1
|
Li D, Zeng L, Zhang W, Wang Q, Wu J, Zhu C, Meng Z. Multi-omics study of sex in greater amberjack (Seriola dumerili): Identifying related genes, analyzing sex-biased expression, and developing sex-specific markers. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2025; 53:101364. [PMID: 39612541 DOI: 10.1016/j.cbd.2024.101364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/17/2024] [Accepted: 11/19/2024] [Indexed: 12/01/2024]
Abstract
The greater amberjack (Seriola dumerili) is a valuable marine fish with significant breeding potential, but does not exhibit clear sexual dimorphism in morphology. Sex research and the development of sex identification technology are important for breeding purposes. Through genome-wide association analysis (GWAS), we identified one significant sex-related SNP and 18 candidate sex-related SNPs, then obtained one significant sex-related gene (hsd17β1) and 20 candidate sex-related genes (hmbox1, ahcyl1, pdzd2, etc.). Key sex-biased genes (sox2, dmrt2, hsd17β3, rnf145, foxo3, etc.) were identified in mature gonads by transcriptome analysis. These genes are important in greater amberjack sex determination and gonad development. In addition, we developed classical PCR and kompetitive allele-specific PCR (KASP) primers to identify the sex of greater amberjack, with an accuracy of 94.87 % and 100 %, respectively. The sex-specific markers can effectively determine the gender of greater amberjack and evaluate the sex ratio and reproductive potential of the breeding population.
Collapse
Affiliation(s)
- Duo Li
- School of Life Sciences, State Key Laboratory of Biocontrol, China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory of Aquatic Economic Animals, Sun Yat-sen University, Guangzhou 510275, China
| | - Leilei Zeng
- School of Life Sciences, State Key Laboratory of Biocontrol, China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory of Aquatic Economic Animals, Sun Yat-sen University, Guangzhou 510275, China
| | - Weiwei Zhang
- School of Life Sciences, State Key Laboratory of Biocontrol, China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory of Aquatic Economic Animals, Sun Yat-sen University, Guangzhou 510275, China
| | - Qinghua Wang
- School of Life Sciences, State Key Laboratory of Biocontrol, China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory of Aquatic Economic Animals, Sun Yat-sen University, Guangzhou 510275, China
| | - Jinhui Wu
- Agro-Tech Extension Center of Guangdong Province, Guangzhou 510520, China
| | - Chunhua Zhu
- Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang 524025, China; Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish, Species, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
| | - Zining Meng
- School of Life Sciences, State Key Laboratory of Biocontrol, China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory of Aquatic Economic Animals, Sun Yat-sen University, Guangzhou 510275, China.
| |
Collapse
|
2
|
Wang Y, Cui F, Yang Y, Liang H, Wu Y, Zhou A, Liu Y, Jiang Z, Peng J, Mu X. Evolutionary insights and expression patterns of sex-related gene families in the zig-zag eel Mastacembelus armatus. Comp Biochem Physiol A Mol Integr Physiol 2025; 301:111804. [PMID: 39756790 DOI: 10.1016/j.cbpa.2025.111804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 11/28/2024] [Accepted: 01/02/2025] [Indexed: 01/07/2025]
Abstract
The zig-zag eel exhibits both sexual dimorphism and sex reversal, making it crucial to understand the mechanisms of sex determination and differentiation. Additionally, the wild populations of the zig-zag eel are significantly declining, emphasizing the need for urgent conservation efforts. In this study, we identified 7 Dmrt, 62 HMG-box, and 73 TGF-β family members in the zig-zag eel genome. Evolutionary analysis revealed that the HMG-box and TGF-β families in the zig-zag eel are primarily characterized by purifying selection. Furthermore, we identified 52 differentially expressed genes between males and females, with more male-biased genes than female-biased genes within these three gene families. ZzDmrt2a was highly expressed in the ovary, while ZzDmrt2b was highly expressed in the testis. Interestingly, Zzgdf9, located on the Y chromosome, was significantly expressed in the ovary. Our results highlight the complexity of sex differentiation mechanisms and underscores the importance of further research to elucidate the specific functions and regulatory networks of these sex-biased genes. Such insights could inform breeding strategies in aquaculture, contributing to the conservation and management of the zig-zag eel.
Collapse
Affiliation(s)
- Yuanyuan Wang
- Key Laboratory of Prevention and Control for Aquatic Invasive Alien Species, Ministry of Agriculture and Rural Affairs, Guangdong Modern Recreational Fisheries Engineering Technology Center, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
| | - Fangyu Cui
- Key Laboratory of Prevention and Control for Aquatic Invasive Alien Species, Ministry of Agriculture and Rural Affairs, Guangdong Modern Recreational Fisheries Engineering Technology Center, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; Shanghai Ocean University College of Fisheries and Life Science, Shanghai 201306, China
| | - Yexin Yang
- Key Laboratory of Prevention and Control for Aquatic Invasive Alien Species, Ministry of Agriculture and Rural Affairs, Guangdong Modern Recreational Fisheries Engineering Technology Center, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
| | - Haiyan Liang
- Agricultural and Rural Bureau of Zengcheng District, Guangzhou 511300, China
| | - Yuli Wu
- Agro-Tech Extension Center of Guangdong Province, Guangzhou 510520, China
| | - Aiguo Zhou
- South China Agricultural University, Guangzhou 510642, China
| | - Yi Liu
- Key Laboratory of Prevention and Control for Aquatic Invasive Alien Species, Ministry of Agriculture and Rural Affairs, Guangdong Modern Recreational Fisheries Engineering Technology Center, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
| | - Zhiyong Jiang
- Agro-Tech Extension Center of Guangdong Province, Guangzhou 510520, China
| | - Jintao Peng
- Guangzhou Heshenghui Agricultural Technology Co., Ltd., Guangzhou 511300, China
| | - Xidong Mu
- Key Laboratory of Prevention and Control for Aquatic Invasive Alien Species, Ministry of Agriculture and Rural Affairs, Guangdong Modern Recreational Fisheries Engineering Technology Center, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Guangzhou 510380, China.
| |
Collapse
|
3
|
Zhao H, Li J, Xiao Z, Xiao Y. Dose-dependent role of AMH and AMHR2 signaling in male differentiation and regulation of sex determination in Spotted knifejaw (Oplegnathus punctatus) with X 1X 1X 2X 2/X 1X 2Y chromosome system. Cell Commun Signal 2025; 23:59. [PMID: 39893368 PMCID: PMC11786412 DOI: 10.1186/s12964-025-02038-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 01/10/2025] [Indexed: 02/04/2025] Open
Abstract
Sex determination mechanisms vary significantly across different chromosomal systems and evolutionary contexts. Nonetheless, the regulatory framework governing the multi-sex chromosome system (X1X1X2X2/X1X2Y) remains enigmatic. Through an examination of sex-related genes (dmrt1, hsd11b2, amh, sox9a, sox9b, foxl2, cyp19a), hormonal influences (E2, 11-KT), and histological analyses of gonadal development, we demonstrate that the critical period for sexual differentiation occurs between 35 to 60 days post-hatching (dph). Our multi-omics analysis identified amhr2 as a candidate sex-determining gene, revealing that the males possess three distinct amhr2 transcripts (amhr2ay, amhr2by, amhr2cy), whereas females express only one (amhr2a). In situ hybridization assays demonstrated that amhr2 is predominantly localized to primary spermatocyte and Sertoli cells of male testes. Notably, the specific mRNA expression of amhr2 is significantly enriched in amhr2cy, whose extracellular domain exhibits the highest binding affinity for Amh protein, with sexual expression differences manifesting as early as 5 dph. The outcomes of amhr2 interference (RNAi) experiments indicate that amhr2 knockdown leads to a reduction in the expression of male-related gene (dmrt1, amh, sox9a, sox9b), androgen synthesis genes (hsd11b2, cyp11a), and female-related genes (wnt4, foxl2, cyp19a, cyp19b). Conversely, overexpression of amhr2 yielded contrasting results. Our research supports the role of amhr2 as a pivotal candidate sex-determining gene. Furthermore, the dosage effect of amhr2, reflected in transcript abundance, mRNA expression levels, and binding efficacy, serves as a fundamental mechanism driving male differentiation and regulatory processes in Spotted knifejaw.
Collapse
Affiliation(s)
- Haixia Zhao
- State Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Chinese Academy of Sciences (CAS), Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China
- Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Marine Biology Institute of Shandong Province, Qingdao, Shandong, China
| | - Jun Li
- State Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Chinese Academy of Sciences (CAS), Qingdao, China.
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China.
- Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.
| | - Zhizhong Xiao
- State Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Chinese Academy of Sciences (CAS), Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China
- Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Yongshuang Xiao
- State Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Chinese Academy of Sciences (CAS), Qingdao, China.
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China.
- Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.
| |
Collapse
|
4
|
Rastari M, Askari M, McElreavey K, Bashamboo A, Rokhsattalab Z, Razzaghy-Azar M, Bakhshi M, Totonchi M. Clinical and genetic diagnosis of first cohort of differences of sexual development in the Iranian population. J Pediatr Endocrinol Metab 2025:jpem-2024-0352. [PMID: 39829003 DOI: 10.1515/jpem-2024-0352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 01/06/2025] [Indexed: 01/22/2025]
Abstract
Differences of sex development (DSD) refer to various congenital conditions affecting the urogenital and hormonal systems. Accurate diagnosis and personalized management are crucial for supporting patients through complex decisions, such as those related to gender identity. This study represents the first comprehensive investigation into DSD in Iran, analyzing patient's clinical and genetic data between 1991 and 2020. Karyotype analysis was performed on 69 patients without a molecular diagnosis, with sex chromosome DSD excluded. Presence of SRY gene evaluated in all sex reversal patients. Whole exome sequencing (WES) was used for 26 undiagnosed patients, revealing pathogenic variants in WT1, NR5A1, DHX37, AR, CYP17A1, and LHCGR genes. The most common diagnosis was testicular TDSD, identified in 42 patients (60.86 %), with the SRY gene being the primary cause in 36 of these patients. The study highlights the importance of genetic analysis in identifying novel and rare gene variants, particularly within the steroid hormone and gonad differentiation pathways, for both 46, XY and 46, XX DSD. These findings emphasize the need for genetic analysis in providing personalized patient care and tailored counseling to help individuals navigate complex decisions, including those involving gender identity.
