue fraction significantly increased in sheep lung tissues compared to murine lung tissues. The presence of tertiary lymphoid aggregates in the lung parenchyma and increased infiltration of T-cells and B-cells, in the sheep model, may be useful for the future study of the underlying inflammatory disease mechanisms in the lung parenchyma of IPF patients.
Collapse
|
21
|
Júnior C, Ulldemolins A, Narciso M, Almendros I, Farré R, Navajas D, López J, Eroles M, Rico F, Gavara N. Multi-Step Extracellular Matrix Remodelling and Stiffening in the Development of Idiopathic Pulmonary Fibrosis. Int J Mol Sci 2023; 24:ijms24021708. [PMID: 36675222 PMCID: PMC9865994 DOI: 10.3390/ijms24021708] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/04/2023] [Accepted: 01/05/2023] [Indexed: 01/18/2023] Open
Abstract
The extracellular matrix (ECM) of the lung is a filamentous network composed mainly of collagens, elastin, and proteoglycans that provides structural and physical support to its populating cells. Proliferation, migration and overall behaviour of those cells is greatly determined by micromechanical queues provided by the ECM. Lung fibrosis displays an aberrant increased deposition of ECM which likely changes filament organization and stiffens the ECM, thus upregulating the profibrotic profile of pulmonary cells. We have previously used AFM to assess changes in the Young's Modulus (E) of the ECM in the lung. Here, we perform further ECM topographical, mechanical and viscoelastic analysis at the micro- and nano-scale throughout fibrosis development. Furthermore, we provide nanoscale correlations between topographical and elastic properties of the ECM fibres. Firstly, we identify a softening of the ECM after rats are instilled with media associated with recovery of mechanical homeostasis, which is hindered in bleomycin-instilled lungs. Moreover, we find opposite correlations between fibre stiffness and roughness in PBS- vs bleomycin-treated lung. Our findings suggest that changes in ECM nanoscale organization take place at different stages of fibrosis, with the potential to help identify pharmacological targets to hinder its progression.
Collapse
Affiliation(s)
- Constança Júnior
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, 08036 Barcelona, Spain
- The Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain
| | - Anna Ulldemolins
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, 08036 Barcelona, Spain
- CIBER de Enfermedades Respiratorias, 28029 Madrid, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer, 08036 Barcelona, Spain
| | - Maria Narciso
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, 08036 Barcelona, Spain
- The Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain
| | - Isaac Almendros
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, 08036 Barcelona, Spain
- CIBER de Enfermedades Respiratorias, 28029 Madrid, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer, 08036 Barcelona, Spain
| | - Ramon Farré
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, 08036 Barcelona, Spain
- CIBER de Enfermedades Respiratorias, 28029 Madrid, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer, 08036 Barcelona, Spain
| | - Daniel Navajas
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, 08036 Barcelona, Spain
- The Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain
- CIBER de Enfermedades Respiratorias, 28029 Madrid, Spain
| | - Javier López
- Institut Pasteur de Lille, U1019-UMR9017-CIIL-Centre d’Infection et d’Immunité de Lille, Université de Lille, CNRS, Inserm, CHU Lille, 59000 Lille, France
| | - Mar Eroles
- Aix-Marseille, CNRS, INSERM, LAI, Centuri Centre for Living Systems, 13009 Marseille, France
| | - Felix Rico
- Aix-Marseille, CNRS, INSERM, LAI, Centuri Centre for Living Systems, 13009 Marseille, France
| | - Núria Gavara
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, 08036 Barcelona, Spain
- The Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain
- Correspondence:
| |
Collapse
|
22
|
Yang F, Ma Z, Li W, Kong J, Zong Y, Wendusu B, Wu Q, Li Y, Dong G, Zhao X, Wang J. Identification and immune characteristics of molecular subtypes related to fatty acid metabolism in idiopathic pulmonary fibrosis. Front Nutr 2022; 9:992331. [PMID: 36211517 PMCID: PMC9537386 DOI: 10.3389/fnut.2022.992331] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 09/01/2022] [Indexed: 11/16/2022] Open
Abstract
Background Although fatty acid metabolism has been confirmed to be involved in the pathological process of idiopathic pulmonary fibrosis (IPF), systematic analyses on the immune process mediated by fatty acid metabolism-related genes (FAMRGs) in IPF remain lacking. Methods The gene expression data of 315 patients with IPF were obtained from Gene Expression Omnibus database and were divided into the training and verification sets. The core FAMRGs of the training set were identified through weighted gene co-expression network analysis. Then, the fatty acid metabolism-related subtypes in IPF were identified on the basis of k-means unsupervised clustering. The scores of fatty acid metabolism and the expression of the fibrosis biomarkers in different subtypes were compared, and functional enrichment analysis was carried out on the differentially expressed genes between subtypes. A random forest model was used to select important FAMRGs as diagnostic markers for distinguishing between subtypes, and a line chart model was constructed and verified by using other datasets and rat models with different degrees of pulmonary fibrosis. The difference in immune cell infiltration among subtypes was evaluated with CIBERSORT, and the correlation between core diagnostic markers and immune cells were analyzed. Results Twenty-four core FAMRGs were differentially expressed between the training set and normal samples, and IPF was divided into two subtypes. Significant differences were observed between the two subtypes in biological processes, such as linoleic acid metabolism, cilium movement, and natural killer (NK) cell activation. The subtype with high fatty acid metabolism had more severe pulmonary fibrosis than the other subtype. A reliable construction line chart model based on six diagnostic markers was constructed, and ABCA3 and CYP24A1 were identified as core diagnostic markers. Significant differences in immune cell infiltration were found between the two subtypes, and ABCA3 and CYP24A1 were closely related to NK cells. Conclusion Fatty acid metabolism and the immune process that it mediates play an important role in the occurrence and development of IPF. The analysis of the role of FAMRGs in IPF may provide a new potential therapeutic target for IPF.
Collapse
Affiliation(s)
- Fan Yang
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Zhaotian Ma
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- Institute of Ethnic Medicine, Beijing University of Traditional Chinese Medicine, Beijing, China
| | - Wanyang Li
- Department of Clinical Nutrition, Chinese Academy of Medical Sciences - Peking Union Medical College, Peking Union Medical College Hospital (Dongdan Campus), Beijing, China
| | - Jingwei Kong
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yuhan Zong
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Bilige Wendusu
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- Institute of Ethnic Medicine, Beijing University of Traditional Chinese Medicine, Beijing, China
| | - Qinglu Wu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yao Li
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Guangda Dong
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiaoshan Zhao
- School of Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Ji Wang
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
23
|
Liu J, Fan G, Tao N, Feng F, Meng C, Sun T. Ginsenoside Rb1 Alleviates Bleomycin-Induced Pulmonary Inflammation and Fibrosis by Suppressing Central Nucleotide-Binding Oligomerization-, Leucine-Rich Repeat-, and Pyrin Domains-Containing Protein Three Inflammasome Activation and the NF-κB Pathway. Drug Des Devel Ther 2022; 16:1793-1809. [PMID: 35719213 PMCID: PMC9205635 DOI: 10.2147/dddt.s361748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 06/08/2022] [Indexed: 11/23/2022] Open
Abstract
Purpose Idiopathic pulmonary fibrosis is a chronic and irreversible fibrotic interstitial pneumonia of unknown etiology and therapeutic strategies are limited. Emerging evidence suggests that the continuous activation of the central nucleotide-binding oligomerization-, leucine-rich repeat-, and pyrin domain-containing protein 3 (NLRP3) inflammasome is involved in the pathogenesis of pulmonary fibrosis. Ginsenoside Rb1 (G-Rb1) is the most abundant component in the traditional Chinese herb ginseng and has anti-inflammatory and anti-fibrotic activities. The purpose of this study was to explore whether G-Rb1 exerts anti-inflammatory and anti-fibrotic activities in vivo and in vitro by suppressing the activation of the NLRP3 inflammasome and NF-κB pathway. Methods Forty-eight male C57BL/6 mice were randomly divided into four groups (n=12/group) as follows: control, bleomycin (BLM), BLM/G-Rb1, and G-Rb1. A pulmonary fibrosis model was developed via an intratracheal injection of BLM. Six mice from each group were euthanized on days 3 and 21. The degree of pulmonary fibrosis was examined by histological evaluation and assessing α-smooth muscle actin levels. THP-1 cells were differentiated into macrophages, and stimulated by lipopolysaccharide and adenosine triphosphate. Activation of the NLRP3 inflammasome and NF-κB pathway was determined by Western blotting. Interleukin-1 beta and interleukin-18 levels were measured by ELISA. MRC-5 cells were cultured in the conditioned medium of the treated macrophages, after which markers of myofibroblasts were determined by Western blotting. Results G-Rb1 ameliorated BLM-induced pulmonary inflammation and fibrosis in mice, and suppressed NLRP3 inflammasome activation and the NF-κB pathway in lung tissues. Moreover, interleukin-1 beta secreted after NLRP3 inflammasome activation in macrophages promoted fibroblast differentiation. G-Rb1 inhibited lipopolysaccharide- and adenosine triphosphate-induced NLRP3 inflammasome activation in macrophages and disturbed the crosstalk between macrophages and fibroblasts. Conclusion G-Rb1 ameliorates BLM-induced pulmonary inflammation and fibrosis by suppressing NLRP3 inflammasome activation and the NF-κB pathway. Hence, G-Rb1 is a potential novel therapeutic drug for idiopathic pulmonary fibrosis.
