1
|
Zelter A, Riffle M, Shteynberg DD, Zhong G, Riddle EB, Hoopmann MR, Jaschob D, Moritz RL, Davis TN, MacCoss MJ, Isoherranen N. Detection and Quantification of Drug-Protein Adducts in Human Liver. J Proteome Res 2024; 23:5143-5152. [PMID: 39442081 PMCID: PMC11537226 DOI: 10.1021/acs.jproteome.4c00663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/19/2024] [Accepted: 10/10/2024] [Indexed: 10/25/2024]
Abstract
Covalent protein adducts formed by drugs or their reactive metabolites are risk factors for adverse reactions, and inactivation of cytochrome P450 (CYP) enzymes. Characterization of drug-protein adducts is limited due to lack of methods identifying and quantifying covalent adducts in complex matrices. This study presents a workflow that combines data-dependent and data-independent acquisition (DDA and DIA) based liquid chromatography with tandem mass spectrometry (LC-MS/MS) to detect very low abundance adducts resulting from CYP mediated drug metabolism in human liver microsomes (HLMs). HLMs were incubated with raloxifene as a model compound and adducts were detected in 78 proteins, including CYP3A and CYP2C family enzymes. Experiments with recombinant CYP3A and CYP2C enzymes confirmed adduct formation in all CYPs tested, including CYPs not subject to time-dependent inhibition by raloxifene. These data suggest adducts can be benign. DIA analysis showed variable adduct abundance in many peptides between livers, but no concomitant decrease of unadducted peptides. This study sets a new standard for adduct detection in complex samples, offering insights into the human adductome resulting from reactive metabolite exposure. The methodology presented will aid mechanistic studies to identify, quantify and differentiate between adducts that result in adverse drug reactions and those that are benign.
Collapse
Affiliation(s)
- Alex Zelter
- Department
of Genome Sciences, Department of Biochemistry, and Department of Pharmaceutics, University of Washington, Seattle, Washington 98195, United States
| | - Michael Riffle
- Department
of Genome Sciences, Department of Biochemistry, and Department of Pharmaceutics, University of Washington, Seattle, Washington 98195, United States
| | | | - Guo Zhong
- Department
of Genome Sciences, Department of Biochemistry, and Department of Pharmaceutics, University of Washington, Seattle, Washington 98195, United States
| | - Ellen B. Riddle
- Department
of Genome Sciences, Department of Biochemistry, and Department of Pharmaceutics, University of Washington, Seattle, Washington 98195, United States
| | | | - Daniel Jaschob
- Department
of Genome Sciences, Department of Biochemistry, and Department of Pharmaceutics, University of Washington, Seattle, Washington 98195, United States
| | - Robert L. Moritz
- Institute
for Systems Biology, Seattle, Washington 98109, United States
| | - Trisha N. Davis
- Department
of Genome Sciences, Department of Biochemistry, and Department of Pharmaceutics, University of Washington, Seattle, Washington 98195, United States
| | - Michael J. MacCoss
- Department
of Genome Sciences, Department of Biochemistry, and Department of Pharmaceutics, University of Washington, Seattle, Washington 98195, United States
| | - Nina Isoherranen
- Department
of Genome Sciences, Department of Biochemistry, and Department of Pharmaceutics, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
2
|
Qian Y, Zhao J, Wu H, Kong X. Innate immune regulation in inflammation resolution and liver regeneration in drug-induced liver injury. Arch Toxicol 2024:10.1007/s00204-024-03886-0. [PMID: 39395921 DOI: 10.1007/s00204-024-03886-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Accepted: 10/02/2024] [Indexed: 10/14/2024]
Abstract
Drug-induced liver injury (DILI) is an acute liver injury that poses a significant threat to human health. In severe cases, it can progress into chronic DILI or even lead to liver failure. DILI is typically caused by either intrinsic hepatotoxicity or idiosyncratic metabolic or immune responses. In addition to the direct damage drugs inflict on hepatocytes, the immune responses and liver inflammation triggered by hepatocyte death can further exacerbate DILI. Initially, we briefly discussed the differences in immune cell activation based on the type of liver cell death (hepatocytes, cholangiocytes, and LSECs). We then focused on the role of various immune cells (including macrophages, monocytes, neutrophils, dendritic cells, liver sinusoidal endothelial cells, eosinophils, natural killer cells, and natural killer T cells) in both the liver injury and liver regeneration stages of DILI. This article primarily reviews the role of innate immune regulation mediated by these immune cells in resolving inflammation and promoting liver regeneration during DILI, as well as therapeutic approaches targeting these immune cells for the treatment of DILI. Finally, we discussed the activation and function of liver progenitor cells (LPCs) during APAP-induced massive hepatic necrosis and the involvement of chronic inflammation in DILI.
Collapse
Affiliation(s)
- Yihan Qian
- Central Laboratory, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, 528 Zhangheng Road, Shanghai, China
| | - Jie Zhao
- Department of Liver Surgery, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Hailong Wu
- Shanghai Key Laboratory of Molecular Imaging, Collaborative Innovation Center for Biomedicines, Shanghai University of Medicine and Health Sciences, Shanghai, China.
| | - Xiaoni Kong
- Central Laboratory, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, 528 Zhangheng Road, Shanghai, China.
| |
Collapse
|
3
|
Lucas SCC, Milbradt AG, Blackwell JH, Bonomo S, Brierley A, Cassar DJ, Freeman J, Hadfield TE, Morrill LA, Riemens R, Sarda S, Schiesser S, Wiktelius D, Ahmed S, Bostock MJ, Börjesson U, De Fusco C, Guerot C, Hargreaves D, Hewitt S, Lamb ML, Su N, Whatling R, Wheeler M, Kettle JG. Design of a Lead-Like Cysteine-Targeting Covalent Library and the Identification of Hits to Cys55 of Bfl-1. J Med Chem 2024; 67:11209-11225. [PMID: 38916990 DOI: 10.1021/acs.jmedchem.4c00781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
Covalent hit identification is a viable approach to identify chemical starting points against difficult-to-drug targets. While most researchers screen libraries of <2k electrophilic fragments, focusing on lead-like compounds can be advantageous in terms of finding hits with improved affinity and with a better chance of identifying cryptic pockets. However, due to the increased molecular complexity, larger numbers of compounds (>10k) are desirable to ensure adequate coverage of chemical space. Herein, the approach taken to build a library of 12k covalent lead-like compounds is reported, utilizing legacy compounds, robust library chemistry, and acquisitions. The lead-like covalent library was screened against the antiapoptotic protein Bfl-1, and six promising hits that displaced the BIM peptide from the PPI interface were identified. Intriguingly, X-ray crystallography of lead-like compound 8 showed that it binds to a previously unobserved conformation of the Bfl-1 protein and is an ideal starting point for the optimization of Bfl-1 inhibitors.
Collapse
Affiliation(s)
- Simon C C Lucas
- Hit Discovery, Discovery Sciences, R&D, AstraZeneca, Cambridge CB2 0AA, U.K
| | - Alexander G Milbradt
- Mechanistic and Structural Biology, Discovery Sciences, R&D, AstraZeneca, Cambridge CB2 0AA, U.K
| | - J Henry Blackwell
- Hit Discovery, Discovery Sciences, R&D, AstraZeneca, Cambridge CB2 0AA, U.K
| | - Silvia Bonomo
- Hit Discovery, Discovery Sciences, R&D, AstraZeneca, Cambridge CB2 0AA, U.K
| | - Andrew Brierley
- Compound Synthesis and Management, Discovery Sciences, R&D, AstraZeneca, Cambridge CB2 0AA, U.K
| | - Doyle J Cassar
- Medicinal Chemistry, Oncology R&D, AstraZeneca, Cambridge CB2 0AA, U.K
| | - Jared Freeman
- Medicinal Chemistry, Research and Early Development, Cardiovascular, Renal and Metabolic Disorders (CVRM), Biopharmaceuticals R&D, AstraZeneca, Gothenburg, SE-43183, Sweden
| | - Thomas E Hadfield
- Hit Discovery, Discovery Sciences, R&D, AstraZeneca, Cambridge CB2 0AA, U.K
| | - Lucas A Morrill
- Medicinal Chemistry, Oncology R&D, AstraZeneca, Waltham, Massachusetts 02451, United States
| | - Rick Riemens
- Medicinal Chemistry, Oncology R&D, Acerta B. V., a Part of the AstraZeneca Group, Oss 5349, The Netherlands
| | - Sunil Sarda
- Compound Synthesis and Management, Discovery Sciences, R&D, AstraZeneca, Cambridge CB2 0AA, U.K
| | - Stefan Schiesser
- Medicinal Chemistry, Research and Early Development, Respiratory and Immunology (R&I), Biopharmaceuticals R&D, AstraZeneca, Gothenburg, SE-43183, Sweden
| | - Daniel Wiktelius
- Compound Synthesis and Management, Discovery Sciences, R&D, AstraZeneca, Gothenburg, SE-43183, Sweden
| | - Samiyah Ahmed
- Discovery Biology, Discovery Sciences, R&D, AstraZeneca, Cambridge CB2 0AA, U.K
| | - Mark J Bostock
- Mechanistic and Structural Biology, Discovery Sciences, R&D, AstraZeneca, Cambridge CB2 0AA, U.K
| | - Ulf Börjesson
- Hit Discovery, Discovery Sciences, R&D, AstraZeneca, Gothenburg, SE-43183, Sweden
| | - Claudia De Fusco
- Hit Discovery, Discovery Sciences, R&D, AstraZeneca, Cambridge CB2 0AA, U.K
| | - Carine Guerot
- Medicinal Chemistry, Oncology R&D, AstraZeneca, Cambridge CB2 0AA, U.K
| | - David Hargreaves
- Mechanistic and Structural Biology, Discovery Sciences, R&D, AstraZeneca, Cambridge CB2 0AA, U.K
| | - Sarah Hewitt
- Mechanistic and Structural Biology, Discovery Sciences, R&D, AstraZeneca, Cambridge CB2 0AA, U.K
| | - Michelle L Lamb
- Medicinal Chemistry, Oncology R&D, AstraZeneca, Waltham, Massachusetts 02451, United States
| | - Nancy Su
- Mechanistic and Structural Biology, Discovery Sciences, R&D, AstraZeneca, Waltham, Massachusetts 02451, United States
| | - Ryan Whatling
- Mechanistic and Structural Biology, Discovery Sciences, R&D, AstraZeneca, Cambridge CB2 0AA, U.K
| | - Matthew Wheeler
- Mechanistic and Structural Biology, Discovery Sciences, R&D, AstraZeneca, Cambridge CB2 0AA, U.K
| | - Jason G Kettle
- Medicinal Chemistry, Oncology R&D, AstraZeneca, Cambridge CB2 0AA, U.K
| |
Collapse
|
4
|
Pallardy M, Bechara R, Whritenour J, Mitchell-Ryan S, Herzyk D, Lebrec H, Merk H, Gourley I, Komocsar WJ, Piccotti JR, Balazs M, Sharma A, Walker DB, Weinstock D. Drug hypersensitivity reactions: review of the state of the science for prediction and diagnosis. Toxicol Sci 2024; 200:11-30. [PMID: 38588579 PMCID: PMC11199923 DOI: 10.1093/toxsci/kfae046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024] Open
Abstract
Drug hypersensitivity reactions (DHRs) are a type of adverse drug reaction that can occur with different classes of drugs and affect multiple organ systems and patient populations. DHRs can be classified as allergic or non-allergic based on the cellular mechanisms involved. Whereas nonallergic reactions rely mainly on the innate immune system, allergic reactions involve the generation of an adaptive immune response. Consequently, drug allergies are DHRs for which an immunological mechanism, with antibody and/or T cell, is demonstrated. Despite decades of research, methods to predict the potential for a new chemical entity to cause DHRs or to correctly attribute DHRs to a specific mechanism and a specific molecule are not well-established. This review will focus on allergic reactions induced by systemically administered low-molecular weight drugs with an emphasis on drug- and patient-specific factors that could influence the development of DHRs. Strategies for predicting and diagnosing DHRs, including potential tools based on the current state of the science, will also be discussed.
Collapse
Affiliation(s)
- Marc Pallardy
- Université Paris-Saclay, INSERM, Inflammation Microbiome Immunosurveillance, Orsay, 91400, France
| | - Rami Bechara
- Université Paris-Saclay, INSERM, CEA, Center for Research in Immunology of Viral, Autoimmune, Hematological and Bacterial Diseases (IMVA-HB), Le Kremlin Bicêtre, 94270, France
| | - Jessica Whritenour
- Pfizer Worldwide Research, Development and Medical, Groton, Connecticut 06340, USA
| | - Shermaine Mitchell-Ryan
- The Health and Environmental Science Institute, Immunosafety Technical Committee, Washington, District of Columbia 20005, USA
| | - Danuta Herzyk
- Merck & Co., Inc, West Point, Pennsylvania 19486, USA
| | - Herve Lebrec
- Amgen Inc., Translational Safety and Bioanalytical Sciences, South San Francisco, California 94080, USA
| | - Hans Merk
- Department of Dermatology and Allergology, RWTH Aachen University, Aachen, 52062, Germany
| | - Ian Gourley
- Janssen Research & Development, LLC, Immunology Clinical Development, Spring House, Pennsylvania 19002, USA
| | - Wendy J Komocsar
- Immunology Business Unit, Eli Lilly and Company, Indianapolis, Indiana 46225, USA
| | | | - Mercedesz Balazs
- Genentech, Biochemical and Cellular Pharmacology, South San Francisco, California 94080, USA
| | - Amy Sharma
- Pfizer, Drug Safety Research & Development, New York 10017, USA
| | - Dana B Walker
- Novartis Institute for Biomedical Research, Preclinical Safety-Translational Immunology and Clinical Pathology, Cambridge, Massachusetts 02139, USA
| | - Daniel Weinstock
- Janssen Research & Development, LLC, Preclinical Sciences Translational Safety, Spring House, Pennsylvania 19002, USA
| |
Collapse
|
5
|
Akagi Y, Yamakoshi H, Iwabuchi Y. Development of a fluorous trapping reagent for rapid detection of electrophilic reactive metabolites. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:3810-3814. [PMID: 38855885 DOI: 10.1039/d4ay00577e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
A cysteine-based fluorous trapping reagent, Rf8CYS, was developed. Rf8CYS formed adducts with soft and hard electrophilic reactive metabolites. These fluorous-tagged adducts were purified via both fluorous solid-phase extraction and the direct injection method. The highly sensitive mass spectrometric detection of an unprecedented adduct of the ticlopidine metabolite was realized.
