1
|
Padhy I, Sharma T, Banerjee B, Mohapatra S, Sahoo CR, Padhy RN. Structure based exploration of mitochondrial alpha carbonic anhydrase inhibitors as potential leads for anti-obesity drug development. Daru 2024; 32:907-924. [PMID: 39276204 PMCID: PMC11554982 DOI: 10.1007/s40199-024-00535-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 08/11/2024] [Indexed: 09/16/2024] Open
Abstract
BACKGROUND Obesity has emerged as a major health challenge globally in the last two decades. Dysregulated fatty acid metabolism and de novo lipogenesis are prime causes for obesity development which ultimately trigger other co-morbid pathological conditions thereby risking life longevity. Fatty acid metabolism and de novo lipogenesis involve several biochemical steps both in cytosol and mitochondria. Reportedly, the high catalytically active mitochondrial carbonic anhydrases (CAVA/CAVB) regulate the intercellular depot of bicarbonate ions and catalyze the rapid carboxylation of pyruvate and acetyl-co-A to acetyl-co-A and malonate respectively, which are the precursors of fatty acid synthesis and lipogenesis. Several in vitro and in vivo investigations indicate inhibition of mitochondrial carbonic anhydrase isoforms interfere in the functioning of pyruvate, fatty acid and succinate pathways. Targeting of mitochondrial carbonic anhydrase isoforms (CAVA/CAVB) could thereby modulate gluconeogenetic as well as lipogenetic pathways and pave way for designing of novel leads in the development pipeline of anti-obesity medications. METHODS The present review unveils a diverse chemical space including synthetic sulphonamides, sulphamates, sulfamides and many natural bioactive molecules which selectively inhibit the mitochondrial isoform CAVA/CAVB with an emphasis on major state-of-art drug design strategies. RESULTS More than 60% similarity in the structural framework of the carbonic anhydrase isoforms has converged the drug design methods towards the development of isoform selective chemotypes. While the benzene sulphonamide derivatives selectively inhibit CAVA/CAVB in low nanomolar ranges depending on the substitutions on the phenyl ring, the sulpamates and sulpamides potently inhibit CAVB. The virtual screening and drug repurposing methods have also explored many non-sulphonamide chemical scaffolds which can potently inhibit CAVA. CONCLUSION The review could pave way for the development of novel and effective anti-obesity drugs which can modulate the energy metabolism.
Collapse
Affiliation(s)
- Ipsa Padhy
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, 751003, Odisha, India
| | - Tripti Sharma
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, 751003, Odisha, India.
- School of Pharmaceutical Sciences and Research, Chhatrapati Shivaji Maharaj University, Panvel, Navi Mumbai, Maharashtra, 410221, India.
| | - Biswajit Banerjee
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, 751003, Odisha, India
| | - Sujata Mohapatra
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, 751003, Odisha, India
| | - Chita R Sahoo
- ICMR-Regional Medical Research Centre, Department of Health Research, Ministry of Health & Family Welfare, Govt. of India, Bhubaneswar, India
- Central Research Laboratory, Institute of Medical Sciences and SUM Hospital, Siksha 'O' Anusandhan Deemed to be University, Bhubaneswar, 751003, Odisha, India
| | - Rabindra Nath Padhy
- Central Research Laboratory, Institute of Medical Sciences and SUM Hospital, Siksha 'O' Anusandhan Deemed to be University, Bhubaneswar, 751003, Odisha, India
| |
Collapse
|
2
|
Xu S, Deng Y, Li C, Hu Y, Zhang Q, Zhuang B, Mosongo I, Jiang J, Yang J, Hu K. Metabolomics and molecular docking-directed anti-obesity study of the ethanol extract from Gynostemma pentaphyllum (Thunb.) Makino. JOURNAL OF ETHNOPHARMACOLOGY 2024; 334:118577. [PMID: 39019414 DOI: 10.1016/j.jep.2024.118577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/23/2024] [Accepted: 07/11/2024] [Indexed: 07/19/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Gynostemma pentaphyllum (Thunb.) Makino (G. pentaphyllum) is an oriental herb documented to treat many diseases, including obesity, hyperlipidemia, metabolic syndromes and aging. However, the anti-obesity mechanism of G. pentaphyllum remains poorly understood. AIM OF THE STUDY To reveal the anti-obesity mechanism of G. pentaphyllum Extract (GPE) in High-Fat Diet (HFD)-induced obese mice through untargeted metabolomics, Real-Time Quantitative PCR (RT-qPCR), and immunohistochemical experiments. Additionally, to tentatively identify the active constituents through LC-MS/MS and molecular docking approaches. MATERIALS AND METHODS GPE was prepared using ethanol reflux and purified by HP-20 macroporous resins. The components of GPE were identified by Liquid Chromatography- Mass Spectrometry (LC-MS) system. Forty-two C57BL/6 J mice were randomly and evenly divided into six groups, with seven mice in each group: the control group, obese model group, Beinaglutide group (positive control), and GPE low, medium, and high-dose groups (50 mg/kg, 100 mg/kg, and 200 mg/kg of 80% ethanol extract). Body weight, liver weight, blood glucose, blood lipids, and liver histopathological changes were assessed. Untargeted metabolomics was employed to characterize metabolic changes in obese mice after GPE treatment. The expression of genes related to differential metabolites was verified using Real-Time Quantitative PCR (RT-qPCR) and immunohistochemical experiments. The constituents with anti-obesity effects from GPE were tentatively identified through molecular docking approaches. RESULTS A total of 17 compounds were identified in GPE. GPE significantly lowered body weight, total cholesterol (TC) and low-density lipoprotein cholesterol (LDL-C) in obese mice and reduced liver weight and hepatic steatosis. Serum metabolomics identified 20 potential biomarkers associated with GPE treatment in obese mice, primarily related to tryptophan metabolism. GPE treatment downregulated the expression of Slc6a19 and Tph1 and upregulated Ucp1 expression. Molecular docking illustrated that compounds such as 20(R)-ginsenoside Rg3, Araliasaponin I, Damulin B, Gypenoside L, Oleifolioside B, and Tricin7-neohesperidoside identified in GPE exhibited favorable interaction with Tph1. CONCLUSION The extract of G. pentaphyllum can inhibit the absorption of tryptophan and its conversion to 5-HT through the Slc6a19/Tph1 pathway, upregulating the expression of Ucp1, thereby promoting thermogenesis in brown adipose tissue, facilitating weight loss, and mitigating symptoms of fatty liver. Triterpenoids such as Araliasaponin I, identified in GPE, could be the potential inhibitor of Tph1 and responsible for the anti-obesity activities.
Collapse
Affiliation(s)
- Suyun Xu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China; School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China.
| | - Yaling Deng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Caihong Li
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Youfan Hu
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Qi Zhang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Baojun Zhuang
- Yunnan Province Hospital of Traditional Chinese Medicine, Kunming, Yunnan, 650021, China
| | - Isidore Mosongo
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Jiaming Jiang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Jiahui Yang
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Kaifeng Hu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China; Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China.
| |
Collapse
|
3
|
Losada-Díaz F, Lizarazo-Bocanegra S, Perdomo-Lugo JJ, Gutiérrez-Romero SA, Correa-Osio I, Mendivil CO. Differential Efficacy of Weight Loss Interventions in Patients with Versus Without Diabetes. Diabetes Ther 2024; 15:2279-2291. [PMID: 39276293 PMCID: PMC11467141 DOI: 10.1007/s13300-024-01646-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 08/27/2024] [Indexed: 09/16/2024] Open
Abstract
Obesity is both a major risk factor for diabetes and a serious comorbidity of the condition. The twin epidemics of obesity and diabetes have spread globally over the past few decades. Treatment of obesity in patients with diabetes provides a host of clinical benefits that encompass virtually all body systems. Despite this, multiple lines of evidence suggest that the efficacy of most therapies for weight loss is significantly reduced among patients with diabetes. With this background, we summarize the evidence of a differential effect of lifestyle, pharmacological, and surgical treatments for obesity in patients with existing diabetes, and explore the potential mechanisms involved in this phenomenon. This information is then used to formulate strategies to improve weight loss outcomes for patients with diabetes.
Collapse
Affiliation(s)
| | | | | | | | | | - Carlos O Mendivil
- School of Medicine, Universidad de los Andes, Bogotá, Colombia.
- Section of Endocrinology, Department of Internal Medicine, Fundación Santa Fe de Bogotá, Bogotá, Colombia.
| |
Collapse
|
4
|
Pandey A, Ye Y, Wells CR, Singer BH, Galvani AP. Estimating the lives that could be saved by expanded access to weight-loss drugs. Proc Natl Acad Sci U S A 2024; 121:e2412872121. [PMID: 39405358 PMCID: PMC11513960 DOI: 10.1073/pnas.2412872121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 09/03/2024] [Indexed: 10/30/2024] Open
Abstract
Obesity is a major public health crisis in the United States (US) affecting 42% of the population, exacerbating a spectrum of other diseases and contributing significantly to morbidity and mortality overall. Recent advances in pharmaceutical interventions, particularly glucagon-like peptide-1 (GLP-1) receptor agonists (e.g., semaglutide, liraglutide) and dual gastric inhibitory polypeptide and GLP-1 receptor agonists (e.g., tirzepatide), have shown remarkable efficacy in weight-loss. However, limited access to these medications due to high costs and insurance coverage issues restricts their utility in mitigating the obesity epidemic. We quantify the annual mortality burden directly attributable to limited access to these medications in the US. By integrating hazard ratios of mortality across body mass index categories with current obesity prevalence data, combined with healthcare access, willingness to take the medication, and observed adherence to and efficacy of the medications, we estimate the impact of making these medications accessible to all those eligible. Specifically, we project that with expanded access, over 42,000 deaths could be averted annually, including more than 11,000 deaths among people with type 2 diabetes. These findings underscore the urgent need to address barriers to access and highlight the transformative public health impact that could be achieved by expanding access to these novel treatments.
Collapse
Affiliation(s)
- Abhishek Pandey
- Department of Epidemiology of Microbial Diseases, Center for Infectious Disease Modeling and Analysis, Yale School of Public Health, New Haven, CT06510
| | - Yang Ye
- Department of Epidemiology of Microbial Diseases, Center for Infectious Disease Modeling and Analysis, Yale School of Public Health, New Haven, CT06510
| | - Chad R. Wells
- Department of Epidemiology of Microbial Diseases, Center for Infectious Disease Modeling and Analysis, Yale School of Public Health, New Haven, CT06510
| | - Burton H. Singer
- Department of Mathematics, Emerging Pathogens Institute, University of Florida, Gainesville, FL32610
| | - Alison P. Galvani
- Department of Epidemiology of Microbial Diseases, Center for Infectious Disease Modeling and Analysis, Yale School of Public Health, New Haven, CT06510
| |
Collapse
|
5
|
Mandal AK, Sahoo A, Almalki WH, Almujri SS, Alhamyani A, Aodah A, Alruwaili NK, Abdul Kadir SZBS, Mandal RK, Almalki RA, Lal JA, Rahman M. Phytoactives for Obesity Management: Integrating Nanomedicine for Its Effective Delivery. Nutr Rev 2024:nuae136. [PMID: 39331591 DOI: 10.1093/nutrit/nuae136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2024] Open
Abstract
Obesity is a global health concern that requires urgent investigation and management. While synthetic anti-obesity medications are available, they come with a high risk of side-effects and variability in their efficacy. Therefore, natural compounds are increasingly being used to treat obesity worldwide. The proposition that naturally occurring compounds, mainly polyphenols, can be effective and safer for obesity management through food and nutrient fortification is strongly supported by extensive experimental research. This review focuses on the pathogenesis of obesity while reviewing the efficacy of an array of phytoactives used for obesity treatment. It details mechanisms such as enzyme inhibition, energy expenditure, appetite suppression, adipocyte differentiation, lipid metabolism, and modulation of gut microbiota. Comprehensive in vitro, in vivo, and preclinical studies underscore the promise of phytoactives in combating obesity, which have been thoroughly reviewed. However, challenges, such as poor bioavailability and metabolism, limit their potential. Advances in nanomedicines may overcome these constraints, offering a new avenue for enhancing the efficacy of phytoactives. Nonetheless, rigorous and targeted clinical trials are essential before applying phytoactives as a primary treatment for obesity.
Collapse
Affiliation(s)
- Ashok Kumar Mandal
- Department of Pharmacology, Faculty of Medicine, University Malaya, Kuala Lumpur 50603, Malaysia
| | - Ankit Sahoo
- Department of Pharmaceutical Sciences, Shalom Institute of Health & Allied Sciences, Sam Higginbottom University of Agriculture, Technology & Sciences, Allahabad, Uttar Pradesh 211007, India
| | - Waleed H Almalki
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Salem Salman Almujri
- Department of Pharmacology, College of Pharmacy, King Khalid University, Asir-Abha 61421, Saudi Arabia
| | - Abdulrahman Alhamyani
- Pharmaceuticals Chemistry Department, Faculty of Clinical Pharmacy, Al Baha University, Al Baha 65779, Saudi Arabia
| | - Alhussain Aodah
- College of Pharmacy, Prince Sattam bin Abdulaziz University, Alkharj 11942, Saudi Arabia
| | - Nabil K Alruwaili
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakakah 72341, Saudi Arabia
| | | | | | - Rami A Almalki
- Clinical Pharmacy Unit, Pharmaceutical Care Department, King Faisal Hospital, Makkah Health Cluster, Makkah 24382, Saudi Arabia
| | - Jonathan A Lal
- Department of Molecular and Cellular Engineering, Jacob Institute of Biotechnology and Bioengineering, Sam Higginbottom University of Agriculture, Technology, and Sciences, Prayagraj, Uttar Pradesh 211007, India
| | - Mahfoozur Rahman
- Department of Pharmaceutical Sciences, Shalom Institute of Health & Allied Sciences, Sam Higginbottom University of Agriculture, Technology & Sciences, Allahabad, Uttar Pradesh 211007, India
| |
Collapse
|
6
|
Yang M, Ge J, Liu YL, Wang HY, Wang ZH, Li DP, He R, Xie YY, Deng HY, Peng XM, Wang WS, Liu JD, Zhu ZZ, Yu XF, Maretich P, Kajimura S, Pan RP, Chen Y. Sortilin-mediated translocation of mitochondrial ACSL1 impairs adipocyte thermogenesis and energy expenditure in male mice. Nat Commun 2024; 15:7746. [PMID: 39232011 PMCID: PMC11374900 DOI: 10.1038/s41467-024-52218-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 08/30/2024] [Indexed: 09/06/2024] Open
Abstract
Beige fat activation involves a fuel switch to fatty acid oxidation following chronic cold adaptation. Mitochondrial acyl-CoA synthetase long-chain family member 1 (ACSL1) localizes in the mitochondria and plays a key role in fatty acid oxidation; however, the regulatory mechanism of the subcellular localization remains poorly understood. Here, we identify an endosomal trafficking component sortilin (encoded by Sort1) in adipose tissues that shows dynamic expression during beige fat activation and facilitates the translocation of ACSL1 from the mitochondria to the endolysosomal pathway for degradation. Depletion of sortilin in adipocytes results in an increase of mitochondrial ACSL1 and the activation of AMPK/PGC1α signaling, thereby activating beige fat and preventing high-fat diet (HFD)-induced obesity and insulin resistance. Collectively, our findings indicate that sortilin controls adipose tissue fatty acid oxidation by substrate fuel selection during beige fat activation and provides a potential targeted approach for the treatment of metabolic diseases.
Collapse
Affiliation(s)
- Min Yang
- Division of Endocrinology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Research Group of Endocrinology & Metabolism, Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Ge
- Division of Endocrinology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Research Group of Endocrinology & Metabolism, Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu-Lian Liu
- Division of Endocrinology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Research Group of Endocrinology & Metabolism, Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huan-Yu Wang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Research Group of Endocrinology & Metabolism, Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhi-Han Wang
- Division of Endocrinology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Research Group of Endocrinology & Metabolism, Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dan-Pei Li
- Division of Endocrinology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Research Group of Endocrinology & Metabolism, Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rui He
- Division of Endocrinology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Research Group of Endocrinology & Metabolism, Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu-Yu Xie
- Division of Endocrinology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Research Group of Endocrinology & Metabolism, Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hong-Yan Deng
- Division of Endocrinology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Research Group of Endocrinology & Metabolism, Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xue-Min Peng
- Division of Endocrinology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Research Group of Endocrinology & Metabolism, Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wen-She Wang
- Division of Endocrinology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Research Group of Endocrinology & Metabolism, Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jia-Dai Liu
- Division of Endocrinology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Research Group of Endocrinology & Metabolism, Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zeng-Zhe Zhu
- Division of Endocrinology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Research Group of Endocrinology & Metabolism, Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xue-Feng Yu
- Division of Endocrinology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Branch of National Clinical Research Center for Metabolic Diseases, Hubei, China
| | - Pema Maretich
- Research Laboratory of Electronics and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Shingo Kajimura
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Howard Hughes Medical Institute, Boston, MA, USA
| | - Ru-Ping Pan
- Research Group of Endocrinology & Metabolism, Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Nuclear Medicine, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Yong Chen
- Division of Endocrinology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Research Group of Endocrinology & Metabolism, Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Branch of National Clinical Research Center for Metabolic Diseases, Hubei, China.
| |
Collapse
|
7
|
Qiu H, Kan C, Han F, Luo Y, Qu N, Zhang K, Ma Y, Hou N, Wu D, Sun X, Shi J. Metagenomic and metabolomic analysis showing the adverse risk-benefit trade-off of the ketogenic diet. Lipids Health Dis 2024; 23:207. [PMID: 38951816 PMCID: PMC11218088 DOI: 10.1186/s12944-024-02198-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 06/26/2024] [Indexed: 07/03/2024] Open
Abstract
BACKGROUND Ketogenic diets are increasingly popular for addressing obesity, but their impacts on the gut microbiota and metabolome remain unclear. This paper aimed to investigate how a ketogenic diet affects intestinal microorganisms and metabolites in obesity. METHODS Male mice were provided with one of the following dietary regimens: normal chow, high-fat diet, ketogenic diet, or high-fat diet converted to ketogenic diet. Body weight and fat mass were measured weekly using high-precision electronic balances and minispec body composition analyzers. Metagenomics and non-targeted metabolomics data were used to analyze differences in intestinal contents. RESULTS Obese mice on the ketogenic diet exhibited notable improvements in weight and body fat. However, these were accompanied by a significant decrease in intestinal microbial diversity, as well as an increase in Firmicutes abundance and a 247% increase in the Firmicutes/Bacteroidetes ratio. The ketogenic diet also altered multiple metabolic pathways in the gut, including glucose, lipid, energy, carbohydrate, amino acid, ketone body, butanoate, and methane pathways, as well as bacterial secretion and colonization pathways. These changes were associated with increased intestinal inflammation and dysbiosis in obese mice. Furthermore, the ketogenic diet enhanced the secretion of bile and the synthesis of aminoglycoside antibiotics in obese mice, which may impair the gut microbiota and be associated with intestinal inflammation and immunity. CONCLUSIONS The study suggest that the ketogenic diet had an unfavorable risk-benefit trade-off and may compromise metabolic homeostasis in obese mice.