Collapse
Affiliation(s)
- Jingjing Liu
- Department of Respiratory Medicine and Critical Care, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
- Graduate School of Peking Union Medical College, Beijing, People’s Republic of China
- The MOH Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Beijing, People’s Republic of China
| | - Guoqing Fan
- Department of Respiratory Medicine and Critical Care, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
- Graduate School of Peking Union Medical College, Beijing, People’s Republic of China
- The MOH Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Beijing, People’s Republic of China
| | - Ningning Tao
- Department of Respiratory & Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, People’s Republic of China
| | - Feifei Feng
- Department of Respiratory & Critical Care Medicine, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People’s Republic of China
| | - Chao Meng
- Department of Respiratory Medicine and Critical Care, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
- Graduate School of Peking Union Medical College, Beijing, People’s Republic of China
- The MOH Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Beijing, People’s Republic of China
| | - Tieying Sun
- Department of Respiratory Medicine and Critical Care, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
- Graduate School of Peking Union Medical College, Beijing, People’s Republic of China
| |
Collapse
|
24
|
Foster PS, Tay HL, Oliver BG. Deficiency in the zinc transporter ZIP8 impairs epithelia renewal and enhances lung fibrosis. J Clin Invest 2022; 132:160595. [PMID: 35642632 PMCID: PMC9151685 DOI: 10.1172/jci160595] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Although aging and lung injury are linked to the development of idiopathic pulmonary fibrosis (IPF), the underlying pathognomonic processes predisposing to fibrotic lesions remain largely unknown. A deficiency in the ability of type 2 alveolar epithelial cell (AEC2) progenitors to regenerate and repair the epithelia has been proposed as a critical factor. In this issue of the JCI, Liang et al. identify a deficiency in the zinc transporter SLC39A8 (ZIP8) in AEC2s and in the subsequent activation of the sirtuin SIRT1 that predisposes to decreased AEC2 renewal capacity and enhanced lung fibrosis in both IPF and aging lungs. Interestingly, the authors demonstrate the efficacy of modulating dietary zinc levels, suggesting the need for clinical trials to evaluate the therapeutic potential of dietary supplementation and the development of pharmacological modulation of the Zn/ZIP8/SIRT1 axis for treatment.
Collapse
Affiliation(s)
- Paul S Foster
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, and Immune Health program, Hunter Medical Research Institute (HMRI), Newcastle, New South Wales, Australia
| | - Hock L Tay
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, and Immune Health program, Hunter Medical Research Institute (HMRI), Newcastle, New South Wales, Australia
| | - Brian G Oliver
- School of Life Sciences, University of Technology Sydney, and the Woolcock Institute of Medical Research, University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
25
|
Chen Y, Cai J, Zhang M, Yan X. Prognostic Role of NLR, PLR and MHR in Patients With Idiopathic Pulmonary Fibrosis. Front Immunol 2022; 13:882217. [PMID: 35572564 PMCID: PMC9096781 DOI: 10.3389/fimmu.2022.882217] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 04/04/2022] [Indexed: 11/24/2022] Open
Abstract
Background Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive interstitial lung disease with low survival time. Since the pathophysiological progression of IPF is closely associated with immunological and inflammatory responses, immune biomarkers, including neutrophil-lymphocyte ratio (NLR), platelet-lymphocyte ratio (PLR), and monocyte-high density lipoprotein ratio (MHR), have the potential to predict overall survival in IPF patients. Methods A total of 278 patients with IPF were finally enrolled. The demographic and clinical characteristics of the patients at baseline were recorded. Multivariable Cox regression analysis was used to evaluate the association between the three biomarkers and overall survival in both the total cohort and acute exacerbation subgroup. Results The median follow-up was 5.84 months. After adjusting for confounders, we found that only elevated NLR was associated with worse overall survival (OR = 1.019, 95% CI 1.001-1.037, P =0.041) by using multivariable Cox regression analysis. In 116 acute exacerbation IPF patients, the results of the Cox multiple regression model also indicated that the NLR was a significant prognostic factor (OR= 1.022, 95% CI 1.001-1.044, P =0.036). The NLR before death was also significantly higher than that at admission in nonsurvival acute exacerbation IPF patients (P=0.014). No significant differences were found in PLR (P=0.739) or MHR changes (P=0.478). Conclusions Our results indicated that elevated NLR expression is associated with shorter overall survival in IPF patients, which is independent of other prognostic factors. The NLR may be regarded as a reliable prognostic biomarker for IPF patients.
Collapse
Affiliation(s)
- Yiran Chen
- Department of Respiratory and Critical Care Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medicine School, Nanjing, China
| | - Jingya Cai
- Department of Respiratory and Critical Care Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medicine School, Nanjing, China
| | - Mengmeng Zhang
- Department of Respiratory and Critical Care Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medicine School, Nanjing, China
| | - Xin Yan
- Department of Respiratory and Critical Care Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medicine School, Nanjing, China
| |
Collapse
|
26
|
Hou Y, Xu N, Li S, Zhang N, Ren W, Hua Z, Zhang X, Han W, Xu L, Sun Y, Sun H, Qu G, Lv C, Yu Y. Mechanism of SMND-309 against lung injury induced by chronic intermittent hypoxia. Int Immunopharmacol 2022; 105:108576. [PMID: 35121224 DOI: 10.1016/j.intimp.2022.108576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 01/17/2022] [Accepted: 01/23/2022] [Indexed: 11/20/2022]
Abstract
INTRODUCTION Obstructive sleep apnea-hypopnea syndrome (OSAHS) is a common sleep disorder that causes severe physiological disturbance. Evidence showed that OSAHS is an important associated comorbidity that can affect the survival of patients with pulmonary fibrosis. Until now, the potential mechanisms by which OSAHS accelerates the progression of lung fibrosis remain unclear. By constructing a pathological model of chronic intermittent hypoxia (CIH), the present study aimed to explore the pathological progress and potential mechanism of lung injury caused by OSAHS. Meanwhile, SMND-309 was given for treatment to evaluate its potential therapeutic role in CIH-induced lung injury. METHODS Mice were randomly divided into (C57BL/6 wild-type) WT+(room air) RA, WT + CIH, SMND-309 + RA, and SMND-309 + CIH groups. The WT + CIH and SMND-309 + CIH groups were exposed to CIH condition for 12 weeks, while the other groups were processed in normal oxygen at the same time. The SMND-309 + RA and SMND-309 + CIH groups were intraperitoneally injected with SMND-309 at the last week of the modeling period. After 12 weeks of treatment, three mice from each group were perfused through the heart. Lung tissues were isolated, fixed, sectioned, and stained with H&E, Masson, and immunofluorescence stain. The rest of the lung tissues were harvested for Western blot and ELISA assays. RESULTS CIH treatment increased the expression of pro-inflammatory factors (TNF-α and IL-6), resulting in lung tissue structure disorder, inflammatory cell infiltration, increased pulmonary capillary permeability, and pulmonary edema. The activation of the NF-κB signaling pathway played a crucial role in the process of inflammation. Noticeably, we observed M2 macrophage accumulation in the lung after CIH exposure, which promoted epithelial-mesenchymal transition (EMT) and pulmonary tissue fibrosis. ELISA assays showed the increased expression of TGF-β, IL-10, and IL-4 in the CIH group. SMND-309 inhibited pulmonary inflammation, reduced the accumulation of M2 macrophage, alleviated collagen deposition andlung damage. CONCLUSION CIH could induce chronic lung inflammation, promote the activation of M2 macrophages, trigger the occurrence of EMT, and accelerate the deposition of lung collagen, eventually leading to lung tissue damage. This study presents a possible explanation by which interstitial lung diseases, particularly idiopathic pulmonary fibrosis (IPF) with OSAHS, are usually associated with fast progress and poor prognosis. SMND-309 showed a good protective effect on CIH-induced lung damage.
Collapse
Affiliation(s)
- Yanyan Hou
- Binzhou Medical University, 346 Guanhai Road, YanTai 264003, China
| | - Na Xu
- Binzhou Medical University, 346 Guanhai Road, YanTai 264003, China
| | - Shouyi Li
- The Affiliated Yantai Yuhuangding Hospital of Qingdao University, 20 Yuhuangding East Road, Yantai 264000, China
| | - Na Zhang
- Binzhou Medical University, 346 Guanhai Road, YanTai 264003, China
| | - Wenjing Ren
- Binzhou Medical University, 346 Guanhai Road, YanTai 264003, China
| | - Zhihao Hua
- Binzhou Medical University, 346 Guanhai Road, YanTai 264003, China
| | - Xin Zhang
- Binzhou Medical University, 346 Guanhai Road, YanTai 264003, China
| | - Wenjian Han
- Binzhou Medical University, 346 Guanhai Road, YanTai 264003, China
| | - Luhui Xu
- Binzhou Medical University, 346 Guanhai Road, YanTai 264003, China
| | - Yeying Sun
- Binzhou Medical University, 346 Guanhai Road, YanTai 264003, China
| | - Hongliu Sun
- Binzhou Medical University, 346 Guanhai Road, YanTai 264003, China
| | - Guiwu Qu
- Binzhou Medical University, 346 Guanhai Road, YanTai 264003, China.
| | - Changjun Lv
- Department of Respiratory Medicine Affiliated Hospital of Binzhou Medical University, Binzhou, 256603 Shandong Province, China.
| | - Yan Yu
- Binzhou Medical University, 346 Guanhai Road, YanTai 264003, China.
| |
Collapse
|
27
|
Liu T, Bao R, Wang Q, Hao W, Liu Y, Chang S, Wang M, Li Y, Liu Z, Sun Y. SiO 2-induced ferroptosis in macrophages promotes the development of pulmonary fibrosis in silicosis models. Toxicol Res (Camb) 2022; 11:42-51. [PMID: 35237410 PMCID: PMC8882780 DOI: 10.1093/toxres/tfab105] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 10/12/2021] [Accepted: 10/18/2021] [Indexed: 09/06/2023] Open
Abstract
Silicosis is a devastating disease that, without effective treatment, endangers the health of miners. Therefore, studies exploring the pathogenesis of SiO2-induced pulmonary fibrosis are necessary to develop treatments for silicosis. Although macrophages are known to play a pivotal role in SiO2-induced pulmonary fibrosis, the underlying mechanism remains unknown. Here, we explored whether ferroptosis was involved in SiO2-induced pulmonary fibrosis. To this end, C57BL/6 mice and mouse macrophage (RAW264.7) cells and mouse lung fibroblast (MLF) cells were subjected to iron content, cell viability, enzyme-linked immunosorbent assay, immunofluorescence staining, histological, western blotting, quantitative reverse transcription-PCR, reactive oxygen species, and lipid peroxidation analysis. In vivo, SiO2 was found to damage the lung alveolar structure, cause infiltration of inflammatory cells, and facilitate fibrosis. Additionally, it increased the iron concentration and lipid peroxidation as well as altered the expression of ferroptosis-related genes and the mitochondrial morphology in macrophages. In vitro, ferroptosis occurred in SiO2-treated RAW264.7 cells, which showed iron overload, lipid peroxidation, and gene alterations. Furthermore, ferrostatin-1 (Fer-1) attenuated ferroptosis in SiO2-treated RAW264.7 cells by inhibiting lipid peroxidation and cell death and regulating ferroptosis-related genes expression, in addition to attenuating the secretion of pro-fibrotic cytokines and fibrosis. Collectively, SiO2 induces ferroptosis in macrophages, which leads to the secretion of pro-fibrotic cytokines and fibrosis.