Collapse
Affiliation(s)
- Yusuke Akagi
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3, Aoba, Aramaki, Aoba-ku, Sendai, Japan.
- Toxicology Research Laboratories, Central Pharmaceutical Research Institute, Japan Tobacco Inc., 1-13-2 Fukuura, Kanazawa-ku, Yokohama, Kanagawa, Japan
| | - Hiroyuki Yamakoshi
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3, Aoba, Aramaki, Aoba-ku, Sendai, Japan.
| | - Yoshiharu Iwabuchi
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3, Aoba, Aramaki, Aoba-ku, Sendai, Japan.
| |
Collapse
|
6
|
Alam A, Gul S, Zainab, Khan M, Elhenawy AA, Islam MS, Ali M, Ali Shah SA, Latif A, Ahmad M. Synthesis of 2,4-dihydroxyacetophenone derivatives as potent PDE-1 and -3 inhibitors: in vitro and in silico insights. Future Med Chem 2024; 16:1185-1203. [PMID: 38989989 PMCID: PMC11382721 DOI: 10.1080/17568919.2024.2342707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 04/08/2024] [Indexed: 07/12/2024] Open
Abstract
Aim: Synthesis of novel bis-Schiff bases having potent inhibitory activity against phosphodiesterase (PDE-1 and -3) enzymes, potentially offering therapeutic implications for various conditions. Methods: Bis-Schiff bases were synthesized by refluxing 2,4-dihydroxyacetophenone with hydrazine hydrate, followed by treatment of substituted aldehydes with the resulting hydrazone to obtain the product compounds. After structural confirmation, the compounds were screened for their in vitro PDE-1 and -3 inhibitory activities. Results: The prepared compounds exhibited noteworthy inhibitory efficacy against PDE-1 and -3 enzymes by comparing with suramin standard. To clarify the binding interactions between the drugs, PDE-1 and -3 active sites, molecular docking studies were carried out. Conclusion: The potent compounds discovered in this study may be good candidates for drug development.
Collapse
Affiliation(s)
- Aftab Alam
- Department of Chemistry, University of Malakand, P.O. Box 18800, Dir Lower, Pakistan
| | - Sana Gul
- Department of Chemistry, University of Malakand, P.O. Box 18800, Dir Lower, Pakistan
| | - Zainab
- College of Chemistry & Materials Science, Hebei Normal University, Shijiazhuang, 050024, China
| | - Majid Khan
- H.E.J. Research Institute of Chemistry, International Center for Chemical & Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Ahmed A Elhenawy
- Chemistry Department, Faculty of Science, Al-Azhar University, Nasr City, 11884, Cairo, Egypt
| | - Mohammad Shahidul Islam
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Mumtaz Ali
- Department of Chemistry, University of Malakand, P.O. Box 18800, Dir Lower, Pakistan
| | - Syed Adnan Ali Shah
- Faculty of Pharmacy, Universiti Teknologi MARA Puncak Alam Campus, 42300 Bandar Puncak Alam,Selangor D. E., Malaysia
| | - Abdul Latif
- Department of Chemistry, University of Malakand, P.O. Box 18800, Dir Lower, Pakistan
| | - Manzoor Ahmad
- Department of Chemistry, University of Malakand, P.O. Box 18800, Dir Lower, Pakistan
| |
Collapse
|
7
|
Jin L, Cheng S, Ding W, Huang J, van Eldik R, Ji L. Insight into chemically reactive metabolites of aliphatic amine pollutants: A de novo prediction strategy and case study of sertraline. ENVIRONMENT INTERNATIONAL 2024; 186:108636. [PMID: 38593692 DOI: 10.1016/j.envint.2024.108636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 04/04/2024] [Accepted: 04/04/2024] [Indexed: 04/11/2024]
Abstract
The uncommon metabolic pathways of organic pollutants are easily overlooked, potentially leading to idiosyncratic toxicity. Prediction of their biotransformation associated with the toxic effects is the very purpose that this work focuses, to develop a de novo method to mechanistically predict the reactive toxicity pathways of uncommon metabolites from start aliphatic amine molecules, which employed sertraline triggered by CYP450 enzymes as a model system, as there are growing concerns about the effects on human health posed by antidepressants in the aquatic environment. This de novo prediction strategy combines computational and experimental methods, involving DFT calculations upon sequential growth, in vitro and in vivo assays, dissecting chemically reactive mechanism relevant to toxicity, and rationalizing the fundamental factors. Significantly, desaturation and debenzylation-aromatization as the emerging metabolic pathways of sertraline have been elucidated, with the detection of DNA adducts of oxaziridine metabolite in mice, highlighting the potential reactive toxicity. Molecular orbital analysis supports the reactivity preference for toxicological-relevant C-N desaturation over N-hydroxylation of sertraline, possibly extended to several other aliphatic amines based on the Bell-Evans-Polanyi principle. It was further validated toward some other wide-concerned aliphatic amine pollutants involving atrazine, ε-caprolactam, 6PPD via in silico and in vitro assays, thereby constituting a complete path for de novo prediction from case study to general applications.
Collapse
Affiliation(s)
- Lingmin Jin
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou 221116, China
| | - Shiyang Cheng
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou 221116, China.
| | - Wen Ding
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou 221116, China
| | - Jingru Huang
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou 221116, China
| | - Rudi van Eldik
- Department of Chemistry and Pharmacy, University of Erlangen-Nuremberg, Egerlandstr. 1, 91058 Erlangen, Germany; Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarina 7, 87-100 Torun, Poland
| | - Li Ji
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou 221116, China.
| |
Collapse
|
8
|
Bessone F, Hillotte GL, Ahumada N, Jaureguizahar F, Medeot AC, Roma MG. UDCA for Drug-Induced Liver Disease: Clinical and Pathophysiological Basis. Semin Liver Dis 2024; 44:1-22. [PMID: 38378025 DOI: 10.1055/s-0044-1779520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Drug-induced liver injury (DILI) is an adverse reaction to medications and other xenobiotics that leads to liver dysfunction. Based on differential clinical patterns of injury, DILI is classified into hepatocellular, cholestatic, and mixed types; although hepatocellular DILI is associated with inflammation, necrosis, and apoptosis, cholestatic DILI is associated with bile plugs and bile duct paucity. Ursodeoxycholic acid (UDCA) has been empirically used as a supportive drug mainly in cholestatic DILI, but both curative and prophylactic beneficial effects have been observed for hepatocellular DILI as well, according to preliminary clinical studies. This could reflect the fact that UDCA has a plethora of beneficial effects potentially useful to treat the wide range of injuries with different etiologies and pathomechanisms occurring in both types of DILI, including anticholestatic, antioxidant, anti-inflammatory, antiapoptotic, antinecrotic, mitoprotective, endoplasmic reticulum stress alleviating, and immunomodulatory properties. In this review, a revision of the literature has been performed to evaluate the efficacy of UDCA across the whole DILI spectrum, and these findings were associated with the multiple mechanisms of UDCA hepatoprotection. This should help better rationalize and systematize the use of this versatile and safe hepatoprotector in each type of DILI scenarios.
Collapse
Affiliation(s)
- Fernando Bessone
- Hospital Provincial del Centenario, Facultad de Ciencias Médicas, Servicio de Gastroenterología y Hepatología, Universidad Nacional de Rosario, Rosario, Argentina
| | - Geraldine L Hillotte
- Instituto de Fisiología Experimental (IFISE-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Natalia Ahumada
- Hospital Provincial del Centenario, Facultad de Ciencias Médicas, Servicio de Gastroenterología y Hepatología, Universidad Nacional de Rosario, Rosario, Argentina
| | - Fernanda Jaureguizahar
- Hospital Provincial del Centenario, Facultad de Ciencias Médicas, Servicio de Gastroenterología y Hepatología, Universidad Nacional de Rosario, Rosario, Argentina
| | | | - Marcelo G Roma
- Instituto de Fisiología Experimental (IFISE-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| |
Collapse
|
9
|
Zhang Y, Liu X, Li F, Yin J, Yang H, Li X, Liu X, Chai X, Niu T, Zeng S, Jia Q, Zhu F. INTEDE 2.0: the metabolic roadmap of drugs. Nucleic Acids Res 2024; 52:D1355-D1364. [PMID: 37930837 PMCID: PMC10767827 DOI: 10.1093/nar/gkad1013] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/13/2023] [Accepted: 10/19/2023] [Indexed: 11/08/2023] Open
Abstract
The metabolic roadmap of drugs (MRD) is a comprehensive atlas for understanding the stepwise and sequential metabolism of certain drug in living organisms. It plays a vital role in lead optimization, personalized medication, and ADMET research. The MRD consists of three main components: (i) the sequential catalyses of drug and its metabolites by different drug-metabolizing enzymes (DMEs), (ii) a comprehensive collection of metabolic reactions along the entire MRD and (iii) a systematic description on efficacy & toxicity for all metabolites of a studied drug. However, there is no database available for describing the comprehensive metabolic roadmaps of drugs. Therefore, in this study, a major update of INTEDE was conducted, which provided the stepwise & sequential metabolic roadmaps for a total of 4701 drugs, and a total of 22 165 metabolic reactions containing 1088 DMEs and 18 882 drug metabolites. Additionally, the INTEDE 2.0 labeled the pharmacological properties (pharmacological activity or toxicity) of metabolites and provided their structural information. Furthermore, 3717 drug metabolism relationships were supplemented (from 7338 to 11 055). All in all, INTEDE 2.0 is highly expected to attract broad interests from related research community and serve as an essential supplement to existing pharmaceutical/biological/chemical databases. INTEDE 2.0 can now be accessible freely without any login requirement at: http://idrblab.org/intede/.
Collapse
Affiliation(s)
- Yang Zhang
- School of Pharmacy, Hebei Medical University, Shijiazhuang 050017, China
| | - Xingang Liu
- School of Pharmacy, Hebei Medical University, Shijiazhuang 050017, China
| | - Fengcheng Li
- College of Pharmaceutical Sciences, National Key Laboratory of Advanced Drug Delivery and Release Systems, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
- The Children's Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310052, China
| | - Jiayi Yin
- College of Pharmaceutical Sciences, National Key Laboratory of Advanced Drug Delivery and Release Systems, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
- Department of Clinical Pharmacy, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310052, China
| | - Hao Yang
- School of Pharmacy, Hebei Medical University, Shijiazhuang 050017, China
| | - Xuedong Li
- School of Pharmacy, Hebei Medical University, Shijiazhuang 050017, China
| | - Xinyu Liu
- School of Pharmacy, Hebei Medical University, Shijiazhuang 050017, China
| | - Xu Chai
- School of Pharmacy, Hebei Medical University, Shijiazhuang 050017, China
| | - Tianle Niu
- School of Pharmacy, Hebei Medical University, Shijiazhuang 050017, China
| | - Su Zeng
- College of Pharmaceutical Sciences, National Key Laboratory of Advanced Drug Delivery and Release Systems, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Qingzhong Jia
- School of Pharmacy, Hebei Medical University, Shijiazhuang 050017, China
| | - Feng Zhu
- School of Pharmacy, Hebei Medical University, Shijiazhuang 050017, China
- College of Pharmaceutical Sciences, National Key Laboratory of Advanced Drug Delivery and Release Systems, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou 330110, China
| |
Collapse
|
10
|
Bian Y, Ma S, Yao Q, Hu T, Ge M, Li H, Zheng S, Gu Z, Feng H, Yu Z, Huang C, Zhang H, Zhao L, Miao L. Pharmacokinetics, metabolism, excretion and safety of iruplinalkib (WX-0593), a novel ALK inhibitor, in healthy subjects: a phase I human radiolabeled mass balance study. Expert Opin Investig Drugs 2024; 33:63-72. [PMID: 38224050 DOI: 10.1080/13543784.2024.2305134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 01/10/2024] [Indexed: 01/16/2024]
Abstract
BACKGROUND Iruplinalkib is a novel anaplastic lymphoma kinase (ALK) inhibitor for the treatment of ALK-positive crizotinib-resistant NSCLC. RESEARCH DESIGN AND METHODS A single oral dose of 120 mg/3.7 MBq [14C]iruplinalkib was administered to healthy subjects. Blood, urine and fecal samples were collected and analyzed for iruplinalkib and its metabolites. The safety of iruplinalkib was also assessed. RESULTS Iruplinalkib was absorbed quickly and eliminated slowly from plasma, with a Tmax of 1.5 h and t1/2 of 28.6 h. About 88.85% of iruplinalkib was excreted at 312 h, including 20.23% in urine and 68.63% in feces. Seventeen metabolites of iruplinalkib were identified, and M3b (demethylation), M7 (cysteine conjugation), M11 (oxidative dehydrogenation and cysteine conjugation of M3b) and M12 (oxidative dehydrogenation and cysteine conjugation) were considered the prominent metabolites in humans. Iruplinalkib-related compounds were found to be covalently bound to proteins, accounting for 7.70% in plasma and 17.96% in feces, which suggested chemically reactive metabolites were formed. There were no serious adverse events observed in the study. CONCLUSIONS Iruplinalkib was widely metabolized and excreted mainly through feces in humans. Unchanged iruplinalkib, cysteine conjugates and covalent protein binding products were the main drug-related compounds in circulation. Iruplinalkib was well tolerated at the study dose. TRIAL REGISTRATION The trial is registered at ClinicalTrials.gov (Identifier: Anonymized).