Collapse
Affiliation(s)
- Hongyan Qiu
- Department of Endocrinology and Metabolism, Affiliated Hospital of Shandong Second Medical University, Weifang, 261031, China
- Clinical Research Center, Affiliated Hospital of Shandong Second Medical University, Weifang, 261031, China
| | - Chengxia Kan
- Department of Endocrinology and Metabolism, Affiliated Hospital of Shandong Second Medical University, Weifang, 261031, China
- Clinical Research Center, Affiliated Hospital of Shandong Second Medical University, Weifang, 261031, China
| | - Fang Han
- Department of Endocrinology and Metabolism, Affiliated Hospital of Shandong Second Medical University, Weifang, 261031, China
- Clinical Research Center, Affiliated Hospital of Shandong Second Medical University, Weifang, 261031, China
- Department of Pathology, Affiliated Hospital of Shandong Second Medical University, Weifang, 261031, China
| | - Youhong Luo
- Department of Endocrinology and Metabolism, Affiliated Hospital of Shandong Second Medical University, Weifang, 261031, China
- Clinical Research Center, Affiliated Hospital of Shandong Second Medical University, Weifang, 261031, China
| | - Na Qu
- Department of Pathology, Affiliated Hospital of Shandong Second Medical University, Weifang, 261031, China
| | - Kexin Zhang
- Department of Endocrinology and Metabolism, Affiliated Hospital of Shandong Second Medical University, Weifang, 261031, China
- Clinical Research Center, Affiliated Hospital of Shandong Second Medical University, Weifang, 261031, China
| | - Yanhui Ma
- Department of Pathology, Affiliated Hospital of Shandong Second Medical University, Weifang, 261031, China
| | - Ningning Hou
- Department of Endocrinology and Metabolism, Affiliated Hospital of Shandong Second Medical University, Weifang, 261031, China
- Clinical Research Center, Affiliated Hospital of Shandong Second Medical University, Weifang, 261031, China
| | - Di Wu
- Department of Endocrinology and Metabolism, Affiliated Hospital of Shandong Second Medical University, Weifang, 261031, China
- Clinical Research Center, Affiliated Hospital of Shandong Second Medical University, Weifang, 261031, China
| | - Xiaodong Sun
- Department of Endocrinology and Metabolism, Affiliated Hospital of Shandong Second Medical University, Weifang, 261031, China.
- Clinical Research Center, Affiliated Hospital of Shandong Second Medical University, Weifang, 261031, China.
| | - Junfeng Shi
- Department of Endocrinology and Metabolism, Affiliated Hospital of Shandong Second Medical University, Weifang, 261031, China.
- Clinical Research Center, Affiliated Hospital of Shandong Second Medical University, Weifang, 261031, China.
| |
Collapse
|
8
|
Tham KW, Ahmed A, Boonyavarakul A, Garcia MM, Guajardo M, Hanipah ZN, Nam TQ, Nicodemus NA, Pathan F, Romano JGU, Soegonda S, Tolentino EL, Unnikrishnan AGAG, Oldfield BJ. ACTION APAC: Understanding perceptions, attitudes and behaviours in obesity and its management across south and Southeast Asia. Clin Obes 2024; 14:e12644. [PMID: 38332544 DOI: 10.1111/cob.12644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 12/27/2023] [Accepted: 12/31/2023] [Indexed: 02/10/2024]
Abstract
To identify perceptions and attitudes among people with obesity (PwO) and healthcare professionals (HCPs) toward obesity and its management in nine Asia-Pacific (APAC) countries, a cross-sectional online survey was conducted among adult PwO with self-reported body mass index of ≥25 kg/m2 (≥27 kg/m2, Singapore), and HCPs involved in direct patient care. In total, 10 429 PwO and 1901 HCPs completed the survey. Most PwO (68%) and HCPs (84%) agreed that obesity is a disease; however, a significant proportion of PwO (63%) and HCPs (41%) believed weight loss was the complete responsibility of PwO and only 43% of PwO discussed weight with an HCP in the prior 5 years. Most respondents acknowledged that weight loss would be extremely beneficial to PwO's overall health (PwO 76%, HCPs 85%), although nearly half (45%) of PwO misperceived themselves as overweight or of normal weight. Obesity was perceived by PwO (58%) and HCPs (53%) to negatively impact PwO forming romantic relationships. HCPs cited PwOs' lack of interest (41%) and poor motivation (37%) to lose weight as top reasons for not discussing weight. Most PwO (65%) preferred lifestyle changes over medications to lose weight. PwO and HCPs agreed that lack of exercise and unhealthy eating habits were the major barriers to weight loss. Our data highlights a discordance between the understanding of obesity as a disease and the actual behaviour and preferred approaches to manage it among PwO and HCPs. The study addresses a need to align these gaps to deliver optimal care for PwO.
Collapse
Affiliation(s)
- Kwang Wei Tham
- Endocrinology Services, Department of Medicine, Woodlands Health, National Healthcare Group, Singapore, Singapore
| | - Asma Ahmed
- The Aga Khan University Hospital, Karachi, Pakistan
| | - Apussanee Boonyavarakul
- Division of Endocrinology, Department of Internal Medicine, Phramongkutklao Hospital, Thailand
| | | | | | - Zubaidah Nor Hanipah
- Department of Surgery, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia
| | | | | | - Faruque Pathan
- Department of Endocrinology Ibrahim Memorial Diabetes Center, Dhaka, Bangladesh
| | | | - Sidartawan Soegonda
- Indonesia Diabetes Institute, Diabetes Connection & Care, Eka Hospitals, Jakarta, Indonesia
| | - Edgardo L Tolentino
- Ateneo School of Medicine and Public Health, Pasig, Metro Manila, Philippines
| | | | - Brian J Oldfield
- Department of Physiology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Australia
| |
Collapse
|
9
|
Simon SL, Phimphasone-Brady P, McKenney KM, Gulley LD, Bonny AE, Moore JM, Torres-Zegarra C, Cree MG. Comprehensive transition of care for polycystic ovary syndrome from adolescence to adulthood. THE LANCET. CHILD & ADOLESCENT HEALTH 2024; 8:443-455. [PMID: 38552655 DOI: 10.1016/s2352-4642(24)00019-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 01/15/2024] [Accepted: 01/18/2024] [Indexed: 05/18/2024]
Abstract
Polycystic ovary syndrome (PCOS) is a lifelong chronic condition that affects one in ten females and can be diagnosed in adolescence. As adolescents with PCOS transition to adulthood, counselling for lifestyle management and mental health concerns often transition from involving the family unit to increasingly individual-focused approaches. PCOS is associated with a large range of comorbidities affecting reproductive, metabolic, dermatological, and psychological health. The diagnosis and comorbidities of PCOS are influenced by pubertal hormones and need to be reassessed continuously to ensure that treatment remains appropriate for age and development. As young patients grow up, personal concerns often change, especially in relation to reproductive management. In this Review, we present prevalence rates, screening tools, and treatment recommendations for PCOS-related conditions, and we consider the diagnostic and clinical elements of optimal transition of care models that ensure continuity of comprehensive care for adolescents moving from the paediatric health-care system to the adult health-care system.
Collapse
Affiliation(s)
- Stacey L Simon
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Children's Hospital Colorado Aurora, CO, USA.
| | | | - Kathryn M McKenney
- Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Lauren D Gulley
- Children's Hospital Colorado Aurora, CO, USA; Department of Human Development and Family Studies, Colorado State University, Fort Collins, CO, USA
| | - Andrea E Bonny
- Department of Pediatrics, Nationwide Children's Hospital, Columbus, OH, USA
| | - Jaime M Moore
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Children's Hospital Colorado Aurora, CO, USA
| | - Carla Torres-Zegarra
- Department of Dermatology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Children's Hospital Colorado Aurora, CO, USA
| | - Melanie G Cree
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Ludeman Center for Women's Health Research, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Children's Hospital Colorado Aurora, CO, USA
| |
Collapse
|
10
|
Argyrakopoulou G, Gitsi E, Konstantinidou SK, Kokkinos A. The effect of obesity pharmacotherapy on body composition, including muscle mass. Int J Obes (Lond) 2024:10.1038/s41366-024-01533-3. [PMID: 38745020 DOI: 10.1038/s41366-024-01533-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 04/18/2024] [Accepted: 04/26/2024] [Indexed: 05/16/2024]
Abstract
Obesity pharmacotherapy represents a promising approach to treating obesity and may provide benefits beyond weight loss alone. Maintaining or even increasing muscle mass during weight loss is important to overall health, metabolic function and weight loss maintenance. Drugs such as liraglutide, semaglutide, tirzepatide, and naltrexone/bupropion have shown significant weight loss effects, and emerging evidence suggests they may also have effects on body composition, particularly a positive influence on muscle mass. However, further research is needed to fully understand the mechanism of action of these drugs and their effects on muscle mass. Clinicians should consider these factors when developing an obesity treatment plan for an individual patient.
Collapse
Affiliation(s)
| | - Evdoxia Gitsi
- Diabetes and Obesity Unit, Athens Medical Center, 15125, Athens, Greece
| | - Sofia K Konstantinidou
- Diabetes and Obesity Unit, Athens Medical Center, 15125, Athens, Greece
- First Department of Propaedeutic Internal Medicine, Medical School, National and Kapodistrian University of Athens, Laiko General Hospital, Athens, Greece
| | - Alexander Kokkinos
- First Department of Propaedeutic Internal Medicine, Medical School, National and Kapodistrian University of Athens, Laiko General Hospital, Athens, Greece
| |
Collapse
|
11
|
Kottekad S, Roy S, Dandamudi U. A computational study to probe the binding aspects of potent polyphenolic inhibitors of pancreatic lipase. J Biomol Struct Dyn 2024; 42:3472-3491. [PMID: 37199285 DOI: 10.1080/07391102.2023.2212795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 05/07/2023] [Indexed: 05/19/2023]
Abstract
Pancreatic lipase (PL) is a keen target for anti-obesity therapy that reduces dietary fat absorption. Here, we investigated the binding patterns of 220 PL inhibitors having experimental IC50 values, using molecular docking and binding energy calculations. Screening of these compounds illustrated most of them bound at the catalytic site (S1-S2 channel) and a few compounds are at the non-catalytic site (S2-S3 channel/S1-S3 channel) of PL. This binding pattern could be due to structural uniqueness or bias in conformational search. A strong correlation of pIC50 values with SP/XP docking scores, binding energies (ΔGMMGBSA) assured the binding poses are more true positives. Further, understanding of each class and subclasses of polyphenols indicated tannins preferred non-catalytic site wherein binding energies are underestimated due to huge desolvation energy. In contrast, most of the flavonoids and furan-flavonoids have good binding energies due to strong interactions with catalytic residues. While scoring functions limited the understanding of sub-classes of flavonoids. Hence, focused on 55 potent PL inhibitors of IC50 < 5 µM for better in vivo efficacy. The prediction of bioactivity, drug-likeness properties, led to 14 bioactive compounds. The low root mean square deviation (0.1-0.2 nm) of these potent flavonoids and non-flavonoid/non-polyphenols PL-inhibitor complexes during 100 ns molecular dynamics runs (MD) as well as binding energies obtained from both MD and well-tempered metadynamics, support strong binding to catalytic site. Based on the bioactivity, ADMET properties, and binding affinity data of MD and wt-metaD of potent PL-inhibitors suggests Epiafzelechin 3-O-gallate, Sanggenon C, and Sanggenofuran A shall be promising inhibitors at in vivo conditions.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Sanjay Kottekad
- Department of Food Safety and Analytical Quality Control Laboratory, Central Food Technological Research Institute, Council of Scientific and Industrial Research, Mysuru, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Sudip Roy
- Prescience Insilico Private Limited, Bangalore, India
| | - Usharani Dandamudi
- Department of Food Safety and Analytical Quality Control Laboratory, Central Food Technological Research Institute, Council of Scientific and Industrial Research, Mysuru, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
12
|
Or Unger Freinkel K, Yehoshua I, Cohen B, Peleg R, Adler L. Attitudes and knowledge about weight management among primary care physicians in Israel: a cross-sectional study. BMC PRIMARY CARE 2024; 25:92. [PMID: 38504167 PMCID: PMC10949690 DOI: 10.1186/s12875-024-02324-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 02/27/2024] [Indexed: 03/21/2024]
Abstract
BACKGROUND The prevalence of obesity has been increasing worldwide and is associated with increased risk of morbidity and mortality. Weight management can reduce the risk of complications and improve the quality of life of patients with obesity. This study explored primary care physicians' (PCPs') attitudes and knowledge about weight management. METHODS An anonymous questionnaire was distributed to 400 PCPs between 2020 and 2021. The survey included questions on treatment approaches (pharmaceutical and surgical) and items regarding the respondents' demographic characteristics. We compared PCPs with low or high proactivity toward weight management. We explored attitudes and knowledge with the chi-square test for categorical variables or the Mann-Whitney test for continuous variables. RESULTS A total of 145 PCPs answered our survey (a response rate of 36.25%). More than half (53.8%) of the respondents showed low proactivity toward weight management in their practice. Proactive respondents were more likely to believe that pharmaceutical treatment effectively reduces weight and offered medical and surgical treatment options more frequently to their patients. Lack of knowledge was the most predominant reason for PCPs avoiding offering treatment to their patients, especially in less proactive PCPs (33.3% vs. 5.3%, p-value < 0.001). When comparing different pharmaceutical options, 46.6% of PCPs report they tend to prescribe liraglutide to their patients compared with only 11% who prescribe orlistat and 10.3% who prescribe phentermine (p-value < 0.001). CONCLUSIONS Many PCPs still do not actively provide obesity treatment despite improved awareness and therapeutic options. PCPs' proactivity and attitudes are vital to this effort.
Collapse
Affiliation(s)
| | - Ilan Yehoshua
- Ben-Gurion University of the Negev, Beer-Sheva, Israel
- Department of Family Medicine, Maccabi Healthcare Services, Tel Aviv University, Hamered 27 St., Tel Aviv, Israel
| | - Bar Cohen
- Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Roni Peleg
- Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Limor Adler
- Department of Family Medicine, Maccabi Healthcare Services, Tel Aviv University, Hamered 27 St., Tel Aviv, Israel.
- Department of Family Medicine, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
13
|
Zhou XT, Zhu AQ, Li XM, Sun LY, Yan JG, Luo N, Chen SS, Huang Z, Mao XL, Li KP. Mulberry and Hippophae-based solid beverage promotes weight loss in rats by antagonizing white adipose tissue PPARγ and FGFR1 signaling. Front Endocrinol (Lausanne) 2024; 15:1344262. [PMID: 38559696 PMCID: PMC10978776 DOI: 10.3389/fendo.2024.1344262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 02/26/2024] [Indexed: 04/04/2024] Open
Abstract
Obesity, a multifactorial disease with many complications, has become a global epidemic. Weight management, including dietary supplementation, has been confirmed to provide relevant health benefits. However, experimental evidence and mechanistic elucidation of dietary supplements in this regard are limited. Here, the weight loss efficacy of MHP, a commercial solid beverage consisting of mulberry leaf aqueous extract and Hippophae protein peptides, was evaluated in a high-fat high-fructose (HFF) diet-induced rat model of obesity. Body component analysis and histopathologic examination confirmed that MHP was effective to facilitate weight loss and adiposity decrease. Pathway enrichment analysis with differential metabolites generated by serum metabolomic profiling suggests that PPAR signal pathway was significantly altered when the rats were challenged by HFF diet but it was rectified after MHP intervention. RNA-Seq based transcriptome data also indicates that MHP intervention rectified the alterations of white adipose tissue mRNA expressions in HFF-induced obese rats. Integrated omics reveals that the efficacy of MHP against obesogenic adipogenesis was potentially associated with its regulation of PPARγ and FGFR1 signaling pathway. Collectively, our findings suggest that MHP could improve obesity, providing an insight into the use of MHP in body weight management.