Collapse
Affiliation(s)
- Taiyang Liu
- School of Public Health and Management, Ningxia Medical University, No. 1160, Shengli Street, Xingqing District, Yinchuan 75000, Ningxia, China
- NHC KEY Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Medical University, No. 1160, Shengli Street, Xingqing District, Yinchuan 75000, Ningxia, China
| | - Rui Bao
- School of Public Health and Management, Ningxia Medical University, No. 1160, Shengli Street, Xingqing District, Yinchuan 75000, Ningxia, China
- NHC KEY Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Medical University, No. 1160, Shengli Street, Xingqing District, Yinchuan 75000, Ningxia, China
| | - Qiushi Wang
- School of Public Health and Management, Ningxia Medical University, No. 1160, Shengli Street, Xingqing District, Yinchuan 75000, Ningxia, China
- NHC KEY Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Medical University, No. 1160, Shengli Street, Xingqing District, Yinchuan 75000, Ningxia, China
| | - Wei Hao
- School of Public Health and Management, Ningxia Medical University, No. 1160, Shengli Street, Xingqing District, Yinchuan 75000, Ningxia, China
- NHC KEY Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Medical University, No. 1160, Shengli Street, Xingqing District, Yinchuan 75000, Ningxia, China
| | - Yaoyang Liu
- School of Public Health and Management, Ningxia Medical University, No. 1160, Shengli Street, Xingqing District, Yinchuan 75000, Ningxia, China
- NHC KEY Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Medical University, No. 1160, Shengli Street, Xingqing District, Yinchuan 75000, Ningxia, China
| | - Sirong Chang
- School of Public Health and Management, Ningxia Medical University, No. 1160, Shengli Street, Xingqing District, Yinchuan 75000, Ningxia, China
- NHC KEY Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Medical University, No. 1160, Shengli Street, Xingqing District, Yinchuan 75000, Ningxia, China
| | - Meng Wang
- School of Public Health and Management, Ningxia Medical University, No. 1160, Shengli Street, Xingqing District, Yinchuan 75000, Ningxia, China
- NHC KEY Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Medical University, No. 1160, Shengli Street, Xingqing District, Yinchuan 75000, Ningxia, China
| | - Yuanyuan Li
- School of Public Health and Management, Ningxia Medical University, No. 1160, Shengli Street, Xingqing District, Yinchuan 75000, Ningxia, China
- NHC KEY Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Medical University, No. 1160, Shengli Street, Xingqing District, Yinchuan 75000, Ningxia, China
| | - Zhihong Liu
- School of Public Health and Management, Ningxia Medical University, No. 1160, Shengli Street, Xingqing District, Yinchuan 75000, Ningxia, China
- NHC KEY Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Medical University, No. 1160, Shengli Street, Xingqing District, Yinchuan 75000, Ningxia, China
| | - Yue Sun
- School of Public Health and Management, Ningxia Medical University, No. 1160, Shengli Street, Xingqing District, Yinchuan 75000, Ningxia, China
- NHC KEY Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Medical University, No. 1160, Shengli Street, Xingqing District, Yinchuan 75000, Ningxia, China
| |
Collapse
|
28
|
Nishioka Y, Homma S, Okubo T, Azuma A. Design of phase 2 study of TAS-115, a novel oral multi-kinase inhibitor, in patients with idiopathic pulmonary fibrosis. Contemp Clin Trials Commun 2021; 23:100832. [PMID: 34471721 PMCID: PMC8390536 DOI: 10.1016/j.conctc.2021.100832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 08/05/2021] [Accepted: 08/17/2021] [Indexed: 11/28/2022] Open
Abstract
Background TAS-115, a novel multi-kinase inhibitor, demonstrated antifibrotic effects in vitro and in vivo. Methods This is an open-label, intra-patient comparison, exploratory phase 2 study of TAS-115 to evaluate the efficacy and safety in idiopathic pulmonary fibrosis (IPF) patients when orally administered at 200 mg once daily on a 5-day on and 2-day off regimen for 13 weeks. This study consists of three cohorts: previously treated with pirfenidone (Cohort P, n = 20), with nintedanib (Cohort N, n = 20), and treatment naïve (Cohort U, n = 10). Male or female patients aged ≥40 to <80 years who were diagnosed with IPF in the preceding five years and having a percent predicted forced vital capacity (%FVC) decline of ≥5% within the previous 6 months were enrolled in this study. The primary endpoint is change in the slope of %FVC decline at Week 13 from baseline. Key secondary endpoints are safety, change in FVC from baseline, proportion of the %FVC responders and change in percent predicted diffusing capacity of the lung carbon monoxide from baseline, which are assessed at Weeks 6, 13 and 26. Results Enrollment of 45 patients was completed in July 2019. Results will be reported in 2021. Discussion This trial is intended to demonstrate the clinical efficacy of TAS-115 in IPF patients who have not responded to pirfenidone or nintedanib, as well as in those who are pirfenidone/nintedanib treatment naïve. The safety and tolerability in this population will be assessed. Trial registration JapicCTI-183898.
Collapse
Affiliation(s)
- Yasuhiko Nishioka
- Department of Respiratory Medicine and Rheumatology, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Sakae Homma
- Department of Advanced and Integrated Interstitial Lung Diseases Research, School of Medicine, Toho University, Tokyo, Japan
| | - Takahito Okubo
- Early Clinical Development, Oncology, Clinical Development Division, Taiho Pharmaceutical Co., Ltd, Tokyo, Japan
| | - Arata Azuma
- Department of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| |
Collapse
|
29
|
Huaux F. Interpreting Immunoregulation in Lung Fibrosis: A New Branch of the Immune Model. Front Immunol 2021; 12:690375. [PMID: 34489937 PMCID: PMC8417606 DOI: 10.3389/fimmu.2021.690375] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 07/06/2021] [Indexed: 12/24/2022] Open
Abstract
Immunostimulation is recognized as an important contribution in lung fibrosis in some animal models and patient subsets. With this review, we illustrate an additional scenario covering the possible implication of immunoregulation during fibrogenesis. Available animal and human data indicate that pulmonary fibrosis also includes diverse and discrete immunoregulating populations comprising regulatory lymphocytes (T and B regs) and myeloid cells (immunosuppressive macrophages and myeloid-derived suppressive cells; MDSC). They are initially recruited to limit the establishment of deleterious inflammation but participate in the development of lung fibrosis by producing immunoregulatory mediators (mainly TGF-β1 and IL-10) that directly or indirectly stimulate fibroblasts and matrix protein deposition. The existence of this silent immunoregulatory environment sustains an alternative mechanism of fibrosis that explains why in some conditions neither pro-inflammatory cytokine deficiency nor steroid and immunosuppressive therapies limit lung fibrosis. Therefore, the persistent presence of immunoregulation is an important parameter to consider for refining therapeutical strategies in lung fibrotic disorders under non-immunostimulatory conditions.
Collapse
Affiliation(s)
- François Huaux
- Louvain Centre for Toxicology and Applied Pharmacology (LTAP), Institut de Recherche Experimentale et Clinique (IREC), Université Catholique de Louvain, Brussels, Belgium
| |
Collapse
|
30
|
Sofias AM, De Lorenzi F, Peña Q, Azadkhah Shalmani A, Vucur M, Wang JW, Kiessling F, Shi Y, Consolino L, Storm G, Lammers T. Therapeutic and diagnostic targeting of fibrosis in metabolic, proliferative and viral disorders. Adv Drug Deliv Rev 2021; 175:113831. [PMID: 34139255 PMCID: PMC7611899 DOI: 10.1016/j.addr.2021.113831] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/30/2021] [Accepted: 06/10/2021] [Indexed: 02/07/2023]
Abstract
Fibrosis is a common denominator in many pathologies and crucially affects disease progression, drug delivery efficiency and therapy outcome. We here summarize therapeutic and diagnostic strategies for fibrosis targeting in atherosclerosis and cardiac disease, cancer, diabetes, liver diseases and viral infections. We address various anti-fibrotic targets, ranging from cells and genes to metabolites and proteins, primarily focusing on fibrosis-promoting features that are conserved among the different diseases. We discuss how anti-fibrotic therapies have progressed over the years, and how nanomedicine formulations can potentiate anti-fibrotic treatment efficacy. From a diagnostic point of view, we discuss how medical imaging can be employed to facilitate the diagnosis, staging and treatment monitoring of fibrotic disorders. Altogether, this comprehensive overview serves as a basis for developing individualized and improved treatment strategies for patients suffering from fibrosis-associated pathologies.