Collapse
Affiliation(s)
- Yicong Bian
- Department of Pharmacy, First Affiliated Hospital of Soochow University, Suzhou, China
- Department of Pharmacy, Shengjing Hospital of China Medical University, Shenyang, China
| | - Sheng Ma
- Department of Pharmacy, First Affiliated Hospital of Soochow University, Suzhou, China
- Department of Pharmacy, Shengjing Hospital of China Medical University, Shenyang, China
| | - Qingqing Yao
- Department of Pharmacy, First Affiliated Hospital of Soochow University, Suzhou, China
| | - Tao Hu
- Department of Pharmacy, First Affiliated Hospital of Soochow University, Suzhou, China
| | | | | | | | - Zheming Gu
- Value Pharmaceutical Services Co., Ltd., Nanjing, China
| | - Hao Feng
- Value Pharmaceutical Services Co., Ltd., Nanjing, China
| | - Zhenwen Yu
- Value Pharmaceutical Services Co., Ltd., Nanjing, China
| | - Chenrong Huang
- Department of Pharmacy, First Affiliated Hospital of Soochow University, Suzhou, China
| | - Hua Zhang
- Department of Pharmacy, First Affiliated Hospital of Soochow University, Suzhou, China
| | - Limei Zhao
- Department of Pharmacy, Shengjing Hospital of China Medical University, Shenyang, China
| | - Liyan Miao
- Department of Pharmacy, First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
11
|
Wohlgemuth R. Synthesis of Metabolites and Metabolite-like Compounds Using Biocatalytic Systems. Metabolites 2023; 13:1097. [PMID: 37887422 PMCID: PMC10608848 DOI: 10.3390/metabo13101097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/13/2023] [Accepted: 10/15/2023] [Indexed: 10/28/2023] Open
Abstract
Methodologies for the synthesis and purification of metabolites, which have been developed following their discovery, analysis, and structural identification, have been involved in numerous life science milestones. The renewed focus on the small molecule domain of biological cells has also created an increasing awareness of the rising gap between the metabolites identified and the metabolites which have been prepared as pure compounds. The design and engineering of resource-efficient and straightforward synthetic methodologies for the production of the diverse and numerous metabolites and metabolite-like compounds have attracted much interest. The variety of metabolic pathways in biological cells provides a wonderful blueprint for designing simplified and resource-efficient synthetic routes to desired metabolites. Therefore, biocatalytic systems have become key enabling tools for the synthesis of an increasing number of metabolites, which can then be utilized as standards, enzyme substrates, inhibitors, or other products, or for the discovery of novel biological functions.
Collapse
Affiliation(s)
- Roland Wohlgemuth
- MITR, Institute of Applied Radiation Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego Street 116, 90-924 Lodz, Poland;
- Swiss Coordination Committee Biotechnology (SKB), 8021 Zurich, Switzerland
- European Society of Applied Biocatalysis (ESAB), 1000 Brussels, Belgium
| |
Collapse
|
12
|
He C, Mao Y, Wan H. Preclinical evaluation of chemically reactive metabolites and mitigation of bioactivation in drug discovery. Drug Discov Today 2023; 28:103621. [PMID: 37201781 DOI: 10.1016/j.drudis.2023.103621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 04/25/2023] [Accepted: 05/11/2023] [Indexed: 05/20/2023]
Abstract
The formation of reactive metabolites (RMs) is thought to be one of the pathogeneses for some idiosyncratic adverse drug reactions (IADRs) which are considered one of the leading causes of some drug attritions and/or recalls. Minimizing or eliminating the formation of RMs via chemical modification is a useful tactic to reduce the risk of IADRs and time-dependent inhibition (TDI) of cytochrome P450 enzymes (CYPs). The RMs should be carefully handled before making a go-no-go decision. Herein, we highlight the role of RMs in the occurrence of IADRs and CYP TDI, the risk of structural alerts, the approaches of RM assessment at the discovery stage and strategies to minimize or eliminate RM liability. Finally, some considerations for developing a RM-positive drug candidate are suggested.
Collapse
Affiliation(s)
- Chunyong He
- Department of DMPK/Tox, Shanghai Hengrui Pharmaceutical, No. 279 Wenjing Road, Shanghai 200245, China.
| | - Yuchang Mao
- Department of DMPK/Tox, Shanghai Hengrui Pharmaceutical, No. 279 Wenjing Road, Shanghai 200245, China
| | - Hong Wan
- Department of DMPK/Bioanalysis, Shanghai Medicilon, No. 585 Chuanda Road, Shanghai 201299, China.
| |
Collapse
|
13
|
Chakraborty S, Kannihalli A, Mohanty A, Ray S. The Promises of Proteomics and Metabolomics for Unravelling the Mechanism and Side Effect Landscape of Beta-Adrenoceptor Antagonists in Cardiovascular Therapeutics. OMICS : A JOURNAL OF INTEGRATIVE BIOLOGY 2023; 27:87-92. [PMID: 36854142 DOI: 10.1089/omi.2023.0003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
Cardiovascular medicine witnessed notable advances for the past decade. Multiomics research offers a new lens for precision/personalized medicine for existing and emerging drugs used in the cardiovascular clinic. Beta-blockers are vital in treating hypertension and chronic heart failure. However, clinical use of beta-blockers is also associated with side effects and person-to-person variations in their pharmacokinetics and pharmacodynamics. A comprehensive understanding of the mechanisms that underpin the side effect landscape of beta-blockers is imperative to optimize their therapeutic value. In addition, current research emphasizes the circadian clock's vital roles in regulating pharmacological parameters. Administration of the beta-blockers at specific dosing times could potentially improve their effectiveness and reduce their toxic effects. The rapid development of mass spectrometry technologies with chemical proteomics and thermal proteome profiling methods has also substantially advanced our understanding of underlying side effects mechanisms by unbiased deconvolution of drug targets and off-targets. Metabolomics is steadily demonstrating its utility for conducting mechanistic and toxicological analyses of pharmacological compounds. This article discusses the promises of cutting-edge proteomics and metabolomics approaches to investigate the molecular targets, mechanism of action, adverse effects, and dosing time dependency of beta-blockers.
Collapse
Affiliation(s)
| | - Arpita Kannihalli
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Sangareddy, India
| | - Abhishek Mohanty
- Cardiology Department, Continental Hospitals, Nanakaramguda, India
| | - Sandipan Ray
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Sangareddy, India
| |
Collapse
|
14
|
Ai Y, Yang Z, Yang Z, Wan S, Huang C, Huang C, Li M, Li Z, Zhang J, Zhang T. Discovery and Computational Studies of Potent Covalent Kinase Inhibitors with α-Substituent Electrophiles Targeting Cysteine. J Chem Inf Model 2023; 63:493-506. [PMID: 36632804 DOI: 10.1021/acs.jcim.2c00458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Both reversible noncovalent inhibitors and irreversible covalent inhibitors targeting tyrosine kinases have their disadvantages. The reversible covalent inhibitors with electrophilic group cyanoacrylamide as warheads reacting with cysteine residues could solve the dilemmas. However, there are still several unresolved issues regarding the electrophilic groups. In this manuscript, a series of EGFR inhibitors with double electron-withdrawing substituents introduced into the Cα position on the olefin bond were designed and synthesized. The binding structures and characteristics of inhibitors with the kinase in both the first noncovalent binding phase and the second covalent binding step were explored and combined with molecular docking and molecular dynamics simulations. Then, the reverse β-elimination reactions of the thiol-Michael adducts were investigated by applying density functional theory calculations. In addition, the effects of different electrophilic substituents of Cα on the binding between the inhibitors and kinase were elucidated. The results suggested that the electrophilicity and size of the electron-withdrawing groups play an important role in the specific interactions during the reaction. The compounds with the electron-withdrawing groups that had medium electrostatic and steric complementarity to the kinase active site could cooperatively stabilize the complexes and showed relatively good potent activities in the kinase assay experiment. The mechanical and structural information in this study could enhance our understanding of the functioning of the electron-withdrawing groups in the covalent inhibitors. The results might help to design efficient cysteine targeting inhibitors in the future.
Collapse
Affiliation(s)
- Yangcheng Ai
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou510515, PR China
| | - Zichao Yang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou510515, PR China
| | - Zilong Yang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou510515, PR China
| | - Shanhe Wan
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou510515, PR China
| | - Chunhui Huang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou510515, PR China
| | - Chuan Huang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou510515, PR China
| | - Mingxia Li
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou510515, PR China
| | - Zhonghuang Li
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou510515, PR China
| | - Jiajie Zhang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou510515, PR China
| | - Tingting Zhang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou510515, PR China
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Guangzhou510006, PR China
| |
Collapse
|
15
|
Wu Y, Chen L, Chen J, Xue H, He Q, Zhong D, Diao X. Covalent Binding Mechanism of Furmonertinib and Osimertinib With Human Serum Albumin. Drug Metab Dispos 2023; 51:8-16. [PMID: 36328480 DOI: 10.1124/dmd.122.001019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 10/12/2022] [Accepted: 10/14/2022] [Indexed: 11/05/2022] Open
Abstract
As third-generation tyrosine kinase inhibitors, furmonertinib and osimertinib exhibit better efficacy than first- and second-generation tyrosine kinase inhibitors in patients with advanced non-small cell lung cancer. However, radioactive pharmacokinetics studies showed that parent-related components remain in human plasma for at least 21 days after oral administration. Similar pharmacokinetic profiles were found in pyrotinib and neratinib, which have been identified to covalently bind with human serum albumin at Lys-190, leading to low extraction recovery in protein precipitation. However, the binding mechanism of furmonertinib and osimertinib in human plasma has not been confirmed. Comprehensive techniques were used to investigate the mechanism of this binding, including ultra high-performance liquid chromatography coupled with high-resolution mass spectrometry and online/offline radioactivity profiling. SDS-PAGE and further autoradiography were also used to detect drug-protein adducts. We found that most furmonertinib exists in the human plasma following ex vivo incubation in the form of protein-drug adducts. Only lysine-furmonertinb adducts were found in pronase digests. A standard reference of lysine-furmonertinib was synthesized and confirmed by NMR. Through peptide mapping analysis, we confirmed that furmonertinib almost exclusively binds with human serum albumin (HSA) in plasma following ex vivo incubation, via Michael addition at Lys-195 and Lys-199, instead of Lys-190. Two peptides found to bond with furmonertinib were ASSAKQR and LKCASLQK. Osimertinib was also found to bond with Lys-195 and Lys-199 of HSA via peptide mapping analysis. SIGNIFICANCE STATEMENT: Here we report that furmonertinib and osimertinib can covalently bind with human serum albumin at the site of Lys-195 and Lys-199 instead of Lys-190, potentially leading to the long duration of drug-protein adducts in the human body.
Collapse
Affiliation(s)
- Yali Wu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China (Y.W., L.C., H.X., D.Z., X.D.); University of Chinese Academy of Sciences, Beijing, China (Y.W., L.C., D.Z., X.D.); Radiopharmacy and Molecular Imaging Center (J.C.), and Department of Clinical Pharmacy and Pharmacy Administration (Q.H.), School of Pharmacy, Fudan University, Shanghai, China; and Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Shanghai, China(J.C.)
| | - Lili Chen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China (Y.W., L.C., H.X., D.Z., X.D.); University of Chinese Academy of Sciences, Beijing, China (Y.W., L.C., D.Z., X.D.); Radiopharmacy and Molecular Imaging Center (J.C.), and Department of Clinical Pharmacy and Pharmacy Administration (Q.H.), School of Pharmacy, Fudan University, Shanghai, China; and Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Shanghai, China(J.C.)
| | - Jian Chen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China (Y.W., L.C., H.X., D.Z., X.D.); University of Chinese Academy of Sciences, Beijing, China (Y.W., L.C., D.Z., X.D.); Radiopharmacy and Molecular Imaging Center (J.C.), and Department of Clinical Pharmacy and Pharmacy Administration (Q.H.), School of Pharmacy, Fudan University, Shanghai, China; and Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Shanghai, China(J.C.)
| | - Hao Xue
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China (Y.W., L.C., H.X., D.Z., X.D.); University of Chinese Academy of Sciences, Beijing, China (Y.W., L.C., D.Z., X.D.); Radiopharmacy and Molecular Imaging Center (J.C.), and Department of Clinical Pharmacy and Pharmacy Administration (Q.H.), School of Pharmacy, Fudan University, Shanghai, China; and Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Shanghai, China(J.C.)
| | - Qingfeng He
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China (Y.W., L.C., H.X., D.Z., X.D.); University of Chinese Academy of Sciences, Beijing, China (Y.W., L.C., D.Z., X.D.); Radiopharmacy and Molecular Imaging Center (J.C.), and Department of Clinical Pharmacy and Pharmacy Administration (Q.H.), School of Pharmacy, Fudan University, Shanghai, China; and Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Shanghai, China(J.C.)
| | - Dafang Zhong
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China (Y.W., L.C., H.X., D.Z., X.D.); University of Chinese Academy of Sciences, Beijing, China (Y.W., L.C., D.Z., X.D.); Radiopharmacy and Molecular Imaging Center (J.C.), and Department of Clinical Pharmacy and Pharmacy Administration (Q.H.), School of Pharmacy, Fudan University, Shanghai, China; and Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Shanghai, China(J.C.)
| | - Xingxing Diao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China (Y.W., L.C., H.X., D.Z., X.D.); University of Chinese Academy of Sciences, Beijing, China (Y.W., L.C., D.Z., X.D.); Radiopharmacy and Molecular Imaging Center (J.C.), and Department of Clinical Pharmacy and Pharmacy Administration (Q.H.), School of Pharmacy, Fudan University, Shanghai, China; and Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Shanghai, China(J.C.)
| |
Collapse
|
16
|
The in vitro/in vivo metabolic pathways analysis of lobetyol, lobetyolin, and lobetyolinin, three polyacetylenes from Codonopsis Radix, by UHPLC-Q/TOF-MS and UHPLC-MS/MS. J Pharm Biomed Anal 2022; 223:115140. [DOI: 10.1016/j.jpba.2022.115140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 10/28/2022] [Accepted: 11/02/2022] [Indexed: 11/06/2022]
|
17
|
Di Zeo-Sánchez DE, Segovia-Zafra A, Matilla-Cabello G, Pinazo-Bandera JM, Andrade RJ, Lucena MI, Villanueva-Paz M. Modeling drug-induced liver injury: current status and future prospects. Expert Opin Drug Metab Toxicol 2022; 18:555-573. [DOI: 10.1080/17425255.2022.2122810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Daniel E. Di Zeo-Sánchez
- Unidad de Gestión Clínica de Gastroenterología, Servicio de Farmacología Clínica, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, 29071 Málaga, Spain
- Centro de Investigación Biomédica en Red en el Área Temática de Enfermedades Hepáticas y Digestivas (CIBERehd), 28029, Madrid, Spain
| | - Antonio Segovia-Zafra
- Unidad de Gestión Clínica de Gastroenterología, Servicio de Farmacología Clínica, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, 29071 Málaga, Spain
- Centro de Investigación Biomédica en Red en el Área Temática de Enfermedades Hepáticas y Digestivas (CIBERehd), 28029, Madrid, Spain
| | - Gonzalo Matilla-Cabello
- Unidad de Gestión Clínica de Gastroenterología, Servicio de Farmacología Clínica, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, 29071 Málaga, Spain
| | - José M. Pinazo-Bandera
- Unidad de Gestión Clínica de Gastroenterología, Servicio de Farmacología Clínica, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, 29071 Málaga, Spain
| | - Raúl J. Andrade
- Unidad de Gestión Clínica de Gastroenterología, Servicio de Farmacología Clínica, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, 29071 Málaga, Spain
- Centro de Investigación Biomédica en Red en el Área Temática de Enfermedades Hepáticas y Digestivas (CIBERehd), 28029, Madrid, Spain
| | - M. Isabel Lucena
- Unidad de Gestión Clínica de Gastroenterología, Servicio de Farmacología Clínica, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, 29071 Málaga, Spain
- Centro de Investigación Biomédica en Red en el Área Temática de Enfermedades Hepáticas y Digestivas (CIBERehd), 28029, Madrid, Spain
- Plataforma ISCIII de Ensayos Clínicos. UICEC-IBIMA, 29071, Malaga, Spain
| | - Marina Villanueva-Paz
- Unidad de Gestión Clínica de Gastroenterología, Servicio de Farmacología Clínica, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, 29071 Málaga, Spain
| |
Collapse
|
18
|
Distal kinetic deuterium isotope effect: Phenyl ring deuteration attenuates N-demethylation of Lu AF35700. Bioorg Med Chem Lett 2022; 72:128879. [PMID: 35809818 DOI: 10.1016/j.bmcl.2022.128879] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 06/29/2022] [Accepted: 07/04/2022] [Indexed: 11/23/2022]
Abstract
The N-demethylation of zicronapine (7) and three of its deuterated analogs 8 - 10 has been studied in human in vitro metabolism systems. While the N-deuterio-methyl analog 8 did not behave differently from the parent in human liver microsomes, a significantly reduced rate of N-demethylation was observed as a consequence of benzene ring deuteration (compound 7vs.9). Additional deuteration of the N-methyl group, which as mentioned had shown no effect in isolation, further decreased the rate of the N-demethylation reaction (compound 10vs.9). This paper presents and discusses this unprecedented 'distal kinetic isotope effect' that was observed when incubating the test compounds with human liver microsomes or recombinant human CYP450 liver enzymes.