Collapse
Affiliation(s)
- Xiao-Ting Zhou
- Key Laboratory of Glucolipid Metabolic Disorders, Ministry of Education of China; Institute of Chinese Medicinal Sciences, Guangdong Pharmaceutical University, Guangzhou, China
| | - An-Qi Zhu
- Key Laboratory of Glucolipid Metabolic Disorders, Ministry of Education of China; Institute of Chinese Medicinal Sciences, Guangdong Pharmaceutical University, Guangzhou, China
| | - Xiao-Min Li
- Research & Development Division, Perfect Life & Health Institute, Zhongshan, China
- Research & Development Division, Perfect (Guangdong) Co., Ltd., Zhongshan, China
| | - Ling-Yue Sun
- Key Laboratory of Glucolipid Metabolic Disorders, Ministry of Education of China; Institute of Chinese Medicinal Sciences, Guangdong Pharmaceutical University, Guangzhou, China
| | - Jian-Gang Yan
- Research & Development Division, Perfect Life & Health Institute, Zhongshan, China
- Research & Development Division, Perfect (Guangdong) Co., Ltd., Zhongshan, China
| | - Nin Luo
- Key Laboratory of Glucolipid Metabolic Disorders, Ministry of Education of China; Institute of Chinese Medicinal Sciences, Guangdong Pharmaceutical University, Guangzhou, China
| | - Shi-Sheng Chen
- Research & Development Division, Perfect Life & Health Institute, Zhongshan, China
- Research & Development Division, Perfect (Guangdong) Co., Ltd., Zhongshan, China
| | - Zebo Huang
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Xin-Liang Mao
- Research & Development Division, Perfect Life & Health Institute, Zhongshan, China
- Research & Development Division, Perfect (Guangdong) Co., Ltd., Zhongshan, China
| | - Kun-Ping Li
- Key Laboratory of Glucolipid Metabolic Disorders, Ministry of Education of China; Institute of Chinese Medicinal Sciences, Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|
14
|
Li X, Lin J, Hu C, Liu B, Li F, Li J, Zeng X, Li S, Mi Y, Yin X, Xu S. Effect and safety of electroacupuncture on weight loss in obese patients with pre-diabetes: study protocol of a randomised controlled trial. BMJ Open 2024; 14:e075873. [PMID: 38458786 PMCID: PMC10928781 DOI: 10.1136/bmjopen-2023-075873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 02/21/2024] [Indexed: 03/10/2024] Open
Abstract
INTRODUCTION Obesity has been identified as a significant risk factor for several chronic conditions, including diabetes, tumours and cardiovascular disease, and has been associated with increased mortality rates. Despite the well-established clinical practice of electroacupuncture (EA) as a potential treatment option for obesity, its efficacy remains questionable, primarily due to the paucity of empirical evidence supporting its therapeutic benefits. METHODS AND ANALYSIS The present study aims to investigate the efficacy and safety of EA for weight loss in obese individuals with pre-diabetes, using a randomised, placebo-controlled clinical trial design. A total of 256 eligible patients will be randomly assigned to one of two groups: EA (comprising EA treatment with health education) or superficial acupuncture (SA) (comprising SA treatment with health education). The intervention will be administered three times per week for the initial 12 weeks, two times per week for the subsequent 8 weeks and one time per week for the final 4 weeks, with a 24-week follow-up period. The primary outcome measure will be the percentage of patients who achieve a reduction of 10% or more in their body weight at week 24. Secondary outcome measures will include changes in body weight and body mass index, blood test results, data collected by the body composition analyser, size of adipose tissue scanned by MRI of the abdomen and the Impact of Weight on Quality of Life, the 21-item Three-Factor Eating Questionnaire-Revised and the Food Craving Questionnaire-Trait. The Treatment Emergent Symptom Scale will be employed to monitor every adverse reaction from baseline to follow-up. ETHICS AND DISSEMINATION This trial has received ethical clearance from the Ethics Committee of Shanghai Municipal Hospital of Traditional Chinese Medicine under the registration number 2021SHL-KY-74. All participants will provide their written informed consent prior to their enrolment. The findings of this investigation will be disseminated through peer-reviewed publications and scholarly conferences. TRIAL REGISTRATION NUMBER NCT05237089.
Collapse
Affiliation(s)
- Xiying Li
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Jingjing Lin
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Chenfang Hu
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Baojun Liu
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Feng Li
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
- Shanghai Research Institute of Acupuncture and Meridian, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Jiaying Li
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Xiaoling Zeng
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Shanshan Li
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Yiqun Mi
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Xuan Yin
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Shifen Xu
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| |
Collapse
|
15
|
Ni J, Zhang X, Huang H, Ni Z, Luo J, Zhong Y, Hui M, Liu Z, Qian J, Zhang Q. Cyy-287, a novel pyrimidine-2,4-diamine derivative, efficiently mitigates inflammatory responses, fibrosis, and lipid synthesis in obesity-induced cardiac and hepatic dysfunction. PeerJ 2024; 12:e17009. [PMID: 38436035 PMCID: PMC10909366 DOI: 10.7717/peerj.17009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 02/05/2024] [Indexed: 03/05/2024] Open
Abstract
Background Inflammation and metabolic disorders are important factors in the occurrence and development of obesity complications. In this study, we investigated the protective effect and underlying mechanism of a novel pyrimidine-2,4-diamine derivative, Cyy-287, on mice fed a high-fat diet (HFD). Methods The mice were randomly separated into four groups (n ≥ 7): control (regular diet), HFD, HFD with Cyy-287 (5 mg/kg), and HFD with Cyy-287 (20 mg/kg) following HFD feeding for 10 weeks. After a 10-week administration, ALT and AST enzymes, echocardiography, immunohistochemical (IHC), Western blot (WB), Masson and Sirius Red staining were used to evaluate functional and morphological changes to the heart and liver. Microsomes from the mouse liver were extracted to quantify the total amount of CYP450 enzymes after drug treatment. Results Cyy-287 decreased the levels of serum glucose, LDL, TC, ALT, and AST activities in HFD-treated mice. However, Cyy-287 administration increased ejection fraction (EF) and fractional shortening (FS) index of the heart. Cyy-287 inhibited histopathological changes in the heart and liver; decreased inflammatory activity; significantly diminished p38 mitogen-activated protein kinase (MAPK), the nuclear factor-kappa B (NF-κB) axis, and sterol regulatory element-binding protein-1c (SREBP-1c); and upregulated the AMP-activated protein kinase (AMPK) pathway in HFD-treated mice. Cyy-287 restored the content of hepatic CYP450 enzymes. Conclusion These findings demonstrated that Cyy-287 protected heart and liver cells from obesity-induced damage by inhibiting inflammation, fibrosis, and lipid synthesis.
Collapse
Affiliation(s)
- Jinhuan Ni
- Institute of Molecular Toxicology and Pharmacology, Wenzhou Medical University, Wenzhou, China
| | - Xiaodan Zhang
- Institute of Molecular Toxicology and Pharmacology, Wenzhou Medical University, Wenzhou, China
| | - Huijing Huang
- Institute of Molecular Toxicology and Pharmacology, Wenzhou Medical University, Wenzhou, China
| | - Zefeng Ni
- Chemical Biology Research Center at School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Jianchao Luo
- Institute of Molecular Toxicology and Pharmacology, Wenzhou Medical University, Wenzhou, China
| | - Yunshan Zhong
- Institute of Molecular Toxicology and Pharmacology, Wenzhou Medical University, Wenzhou, China
| | - Min Hui
- Institute of Molecular Toxicology and Pharmacology, Wenzhou Medical University, Wenzhou, China
| | - Zhiguo Liu
- Chemical Biology Research Center at School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Jianchang Qian
- Institute of Molecular Toxicology and Pharmacology, Wenzhou Medical University, Wenzhou, China
| | - Qianwen Zhang
- Institute of Molecular Toxicology and Pharmacology, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
16
|
Zhao XY, Wang JQ, Neely GG, Shi YC, Wang QP. Natural compounds as obesity pharmacotherapies. Phytother Res 2024; 38:797-838. [PMID: 38083970 DOI: 10.1002/ptr.8083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 10/20/2023] [Accepted: 11/22/2023] [Indexed: 02/15/2024]
Abstract
Obesity has become a serious global public health problem, affecting over 988 million people worldwide. Nevertheless, current pharmacotherapies have proven inadequate. Natural compounds have garnered significant attention due to their potential antiobesity effects. Over the past three decades, ca. 50 natural compounds have been evaluated for the preventive and/or therapeutic effects on obesity in animals and humans. However, variations in the antiobesity efficacies among these natural compounds have been substantial, owing to differences in experimental designs, including variations in animal models, dosages, treatment durations, and administration methods. The feasibility of employing these natural compounds as pharmacotherapies for obesity remained uncertain. In this review, we systematically summarized the antiobesity efficacy and mechanisms of action of each natural compound in animal models. This comprehensive review furnishes valuable insights for the development of antiobesity medications based on natural compounds.
Collapse
Affiliation(s)
- Xin-Yuan Zhao
- Laboratory of Metabolism and Aging, School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Ji-Qiu Wang
- Department of Endocrinology and Metabolism, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - G Gregory Neely
- The Dr. John and Anne Chong Laboratory for Functional Genomics, Charles Perkins Centre and School of Life & Environmental Sciences, The University of Sydney, Sydney, NSW, Australia
| | - Yan-Chuan Shi
- Diabetes and Metabolism Division, Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW, Australia
- St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Qiao-Ping Wang
- Laboratory of Metabolism and Aging, School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- Medical Center for Comprehensive Weight Control, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Diabetology, Guangzhou Key Laboratory of Mechanistic and Translational Obesity Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
17
|
Lu Y, Luo Z, Zhou H, Shi Y, Zhu Y, Guo X, Huang J, Zhang J, Liu X, Wang S, Shan X, Yin H, Du Y, Li Q, You J, Luo L. A nanoemulsion targeting adipose hypertrophy and hyperplasia shows anti-obesity efficiency in female mice. Nat Commun 2024; 15:72. [PMID: 38167723 PMCID: PMC10761889 DOI: 10.1038/s41467-023-44416-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 12/12/2023] [Indexed: 01/05/2024] Open
Abstract
Obesity often leads to severe medical complications. However, existing FDA-approved medications to combat obesity have limited effectiveness in reducing adiposity and often cause side effects. These medications primarily act on the central nervous system or disrupt fat absorption through the gastrointestinal tract. Adipose tissue enlargement involves adipose hyperplasia and hypertrophy, both of which correlate with increased reactive oxygen species (ROS) and hyperactivated X-box binding protein 1 (XBP1) in (pre)adipocytes. In this study, we demonstrate that KT-NE, a nanoemulsion loaded with the XBP1 inhibitor KIRA6 and α-Tocopherol, simultaneously alleviates aberrant endoplasmic reticulum stress and oxidative stress in (pre)adipocytes. As a result, KT-NE significantly inhibits abnormal adipogenic differentiation, reduces lipid droplet accumulation, restricts lipid droplet transfer, impedes obesity progression, and lowers the risk of obesity-associated non-alcoholic fatty liver disease in female mice with obesity. Furthermore, diverse administration routes of KT-NE impact its in vivo biodistribution and contribute to localized and/or systemic anti-obesity effectiveness.
Collapse
Affiliation(s)
- Yichao Lu
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, PR China
| | - Zhenyu Luo
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, PR China
| | - Huanli Zhou
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, PR China
| | - Yingying Shi
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, PR China
| | - Ying Zhu
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, PR China
| | - Xuemeng Guo
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, PR China
| | - Jiaxin Huang
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, PR China
| | - Junlei Zhang
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, PR China
| | - Xu Liu
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, PR China
| | - Sijie Wang
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, PR China
| | - Xinyu Shan
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, PR China
| | - Hang Yin
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, PR China
| | - Yongzhong Du
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, PR China
| | - Qingpo Li
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, PR China.
| | - Jian You
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, PR China.
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, 79 Qingchun Road, Shangcheng District, Hangzhou, Zhejiang, 310006, PR China.
- The First Affiliated Hospital, College of Medicine, Zhejiang University, 79 QingChun Road, Hangzhou, Zhejiang, 310000, PR China.
- Jinhua Institute of Zhejiang University, 498 Yiwu Street, Jinhua, Zhejiang, 321299, PR China.
| | - Lihua Luo
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, PR China.
| |
Collapse
|
18
|
Kang Y, Ren P, Shen X, Kuang X, Yang X, Liu H, Yan H, Yang H, Kang X, Ding Z, Luo X, Ma J, Yang Y, Fan W. A Newly Synbiotic Combination Alleviates Obesity by Modulating the Gut Microbiota-Fat Axis and Inhibiting the Hepatic TLR4/NF-κB Signaling Pathway. Mol Nutr Food Res 2023; 67:e2300141. [PMID: 37594720 DOI: 10.1002/mnfr.202300141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 06/11/2023] [Indexed: 08/19/2023]
Abstract
SCOPE Obesity has been recognized as a worldwide public health crisis, this is accompanied by dysregulation of the intestinal microbiota and upregulation of liver steatosis and adipose inflammation. Synbiotic as a novel alternative therapy for obesity have recently gained much attention. METHODS This study innovatively research the anti-obesity properties of a newly synbiotic composed of Lactobacillus acidophilus, Bifidobacterium infantis and konjac glucomannan oligosaccharides. RESULTS The synbiotic treatment can reduce body weight, fat mass, blood sugar, liver steatosis and adipose inflammation in obesity mice fed by high-fat diet (HFD). Meanwhile, synbiotic treatment activated brown adipose tissue and improve energy, glucose and lipid metabolism. In addition, synbiotic treatment not solely enhanced the protection of intestinal barrier, but also ameliorated gut microbiota dysbiosis directly by enhancing beneficial microbes and reducing potentially harmful bacteria. Furthermore, the microbiome phenotype and functional prediction showed that synbiotic treatment can improve the gut microbiota functions involving inflammatory state, immune response, metabolism and pathopoiesia. CONCLUSION The synbiotic may be an effective candidate treatment strategy for the clinical prevention and treatment of obesity and other associated metabolic diseases such as hyperlipidemia, nonalcoholic fatty liver diseases by alleviating inflammatory response, regulating energy metabolism and maintaining the balance of intestinal microecology.
Collapse
Affiliation(s)
- Yongbo Kang
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, Shanxi, 030001, China
| | - Peng Ren
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, Shanxi, 030001, China
| | - Xiaorong Shen
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, Shanxi, 030001, China
| | - Xiaoyu Kuang
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, Shanxi, 030001, China
| | - Xiaodan Yang
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, Shanxi, 030001, China
| | - Haixia Liu
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, Shanxi, 030001, China
| | - Huan Yan
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, Shanxi, 030001, China
| | - Hao Yang
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, Shanxi, 030001, China
| | - Xing Kang
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, Shanxi, 030001, China
| | - Zeyuan Ding
- Laboratory of Morphology, Shanxi Medical University, Taiyuan, Shanxi, 030001, China
| | - Xuguang Luo
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, Shanxi, 030001, China
| | - Jieqiong Ma
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, Shanxi, 030001, China
| | - Ying Yang
- Department of Endocrinology, Affiliated Hospital of Yunnan University, Kunming, Yunnan, 650021, China
| | - Weiping Fan
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, Shanxi, 030001, China
| |
Collapse
|
19
|
Ashour MM, Mabrouk M, Aboelnasr MA, Beherei HH, Tohamy KM, Das DB. Anti-Obesity Drug Delivery Systems: Recent Progress and Challenges. Pharmaceutics 2023; 15:2635. [PMID: 38004612 PMCID: PMC10674714 DOI: 10.3390/pharmaceutics15112635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 11/13/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
Obesity has reached an epidemic proportion in the last thirty years, and it is recognized as a major health issue in modern society now with the possibility of serious social and economic consequences. By the year 2030, nearly 60% of the global population may be obese or overweight, which emphasizes a need for novel obesity treatments. Various traditional approaches, such as pharmacotherapy and bariatric surgery, have been utilized in clinical settings to treat obesity. However, these methods frequently show the possibility of side effects while remaining ineffective. There is, therefore, an urgent need for alternative obesity treatments with improved efficacy and specificity. Polymeric materials and chemical strategies are employed in emerging drug delivery systems (DDSs) to enhance therapy effectiveness and specificity by stabilizing and controlling the release of active molecules such as natural ingredients. Designing DDSs is currently a top priority research objective with an eye towards creating obesity treatment approaches. In reality, the most recent trends in the literature demonstrate that there are not enough in-depth reviews that emphasize the current knowledge based on the creation and design of DDSs for obesity treatment. It is also observed in the existing literature that a complex interplay of different physical and chemical parameters must be considered carefully to determine the effectiveness of the DDSs, including microneedles, for obesity treatment. Additionally, it is observed that these properties depend on how the DDS is synthesized. Although many studies are at the animal-study stage, the use of more advanced DDS techniques would significantly enhance the development of safe and efficient treatment approaches for obese people in the future. Considering these, this review provides an overview of the current anti-obesity treatment approaches as well as the conventional anti-obesity therapeutics. The article aims to conduct an in-depth discussion on the current trends in obesity treatment approaches. Filling in this knowledge gap will lead to a greater understanding of the safest ways to manage obesity.