Collapse
Affiliation(s)
- Mandana Rastari
- Department of Genetics, Reproductive Biomedicine Research Center, 48499 Royan Institute for Reproductive Biomedicine, ACECR , Tehran, Iran
| | - Masomeh Askari
- Department of Genetics, Reproductive Biomedicine Research Center, 48499 Royan Institute for Reproductive Biomedicine, ACECR , Tehran, Iran
| | | | - Anu Bashamboo
- Human Developmental Genetics, Institute Pasteur, Paris, France
| | - Zeinab Rokhsattalab
- Department of Genetics, Reproductive Biomedicine Research Center, 48499 Royan Institute for Reproductive Biomedicine, ACECR , Tehran, Iran
| | - Maryam Razzaghy-Azar
- Metabolic Disorders Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahdieh Bakhshi
- Department of Genetics, Reproductive Biomedicine Research Center, 48499 Royan Institute for Reproductive Biomedicine, ACECR , Tehran, Iran
| | - Mehdi Totonchi
- Department of Genetics, Reproductive Biomedicine Research Center, 48499 Royan Institute for Reproductive Biomedicine, ACECR , Tehran, Iran
| |
Collapse
|
5
|
Hatkevich T, Tezak BM, Acemel RD, Yee Chung VW, Lupiáñez DG, Capel B. Gonadal sex and temperature independently influence germ cell differentiation and meiotic progression in Trachemys scripta. Proc Natl Acad Sci U S A 2025; 122:e2413191121. [PMID: 39793067 PMCID: PMC11725912 DOI: 10.1073/pnas.2413191121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 10/30/2024] [Indexed: 01/12/2025] Open
Abstract
In species with genetic sex determination (GSD), the sex identity of the soma determines germ cell fate. For example, in mice, XY germ cells that enter an ovary differentiate as oogonia, whereas XX germ cells that enter a testis initiate differentiation as spermatogonia. However, numerous species lack a GSD system and instead display temperature-dependent sex determination (TSD). In the red-eared slider turtle, Trachemys scripta, a TSD model species with a warm female promoting temperature (FPT) and cool male promoting temperature (MPT) system, temperature directly affects germ cell number. In this study, we examined whether temperature directly affects other aspects of germ cell differentiation/sex identity. We uncoupled temperature and the sexual fate of the gonad by incubating eggs at MPT and treating with 17β-estradiol, a scheme that invariably produces ovaries. Through analysis of meiotic spreads, we showed that germ cells in FPT ovaries follow the typical pattern of initiating meiosis and progress through prophase I. However, in E2-induced ovaries that incubated at MPT, germ cells entered prophase I yet fail to exhibit synapsis. These results, combined with our single-cell transcriptome analysis, reveal a direct effect of temperature on germ cell sexual differentiation independent of its effect on the gonadal soma. These results imply that not all events of meiosis are under somatic control, at least not in this TSD species.
Collapse
Affiliation(s)
- Talia Hatkevich
- Department of Cell Biology, Duke University Medical Center, Durham, NC27701
| | - Boris M. Tezak
- Department of Cell Biology, Duke University Medical Center, Durham, NC27701
- Biology Department, Wesleyan University, Middletown, CT06459
| | - Rafael D. Acemel
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin Institute for Medical Systems Biology, Epigenetics and Sex Development Group, Berlin10115, Germany
- Centro Andaluz de Biología del Desarrollo, Consejo Superior de Investigaciones Científicas, Universidad Pablo de Olavide, Junta de Andalucía, Seville41013, Spain
| | - Vicky Wai Yee Chung
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin Institute for Medical Systems Biology, Epigenetics and Sex Development Group, Berlin10115, Germany
| | - Dario G. Lupiáñez
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin Institute for Medical Systems Biology, Epigenetics and Sex Development Group, Berlin10115, Germany
- Centro Andaluz de Biología del Desarrollo, Consejo Superior de Investigaciones Científicas, Universidad Pablo de Olavide, Junta de Andalucía, Seville41013, Spain
| | - Blanche Capel
- Department of Cell Biology, Duke University Medical Center, Durham, NC27701
| |
Collapse
|
6
|
Lu L, Wang T, Liu A, Ye H. A Single-Cell Atlas of Crab Ovary Provides New Insights Into Oogenesis in Crustaceans. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2409688. [PMID: 39555715 PMCID: PMC11727118 DOI: 10.1002/advs.202409688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/23/2024] [Indexed: 11/19/2024]
Abstract
Oogenesis is crucial for sexual reproduction and provides the material basis for population continuation. Nonetheless, the identity of the cells involved, the nature of transformation, and underlying regulators of oogenesis in crustaceans remain elusive. Here, an atlas of the ovary is plotted via single-nuclei RNA sequencing (snRNA-seq) in the mud crab Scylla paramamosain, resulting in five cell types, including germ cells, somatic cells, and three follicle cell types identified, which in turn provides abundant candidate markers for them. Moreover, profiles of ligand-receptor in different cells of the crab ovary indicate the roles of cell communication in oogenesis. Dozens of transcription factors in the trajectory from oogonia to oocytes as well as the key molecules/pathways in somatic cells and follicle cells relevant to oogenesis are screened, which is evolutionarily conserved and its underlying regulatory mechanism is subject to some modification across various phyla. The spatiotemporal expression patterns of seven markers are further verified and the RNAi confirms the essential roles of piwi and VgR in oogenesis. These data help to elucidate the mechanism underlying gametogenesis and the evolution of reproductive strategy in invertebrates.
Collapse
Affiliation(s)
- Li Lu
- State Key Laboratory of Mariculture BreedingFisheries College of Jimei UniversityXiamenFujian361021China
| | - Tao Wang
- State Key Laboratory of Mariculture BreedingFisheries College of Jimei UniversityXiamenFujian361021China
| | - An Liu
- State Key Laboratory of Mariculture BreedingFisheries College of Jimei UniversityXiamenFujian361021China
| | - Haihui Ye
- State Key Laboratory of Mariculture BreedingFisheries College of Jimei UniversityXiamenFujian361021China
| |
Collapse
|
7
|
Pieplow C, Furze A, Gregory P, Oulhen N, Wessel GM. Sex specific gene expression is present prior to metamorphosis in the sea urchin. Dev Biol 2025; 517:217-233. [PMID: 39427857 DOI: 10.1016/j.ydbio.2024.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 08/26/2024] [Accepted: 10/14/2024] [Indexed: 10/22/2024]
Abstract
A profound collaboration between the germline and somatic cells of an organism is the creation of a functional gonad. Here we establish a foundation for studying molecular gonadogenesis in the sea urchin by use of RNA-seq, quantitative mRNA measurements, and in-situ hybridizations throughout the life cycle of the variegated sea urchin, Lytechinus variegatus (Lv). We found through three distinct analyses that the ovary and testis of this echinoderm expresses unique transcripts involved in gametogenesis, and also discovered uncharacterized gene products unique to each gonad. We further developed a pipeline integrating timepoint RNA-seq data throughout development to identify hallmark gene expression in gonads. We found that meiotic and candidate genes involved in sex determination are first expressed surprisingly early during larval growth, and well before metamorphosis. We further discovered that individual larvae express varying amounts of male- or female-hallmarks before metamorphosis, including germline, oocyte, sperm, and meiotic related genes. These distinct male- or female-gonad gene profiles may indicate the onset of, and commitment to, development of a bipotential gonad primordium, and may include metabolic differences, supported by the observation that transcripts involved in glycolysis are highly enriched in the ovary compared to the testis. Together these data support a hypothesis that sex determination is initiated prior to metamorphosis in the sea urchin and that the many uncharacterized genes unique to each gonad type characterized herein may reveal unique pathways and mechanisms in echinoderm reproduction.
Collapse
Affiliation(s)
- Cosmo Pieplow
- Department of Molecular, Cellular Biology and Biochemistry, BioMed Division, Brown University, 185 Meeting Street, Providence, RI, 02912, USA
| | - Aidan Furze
- Department of Molecular, Cellular Biology and Biochemistry, BioMed Division, Brown University, 185 Meeting Street, Providence, RI, 02912, USA
| | - Pauline Gregory
- Department of Molecular, Cellular Biology and Biochemistry, BioMed Division, Brown University, 185 Meeting Street, Providence, RI, 02912, USA
| | - Nathalie Oulhen
- Department of Molecular, Cellular Biology and Biochemistry, BioMed Division, Brown University, 185 Meeting Street, Providence, RI, 02912, USA
| | - Gary M Wessel
- Department of Molecular, Cellular Biology and Biochemistry, BioMed Division, Brown University, 185 Meeting Street, Providence, RI, 02912, USA.
| |
Collapse
|
8
|
Zhu Z, Younas L, Zhou Q. Evolution and regulation of animal sex chromosomes. Nat Rev Genet 2025; 26:59-74. [PMID: 39026082 DOI: 10.1038/s41576-024-00757-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/13/2024] [Indexed: 07/20/2024]
Abstract
Animal sex chromosomes typically carry the upstream sex-determining gene that triggers testis or ovary development and, in some species, are regulated by global dosage compensation in response to functional decay of the Y chromosome. Despite the importance of these pathways, they exhibit striking differences across species, raising fundamental questions regarding the mechanisms underlying their evolutionary turnover. Recent studies of non-model organisms, including insects, reptiles and teleosts, have yielded a broad view of the diversity of sex chromosomes that challenges established theories. Moreover, continued studies in model organisms with recently developed technologies have characterized the dynamics of sex determination and dosage compensation in three-dimensional nuclear space and at single-cell resolution. Here, we synthesize recent insights into sex chromosomes from a variety of species to review their evolutionary dynamics with respect to the canonical model, as well as their diverse mechanisms of regulation.
Collapse
Affiliation(s)
- Zexian Zhu
- Evolutionary and Organismal Biology Research Center and Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Lubna Younas
- Department of Neuroscience and Developmental Biology, University of Vienna, Vienna, Austria
| | - Qi Zhou
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, China.
- State Key Laboratory of Transvascular Implantation Devices, The 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
9
|
Ripa A, Palacios-Gonzalez MJ, Díaz-Caballero JA, Espinosa A, Zalba FJ, García-Zapata JL, Fernádez-García JL. Molecular Method Based on Hydrolysis Probe Assays to Identify the Sex Chromosomes of Iberian Desman (Galemys pyrenaicus) Using Non-Invasive Sampling. Integr Zool 2024. [PMID: 39648044 DOI: 10.1111/1749-4877.12933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 09/12/2024] [Accepted: 10/30/2024] [Indexed: 12/10/2024]
Abstract
Desmans belong to the subfamily Desmaninae, which are members of the family Talpidae. Desmans and moles show limited sexual dimorphism, making unclear sex discrimination by phenotypic assessment. The Iberian desman (Galemys pyrenaicus) is an endangered species with a severe population decline. Knowledge of sex and sex ratio is essential for conservation and management. Based on these arguments and although previous conventional PCR studies amplifying DBX/DBY genes were relatively successful in sexing the desman, high-resolution sex-specific PCR has been requested. All these reasons encouraged us to develop new species-specific RT-qPCR assays by TaqMan probes to determine the sex in desman, especially with genetic material from non-invasive samples. Accordingly, efficiency, limit of detection (LOD), specificity, and DNA analysis from faeces were verified. The target genes DBX and DBY were amplified with gDNA from both sexes, with Y-chromosome consistently absent in the female. Despite the modest efficiency, regression analysis (R2 > 0.999) indicated a linear range of the DBX and DBY assays extending from 20 to 0.2 ng/µL DNA. LOD analyses estimated that twice as much gDNA was needed in males as in females for DBX detection. Paradoxically, the Y-chromosome required three times as much gDNA as the X-chromosome using a male sample. Therefore, an unexpected dosage imbalance in the genome in favour of the X chromosome was discussed in light of an apparent multicopy nature of the DBX gene and with a sexing success rate of 49.9% of the non-invasive samples, supporting Fisher's principle for the mammalian XX/XY sex system, as expected.