Collapse
|
19
|
Jia X, Wen X, Russo DP, Aleksunes LM, Zhu H. Mechanism-driven modeling of chemical hepatotoxicity using structural alerts and an in vitro screening assay. JOURNAL OF HAZARDOUS MATERIALS 2022; 436:129193. [PMID: 35739723 PMCID: PMC9262097 DOI: 10.1016/j.jhazmat.2022.129193] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 05/13/2022] [Accepted: 05/17/2022] [Indexed: 05/20/2023]
Abstract
Traditional experimental approaches to evaluate hepatotoxicity are expensive and time-consuming. As an advanced framework of risk assessment, adverse outcome pathways (AOPs) describe the sequence of molecular and cellular events underlying chemical toxicities. We aimed to develop an AOP that can be used to predict hepatotoxicity by leveraging computational modeling and in vitro assays. We curated 869 compounds with known hepatotoxicity classifications as a modeling set and extracted assay data from PubChem. The antioxidant response element (ARE) assay, which quantifies transcriptional responses to oxidative stress, showed a high correlation to hepatotoxicity (PPV=0.82). Next, we developed quantitative structure-activity relationship (QSAR) models to predict ARE activation for compounds lacking testing results. Potential toxicity alerts were identified and used to construct a mechanistic hepatotoxicity model. For experimental validation, 16 compounds in the modeling set and 12 new compounds were selected and tested using an in-house ARE-luciferase assay in HepG2-C8 cells. The mechanistic model showed good hepatotoxicity predictivity (accuracy = 0.82) for these compounds. Potential false positive hepatotoxicity predictions by only using ARE results can be corrected by incorporating structural alerts and vice versa. This mechanistic model illustrates a potential toxicity pathway for hepatotoxicity, and this strategy can be expanded to develop predictive models for other complex toxicities.
Collapse
Affiliation(s)
- Xuelian Jia
- The Rutgers Center for Computational and Integrative Biology, Camden, NJ 08102, USA
| | - Xia Wen
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, USA
| | - Daniel P Russo
- The Rutgers Center for Computational and Integrative Biology, Camden, NJ 08102, USA
| | - Lauren M Aleksunes
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, USA
| | - Hao Zhu
- The Rutgers Center for Computational and Integrative Biology, Camden, NJ 08102, USA; Department of Chemistry, Rutgers University, Camden, NJ 08102, USA.
| |
Collapse
|
20
|
Hu X, Wu JL, Miao W, Long F, Pan H, Peng T, Yao X, Li N. Covalent Protein Modification: An Unignorable Factor for Bisphenol A-Induced Hepatotoxicity. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:9536-9545. [PMID: 35593067 DOI: 10.1021/acs.est.2c01307] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Covalent modification of proteins by reactive pollutants/metabolites might trigger various toxicities resulting from the disruption of protein structures and/or functions, which is critical for understanding the mechanism of pollutants-induced toxicity. However, this mechanism has rarely been touched on due to the lack of a methodology. In this research, the protein modification of bisphenol A (BPA) in rats was characterized using a series of liquid chromatography-tandem mass spectrometry (LC-MS) approaches. BPA-modified cysteine (Cys1) was first released from proteins via enzymatic hydrolysis and identified using LC-MS. Moreover, the positive correlation between Cys1 and hepatotoxicity indicated the involvement of protein modification in BPA toxicity. Then, in vitro incubation of BPA with amino acids and protein confirmed that BPA could specifically modify cysteine residues of proteins after bioactivation and provided four additional modification patterns. Finally, 24 BPA-modified proteins were identified from the liver of BPA-exposed rats using proteomic analysis, and they were mainly enriched in oxidative stress-related pathways. The modification on superoxide dismutases, catalase, and glutathione S-transferases disrupted their enzymatic functions, leading to oxidative damage. These results revealed that the covalent protein modification is an unignorable factor for BPA hepatotoxicity. Moreover, the workflow can be applied to identify protein adducts of other emerging contaminants and possible risk.
Collapse
Affiliation(s)
- Xiaolan Hu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa 999078, Macau SAR, China
| | - Jian-Lin Wu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa 999078, Macau SAR, China
| | - Wen Miao
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa 999078, Macau SAR, China
| | - Fei Long
- Sino-French Hoffmann Institute, School of Basic Medical Science, State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou 510180, China
| | - Hudan Pan
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa 999078, Macau SAR, China
| | - Tao Peng
- Sino-French Hoffmann Institute, School of Basic Medical Science, State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou 510180, China
| | - Xiaojun Yao
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa 999078, Macau SAR, China
| | - Na Li
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa 999078, Macau SAR, China
| |
Collapse
|
21
|
Gorbunov A, Bardin A, Ilyushonok S, Kovach J, Petrenko A, Sukhodolov N, Krasnov K, Krasnov N, Zorin I, Obornev A, Babakov V, Radilov A, Podolskaya E. Multiwell photocatalytic microreactor device integrating drug biotransformation modeling and sample preparation on a MALDI target. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107362] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
22
|
Hamdy J, Emadeldin N, Hamed MM, Frakolaki E, Katsamakas S, Vassilaki N, Zoidis G, Hirsch AKH, Abdel-Halim M, Abadi AH. Design and Synthesis of Novel Bis-Imidazolyl Phenyl Butadiyne Derivatives as HCV NS5A Inhibitors. Pharmaceuticals (Basel) 2022; 15:632. [PMID: 35631457 PMCID: PMC9146377 DOI: 10.3390/ph15050632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/08/2022] [Accepted: 05/12/2022] [Indexed: 11/17/2022] Open
Abstract
In today’s global plan to completely eradicate hepatitis C virus (HCV), the essential list of medications used for HCV treatment are direct-acting antivirals (DAAs), as interferon-sparing regimens have become the standard-of-care (SOC) treatment. HCV nonstructural protein 5A (NS5A) inhibitors are a very common component of these regimens. Food and Drug Administration (FDA)-approved NS5A inhibitors, although very potent, do not have the same potency against all eight genotypes of HCV. Therefore, this study aims to synthesize NS5A inhibitor analogues with high potency pan-genotypic activity and high metabolic stability. Starting from an NS5A inhibitor scaffold previously identified by our research group, we made several modifications. Two series of compounds were created to test the effect of changing the length and spatial conformation (para-para vs. meta-meta-positioned bis-imidazole-proline-carbamate), replacing amide groups in the linker with imidazole groups, as well as different end-cap compositions and sizes. The frontrunner inhibits genotype 1b (Con1) replicon, with an EC50 value in the picomolar range, and showed high genotypic coverage with nanomolar range EC50 values against four more genotypes. This together with its high metabolic stability (t½ > 120 min) makes it a potential preclinical candidate.
Collapse
Affiliation(s)
- Jehad Hamdy
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 11835, Egypt; (J.H.); (N.E.)
| | - Nouran Emadeldin
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 11835, Egypt; (J.H.); (N.E.)
| | - Mostafa M. Hamed
- Drug Design and Optimization, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)—Helmholtz Centre for Infection Research (HZI), Campus E8.1, 66123 Saarbrücken, Germany; (M.M.H.); (A.K.H.H.)
| | - Efseveia Frakolaki
- Molecular Virology Laboratory, Department of Microbiology, Hellenic Pasteur Institute, Vas. Sofias Avenue, 11521 Athens, Greece; (E.F.); (N.V.)
| | - Sotirios Katsamakas
- Division of Pharmaceutical Chemistry, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis-Zografou, 15771 Athens, Greece;
| | - Niki Vassilaki
- Molecular Virology Laboratory, Department of Microbiology, Hellenic Pasteur Institute, Vas. Sofias Avenue, 11521 Athens, Greece; (E.F.); (N.V.)
| | - Grigoris Zoidis
- Division of Pharmaceutical Chemistry, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis-Zografou, 15771 Athens, Greece;
| | - Anna K. H. Hirsch
- Drug Design and Optimization, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)—Helmholtz Centre for Infection Research (HZI), Campus E8.1, 66123 Saarbrücken, Germany; (M.M.H.); (A.K.H.H.)
- Department of Pharmacy, Saarland University, Campus E8.1, 66123 Saarbrücken, Germany
| | - Mohammad Abdel-Halim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 11835, Egypt; (J.H.); (N.E.)
| | - Ashraf H. Abadi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 11835, Egypt; (J.H.); (N.E.)
| |
Collapse
|
23
|
Abstract
Covalent drugs have made a major impact on human health but until recently were shunned by the pharmaceutical industry over concerns about the potential for toxicity. A resurgence has occurred driven by the clinical success of targeted covalent inhibitors (TCIs), with eight drugs approved over the past decade. The opportunity to create unique drugs by exploiting the covalent mechanism of action has enabled clinically decisive target product profiles to be achieved. TCIs have revolutionized the treatment paradigm for non-small-cell lung cancer and chronic lymphocytic leukemia. This Perspective will highlight the clinical and financial success of this class of drugs and provide early insight into toxicity, a key factor that had hindered progress in the field. Further innovation in the TCI approach, including expanding beyond cysteine-directed electrophiles, kinases, and cancer, highlights the broad opportunity to deliver a new generation of breakthrough therapies.
Collapse
Affiliation(s)
- Juswinder Singh
- Ankaa Therapeutics, M2D2 Incubator, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, Massachusetts 01655, United States
| |
Collapse
|
24
|
Huang C, Fischer C, Machacek MR, Bogen S, Biftu T, Huang X, Reutershan MH, Otte R, Hong Q, Wu Z, Yu Y, Park M, Chen L, Biju P, Knemeyer I, Lu P, Kochansky CJ, Hicks MB, Liu Y, Helmy R, Fradera X, Donofrio A, Close J, Maddess ML, White C, Sloman DL, Sciammetta N, Lu J, Gibeau C, Simov V, Zhang H, Fuller P, Witter D. Diminishing GSH-Adduct Formation of Tricyclic Diazepine-based Mutant IDH1 Inhibitors. ACS Med Chem Lett 2022; 13:734-741. [PMID: 35450359 PMCID: PMC9014435 DOI: 10.1021/acsmedchemlett.2c00089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 03/23/2022] [Indexed: 11/28/2022] Open
Abstract
Mutant isocitrate dehydrogenase 1 (IDH1) has been identified as an attractive oncology target for which >70% of grade II and III gliomas and ∼10% of acute myeloid leukemia (AML) harbor somatic IDH1 mutations. These mutations confer a neomorphic gain of function, leading to the production of the oncometabolite (R)-2-hydroxyglutarate (2-HG). We identified and developed a potent, selective, and orally bioavailable brain-penetrant tricyclic diazepine scaffold that inhibits mutant IDH1. During the course of in vitro metabolism studies, GSH-adduct metabolites were observed. The hypothesis for GSH-adduct formation was driven by the electron-rich nature of the tricyclic core. Herein, we describe our efforts to reduce the electron-rich nature of the core. Ultimately, a strategy focused on core modifications to block metabolic hot spots coupled with substitution pattern changes (C8 N → C linked) led to the identification of new tricyclic analogues with minimal GSH-adduct formation across species while maintaining an overall balanced profile.