Collapse
Affiliation(s)
- Mohamed M. Ashour
- School of Biotechnology, Badr University in Cairo, Badr City, Cairo 11829, Egypt;
| | - Mostafa Mabrouk
- Refractories, Ceramics and Building Materials Department, National Research Centre, 33 El Bohouth St., Dokki, Giza 12622, Egypt;
| | - Mohamed A. Aboelnasr
- Biophysics Branch, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt; (M.A.A.); (K.M.T.)
| | - Hanan H. Beherei
- Refractories, Ceramics and Building Materials Department, National Research Centre, 33 El Bohouth St., Dokki, Giza 12622, Egypt;
| | - Khairy M. Tohamy
- Biophysics Branch, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt; (M.A.A.); (K.M.T.)
| | - Diganta B. Das
- Department of Chemical Engineering, Loughborough University, Loughborough LE113TU, UK
| |
Collapse
|
20
|
Liao J, Liu Y, Yao Y, Zhang J, Wang H, Zhao J, Chen W, Lu W. Clostridium butyricum Strain CCFM1299 Reduces Obesity via Increasing Energy Expenditure and Modulating Host Bile Acid Metabolism. Nutrients 2023; 15:4339. [PMID: 37892414 PMCID: PMC10609426 DOI: 10.3390/nu15204339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 09/29/2023] [Accepted: 10/05/2023] [Indexed: 10/29/2023] Open
Abstract
Clostridium butyricum is a butyrate-producing microorganism which has beneficial effects on various diseases, including obesity. In our previous study, the anti-obesity Clostridium butyricum strain CCFM1299 (C20_1_1) was selected, but its anti-obesity mechanism was not clarified. Herein, CCFM1299 was orally administrated to high-fat-diet-treated C57BL/6J mice for 12 weeks to uncover the way the strain alleviates obesity. The results indicated that CCFM1299 alleviated obesity through increasing the energy expenditure and increasing the expression of genes related to thermogenesis in brown adipose tissue (BAT). Moreover, strain CCFM1299 could also affect the expression of immune-related genes in epididymal white adipose tissue (eWAT). This immunomodulatory effect might be achieved through its influence on the complement system, as the expression of the complement factor D (CFD) gene decreased significantly. From the view of metabolites, CCFM1299 administration increased the levels of ursodeoxycholic acid (UDCA) in feces and taurohyodeoxycholic acid (THDCA) in serum. Together, the anti-obesity potential of CCFM1299 might be attributed to the increase in energy consumption, the regulation of immune-related gene expression in eWAT, and the alteration of bile acid metabolism in the host. These provided new insights into the potential application of anti-obesity microbial preparations and postbiotics.
Collapse
Affiliation(s)
- Jingyi Liao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; (J.L.); (Y.L.); (Y.Y.); (J.Z.); (H.W.); (J.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yaoliang Liu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; (J.L.); (Y.L.); (Y.Y.); (J.Z.); (H.W.); (J.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Ye Yao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; (J.L.); (Y.L.); (Y.Y.); (J.Z.); (H.W.); (J.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Jie Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; (J.L.); (Y.L.); (Y.Y.); (J.Z.); (H.W.); (J.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Hongchao Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; (J.L.); (Y.L.); (Y.Y.); (J.Z.); (H.W.); (J.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; (J.L.); (Y.L.); (Y.Y.); (J.Z.); (H.W.); (J.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| | - Wei Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; (J.L.); (Y.L.); (Y.Y.); (J.Z.); (H.W.); (J.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| | - Wenwei Lu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; (J.L.); (Y.L.); (Y.Y.); (J.Z.); (H.W.); (J.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
- (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, China
| |
Collapse
|
21
|
Zapata RC, Zhang D, Yoon D, Nasamran CA, Chilin-Fuentes DR, Libster A, Chaudry BS, Lopez-Valencia M, Ponnalagu D, Singh H, Petrascheck M, Osborn O. Targeting Clic1 for the treatment of obesity: A novel therapeutic strategy to reduce food intake and body weight. Mol Metab 2023; 76:101794. [PMID: 37604246 PMCID: PMC10480059 DOI: 10.1016/j.molmet.2023.101794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 08/13/2023] [Accepted: 08/17/2023] [Indexed: 08/23/2023] Open
Abstract
OBJECTIVE Despite great advances in obesity therapeutics in recent years, there is still a need to identify additional therapeutic targets for the treatment of this disease. We previously discovered a signature of genes, including Chloride intracellular channel 1 (Clic1), whose expression was associated with drug-induced weight gain, and in these studies, we assess the effect of Clic1 inhibition on food intake and body weight in mice. METHODS We studied the impact of Clic1 inhibition in mouse models of binge-eating, diet-induced obese mice and genetic models of obesity (Magel2 KO mice). RESULTS Clic1 knockout (KO) mice ate significantly less and had a lower body weight than WT littermates when either fed chow or high fat diet. Furthermore, pharmacological inhibition of Clic1 in diet-induced obese mice resulted in suppression of food intake and promoted highly efficacious weight loss. Clic1 inhibition also reduced food intake in binge-eating models and hyperphagic Magel2 KO mice. We observed that chronic obesity resulted in a significant change in subcellular localization of Clic1 with an increased ratio of Clic1 in the membrane in the obese state. These observations provide a novel therapeutic strategy to block Clic1 translocation as a potential mechanism to reduce food intake and lower body weight. CONCLUSIONS These studies attribute a novel role of Clic1 as a driver of food intake and overconsumption. In summary, we have identified hypothalamic expression of Clic1 plays a key role in food intake, providing a novel therapeutic target to treat overconsumption that is the root cause of modern obesity.
Collapse
Affiliation(s)
- Rizaldy C Zapata
- Division of Endocrinology and Metabolism, School of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Dinghong Zhang
- Division of Endocrinology and Metabolism, School of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Dongmin Yoon
- Division of Endocrinology and Metabolism, School of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Chanond A Nasamran
- Center for Computational Biology & Bioinformatics, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Daisy R Chilin-Fuentes
- Center for Computational Biology & Bioinformatics, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Avraham Libster
- Division of Endocrinology and Metabolism, School of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Besma S Chaudry
- Division of Endocrinology and Metabolism, School of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Mariela Lopez-Valencia
- Division of Endocrinology and Metabolism, School of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Devasena Ponnalagu
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, USA; Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA
| | - Harpreet Singh
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, USA; Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA
| | - Michael Petrascheck
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA; Department of Neuroscience, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Olivia Osborn
- Division of Endocrinology and Metabolism, School of Medicine, University of California San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
22
|
Al-Sabah S, Jamal MH, Al-Khaledi G, Dsouza C, AlOtaibi F, Al-Ali W, Cherian P, Al-Khairi I, Ali H, Abu-Farha M, Abubaker J, Al-Mulla F. Increased Glucagon Immunoreactivity in a Rat Model of Diet-induced Obesity following Sleeve Gastrectomy. Med Princ Pract 2023; 32:000533746. [PMID: 37634505 PMCID: PMC10659591 DOI: 10.1159/000533746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 08/22/2023] [Indexed: 08/29/2023] Open
Abstract
OBJECTIVE Bariatric surgery is currently the most effective treatment for obesity, and procedures such as Roux-en Y gastric bypass and sleeve gastrectomy (SG) also result in rapid improvements in insulin sensitivity and glucose tolerance. In addition, these procedures cause changes in the secretion of various gut-derived hormones. The role these hormones play in the mechanism of the beneficial effects of bariatric surgery is still debated, but nonetheless, their importance provides inspiration for novel obesity-targeted pharmacotherapies. METHODS Male Sprague Dawley rats were fed either regular chow or a cafeteria diet to induce obesity. A sub-group of the obese animals then underwent either sham surgery or SG. RESULTS Following a 4-week recovery period, SG rats weighed significantly less than obese or sham-operated rats. Improvements in glucose tolerance and insulin sensitivity also occurred in the SG group, but these were not always statistically significant. We measured the intracellular lipid content of liver samples and found that obese rats showed signs of non-alcoholic fatty liver disease, which were significantly ameliorated by SG. There were significantly higher glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) responses to a standard mixed meal in the SG group, as well as paradoxically higher glucagon secretion. CONCLUSION These data highlight the need for more specific anti-glucagon antibodies to characterize the changes in proglucagon-derived peptide concentrations that occur following SG. Further studies are required to determine whether these peptides contribute to the therapeutic effects of SG.
Collapse
Affiliation(s)
- Suleiman Al-Sabah
- Department of Pharmacology and Toxicology, College of Medicine, Kuwait University, Kuwait City, Kuwait
| | - Mohammad H. Jamal
- Department of Surgery, College of Medicine, Kuwait University, Kuwait City, Kuwait
- Department of Organ Transplant, College of Medicine, Kuwait City, Kuwait
| | - Ghanim Al-Khaledi
- Department of Pharmacology and Toxicology, College of Medicine, Kuwait University, Kuwait City, Kuwait
| | - Carol Dsouza
- Department of Surgery, College of Medicine, Kuwait University, Kuwait City, Kuwait
| | - Fatemah AlOtaibi
- Department of Surgery, College of Medicine, Kuwait University, Kuwait City, Kuwait
| | - Waleed Al-Ali
- Department of Pathology, College of Medicine, Kuwait University, Kuwait City, Kuwait
| | - Preethi Cherian
- Department of Biochemistry and Molecular Biology, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Irina Al-Khairi
- Department of Biochemistry and Molecular Biology, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Hamad Ali
- Department of Medical Laboratory Sciences, College of Allied Health Sciences, Kuwait University, Kuwait City, Kuwait
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Mohamed Abu-Farha
- Department of Biochemistry and Molecular Biology, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Jehad Abubaker
- Department of Biochemistry and Molecular Biology, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Fahd Al-Mulla
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Kuwait City, Kuwait
| |
Collapse
|
23
|
Dai Z, Zhang Y, Meng Y, Li S, Suonan Z, Sun Y, Ji J, Shen Q, Zheng H, Xue Y. Targeted delivery of nutraceuticals derived from food for the treatment of obesity and its related complications. Food Chem 2023; 418:135980. [PMID: 36989644 DOI: 10.1016/j.foodchem.2023.135980] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 03/10/2023] [Accepted: 03/16/2023] [Indexed: 03/29/2023]
Abstract
Nutraceuticals which are abundant in foods have attracted much attention due to their bioactive activities of anti-obesity, anti-hyperlipidemia and anti-atherosclerosis. Unfortunately, the poor bioavailability severely undermines their envisioned benefits. Therefore, there is an urgent need to develop suitable delivery systems to promote the benefits of their biological activity. Targeted drug delivery system (TDDS) is a novel drug delivery system that can selectively concentrate drugs on targets in the body, improve the bioavailability of agents and reduce side effects. This emerging drug delivery system provides a new strategy for the treatment of obesity with nutraceuticals and would be a promising alternative to be widely used in the food field. This review summarizes the recent studies on the application in the targeted delivery of nutraceuticals for treating obesity and its related complications, especially the available receptors and their corresponding ligands for TDDS and the evaluation methods of the targeting ability.
Collapse
|
24
|
Szanda G, Jourdan T, Wisniewski É, Cinar R, Godlewski G, Rajki A, Liu J, Chedester L, Szalai B, Tóth AD, Soltész-Katona E, Hunyady L, Inoue A, Horváth VB, Spät A, Tam J, Kunos G. Cannabinoid receptor type 1 (CB 1R) inhibits hypothalamic leptin signaling via β-arrestin1 in complex with TC-PTP and STAT3. iScience 2023; 26:107207. [PMID: 37534180 PMCID: PMC10392084 DOI: 10.1016/j.isci.2023.107207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 05/20/2023] [Accepted: 06/21/2023] [Indexed: 08/04/2023] Open
Abstract
Molecular interactions between anorexigenic leptin and orexigenic endocannabinoids, although of great metabolic significance, are not well understood. We report here that hypothalamic STAT3 signaling in mice, initiated by physiological elevations of leptin, is diminished by agonists of the cannabinoid receptor 1 (CB1R). Measurement of STAT3 activation by semi-automated confocal microscopy in cultured neurons revealed that this CB1R-mediated inhibition requires both T cell protein tyrosine phosphatase (TC-PTP) and β-arrestin1 but is independent of changes in cAMP. Moreover, β-arrestin1 translocates to the nucleus upon CB1R activation and binds both STAT3 and TC-PTP. Consistently, CB1R activation failed to suppress leptin signaling in β-arrestin1 knockout mice in vivo, and in neural cells deficient in CB1R, β-arrestin1 or TC-PTP. Altogether, CB1R activation engages β-arrestin1 to coordinate the TC-PTP-mediated inhibition of the leptin-evoked neuronal STAT3 response. This mechanism may restrict the anorexigenic effects of leptin when hypothalamic endocannabinoid levels rise, as during fasting or in diet-induced obesity.
Collapse
Affiliation(s)
- Gergő Szanda
- Department of Physiology, Semmelweis University Medical School, 1094 Budapest, Hungary
- ELKH-SE Laboratory of Molecular Physiology Research Group, Eötvös Loránd Research Network, 1094 Budapest, Hungary
| | - Tony Jourdan
- INSERM Center Lipids, Nutrition, Cancer LNC U1231, 21000 Dijon, France
| | - Éva Wisniewski
- Department of Physiology, Semmelweis University Medical School, 1094 Budapest, Hungary
| | - Resat Cinar
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA
| | - Grzegorz Godlewski
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA
| | - Anikó Rajki
- Department of Physiology, Semmelweis University Medical School, 1094 Budapest, Hungary
- ELKH-SE Laboratory of Molecular Physiology Research Group, Eötvös Loránd Research Network, 1094 Budapest, Hungary
| | - Jie Liu
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA
| | - Lee Chedester
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA
| | - Bence Szalai
- Department of Physiology, Semmelweis University Medical School, 1094 Budapest, Hungary
| | - András Dávid Tóth
- Department of Physiology, Semmelweis University Medical School, 1094 Budapest, Hungary
- Department of Internal Medicine and Haematology, Semmelweis University, 1085 Budapest, Hungary
| | - Eszter Soltész-Katona
- Department of Physiology, Semmelweis University Medical School, 1094 Budapest, Hungary
- Institute of Enzymology, Research Centre for Natural Sciences, Centre of Excellence of the Hungarian Academy of Sciences, 1117 Budapest, Hungary
| | - László Hunyady
- Department of Physiology, Semmelweis University Medical School, 1094 Budapest, Hungary
- Institute of Enzymology, Research Centre for Natural Sciences, Centre of Excellence of the Hungarian Academy of Sciences, 1117 Budapest, Hungary
| | - Asuka Inoue
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Viktória Bea Horváth
- Department of Physiology, Semmelweis University Medical School, 1094 Budapest, Hungary
| | - András Spät
- Department of Physiology, Semmelweis University Medical School, 1094 Budapest, Hungary
| | - Joseph Tam
- Obesity and Metabolism Laboratory, The Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - George Kunos
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
25
|
Dini I, Mancusi A. Weight Loss Supplements. Molecules 2023; 28:5357. [PMID: 37513229 PMCID: PMC10384751 DOI: 10.3390/molecules28145357] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/08/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
Being overweight or obese can predispose people to chronic diseases and metabolic disorders such as cardiovascular illnesses, diabetes, Alzheimer's disease, and cancer, which are costly public health problems and leading causes of mortality worldwide. Many people hope to solve this problem by using food supplements, as they can be self-prescribed, contain molecules of natural origin considered to be incapable of causing damage to health, and the only sacrifice they require is economic. The market offers supplements containing food plant-derived molecules (e.g., primary and secondary metabolites, vitamins, and fibers), microbes (probiotics), and microbial-derived fractions (postbiotics). They can control lipid and carbohydrate metabolism, reduce appetite (interacting with the central nervous system) and adipogenesis, influence intestinal microbiota activity, and increase energy expenditure. Unfortunately, the copious choice of products and different legislation on food supplements worldwide can confuse consumers. This review summarizes the activity and toxicity of dietary supplements for weight control to clarify their potentiality and adverse reactions. A lack of research regarding commercially available supplements has been noted. Supplements containing postbiotic moieties are of particular interest. They are easier to store and transport and are safe even for people with a deficient immune system.
Collapse
Affiliation(s)
- Irene Dini
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Napoli, Italy
| | - Andrea Mancusi
- Department of Food Microbiology, Istituto Zooprofilattico Sperimentale del Mezzogiorno, Via Salute 2, 80055 Portici, Italy
| |
Collapse
|
26
|
Zhao Y, Zhang M, Hou X, Han J, Qin X, Yang Y, Song Y, Liu Z, Zhang Y, Xu Z, Jia Q, Li Y, Chen K, Li B, Zhu W, Ge G. Design, synthesis and biological evaluation of salicylanilides as novel allosteric inhibitors of human pancreatic lipase. Bioorg Med Chem 2023; 91:117413. [PMID: 37490786 DOI: 10.1016/j.bmc.2023.117413] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 07/03/2023] [Accepted: 07/11/2023] [Indexed: 07/27/2023]
Abstract
Obesity is a growing global health problem and is associated with increased prevalence of many metabolic disorders, including diabetes, hypertension and cardiovascular disease. Pancreatic lipase (PL) has been validated as a key target for developing anti-obesity agents, owing to its crucial role in lipid digestion and absorption. In the past few decades, porcine PL (pPL) is always used as the enzyme source for screening PL inhibitors, which generate numerous pPL inhibitors but the potent inhibitors against human PL (hPL) are rarely reported. Herein, a series of salicylanilide derivatives were designed and synthesized, while their anti-hPL effects were assayed by a fluorescence-based biochemical approach. To investigate the structure-activity relationships of salicylanilide derivatives as hPL inhibitors in detail, structural modifications on three rings (A, B and C) of the salicylanilide skeleton were performed. Among all tested compounds, 2t and 2u were found possessing the most potent anti-PL activity, showing IC50 values of 1.86 μM and 1.63 μM, respectively. Inhibition kinetic analyses suggested that both 2t and 2u could effectively inhibit hPL in a non-competitive manner, with the ki value of 1.67 μM and 1.70 μM, respectively. Fluorescence quenching assays suggested that two inhibitors could quench the fluorescence of hPL via a static quenching procedure. Molecular docking simulations suggested that 2t and 2u could tightly bind on an allosteric site of hPL. Collectively, the structure-activity relationships of salicylanilide derivatives as hPL inhibitors were carefully investigated, while two newly identified reversible hPL inhibitors (2t and 2u) could be used as promising lead compounds to develop novel anti-obesity drugs.