Collapse
Affiliation(s)
- Adriana Ripa
- Genetic and Animal Breeding, Faculty of Veterinary, Universidad de Extremadura, Cáceres, Spain
| | | | - José A Díaz-Caballero
- Dirección General de Sostenibilidad, Junta de Extremadura, Mérida, Spain
- Área del Medio Natural, Sociedad de Gestión Pública de Extremadura (GPEX), Junta de Extremadura, Mérida, Spain
| | - Antonio Espinosa
- Genetic and Animal Breeding, Faculty of Veterinary, Universidad de Extremadura, Cáceres, Spain
| | - Francisco Javier Zalba
- Área del Medio Natural, Sociedad de Gestión Pública de Extremadura (GPEX), Junta de Extremadura, Mérida, Spain
| | | | | |
Collapse
|
10
|
Purcell J, Brelsford A. Supergenes in organismal and social development of insects: ideas and opportunities. CURRENT OPINION IN INSECT SCIENCE 2024; 68:101303. [PMID: 39647247 DOI: 10.1016/j.cois.2024.101303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/14/2024] [Accepted: 11/18/2024] [Indexed: 12/10/2024]
Abstract
Supergenes, or regions of the genome containing two or more linked functional mutations that control complex traits, are emerging as a common genetic basis for many striking phenotypic polymorphisms in insects. Now that we know that supergenes are common, we can seek common features of diverse supergene systems. Here, we lay out a framework of open questions (see graphical abstract) that can be addressed separately in each system and, ultimately, compared across systems to seek general patterns in supergene evolution. Few empirical studies have investigated what causes new supergene haplotypes to initially increase in frequency, but to not eventually fix in a population. Resolving the genotype-phenotype connection and isolating functional genes will provide more insight into the forms of selecting shaping supergene evolution. Ultimately, research on supergenes will help to broaden our understanding of how recombination rate variation influences the evolutionary trajectories of sexually reproducing organisms.
Collapse
Affiliation(s)
- Jessica Purcell
- Department of Entomology, University of California, Riverside, Riverside, CA 92521, USA.
| | - Alan Brelsford
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, Riverside, CA 92521, USA
| |
Collapse
|
11
|
Lu Y, Li M, Gao Z, Ma H, Chong Y, Hong J, Wu J, Wu D, Xi D, Deng W. Innovative Insights into Single-Cell Technologies and Multi-Omics Integration in Livestock and Poultry. Int J Mol Sci 2024; 25:12940. [PMID: 39684651 DOI: 10.3390/ijms252312940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/28/2024] [Accepted: 11/30/2024] [Indexed: 12/18/2024] Open
Abstract
In recent years, single-cell RNA sequencing (scRNA-seq) has marked significant strides in livestock and poultry research, especially when integrated with multi-omics approaches. These advancements provide a nuanced view into complex regulatory networks and cellular dynamics. This review outlines the application of scRNA-seq in key species, including poultry, swine, and ruminants, with a focus on outcomes related to cellular heterogeneity, developmental biology, and reproductive mechanisms. We emphasize the synergistic power of combining scRNA-seq with epigenomic, proteomic, and spatial transcriptomic data, enhancing molecular breeding precision, optimizing health management strategies, and refining production traits in livestock and poultry. The integration of these technologies offers a multidimensional approach that not only broadens the scope of data analysis but also provides actionable insights for improving animal health and productivity.
Collapse
Affiliation(s)
- Ying Lu
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Mengfei Li
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Zhendong Gao
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Hongming Ma
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Yuqing Chong
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Jieyun Hong
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Jiao Wu
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Dongwang Wu
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Dongmei Xi
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Weidong Deng
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
- State Key Laboratory for Conservation and Utilization of Bio-Resource in Yunnan, Kunming 650201, China
| |
Collapse
|
12
|
Kocher TD, Meisel RP, Gamble T, Behrens KA, Gammerdinger WJ. Yes, polygenic sex determination is a thing! Trends Genet 2024; 40:1001-1017. [PMID: 39505660 DOI: 10.1016/j.tig.2024.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 09/29/2024] [Accepted: 10/10/2024] [Indexed: 11/08/2024]
Abstract
The process of sexual development in animals is modulated by a variety of mechanisms. Some species respond to environmental cues, while, in others, sex determination is thought to be controlled by a single 'master regulator' gene. However, many animals respond to a combination of environmental cues (e.g., temperature) and genetic factors (e.g., sex chromosomes). Even among species in which genetic factors predominate, there is a continuum between monofactorial and polygenic systems. The perception that polygenic systems are rare may result from experiments that lack the statistical power to detect multiple loci. Intellectual biases against the existence of polygenic sex determination (PSD) may further arise from misconceptions about the regulation of developmental processes and a misreading of theoretical results on the stability of polygenic systems of sex determination.
Collapse
Affiliation(s)
- Thomas D Kocher
- Department of Biology, University of Maryland, College Park, MD 20742, USA.
| | - Richard P Meisel
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA
| | - Tony Gamble
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53201, USA
| | - Kristen A Behrens
- Department of Biology, University of Maryland, College Park, MD 20742, USA
| | | |
Collapse
|
13
|
Branciamore S, Rodin AS, Riggs AD. Stochastic Epigenetic Modification and Evolution of Sex Determination in Vertebrates. J Mol Evol 2024; 92:861-873. [PMID: 39565411 PMCID: PMC11646274 DOI: 10.1007/s00239-024-10213-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 10/19/2024] [Indexed: 11/21/2024]
Abstract
In this report, we propose a novel mathematical model of the origin and evolution of sex determination in vertebrates that is based on the stochastic epigenetic modification (SEM) mechanism. We have previously shown that SEM, with rates consistent with experimental observation, can both increase the rate of gene fixation and decrease pseudogenization, thus dramatically improving the efficacy of evolution. Here, we present a conjectural model of the origin and evolution of sex determination wherein the SEM mechanism alone is sufficient to parsimoniously trigger and guide the evolution of heteromorphic sex chromosomes from the initial homomorphic chromosome configuration, without presupposing any allele frequency differences. Under this theoretical model, the SEM mechanism (i) predated vertebrate sex determination origins and evolution, (ii) has been conveniently and parsimoniously co-opted by the vertebrate sex determination systems during the evolutionary transitioning to the extant vertebrate sex determination, likely acting "on top" of these systems, and (iii) continues existing, alongside all known vertebrate sex determination systems, as a universal pan-vertebrate sex determination modulation mechanism.
Collapse
Affiliation(s)
- Sergio Branciamore
- Department of Computational and Quantitative Medicine, Beckman Research Institute of City of Hope, Duarte, USA.
| | - Andrei S Rodin
- Department of Computational and Quantitative Medicine, Beckman Research Institute of City of Hope, Duarte, USA.
| | - Arthur D Riggs
- Diabetes and Metabolism Research Institute, Beckman Research Institute of City of Hope, Duarte , USA
| |
Collapse
|
14
|
Yan J, Fang L, Zhao Z, Su X, Xi M, Huang Y, Li J, Chang R, Zhang W, Qian Q, Wang Z, Wang H. Adolescent exposure to tris(1,3-dichloro-2-propyl) phosphate (TCPP) induces reproductive toxicity in zebrafish through hypothalamic-pituitary-gonadal axis disruption. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 953:176096. [PMID: 39260506 DOI: 10.1016/j.scitotenv.2024.176096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 09/03/2024] [Accepted: 09/04/2024] [Indexed: 09/13/2024]
Abstract
Tris(1,3-dichloro-2-propyl) phosphate (TCPP), a prevalent organophosphorus flame retardant in aquatic environments, has raised significant concerns regarding its ecological risks. This study aims to explore the impacts of TCPP on the reproductive functions of zebrafish and delineate its gender-related toxic mechanisms. By assessing the effects on zebrafish of 10 mg/L TCPP exposure from 30 to 120 days post-fertilization (dpf), we thoroughly evaluated the reproductive capability and endocrine system alterations. Our findings indicated that TCPP exposure disrupted gender differentiation in zebrafish and markedly impaired their reproductive capacity, resulting in decreased egg laying and offspring development quality. Histological analyses of gonadal tissues showed an abnormal increase in immature oocytes in females and a reduction in mature sperm count and spermatogonial structure integrity in males, collectively leading to compromised embryo quality. Additionally, molecular docking results indicated that TCPP showed a strong affinity for estrogen receptors, and TCPP-treated zebrafish exhibited imbalanced sex hormones and increased estrogen receptor expression. Alterations in genes associated with the hypothalamic-pituitary-gonadal (HPG) axis and activation of the steroidogenesis pathway suggested that TCPP targets the HPG axis to regulate sex hormone homeostasis. Tamoxifen (TAM), as a competitive inhibitor of estrogen, exhibited a biphasic effect, as evidenced by the counteraction of TCPP-induced effects in both male and female zebrafish after TAM addition. Overall, our study underscored the gender-dependent reproductive toxicity of TCPP exposure in zebrafish, characterized by diminished reproductive capacity and hormonal disturbances, likely due to interference in the HPG axis and steroidogenesis pathways. These findings emphasize the critical need to consider gender differences in chemical risk assessments for ecosystems and highlight the importance of understanding the mechanisms underlying the effects of chemical pollutants on the reproductive health of aquatic species.
Collapse
Affiliation(s)
- Jin Yan
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Lu Fang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Zijia Zhao
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Xincong Su
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Miaocui Xi
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Yue Huang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Jiahang Li
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Runfeng Chang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Wenjun Zhang
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Qiuhui Qian
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Zejun Wang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Huili Wang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China.
| |
Collapse
|
15
|
Zhou Q, Wang J, Li J, Chen Z, Wang N, Li M, Wang L, Si Y, Lu S, Cui Z, Liu X, Chen S. Decoding the fish genome opens a new era in important trait research and molecular breeding in China. SCIENCE CHINA. LIFE SCIENCES 2024; 67:2064-2083. [PMID: 39145867 DOI: 10.1007/s11427-023-2670-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 07/01/2024] [Indexed: 08/16/2024]
Abstract
Aquaculture represents the fastest-growing global food production sector, as it has become an essential component of the global food supply. China has the world's largest aquaculture industry in terms of production volume. However, the sustainable development of fish culture is hindered by several concerns, including germplasm degradation and disease outbreaks. The practice of genomic breeding, which relies heavily on genome information and genotypephenotype relationships, has significant potential for increasing the efficiency of aquaculture production. In 2014, the completion of the genome sequencing and annotation of the Chinese tongue sole signified the beginning of the fish genomics era in China. Since then, domestic researchers have made dramatic progress in functional genomic studies. To date, the genomes of more than 60 species of fish in China have been assembled and annotated. Based on these reference genomes, evolutionary, comparative, and functional genomic studies have revolutionized our understanding of a wide range of biologically and economically important traits of fishes, including growth and development, sex determination, disease resistance, metamorphosis, and pigmentation. Furthermore, genomic tools and breeding techniques such as SNP arrays, genomic selection, and genome editing have greatly accelerated genetic improvement through the incorporation of functional genomic information into breeding activities. This review aims to summarize the current status, advances, and perspectives of the genome resources, genomic study of important traits, and genomic breeding techniques of fish in China. The review will provide aquaculture researchers, fish breeders, and farmers with updated information concerning fish genomic research and breeding technology. The summary will help to promote the genetic improvement of production traits and thus will support the sustainable development of fish aquaculture.
Collapse
Affiliation(s)
- Qian Zhou
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong, 266237, China
| | - Jialin Wang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong, 266237, China
| | - Jiongtang Li
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory of Fishery Biotechnology, Chinese Academy of Fishery Sciences, Beijing, 100041, China
| | - Zhangfan Chen
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong, 266237, China
| | - Na Wang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong, 266237, China
| | - Ming Li
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong, 266237, China
| | - Lei Wang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong, 266237, China
| | - Yufeng Si
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong, 266237, China
| | - Sheng Lu
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong, 266237, China
| | - Zhongkai Cui
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong, 266237, China
| | - Xuhui Liu
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong, 266237, China
| | - Songlin Chen
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, 266071, China.