Collapse
Affiliation(s)
- Alexandros Marios Sofias
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Faculty of Medicine, RWTH Aachen University, Aachen, Germany; Mildred Scheel School of Oncology (MSSO), Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO(ABCD)), University Hospital Aachen, Aachen, Germany; Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.
| | - Federica De Lorenzi
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Quim Peña
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Armin Azadkhah Shalmani
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Mihael Vucur
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Duesseldorf, Medical Faculty at Heinrich-Heine-University, Duesseldorf, Germany
| | - Jiong-Wei Wang
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Cardiovascular Research Institute, National University Heart Centre Singapore, Singapore, Singapore; Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Nanomedicine Translational Research Programme, Centre for NanoMedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Fabian Kiessling
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Yang Shi
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Lorena Consolino
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Faculty of Medicine, RWTH Aachen University, Aachen, Germany.
| | - Gert Storm
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Nanomedicine Translational Research Programme, Centre for NanoMedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, the Netherlands; Department of Targeted Therapeutics, University of Twente, Enschede, the Netherlands.
| | - Twan Lammers
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Faculty of Medicine, RWTH Aachen University, Aachen, Germany; Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, the Netherlands; Department of Targeted Therapeutics, University of Twente, Enschede, the Netherlands.
| |
Collapse
|
31
|
Sharma P, Alizadeh J, Juarez M, Samali A, Halayko AJ, Kenyon NJ, Ghavami S, Zeki AA. Autophagy, Apoptosis, the Unfolded Protein Response, and Lung Function in Idiopathic Pulmonary Fibrosis. Cells 2021; 10:1642. [PMID: 34209019 PMCID: PMC8307368 DOI: 10.3390/cells10071642] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 06/21/2021] [Accepted: 06/23/2021] [Indexed: 01/18/2023] Open
Abstract
Autophagy, apoptosis, and the unfolded protein response (UPR) are fundamental biological processes essential for manifold cellular functions in health and disease. Idiopathic pulmonary fibrosis (IPF) is a progressive and lethal pulmonary disorder associated with aging that has limited therapies, reflecting our incomplete understanding. We conducted an observational study linking molecular markers of cell stress response pathways (UPR: BiP, XBP1; apoptosis: cleaved caspase-3; autophagy: LC3β) in lung tissues from IPF patients and correlated the expression of these protein markers to each subject's lung function measures. We hypothesized that changes in lung tissue expression of apoptosis, autophagy, and UPR markers correlate with lung function deficits in IPF. The cell stress markers BiP, XBP1, LC3β puncta, and cleaved caspase-3 were found to be elevated in IPF lungs compared to non-IPF lungs, and, further, BiP and cleaved caspase-3 co-localized in IPF lungs. Considering lung function independently, we observed that increased XBP1, BiP, and cleaved caspase-3 were each associated with reduced lung function (FEV1, FVC, TLC, RV). However, increased lung tissue expression of LC3β puncta was significantly associated with increased diffusion capacity (DLCO), an indicator of alveolar-capillary membrane function. Similarly, the co-localization of UPR (XBP1, BiP) and autophagy (LC3β puncta) markers was positively correlated with increased lung function (FEV1, FVC, TLC, DLCO). However, the presence of LC3β puncta can indicate either autophagy flux inhibition or activation. While the nature of our observational cross-sectional study design does not allow conclusions regarding causal links between increased expression of these cell stress markers, lung fibrosis, and lung function decline, it does provide some insights that are hypothesis-generating and suggests that within the milieu of active UPR, changes in autophagy flux may play an important role in determining lung function. Further research is necessary to investigate the mechanisms linking UPR and autophagy in IPF and how an imbalance in these cell stress pathways can lead to progressive fibrosis and loss of lung function. We conclude by presenting five testable hypotheses that build on the research presented here. Such an understanding could eventually lead to the development of much-needed therapies for IPF.
Collapse
Affiliation(s)
- Pawan Sharma
- Center for Translational Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, Jane & Leonard Korman Respiratory Institute, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA;
| | - Javad Alizadeh
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 3P4, Canada;
| | - Maya Juarez
- Davis Lung Center, School of Medicine; Division of Pulmonary, Critical Care, and Sleep Medicine, University of California, Davis, CA 95616, USA; (M.J.); (N.J.K.)
| | - Afshin Samali
- Apoptosis Research Centre, School of Natural Sciences, National University of Ireland, H91 W2TY Galway, Ireland;
| | - Andrew J. Halayko
- Department of Physiology and Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 3P4, Canada;
| | - Nicholas J. Kenyon
- Davis Lung Center, School of Medicine; Division of Pulmonary, Critical Care, and Sleep Medicine, University of California, Davis, CA 95616, USA; (M.J.); (N.J.K.)
- Veterans Affairs Medical Center, Mather, CA 95655, USA
| | - Saeid Ghavami
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 3P4, Canada;
- Research Institute of Hematology and Oncology, Cancer Care Manitoba, Winnipeg, MB R3E 0V9, Canada
- Faculty of Medicine, Katowice School of Technology, 40-555 Katowice, Poland
- Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz 7134845794, Iran
| | - Amir A. Zeki
- Davis Lung Center, School of Medicine; Division of Pulmonary, Critical Care, and Sleep Medicine, University of California, Davis, CA 95616, USA; (M.J.); (N.J.K.)
- Veterans Affairs Medical Center, Mather, CA 95655, USA
| |
Collapse
|
32
|
A phase 1, randomized study to evaluate safety, tolerability, and pharmacokinetics of GDC-3280, a potential novel anti-fibrotic small molecule, in healthy subjects. Pulm Pharmacol Ther 2021; 69:102051. [PMID: 34166834 DOI: 10.1016/j.pupt.2021.102051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/28/2021] [Accepted: 06/18/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUND Idiopathic pulmonary fibrosis (IPF) is a chronic progressive lung disease. Although anti-fibrotic treatments, such as pirfenidone, are available that reduce the rate of disease progression, these medications have limitations in tolerability, and IPF patients still have poor prognoses. GDC-3280, an orally available small molecule that was designed to improve upon pirfenidone's activity, has anti-fibrotic activity in animal models. This first-in-human, phase 1 trial evaluated GDC-3280 to determine its safety, tolerability, and pharmacokinetics (PK). METHODS Single and multiple ascending-doses of GDC-3280 were administered to healthy volunteers in two parts. Part A consisted of 6 treatment groups, each receiving a single, oral dose of GDC-3280 (25-1600 mg) or placebo in the fasted state. Part A also assessed the effect of food and coadministration of a proton pump inhibitor (rabeprazole) on the tolerability and PK of single doses of 400- and 800-mg GDC-3280. Part B consisted of 3 treatment groups who received either 200- or 275-mg GDC-3280 twice daily or 525-mg once daily after a low-fat meal for 7 days. The trial monitored treatment-emergent adverse events (TEAEs) and assessed the pharmacokinetics of GDC-3280 in blood and urine samples. RESULTS Fifty-six subjects (42 GDC-3280, 14 placebo) in Part A and 24 subjects (18 GDC-3280, 6 placebo) in Part B received treatment. No deaths, serious adverse events, or dose-limiting adverse events occurred, and no subjects withdrew due to a TEAE. In both Parts A and B, most TEAEs were mild. The most frequent TEAEs in Part A were headache and nausea. TEAEs occurred more often when GDC-3280 was administered with food. Pretreatment and coadministration with rabeprazole had no effect on GDC-3280 tolerability. In Part B, the most frequent TEAEs were nausea, dizziness, nasal congestion, and cough. Transient, treatment-related increases in serum creatinine occurred at doses greater than 400 mg in Part A (12%-18% from baseline) and after multiple doses in each group in Part B (20%-34% from baseline). GDC-3280 was generally readily absorbed with a median tmax < 4.0 h following single- or repeat-dose oral administration. In Part A, less-than-dose-proportional increases in systemic exposure occurred, and in Part B, dose-proportional increases occurred within the dose range tested. At doses of 200 mg or lower, more than 50%-70% of orally administered doses were recovered in urine as unchanged GDC-3280 when subjects received a single dose of GDC-3280, suggesting renal excretion is one of the major routes of elimination. Administration of single doses of 400- and 800-mg GDC-3280 after a meal caused statistically significant increases in exposure due to increased rates of absorption compared to the fasted state. Pretreatment and coadministration of rabeprazole dosing led to decreases in exposure compared to GDC-3280 alone, indicating a weak drug-drug interaction. Following repeat dose administration, steady-state plasma concentrations of GDC-3280 were achieved within 2 days with an apparent terminal half-life (t1/2) between 5 and 6 h. CONCLUSIONS Single and multiple doses of GDC-3280 were generally well tolerated, with acceptable safety and pharmacokinetic profiles that support twice-daily, oral administration with food in future clinical trials.
Collapse
|
33
|
Cereblon contributes to the development of pulmonary fibrosis via inactivation of adenosine monophosphate-activated protein kinase α1. Exp Mol Med 2021; 53:885-893. [PMID: 34002012 PMCID: PMC8178361 DOI: 10.1038/s12276-021-00619-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 03/22/2021] [Accepted: 03/24/2021] [Indexed: 11/09/2022] Open
Abstract
Pulmonary fibrosis is a progressive and lethal lung disease characterized by the proliferation and differentiation of lung fibroblasts and the accumulation of extracellular matrices. Since pulmonary fibrosis was reported to be associated with adenosine monophosphate-activated protein kinase (AMPK) activation, which is negatively regulated by cereblon (CRBN), we aimed to determine whether CRBN is involved in the development of pulmonary fibrosis. Therefore, we evaluated the role of CRBN in bleomycin (BLM)-induced pulmonary fibrosis in mice and in transforming growth factor-beta 1 (TGF-β1)-induced differentiation of human lung fibroblasts. BLM-induced fibrosis and the mRNA expression of collagen and fibronectin were increased in the lung tissues of wild-type (WT) mice; however, they were significantly suppressed in Crbn knockout (KO) mice. While the concentrations of TGF-β1/2 in bronchoalveolar lavage fluid were increased via BLM treatment, they were similar between BLM-treated WT and Crbn KO mice. Knockdown of CRBN suppressed TGF-β1-induced activation of small mothers against decapentaplegic 3 (SMAD3), and overexpression of CRBN increased it. TGF-β1-induced activation of SMAD3 increased α-smooth muscle actin (α-SMA) and collagen levels. CRBN was found to be colocalized with AMPKα1 in lung fibroblasts. CRBN overexpression inactivated AMPKα1. When cells were treated with metformin (an AMPK activator), the CRBN-induced activation of SMAD3 and upregulation of α-SMA and collagen expression were significantly suppressed, suggesting that increased TGF-β1-induced activation of SMAD3 via CRBN overexpression is associated with AMPKα1 inactivation. Taken together, these data suggest that CRBN is a profibrotic regulator and maybe a potential target for treating lung fibrosis. Interventions that target a regulatory protein called cereblon could help reduce the damage inflicted on the lungs by idiopathic pulmonary fibrosis (IPF). This incurable and generally fatal condition is associated with the accumulation of scar tissue in the lungs, which leads to the gradual loss of respiratory function. Researchers led by Kyoung-Hee Lee at Seoul National University Hospital in South Korea have now identified cereblon as a potentially important contributor to this scarring process. They found that cereblon regulates a complex metabolic pathway that ultimately contributes to production of fibrosis-related proteins in a mouse model of IPF. Genetically modified animals that lacked the gene encoding cereblon showed reduced accumulation of these proteins in their lungs. These results suggest that cereblon-inhibiting agents could potentially control the progression of IPF and help preserve lung function.