Collapse
Affiliation(s)
- Chunhui Huang
- Merck & Co., Inc., Boston, Massachusetts 02115, United States
| | | | | | - Stephane Bogen
- Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Tesfaye Biftu
- Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Xianhai Huang
- Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | | | - Ryan Otte
- Merck & Co., Inc., Boston, Massachusetts 02115, United States
| | - Qingmei Hong
- Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Zhicai Wu
- Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Yang Yu
- Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Min Park
- Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Lei Chen
- Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | | | - Ian Knemeyer
- Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | - Ping Lu
- Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | | | | | - Yong Liu
- Merck & Co., Inc., Rahway, New Jersey 07065 United States
| | - Roy Helmy
- Merck & Co., Inc., Rahway, New Jersey 07065 United States
| | - Xavier Fradera
- Merck & Co., Inc., Boston, Massachusetts 02115, United States
| | | | - Josh Close
- Merck & Co., Inc., Boston, Massachusetts 02115, United States
| | | | - Catherine White
- Merck & Co., Inc., Boston, Massachusetts 02115, United States
| | - David L. Sloman
- Merck & Co., Inc., Boston, Massachusetts 02115, United States
| | | | - Jun Lu
- Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | - Craig Gibeau
- Merck & Co., Inc., Boston, Massachusetts 02115, United States
| | - Vladimir Simov
- Merck & Co., Inc., Boston, Massachusetts 02115, United States
| | - Hongjun Zhang
- Merck & Co., Inc., Boston, Massachusetts 02115, United States
| | - Peter Fuller
- Merck & Co., Inc., Boston, Massachusetts 02115, United States
| | - David Witter
- Merck & Co., Inc., Boston, Massachusetts 02115, United States
| |
Collapse
|
25
|
Wang Z, Wang C, He B, Zhang W, Liu L, Deng M, Lü M, Qi X, Liang S. Determination of Daphnetin and its 8-O-Methylated Metabolite in Rat Plasma by UFLC-MS/MS: Application to a Pharmacokinetic Study. Chromatographia 2022. [DOI: 10.1007/s10337-022-04131-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
26
|
Murad HAS, Alqurashi TMA, Hussien MA. Interactions of selected cardiovascular active natural compounds with CXCR4 and CXCR7 receptors: a molecular docking, molecular dynamics, and pharmacokinetic/toxicity prediction study. BMC Complement Med Ther 2022; 22:35. [PMID: 35120520 PMCID: PMC8817505 DOI: 10.1186/s12906-021-03488-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 12/06/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND The chemokine CXCL12 and its two receptors (CXCR4 and CXCR7) are involved in inflammation and hematopoietic cell trafficking. This study was designed to investigate molecular docking interactions of four popular cardiovascular-active natural compounds; curcumin, resveratrol, quercetin, and eucalyptol; with these receptors and to predict their drug-like properties. We hypothesize that these compounds can modify CXCL12/CXCR4/CXCR7 pathway offering benefits for coronary artery disease patients. METHODS Docking analyses were carried and characterized by Molecular Environment (MOE) software. Protein Data Bank ( http://www.rcsb.org/ ) has been retrieved from protein structure generation and crystal structures of CXCR4 and CXCR7 receptors (PDB code = 3ODU and 6K3F). The active sites of these receptors were evaluated and extracted from full protein and molecular docking protocol was done for compounds against them. The presented parameters included docking scores, ligand binding efficiency, and hydrogen bonding. The pharmacokinetic/toxic properties (ADME/T) were calculated using SwissADME, ProTox-II, and Pred-hERG softwares to predict drug-like properties of the compounds. The thermochemical and molecular orbital analysis, and molecular dynamics simulations were also done. RESULTS All compounds showed efficient interactions with the CXCR4 and CXCR7 receptors. The docking scores toward proteins 3ODU of CXCR4 and 6K3F of CXCR7 were - 7.71 and - 7.17 for curcumin, - 5.97 and - 6.03 for quercetin, - 5.68 and - 5.49 for trans-resveratrol, and - 4.88 and - 4.70 for (1 s,4 s)-eucalyptol respectively indicating that all compounds, except quercetin, have more interactions with CXCR4 than with CXCR7. The structurally and functionally important residues in the interactive sites of docked CXCR4-complex and CXCR7-complex were identified. The ADME analysis showed that the compounds have drug-like properties. Only (1 s,4 s)-Eucalyptol has potential weak cardiotoxicity. The results of thermochemical and molecular orbital analysis and molecular dynamics simulation validated outcomes of molecular docking study. CONCLUSIONS Curcumin showed the top binding interaction against active sites of CXCR4 and CXCR7 receptors, with the best safety profile, followed by quercetin, resveratrol, and eucalyptol. All compounds demonstrated drug-like properties. Eucalyptol has promising potential because it can be used by inhalation or skin massage. To our knowledge, this is the first attempt to find binding interactions of these natural agents with CXCR4 and CXCR7 receptors and to predict their druggability.
Collapse
Affiliation(s)
- Hussam Aly Sayed Murad
- Department of Pharmacology, Faculty of Medicine, Rabigh, King Abdulaziz University, Jeddah, 21589, Saudi Arabia.
| | | | - Mostafa Aly Hussien
- Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia.,Department of Chemistry, Faculty of Science, Port-Said University, Port-Said, 42521, Egypt
| |
Collapse
|
27
|
Adel IM, ElMeligy MF, Elkasabgy NA. Conventional and Recent Trends of Scaffolds Fabrication: A Superior Mode for Tissue Engineering. Pharmaceutics 2022; 14:306. [DOI: https:/doi.org/10.3390/pharmaceutics14020306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023] Open
Abstract
Tissue regeneration is an auto-healing mechanism, initiating immediately following tissue damage to restore normal tissue structure and function. This falls in line with survival instinct being the most dominant instinct for any living organism. Nevertheless, the process is slow and not feasible in all tissues, which led to the emergence of tissue engineering (TE). TE aims at replacing damaged tissues with new ones. To do so, either new tissue is being cultured in vitro and then implanted, or stimulants are implanted into the target site to enhance endogenous tissue formation. Whichever approach is used, a matrix is used to support tissue growth, known as ‘scaffold’. In this review, an overall look at scaffolds fabrication is discussed, starting with design considerations and different biomaterials used. Following, highlights of conventional and advanced fabrication techniques are attentively presented. The future of scaffolds in TE is ever promising, with the likes of nanotechnology being investigated for scaffold integration. The constant evolvement of organoids and biofluidics with the eventual inclusion of organ-on-a-chip in TE has shown a promising prospect of what the technology might lead to. Perhaps the closest technology to market is 4D scaffolds following the successful implementation of 4D printing in other fields.
Collapse
|
28
|
Adel IM, ElMeligy MF, Elkasabgy NA. Conventional and Recent Trends of Scaffolds Fabrication: A Superior Mode for Tissue Engineering. Pharmaceutics 2022; 14:306. [PMID: 35214038 PMCID: PMC8877304 DOI: 10.3390/pharmaceutics14020306] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/19/2022] [Accepted: 01/24/2022] [Indexed: 12/16/2022] Open
Abstract
Tissue regeneration is an auto-healing mechanism, initiating immediately following tissue damage to restore normal tissue structure and function. This falls in line with survival instinct being the most dominant instinct for any living organism. Nevertheless, the process is slow and not feasible in all tissues, which led to the emergence of tissue engineering (TE). TE aims at replacing damaged tissues with new ones. To do so, either new tissue is being cultured in vitro and then implanted, or stimulants are implanted into the target site to enhance endogenous tissue formation. Whichever approach is used, a matrix is used to support tissue growth, known as 'scaffold'. In this review, an overall look at scaffolds fabrication is discussed, starting with design considerations and different biomaterials used. Following, highlights of conventional and advanced fabrication techniques are attentively presented. The future of scaffolds in TE is ever promising, with the likes of nanotechnology being investigated for scaffold integration. The constant evolvement of organoids and biofluidics with the eventual inclusion of organ-on-a-chip in TE has shown a promising prospect of what the technology might lead to. Perhaps the closest technology to market is 4D scaffolds following the successful implementation of 4D printing in other fields.
Collapse
Affiliation(s)
- Islam M. Adel
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo 11562, Egypt; (M.F.E.); (N.A.E.)
| | | | | |
Collapse
|
29
|
Stein A, Hilken née Thomopoulou P, Frias C, Hopff SM, Varela P, Wilke N, Mariappan A, Neudörfl JM, Fedorov AY, Gopalakrishnan J, Gigant B, Prokop A, Schmalz HG. B-nor-methylene Colchicinoid PT-100 Selectively Induces Apoptosis in Multidrug-Resistant Human Cancer Cells via an Intrinsic Pathway in a Caspase-Independent Manner. ACS OMEGA 2022; 7:2591-2603. [PMID: 35097257 PMCID: PMC8792921 DOI: 10.1021/acsomega.1c04659] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 12/31/2021] [Indexed: 05/14/2023]
Abstract
Colchicine, the main active alkaloid from Colchicum autumnale L., is a potent tubulin binder and represents an interesting lead structure for the development of potential anticancer chemotherapeutics. We report on the synthesis and investigation of potentially reactive colchicinoids and their surprising biological activities. In particular, the previously undescribed colchicinoid PT-100, a B-ring contracted 6-exo-methylene colchicinoid, exhibits extraordinarily high antiproliferative and apoptosis-inducing effects on various types of cancer cell lines like acute lymphoblastic leukemia (Nalm6), acute myeloid leukemia (HL-60), Burkitt-like lymphoma (BJAB), human melanoma (MelHO), and human breast adenocarcinoma (MCF7) cells at low nanomolar concentrations. Apoptosis induction proved to be especially high in multidrug-resistant Nalm6-derived cancer cell lines, while healthy human leukocytes and hepatocytes were not affected by the concentration range studied. Furthermore, caspase-independent initiation of apoptosis via an intrinsic pathway was observed. PT-100 also shows strong synergistic effects in combination with vincristine on BJAB and Nalm6 cells. Cocrystallization of PT-100 with tubulin dimers revealed its (noncovalent) binding to the colchicine-binding site of β-tubulin at the interface to the α-subunit. A pronounced effect of PT-100 on the cytoskeleton morphology was shown by fluorescence microscopy. While the reactivity of PT-100 as a weak Michael acceptor toward thiols was chemically proven, it remains unclear whether this contributes to the remarkable biological properties of this unusual colchicinoid.
Collapse
Affiliation(s)
- Andreas Stein
- Department
of Chemistry, University of Cologne, 50939 Cologne, Germany
| | | | - Corazon Frias
- Department
of Paediatric Oncology, Children’s
Hospital Cologne, 50735 Cologne, Germany
| | - Sina M. Hopff
- Department
of Paediatric Oncology, Children’s
Hospital Cologne, 50735 Cologne, Germany
| | - Paloma Varela
- Université
Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the
Cell (I2BC), 91198 Gif-sur-Yvette cedex, France
| | - Nicola Wilke
- Department
of Paediatric Oncology, Children’s
Hospital Cologne, 50735 Cologne, Germany
| | - Arul Mariappan
- Laboratory
for Centrosome and Cytoskeleton Biology, Institute of Human Genetics, Heinrich-Heine-University, 40225 Düsseldorf, Germany
| | | | - Alexey Yu Fedorov
- Department
of Organic Chemistry, N.I. Lobachevsky State
University of Nizhny Novgorod, 603950 Nizhny Novgorod, Russian
Federation
| | - Jay Gopalakrishnan
- Laboratory
for Centrosome and Cytoskeleton Biology, Institute of Human Genetics, Heinrich-Heine-University, 40225 Düsseldorf, Germany
| | - Benoît Gigant
- Université
Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the
Cell (I2BC), 91198 Gif-sur-Yvette cedex, France
| | - Aram Prokop
- Department
of Paediatric Oncology, Children’s
Hospital Cologne, 50735 Cologne, Germany
- Department
of Pediatric Hematology/Oncology, Helios
Clinic Schwerin, 19055 Schwerin, Germany
- MSH
Medical School Hamburg, Am Kaiserkai 1, 20457 Hamburg, Germany
| | | |
Collapse
|
30
|
Bussy U, Boisseau R, Croyal M, Temgoua RCT, Boujtita M. In-line formation and identification of toxic reductive metabolites of aristolochic acid using electrochemistry mass spectrometry coupling. Anal Bioanal Chem 2022; 414:2363-2370. [DOI: 10.1007/s00216-022-03874-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 12/08/2021] [Accepted: 01/04/2022] [Indexed: 11/01/2022]
|
31
|
Agwunobi DO, Li M, Wang N, Chang G, Zhang X, Xue X, Yu Z, Wang H, Liu J. Proteomic analysis suggests that monoterpenes in lemongrass disrupt Ca 2+ homeostasis in Haemaphysalis longicornis leading to mitochondrial depolarization and cytotoxicity. Proteomics 2022; 22:e2100156. [PMID: 34997954 DOI: 10.1002/pmic.202100156] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 01/01/2022] [Accepted: 01/04/2022] [Indexed: 12/18/2022]
Abstract
Complex mixtures of bioactive ingredients in plant essential oils present complex chemistries which involve different modes of action. An increasing body of scientific reports has recently focused on the acaricidal activities of plant essential oils attributed to their monoterpene components, but information about their underlying molecular mechanism of action is scarce. Here, after the chemical analysis of lemongrass oil, a proteomic analysis of the ovary, salivary gland, and midgut of Haemaphysalis longicornis exposed to Cymbopogon citratus (lemongrass) essential oil was performed via data-independent acquisition mass spectrometry (DIA-MS) technology to further elucidate the molecular mechanisms involved. Pathway analysis reveals the activation of metabolic pathways mediated by oxidoreductases and transferases. Furthermore, the upregulation of various calcium-associated proteins and the upregulation of cytochrome c1, cytochrome c oxidase polypeptide IV, and programmed cell death protein 6-like isoform X1 suggest a cytotoxic mode of action via the formation of reactive oxygen species (ROS), mitochondrial Ca2+ overload, mitochondrial uncoupling, and depolarization, and ATP depletion leading to either apoptotic or necrotic death. Morphological alterations observed after the RNAi of a major detoxification enzyme (glutathione S-transferase) merit further investigation. Hence, the cytotoxic mode of action exhibited by C. citratus oil could be vital for the development of eco-friendly acaricide.