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong, 266237, China.
| |
Collapse
|
16
|
Dai S, Li M, Yuan J, Wei X, Ma E, Wang D, Li M. dmrt1 Is Responsible for Androgen-Induced Masculinization in Nile Tilapia. Genes (Basel) 2024; 15:1238. [PMID: 39336829 PMCID: PMC11431369 DOI: 10.3390/genes15091238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/11/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024] Open
Abstract
17α-Methyltestosterone (MT) is a widely used androgen for all-male fish production in aquaculture. However, the molecular mechanism underlying MT-induced masculinization remains unclear. In this study, we aim to identify the key gene responsible for MT-induced masculinization using the Nile tilapia (Oreochromis niloticus) amhy, dmrt1, and gsdf mutants, which exhibit male-to-female sex reversal. Nile tilapia fry from these three mutant lines were treated with 50 μg/g MT from 5 to 30 days after hatching (dah). The results showed that amhy and gsdf mutants, but not dmrt1 mutants, were masculinized by the MT treatment. Gonadal transcriptome analysis revealed that genes involved in steroidogenesis and germ cell development in MT-treated dmrt1 mutants exhibited a similar expression pattern to that of the wild type (WT) XX. In addition, the dmrt1 mutants cannot be masculinized by co-treatment with MT and the aromatase inhibitor fadrozole. The MT treatment completely blocked early steroidogenic enzyme (Star2, Cyp17a2, and Cyp19a1a) expression independent of amhy, gsdf, and dmrt1. A luciferase analysis showed that MT directly suppressed basal and Sf-1-activated cyp19a1a promoter activity through ara and arb in cultured HEK293 cells. Furthermore, MT treatment inhibited germ cell proliferation in amhy and gsdf mutants but not in dmrt1 mutants. Consistently, dmrt1 expression was induced in MT-treated WT XX, -amhy, and -gsdf mutants. Taken together, these results suggest that dmrt1 is indispensable for MT-induced masculinization in Nile tilapia and that MT functions by inhibiting early steroid synthesis and activating dmrt1 to promote testis development.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Minghui Li
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Chongqing Municipality for Aquatic Economic Animal Resources Conservation and Germplasm Creation, School of Life Sciences, Southwest University, Chongqing 400715, China; (S.D.); (M.L.); (J.Y.); (X.W.); (E.M.); (D.W.)
| |
Collapse
|
17
|
Yu H, Du X, Chen X, Liu L, Wang X. Transforming growth factor-β (TGF-β): A master signal pathway in teleost sex determination. Gen Comp Endocrinol 2024; 355:114561. [PMID: 38821217 DOI: 10.1016/j.ygcen.2024.114561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 02/27/2024] [Accepted: 05/28/2024] [Indexed: 06/02/2024]
Abstract
Sex determination and differentiation in fish has always been a hot topic in genetic breeding of aquatic animals. With the advances in next-generation sequencing (NGS) in recent years, sex chromosomes and sex determining genes can be efficiently identified in teleosts. To date, master sex determination genes have been elucidated in 114 species, of which 72 species have sex determination genes belonging to TGF-β superfamily. TGF-β is the only signaling pathway that the largest proportion of components, which including ligands (amhy, gsdfy, gdf6), receptors (amhr, bmpr), and regulator (id2bby), have opportunity recognized as a sex determination gene. In this review, we focus on the recent studies about teleost sex-determination genes within TGF-β superfamily and propose several hypotheses on how these genes regulate sex determination process. Differing from other reviews, our review specifically devotes significant attention to all members of the TGF-β signal pathway, not solely the sex determination genes within the TGF-β superfamily. However, the functions of the paralogous genes of TGF superfamily are still needed ongoing research. Further studies are required to more accurately interpret the molecular mechanism of TGF-β superfamily sex determination genes.
Collapse
Affiliation(s)
- Haiyang Yu
- School of Life Science and Engineering, Jining University, Qufu, Shandong, China
| | - Xinxin Du
- School of Life Science and Engineering, Jining University, Qufu, Shandong, China
| | - Xue Chen
- School of Resource & Environment and Safety Engineering, Jining University, Qufu, Shandong, China
| | - Longxue Liu
- School of Life Science and Engineering, Jining University, Qufu, Shandong, China
| | - Xubo Wang
- Key Laboratory of Aquacultural Biotechnology (Ningbo University), Ministry of Education, Ningbo, Zhejiang, China.
| |
Collapse
|
18
|
Shi J, Sheng D, Guo J, Zhou F, Wu S, Tang H. Identification of BiP as a temperature sensor mediating temperature-induced germline sex reversal in C. elegans. EMBO J 2024; 43:4020-4048. [PMID: 39134659 PMCID: PMC11405683 DOI: 10.1038/s44318-024-00197-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 07/02/2024] [Accepted: 07/17/2024] [Indexed: 09/18/2024] Open
Abstract
Sex determination in animals is not only determined by karyotype but can also be modulated by environmental cues like temperature via unclear transduction mechanisms. Moreover, in contrast to earlier views that sex may exclusively be determined by either karyotype or temperature, recent observations suggest that these factors rather co-regulate sex, posing another mechanistic mystery. Here, we discovered that certain wild-isolated and mutant C. elegans strains displayed genotypic germline sex determination (GGSD), but with a temperature-override mechanism. Further, we found that BiP, an ER chaperone, transduces temperature information into a germline sex-governing signal, thereby enabling the coexistence of GGSD and temperature-dependent germline sex determination (TGSD). At the molecular level, increased ER protein-folding requirements upon increased temperatures lead to BiP sequestration, resulting in ERAD-dependent degradation of the oocyte fate-driving factor, TRA-2, thus promoting male germline fate. Remarkably, experimentally manipulating BiP or TRA-2 expression allows to switch between GGSD and TGSD. Physiologically, TGSD allows C. elegans hermaphrodites to maintain brood size at warmer temperatures. Moreover, BiP can also influence germline sex determination in a different, non-hermaphroditic nematode species. Collectively, our findings identify thermosensitive BiP as a conserved temperature sensor in TGSD, and provide mechanistic insights into the transition between GGSD and TGSD.
Collapse
Affiliation(s)
- Jing Shi
- Fudan University, 200433, Shanghai, China
- Westlake Laboratory of Life Sciences and Biomedicine, 310024, Hangzhou, China
- Research Center for Industries of the Future, Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
- Institute of Biology, Westlake Institute for Advanced Study, 310024, Hangzhou, Zhejiang, China
| | - Danli Sheng
- Fudan University, 200433, Shanghai, China
- Westlake Laboratory of Life Sciences and Biomedicine, 310024, Hangzhou, China
- Research Center for Industries of the Future, Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
- Institute of Biology, Westlake Institute for Advanced Study, 310024, Hangzhou, Zhejiang, China
| | - Jie Guo
- Westlake Laboratory of Life Sciences and Biomedicine, 310024, Hangzhou, China
- Research Center for Industries of the Future, Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
- Institute of Biology, Westlake Institute for Advanced Study, 310024, Hangzhou, Zhejiang, China
| | - Fangyuan Zhou
- Westlake Laboratory of Life Sciences and Biomedicine, 310024, Hangzhou, China
| | - Shaofeng Wu
- Westlake Laboratory of Life Sciences and Biomedicine, 310024, Hangzhou, China
| | - Hongyun Tang
- Fudan University, 200433, Shanghai, China.
- Westlake Laboratory of Life Sciences and Biomedicine, 310024, Hangzhou, China.
- Research Center for Industries of the Future, Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China.
- Institute of Biology, Westlake Institute for Advanced Study, 310024, Hangzhou, Zhejiang, China.
| |
Collapse
|
19
|
Wankanit S, Zidoune H, Bignon-Topalovic J, Schlick L, Houzelstein D, Fusée L, Boukri A, Nouri N, McElreavey K, Bashamboo A, Elzaiat M. Evidence for NR2F2/COUP-TFII involvement in human testis development. Sci Rep 2024; 14:17869. [PMID: 39090159 PMCID: PMC11294483 DOI: 10.1038/s41598-024-68860-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024] Open
Abstract
NR2F2 encodes COUP-TFII, an orphan nuclear receptor required for the development of the steroidogenic lineages of the murine fetal testes and ovaries. Pathogenic variants in human NR2F2 are associated with testis formation in 46,XX individuals, however, the function of COUP-TFII in the human testis is unknown. We report a de novo heterozygous variant in NR2F2 (c.737G > A, p.Arg246His) in a 46,XY under-masculinized boy with primary hypogonadism. The variant, located within the ligand-binding domain, is predicted to be highly damaging. In vitro studies indicated that the mutation does not impact the stability or subcellular localization of the protein. NR5A1, a related nuclear receptor that is a key factor in gonad formation and function, is known to physically interact with COUP-TFII to regulate gene expression. The mutant protein did not affect the physical interaction with NR5A1. However, in-vitro assays demonstrated that the mutant protein significantly loses the inhibitory effect on NR5A1-mediated activation of both the LHB and INSL3 promoters. The data support a role for COUP-TFII in human testis formation. Although mutually antagonistic sets of genes are known to regulate testis and ovarian pathways, we extend the list of genes, that together with NR5A1 and WT1, are associated with both 46,XX and 46,XY DSD.
Collapse
Affiliation(s)
- Somboon Wankanit
- Human Developmental Genetics Unit, CNRS UMR 3738, Institut Pasteur, 75015, Paris, France
- Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, 10400, Thailand
| | - Housna Zidoune
- Human Developmental Genetics Unit, CNRS UMR 3738, Institut Pasteur, 75015, Paris, France
- Department of Animal Biology, Laboratory of Molecular and Cellular Biology, University Frères Mentouri Constantine 1, 25017, Constantine, Algeria
| | | | - Laurène Schlick
- Human Developmental Genetics Unit, CNRS UMR 3738, Institut Pasteur, 75015, Paris, France
| | - Denis Houzelstein
- Human Developmental Genetics Unit, CNRS UMR 3738, Institut Pasteur, 75015, Paris, France
| | - Leila Fusée
- Human Developmental Genetics Unit, CNRS UMR 3738, Institut Pasteur, 75015, Paris, France
| | - Asma Boukri
- Department of Endocrinology and Diabetology, CHU Ibn Badis Constantine, Constantine, Algeria
- Metabolic Disease Research Laboratory, Salah Boubnider Constantine 3 University, El Khroub, Algeria
| | - Nassim Nouri
- Department of Endocrinology and Diabetology, CHU Ibn Badis Constantine, Constantine, Algeria
- Metabolic Disease Research Laboratory, Salah Boubnider Constantine 3 University, El Khroub, Algeria
| | - Ken McElreavey
- Human Developmental Genetics Unit, CNRS UMR 3738, Institut Pasteur, 75015, Paris, France
| | - Anu Bashamboo
- Human Developmental Genetics Unit, CNRS UMR 3738, Institut Pasteur, 75015, Paris, France
| | - Maëva Elzaiat
- Human Developmental Genetics Unit, CNRS UMR 3738, Institut Pasteur, 75015, Paris, France.