Collapse
|
34
|
Tao N, Li K, Liu J, Fan G, Sun T. Liproxstatin-1 alleviates bleomycin-induced alveolar epithelial cells injury and mice pulmonary fibrosis via attenuating inflammation, reshaping redox equilibrium, and suppressing ROS/p53/α-SMA pathway. Biochem Biophys Res Commun 2021; 551:133-139. [PMID: 33735625 DOI: 10.1016/j.bbrc.2021.02.127] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 02/25/2021] [Indexed: 11/24/2022]
Abstract
With undetermined etiology and limited treatment option, idiopathic pulmonary fibrosis (IPF) an age related disease is extremely lethal. Persistent injury of epithelial cells, abnormal activation of fibroblasts/myofibroblasts, and superabundant deposition of extracellular matrix protein pathologically characterize IPF. Redox imbalance is reported to play a vital role in both IPF development and senescence. This study aim to investigate whether and how Liproxstatin-1 (Lip-1), a strong lipid autoxidation inhibitor, regulates bleomycin (BLM) induced pulmonary fibrosis both in vivo and in vitro. It's demonstrated that Lip-1 exerted a potent anti-fibrotic function in BLM-induced mice pulmonary fibrosis via alleviating inflammatory, reshaping redox equilibrium, and ameliorating collagen deposition. Lip-1 reduced the level of reactive oxygen species (ROS) and methane dicarboxylic aldehyde (MDA), promoted the expression of glutathione (GSH), catalase (CAT), and total superoxide dismutase (T-SOD) after BLM treatment. Moreover, in vitro experiments verified that Lip-1 protected A549 cells from BLM-induced injury and fibrosis. Lip-1 seemed to attenuate BLM-induced fibrosis by targeting ROS/p53/α-SMA signaling both in vivo and in vitro. In summary, this study demonstrates that Lip-1 administration performs a protective role in against pulmonary fibrosis and lights up the potential of Lip-1 treatment for patient with IPF in future.
Collapse
Affiliation(s)
- Ningning Tao
- Department of Respiratory Medicine and Critical Care, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, China; Graduate School of Peking Union Medical College, Beijing, 100730, China; The MOH Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Beijing, China
| | - Kang Li
- Department of Respiratory Medicine and Critical Care, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, China; Graduate School of Peking Union Medical College, Beijing, 100730, China; The MOH Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Beijing, China
| | - Jingjing Liu
- Department of Respiratory Medicine and Critical Care, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, China; Graduate School of Peking Union Medical College, Beijing, 100730, China; The MOH Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Beijing, China
| | - Guoqing Fan
- Department of Respiratory Medicine and Critical Care, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, China; Graduate School of Peking Union Medical College, Beijing, 100730, China; The MOH Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Beijing, China
| | - Tieying Sun
- Department of Respiratory Medicine and Critical Care, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, China; Graduate School of Peking Union Medical College, Beijing, 100730, China; The MOH Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Beijing, China.
| |
Collapse
|
35
|
Ji Q, Hou J, Yong X, Gong G, Muddassir M, Tang T, Xie J, Fan W, Chen X. Targeted Dual Small Interfering Ribonucleic Acid Delivery via Non-Viral Polymeric Vectors for Pulmonary Fibrosis Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2007798. [PMID: 33604928 DOI: 10.1002/adma.202007798] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Indexed: 06/12/2023]
Abstract
Inhibiting the myofibroblast differentiation of lung-resident mesenchymal stem cells (LR-MSCs) is a promising yet challenging approach for pulmonary fibrosis (PF) therapy. Here, micelles formed by a graft copolymer of multiple PEGs modified branched polyethylenimine are used for delivering runt-related transcription factor-1 (RUNX1) small interfering RNA (siRNA) (siRUNX1) to the lung, aiming to inhibit the myofibroblast differentiation of LR-MSCs. LR-MSC targeting is achieved by functionalizing the micelle surface with an anti-stem-cell antigen-1 antibody fragment (Fab'). Consequently, therapeutic benefits are obtained by successful suppression of myofibroblast differentiation of LR-MSCs in bleomycin-induced PF model mice treated with siRUNX1-loaded micelles. Furthermore, an excellent synergistic effect of PF therapy is achieved for this micelle system loaded siRUNX1 and glioma-associated oncogene homolog-1 (Gli1) small interfering RNA (siGli1), a traditional anti-PF siRNA of glioma-associated oncogene homolog-1. Hence, this work not only provides RUNX1 as a novel PF therapeutic target, but also as a promising dual siRNA-loaded nanocarrier system for the therapy of PF.
Collapse
Affiliation(s)
- Qijian Ji
- Department of Critical Care Medicine, Xuyi People's Hospital, 28 Hongwu Road, Xuyi, Huai'an, Jiangsu, 211700, China
- Department of Emergency Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, 210002, China
| | - Jiwei Hou
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu, 210093, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu, 210093, China
| | - Xueqing Yong
- Department of Nuclear Science & Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, Jiangsu, 211106, China
| | - Guangming Gong
- Department of Pharmaceutics, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, 210002, China
| | - Mohd Muddassir
- Department of Chemistry, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Tianyu Tang
- Jiangsu Key Laboratory of Molecular Imaging and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, 87 Dingjiaqiao Road, Nanjing, Jiangsu, 210009, China
| | - Jinbing Xie
- Jiangsu Key Laboratory of Molecular Imaging and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, 87 Dingjiaqiao Road, Nanjing, Jiangsu, 210009, China
| | - Wenpei Fan
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing, Jiangsu, 210009, China
| | - Xiaoyuan Chen
- Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore, 119228, Singapore
| |
Collapse
|
36
|
Wang B, Bai W, Ma H, Li F. Regulatory Effect of PD1/PD-Ligand 1 (PD-L1) on Treg Cells in Patients with Idiopathic Pulmonary Fibrosis. Med Sci Monit 2021; 27:e927577. [PMID: 33386384 PMCID: PMC7786833 DOI: 10.12659/msm.927577] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Background Idiopathic pulmonary fibrosis (IPF) is a serious irreversible lung disease. The mechanism of immune checkpoint in idiopathic pulmonary fibrosis is still unknown. Material/Methods First, the expression levels of PD-1/PD-L1 on the surface of CD4+ T cells and the proportion of Treg cells in IPF or controls were detected by flow cytometry. Then, expression of TGF-β in blood samples was detected with ELISA. Moreover, a co-culture system was composed of fibroblasts stimulated by TGF-β and CD4+ T cells from healthy people. The proportions of Treg cells and PD-1 in the co-culture system were detected. In addition, we detected the proportion of Treg cells and the level of collagen-1 after adding PD-1 or PD-L1 protein antibody blocker to the co-culture system. Results Flow cytometry revealed the upregulated expression of PD-1/PD-L1 in CD4+ T cells of IPF patients. PD-1 appears to inhibit the differentiation of CD4+ T cells into Treg cells. Co-culture of myofibroblasts and CD4+ T cells induced the generation of collagen-1 and reduced the proliferation of CD4+ T cells. When PD-1 was blocked, the inhibition of Treg cell differentiation was reversed, accompanied by decreased collagen-1 production. Conclusions This work identified the molecular mechanism of PD-1 in patients with IPF. It may provide a new perspective on the therapeutic effect of PD-1.
Collapse
Affiliation(s)
- Bing Wang
- Department of Pulmonary Medicine, Xinjiang Medical University, Urumqi, Xinjiang, China (mainland)
| | - Wenmei Bai
- Department of Pulmonary Medicine, Traditional Chinese Medicine Hospital Affiliated to Xinjiang Medical University, Urumqi, Xinjiang, China (mainland)
| | - Hongxia Ma
- Department of Pulmonary Medicine, Traditional Chinese Medicine Hospital Affiliated to Xinjiang Medical University, Urumqi, Xinjiang, China (mainland)
| | - Fengsen Li
- Department of Pulmonary Medicine, Xinjiang Medical University, Urumqi, Xinjiang, China (mainland)
| |
Collapse
|
37
|
Qu Y, Hao C, Zhai R, Yao W. Folate and macrophage folate receptor-β in idiopathic pulmonary fibrosis disease: the potential therapeutic target? Biomed Pharmacother 2020; 131:110711. [DOI: 10.1016/j.biopha.2020.110711] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 08/10/2020] [Accepted: 08/28/2020] [Indexed: 02/07/2023] Open
|
38
|
Juglanin alleviates bleomycin-induced lung injury by suppressing inflammation and fibrosis via targeting sting signaling. Biomed Pharmacother 2020; 127:110119. [DOI: 10.1016/j.biopha.2020.110119] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 03/18/2020] [Accepted: 03/19/2020] [Indexed: 12/18/2022] Open
|
39
|
Lipid Mediators Regulate Pulmonary Fibrosis: Potential Mechanisms and Signaling Pathways. Int J Mol Sci 2020; 21:ijms21124257. [PMID: 32549377 PMCID: PMC7352853 DOI: 10.3390/ijms21124257] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/12/2020] [Accepted: 06/12/2020] [Indexed: 02/06/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive lung disease of unknown etiology characterized by distorted distal lung architecture, inflammation, and fibrosis. The molecular mechanisms involved in the pathophysiology of IPF are incompletely defined. Several lung cell types including alveolar epithelial cells, fibroblasts, monocyte-derived macrophages, and endothelial cells have been implicated in the development and progression of fibrosis. Regardless of the cell types involved, changes in gene expression, disrupted glycolysis, and mitochondrial oxidation, dysregulated protein folding, and altered phospholipid and sphingolipid metabolism result in activation of myofibroblast, deposition of extracellular matrix proteins, remodeling of lung architecture and fibrosis. Lipid mediators derived from phospholipids, sphingolipids, and polyunsaturated fatty acids play an important role in the pathogenesis of pulmonary fibrosis and have been described to exhibit pro- and anti-fibrotic effects in IPF and in preclinical animal models of lung fibrosis. This review describes the current understanding of the role and signaling pathways of prostanoids, lysophospholipids, and sphingolipids and their metabolizing enzymes in the development of lung fibrosis. Further, several of the lipid mediators and enzymes involved in their metabolism are therapeutic targets for drug development to treat IPF.