Collapse
Affiliation(s)
- Yitian Zhao
- Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; State Key Laboratory of Drug Research; Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Min Zhang
- Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xudong Hou
- Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jiaxin Han
- State Key Laboratory of Drug Research; Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xiaoya Qin
- Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yun Yang
- Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; State Key Laboratory of Drug Research; Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yunqing Song
- Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Zhikai Liu
- Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; State Key Laboratory of Drug Research; Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yong Zhang
- State Key Laboratory of Drug Research; Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; School of Pharmacy, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhijian Xu
- State Key Laboratory of Drug Research; Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; School of Pharmacy, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qi Jia
- Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yiming Li
- Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Kaixian Chen
- Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; State Key Laboratory of Drug Research; Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; School of Pharmacy, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bo Li
- State Key Laboratory of Drug Research; Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; School of Pharmacy, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Weiliang Zhu
- Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; State Key Laboratory of Drug Research; Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; School of Pharmacy, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Guangbo Ge
- Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
27
|
Li Q, Huang G, Pei X, Tang X, Zhang R, Huang Y, Liu Z, Yi R, Xing C, Zhang X, Guo T. The Effect of Catgut Embedding at Acupoints Versus Nonacupoints in Abdominal Obesity: Protocol for a Multicenter, Double-Blind, 16-Week Randomized Controlled Trial. JMIR Res Protoc 2023; 12:e46863. [PMID: 37428535 PMCID: PMC10366970 DOI: 10.2196/46863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/13/2023] [Accepted: 05/15/2023] [Indexed: 07/11/2023] Open
Abstract
BACKGROUND Obesity is an increasing problem worldwide. The effective treatments for obesity mainly include diet, physical activity, behavioral intervention, pharmacotherapy, and bariatric surgery, which all have certain limitations. As a specific type of acupuncture therapy, acupoint catgut embedding (ACE) has gained substantial attention in the management of obesity in recent years. Previous studies suggested that ACE may be an effective obesity treatment. However, the evidence for the efficacy of ACE in abdominal obesity (AO) remains inadequate due to the paucity of high-quality studies. OBJECTIVE This study aims to investigate the difference in the effectiveness of catgut embedding at acupoints and catgut embedding at nonacupoints in patients with AO and to further validate the efficacy and safety of ACE for AO. METHODS This is a multicenter, double-blind, 16-week randomized controlled trial. A total of 92 eligible participants with AO will be randomly divided into 2 groups (1:1 allocation ratio). The ACE group will receive catgut embedding at acupoints and the control group will receive catgut embedding at nonacupoints. The intervention will be performed every 2 weeks for a total of 6 sessions. Follow-up will be performed every 2 weeks for a total of 2 visits. The primary outcome is waist circumference. Secondary outcomes include body weight, BMI, hip circumference, and the visual analog scale of appetite. Upon the completion of the trial, we will evaluate the effect of catgut embedding at acupoints or nonacupoints on obesity indicators in patients with AO. For treatment outcomes, an intention-to-treat analysis will be performed. RESULTS The start of recruitment began in August 2019 and is expected to end in September 2023. CONCLUSIONS Although studies have been conducted to demonstrate the effectiveness of ACE in the treatment of obesity, the evidence for the efficacy of ACE in AO remains insufficient due to the quality of the studies. This rigorous normative randomized controlled trial will verify the effect of catgut embedding at acupoints or nonacupoints in patients with AO. The findings will provide credible evidence as to whether ACE is an effective and safe treatment for AO. TRIAL REGISTRATION Chinese Clinical Trial Registry ChiCTR1800016947; https://tinyurl.com/2p82257p. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID) DERR1-10.2196/46863.
Collapse
Affiliation(s)
- Qifu Li
- School of Second Clinical Medicine, The Second Affiliated Hospital, Yunnan University of Chinese Medicine, Kunming, China
| | - Gaoyangzi Huang
- School of Second Clinical Medicine, The Second Affiliated Hospital, Yunnan University of Chinese Medicine, Kunming, China
| | - Xianmei Pei
- School of Second Clinical Medicine, The Second Affiliated Hospital, Yunnan University of Chinese Medicine, Kunming, China
| | - Xin Tang
- School of Second Clinical Medicine, The Second Affiliated Hospital, Yunnan University of Chinese Medicine, Kunming, China
| | - Renrui Zhang
- School of Second Clinical Medicine, The Second Affiliated Hospital, Yunnan University of Chinese Medicine, Kunming, China
| | - Ya Huang
- School of Second Clinical Medicine, The Second Affiliated Hospital, Yunnan University of Chinese Medicine, Kunming, China
| | - Zili Liu
- School of Second Clinical Medicine, The Second Affiliated Hospital, Yunnan University of Chinese Medicine, Kunming, China
| | - Rong Yi
- Department of Acupuncture and Moxibustion, Kunming Hospital of Traditional Chinese Medicine, Kunming, China
| | - Chonghui Xing
- Department of Acupuncture and Moxibustion, The Sports Trauma Specialist Hospital of Yunnan Province, Kunming, China
| | - Xinghe Zhang
- School of Second Clinical Medicine, The Second Affiliated Hospital, Yunnan University of Chinese Medicine, Kunming, China
| | - Taipin Guo
- School of Second Clinical Medicine, The Second Affiliated Hospital, Yunnan University of Chinese Medicine, Kunming, China
| |
Collapse
|
28
|
Goldberg AS, Dolatabadi S, Dutton H, Benham JL. Navigating the Role of Anti-Obesity Agents Prior to Pregnancy: A Narrative Review. Semin Reprod Med 2023; 41:108-118. [PMID: 37973000 DOI: 10.1055/s-0043-1776795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Utilization of anti-obesity agents is rising in reproductive-age females with some planning for future pregnancy. Lifestyle-induced weight loss has been shown to increase spontaneous conception rate, improve rates of fertility intervention complications, and decrease pregnancy comorbidities. However, the definitive role of assisting weight loss with medication prior to pregnancy remains to be established. The implications of anti-obesity agent used prior to pregnancy are explored in this narrative review, considering benefits of weight loss as well as available evidence for use and risks of anti-obesity agents prior to pregnancy.
Collapse
Affiliation(s)
- Alyse S Goldberg
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | | | - Heidi Dutton
- Department of Medicine, University of Ottawa, Ottawa, Canada
| | - Jamie L Benham
- Department of Medicine and Community Health Sciences, University of Calgary, Calgary, Canada
| |
Collapse
|
29
|
Yang W, Zhan M, Li Z, Sun X, Zhang K. Major Adverse Cardiovascular Events Among Obese Patients with Diabetes After Metabolic and Bariatric Surgery: a Meta-analysis of Matched Cohort and Prospective Controlled Studies with 122,361 Participates. Obes Surg 2023; 33:2098-2107. [PMID: 37184826 DOI: 10.1007/s11695-023-06634-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/02/2023] [Accepted: 05/04/2023] [Indexed: 05/16/2023]
Abstract
PURPOSE Metabolic and bariatric surgery (MBS) can exert effective function on glycemic control. The present study aimed to estimate the risk of MACE among obese patients with diabetes after MBS. MATERIALS AND METHODS Systematic search of PubMed, Embase, Medline, and Web of Science was performed for studies published before 20th February 2023. The odds ratio (OR) corresponding to the 95% confidence interval (95% CI) was used to assess the outcome. The statistical heterogeneity among studies was assessed with the Q-test and I2 statistics. RESULTS Fifteen cohort studies with 122,361 obese patients with diabetes were available for analysis. Our meta-analysis found significantly decreased morbidity and mortality of MACE (OR = 0.65, 95% CI = 0.59-0.72, I2 = 62.8% for morbidity, OR = 0.49, 95% CI = 0.36-0.67, I2 = 68.7% for mortality). Subgroup analysis revealed MBS decreased cerebrovascular disease, coronary artery disease, atrial fibrillation, heart failure, myocardial infarction, and stroke risk. CONCLUSION Our meta-analysis indicated that MBS for obese patients with diabetes is beneficial to decreasing MACE risk. Moreover, further studies estimating the functional effect may eventually provide a better and comprehensive understanding of the effect on different populations.
Collapse
Affiliation(s)
- Wenxing Yang
- Department of Physiology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan, 610041, People's Republic of China
| | - Mengjun Zhan
- Department of Forensic Pathology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan, 610041, People's Republic of China
| | - Zhuo Li
- Department of Forensic Pathology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan, 610041, People's Republic of China
| | - Xuehong Sun
- Department of Forensic Pathology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan, 610041, People's Republic of China
| | - Kui Zhang
- Department of Forensic Pathology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan, 610041, People's Republic of China.
| |
Collapse
|
30
|
Wong AR, Hung A, Yang AWH, Gill H, Lenon GB. Poria cocos compounds targeting neuropeptide Y1 receptor (Y1R) for weight management: A computational ligand- and structure-based study with molecular dynamics simulations identified beta-amyrin acetate as a putative Y1R inhibitor. PLoS One 2023; 18:e0277873. [PMID: 37390097 PMCID: PMC10313034 DOI: 10.1371/journal.pone.0277873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 10/09/2022] [Indexed: 07/02/2023] Open
Abstract
Poria cocos (PC) is a medicinal herb frequently used in weight-loss clinical trials, however the mechanisms by which its compounds target orexigenic receptors including the neuropeptide Y1 receptor (Y1R) remain largely unknown. This study aimed to screen PC compounds for favourable pharmacokinetics profiles and examine their molecular mechanisms targeting Y1R. Forty-three PC compounds were systematically sought from pharmacological databases and docked with Y1R (PDB: 5ZBQ). By comparing the relative binding affinities, pharmacokinetics and toxicity profiles, we hypothesised that compounds designated PC1 3,4-Dihydroxybenzoic acid, PC8 Vanillic acid, PC40 1-(alpha-L-Ribofuranosyl)uracil, could be potential antagonists as they contact major residues Asn283 and Asp287, similar to various potent Y1R antagonists. In addition, PC21 Poricoic acid B, PC22 Poricoic acid G and PC43 16alpha,25-Dihydroxy-24-methylene-3,4-secolanosta-4(28),7,9(11)-triene-3,21-dioic acid, contacting Asn299, Asp104 and Asp200 proximal to the extracellular surface could also interfere with agonist binding by stabilising the extracellular loop (ECL) 2 of Y1R in a closed position. Owing to their selective interaction with Phe302, an important residue in binding of selective Y1R antagonists, PC12 beta-Amyrin acetate, PC26 3-Epidehydrotumulosic acid and PC27 Cerevisterol were proposed as putative antagonists. Following the consensus approach, PC12 beta-Amyrin acetate, PC26 3-Epidehydrotumulosic acid and PC27 Cerevisterol were identified as candidate compounds due to their high affinities (-12.2, -11.0 and -10.8 kcal, respectively), high drug-likeness and low toxicity profiles. Trajectory analyses and energy contributions of PC12-Y1R complex further confirmed their structural stability and favourable binding free energies, highlighting the feasibility and possible development of PC12 beta-Amyrin acetate as a future Y1R inhibitor.
Collapse
Affiliation(s)
- Ann Rann Wong
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria, Australia
| | - Andrew Hung
- School of Science, RMIT University, Melbourne, Victoria, Australia
| | - Angela Wei Hong Yang
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria, Australia
| | - Harsharn Gill
- School of Science, RMIT University, Melbourne, Victoria, Australia
| | - George Binh Lenon
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria, Australia
| |
Collapse
|
31
|
Wei B, Peng Z, Xiao M, Huang T, Yang S, Liu K, Wu M, Zheng W, Xie M, Xiong T. Modulation of the Microbiome-Fat-Liver Axis by Lactic Acid Bacteria: A Potential Alleviated Role in High-Fat-Diet-Induced Obese Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37390401 DOI: 10.1021/acs.jafc.3c03149] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2023]
Abstract
The major characteristics of obesity are abnormal lipid metabolism, chronic inflammation, and imbalanced gut microbiota. It has been reported that lactic acid bacteria (LAB) possess potential for alleviating obesity, considering which the strain-specific functions and diverse mechanisms and the roles and mechanisms of various LAB are worthy of investigation. This study aimed to validate and investigate the alleviating effects and underlying mechanisms of three LAB strains, Lactiplantibacillus plantarum NCUH001046 (LP), Limosilactobacillus reuteri NCUH064003, and Limosilactobacillus fermentum NCUH003068 (LF), in high-fat-diet-induced obese mice. The findings demonstrated that the three strains, particularly LP, suppressed body weight gain and fat deposition; ameliorated lipid disorders, liver and adipocyte morphology, and chronic low-grade inflammation; and reduced lipid synthesis via activating the adenosine 5'-monophosphate-activated protein kinase (AMPK) signaling pathway. In addition, LP and LF decreased the enrichment of bacteria positively correlated with obesity, like Mucispirillum, Olsenella, and Streptococcus, but facilitated the growth of beneficial bacteria negatively correlated with obesity, like Roseburia, Coprococcus, and Bacteroides, along with increasing the short-chain fatty acid levels. It is deduced that the underlying alleviating mechanism of LP was to modulate the hepatic AMPK signaling pathway and gut microbiota by the microbiome-fat-liver axis to alleviate obesity development. In conclusion, as a diet supplement, LP has promising potential in obesity prevention and treatment.
Collapse
Affiliation(s)
- Benliang Wei
- State Key Laboratory of Food Science and Technology, No. 235 Nanjing East Road, Nanchang, Jiangxi 330047, P. R. China
- School of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi 330047, P. R. China
| | - Zhen Peng
- State Key Laboratory of Food Science and Technology, No. 235 Nanjing East Road, Nanchang, Jiangxi 330047, P. R. China
- School of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi 330047, P. R. China
| | - Muyan Xiao
- State Key Laboratory of Food Science and Technology, No. 235 Nanjing East Road, Nanchang, Jiangxi 330047, P. R. China
- School of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi 330047, P. R. China
- International Institute of Food Innovation, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi 330047, P. R. China
| | - Tao Huang
- State Key Laboratory of Food Science and Technology, No. 235 Nanjing East Road, Nanchang, Jiangxi 330047, P. R. China
- School of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi 330047, P. R. China
- International Institute of Food Innovation, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi 330047, P. R. China
| | - Shiyu Yang
- State Key Laboratory of Food Science and Technology, No. 235 Nanjing East Road, Nanchang, Jiangxi 330047, P. R. China
- School of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi 330047, P. R. China
| | - Kui Liu
- State Key Laboratory of Food Science and Technology, No. 235 Nanjing East Road, Nanchang, Jiangxi 330047, P. R. China
- School of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi 330047, P. R. China
| | - Min Wu
- State Key Laboratory of Food Science and Technology, No. 235 Nanjing East Road, Nanchang, Jiangxi 330047, P. R. China
- School of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi 330047, P. R. China
| | - Wendi Zheng
- State Key Laboratory of Food Science and Technology, No. 235 Nanjing East Road, Nanchang, Jiangxi 330047, P. R. China
- School of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi 330047, P. R. China
| | - Mingyong Xie
- State Key Laboratory of Food Science and Technology, No. 235 Nanjing East Road, Nanchang, Jiangxi 330047, P. R. China
- School of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi 330047, P. R. China
| | - Tao Xiong
- State Key Laboratory of Food Science and Technology, No. 235 Nanjing East Road, Nanchang, Jiangxi 330047, P. R. China
- School of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi 330047, P. R. China
| |
Collapse
|
32
|
Warrilow A, Turner M, Naumovski N, Somerset S. Role of cholecystokinin in satiation: a systematic review and meta-analysis. Br J Nutr 2023; 129:2182-2190. [PMID: 35152916 DOI: 10.1017/s0007114522000381] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The aim of this review was to examine: (1) the ability of cholecystokinin (CCK) or analogues of CCK to influence satiation and changes in body weight generally and (2) the efficacy of CCK in influencing satiation and eating behaviour specifically at physiological levels of dosing. A systematic review of the literature was performed following the PRISMA 2020 guidelines in five electronic databases investigating the effect of exogenous CCK or analogues on satiation and body weight. A meta-analysis of studies that infused CCK and measured satiation via changes in food/energy intake was also conducted. A total of 1054 studies were found using the search terms which were reduced to fifteen studies suitable for inclusion. Of the twelve studies measuring the effect on the weight of food ingested or energy intake, eleven showed a decrease. An analogue of CCK which can be administered orally failed to produce any weight loss at 24 weeks. The meta-analysis found the effect of CCK on satiation dosed at physiological levels was significant with a standardised mean difference of 0·57 (95 % CI 0·30, 0·85, P < 0·0001). By comparison, CCK dosed at higher, pharmacological levels also had a significant effect with a standardised mean difference of 0·91 (95 % CI 0·46, 1·36, P < 0·0001). Eight of the ten studies in the meta-analysis combined CCK infusion with some means to facilitate stomach distension. The present review found evidence that at both physiological and pharmacological levels of dosing CCK has a significant effect on satiation but no evidence for weight loss over the long term.