Collapse
Affiliation(s)
- Desmond O Agwunobi
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Mengxue Li
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Ningmei Wang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Guomin Chang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Xiaojing Zhang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Xiaomin Xue
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Zhijun Yu
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Hui Wang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Jingze Liu
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| |
Collapse
|
32
|
Yu JS, Nothias LF, Wang M, Kim DH, Dorrestein PC, Kang KB, Yoo HH. Tandem Mass Spectrometry Molecular Networking as a Powerful and Efficient Tool for Drug Metabolism Studies. Anal Chem 2022; 94:1456-1464. [DOI: 10.1021/acs.analchem.1c04925] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jun Sang Yu
- Institute of Pharmaceutical Science and Technology and College of Pharmacy, Hanyang University, Ansan 15588, Republic of Korea
| | - Louis-Félix Nothias
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California 92093, United States
| | - Mingxun Wang
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California 92093, United States
| | - Dong Hyun Kim
- Department of Pharmacology, Inje University College of Medicine, Busan 47392, Republic of Korea
| | - Pieter C. Dorrestein
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California 92093, United States
| | - Kyo Bin Kang
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Sookmyung Women’s University, Seoul 04310, Republic of Korea
| | - Hye Hyun Yoo
- Institute of Pharmaceutical Science and Technology and College of Pharmacy, Hanyang University, Ansan 15588, Republic of Korea
| |
Collapse
|
33
|
Kramlinger VM, Dalvie D, Heck CJ, Kalgutkar AS, O'Neill J, Su D, Teitelbaum A, Totah RA. Future of Biotransformation Science in the Pharmaceutical Industry. Drug Metab Dispos 2021; 50:258-267. [PMID: 34921097 DOI: 10.1124/dmd.121.000658] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 11/23/2021] [Indexed: 11/22/2022] Open
Abstract
Over the past decades, the number of scientists trained in departments dedicated to traditional medicinal chemistry, biotransformation and/or chemical toxicology have seemingly declined. Yet, there remains a strong demand for such specialized skills in the pharmaceutical industry, particularly within drug metabolism/pharmacokinetics (DMPK) departments. In this position paper, the members of the Biotransformation, Mechanisms, and Pathways Focus Group (BMPFG) steering committee reflect on the diverse roles and responsibilities of scientists trained in the biotransformation field in pharmaceutical companies and contract research organizations. The BMPFG is affiliated with the International Society for the Study of Xenobiotics (ISSX) and was specifically created to promote the exchange of ideas pertaining to topics of current and future interest involving the metabolism of xenobiotics (including drugs). The authors also delve into the relevant education and diverse training skills required to successfully nurture the future cohort of industry biotransformation scientists and guide them towards a rewarding career path. The ability of scientists with a background in biotransformation/organic chemistry to creatively solve complex drug metabolism problems encountered during research and development efforts on both small molecule or large molecular modalities is exemplified in five relevant case studies. Finally, the authors stress the importance and continued commitment to training the next generation of biotransformation scientists who are not only experienced in the metabolism of conventional small molecule therapeutics, but are also equipped to tackle emerging challenges associated with new drug discovery modalities including peptides, protein degraders and antibodies. Significance Statement Biotransformation and mechanistic drug metabolism scientists are critical to advancing chemical entities through discovery and development, yet the number of scientists academically trained for this role is on the decline. This position paper highlights the continuing demand for biotransformation scientists and the necessity to nurture creative ways to train them and guarantee the future growth of this field.
Collapse
Affiliation(s)
| | | | - Carley Js Heck
- Pfizer Worldwide Research and Development, United States
| | - Amit S Kalgutkar
- Pharmacokinetics, Dynamics, and Metabolism Dept., Pfizer Worldwide Research and Development, United States
| | | | - Dian Su
- Mersana Therapeutics, United States
| | - Aaron Teitelbaum
- Drug Metabolism and Pharmacokinetics, Boehringer Ingelheim Pharmaceuticals, United States
| | - Rheem A Totah
- Medicinal Chemistry, Univeristy of Washington, United States
| |
Collapse
|
34
|
Pal R, Singh K, Khan SA, Chawla P, Kumar B, Akhtar MJ. Reactive metabolites of the anticonvulsant drugs and approaches to minimize the adverse drug reaction. Eur J Med Chem 2021; 226:113890. [PMID: 34628237 DOI: 10.1016/j.ejmech.2021.113890] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 09/01/2021] [Accepted: 09/29/2021] [Indexed: 12/22/2022]
Abstract
Several generations of antiepileptic drugs (AEDs) are available in the market for the treatment of seizures, but these are amalgamated with acute to chronic side effects. The most common side effects of AEDs are dose-related, but some are idiosyncratic adverse drug reactions (ADRs) that transpire due to the formation of reactive metabolite (RM) after the bioactivation process. Because of the adverse reactions patients usually discontinue the medication in between the treatment. The AEDs such as valproic acid, lamotrigine, phenytoin etc., can be categorized under such types because they form the RM which may prevail with life-threatening adverse effects or immune-mediated reactions. Hepatotoxicity, teratogenicity, cutaneous hypersensitivity, dizziness, addiction, serum sickness reaction, renal calculi, metabolic acidosis are associated with the metabolites of drugs such as arene oxide, N-desmethyldiazepam, 2-(1-hydroxyethyl)-2-methylsuccinimide, 2-(sulphamoy1acetyl)-phenol, E-2-en-VPA and 4-en-VPA and carbamazepine-10,11-epoxide, etc. The major toxicities are associated with the moieties that are either capable of forming RM or the functional groups may itself be too reactive prior to the metabolism. These functional groups or fragment structures are typically known as structural alerts or toxicophores. Therefore, minimizing the bioactivation potential of lead structures in the early phases of drug discovery by a modification to low-risk drug molecules is a priority for the pharmaceutical companies. Additionally, excellent potency and pharmacokinetic (PK) behaviour help in ensuring that appropriate (low dose) candidate drugs progress into the development phase. The current review discusses about RMs in the anticonvulsant drugs along with their mechanism vis-a-vis research efforts that have been taken to minimize the toxic effects of AEDs therapy.
Collapse
Affiliation(s)
- Rohit Pal
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Ghal Kalan, Ferozpur, G.T. Road, Moga, 142001, Punjab, India
| | - Karanvir Singh
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Ghal Kalan, Ferozpur, G.T. Road, Moga, 142001, Punjab, India
| | - Shah Alam Khan
- Department of Pharmaceutical Chemistry, College of Pharmacy, National University of Science and Technology, PO 620, PC 130, Azaiba, Bousher, Muscat, Oman
| | - Pooja Chawla
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Ghal Kalan, Ferozpur, G.T. Road, Moga, 142001, Punjab, India
| | - Bhupinder Kumar
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Ghal Kalan, Ferozpur, G.T. Road, Moga, 142001, Punjab, India.
| | - Md Jawaid Akhtar
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Ghal Kalan, Ferozpur, G.T. Road, Moga, 142001, Punjab, India; Department of Pharmaceutical Chemistry, College of Pharmacy, National University of Science and Technology, PO 620, PC 130, Azaiba, Bousher, Muscat, Oman.
| |
Collapse
|
35
|
Xue Y, Ren X, Zhu Z, Lei P, Liu M, Wan M, Zhong D, Huang H, Diao X. Site-specific protein modification by 3-n-butylphthalide in primary hepatocytes: Covalent protein adducts diminished by glutathione and N-acetylcysteine. Life Sci 2021; 287:120125. [PMID: 34762904 DOI: 10.1016/j.lfs.2021.120125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 11/02/2021] [Accepted: 11/04/2021] [Indexed: 11/27/2022]
Abstract
AIMS 3-n-Butylphthalide (NBP) is widely used for the treatment of cerebral ischaemic stroke but can causeliver injury in clinical practice. This study aims to elucidate the underlying mechanisms and propose potential preventive strategies. MAIN METHODS NBP and its four major metabolites, 3-hydroxy-NBP (3-OH-NBP), 10-hydroxy-NBP, 10-keto-NBP and NBP-11-oic acid, were synthesized and evaluated in primary human or rat hepatocytes (PHHs, PRHs). NBP-related substances or amino acid adducts were identified and semi-quantitated by ultra-high performance liquid chromatography coupled to high-resolution mass spectrometry (UHPLC-HRMS). The target proteins and binding sites were identified by shotgun proteomics based on peptide mass fingerprinting coupled with tandem mass spectrometry and verified by molecular docking. KEY FINDINGS The toxicity of NBP and its four major metabolites were compared in both PHHs and PRHs, and 3-OH-NBP was found to be the most toxic metabolite. 3-OH-NBP induced remarkable cell death and oxidative stresses in hepatocytes, which correlated well with the levels of glutathione and N-acetylcysteine adducts (3-GSH-NBP and 3-NAC-NBP) in cell supernatants. Additionally, 3-OH-NBP covalently conjugated with intracellular Cys, Lys and Ser, with preferable binding to Cys sites at Myh9 Cys1380, Prdx4 Cys53, Vdac2 Cys48 and Vdac3 Cys36. Furthermore, we found that CYP3A4 induction by rifampicin augmented NBP-induced cell toxicity and supplementing with GSH or NAC alleviated the oxidative stresses and reactive metabolites caused by 3-OH-NBP. SIGNIFICANCE Our work suggests that glutathione depletion, mitochondrial injury and covalent protein modification are the main causes of NBP-induced hepatotoxicity, which may be prevented by exogenous GSH or NAC supplementation and avoiding concomitant use of CYP3A4 inducers.
Collapse
Affiliation(s)
- Yaru Xue
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xuelian Ren
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Zhengdan Zhu
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China; Beijing Institute of Big Data Research, Beijing 100871, China
| | - Peng Lei
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Mengling Liu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mimi Wan
- Waters Technology (Shanghai), Co., Ltd, Shanghai 201203, China
| | - Dafang Zhong
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - He Huang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xingxing Diao
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
| |
Collapse
|
36
|
Hernandez‐Jerez AF, Adriaanse P, Aldrich A, Berny P, Coja T, Duquesne S, Focks A, Marinovich M, Millet M, Pelkonen O, Pieper S, Tiktak A, Topping CJ, Widenfalk A, Wilks M, Wolterink G, Gundert‐Remy U, Louisse J, Rudaz S, Testai E, Lostia A, Dorne J, Parra Morte JM. Scientific Opinion of the Scientific Panel on Plant Protection Products and their Residues (PPR Panel) on testing and interpretation of comparative in vitro metabolism studies. EFSA J 2021; 19:e06970. [PMID: 34987623 PMCID: PMC8696562 DOI: 10.2903/j.efsa.2021.6970] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
EFSA asked the Panel on Plant Protection Products and their residues to deliver a Scientific Opinion on testing and interpretation of comparative in vitro metabolism studies for both new active substances and existing ones. The main aim of comparative in vitro metabolism studies of pesticide active substances is to evaluate whether all significant metabolites formed in the human in vitro test system, as a surrogate of the in vivo situation, are also present at comparable level in animal species tested in toxicological studies and, therefore, if their potential toxicity has been appropriately covered by animal studies. The studies may also help to decide which animal model, with regard to a particular compound, is the most relevant for humans. In the experimental strategy, primary hepatocytes in suspension or culture are recommended since hepatocytes are considered the most representative in vitro system for prediction of in vivo metabolites. The experimental design of 3 × 3 × 3 (concentrations, time points, technical replicates, on pooled hepatocytes) will maximise the chance to identify unique (UHM) and disproportionate (DHM) human metabolites. When DHM and UHM are being assessed, test item-related radioactivity recovery and metabolite profile are the most important parameters. Subsequently, structural characterisation of the assigned metabolites is performed with appropriate analytical techniques. In toxicological assessment of metabolites, the uncertainty factor approach is the first alternative to testing option, followed by new approach methodologies (QSAR, read-across, in vitro methods), and only if these fail, in vivo animal toxicity studies may be performed. Knowledge of in vitro metabolites in human and animal hepatocytes would enable toxicological evaluation of all metabolites of concern, and, furthermore, add useful pieces of information for detection and evaluation of metabolites in different matrices (crops, livestock, environment), improve biomonitoring efforts via better toxicokinetic understanding, and ultimately, develop regulatory schemes employing physiologically based or physiology-mimicking in silico and/or in vitro test systems to anticipate the exposure of humans to potentially hazardous substances in plant protection products.
Collapse
|
37
|
Prousis KC, Katsamakas S, Markopoulos J, Igglessi-Markopoulou O. A novel synthetic protocol for the synthesis of pulvinones, and naturally occurring Aspulvinone E, molecules of medicinal interest. SYNTHETIC COMMUN 2021. [DOI: 10.1080/00397911.2021.2001662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Kyriakos C. Prousis
- Institute of Chemical Biology, National Hellenic Research Foundation, Athens, Greece
| | - Sotirios Katsamakas
- Institute of Chemical Biology, National Hellenic Research Foundation, Athens, Greece
| | - John Markopoulos
- Department of Chemistry, Laboratory of Inorganic Chemistry, National and Kapodistrian University of Athens, Athens, Greece
| | - Olga Igglessi-Markopoulou
- Laboratory of Organic Chemistry, School of Chemical Engineering, National Technical University of Athens, Athens, Greece
| |
Collapse
|
38
|
Jana R, Begam HM, Dinda E. The emergence of the C-H functionalization strategy in medicinal chemistry and drug discovery. Chem Commun (Camb) 2021; 57:10842-10866. [PMID: 34596175 DOI: 10.1039/d1cc04083a] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Owing to the market competitiveness and urgent societal need, an optimum speed of drug discovery is an important criterion for successful implementation. Despite the rapid ascent of artificial intelligence and computational and bioanalytical techniques to accelerate drug discovery in big pharma, organic synthesis of privileged scaffolds predicted in silico for in vitro and in vivo studies is still considered as the rate-limiting step. C-H activation is the latest technology added into an organic chemist's toolbox for the rapid construction and late-stage modification of functional molecules to achieve the desired chemical and physical properties. Particularly, elimination of prefunctionalization steps, exceptional functional group tolerance, complexity-to-diversity oriented synthesis, and late-stage functionalization of privileged medicinal scaffolds expand the chemical space. It has immense potential for the rapid synthesis of a library of molecules, structural modification to achieve the required pharmacological properties such as absorption, distribution, metabolism, excretion, toxicology (ADMET) and attachment of chemical reporters for proteome profiling, metabolite synthesis, etc. for preclinical studies. Although heterocycle synthesis, late-stage drug modification, 18F labelling, methylation, etc. via C-H functionalization have been reviewed from the synthetic standpoint, a general overview of these protocols from medicinal and drug discovery aspects has not been reviewed. In this feature article, we will discuss the recent trends of C-H activation methodologies such as synthesis of medicinal scaffolds through C-H activation/annulation cascade; C-H arylation for sp2-sp2 and sp2-sp3 cross-coupling; C-H borylation/silylation to introduce a functional linchpin for further manipulation; C-H amination for N-heterocycles and hydrogen bond acceptors; C-H fluorination/fluoroalkylation to tune polarity and lipophilicity; C-H methylation: methyl magic in drug discovery; peptide modification and macrocyclization for therapeutics and biologics; fluorescent labelling and radiolabelling for bioimaging; bioconjugation for chemical biology studies; drug-metabolite synthesis for biodistribution and excretion studies; late-stage diversification of drug-molecules to increase efficacy and safety; cutting-edge DNA encoded library synthesis and improved synthesis of drug molecules via C-H activation in medicinal chemistry and drug discovery.