Collapse
|
40
|
Jin H, Yoo Y, Kim Y, Kim Y, Cho J, Lee YS. Radiation-Induced Lung Fibrosis: Preclinical Animal Models and Therapeutic Strategies. Cancers (Basel) 2020; 12:cancers12061561. [PMID: 32545674 PMCID: PMC7352529 DOI: 10.3390/cancers12061561] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/02/2020] [Accepted: 06/10/2020] [Indexed: 01/27/2023] Open
Abstract
Radiation-induced lung injury (RILI), including acute radiation pneumonitis and chronic radiation-induced lung fibrosis, is the most common side effect of radiation therapy. RILI is a complicated process that causes the accumulation, proliferation, and differentiation of fibroblasts and, finally, results in excessive extracellular matrix deposition. Currently, there are no approved treatment options for patients with radiation-induced pulmonary fibrosis (RIPF) partly due to the absence of effective targets. Current research advances include the development of small animal models reflecting modern radiotherapy, an understanding of the molecular basis of RIPF, and the identification of candidate drugs for prevention and treatment. Insights provided by this research have resulted in increased interest in disease progression and prognosis, the development of novel anti-fibrotic agents, and a more targeted approach to the treatment of RIPF.
Collapse
Affiliation(s)
- Hee Jin
- Graduate School of Pharmaceutical Sciences and College of Pharmacy, Ewha Womans University, Seoul 03760, Korea; (H.J.); (Y.Y.); (Y.K.); (Y.K.)
| | - Youngjo Yoo
- Graduate School of Pharmaceutical Sciences and College of Pharmacy, Ewha Womans University, Seoul 03760, Korea; (H.J.); (Y.Y.); (Y.K.); (Y.K.)
| | - Younghwa Kim
- Graduate School of Pharmaceutical Sciences and College of Pharmacy, Ewha Womans University, Seoul 03760, Korea; (H.J.); (Y.Y.); (Y.K.); (Y.K.)
| | - Yeijin Kim
- Graduate School of Pharmaceutical Sciences and College of Pharmacy, Ewha Womans University, Seoul 03760, Korea; (H.J.); (Y.Y.); (Y.K.); (Y.K.)
| | - Jaeho Cho
- Department of Radiation Oncology, Yonsei University Health System, Seoul 03722, Korea
- Correspondence: (J.C.); (Y.-S.L.); Tel.: +82-2-2228-8113 (J.C.); +82-2-3277-3022 (Y.-S.L.); Fax: +82-2-3277-3051 (Y.-S.L.)
| | - Yun-Sil Lee
- Graduate School of Pharmaceutical Sciences and College of Pharmacy, Ewha Womans University, Seoul 03760, Korea; (H.J.); (Y.Y.); (Y.K.); (Y.K.)
- Correspondence: (J.C.); (Y.-S.L.); Tel.: +82-2-2228-8113 (J.C.); +82-2-3277-3022 (Y.-S.L.); Fax: +82-2-3277-3051 (Y.-S.L.)
| |
Collapse
|
41
|
Tawfik EA, Craig DQM, Barker SA. Dual drug-loaded coaxial nanofibers for the treatment of corneal abrasion. Int J Pharm 2020; 581:119296. [PMID: 32247813 DOI: 10.1016/j.ijpharm.2020.119296] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 03/29/2020] [Accepted: 03/30/2020] [Indexed: 12/11/2022]
Abstract
Corneal abrasion is a scratch wound on the surface of the anterior segment of the eye, which can predispose a patient to corneal infection and scarring, particularly if the cut penetrates to the deep corneal layers. Here we investigate a novel approach to co-administer an anti-scarring agent and an antibiotic, both being incorporated into one dosage form so as to accelerate wound closure and to treat any associated infection. More specifically, we have used electrospun fibers as a means of incorporating the two drugs into distinct compartments via coaxial electrospinning. Samples were characterised using a range of imaging, spectroscopic and thermal methods, while an HPLC assay has been developed to allow measurement of the concentration of both drug components in both the initial fibers and on release. Fibers loaded with pirfenidone in the hydrophobic polymer, PLGA, as the outer layer and moxifloxacin in the hydrophilic polymer PVP as the inner layer were successfully prepared, with smooth and non-porous surfaces and a mean diameter of circa 630 nm. TEM image demonstrated clear distinctive layers (a core and a shell), suggesting the successful preparation of the drug-loaded coaxial fibers, supported by HPLC entrapment studies, while fluorescence microscopy confirmed the presence of the moxifloxacin within the fibers. The fibers were capable of extending the release of both drugs, hence raising the possibility of a single daily dose of the drug-loaded coaxial fibers for the treatment of corneal abrasion.
Collapse
Affiliation(s)
- Essam A Tawfik
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, United Kingdom; National Center for Pharmaceutical Technology, King Abdulaziz City for Science and Technology, 6086, Riyadh 11442, Saudi Arabia
| | - Duncan Q M Craig
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, United Kingdom.
| | - Susan A Barker
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, United Kingdom
| |
Collapse
|
42
|
Ma W, Huang Q, Xiong G, Deng L, He Y. The protective effect of Hederagenin on pulmonary fibrosis by regulating the Ras/JNK/NFAT4 axis in rats. Biosci Biotechnol Biochem 2020; 84:1131-1138. [PMID: 32024440 DOI: 10.1080/09168451.2020.1721263] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
As a respiratory disease with high morbidity and mortality, pulmonary fibrosis (PF) has been a serious threat to people's health. Hederagenin (HDG) is a pentacyclic triterpenoid saponin widely distributed in various plants. This study explored the role of HDG in Bleomycin (BLM)-induced PF and the molecular mechanism. The results showed that HDG reduced BLM-induced pulmonary dysfunction, pathological damage in a dose-dependent manner. Besides, HDG reduced BLM-induced collagen deposition by decreasing the levels of α-SMA, Collagen I and hydroxproline. Furthermore, HDG reduced the levels of inflammatory cytokines (TNF-α and IL-6), TGF-β1 and connective tissue growth factor (CTGF) in bronchoalveolar lavage fluid (BALF) or serum. Further mechanism analysis indicated that HDG inhibited the expression of Ras and phosphorylation of JNK and NFAT4 in a dose-dependent manner. However, the JNK pathway activator Anisomycin reversed this inhibitory effect. In conclusion, these findings suggest that HDG may be a potential target drug for PF therapy.
Collapse
Affiliation(s)
- Wenjing Ma
- Adverse Drug Reaction Monitoring Center, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, P. R. China
| | - Qingsong Huang
- Department of Pneumology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, P. R. China
| | - Guofu Xiong
- Department of Pneumology, Sichuan Second Hospital of Traditional Chinese Medicine, Chengdu, Sichuan Province, P. R. China
| | - Lijun Deng
- Department of Pneumology, Neijiang Hospital of Traditional Chinese Medicine, Neijiang, Sichuan Province, P. R. China
| | - Yan He
- Adverse Drug Reaction Monitoring Center, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, P. R. China
| |
Collapse
|
43
|
Song MK, Kim DI, Lee K. Time-course transcriptomic alterations reflect the pathophysiology of polyhexamethylene guanidine phosphate-induced lung injury in rats. Inhal Toxicol 2020; 31:457-467. [PMID: 31971030 DOI: 10.1080/08958378.2019.1707912] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Objective: Humidifier-disinfectant-induced lung injury is a new syndrome associated with a high mortality rate and characterized by severe hypersensitivity pneumonitis, acute interstitial pneumonia, or acute respiratory distress syndrome. Polyhexamethylene guanidine phosphate (PHMG-P), a guanidine-based antimicrobial agent, is a major component associated with severe lung injury. In-depth studies are needed to determine how PHMG-P affects pathogenesis at the molecular level. Therefore, in this study, we analyzed short-term (4 weeks) and long-term (10 weeks) PHMG-P-exposure-specific gene-expression patterns in rats to improve our understanding of time-dependent changes in fibrosis.Materials and methods: Gene-expression profiles were analyzed in rat lung tissues using DNA microarrays and bioinformatics tools.Results: Clustering analysis of gene-expression data showed different gene-alteration patterns in the short- and long-term exposure groups and higher sensitivity to gene-expression changes in the long-term exposure group than in the short-term exposure group. Supervised analysis revealed 34 short-term and 335 long-term exposure-specific genes, and functional analysis revealed that short-term exposure-specific genes were involved in PHMG-P-induced initial inflammatory responses, whereas long-term exposure-specific genes were involved in PHMG-P-related induction of chronic lung fibrosis.Conclusion: The results of transcriptomic analysis were consistent with lung histopathology results. These findings indicated that exposure-time-specific changes in gene expression closely reflected time-dependent pathological changes in PHMG-P-induced lung injury.