Collapse
Affiliation(s)
- Andrew Warrilow
- Discipline of Nutrition and Dietetics, School of Rehabilitation and Exercise Science, Faculty of Health, University of Canberra, ACT, 2601, Australia
| | | | - Nenad Naumovski
- Discipline of Nutrition and Dietetics, School of Rehabilitation and Exercise Science, Faculty of Health, University of Canberra, ACT, 2601, Australia
- Functional Foods and Nutrition Research (FFNR) Laboratory, University of Canberra, ACT, 2617, Australia
| | - Shawn Somerset
- Discipline of Nutrition and Dietetics, School of Rehabilitation and Exercise Science, Faculty of Health, University of Canberra, ACT, 2601, Australia
| |
Collapse
|
33
|
Maffeis C, Olivieri F, Valerio G, Verduci E, Licenziati MR, Calcaterra V, Pelizzo G, Salerno M, Staiano A, Bernasconi S, Buganza R, Crinò A, Corciulo N, Corica D, Destro F, Di Bonito P, Di Pietro M, Di Sessa A, deSanctis L, Faienza MF, Filannino G, Fintini D, Fornari E, Franceschi R, Franco F, Franzese A, Giusti LF, Grugni G, Iafusco D, Iughetti L, Lera R, Limauro R, Maguolo A, Mancioppi V, Manco M, Del Giudice EM, Morandi A, Moro B, Mozzillo E, Rabbone I, Peverelli P, Predieri B, Purromuto S, Stagi S, Street ME, Tanas R, Tornese G, Umano GR, Wasniewska M. The treatment of obesity in children and adolescents: consensus position statement of the Italian society of pediatric endocrinology and diabetology, Italian Society of Pediatrics and Italian Society of Pediatric Surgery. Ital J Pediatr 2023; 49:69. [PMID: 37291604 DOI: 10.1186/s13052-023-01458-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 04/18/2023] [Indexed: 06/10/2023] Open
Abstract
This Position Statement updates the different components of the therapy of obesity (lifestyle intervention, drugs, and surgery) in children and adolescents, previously reported in the consensus position statement on pediatric obesity of the Italian Society of Pediatric Endocrinology and Diabetology and the Italian Society of Pediatrics. Lifestyle intervention is the first step of treatment. In children older than 12 years, pharmacotherapy is the second step, and bariatric surgery is the third one, in selected cases. Novelties are available in the field of the medical treatment of obesity. In particular, new drugs demonstrated their efficacy and safety and have been approved in adolescents. Moreover, several randomized control trials with other drugs are in process and it is likely that some of them will become available in the future. The increase of the portfolio of treatment options for obesity in children and adolescents is promising for a more effective treatment of this disorder.
Collapse
Affiliation(s)
- Claudio Maffeis
- Department of Surgery, Dentistry, Pediatrics and Gynecology, Section of Pediatric Diabetes and Metabolism, University of Verona, Verona, Italy
| | - Francesca Olivieri
- Department of Surgery, Dentistry, Pediatrics and Gynecology, Section of Pediatric Diabetes and Metabolism, University of Verona, Verona, Italy.
| | - Giuliana Valerio
- Department of Movement Sciences and Wellbeing, Parthenope University of Naples, Naples, Italy
| | - Elvira Verduci
- Deparment of Pediatrics, Department of Health Science, Vittore Buzzi Children's Hospital, University of Milan, Milan, Italy
| | - Maria Rosaria Licenziati
- Department of Neurosciences, Neuro-Endocrine Diseases and Obesity Unit, Santobono-Pausilipon Children's Hospital, Naples, Italy
| | - Valeria Calcaterra
- Department of Pediatrics, Vittore Buzzi Children's Hospital, Milan, Italy
- Department of Internal Medicine and Therapeutics, University of Pavia, Pavia, Italy
| | - Gloria Pelizzo
- Department of Pediatric Surgery, Vittore Buzzi Children's Hospital, Milan, Italy
| | - Mariacarolina Salerno
- Department of Traslational Medical Sciences, Section of Pediatrics, University of Naples Federico II, Naples, Italy
| | - Annamaria Staiano
- Department of Traslational Medical Sciences, Section of Pediatrics, University of Naples Federico II, Naples, Italy
| | | | - Raffaele Buganza
- Pediatric Endocrinology Unit, Department of Public Health and Pediatric Sciences, University of Turin, Turin, Italy
| | - Antonino Crinò
- Autoimmune Endocrine Diseases Unit, Bambino Gesù Children Hospital, IRCCS, Rome, Italy
| | | | - Domenico Corica
- Department of Human Pathology of Adulthood and Childhood, University of Messina, Messina, Italy
| | - Francesca Destro
- Department of Pediatric Surgery, Vittore Buzzi Children's Hospital, Milan, Italy
| | - Procolo Di Bonito
- Department of Internal Medicine, S. Maria Delle Grazie Hospital, Naples, Pozzuoli, Italy
| | - Mario Di Pietro
- Pediatric and Neonatal Unit, Hospital of Teramo and Atri, Teramo, Italy
| | - Anna Di Sessa
- Department of Woman, Child and General and Specialized Surgery, University of Campania L. Vanvitelli, Naples, Italy
| | - Luisa deSanctis
- Department of Sciences of Public Health and Pediatrics, University of Turin, Turin, Italy
| | - Maria Felicia Faienza
- Department of Precision and Regenerative Medicine and Ionan Area, University of Bari, Bari, Italy
| | | | - Danilo Fintini
- Refernce Center for Prader Willi Syndrome, Endocrinology and Diabetology Unit, Bambino Gesù Children Hospital, IRCCS, Rome, Italy
| | - Elena Fornari
- Department of Surgery, Dentistry, Pediatrics and Gynecology, Section of Pediatric Diabetes and Metabolism, University of Verona, Verona, Italy
| | | | - Francesca Franco
- Pediatric Department, Azienda Sanitaria Universitaria del Friuli Centrale, Hospital of Udine, Udine, Italy
| | - Adriana Franzese
- Department of Traslational Medical Sciences, Section of Pediatrics, University of Naples Federico II, Naples, Italy
| | - Lia Franca Giusti
- Italian Society for Pediatric Endocrinology and Diabetology (SIEDP), Lucca, Italy
| | - Graziano Grugni
- Division of Auxology, Istituto Auxologico Italiano, IRCCS, Verbania, Italy
| | - Dario Iafusco
- Department of Woman, Child and General and Specialized Surgery, University of Campania L. Vanvitelli, Naples, Italy
| | - Lorenzo Iughetti
- Department of Medical and Surgical Sciences of Mother, Children and Adults, Pediatric Unit, University of Modena and Reggio Emilia, Modena, Italy
| | - Riccardo Lera
- Italian Society for Pediatric Endocrinology and Diabetology (SIEDP), Alessandria, Italy
| | | | - Alice Maguolo
- Department of Surgery, Dentistry, Pediatrics and Gynecology, Section of Pediatric Diabetes and Metabolism, University of Verona, Verona, Italy
| | - Valentina Mancioppi
- Department of Surgery, Dentistry, Pediatrics and Gynecology, Section of Pediatric Diabetes and Metabolism, University of Verona, Verona, Italy
| | - Melania Manco
- Research Area for Multifactorial Diseases, Children's Hospital Bambino Gesù, Rome, Italy
| | | | - Anita Morandi
- Department of Surgery, Dentistry, Pediatrics and Gynecology, Section of Pediatric Diabetes and Metabolism, University of Verona, Verona, Italy
| | - Beatrice Moro
- UOSD Diabetology, Complesso Ai Colli, AULSS 6 Euganea, Padua, Italy
| | - Enza Mozzillo
- Department of Traslational Medical Sciences, Section of Pediatrics, University of Naples Federico II, Naples, Italy
| | - Ivana Rabbone
- Division of Pediatrics, Department of Health Sciences, University of Piemonte Orientale, Novara, Italy
| | - Paola Peverelli
- Department of Pediatrics and Gynecology, Hospital of Belluno, Belluno, Italy
| | - Barbara Predieri
- Department of Medical and Surgical Sciences of Mother, Children and Adults, Pediatric Unit, University of Modena and Reggio Emilia, Modena, Italy
| | | | - Stefano Stagi
- Department of Health Sciences, University of Florence, Meyer Children's Hospital IRCCS, Florence, Italy
| | - Maria Elisabeth Street
- Department of Medicine and Surgery, Unit of Paediatrics, University of Parma, University Hospital of Parma, Parma, Italy
| | - Rita Tanas
- Italian Society for Pediatric Endocrinology and Diabetology (SIEDP), Ferrara, Italy
| | - Gianluca Tornese
- Institute for Maternal and Child Health, IRCCS "Burlo Garofolo", Trieste, Italy
| | - Giuseppina Rosaria Umano
- Department of Woman, Child and General and Specialized Surgery, University of Campania L. Vanvitelli, Naples, Italy
| | - Malgorzata Wasniewska
- Department of Human Pathology of Adulthood and Childhood, University of Messina, Messina, Italy
| |
Collapse
|
34
|
Wong G, Garner EM, Takkouche S, Spann MD, English WJ, Albaugh VL, Srivastava G. Combination anti-obesity medications to effectively treat bariatric surgery weight regain at an academic obesity center. Obes Sci Pract 2023; 9:203-209. [PMID: 37287513 PMCID: PMC10242249 DOI: 10.1002/osp4.635] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 08/02/2022] [Accepted: 08/05/2022] [Indexed: 11/21/2023] Open
Abstract
Background Combination anti-obesity medications (AOMs) to treat postoperative bariatric surgery weight regain have limited data on their use in the clinical setting. Understanding the optimal treatment protocol in this cohort will maximize weight loss outcomes. Methods A retrospective review of bariatric surgery patients (N = 44) presenting with weight regain at a single academic multidisciplinary obesity center who were prescribed AOM(s) plus intensive lifestyle modification for 12 months. Results Age: 28-76 years old, 93% female, mean weight 110.2 ± 20.3 kg, BMI 39.7 ± 7.4 kg/m2, presenting 5.2 ± 1.6 years post-bariatric surgery [27 (61.4%), 14 (31.8%), and 3 (6.8%) laparoscopic Roux-en-Y gastric bypass (RYGB), laparoscopic vertical sleeve gastrectomy (VSG), and open RYGB, respectively], with 15.1 ± 11.1 kg mean weight gain from nadir. Mean weight loss after medical intervention at 3-, 6-, and 12-month time points was 4.4 ± 4.6 kg, 7.3 ± 7.0 kg, and 10.7 ± 9.2 kg, respectively. At 12 months, individuals prescribed 3 or more AOMs lost more weight than those prescribed one (-14.5 ± 9.0 kg vs. -4.9 ± 5.7 kg, p < 0.05) irrespective of age, gender, number of comorbidities, initial weight or BMI, type of surgery, or GLP1 use. RYGB patients lost less weight overall (7.4% vs. 14.8% VSG respectively; p < 0.05). Conclusions Combination AOMs may be needed to achieve optimal weight loss results to treat post-operative weight regain.
Collapse
Affiliation(s)
- Gunther Wong
- Department of MedicineDivision of Diabetes, Endocrinology & MetabolismVanderbilt University School of MedicineNashvilleTennesseeUSA
- Vanderbilt Weight Loss CenterVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Erica M. Garner
- Department of MedicineDivision of Diabetes, Endocrinology & MetabolismVanderbilt University School of MedicineNashvilleTennesseeUSA
- Vanderbilt Weight Loss CenterVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Sahar Takkouche
- Department of MedicineDivision of Diabetes, Endocrinology & MetabolismVanderbilt University School of MedicineNashvilleTennesseeUSA
- Vanderbilt Weight Loss CenterVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Matthew D. Spann
- Vanderbilt Weight Loss CenterVanderbilt University Medical CenterNashvilleTennesseeUSA
- Department of SurgeryVanderbilt University School of MedicineNashvilleTennesseeUSA
| | - Wayne J. English
- Vanderbilt Weight Loss CenterVanderbilt University Medical CenterNashvilleTennesseeUSA
- Department of SurgeryVanderbilt University School of MedicineNashvilleTennesseeUSA
| | - Vance L. Albaugh
- Metamor InstitutePennington Biomedical Research CenterBaton RougeLouisianaUSA
| | - Gitanjali Srivastava
- Department of MedicineDivision of Diabetes, Endocrinology & MetabolismVanderbilt University School of MedicineNashvilleTennesseeUSA
- Vanderbilt Weight Loss CenterVanderbilt University Medical CenterNashvilleTennesseeUSA
- Department of SurgeryVanderbilt University School of MedicineNashvilleTennesseeUSA
- Department of PediatricsVanderbilt University School of MedicineNashvilleTennesseeUSA
| |
Collapse
|
35
|
Zhang S, Chen J, Li Q, Zeng W. Opioid growth factor receptor promotes adipose tissue thermogenesis via enhancing lipid oxidation. LIFE METABOLISM 2023; 2:load018. [PMID: 39872016 PMCID: PMC11749475 DOI: 10.1093/lifemeta/load018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 04/23/2023] [Accepted: 05/01/2023] [Indexed: 01/29/2025]
Abstract
The thermogenic brown and beige adipocytes consume fatty acids and generate heat to maintain core body temperature in the face of cold challenges. Since their validated presence in humans, the activation of thermogenic fat has been an attractive target for treating obesity and related metabolic diseases. Here, we reported that the opioid growth factor receptor (Ogfr) was highly expressed in adipocytes and promoted thermogenesis. The mice with genetic deletion of Ogfr in adipocytes displayed an impaired capacity to counter environmental cold challenges. Meanwhile, Ogfr ablation in adipocytes led to reduced fatty acid oxidation, enhanced lipid accumulation, impaired glucose tolerance, and exacerbated tissue inflammation under chronic high-fat diet (HFD)-fed conditions. At the cellular level, OGFr enhanced the production of mitochondrial trifunctional protein subunit α (MTPα) and also interacted with MTPα, thus promoting fatty acid oxidation. Together, our study demonstrated the important role of OGFr in fatty acid metabolism and adipose thermogenesis.
Collapse
Affiliation(s)
- Shan Zhang
- Institute for Immunology, School of Medicine, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
- Beijing Key Laboratory for Immunological Research on Chronic Diseases, Beijing 100084, China
| | - Jianhui Chen
- Institute for Immunology, School of Medicine, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
- Beijing Key Laboratory for Immunological Research on Chronic Diseases, Beijing 100084, China
| | - Qingqing Li
- Institute for Immunology, School of Medicine, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
- Beijing Key Laboratory for Immunological Research on Chronic Diseases, Beijing 100084, China
| | - Wenwen Zeng
- Institute for Immunology, School of Medicine, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
- Beijing Key Laboratory for Immunological Research on Chronic Diseases, Beijing 100084, China
| |
Collapse
|
36
|
López M, Fernández-Real JM, Tomarev SI. Obesity wars: may the smell be with you. Am J Physiol Endocrinol Metab 2023; 324:E569-E576. [PMID: 37166265 PMCID: PMC10259866 DOI: 10.1152/ajpendo.00040.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 05/08/2023] [Accepted: 05/09/2023] [Indexed: 05/12/2023]
Abstract
Classically, the regulation of energy balance has been based on central and peripheral mechanisms sensing energy, nutrients, metabolites, and hormonal cues. Several cellular mechanisms at central level, such as hypothalamic AMP-activated protein kinase (AMPK), integrate this information to elicit counterregulatory responses that control feeding, energy expenditure, and glucose homeostasis, among other processes. Recent data have added more complexity to the homeostatic regulation of metabolism by introducing, for example, the key role of "traditional" senses and sensorial information in this complicated network. In this regard, current evidence is showing that olfaction plays a key and bidirectional role in energy homeostasis. Although nutritional status dynamically and profoundly impacts olfactory sensitivity, the sense of smell is involved in food appreciation and selection, as well as in brown adipose tissue (BAT) thermogenesis and substrate utilization, with some newly described actors, such as olfactomedin 2 (OLFM2), likely playing a major role. Thus, olfactory inputs are contributing to the regulation of both sides of the energy balance equation, namely, feeding and energy expenditure (EE), as well as whole body metabolism. Here, we will review the current knowledge and advances about the role of olfaction in the regulation of energy homeostasis.
Collapse
Affiliation(s)
- Miguel López
- NeurObesity Group, Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Spain
| | - José Manuel Fernández-Real
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Spain
- Service of Diabetes, Endocrinology and Nutrition (UDEN), Institut d'Investigació Biomédica de Girona (IDIBGI), Department of Medical Sciences, University of Girona, Girona, Spain
| | - Stanislav I Tomarev
- Section of Retinal Ganglion Cell Biology, Laboratory of Retinal Cell and Molecular Biology, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| |
Collapse
|
37
|
Suren Garg S, Kushwaha K, Dubey R, Gupta J. Association between obesity, inflammation and insulin resistance: Insights into signaling pathways and therapeutic interventions. Diabetes Res Clin Pract 2023; 200:110691. [PMID: 37150407 DOI: 10.1016/j.diabres.2023.110691] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 04/18/2023] [Accepted: 05/02/2023] [Indexed: 05/09/2023]
Abstract
Obesity, a metabolic disorder, is becoming a worldwide epidemic that predominantly increases the risk for various diseases including metabolic inflammation, insulin resistance, and cardiovascular diseases. However, the mechanisms that link obesity with other metabolic diseases are not completely understood. In obesity, various inflammatory pathways that cause inflammation in adipose tissue of an obese individual become activated and exacerbate the disease. Obesity-induced low-grade metabolic inflammation perturbates the insulin signaling pathway and leads to insulin resistance. Researchers have identified several pathways that link the impairment of insulin resistance through obesity-induced inflammation like activation of Nuclear factor kappa B (NF-κB), suppressor of cytokine signaling (SOCS) proteins, cJun-N-terminal Kinase (JNK), Wingless-related integration site (Wnt), and Toll-like receptor (TLR) signaling pathways. In this review article, the published studies have been reviewed to identify the potential and influential role of different signaling pathways in the pathogenesis of obesity-induced metabolic inflammation and insulin resistance along with the discussion on potential therapeutic strategies. Therapies targeting these signaling pathways show improvements in metabolic diseases associated with obesity, but require further testing and confirmation through clinical trials.