| |
Collapse
|
20
|
Shen X, Yan H, Hu M, Zhou H, Wang J, Gao R, Liu Q, Wang X, Liu Y. The potential regulatory role of the non-coding RNAs in regulating the exogenous estrogen-induced feminization in Takifugu rubripes gonad. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 273:107022. [PMID: 39032423 DOI: 10.1016/j.aquatox.2024.107022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 07/06/2024] [Accepted: 07/08/2024] [Indexed: 07/23/2024]
Abstract
Estrogen plays a pivotal role in the early stage of sex differentiation in teleost. However, the underlying mechanisms of estrogen-induced feminization process are still needed for further clarification. Here, the comparative analysis of whole-transcriptome RNA sequencing was conducted between 17beta-Estradiol induced feminized XY (E-XY) gonads and control gonads (C) in Takifugu rubripes. A total of 57 miRNAs, 65 lncRNAs, and 4 circRNAs were found to be expressed at lower levels in control-XY (C-XY) than that in control-XX (C-XX), and were up-regulated in XY during E2-induced feminization process. The expression levels of 24 miRNAs, and 55 lncRNAs were higher in C-XY than that in C-XX, and were down-regulated in E2-treated XY. Furthermore, a correlation analysis was performed between miRNA-seq and mRNA-seq data. In C-XX/C-XY, 114 differential expression (DE) miRNAs were predicted to target to 904 differential expression genes (DEGs), while in C-XY/E-XY, 226 DEmiRNAs were predicted to target to 2,048 DEGs. In C-XX/C-XY, and C-XY/E-XY, KEGG pathway enrichment analysis showed that those targeted genes were mainly enriched in MAPK signaling, calcium signaling, steroid hormone biosynthesis and ovarian steroidogenesis pathway. Additionally, the competitive endogenous RNA (ceRNA) regulatory network was constructed by 24 miRNAs, 21 lncRNAs, 4 circRNAs and 5 key sex-related genes. These findings suggested that the expression of critical genes in sex differentiation were altered in E2-treated XY T. rubripes may via the lncRNA-miRNA-mRNA regulation network to facilitate the differentiation and maintenance of ovaries. Our results provide a new insight into the comprehensive understanding of the effects of estrogen signaling pathways on sex differentiation in teleost gonads.
Collapse
Affiliation(s)
- Xufang Shen
- College of Biosystems Engineering and Food Science, Zhejiang University, 310058, China; Key Laboratory of Environment Controlled Aquaculture, Ministry of Education, Dalian Ocean University, Dalian, Liaoning 116023, China
| | - Hongwei Yan
- Key Laboratory of Environment Controlled Aquaculture, Ministry of Education, Dalian Ocean University, Dalian, Liaoning 116023, China; College of Fisheries and Life Science, Dalian Ocean University, Dalian, Liaoning 116023, China; The Key Laboratory of Pufferfish Breeding and Culture in Liaoning Province, 116023, China.
| | - Mingtao Hu
- Key Laboratory of Environment Controlled Aquaculture, Ministry of Education, Dalian Ocean University, Dalian, Liaoning 116023, China; College of Fisheries and Life Science, Dalian Ocean University, Dalian, Liaoning 116023, China; The Key Laboratory of Pufferfish Breeding and Culture in Liaoning Province, 116023, China
| | - Huiting Zhou
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, Liaoning 116023, China; The Key Laboratory of Pufferfish Breeding and Culture in Liaoning Province, 116023, China
| | - Jia Wang
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, Liaoning 116023, China; The Key Laboratory of Pufferfish Breeding and Culture in Liaoning Province, 116023, China
| | - Rui Gao
- Key Laboratory of Environment Controlled Aquaculture, Ministry of Education, Dalian Ocean University, Dalian, Liaoning 116023, China; The Key Laboratory of Pufferfish Breeding and Culture in Liaoning Province, 116023, China
| | - Qi Liu
- Key Laboratory of Environment Controlled Aquaculture, Ministry of Education, Dalian Ocean University, Dalian, Liaoning 116023, China; The Key Laboratory of Pufferfish Breeding and Culture in Liaoning Province, 116023, China; College of Marine Science and Environment Engineering, Dalian Ocean University, Dalian, Liaoning 116023, China
| | - Xiuli Wang
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, Liaoning 116023, China; The Key Laboratory of Pufferfish Breeding and Culture in Liaoning Province, 116023, China
| | - Ying Liu
- College of Biosystems Engineering and Food Science, Zhejiang University, 310058, China; Key Laboratory of Environment Controlled Aquaculture, Ministry of Education, Dalian Ocean University, Dalian, Liaoning 116023, China
| |
Collapse
|
21
|
Hahn EE, Stiller J, Alexander MR, Grealy A, Taylor JM, Jackson N, Frere CH, Holleley CE. Century-old chromatin architecture revealed in formalin-fixed vertebrates. Nat Commun 2024; 15:6378. [PMID: 39075073 PMCID: PMC11286846 DOI: 10.1038/s41467-024-50668-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 07/18/2024] [Indexed: 07/31/2024] Open
Abstract
Gene expression is regulated by changes in chromatin architecture intrinsic to cellular differentiation and as an active response to environmental stimuli. Chromatin dynamics are a major driver of phenotypic diversity, regulation of development, and manifestation of disease. Remarkably, we know little about the evolutionary dynamics of chromatin reorganisation through time, data essential to characterise the impact of environmental stress during the ongoing biodiversity extinction crisis (20th-21st century). Linking the disparate fields of chromatin biology and museum science through their common use of the preservative formaldehyde (a constituent of formalin), we have generated historical chromatin profiles in museum specimens up to 117 years old. Historical chromatin profiles are reproducible, tissue-specific, sex-specific, and environmental condition-dependent in vertebrate specimens. Additionally, we show that over-fixation modulates differential chromatin accessibility to enable semi-quantitative estimates of relative gene expression in vertebrates and a yeast model. Our approach transforms formalin-fixed biological collections into an accurate, comprehensive, and global record of environmental impact on gene expression and phenotype.
Collapse
Affiliation(s)
- Erin E Hahn
- National Research Collections Australia, Commonwealth Scientific Industrial Research Organisation, Canberra, ACT 2601, Australia
| | - Jiri Stiller
- Agriculture and Food, Commonwealth Scientific Industrial Research Organisation, St Lucia, Queensland, 4067, Australia
| | - Marina R Alexander
- National Research Collections Australia, Commonwealth Scientific Industrial Research Organisation, Canberra, ACT 2601, Australia
| | - Alicia Grealy
- National Research Collections Australia, Commonwealth Scientific Industrial Research Organisation, Canberra, ACT 2601, Australia
| | - Jennifer M Taylor
- Agriculture and Food, Commonwealth Scientific Industrial Research Organisation, St Lucia, Queensland, 4067, Australia
| | - Nicola Jackson
- School of the Environment, University of Queensland, St Lucia, Queensland, 4067, Australia
| | - Celine H Frere
- School of the Environment, University of Queensland, St Lucia, Queensland, 4067, Australia
| | - Clare E Holleley
- National Research Collections Australia, Commonwealth Scientific Industrial Research Organisation, Canberra, ACT 2601, Australia.
| |
Collapse
|
22
|
Parker CG, Gruenhagen GW, Hegarty BE, Histed AR, Streelman JT, Rhodes JS, Johnson ZV. Adult sex change leads to extensive forebrain reorganization in clownfish. Biol Sex Differ 2024; 15:58. [PMID: 39044232 PMCID: PMC11267845 DOI: 10.1186/s13293-024-00632-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 07/08/2024] [Indexed: 07/25/2024] Open
Abstract
BACKGROUND Sexual differentiation of the brain occurs in all major vertebrate lineages but is not well understood at a molecular and cellular level. Unlike most vertebrates, sex-changing fishes have the remarkable ability to change reproductive sex during adulthood in response to social stimuli, offering a unique opportunity to understand mechanisms by which the nervous system can initiate and coordinate sexual differentiation. METHODS This study explores sexual differentiation of the forebrain using single nucleus RNA-sequencing in the anemonefish Amphiprion ocellaris, producing the first cellular atlas of a sex-changing brain. RESULTS We uncover extensive sex differences in cell type-specific gene expression, relative proportions of cells, baseline neuronal excitation, and predicted inter-neuronal communication. Additionally, we identify the cholecystokinin, galanin, and estrogen systems as central molecular axes of sexual differentiation. Supported by these findings, we propose a model of sexual differentiation in the conserved vertebrate social decision-making network spanning multiple subtypes of neurons and glia, including neuronal subpopulations within the preoptic area that are positioned to regulate gonadal differentiation. CONCLUSIONS This work deepens our understanding of sexual differentiation in the vertebrate brain and defines a rich suite of molecular and cellular pathways that differentiate during adult sex change in anemonefish.
Collapse
Affiliation(s)
- Coltan G Parker
- Neuroscience Program, University of Illinois, Urbana-Champaign, 405 N Mathews Ave, Urbana, IL, 61820, USA
- Department of Biology, University of Maryland, College Park, MD, USA
| | - George W Gruenhagen
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Brianna E Hegarty
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Abigail R Histed
- Neuroscience Program, University of Illinois, Urbana-Champaign, 405 N Mathews Ave, Urbana, IL, 61820, USA
| | - Jeffrey T Streelman
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Justin S Rhodes
- Neuroscience Program, University of Illinois, Urbana-Champaign, 405 N Mathews Ave, Urbana, IL, 61820, USA.
- Department of Psychology, University of Illinois, Urbana-Champaign, 603 E. Daniel St., Champaign, IL, 61820, USA.
| | - Zachary V Johnson
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA.
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA, USA.
- Emory National Primate Research Center, Emory University, 954 Gatewood Rd NE, Atlanta, GA, 30329, USA.
| |
Collapse
|
23
|
Gu Y, Jin CX, Tong ZH, Jiang T, Yao FC, Zhang Y, Huang J, Song FB, Sun JL, Luo J. Expression of genes related to gonadal development and construction of gonadal DNA methylation maps of Trachinotus blochii under hypoxia. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 935:173172. [PMID: 38740210 DOI: 10.1016/j.scitotenv.2024.173172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 04/12/2024] [Accepted: 05/10/2024] [Indexed: 05/16/2024]
Abstract
Chronic hypoxia can affect the growth and metabolism of fish and potentially impact gonadal development through epigenetic regulation. Trachinotus blochii (Golden pompano) is widely cultured near the coast and is sensitive to low oxygen conditions. We found that hypoxia and reoxygenation processes acted on multiple targets on the HPG axis, leading to endocrine disorders. Changes in the expression of key genes in the brain (gnrh), pituitary (fsh and lh), ovaries (cyp19a1a, foxl2, and er), and testes (dmrt1, ar, sox9, and gsdf) were associated with significant decreases in estrogen and testosterone levels. Hypoxia and reoxygenation lead to changes in DNA methylation levels in the gonads. Hypoxia upregulated the expression of dnmt1, dnmt3a, dnmt3b, tet1, and tet2 in females and dnmt3a and dnmt3b in males, while reoxygenation down-regulated the expression of dnmt1, dnmt3a, dnmt3b, tet1, and tet2 in males. Whole genome methylation sequencing showed that the number of differentially methylated regions was highest on chromosome 10 (5192) and lowest on chromosome 24 (275). Differentially methylated genes in females and males, as well as between males and females, were enriched in the oxytocin signaling pathway, fatty acid metabolism pathway, and HIF-1a pathway. In summary, hypoxia and reoxygenation can induce endocrine disorders, affect the expression of HPG axis genes, change the methylation pattern and modification pattern of gonad DNA, and then have potential effects on gonad development.