Collapse
Affiliation(s)
- Mi-Kyung Song
- National Center for Efficacy Evaluation for Respiratory Disease Product, Korea Institute of Toxicology, Jeongeup, Republic of Korea.,Department of Human and Environmental Toxicology, University of Science and Technology, Daejeon, Republic of Korea
| | - Dong Im Kim
- National Center for Efficacy Evaluation for Respiratory Disease Product, Korea Institute of Toxicology, Jeongeup, Republic of Korea
| | - Kyuhong Lee
- National Center for Efficacy Evaluation for Respiratory Disease Product, Korea Institute of Toxicology, Jeongeup, Republic of Korea.,Department of Human and Environmental Toxicology, University of Science and Technology, Daejeon, Republic of Korea
| |
Collapse
|
44
|
Song YH, Chai Q, Wang NL, Yang FF, Wang GH, Hu JY. X-rays induced IL-8 production in lung cancer cells via p38/MAPK and NF-κB pathway. Int J Radiat Biol 2020; 96:1374-1381. [PMID: 31729901 DOI: 10.1080/09553002.2020.1683643] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
PURPOSE It is reported inflammatory cytokine interleukin-8 (IL-8) could predict radiation-induced lung toxicity (RILT). RILT is believed to be a consequence of a cascade of cytokine production. It is considered that vascular endothelial cell and macrophages are the mainly source of cytokines. This study was investigated the production of IL-8 from cancer cells induced by X-rays may involve in the radiation-induced inflammation. MATERIALS AND METHODS We analyzed IL-8 in human lung cancer cell lines after expose to X-rays, and we also detect IL-8 in HUVEC cells and THP1 cells as endothelial cell and macrophage model to identify the change in normal cells after expose. Furthermore, we added the inhibitors to the culture with or without radiation to identify the role of MAPK and NF-κB pathways on the radiation-induced secretion of IL-8. RESULTS Radiation could induce IL-8 production both in non-lung cancer cells (HUVECs and THP1 cells) and in lung cancer cells (A549 cells, H446 cells, PC-9 cells). Simultaneously, radiation activated p38/MAPK and NF-κB signal pathways in lung cancer cells. Moreover, p38/MAPK inhibitor SB203580 and NF-κB inhibitor BAY11-7082 could block the IL-8 up-regulated by X-rays but JNK inhibitor SP600125, ERK inhibitor U0126, ROS Scavenger NAC could not inhibit this phenomenon. CONCLUSIONS X-rays could induce IL-8 production in lung cancer cells, which may be related to the activation of p38/MAPK and NF-κB signaling pathway, providing a new point for elucidating the mechanism of radiation pneumonitis.
Collapse
Affiliation(s)
- Ying-Hui Song
- Department of Oncology, Changsha Central Hospital, Changsha, China
| | - Qin Chai
- Department of Oncology, Changsha Central Hospital, Changsha, China
| | - Ni-la Wang
- Department of Oncology, Changsha Central Hospital, Changsha, China
| | - Fan-Fan Yang
- Department of Oncology, Changsha Central Hospital, Changsha, China
| | - Gui-Hua Wang
- Department of Oncology, Changsha Central Hospital, Changsha, China
| | - Jin-Yue Hu
- Medical Research Center, Changsha Central Hospital, Changsha, China
| |
Collapse
|
45
|
Lin X, Barravecchia M, Matthew Kottmann R, Sime P, Dean DA. Caveolin-1 gene therapy inhibits inflammasome activation to protect from bleomycin-induced pulmonary fibrosis. Sci Rep 2019; 9:19643. [PMID: 31873099 PMCID: PMC6928213 DOI: 10.1038/s41598-019-55819-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 11/30/2019] [Indexed: 01/04/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a devastating and fatal disease and characterized by increased deposition of extracellular matrix proteins and scar formation in the lung, resulting from alveolar epithelial damage and accumulation of inflammatory cells. Evidence suggests that Caveolin-1 (Cav-1), a major component of caveolae which regulates cell signaling and endocytosis, is a potential target to treat fibrotic diseases, although the mechanisms and responsible cell types are unclear. We show that Cav-1 expression was downregulated both in alveolar epithelial type I cells in bleomycin-injured mouse lungs and in lung sections from IPF patients. Increased expression of IL-1β and caspase-1 has been observed in IPF patients, indicating inflammasome activation associated with IPF. Gene transfer of a plasmid expressing Cav-1 using transthoracic electroporation reduced infiltration of neutrophils and monocytes/macrophages and protected from subsequent bleomycin-induced pulmonary fibrosis. Overexpression of Cav-1 suppressed bleomycin- or silica-induced activation of caspase-1 and maturation of pro-IL-1β to secrete cleaved IL-1β both in mouse lungs and in primary type I cells. These results demonstrate that gene transfer of Cav-1 downregulates inflammasome activity and protects from subsequent bleomycin-mediated pulmonary fibrosis. This indicates a pivotal regulation of Cav-1 in inflammasome activity and suggests a novel therapeutic strategy for patients with IPF.
Collapse
Affiliation(s)
- Xin Lin
- Department of Pediatrics, School of Medicine and Dentistry, University of Rochester, Rochester, NY, 14642, USA
| | - Michael Barravecchia
- Department of Pediatrics, School of Medicine and Dentistry, University of Rochester, Rochester, NY, 14642, USA
| | - R Matthew Kottmann
- Department of Medicine, School of Medicine and Dentistry, University of Rochester, Rochester, NY, 14642, USA
| | - Patricia Sime
- Department of Medicine, School of Medicine and Dentistry, University of Rochester, Rochester, NY, 14642, USA
| | - David A Dean
- Department of Pediatrics, School of Medicine and Dentistry, University of Rochester, Rochester, NY, 14642, USA.
| |
Collapse
|
46
|
Oliveira FMS, da Paixão Matias PH, Kraemer L, Gazzinelli-Guimarães AC, Santos FV, Amorim CCO, Nogueira DS, Freitas CS, Caliari MV, Bartholomeu DC, Bueno LL, Russo RC, Fujiwara RT. Comorbidity associated to Ascaris suum infection during pulmonary fibrosis exacerbates chronic lung and liver inflammation and dysfunction but not affect the parasite cycle in mice. PLoS Negl Trop Dis 2019; 13:e0007896. [PMID: 31765381 PMCID: PMC6901262 DOI: 10.1371/journal.pntd.0007896] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 12/09/2019] [Accepted: 10/31/2019] [Indexed: 12/12/2022] Open
Abstract
Ascariasis is considered the most neglected tropical disease, and is a major problem for the public health system. However, idiopathic pulmonary fibrosis (IPF) is a result of chronic extracellular deposition of matrix in the pulmonary parenchyma, and thickening of the alveolar septa, which reduces alveolar gas exchange. Considering the high rates of ascariasis and pulmonary fibrosis, we believe that these two diseases may co-exist and possibly lead to comorbidities. We therefore investigated the mechanisms involved in comorbidity of Ascaris suum (A. suum) infection, which could interfere with the progression of pulmonary fibrosis. In addition, we evaluated whether a previous lung fibrosis could interfere with the pulmonary cycle of A. suum in mice. The most important findings related to comorbidity in which A. suum infection exacerbated pulmonary and liver injury, inflammation and dysfunction, but did not promote excessive fibrosis in mice during the investigated comorbidity period. Interestingly, we found that pulmonary fibrosis did not alter the parasite cycle that transmigrated preferentially through preserved but not fibrotic areas of the lungs. Collectively, our results demonstrate that A. suum infection leads to comorbidity, and contributes to the aggravation of pulmonary dysfunction during pulmonary fibrosis, which also leads to significant liver injury and inflammation, without changing the A. suum cycle in the lungs. Ascariasis is considered a major problem for the public health system, which has an estimated 800 million infected people worldwide. It occurs in the United States, Africa, Asia, and Latin America, and is generally associated with poverty and precarious health conditions. Pulmonary fibrosis affects 14–63 people per 100,000 habitants/year, and is characterized by collagen deposition and alveolar wall thickening. The comorbidities caused by infections are commonly associated with pulmonary fibrosis exacerbations, poor prognosis, and high mortality. Despite the comorbidities caused by helminth infections, which display a pulmonary parasitic cycle such as that of Ascaris, there is no evidence relating to pulmonary fibrosis progression, possibly because Ascariasis is considered a neglected disease. We evaluated the role of Ascaris during pulmonary fibrosis. We considered two simple questions: (1) Whether Ascaris infection could protect or aggravate fibrosis (comorbidities) and (2) whether pulmonary fibrosis could change the cycle of Ascaris as a result of increased alveolar thickening, larvae retention, and the limitation of influx into airways. We answered both questions as follows: (1) Ascaris infection exacerbates pulmonary and liver injury and inflammation, but not fibrosis; and (2) Pulmonary fibrosis did not alter the course of Ascaris cycle in lungs during transmigration into airways, because Ascaris preferentially seeks and penetrates into the lung areas, which are thought to be preserved, but not into fibrotic areas.
Collapse
Affiliation(s)
- Fabrício Marcus Silva Oliveira
- Laboratory of Immunology and Genomics of Parasites, Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Laboratory of Pulmonary Immunology and Mechanics, Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Pablo Hemanoel da Paixão Matias
- Laboratory of Immunology and Genomics of Parasites, Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Lucas Kraemer
- Laboratory of Immunology and Genomics of Parasites, Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Laboratory of Pulmonary Immunology and Mechanics, Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Ana Clara Gazzinelli-Guimarães
- Laboratory of Immunology and Genomics of Parasites, Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Flaviane Vieira Santos
- Laboratory of Immunology and Genomics of Parasites, Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Chiara Cássia Oliveira Amorim
- Laboratory of Immunology and Genomics of Parasites, Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Denise Silva Nogueira
- Laboratory of Immunology and Genomics of Parasites, Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Camila Simões Freitas
- Laboratory of Pulmonary Immunology and Mechanics, Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Marcelo Vidigal Caliari
- Laboratory of Protozooses, Department of General Pathology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Daniella Castanheira Bartholomeu
- Laboratory of Immunology and Genomics of Parasites, Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Lilian Lacerda Bueno
- Laboratory of Immunology and Genomics of Parasites, Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Remo Castro Russo
- Laboratory of Pulmonary Immunology and Mechanics, Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Ricardo Toshio Fujiwara
- Laboratory of Immunology and Genomics of Parasites, Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- * E-mail:
| |
Collapse
|
47
|
Yao Y, Gu Y, Yang M, Cao D, Wu F. The Gene Expression Biomarkers for Chronic Obstructive Pulmonary Disease and Interstitial Lung Disease. Front Genet 2019; 10:1154. [PMID: 31824564 PMCID: PMC6879656 DOI: 10.3389/fgene.2019.01154] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 10/22/2019] [Indexed: 01/01/2023] Open
Abstract
COPD (chronic obstructive pulmonary disease) and ILD (interstitial lung disease) are two common respiratory diseases. They share similar clinical traits but require different therapeutic treatments. Identifying the biomarkers that are differentially expressed between them will not only help the diagnosis of COPD and ILD, but also provide candidate drug targets that may facilitate the development of new treatment for COPD and ILD. Due to the irreversible complex pathological changes of COPD, there are very limited therapeutic options for COPD patients. In this study, we analyzed the gene expression profiles of two datasets: one training dataset that includes 144 COPD patients and 194 ILD patients, and one test dataset that includes 75 COPD patients and 61 ILD patients. Advanced feature selection methods, mRMR (minimal Redundancy Maximal Relevance) and incremental feature selection (IFS), were applied to identify the 38-gene biomarker. An SVM (support vector machine) classifier was built based on the 38-gene biomarker. Its accuracy, sensitivity, and specificity on training dataset evaluated by leave one out cross-validation were 0.905, 0.896, and 0.912, respectively. And on independent test dataset, the accuracy, sensitivity, and specificity on were as great as and were 0.904, 0.933, and 0.869, respectively. The biological function analysis of the 38 genes indicated that many of them can be potential treatment targets that may benefit COPD and ILD patients.