Collapse
Affiliation(s)
- Sourbh Suren Garg
- Department of Biochemistry, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India
| | - Kriti Kushwaha
- Department of Biotechnology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India
| | - Rupal Dubey
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Jeena Gupta
- Department of Biochemistry, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India
| |
Collapse
|
38
|
Lister NB, Baur LA, Felix JF, Hill AJ, Marcus C, Reinehr T, Summerbell C, Wabitsch M. Child and adolescent obesity. Nat Rev Dis Primers 2023; 9:24. [PMID: 37202378 DOI: 10.1038/s41572-023-00435-4] [Citation(s) in RCA: 123] [Impact Index Per Article: 61.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/12/2023] [Indexed: 05/20/2023]
Abstract
The prevalence of child and adolescent obesity has plateaued at high levels in most high-income countries and is increasing in many low-income and middle-income countries. Obesity arises when a mix of genetic and epigenetic factors, behavioural risk patterns and broader environmental and sociocultural influences affect the two body weight regulation systems: energy homeostasis, including leptin and gastrointestinal tract signals, operating predominantly at an unconscious level, and cognitive-emotional control that is regulated by higher brain centres, operating at a conscious level. Health-related quality of life is reduced in those with obesity. Comorbidities of obesity, including type 2 diabetes mellitus, fatty liver disease and depression, are more likely in adolescents and in those with severe obesity. Treatment incorporates a respectful, stigma-free and family-based approach involving multiple components, and addresses dietary, physical activity, sedentary and sleep behaviours. In adolescents in particular, adjunctive therapies can be valuable, such as more intensive dietary therapies, pharmacotherapy and bariatric surgery. Prevention of obesity requires a whole-system approach and joined-up policy initiatives across government departments. Development and implementation of interventions to prevent paediatric obesity in children should focus on interventions that are feasible, effective and likely to reduce gaps in health inequalities.
Collapse
Affiliation(s)
- Natalie B Lister
- Children's Hospital Westmead Clinical School, Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia
- Institute of Endocrinology and Diabetes, The Children's Hospital at Westmead, Sydney, New South Wales, Australia
| | - Louise A Baur
- Children's Hospital Westmead Clinical School, Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia.
- Sydney School of Public Health, The University of Sydney, Sydney, New South Wales, Australia.
- Weight Management Services, The Children's Hospital at Westmead, Sydney, New South Wales, Australia.
| | - Janine F Felix
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
- Department of Paediatrics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Andrew J Hill
- Institute of Health Sciences, School of Medicine, University of Leeds, Leeds, UK
| | - Claude Marcus
- Division of Paediatrics, Department of Clinical Science Intervention and Technology, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Thomas Reinehr
- Vestische Hospital for Children and Adolescents Datteln, University of Witten/Herdecke, Datteln, Germany
| | - Carolyn Summerbell
- Department of Sport and Exercise Sciences, Durham University, Durham, UK
| | - Martin Wabitsch
- Division of Paediatric Endocrinology and Diabetes, Department of Paediatrics and Adolescent Medicine, Ulm University Medical Centre, Ulm, Germany
| |
Collapse
|
39
|
McAllan L, Baranasic D, Villicaña S, Brown S, Zhang W, Lehne B, Adamo M, Jenkinson A, Elkalaawy M, Mohammadi B, Hashemi M, Fernandes N, Lambie N, Williams R, Christiansen C, Yang Y, Zudina L, Lagou V, Tan S, Castillo-Fernandez J, King JWD, Soong R, Elliott P, Scott J, Prokopenko I, Cebola I, Loh M, Lenhard B, Batterham RL, Bell JT, Chambers JC, Kooner JS, Scott WR. Integrative genomic analyses in adipocytes implicate DNA methylation in human obesity and diabetes. Nat Commun 2023; 14:2784. [PMID: 37188674 PMCID: PMC10185556 DOI: 10.1038/s41467-023-38439-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 05/03/2023] [Indexed: 05/17/2023] Open
Abstract
DNA methylation variations are prevalent in human obesity but evidence of a causative role in disease pathogenesis is limited. Here, we combine epigenome-wide association and integrative genomics to investigate the impact of adipocyte DNA methylation variations in human obesity. We discover extensive DNA methylation changes that are robustly associated with obesity (N = 190 samples, 691 loci in subcutaneous and 173 loci in visceral adipocytes, P < 1 × 10-7). We connect obesity-associated methylation variations to transcriptomic changes at >500 target genes, and identify putative methylation-transcription factor interactions. Through Mendelian Randomisation, we infer causal effects of methylation on obesity and obesity-induced metabolic disturbances at 59 independent loci. Targeted methylation sequencing, CRISPR-activation and gene silencing in adipocytes, further identifies regional methylation variations, underlying regulatory elements and novel cellular metabolic effects. Our results indicate DNA methylation is an important determinant of human obesity and its metabolic complications, and reveal mechanisms through which altered methylation may impact adipocyte functions.
Collapse
Affiliation(s)
- Liam McAllan
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, W12 0NN, UK
- MRC London Institute of Medical Sciences, London, W12 0NN, UK
| | - Damir Baranasic
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, W12 0NN, UK
- MRC London Institute of Medical Sciences, London, W12 0NN, UK
| | - Sergio Villicaña
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
| | - Scarlett Brown
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, W12 0NN, UK
- MRC London Institute of Medical Sciences, London, W12 0NN, UK
| | - Weihua Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, W2 1PG, UK
- Department of Cardiology, Ealing Hospital, London North West University Healthcare NHS Trust, Middlesex, UB1 3HW, UK
| | - Benjamin Lehne
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, W2 1PG, UK
| | - Marco Adamo
- UCLH Bariatric Centre for Weight Loss, Weight Management and Metabolic and Endocrine Surgery, University College London Hospitals, Ground Floor West Wing, 250 Euston Road, London, NW1 2PG, UK
| | - Andrew Jenkinson
- UCLH Bariatric Centre for Weight Loss, Weight Management and Metabolic and Endocrine Surgery, University College London Hospitals, Ground Floor West Wing, 250 Euston Road, London, NW1 2PG, UK
| | - Mohamed Elkalaawy
- UCLH Bariatric Centre for Weight Loss, Weight Management and Metabolic and Endocrine Surgery, University College London Hospitals, Ground Floor West Wing, 250 Euston Road, London, NW1 2PG, UK
| | - Borzoueh Mohammadi
- UCLH Bariatric Centre for Weight Loss, Weight Management and Metabolic and Endocrine Surgery, University College London Hospitals, Ground Floor West Wing, 250 Euston Road, London, NW1 2PG, UK
| | - Majid Hashemi
- UCLH Bariatric Centre for Weight Loss, Weight Management and Metabolic and Endocrine Surgery, University College London Hospitals, Ground Floor West Wing, 250 Euston Road, London, NW1 2PG, UK
| | - Nadia Fernandes
- Imperial BRC Genomics Facility, Faculty of Medicine, Imperial College London, London, W12 0NN, UK
| | - Nathalie Lambie
- Imperial BRC Genomics Facility, Faculty of Medicine, Imperial College London, London, W12 0NN, UK
| | - Richard Williams
- Imperial BRC Genomics Facility, Faculty of Medicine, Imperial College London, London, W12 0NN, UK
| | - Colette Christiansen
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
- School of Mathematics and Statistics, Faculty of Science, Technology, Engineering and Mathematics, The Open University, Milton Keynes, UK
| | - Youwen Yang
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, W2 1PG, UK
- School of Cardiovascular and Metabolic Medicine and Sciences, James Black Centre, King's College London British Heart Foundation Centre of Excellence, 125 Coldharbour Lane, London, SE5 9NU, UK
| | - Liudmila Zudina
- Department of Clinical & Experimental Medicine, University of Surrey, Guildford, UK
| | - Vasiliki Lagou
- Department of Microbiology and Immunology, Laboratory of Adaptive Immunity, KU Leuven, Leuven, Belgium
- VIB-KU Leuven Center for Brain and Disease Research, Leuven, Belgium
| | - Sili Tan
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | | | - James W D King
- MRC London Institute of Medical Sciences, London, W12 0NN, UK
| | - Richie Soong
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
- Department of Pathology, National University Hospital, Singapore, Singapore
| | - Paul Elliott
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, W2 1PG, UK
- MRC Centre for Environment and Health, School of Public Health, Imperial College London, London, UK
- National Institute for Health Research Biomedical Research Centre, Imperial College London, London, UK
| | - James Scott
- National Heart and Lung Institute, Imperial College London, London, W12 0NN, UK
- Imperial College Healthcare NHS Trust, London, W12 0HS, UK
| | - Inga Prokopenko
- Department of Clinical & Experimental Medicine, University of Surrey, Guildford, UK
- People-Centred Artificial Intelligence Institute, University of Surrey, Guildford, UK
- Institute of Biochemistry and Genetics, Ufa Federal Research Centre Russian Academy of Sciences, Ufa, Russian Federation
| | - Inês Cebola
- Section of Genetics and Genomics, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Marie Loh
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, W2 1PG, UK
- Translational Laboratory in Genetic Medicine (TLGM), Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, Immunos, Level 5, Singapore, 138648, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Boris Lenhard
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, W12 0NN, UK
- MRC London Institute of Medical Sciences, London, W12 0NN, UK
| | - Rachel L Batterham
- UCLH Bariatric Centre for Weight Loss, Weight Management and Metabolic and Endocrine Surgery, University College London Hospitals, Ground Floor West Wing, 250 Euston Road, London, NW1 2PG, UK
- Centre for Obesity Research, Rayne Institute, Department of Medicine, University College, London, WC1E 6JJ, UK
- National Institute of Health Research University College London Hospitals Biomedical Research Centre, London, W1T 7DN, UK
| | - Jordana T Bell
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
| | - John C Chambers
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, W2 1PG, UK
- Department of Cardiology, Ealing Hospital, London North West University Healthcare NHS Trust, Middlesex, UB1 3HW, UK
- MRC Centre for Environment and Health, School of Public Health, Imperial College London, London, UK
- Imperial College Healthcare NHS Trust, London, W12 0HS, UK
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Jaspal S Kooner
- Department of Cardiology, Ealing Hospital, London North West University Healthcare NHS Trust, Middlesex, UB1 3HW, UK
- MRC Centre for Environment and Health, School of Public Health, Imperial College London, London, UK
- National Heart and Lung Institute, Imperial College London, London, W12 0NN, UK
- Imperial College Healthcare NHS Trust, London, W12 0HS, UK
| | - William R Scott
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, W12 0NN, UK.
- MRC London Institute of Medical Sciences, London, W12 0NN, UK.
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, W2 1PG, UK.
- Imperial College Healthcare NHS Trust, London, W12 0HS, UK.
| |
Collapse
|
40
|
Salsinha AS, Socodato R, Rodrigues A, Vale-Silva R, Relvas JB, Pintado M, Rodríguez-Alcalá LM. Potential of omega-3 and conjugated fatty acids to control microglia inflammatory imbalance elicited by obesogenic nutrients. Biochim Biophys Acta Mol Cell Biol Lipids 2023; 1868:159331. [PMID: 37172801 DOI: 10.1016/j.bbalip.2023.159331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 04/05/2023] [Accepted: 04/30/2023] [Indexed: 05/15/2023]
Abstract
High-fat diet-induced obesity detrimentally affects brain function by inducing chronic low-grade inflammation. This neuroinflammation is, at least in part, likely to be mediated by microglia, which are the main immune cell population in the brain. Microglia express a wide range of lipid-sensitive receptors and their activity can be modulated by fatty acids that cross the blood-brain barrier. Here, by combining live cell imaging and FRET technology we assessed how different fatty acids modulate microglia activity. We demonstrate that the combined action of fructose and palmitic acid induce Ikβα degradation and nuclear translocation of the p65 subunit nuclear factor kB (NF-κB) in HCM3 human microglia. Such obesogenic nutrients also lead to reactive oxygen species production and LynSrc activation (critical regulators of microglia inflammation). Importantly, short-time exposure to omega-3 (EPA and DHA), CLA and CLNA are sufficient to abolish NF-κB pathway activation, suggesting a potential neuroprotective role. Omega-3 and CLA also show an antioxidant potential by inhibiting reactive oxygen species production, and the activation of LynSrc in microglia. Furthermore, using chemical agonists (TUG-891) and antagonists (AH7614) of GPR120/FFA4, we demonstrated that omega-3, CLA and CLNA inhibition of the NF-κB pathway is mediated by this receptor, while omega-3 and CLA antioxidant potential occurs through different signaling mechanisms.
Collapse
Affiliation(s)
- A S Salsinha
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina, Laboratório Associado, Escola Superior de Biotecnologia, Rua de Diogo Botelho, 1327, 4169-005 Porto, Portugal; Department of Neurobiology and Neurological Disease, Glial Cell Biology Laboratory, Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, 4200-135 Porto, Portugal; Department of Neurobiology and Neurological Disease, Glial Cell Biology Laboratory, Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal
| | - R Socodato
- Department of Neurobiology and Neurological Disease, Glial Cell Biology Laboratory, Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, 4200-135 Porto, Portugal; Department of Neurobiology and Neurological Disease, Glial Cell Biology Laboratory, Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal
| | - A Rodrigues
- Department of Neurobiology and Neurological Disease, Glial Cell Biology Laboratory, Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, 4200-135 Porto, Portugal; Department of Neurobiology and Neurological Disease, Glial Cell Biology Laboratory, Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal
| | - R Vale-Silva
- Department of Neurobiology and Neurological Disease, Glial Cell Biology Laboratory, Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, 4200-135 Porto, Portugal; Department of Neurobiology and Neurological Disease, Glial Cell Biology Laboratory, Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal.; Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, 4050-313 Porto, Portugal
| | - J B Relvas
- Department of Neurobiology and Neurological Disease, Glial Cell Biology Laboratory, Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, 4200-135 Porto, Portugal; Department of Neurobiology and Neurological Disease, Glial Cell Biology Laboratory, Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal
| | - M Pintado
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina, Laboratório Associado, Escola Superior de Biotecnologia, Rua de Diogo Botelho, 1327, 4169-005 Porto, Portugal.
| | - L M Rodríguez-Alcalá
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina, Laboratório Associado, Escola Superior de Biotecnologia, Rua de Diogo Botelho, 1327, 4169-005 Porto, Portugal.
| |
Collapse
|
41
|
Playdon MC, Hardikar S, Karra P, Hoobler R, Ibele AR, Cook KL, Kumar A, Ippolito JE, Brown JC. Metabolic and bariatric surgery and obesity pharmacotherapy for cancer prevention: current status and future possibilities. J Natl Cancer Inst Monogr 2023; 2023:68-76. [PMID: 37139980 PMCID: PMC10157771 DOI: 10.1093/jncimonographs/lgad003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/19/2022] [Accepted: 01/19/2023] [Indexed: 05/05/2023] Open
Abstract
Obesity is a chronic, relapsing, progressive disease of excess adiposity that increases the risk of developing at least 13 types of cancer. This report provides a concise review of the current state of the science regarding metabolic and bariatric surgery and obesity pharmacotherapy related to cancer risk. Meta-analyses of cohort studies report that metabolic and bariatric surgery is independently associated with a lower risk of incident cancer than nonsurgical obesity care. Less is known regarding the cancer-preventive effects of obesity pharmacotherapy. The recent approval and promising pipeline of obesity drugs will provide the opportunity to understand the potential for obesity therapy to emerge as an evidence-based cancer prevention strategy. There are myriad research opportunities to advance our understanding of how metabolic and bariatric surgery and obesity pharmacotherapy may be used for cancer prevention.