Collapse
Affiliation(s)
- Yue Gu
- School of Marine Biology and Fisheries, Sanya Nanfan Research Institute of Hainan University, Hainan Aquaculture Breeding Engineering Research Center, Hainan Academician Team Innovation Center, Hainan University, Haikou 570228, China
| | - Chun Xiu Jin
- School of Marine Biology and Fisheries, Sanya Nanfan Research Institute of Hainan University, Hainan Aquaculture Breeding Engineering Research Center, Hainan Academician Team Innovation Center, Hainan University, Haikou 570228, China
| | - Zai Hui Tong
- School of Marine Biology and Fisheries, Sanya Nanfan Research Institute of Hainan University, Hainan Aquaculture Breeding Engineering Research Center, Hainan Academician Team Innovation Center, Hainan University, Haikou 570228, China
| | - Tian Jiang
- School of Marine Biology and Fisheries, Sanya Nanfan Research Institute of Hainan University, Hainan Aquaculture Breeding Engineering Research Center, Hainan Academician Team Innovation Center, Hainan University, Haikou 570228, China
| | - Fu Cheng Yao
- School of Marine Biology and Fisheries, Sanya Nanfan Research Institute of Hainan University, Hainan Aquaculture Breeding Engineering Research Center, Hainan Academician Team Innovation Center, Hainan University, Haikou 570228, China
| | - Yu Zhang
- School of Marine Biology and Fisheries, Sanya Nanfan Research Institute of Hainan University, Hainan Aquaculture Breeding Engineering Research Center, Hainan Academician Team Innovation Center, Hainan University, Haikou 570228, China
| | - Jie Huang
- School of Marine Biology and Fisheries, Sanya Nanfan Research Institute of Hainan University, Hainan Aquaculture Breeding Engineering Research Center, Hainan Academician Team Innovation Center, Hainan University, Haikou 570228, China
| | - Fei Biao Song
- School of Marine Biology and Fisheries, Sanya Nanfan Research Institute of Hainan University, Hainan Aquaculture Breeding Engineering Research Center, Hainan Academician Team Innovation Center, Hainan University, Haikou 570228, China
| | - Jun Long Sun
- School of Marine Biology and Fisheries, Sanya Nanfan Research Institute of Hainan University, Hainan Aquaculture Breeding Engineering Research Center, Hainan Academician Team Innovation Center, Hainan University, Haikou 570228, China.
| | - Jian Luo
- School of Marine Biology and Fisheries, Sanya Nanfan Research Institute of Hainan University, Hainan Aquaculture Breeding Engineering Research Center, Hainan Academician Team Innovation Center, Hainan University, Haikou 570228, China.
| |
Collapse
|
24
|
Tirumalasetty MB, Bhattacharya I, Mohiuddin MS, Baki VB, Choubey M. Understanding testicular single cell transcriptional atlas: from developmental complications to male infertility. Front Endocrinol (Lausanne) 2024; 15:1394812. [PMID: 39055054 PMCID: PMC11269108 DOI: 10.3389/fendo.2024.1394812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 06/14/2024] [Indexed: 07/27/2024] Open
Abstract
Spermatogenesis is a multi-step biological process where mitotically active diploid (2n) spermatogonia differentiate into haploid (n) spermatozoa via regulated meiotic programming. The alarming rise in male infertility has become a global concern during the past decade thereby demanding an extensive profiling of testicular gene expression. Advancements in Next-Generation Sequencing (NGS) technologies have revolutionized our empathy towards complex biological events including spermatogenesis. However, despite multiple attempts made in the past to reveal the testicular transcriptional signature(s) either with bulk tissues or at the single-cell, level, comprehensive reviews on testicular transcriptomics and associated disorders are limited. Notably, technologies explicating the genome-wide gene expression patterns during various stages of spermatogenic progression provide the dynamic molecular landscape of testicular transcription. Our review discusses the advantages of single-cell RNA-sequencing (Sc-RNA-seq) over bulk RNA-seq concerning testicular tissues. Additionally, we highlight the cellular heterogeneity, spatial transcriptomics, dynamic gene expression and cell-to-cell interactions with distinct cell populations within the testes including germ cells (Gc), Sertoli cells (Sc), Peritubular cells (PTc), Leydig cells (Lc), etc. Furthermore, we provide a summary of key finding of single-cell transcriptomic studies that have shed light on developmental mechanisms implicated in testicular disorders and male infertility. These insights emphasize the pivotal roles of Sc-RNA-seq in advancing our knowledge regarding testicular transcriptional landscape and may serve as a potential resource to formulate future clinical interventions for male reproductive health.
Collapse
Affiliation(s)
| | - Indrashis Bhattacharya
- Department of Zoology, School of Biological Sciences, Central University of Kerala, Kasargod, Kerala, India
| | - Mohammad Sarif Mohiuddin
- Department of Foundations of Medicine, NYU Grossman Long Island School of Medicine, Mineola, NY, United States
| | - Vijaya Bhaskar Baki
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, United States
| | - Mayank Choubey
- Department of Foundations of Medicine, NYU Grossman Long Island School of Medicine, Mineola, NY, United States
| |
Collapse
|
25
|
Casto KV, Maney DL. Sex/gender diversity and behavioral neuroendocrinology in the 21st century. Horm Behav 2024; 163:105545. [PMID: 38744167 DOI: 10.1016/j.yhbeh.2024.105545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Affiliation(s)
- Kathleen V Casto
- Department of Psychological Sciences, Kent State University, Kent, OH, United States of America
| | - Donna L Maney
- Department of Psychology, Emory University, Atlanta, GA, United States of America; Harvard-Radcliffe Institute, Harvard University, Cambridge, MA, United States of America.
| |
Collapse
|
26
|
Wang L, Zheng Z, Zheng J, Zhang G, Wang Z. The Potential Significance of the EMILIN3 Gene in Augmenting the Aggressiveness of Low-Grade Gliomas is Noteworthy. Cancer Manag Res 2024; 16:711-730. [PMID: 38952353 PMCID: PMC11215280 DOI: 10.2147/cmar.s463694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 06/20/2024] [Indexed: 07/03/2024] Open
Abstract
Purpose Low-grade gliomas (LGG) are common brain tumors with high mortality rates. Cancer cell invasion is a significant factor in tumor metastasis. Novel biomarkers are urgently needed to predict LGG prognosis effectively. Methods The data for LGG were obtained from the Bioinformatics database. A consensus clustering analysis was performed to identify molecular subtypes linked with invasion in LGG. Differential expression analysis was performed to identify differentially expressed genes (DEGs) between the identified clusters. Enrichment analyses were then conducted to explore the function for DEGs. Prognostic signatures were placed, and their predictive power was assessed. Furthermore, the invasion-related prognostic signature was validated using the CGGA dataset. Subsequently, clinical specimens were procured in order to validate the expression levels of the distinct genes examined in this research, and to further explore the impact of these genes on the glioma cell line LN229 and HS-683. Results Two invasion-related molecular subtypes of LGG were identified, and we sifted 163 DEGs between them. The enrichment analyses indicated that DEGs are mainly related to pattern specification process. Subsequently, 10 signature genes (IGF2BP2, SRY, CHI3L1, IGF2BP3, MEOX2, ABCC3, HOXC4, OTP, METTL7B, and EMILIN3) were sifted out to construct a risk model. Besides, the survival (OS) in the high-risk group was lower. The performance of the risk model was verified. Furthermore, a highly reliable nomogram was generated. Cellular experiments revealed the ability to promote cell viability, value-addedness, migratory ability, invasive ability, and colony-forming ability of the glioma cell line LN229 and HS-683. The qRT-PCR analysis of clinical glioma samples showed that these 10 genes were expressed at higher levels in high-grade gliomas than in low-grade gliomas, suggesting that these genes are associated with poor prognosis of gliomas. Conclusion Our study sifted out ten invasion-related biomarkers of LGG, providing a reference for treatments and prognostic prediction in LGG.
Collapse
Affiliation(s)
- Li`ao Wang
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, 300203, People’s Republic of China
| | - Zhiming Zheng
- Department of Neurosurgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, People’s Republic of China
| | - Jia Zheng
- Department of Neurosurgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, People’s Republic of China
| | - Guifeng Zhang
- Department of Neurology, Liaocheng People’s Hospital, Liaocheng, 252004, People’s Republic of China
| | - Zheng Wang
- Department of Neurosurgery, Liaocheng Traditional Chinese Medicine Hospital, Liaocheng, 252000, People’s Republic of China
| |
Collapse
|
27
|
Folts L, Martinez AS, McKey J. Tissue clearing and imaging approaches for in toto analysis of the reproductive system†. Biol Reprod 2024; 110:1041-1054. [PMID: 38159104 PMCID: PMC11180619 DOI: 10.1093/biolre/ioad182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/21/2023] [Accepted: 12/29/2023] [Indexed: 01/03/2024] Open
Abstract
New microscopy techniques in combination with tissue clearing protocols and emerging analytical approaches have presented researchers with the tools to understand dynamic biological processes in a three-dimensional context. This paves the road for the exploration of new research questions in reproductive biology, for which previous techniques have provided only approximate resolution. These new methodologies now allow for contextualized analysis of far-larger volumes than was previously possible. Tissue optical clearing and three-dimensional imaging techniques posit the bridging of molecular mechanisms, macroscopic morphogenic development, and maintenance of reproductive function into one cohesive and comprehensive understanding of the biology of the reproductive system. In this review, we present a survey of the various tissue clearing techniques and imaging systems, as they have been applied to the developing and adult reproductive system. We provide an overview of tools available for analysis of experimental data, giving particular attention to the emergence of artificial intelligence-assisted methods and their applicability to image analysis. We conclude with an evaluation of how novel image analysis approaches that have been applied to other organ systems could be incorporated into future experimental evaluation of reproductive biology.
Collapse
Affiliation(s)
- Lillian Folts
- Section of Developmental Biology, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora CO, USA
| | - Anthony S Martinez
- Section of Developmental Biology, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora CO, USA
| | - Jennifer McKey
- Section of Developmental Biology, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora CO, USA
| |
Collapse
|
28
|
Kuhl H, Tan WH, Klopp C, Kleiner W, Koyun B, Ciorpac M, Feron R, Knytl M, Kloas W, Schartl M, Winkler C, Stöck M. A candidate sex determination locus in amphibians which evolved by structural variation between X- and Y-chromosomes. Nat Commun 2024; 15:4781. [PMID: 38839766 PMCID: PMC11153619 DOI: 10.1038/s41467-024-49025-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 05/17/2024] [Indexed: 06/07/2024] Open
Abstract
Most vertebrates develop distinct females and males, where sex is determined by repeatedly evolved environmental or genetic triggers. Undifferentiated sex chromosomes and large genomes have caused major knowledge gaps in amphibians. Only a single master sex-determining gene, the dmrt1-paralogue (dm-w) of female-heterogametic clawed frogs (Xenopus; ZW♀/ZZ♂), is known across >8740 species of amphibians. In this study, by combining chromosome-scale female and male genomes of a non-model amphibian, the European green toad, Bufo(tes) viridis, with ddRAD- and whole genome pool-sequencing, we reveal a candidate master locus, governing a male-heterogametic system (XX♀/XY♂). Targeted sequencing across multiple taxa uncovered structural X/Y-variation in the 5'-regulatory region of the gene bod1l, where a Y-specific non-coding RNA (ncRNA-Y), only expressed in males, suggests that this locus initiates sex-specific differentiation. Developmental transcriptomes and RNA in-situ hybridization show timely and spatially relevant sex-specific ncRNA-Y and bod1l-gene expression in primordial gonads. This coincided with differential H3K4me-methylation in pre-granulosa/pre-Sertoli cells, pointing to a specific mechanism of amphibian sex determination.