Collapse
Affiliation(s)
- Ranjan Jana
- Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata-700032, India.
| | - Hasina Mamataj Begam
- Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata-700032, India.
| | - Enakshi Dinda
- Department of Chemistry and Environment, Heritage Institute of Technology, Kolkata-700107, India
| |
Collapse
|
39
|
Ryu B, Son MY, Jung KB, Kim U, Kim J, Kwon O, Son YS, Jung CR, Park JH, Kim CY. Next-Generation Intestinal Toxicity Model of Human Embryonic Stem Cell-Derived Enterocyte-Like Cells. Front Vet Sci 2021; 8:587659. [PMID: 34604364 PMCID: PMC8481684 DOI: 10.3389/fvets.2021.587659] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 07/26/2021] [Indexed: 12/13/2022] Open
Abstract
The gastrointestinal tract is the most common exposure route of xenobiotics, and intestinal toxicity can result in systemic toxicity in most cases. It is important to develop intestinal toxicity assays mimicking the human system; thus, stem cells are rapidly being developed as new paradigms of toxicity assessment. In this study, we established human embryonic stem cell (hESC)-derived enterocyte-like cells (ELCs) and compared them to existing in vivo and in vitro models. We found that hESC-ELCs and the in vivo model showed transcriptomically similar expression patterns of a total of 10,020 genes than the commercialized cell lines. Besides, we treated the hESC-ELCs, in vivo rats, Caco-2 cells, and Hutu-80 cells with quarter log units of lethal dose 50 or lethal concentration 50 of eight drugs—chloramphenicol, cycloheximide, cytarabine, diclofenac, fluorouracil, indomethacin, methotrexate, and oxytetracycline—and then subsequently analyzed the biomolecular markers and morphological changes. While the four models showed similar tendencies in general toxicological reaction, hESC-ELCs showed a stronger correlation with the in vivo model than the immortalized cell lines. These results indicate that hESC-ELCs can serve as a next-generation intestinal toxicity model.
Collapse
Affiliation(s)
- Bokyeong Ryu
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Seoul National University, Seoul, South Korea
| | - Mi-Young Son
- Stem Cell Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, South Korea.,Department of Functional Genomics, Korea Research Institute of Bioscience and Biotechnology School of Bioscience, Korea University of Science and Technology, Daejeon, South Korea
| | - Kwang Bo Jung
- Stem Cell Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, South Korea.,Department of Functional Genomics, Korea Research Institute of Bioscience and Biotechnology School of Bioscience, Korea University of Science and Technology, Daejeon, South Korea
| | - Ukjin Kim
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Seoul National University, Seoul, South Korea
| | - Jin Kim
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Seoul National University, Seoul, South Korea
| | - Ohman Kwon
- Stem Cell Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, South Korea
| | - Ye Seul Son
- Stem Cell Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, South Korea.,Department of Functional Genomics, Korea Research Institute of Bioscience and Biotechnology School of Bioscience, Korea University of Science and Technology, Daejeon, South Korea
| | - Cho-Rok Jung
- Gene Therapy Research Unit, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
| | - Jae-Hak Park
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Seoul National University, Seoul, South Korea
| | - C-Yoon Kim
- Department of Veterinary Physiology, College of Veterinary Medicine, Konkuk University, Seoul, South Korea
| |
Collapse
|
40
|
Geib T, Moghaddam G, Supinski A, Golizeh M, Sleno L. Protein Targets of Acetaminophen Covalent Binding in Rat and Mouse Liver Studied by LC-MS/MS. Front Chem 2021; 9:736788. [PMID: 34490218 PMCID: PMC8417805 DOI: 10.3389/fchem.2021.736788] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 08/04/2021] [Indexed: 01/11/2023] Open
Abstract
Acetaminophen (APAP) is a mild analgesic and antipyretic used commonly worldwide. Although considered a safe and effective over-the-counter medication, it is also the leading cause of drug-induced acute liver failure. Its hepatotoxicity has been linked to the covalent binding of its reactive metabolite, N-acetyl p-benzoquinone imine (NAPQI), to proteins. The aim of this study was to identify APAP-protein targets in both rat and mouse liver, and to compare the results from both species, using bottom-up proteomics with data-dependent high resolution mass spectrometry and targeted multiple reaction monitoring (MRM) experiments. Livers from rats and mice, treated with APAP, were homogenized and digested by trypsin. Digests were then fractionated by mixed-mode solid-phase extraction prior to liquid chromatography-tandem mass spectrometry (LC-MS/MS). Targeted LC-MRM assays were optimized based on high-resolution MS/MS data from information-dependent acquisition (IDA) using control liver homogenates treated with a custom alkylating reagent yielding an isomeric modification to APAP on cysteine residues, to build a modified peptide database. A list of putative in vivo targets of APAP were screened from data-dependent high-resolution MS/MS analyses of liver digests, previous in vitro studies, as well as selected proteins from the target protein database (TPDB), an online resource compiling previous reports of APAP targets. Multiple protein targets in each species were found, while confirming modification sites. Several proteins were modified in both species, including ATP-citrate synthase, betaine-homocysteine S-methyltransferase 1, cytochrome P450 2C6/29, mitochondrial glutamine amidotransferase-like protein/ES1 protein homolog, glutamine synthetase, microsomal glutathione S-transferase 1, mitochondrial-processing peptidase, methanethiol oxidase, protein/nucleic acid deglycase DJ-1, triosephosphate isomerase and thioredoxin. The targeted method afforded better reproducibility for analysing these low-abundant modified peptides in highly complex samples compared to traditional data-dependent experiments.
Collapse
Affiliation(s)
- Timon Geib
- Chemistry Department, Université du Québec à Montréal, Montréal, QC, Canada
| | - Ghazaleh Moghaddam
- Chemistry Department, Université du Québec à Montréal, Montréal, QC, Canada
| | - Aimee Supinski
- Chemistry Department, Université du Québec à Montréal, Montréal, QC, Canada
| | - Makan Golizeh
- Chemistry Department, Université du Québec à Montréal, Montréal, QC, Canada
| | - Lekha Sleno
- Chemistry Department, Université du Québec à Montréal, Montréal, QC, Canada
| |
Collapse
|
41
|
Saleem U, Shehzad A, Shah S, Raza Z, Shah MA, Bibi S, Chauhdary Z, Ahmad B. Antiparkinsonian activity of Cucurbita pepo seeds along with possible underlying mechanism. Metab Brain Dis 2021; 36:1231-1251. [PMID: 33759084 DOI: 10.1007/s11011-021-00707-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 02/24/2021] [Indexed: 02/07/2023]
Abstract
Cucurbita pepo is used as a vegetable in Pakistan and its seeds are also rich in tocopherol. Data showed the pivotal role of tocopherol in the treatment of Parkinson's disease (PD). The current study was designed to probe into the antiparkinson activity of methanolic extract of C. pepo (MECP) seeds in the haloperidol-induced Parkinson rat model. Behavioral studies showed improvement in motor functions. The increase in catalase, superoxide dismutase, glutathione levels whereas the decreases in the malondialdehyde and nitrite levels were noted in a dose-dependent manner. Acetylcholine-esterase (AchE) activity was increased. Molecular docking results revealed significant binding interaction of selected phytoconstituents within an active site of target protein AchE (PDB ID: 4EY7). Furthermore, α-synuclein was up regulated with down regulation of TNF-α and IL-1β in the qRT-PCR study. Subsequently, ADMET results on the basis of structure to activity predictions in terms of pharmacokinetics and toxicity estimations show that selected phytochemicals exhibited moderately acceptable properties. These properties add knowledge towards the structural features which could improve the bioavailability of selected phytochemicals before moving towards the initial phase of the drug development. Our integrated drug discovery scheme concluded that C. pepo seeds could ameliorate symptoms of PD and may prove a lead remedy for the treatment of PD.
Collapse
Affiliation(s)
- Uzma Saleem
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, 38000, Pakistan.
| | - Aisha Shehzad
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, 38000, Pakistan
| | - Shahid Shah
- Department of Pharmacy Practice, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, 38000, Pakistan
| | - Zohaib Raza
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, 38000, Pakistan
| | - Muhammad Ajmal Shah
- Department of Pharmacognosy, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, 38000, Pakistan.
| | - Shabana Bibi
- Yunnan Herbal Laboratory, School of Ecology and Environmental Sciences, Yunnan University, Kunming, 650091, Yunnan, China
- The International Joint Research Center for Sustainable Utilization of Cordyceps Bioresouces in China and Southeast Asia, Yunnan University, Kunming, 650091, Yunnan, China
| | - Zunera Chauhdary
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, 38000, Pakistan
| | - Bashir Ahmad
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore, 54000, Pakistan
| |
Collapse
|
42
|
Feng Y, Chen Y, Jia Y, Wang Z, Wang X, Jiang L, Ai C, Li W, Liu Y. Efficacy and safety of levetiracetam versus (fos)phenytoin for second-line treatment of epilepticus: a meta-analysis of latest randomized controlled trials. Seizure 2021; 91:339-345. [PMID: 34284302 DOI: 10.1016/j.seizure.2021.07.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 07/06/2021] [Accepted: 07/09/2021] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVES To assess the efficiency and safety profiles of levetiracetam and (fos)phenytoin (phenytoin or fosphenytoin) for second-line treatment of seizures by performing a meta-analysis of RCTs. METHODS We systematically searched PubMed, Embase, Cochrane, FDA.gov, and ClinicalTrials.gov for RCTs (published before July 31, 2020; no language restrictions). Two independent reviewers screened abstracts and titles against inclusion and exclusion criteria published previously in the PROSPERO: CRD42020202736. Eleven studies fulfilled the established criteria. We assessed pooled data by using a random-effects model. Quality analysis was performed by using version 2 of the Cochrane risk-of-bias tool (RoB 2). RevMan v.5.3 was used to perform statistical analyses, and publication bias (egger's test) was assessed with Stata MP v.14.0. RESULTS Levetiracetam was similar to (fos)phenytoin in seizure termination rate (risk ratio [RR] 0.94; 95% CI 0.87 to 1.01), time of seizure termination (mean difference [MD] 0.44; -0.60 to 1.49), and drug resistance ([RR] 1.12, 0.86 to 1.45). The safety outcome showed a significant statistical difference between fosphenytoin group and levetiracetam group ([RR] 1.44, 1.14 to 1.81), while there was no significant difference observed between phenytoin treatment and levetiracetam treatment ([RR] 1.26, 0.99 to 1.60). CONCLUSION Levetiracetam was similar to (fos)phenytoin in cessation rate convulsive status epilepticus, and drug resistance, while it was superior (fos)phenytoin in pooled safety outcome. Further exploration is still needed as to whether it is the first choice for second-line drugs.
Collapse
Affiliation(s)
- Yuyi Feng
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin 124221, China
| | - Yueyue Chen
- Translational Medicine Research Institute, College of Medicine, Yangzhou University, Yangzhou 225001, China
| | - Yaqin Jia
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin 124221, China
| | - Zhe Wang
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin 124221, China
| | - Xiaoyu Wang
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin 124221, China
| | - Lili Jiang
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin 124221, China
| | - Chunzhi Ai
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Wei Li
- Translational Medicine Research Institute, College of Medicine, Yangzhou University, Yangzhou 225001, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China.
| | - Yong Liu
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin 124221, China.
| |
Collapse
|
43
|
Shimizu Y, Sasaki T, Takeshita JI, Watanabe M, Shizu R, Hosaka T, Yoshinari K. Identification of average molecular weight (AMW) as a useful chemical descriptor to discriminate liver injury-inducing drugs. PLoS One 2021; 16:e0253855. [PMID: 34170966 PMCID: PMC8232420 DOI: 10.1371/journal.pone.0253855] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 06/14/2021] [Indexed: 11/19/2022] Open
Abstract
Drug-induced liver injury (DILI) is one of major causes of discontinuing drug development and withdrawing drugs from the market. In this study, we investigated chemical properties associated with DILI using in silico methods, to identify a physicochemical property useful for DILI screening at the early stages of drug development. Total of 652 drugs, including 432 DILI-positive drugs (DILI drugs) and 220 DILI-negative drugs (no-DILI drugs) were selected from Liver Toxicity Knowledge Base of US Food and Drug Administration. Decision tree models were constructed using 2,473 descriptors as explanatory variables. In the final model, the descriptor AMW, representing average molecular weight, was found to be at the first node and showed the highest importance value. With AMW alone, 276 DILI drugs (64%) and 156 no-DILI drugs (71%) were correctly classified. Discrimination with AMW was then performed using therapeutic category information. The performance of discrimination depended on the category and significantly high performance (>0.8 balanced accuracy) was obtained in some categories. Taken together, the present results suggest AMW as a novel descriptor useful for detecting drugs with DILI risk. The information presented may be valuable for the safety assessment of drug candidates at the early stage of drug development.
Collapse
Affiliation(s)
- Yuki Shimizu
- Laboratory of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - Takamitsu Sasaki
- Laboratory of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - Jun-ichi Takeshita
- Laboratory of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
- Research Institute of Science for Safety and Sustainability, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Michiko Watanabe
- Laboratory of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - Ryota Shizu
- Laboratory of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - Takuomi Hosaka
- Laboratory of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - Kouichi Yoshinari
- Laboratory of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
- * E-mail:
| |
Collapse
|
44
|
Flynn NR, Ward MD, Schleiff MA, Laurin CMC, Farmer R, Conway SJ, Boysen G, Swamidass SJ, Miller GP. Bioactivation of Isoxazole-Containing Bromodomain and Extra-Terminal Domain (BET) Inhibitors. Metabolites 2021; 11:metabo11060390. [PMID: 34203690 PMCID: PMC8232216 DOI: 10.3390/metabo11060390] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/04/2021] [Accepted: 06/08/2021] [Indexed: 12/15/2022] Open
Abstract
The 3,5-dimethylisoxazole motif has become a useful and popular acetyl-lysine mimic employed in isoxazole-containing bromodomain and extra-terminal (BET) inhibitors but may introduce the potential for bioactivations into toxic reactive metabolites. As a test, we coupled deep neural models for quinone formation, metabolite structures, and biomolecule reactivity to predict bioactivation pathways for 32 BET inhibitors and validate the bioactivation of select inhibitors experimentally. Based on model predictions, inhibitors were more likely to undergo bioactivation than reported non-bioactivated molecules containing isoxazoles. The model outputs varied with substituents indicating the ability to scale their impact on bioactivation. We selected OXFBD02, OXFBD04, and I-BET151 for more in-depth analysis. OXFBD’s bioactivations were evenly split between traditional quinones and novel extended quinone-methides involving the isoxazole yet strongly favored the latter quinones. Subsequent experimental studies confirmed the formation of both types of quinones for OXFBD molecules, yet traditional quinones were the dominant reactive metabolites. Modeled I-BET151 bioactivations led to extended quinone-methides, which were not verified experimentally. The differences in observed and predicted bioactivations reflected the need to improve overall bioactivation scaling. Nevertheless, our coupled modeling approach predicted BET inhibitor bioactivations including novel extended quinone methides, and we experimentally verified those pathways highlighting potential concerns for toxicity in the development of these new drug leads.