Collapse
Affiliation(s)
- Mary C Playdon
- Department of Nutrition and Integrative Physiology, College of Health, University of Utah, Salt Lake City, UT, USA
- Cancer Control and Population Sciences Program, Huntsman Cancer Institute, Salt Lake City, UT, USA
| | - Sheetal Hardikar
- Cancer Control and Population Sciences Program, Huntsman Cancer Institute, Salt Lake City, UT, USA
- Department of Population Health Sciences, School of Medicine, University of Utah, Salt Lake City, UT, USA
| | - Prasoona Karra
- Department of Nutrition and Integrative Physiology, College of Health, University of Utah, Salt Lake City, UT, USA
- Cancer Control and Population Sciences Program, Huntsman Cancer Institute, Salt Lake City, UT, USA
| | - Rachel Hoobler
- Department of Nutrition and Integrative Physiology, College of Health, University of Utah, Salt Lake City, UT, USA
- Cancer Control and Population Sciences Program, Huntsman Cancer Institute, Salt Lake City, UT, USA
| | - Anna R Ibele
- Department of Surgery, School of Medicine, University of Utah, Salt Lake City, UT, USA
| | - Katherine L Cook
- Department of Surgery, Wake Forest School of Medicine, Winston-Salem, NC, USA
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC, USA
- Comprehensive Cancer Center, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Amanika Kumar
- Division of Gynecologic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Joseph E Ippolito
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Justin C Brown
- Pennington Biomedical Research Center, Baton Rouge, LA, USA
- Louisiana State University Health Sciences Center New Orleans School of Medicine, New Orleans, LA, USA
- Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| |
Collapse
|
42
|
Kostanjsek L, Ardissino M, Moussa O, Rayes B, Amin R, Collins P, Purkayastha S. Bariatric Surgery and Incident Heart Failure: a Propensity Score Matched Nationwide Cohort Study. Int J Cardiol 2023; 378:42-47. [PMID: 36738843 DOI: 10.1016/j.ijcard.2023.01.086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/28/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023]
Abstract
BACKGROUND Bariatric surgery results in significant weight loss and a reduction in the incidence of cardiovascular disease in patients with obesity; however, relatively little research considers its effect on the incidence of heart failure (HF). We aimed to determine whether bariatric surgery reduces the incidence of HF in patients with obesity, compared to non-surgical management. METHODS A propensity-score matched, retrospective cohort study using patients records from the nationwide Clinical Practice Research Database (CPRD) was conducted. 3052 patients who received bariatric surgery were matched with 3052 patients who did not, according to propensity to receive bariatric surgery, determined through a logistic regression model. Patients were eligible if >18 years old, BMI > 35 kg/m2, and no prior diagnosis of HF. The pre-defined primary endpoint was the development of new HF, and secondary endpoints were all-cause mortality and hospitalisations due to HF. RESULTS Patients who received bariatric surgery had a significantly lower incidence of new HF (hazard ratio 0.45, 95% confidence interval 0.28-0.73, p = 0.0011) and all-cause mortality (hazard ratio 0.56, 95% confidence interval 0.38-0.83, p = 0.0036). CONCLUSIONS This study provides evidence of lower rates of HF and all-cause mortality in patients who undergo bariatric surgery, compared to propensity-score matched controls. Future studies to understand the mechanism(s) involved in this reduction and explore the lifetime benefits in high-risk cohorts are paramount.
Collapse
Affiliation(s)
- Luke Kostanjsek
- National Heart and Lung Institute, Imperial College London, London, UK
| | | | - Osama Moussa
- Division of Surgery and Cancer, Imperial College London, London, UK
| | - Bilal Rayes
- Faculty of Life Sciences & Medicine, King's College London, London, UK
| | - Ravi Amin
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Peter Collins
- National Heart and Lung Institute, Imperial College London, London, UK; Royal Brompton Hospital and National Heart and Lung Institute, Imperial College London, London, UK.
| | - Sanjay Purkayastha
- National Heart and Lung Institute, Imperial College London, London, UK; Division of Surgery and Cancer, Imperial College London, London, UK; Imperial Weight Centre, Imperial College Healthcare NHS Trust, London, UK
| |
Collapse
|
43
|
Mika K, Szafarz M, Bednarski M, Siwek A, Szczepańska K, Kieć-Kononowicz K, Kotańska M. Evaluation of Some Safety Parameters of Dual Histamine H 3 and Sigma-2 Receptor Ligands with Anti-Obesity Potential. Int J Mol Sci 2023; 24:ijms24087499. [PMID: 37108661 PMCID: PMC10138714 DOI: 10.3390/ijms24087499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/16/2023] [Accepted: 04/17/2023] [Indexed: 04/29/2023] Open
Abstract
Many studies have shown the high efficacy of histamine H3 receptor ligands in preventing weight gain. In addition to evaluating the efficacy of future drug candidates, it is very important to assess their safety profile, which is established through numerous tests and preclinical studies. The purpose of the present study was to evaluate the safety of histamine H3/sigma-2 receptor ligands by assessing their effects on locomotor activity and motor coordination, as well as on the cardiac function, blood pressure, and plasma activity of certain cellular enzymes. The ligands tested at a dose of 10 mg/kg b.w. did not cause changes in locomotor activity (except for KSK-74) and did not affect motor coordination. Significant reductions in blood pressure were observed after the administration of compounds KSK-63, KSK-73, and KSK-74, which seems logically related to the increased effect of histamine. Although the results of in vitro studies suggest that the tested ligands can block the human ether-a-go-go-related gene (hERG) potassium channels, they did not affect cardiac parameters in vivo. It should be noted that repeated administration of the tested compounds prevented an increase in the activity of alanine aminotransferase (AlaT) and gamma-glutamyl transpeptidases (gGT) observed in the control animals fed a palatable diet. The obtained results show that the ligands selected for this research are not only effective in preventing weight gain but also demonstrate safety in relation to the evaluated parameters, allowing the compounds to proceed to the next stages of research.
Collapse
Affiliation(s)
- Kamil Mika
- Department of Pharmacological Screening, Jagiellonian University Medical College, Medyczna 9, 30-688 Cracow, Poland
| | - Małgorzata Szafarz
- Department of Pharmacokinetics and Physical Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Cracow, Poland
| | - Marek Bednarski
- Department of Pharmacological Screening, Jagiellonian University Medical College, Medyczna 9, 30-688 Cracow, Poland
| | - Agata Siwek
- Department of Pharmacobiology, Jagiellonian University Medical College, Medyczna 9, 30-688 Cracow, Poland
| | - Katarzyna Szczepańska
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Cracow, Poland
- Department of Medicinal Chemistry, Maj Institute of Pharmacology Polish Academy of Sciences, Smętna 12, 31-343 Cracow, Poland
| | - Katarzyna Kieć-Kononowicz
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Cracow, Poland
| | - Magdalena Kotańska
- Department of Pharmacological Screening, Jagiellonian University Medical College, Medyczna 9, 30-688 Cracow, Poland
| |
Collapse
|
44
|
Yang Y, Liu H, Liu D. Preventing high-fat diet-induced obesity and related metabolic disorders by hydrodynamic transfer of Il-27 gene. Int J Obes (Lond) 2023; 47:413-421. [PMID: 36959288 DOI: 10.1038/s41366-023-01293-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/27/2023] [Accepted: 03/01/2023] [Indexed: 03/25/2023]
Abstract
BACKGROUND AND OBJECTIVES Interleukin-27 (IL-27) is a multifaceted heterodimer cytokine that exerts both pro-inflammatory and anti-inflammatory effects under different physiological conditions. IL-27 signaling plays a role in promoting energy expenditure through enhanced thermogenesis. The objective of the study is to determine the functional role of IL-27 in regulating weight gain, and glucose and lipid homeostasis in mice fed a high-fat diet (HFD). METHODS C57BL/6 mice were hydrodynamically transferred with pLIVE-IL-27 plasmids to achieve elevated level of IL-27 in blood and then kept on a HFD for 8 weeks. The impacts of Il-27 gene transfer on HFD-induced weight gain, adiposity, hepatic lipid accumulation, insulin resistance, glucose homeostasis and the mRNA levels of genes responsible for lipogenesis, glucose homeostasis and proinflammation were assessed by methods of biochemistry, histology, and molecular biology. RESULTS Hydrodynamic gene transfer of Il-27 gene resulted in a peak level of serum IL-27 in mice at 14.5 ng/ml 24 h after gene transfer followed by a sustained level at 2 ng/ml. The elevated level of IL-27 blocked HFD-induced fat accumulation and weight gain without reducing food intake. It also prevented metabolic abnormities of liver steatosis and insulin resistance. IL-27 overexpression promoted expression of major thermogenic genes in brown adipose tissues; and attenuated chronic inflammation and macrophage infiltration into white adipose tissues. CONCLUSIONS The results demonstrate that regulation of IL-27 level could be an effective strategy for management of obesity and obesity-related metabolic diseases.
Collapse
Affiliation(s)
- Yueze Yang
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, GA, USA
| | - Huan Liu
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, GA, USA
| | - Dexi Liu
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, GA, USA.
| |
Collapse
|
45
|
Mexican Ancestral Foods (Theobroma cacao, Opuntia ficus indica, Persea americana and Phaseolus vulgaris) Supplementation on Anthropometric, Lipid and Glycemic Control Variables in Obese Patients: A Systematic Review and Meta-Analysis. Foods 2023; 12:foods12061177. [PMID: 36981103 PMCID: PMC10047948 DOI: 10.3390/foods12061177] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/26/2023] [Accepted: 02/28/2023] [Indexed: 03/14/2023] Open
Abstract
Diet containing Mexican ancestral foods such as cocoa, nopal, avocado, and common bean have been individually reported to have beneficial effects on obesity and comorbidities. Methods: A systematic review and meta-analysis on the effect of Mexican ancestral foods on the anthropometric, lipid, and glycemic control variables in obese patients was performed following PRISMA guidelines. Data were analyzed using a random-effects model. Results: We selected 4664 articles from an initial search, of which only fifteen studies satisfied the inclusion criteria. Data for 1670 participants were analyzed: 843 in the intervention group and 827 in the control group. A significant reduction in body mass index (mean difference: −0.80 (−1.31 to −0.30)) (95% confidence interval), p = 0.002, heterogeneity I2 = 92% was showed after the ingestion of cocoa, nopal, avocado, or common bean. The mean difference for body weight was −0.57 (−1.93 to 0.79), waist of circumference: −0.16 (−2.54 to −2.21), total cholesterol: −5.04 (−11.5 to 1.08), triglycerides: −10.11 (−27.87 to 7.64), fasting glucose: −0.81 (−5.81 to 4.19), and insulin: −0.15 (−0.80 to 0.50). Mexican ancestral food supplementation seems to improve anthropometric, lipid, and glycemic control variables in obesity; however, more randomized controlled trials are needed to have further decisive evidence about dosage and method of supplementation and to increase the sample size.
Collapse
|
46
|
Paszkowiak M, Dorand MF, Richards J. Case report of PLXNA4 variant associated with hyper-response to phentermine/topiramate pharmacotherapy: Potential genetic basis for superior weight loss response? OBESITY PILLARS 2023; 5:100059. [PMID: 37990741 PMCID: PMC10662083 DOI: 10.1016/j.obpill.2023.100059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 02/19/2023] [Accepted: 02/20/2023] [Indexed: 11/23/2023]
Abstract
Background Once thought to be primarily a result of lifestyle, it is now known that obesity has significant genetic components. Dozens of genes have been linked to obesity, and office-based genetic testing for obesity-associated genes is now readily available. As both pharmacotherapy and genetic testing for obesity become more accessible, pharmacogenetic personalization is becoming a reality. In this case report, a patient with a PLXNA4 polymorphism had a superior weight loss response to phentermine/topiramate therapy than has previously been reported in the literature. Thus, variants in PLXNA4 may provide a genetic basis for this patient's superior response to weight loss pharmacotherapy and cardiovascular risk factor reduction. Methods In this case study, office-based genetic testing was utilized to identify the presence of variants in nearly 80 genes that have been linked to obesity in a patient who had hyper-responsive weight loss results on phentermine/topiramate pharmacotherapy. Results A variant of the PLXNA4 gene, which has known pathogenic variants linked to genetic obesity syndromes, was identified in this patient who had a superior weight loss response to phentermine/topiramate pharmacotherapy. Conclusion Due to overlapping molecular pathways, it is possible that PLXNA4 variants convey a superior weight-loss response and therefore superior cardiovascular risk factor reduction phentermine/topiramate therapy. Further studies are needed to examine the relationship between PLXNA4 variants and weight loss with phentermine/topiramate pharmacotherapy.
Collapse
Affiliation(s)
- Maria Paszkowiak
- University of Oklahoma, School of Community Medicine, 4502 E. 41st Street, Tulsa, OK, 74135, USA
| | - Madisen Fae Dorand
- University of Oklahoma, School of Community Medicine, 4502 E. 41st Street, Tulsa, OK, 74135, USA
| | - Jesse Richards
- Department of Internal Medicine, University of Oklahoma, School of Community Medicine, 4502 E. 41st Street, Tulsa, OK, 74135, USA
| |
Collapse
|
47
|
Li D, Chen F. The Perspectives of Plant Natural Products for Mitigation of Obesity. Nutrients 2023; 15:nu15051150. [PMID: 36904148 PMCID: PMC10005137 DOI: 10.3390/nu15051150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 02/23/2023] [Indexed: 03/02/2023] Open
Abstract
Obesity is a metabolic disease caused by an imbalance between energy intake and consumption, which leads to excessive fat accumulation in adipose tissues [...].
Collapse
Affiliation(s)
| | - Fang Chen
- Correspondence: ; Tel.: +86-10-6273-7645
| |
Collapse
|
48
|
Roh E, Choi KM. Hormonal Gut-Brain Signaling for the Treatment of Obesity. Int J Mol Sci 2023; 24:ijms24043384. [PMID: 36834794 PMCID: PMC9959457 DOI: 10.3390/ijms24043384] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 02/10/2023] Open
Abstract
The brain, particularly the hypothalamus and brainstem, monitors and integrates circulating metabolic signals, including gut hormones. Gut-brain communication is also mediated by the vagus nerve, which transmits various gut-derived signals. Recent advances in our understanding of molecular gut-brain communication promote the development of next-generation anti-obesity medications that can safely achieve substantial and lasting weight loss comparable to metabolic surgery. Herein, we comprehensively review the current knowledge about the central regulation of energy homeostasis, gut hormones involved in the regulation of food intake, and clinical data on how these hormones have been applied to the development of anti-obesity drugs. Insight into and understanding of the gut-brain axis may provide new therapeutic perspectives for the treatment of obesity and diabetes.
Collapse
Affiliation(s)
- Eun Roh
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang 14068, Republic of Korea
| | - Kyung Mook Choi
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Korea University College of Medicine, Seoul 02841, Republic of Korea
- Correspondence: or
| |
Collapse
|
49
|
Yan J, Bak J, Go Y, Park J, Park M, Lee HJ, Kim H. Scytosiphon lomentaria Extract Ameliorates Obesity and Modulates Gut Microbiota in High-Fat-Diet-Fed Mice. Nutrients 2023; 15:815. [PMID: 36839173 PMCID: PMC9965426 DOI: 10.3390/nu15040815] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 01/30/2023] [Accepted: 02/02/2023] [Indexed: 02/09/2023] Open
Abstract
Scytosiphon lomentaria (SL) is a brown seaweed with antioxidant and anti-inflammatory properties; however, its effects on obesity are unknown. In this research, we investigated the anti-obesity properties and underlying mechanisms of the SL extract in vitro and in vivo. In 3T3-L1 preadipocytes, SL extract inhibited lipid accumulation, decreased the expression of Acc1, C/ebpa, Pparg mRNA and p-ACC1, and increased the expression of Ucp1 mRNA, UCP1 and p-AMPK. In animal experiments, mice were fed a chow diet, a high-fat diet (HF; 60% of calories as fat), and high-fat diet with SL extract (150 and 300 mg/kg body weight) for eight weeks (n = 10/group). SL extract reduced HF-induced weight gain, epididymal fat weight, fat cell size, LDL-C, leptin, fasting glucose, and glucose tolerance. In addition, SL extract had comparable effects on mRNA expression in WAT and liver to those observed in vitro, thereby inhibiting p-ACC1/ACC1 and increasing p-AMPK/AMPK and UCP1 expression. Furthermore, SL extract decreased HF-induced Firmicutes/Bacteroidetes ratio and reversed HF-reduced Bacteroides spp., Bacteroides vulgatus, and Faecalibacterium prausnitzii. These findings suggest that SL extract can aid in weight loss in mice fed a high-fat diet by altering adipogenic and thermogenic pathways, as well as gut microbiota composition.
Collapse
Affiliation(s)
- Jing Yan
- Department of Food Science and Nutrition & Kimchi Research Institute, Pusan National University, Busan 46241, Republic of Korea
| | - Jinwoo Bak
- Department of Food Science and Nutrition & Kimchi Research Institute, Pusan National University, Busan 46241, Republic of Korea
| | - Yula Go
- Department of Food Science and Nutrition & Kimchi Research Institute, Pusan National University, Busan 46241, Republic of Korea
| | - Jumin Park
- Department of Food Science and Nutrition & Kimchi Research Institute, Pusan National University, Busan 46241, Republic of Korea
| | - Minkyoung Park
- Department of Food Science and Nutrition & Kimchi Research Institute, Pusan National University, Busan 46241, Republic of Korea
| | - Hae-Jeung Lee
- Department of Food and Nutrition, Gachon University, Seongnam-si 13120, Republic of Korea
| | - Hyemee Kim
- Department of Food Science and Nutrition & Kimchi Research Institute, Pusan National University, Busan 46241, Republic of Korea
| |
Collapse
|
50
|
Apovian CM, Guo XR, Hawley JA, Karmali S, Loos RJF, Waterlander WE. Approaches to addressing the rise in obesity levels. Nat Rev Endocrinol 2023; 19:76-81. [PMID: 36450930 DOI: 10.1038/s41574-022-00777-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/28/2022] [Indexed: 12/02/2022]
Abstract
Levels of obesity and overweight are increasing globally, with affected individuals often experiencing health issues and reduced quality of life. The pathogenesis of obesity is complex and multifactorial, and effective solutions have been elusive. In this Viewpoint, experts in the fields of medical therapy, adipocyte biology, exercise and muscle, bariatric surgery, genetics, and public health give their perspectives on current and future progress in addressing the rising prevalence of obesity.
Collapse
Affiliation(s)
- Caroline M Apovian
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Xi-Rong Guo
- Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - John A Hawley
- Exercise & Nutrition Research Program, The Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, Australia.
| | - Shahzeer Karmali
- Division of General Surgery, University of Alberta, Edmonton, Alberta, Canada.
| | - Ruth J F Loos
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, USA.
| | - Wilma E Waterlander
- Department of Public and Occupational Health, Amsterdam Public Health Research Institute, Amsterdam UMC Location University of Amsterdam, Amsterdam, Netherlands.
| |
Collapse
|