Collapse
Affiliation(s)
- Yangwei Yao
- Department of Pulmonary and Critical Care Medicine, The Second Hospital of Jiaxing, Jiaxing, China
| | - Yangyang Gu
- Department of Pulmonary and Critical Care Medicine, The Second Hospital of Jiaxing, Jiaxing, China
| | - Meng Yang
- Department of Pulmonary and Critical Care Medicine, The Second Hospital of Jiaxing, Jiaxing, China
| | - Dakui Cao
- Department of Pulmonary and Critical Care Medicine, The Second Hospital of Jiaxing, Jiaxing, China
| | - Fengjie Wu
- Department of Pulmonary and Critical Care Medicine, The Second Hospital of Jiaxing, Jiaxing, China
| |
Collapse
|
48
|
Veith C, Boots AW, Idris M, van Schooten FJ, van der Vliet A. Redox Imbalance in Idiopathic Pulmonary Fibrosis: A Role for Oxidant Cross-Talk Between NADPH Oxidase Enzymes and Mitochondria. Antioxid Redox Signal 2019; 31:1092-1115. [PMID: 30793932 PMCID: PMC6767863 DOI: 10.1089/ars.2019.7742] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Significance: Idiopathic pulmonary fibrosis (IPF) is a progressive age-related lung disease with a median survival of only 3 years after diagnosis. The pathogenic mechanisms behind IPF are not clearly understood, and current therapeutic approaches have not been successful in improving disease outcomes. Recent Advances: IPF is characterized by increased production of reactive oxygen species (ROS), primarily by NADPH oxidases (NOXes) and mitochondria, as well as altered antioxidant defenses. Recent studies have identified the NOX isoform NOX4 as a key player in various important aspects of IPF pathology. In addition, mitochondrial dysfunction is thought to enhance pathological features of IPF, in part by increasing mitochondrial ROS (mtROS) production and altering cellular metabolism. Recent findings indicate reciprocal interactions between NOX enzymes and mitochondria, which affect regulation of NOX activity as well as mitochondrial function and mtROS production, and collectively promote epithelial injury and profibrotic signaling. Critical Issues and Future Directions: The precise molecular mechanisms by which ROS from NOX or mitochondria contribute to IPF pathology are not known. This review summarizes the current knowledge with respect to the various aspects of ROS imbalance in the context of IPF and its proposed roles in disease development, with specific emphasis on the importance of inappropriate NOX activation, mitochondrial dysfunction, and the emerging evidence of NOX-mitochondria cross-talk as important drivers in IPF pathobiology.
Collapse
Affiliation(s)
- Carmen Veith
- Department of Pharmacology and Toxicology, Faculty of Health, Medicine and Life Sciences, NUTRIM School of Nutrition, Translational Research and Metabolism, University of Maastricht, Maastricht, the Netherlands
| | - Agnes W. Boots
- Department of Pharmacology and Toxicology, Faculty of Health, Medicine and Life Sciences, NUTRIM School of Nutrition, Translational Research and Metabolism, University of Maastricht, Maastricht, the Netherlands
| | - Musa Idris
- Department of Pharmacology and Toxicology, Faculty of Health, Medicine and Life Sciences, NUTRIM School of Nutrition, Translational Research and Metabolism, University of Maastricht, Maastricht, the Netherlands
| | - Frederik-Jan van Schooten
- Department of Pharmacology and Toxicology, Faculty of Health, Medicine and Life Sciences, NUTRIM School of Nutrition, Translational Research and Metabolism, University of Maastricht, Maastricht, the Netherlands
| | - Albert van der Vliet
- Department of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington, Vermont
- Address correspondence to: Dr. Albert van der Vliet, Department of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont, HSRF 216, 149 Beaumont Avenue, Burlington, VT 05405
| |
Collapse
|
49
|
Anderson NA, Campos S, Butler S, Copley RCB, Duncan I, Harrison S, Le J, Maghames R, Pastor-Garcia A, Pritchard JM, Rowedder JE, Smith CE, Thomas J, Vitulli G, Macdonald SJF. Discovery of an Orally Bioavailable Pan αv Integrin Inhibitor for Idiopathic Pulmonary Fibrosis. J Med Chem 2019; 62:8796-8808. [PMID: 31497959 DOI: 10.1021/acs.jmedchem.9b00962] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The heterodimeric transmembrane αv integrin receptors have recently emerged as potential targets for the treatment of idiopathic pulmonary fibrosis. Herein, we describe how subtle modifications of the central aromatic ring of a series of phenylbutyrate-based antagonists of the vitronectin receptors αvβ3 and αvβ5 significantly change the biological activities against αvβ6 and αvβ8. This resulted in the discovery of a pan αv antagonist (compound 39, 4-40 nM for the integrin receptors named above) possessing excellent oral pharmacokinetic properties in rats (with a clearance of 7.6 mL/(min kg) and a bioavailability of 97%).
Collapse
Affiliation(s)
- Niall A Anderson
- GlaxoSmithKline Medicines Research Centre , Gunnels Wood Road , Stevenage SG1 2NY , U.K
| | - Sebastien Campos
- GlaxoSmithKline Medicines Research Centre , Gunnels Wood Road , Stevenage SG1 2NY , U.K
| | - Sharon Butler
- GlaxoSmithKline Medicines Research Centre , Gunnels Wood Road , Stevenage SG1 2NY , U.K
| | - Royston C B Copley
- GlaxoSmithKline Medicines Research Centre , Gunnels Wood Road , Stevenage SG1 2NY , U.K
| | - Ian Duncan
- GlaxoSmithKline Medicines Research Centre , Gunnels Wood Road , Stevenage SG1 2NY , U.K
| | - Stephen Harrison
- GlaxoSmithKline Medicines Research Centre , Gunnels Wood Road , Stevenage SG1 2NY , U.K
| | - Joelle Le
- GlaxoSmithKline Medicines Research Centre , Gunnels Wood Road , Stevenage SG1 2NY , U.K
| | - Rosemary Maghames
- GlaxoSmithKline Medicines Research Centre , Gunnels Wood Road , Stevenage SG1 2NY , U.K
| | - Aleix Pastor-Garcia
- GlaxoSmithKline Medicines Research Centre , Gunnels Wood Road , Stevenage SG1 2NY , U.K
| | - John M Pritchard
- GlaxoSmithKline Medicines Research Centre , Gunnels Wood Road , Stevenage SG1 2NY , U.K
| | - James E Rowedder
- GlaxoSmithKline Medicines Research Centre , Gunnels Wood Road , Stevenage SG1 2NY , U.K
| | - Claire E Smith
- GlaxoSmithKline Medicines Research Centre , Gunnels Wood Road , Stevenage SG1 2NY , U.K
| | - Jack Thomas
- GlaxoSmithKline Medicines Research Centre , Gunnels Wood Road , Stevenage SG1 2NY , U.K
| | - Giovanni Vitulli
- GlaxoSmithKline Medicines Research Centre , Gunnels Wood Road , Stevenage SG1 2NY , U.K
| | - Simon J F Macdonald
- GlaxoSmithKline Medicines Research Centre , Gunnels Wood Road , Stevenage SG1 2NY , U.K
| |
Collapse
|
50
|
The Anti-Fibrotic Effects of CG-745, an HDAC Inhibitor, in Bleomycin and PHMG-Induced Mouse Models. Molecules 2019; 24:molecules24152792. [PMID: 31370295 PMCID: PMC6696140 DOI: 10.3390/molecules24152792] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 07/25/2019] [Accepted: 07/30/2019] [Indexed: 02/02/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a fatal lung disease with poor prognosis and progression to lung fibrosis related to genetic factors as well as environmental factors. In fact, it was discovered that in South Korea many people who used humidifier disinfectants containing polyhexamethylene guanidine (PHMG), died of lung fibrosis. Currently two anti-fibrotic drugs, pirfenidone and nintedanib, have been approved by the FDA, but unfortunately, do not cure the disease. Since the histone deacetylase (HDAC) activity is associated with progression to chronic diseases and with fibrotic phenomena in the kidney, heart and lung tissues, we investigated the anti-fibrotic effects of CG-745, an HDAC inhibitor. After lung fibrosis was induced in two animal models by bleomycin and PHMG instillation, the regulation of fibrosis and epithelial mesenchymal transition (EMT)-related markers was assessed. CG-745 exhibited potent prevention of collagen production, inflammatory cell accumulation, and cytokines release in both models. Additionally, N-cadherin and vimentin expression were lowered significantly by the treatment of CG-745. The anti-fibrotic effects of CG-745 proven by the EMT regulation may suggest a potential therapeutic effect of CG-745 on lung fibrosis.
Collapse
|