Collapse
Affiliation(s)
- Heiner Kuhl
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries, IGB, Müggelseedamm 301 & 310, 12587, Berlin, Germany
| | - Wen Hui Tan
- Department of Biological Sciences and Centre for Bioimaging Sciences, National University of Singapore, 14 Science Drive 4, Block S1A, Level 6, Singapore, 117543, Singapore
| | - Christophe Klopp
- SIGENAE, Plate-forme Bio-informatique Genotoul, Mathématiques et Informatique Appliquées de Toulouse, INRAe, 31326, Castanet-Tolosan, France
| | - Wibke Kleiner
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries, IGB, Müggelseedamm 301 & 310, 12587, Berlin, Germany
| | - Baturalp Koyun
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries, IGB, Müggelseedamm 301 & 310, 12587, Berlin, Germany
- Department of Molecular Biology and Genetics, Genetics, Faculty of Science, Bilkent University, SB Building, Ankara, 06800, Turkey
| | - Mitica Ciorpac
- Danube Delta National Institute for Research and Development, Tulcea, 820112, Romania
- Advanced Research and Development Center for Experimental Medicine-CEMEX, "Grigore T. Popa", University of Medicine and Pharmacy, Mihail Kogălniceanu Street 9-13, Iasi, 700259, Romania
| | - Romain Feron
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Martin Knytl
- Department of Cell Biology, Faculty of Science, Charles University, Viničná 7, Prague, 12843, Czech Republic
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, L8S 4K1, Ontario, ON, Canada
| | - Werner Kloas
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries, IGB, Müggelseedamm 301 & 310, 12587, Berlin, Germany
| | - Manfred Schartl
- Developmental Biochemistry, Biocenter, University of Wuerzburg, Am Hubland, 97074, Wuerzburg, Germany
- The Xiphophorus Genetic Stock Center, Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX, 78666, USA
| | - Christoph Winkler
- Department of Biological Sciences and Centre for Bioimaging Sciences, National University of Singapore, 14 Science Drive 4, Block S1A, Level 6, Singapore, 117543, Singapore.
| | - Matthias Stöck
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries, IGB, Müggelseedamm 301 & 310, 12587, Berlin, Germany.
| |
Collapse
|
29
|
Balard A, Baltazar-Soares M, Eizaguirre C, Heckwolf MJ. An epigenetic toolbox for conservation biologists. Evol Appl 2024; 17:e13699. [PMID: 38832081 PMCID: PMC11146150 DOI: 10.1111/eva.13699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 04/22/2024] [Accepted: 04/24/2024] [Indexed: 06/05/2024] Open
Abstract
Ongoing climatic shifts and increasing anthropogenic pressures demand an efficient delineation of conservation units and accurate predictions of populations' resilience and adaptive potential. Molecular tools involving DNA sequencing are nowadays routinely used for these purposes. Yet, most of the existing tools focusing on sequence-level information have shortcomings in detecting signals of short-term ecological relevance. Epigenetic modifications carry valuable information to better link individuals, populations, and species to their environment. Here, we discuss a series of epigenetic monitoring tools that can be directly applied to various conservation contexts, complementing already existing molecular monitoring frameworks. Focusing on DNA sequence-based methods (e.g. DNA methylation, for which the applications are readily available), we demonstrate how (a) the identification of epi-biomarkers associated with age or infection can facilitate the determination of an individual's health status in wild populations; (b) whole epigenome analyses can identify signatures of selection linked to environmental conditions and facilitate estimating the adaptive potential of populations; and (c) epi-eDNA (epigenetic environmental DNA), an epigenetic-based conservation tool, presents a non-invasive sampling method to monitor biological information beyond the mere presence of individuals. Overall, our framework refines conservation strategies, ensuring a comprehensive understanding of species' adaptive potential and persistence on ecologically relevant timescales.
Collapse
Affiliation(s)
- Alice Balard
- School of Biological and Behavioural Sciences Queen Mary University of London London UK
| | | | - Christophe Eizaguirre
- School of Biological and Behavioural Sciences Queen Mary University of London London UK
| | - Melanie J Heckwolf
- Department of Ecology Leibniz Centre for Tropical Marine Research Bremen Germany
| |
Collapse
|
30
|
Li F, Chen S, Zhang T, Pan L, Liu C, Bian L. Gonadal Transcriptome Sequencing Analysis Reveals the Candidate Sex-Related Genes and Signaling Pathways in the East Asian Common Octopus, Octopus sinensis. Genes (Basel) 2024; 15:682. [PMID: 38927618 PMCID: PMC11202624 DOI: 10.3390/genes15060682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/10/2024] [Accepted: 05/22/2024] [Indexed: 06/28/2024] Open
Abstract
The East Asian common octopus (Octopus sinensis) is an economically important species among cephalopods. This species exhibits a strict dioecious and allogamous reproductive strategy, along with a phenotypic sexual dimorphism, where the third right arm differentiates into hectocotylus in males. However, our understanding of the molecular mechanisms that underlie sex determination and differentiation in this species remains limited. In the present study, we surveyed gene-expression profiles in the immature male and female gonads of O. sinensis based on the RNA-seq, and a total of 47.83 Gb of high-quality data were generated. Compared with the testis, we identified 8302 differentially expressed genes (DEGs) in the ovary, of which 4459 genes were up-regulated and 3843 genes were down-regulated. Based on the GO enrichment, many GO terms related to sex differentiation were identified, such as sex differentiation (GO: 0007548), sexual reproduction (GO: 0019953) and male sex differentiation (GO: 0046661). A KEGG classification analysis identified three conserved signaling pathways that related to sex differentiation, including the Wnt signaling pathway, TGF-β signaling pathway and Notch signaling pathway. Additionally, 21 sex-related DEGs were selected, of which 13 DEGs were male-biased, including Dmrt1, Foxn5, Foxj1, Sox30, etc., and 8 DEGs were female-biased, including Sox14, Nanos3, β-tubulin, Suh, etc. Ten DEGs were used to verify the expression patterns in the testis and ovary using the RT-qPCR method, and the results showed that the expression level shown by RT-qPCR was consistent with that from the RNA-seq, which confirmed the reliability of the transcriptome data. The results presented in this study will not only contribute to our understanding of sex-formation mechanisms in O. sinensis but also provide the foundational information for further investigating the molecular mechanisms that underline its gonadal development and facilitate the sustainable development of octopus artificial breeding.
Collapse
Affiliation(s)
- Fenghui Li
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (F.L.); (S.C.); (L.P.); (C.L.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao 266237, China
| | - Siqing Chen
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (F.L.); (S.C.); (L.P.); (C.L.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao 266237, China
| | - Tao Zhang
- Zhejiang Marine Fisheries Research Institute, Zhoushan 316021, China;
| | - Luying Pan
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (F.L.); (S.C.); (L.P.); (C.L.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao 266237, China
| | - Changlin Liu
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (F.L.); (S.C.); (L.P.); (C.L.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao 266237, China
| | - Li Bian
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (F.L.); (S.C.); (L.P.); (C.L.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao 266237, China
| |
Collapse
|
31
|
Fakhro KA, Awwad J, Garibova S, Saraiva LR, Avella M. Conserved genes regulating human sex differentiation, gametogenesis and fertilization. J Transl Med 2024; 22:473. [PMID: 38764035 PMCID: PMC11103854 DOI: 10.1186/s12967-024-05162-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 04/03/2024] [Indexed: 05/21/2024] Open
Abstract
The study of the functional genome in mice and humans has been instrumental for describing the conserved molecular mechanisms regulating human reproductive biology, and for defining the etiologies of monogenic fertility disorders. Infertility is a reproductive disorder that includes various conditions affecting a couple's ability to achieve a healthy pregnancy. Recent advances in next-generation sequencing and CRISPR/Cas-mediated genome editing technologies have facilitated the identification and characterization of genes and mechanisms that, if affected, lead to infertility. We report established genes that regulate conserved functions in fundamental reproductive processes (e.g., sex determination, gametogenesis, and fertilization). We only cover genes the deletion of which yields comparable fertility phenotypes in both rodents and humans. In the case of newly-discovered genes, we report the studies demonstrating shared cellular and fertility phenotypes resulting from loss-of-function mutations in both species. Finally, we introduce new model systems for the study of human reproductive biology and highlight the importance of studying human consanguineous populations to discover novel monogenic causes of infertility. The rapid and continuous screening and identification of putative genetic defects coupled with an efficient functional characterization in animal models can reveal novel mechanisms of gene function in human reproductive tissues.
Collapse
Affiliation(s)
- Khalid A Fakhro
- Research Branch, Sidra Medicine, Doha, Qatar
- Weill Cornell Medicine, Doha, Qatar
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| | - Johnny Awwad
- Reproductive Medicine Unit, Sidra Medicine, Doha, Qatar
- Obstetrics & Gynecology, American University of Beirut Medical Center, Beirut, Lebanon
- Vincent Memorial Obstetrics & Gynecology Service, The Massachusetts General Hospital, Boston, MA, USA
| | | | - Luis R Saraiva
- Research Branch, Sidra Medicine, Doha, Qatar
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| | - Matteo Avella
- Research Branch, Sidra Medicine, Doha, Qatar.
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar.
- Department of Biomedical Sciences, Qatar University, Doha, Qatar.
| |
Collapse
|
32
|
Liu X, Xu H, Peng M, Zhou C, Wei C, Hong X, Li W, Chen C, Ji L, Zhu X. Screening of temperature-responsive signalling molecules during sex differentiation in Asian yellow pond turtle (Mauremys mutica). BMC Genomics 2024; 25:383. [PMID: 38637759 PMCID: PMC11025153 DOI: 10.1186/s12864-024-10275-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 04/01/2024] [Indexed: 04/20/2024] Open
Abstract
BACKGROUND The Asian yellow pond turtle (Mauremys mutica) is an important commercial freshwater aquaculture species in China. This species is a highly sexually dimorphic species, with males growing at a faster rate than females and exhibits temperature-dependent sex determination (TSD), in which the incubation temperature during embryonic development determines the sexual fate. However, the mechanisms of the sex determination or sex differentiation in the Asian yellow pond turtle are remain a mystery. RESULTS Temperature-specific gonadal transcriptomics of the Asian yellow pond turtle were performed during the thermosensitive period (stage 15) using RNA-seq technology to identify candidate genes that initiate gonadal differentiation. We uncovered candidates that were the first to respond to temperature. These candidates were sexually dimorphic in expression, reflecting differences in gonadal (Cirbp, Runx1) and germline differentiation (Vasa, Nanos1, Piwil2), gametogenesis (Hmgb3, Zar1, Ovoinhibitor-like, Kif4), steroid hormone biosynthesis (Hsd17b5, Hsd17b6), heat shock (Dnajb6, Hsp90b1, Hsp90aa1) and transient receptor potential channel genes (Trpm1, Trpm4, Trpm6, Trpv1). CONCLUSIONS Our work will provide important genetic information to elucidate the mechanisms of sex control in the Asian yellow pond turtles, and will contribute important genetic resources for further studies of temperature-dependent sex determination in turtles.