Collapse
Affiliation(s)
- Noah R. Flynn
- Department of Pathology and Immunology, Washington University-St. Louis, St. Louis, MO 63130, USA; (N.R.F.); (M.D.W.); (R.F.)
| | - Michael D. Ward
- Department of Pathology and Immunology, Washington University-St. Louis, St. Louis, MO 63130, USA; (N.R.F.); (M.D.W.); (R.F.)
| | - Mary A. Schleiff
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA;
| | | | - Rohit Farmer
- Department of Pathology and Immunology, Washington University-St. Louis, St. Louis, MO 63130, USA; (N.R.F.); (M.D.W.); (R.F.)
| | - Stuart J. Conway
- Department of Chemistry, University of Oxford, Oxford OX1 3TA, UK; (C.M.C.L.); (S.J.C.)
| | - Gunnar Boysen
- Department of Environmental and Occupational Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA;
| | - S. Joshua Swamidass
- Department of Pathology and Immunology, Washington University-St. Louis, St. Louis, MO 63130, USA; (N.R.F.); (M.D.W.); (R.F.)
- Correspondence: (S.J.S.); (G.P.M.)
| | - Grover P. Miller
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA;
- Correspondence: (S.J.S.); (G.P.M.)
| |
Collapse
|
45
|
Schleiff MA, Dhaware D, Sodhi JK. Recent advances in computational metabolite structure predictions and altered metabolic pathways assessment to inform drug development processes. Drug Metab Rev 2021; 53:173-187. [PMID: 33840322 DOI: 10.1080/03602532.2021.1910292] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Many drug candidates fail during preclinical and clinical trials due to variable or unexpected metabolism which may lead to variability in drug efficacy or adverse drug reactions. The drug metabolism field aims to address this important issue from many angles which range from the study of drug-drug interactions, pharmacogenomics, computational metabolic modeling, and others. This manuscript aims to provide brief but comprehensive manuscript summaries highlighting the conclusions and scientific importance of seven exceptional manuscripts published in recent years within the field of drug metabolism. Two main topics within the field are reviewed: novel computational metabolic modeling approaches which provide complex outputs beyond site of metabolism predictions, and experimental approaches designed to discern the impacts of interindividual variability and species differences on drug metabolism. The computational approaches discussed provide novel outputs in metabolite structure and formation likelihood and/or extend beyond the saturated field of drug phase I metabolism, while the experimental metabolic pathways assessments aim to highlight the impacts of genetic polymorphisms and clinical animal model metabolic differences on human metabolism and subsequent health outcomes.
Collapse
Affiliation(s)
- Mary Alexandra Schleiff
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Deepika Dhaware
- Biotransformation and ADME, Research and Development, Orion Corporation, Espoo, Finland
| | - Jasleen K Sodhi
- Department of Bioengineering and Therapeutic Sciences, Schools of Pharmacy and Medicine, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
46
|
Lu S, Wei F, Li G. The evolution of the concept of stress and the framework of the stress system. Cell Stress 2021; 5:76-85. [PMID: 34124582 PMCID: PMC8166217 DOI: 10.15698/cst2021.06.250] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 04/14/2021] [Accepted: 04/19/2021] [Indexed: 12/13/2022] Open
Abstract
Stress is a central concept in biology and has now been widely used in psychological, physiological, social, and even environmental fields. However, the concept of stress was cross-utilized to refer to different elements of the stress system including stressful stimulus, stressor, stress response, and stress effect. Here, we summarized the evolution of the concept of stress and the framework of the stress system. We find although the concept of stress is developed from Selye's "general adaptation syndrome", it has now expanded and evolved significantly. Stress is now defined as a state of homeostasis being challenged, including both system stress and local stress. A specific stressor may potentially bring about specific local stress, while the intensity of stress beyond a threshold may commonly activate the hypothalamic-pituitary-adrenal axis and result in a systematic stress response. The framework of the stress system indicates that stress includes three types: sustress (inadequate stress), eustress (good stress), and distress (bad stress). Both sustress and distress might impair normal physiological functions and even lead to pathological conditions, while eustress might benefit health through hormesis-induced optimization of homeostasis. Therefore, an optimal stress level is essential for building biological shields to guarantee normal life processes.
Collapse
Affiliation(s)
- Siyu Lu
- Center for Aging Biomedicine, Key Laboratory of Protein Chemistry and Developmental Biology of Fish of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China
| | - Fang Wei
- Center for Aging Biomedicine, Key Laboratory of Protein Chemistry and Developmental Biology of Fish of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China
- National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China
| | - Guolin Li
- Center for Aging Biomedicine, Key Laboratory of Protein Chemistry and Developmental Biology of Fish of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China
- National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China
- Key Laboratory of Hunan Province for Model Animal and Stem Cell Biology, School of Medicine, Hunan Normal University, Changsha, Hunan 410081, China
| |
Collapse
|
47
|
Shibazaki C, Ohe T, Takahashi K, Nakamura S, Mashino T. Development of fluorescent-labeled trapping reagents based on cysteine to detect soft and hard electrophilic reactive metabolites. Drug Metab Pharmacokinet 2021; 39:100386. [PMID: 34091122 DOI: 10.1016/j.dmpk.2021.100386] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 01/27/2021] [Accepted: 02/12/2021] [Indexed: 12/18/2022]
Abstract
Trapping assays are conducted at lead optimization stages to detect reactive metabolites (RMs) that can contribute to drug toxicity. The commonly used dansyl glutathione (dGSH) provides a sensitive analysis owing to the fluorescent label, however, it captures only soft electrophilic RMs. TRs for hard electrophilic RMs, few of which are labeled fluorescently, can detect hard electrophilic aldehydes only by forming unstable imine derivatives. In this study, we aimed to develop novel fluorescently labeled TRs that detect both soft and hard electrophilic RMs and form stable ring structures with aldehydes. We designed four dansylated TRs based on cysteine, which has both soft and hard nucleophilic groups. To evaluate the reactivity of the TRs, we incubated them with several substrates and found that one of the TRs (CysGlu-Dan) detected all the soft and hard electrophilic RMs. We also examined the inhibition potential of each TR for seven major CYPs involved in drug metabolism and found that CysGlu-Dan showed an inhibitory profile similar to that of dGSH. In conclusion, CysGlu-Dan can be used to evaluate the risk of RMs in drug discovery.
Collapse
Affiliation(s)
- Chikako Shibazaki
- Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo, Japan
| | - Tomoyuki Ohe
- Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo, Japan.
| | - Kyoko Takahashi
- Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo, Japan
| | - Shigeo Nakamura
- Department of Chemistry, Nippon Medical School, 1-7-1 Kyonan-cho, Musashino-shi, Tokyo, Japan
| | - Tadahiko Mashino
- Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo, Japan.
| |
Collapse
|
48
|
Hammond S, Thomson P, Meng X, Naisbitt D. In-Vitro Approaches to Predict and Study T-Cell Mediated Hypersensitivity to Drugs. Front Immunol 2021; 12:630530. [PMID: 33927714 PMCID: PMC8076677 DOI: 10.3389/fimmu.2021.630530] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 03/17/2021] [Indexed: 01/11/2023] Open
Abstract
Mitigating the risk of drug hypersensitivity reactions is an important facet of a given pharmaceutical, with poor performance in this area of safety often leading to warnings, restrictions and withdrawals. In the last 50 years, efforts to diagnose, manage, and circumvent these obscure, iatrogenic diseases have resulted in the development of assays at all stages of a drugs lifespan. Indeed, this begins with intelligent lead compound selection/design to minimize the existence of deleterious chemical reactivity through exclusion of ominous structural moieties. Preclinical studies then investigate how compounds interact with biological systems, with emphasis placed on modeling immunological/toxicological liabilities. During clinical use, competent and accurate diagnoses are sought to effectively manage patients with such ailments, and pharmacovigilance datasets can be used for stratification of patient populations in order to optimise safety profiles. Herein, an overview of some of the in-vitro approaches to predict intrinsic immunogenicity of drugs and diagnose culprit drugs in allergic patients after exposure is detailed, with current perspectives and opportunities provided.
Collapse
Affiliation(s)
- Sean Hammond
- MRC Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, United Kingdom
- ApconiX, Alderley Park, Alderley Edge, United Kingdom
| | - Paul Thomson
- MRC Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, United Kingdom
| | - Xiaoli Meng
- MRC Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, United Kingdom
| | - Dean Naisbitt
- MRC Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
49
|
Kaddah MMY, Billig S, Oehme R, Birkemeyer C. Bio-activation of simeprevir in liver microsomes and characterization of its glutathione conjugates by liquid chromatography coupled to ultrahigh-resolution quadrupole time-of-flight mass spectrometry. J Chromatogr A 2021; 1645:462095. [PMID: 33857675 DOI: 10.1016/j.chroma.2021.462095] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 02/23/2021] [Accepted: 03/19/2021] [Indexed: 11/25/2022]
Abstract
Liquid chromatography coupled to a triple quadrupole and, alternatively, to an ultrahigh-resolution quadrupole time-of-flight (UHR-QqTOF) mass spectrometers was used to collect qualitative and quantitative information from incubations of the anti-hepatitis C drug simeprevir with human and rat liver microsomes, respectively, supplemented with NADPH and glutathione. For this, different chromatographic methods using two different chromatographic columns, Kinetex® 2.6 µm C18 (50 × 3 mm) and Atlantis T3 (100 Å, 3 µm, 4.6 mm × 150 mm), have been employed. For determination and structural characterization of the reactive metabolites, we used information obtained from high-resolution mass spectrometry, namely accurate mass data to calculate the elemental composition, accurate MS/MS fragmentation patterns for confirmation of structural proposals, and the high mass spectral resolution to eliminate false-positive peaks. In this study, the use of high-resolution mass spectrometry (HR-MS) enabled the identification of 19 simeprevir metabolites generated by O- respectively N-demethylation, oxidation, dehydrogenation, hydrolysis, and formation of glutathione conjugates. The in silico study provides insights into the sites of simeprevir most amenable to reactions involving cytochrome P450. The developed methods have been successfully applied to analyze simeprevir and its metabolites simultaneously; based on this data, potential metabolic pathways of simeprevir are discussed. In general, the obtained results demonstrate that simeprevir is susceptible to form reactive simeprevir-glutathione adducts and cyclopropansulfonamide, which may explain the implication of simeprevir in idiosyncratic adverse drug reactions (IADRs) or hepatotoxicity.
Collapse
Affiliation(s)
- Mohamed M Y Kaddah
- Pharmaceutical and Fermentation Industries Development Center, City of Scientific Research and Technological Applications, New Borg El-Arab 21934, Alexandria, Egypt.
| | - Susan Billig
- Research Group of Mass Spectrometry, Faculty of Chemistry and Mineralogy, University of Leipzig, Linnèstr. 3, 04103 Leipzig, Germany
| | - Ramona Oehme
- Research Group of Mass Spectrometry, Faculty of Chemistry and Mineralogy, University of Leipzig, Linnèstr. 3, 04103 Leipzig, Germany
| | - Claudia Birkemeyer
- Research Group of Mass Spectrometry, Faculty of Chemistry and Mineralogy, University of Leipzig, Linnèstr. 3, 04103 Leipzig, Germany
| |
Collapse
|
50
|
Wlodarchak N, Feltenberger JB, Ye Z, Beczkiewicz J, Procknow R, Yan G, King TM, Golden JE, Striker R. Engineering Selectivity for Reduced Toxicity of Bacterial Kinase Inhibitors Using Structure-Guided Medicinal Chemistry. ACS Med Chem Lett 2021; 12:228-235. [PMID: 35035774 PMCID: PMC8757511 DOI: 10.1021/acsmedchemlett.0c00580] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 01/08/2021] [Indexed: 01/15/2023] Open
Abstract
![]()
Tuberculosis is a
major global public health concern, and new drugs
are needed to combat both the typical form and the increasingly common
drug-resistant form of this disease. The essential tuberculosis kinase
PknB is an attractive drug development target because of its central
importance in several critical signaling cascades. A major hurdle
in kinase inhibitor development is the reduction of toxicity due to
nonspecific kinase activity in host cells. Here a novel class of PknB
inhibitors was developed from hit aminopyrimidine 1 (GW779439X),
which was originally designed for human CDK4 but failed to progress
clinically because of high toxicity and low specificity. Replacing
the pyrazolopyridazine headgroup of the original hit with substituted
pyridine or phenyl headgroups resulted in a reduction of Cdk activity
and a 3-fold improvement in specificity over the human kinome while
maintaining PknB activity. This also resulted in improved microbiological
activity and reduced toxicity in THP-1 cells and zebrafish.
Collapse
Affiliation(s)
- Nathan Wlodarchak
- William S. Middleton Veterans Hospital, 2500 Overlook Terrace, Madison, Wisconsin 53705, United States.,Department of Medicine, University of Wisconsin-Madison, 1550 Linden Drive, Madison, Wisconsin 53706, United States
| | - John B Feltenberger
- University of Wisconsin-Madison Medicinal Chemistry Center, School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, Wisconsin 53705, United States
| | - Zhengqing Ye
- University of Wisconsin-Madison Medicinal Chemistry Center, School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, Wisconsin 53705, United States
| | - Jeffrey Beczkiewicz
- Department of Medicine, University of Wisconsin-Madison, 1550 Linden Drive, Madison, Wisconsin 53706, United States
| | - Rebecca Procknow
- Department of Medicine, University of Wisconsin-Madison, 1550 Linden Drive, Madison, Wisconsin 53706, United States
| | - Gang Yan
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, Wisconsin 53705, United States
| | - Troy M King
- Department of Medicine, University of Wisconsin-Madison, 1550 Linden Drive, Madison, Wisconsin 53706, United States
| | - Jennifer E Golden
- University of Wisconsin-Madison Medicinal Chemistry Center, School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, Wisconsin 53705, United States.,Division of Pharmaceutical Sciences, School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, Wisconsin 53705, United States
| | - Rob Striker
- William S. Middleton Veterans Hospital, 2500 Overlook Terrace, Madison, Wisconsin 53705, United States.,Department of Medicine, University of Wisconsin-Madison, 1550 Linden Drive, Madison, Wisconsin 53706, United States
| |
Collapse
|