Collapse
Affiliation(s)
- Xiaoli Liu
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510380, Guangzhou, China
- College of Life Science and Fisheries, Shanghai Ocean University, 201306, Shanghai, China
| | - Haoyang Xu
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510380, Guangzhou, China
- College of Life Science and Fisheries, Shanghai Ocean University, 201306, Shanghai, China
| | - Mingwei Peng
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510380, Guangzhou, China
- School of Fishery, Zhejiang Ocean University, 316000, Zhoushan, China
| | - Chenyao Zhou
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510380, Guangzhou, China
- School of Fishery, Zhejiang Ocean University, 316000, Zhoushan, China
| | - Chengqing Wei
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510380, Guangzhou, China
| | - Xiaoyou Hong
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510380, Guangzhou, China
| | - Wei Li
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510380, Guangzhou, China
- College of Life Science and Fisheries, Shanghai Ocean University, 201306, Shanghai, China
| | - Chen Chen
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510380, Guangzhou, China
| | - Liqin Ji
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510380, Guangzhou, China
| | - Xinping Zhu
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510380, Guangzhou, China.
- College of Life Science and Fisheries, Shanghai Ocean University, 201306, Shanghai, China.
- School of Fishery, Zhejiang Ocean University, 316000, Zhoushan, China.
| |
Collapse
|
33
|
Yue B, Wang HY, Huang Y, Li S, Ma W, Liu Q, Shao C. Molecular functional characterization of the setdb1 and its potential target gene sox5 illuminate the histone modification-mediated orchestration of gonadal development in Chinese tongue sole (Cynoglossus semilaevis). Gene 2024; 901:148199. [PMID: 38253299 DOI: 10.1016/j.gene.2024.148199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/31/2023] [Accepted: 01/19/2024] [Indexed: 01/24/2024]
Abstract
SET (SuVar3-9, Enhancer of Zeste, Trithorax) domain bifurcated histone lysine methyltransferase 1, setdb1, is the predominant histone lysine methyltransferase catalyzing H3K9me3. Prior studies have illustrated that setdb1 and H3K9me3 critically regulate sex differentiation and gametogenesis. However, the molecular details by which setdb1 is involved in these processes in fish have been poorly reported. Here, we cloned and characterized the setdb1 ORF (open reading frame) sequence from Chinese tongue sole (Cynoglossus semilaevis). The setdb1 ORF sequence was 3,669 bp, encoding a 1,222-amino-acid protein. Phylogenetic analysis showed that setdb1 was structurally conserved. qRT-PCR revealed that setdb1 had a high expression level in the testes at 12 mpf (months post fertilization). Single-cell RNA-seq data at 24 mpf indicated that setdb1 was generally expressed in spermatogenic cells at each stage except for sperm and was centrally expressed in oogonia. H3K9me3 modification was observed in gonads with the immunofluorescence technique. Furthermore, the overexpression experiment suggested that sox5 was a candidate target of setdb1. sox5 was abundantly expressed in male and pseudomale gonads at 24 mpf. Single-cell RNA-seq data showed that sox5 was mainly expressed in spermatogonia and its expression gradually declined with differentiation. Taken together, our findings imply that setdb1 regulates sox5 transcription in gonads, which provides molecular clues into histone modification-mediated orchestration of sex differentiation and gametogenesis.
Collapse
Affiliation(s)
- Bowen Yue
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China; State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China
| | - Hong-Yan Wang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao, Shandong 266237, China
| | - Yingyi Huang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao, Shandong 266237, China
| | - Shuo Li
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao, Shandong 266237, China
| | - Wenxiu Ma
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao, Shandong 266237, China
| | - Qian Liu
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao, Shandong 266237, China
| | - Changwei Shao
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao, Shandong 266237, China.
| |
Collapse
|
34
|
Houzelstein D, Eozenou C, Lagos CF, Elzaiat M, Bignon-Topalovic J, Gonzalez I, Laville V, Schlick L, Wankanit S, Madon P, Kirtane J, Athalye A, Buonocore F, Bigou S, Conway GS, Bohl D, Achermann JC, Bashamboo A, McElreavey K. A conserved NR5A1-responsive enhancer regulates SRY in testis-determination. Nat Commun 2024; 15:2796. [PMID: 38555298 PMCID: PMC10981742 DOI: 10.1038/s41467-024-47162-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 03/21/2024] [Indexed: 04/02/2024] Open
Abstract
The Y-linked SRY gene initiates mammalian testis-determination. However, how the expression of SRY is regulated remains elusive. Here, we demonstrate that a conserved steroidogenic factor-1 (SF-1)/NR5A1 binding enhancer is required for appropriate SRY expression to initiate testis-determination in humans. Comparative sequence analysis of SRY 5' regions in mammals identified an evolutionary conserved SF-1/NR5A1-binding motif within a 250 bp region of open chromatin located 5 kilobases upstream of the SRY transcription start site. Genomic analysis of 46,XY individuals with disrupted testis-determination, including a large multigenerational family, identified unique single-base substitutions of highly conserved residues within the SF-1/NR5A1-binding element. In silico modelling and in vitro assays demonstrate the enhancer properties of the NR5A1 motif. Deletion of this hemizygous element by genome-editing, in a novel in vitro cellular model recapitulating human Sertoli cell formation, resulted in a significant reduction in expression of SRY. Therefore, human NR5A1 acts as a regulatory switch between testis and ovary development by upregulating SRY expression, a role that may predate the eutherian radiation. We show that disruption of an enhancer can phenocopy variants in the coding regions of SRY that cause human testis dysgenesis. Since disease causing variants in enhancers are currently rare, the regulation of gene expression in testis-determination offers a paradigm to define enhancer activity in a key developmental process.
Collapse
Affiliation(s)
- Denis Houzelstein
- Institut Pasteur, Université Paris Cité, Human Developmental Genetics Unit, F-75015, Paris, France.
- Centre National de la Recherche Scientifique, CNRS, UMR 3738, Paris, France.
| | - Caroline Eozenou
- Institut Pasteur, Université Paris Cité, Human Developmental Genetics Unit, F-75015, Paris, France
- Centre National de la Recherche Scientifique, CNRS, UMR 3738, Paris, France
- Institut Cochin, Université Paris Cité, INSERM, CNRS, Paris, France
| | - Carlos F Lagos
- Chemical Biology & Drug Discovery Lab, Escuela de Química y Farmacia, Facultad de Medicina y Ciencia, Universidad San Sebastián, Campus Los Leones, Lota 2465 Providencia, 7510157, Santiago, Chile
- Centro Ciencia & Vida, Fundación Ciencia & Vida, Av. del Valle Norte 725, Huechuraba, 8580702, Santiago, Chile
| | - Maëva Elzaiat
- Institut Pasteur, Université Paris Cité, Human Developmental Genetics Unit, F-75015, Paris, France
- Centre National de la Recherche Scientifique, CNRS, UMR 3738, Paris, France
| | - Joelle Bignon-Topalovic
- Institut Pasteur, Université Paris Cité, Human Developmental Genetics Unit, F-75015, Paris, France
- Centre National de la Recherche Scientifique, CNRS, UMR 3738, Paris, France
| | - Inma Gonzalez
- Centre National de la Recherche Scientifique, CNRS, UMR 3738, Paris, France
- Institut Pasteur, Université Paris Cité, Epigenomics, Proliferation, and the Identity of Cells Unit, F-75015, Paris, France
| | - Vincent Laville
- Centre National de la Recherche Scientifique, CNRS, UMR 3738, Paris, France
- Institut Pasteur, Université Paris Cité, Stem Cells and Development Unit, F-75015, Paris, France
- Institut Pasteur, Université Paris Cité, Bioinformatics and Biostatistics Hub, F-75015, Paris, France
| | - Laurène Schlick
- Institut Pasteur, Université Paris Cité, Human Developmental Genetics Unit, F-75015, Paris, France
- Centre National de la Recherche Scientifique, CNRS, UMR 3738, Paris, France
| | - Somboon Wankanit
- Institut Pasteur, Université Paris Cité, Human Developmental Genetics Unit, F-75015, Paris, France
- Centre National de la Recherche Scientifique, CNRS, UMR 3738, Paris, France
- Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Prochi Madon
- Department of Assisted Reproduction and Genetics, Jaslok Hospital and Research Centre, Mumbai, India
| | - Jyotsna Kirtane
- Department of Pediatric Surgery, Jaslok Hospital and Research Centre, Mumbai, India
| | - Arundhati Athalye
- Department of Assisted Reproduction and Genetics, Jaslok Hospital and Research Centre, Mumbai, India
| | - Federica Buonocore
- Genetics and Genomic Medicine Research & Teaching Department, UCL GOS Institute of Child Health, University College London, London, United Kingdom
| | - Stéphanie Bigou
- ICV-iPS core facility, Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière, Paris, France
| | - Gerard S Conway
- Institute for Women's Health, University College London, London, United Kingdom
| | - Delphine Bohl
- ICV-iPS core facility, Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière, Paris, France
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière, Paris, France
| | - John C Achermann
- Genetics and Genomic Medicine Research & Teaching Department, UCL GOS Institute of Child Health, University College London, London, United Kingdom
| | - Anu Bashamboo
- Institut Pasteur, Université Paris Cité, Human Developmental Genetics Unit, F-75015, Paris, France
- Centre National de la Recherche Scientifique, CNRS, UMR 3738, Paris, France
| | - Ken McElreavey
- Institut Pasteur, Université Paris Cité, Human Developmental Genetics Unit, F-75015, Paris, France.
- Centre National de la Recherche Scientifique, CNRS, UMR 3738, Paris, France.
| |
Collapse
|
35
|
Qi S, Dai S, Zhou X, Wei X, Chen P, He Y, Kocher TD, Wang D, Li M. Dmrt1 is the only male pathway gene tested indispensable for sex determination and functional testis development in tilapia. PLoS Genet 2024; 20:e1011210. [PMID: 38536778 PMCID: PMC10971778 DOI: 10.1371/journal.pgen.1011210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 03/05/2024] [Indexed: 04/05/2024] Open
Abstract
Sex is determined by multiple factors derived from somatic and germ cells in vertebrates. We have identified amhy, dmrt1, gsdf as male and foxl2, foxl3, cyp19a1a as female sex determination pathway genes in Nile tilapia. However, the relationship among these genes is largely unclear. Here, we found that the gonads of dmrt1;cyp19a1a double mutants developed as ovaries or underdeveloped testes with no germ cells irrespective of their genetic sex. In addition, the gonads of dmrt1;cyp19a1a;cyp19a1b triple mutants still developed as ovaries. The gonads of foxl3;cyp19a1a double mutants developed as testes, while the gonads of dmrt1;cyp19a1a;foxl3 triple mutants eventually developed as ovaries. In contrast, the gonads of amhy;cyp19a1a, gsdf;cyp19a1a, amhy;foxl2, gsdf;foxl2 double and amhy;cyp19a1a;cyp19a1b, gsdf;cyp19a1a;cyp19a1b triple mutants developed as testes with spermatogenesis via up-regulation of dmrt1 in both somatic and germ cells. The gonads of amhy;foxl3 and gsdf;foxl3 double mutants developed as ovaries but with germ cells in spermatogenesis due to up-regulation of dmrt1. Taking the respective ovary and underdeveloped testis of dmrt1;foxl3 and dmrt1;foxl2 double mutants reported previously into consideration, we demonstrated that once dmrt1 mutated, the gonad could not be rescued to functional testis by mutating any female pathway gene. The sex reversal caused by mutation of male pathway genes other than dmrt1, including its upstream amhy and downstream gsdf, could be rescued by mutating female pathway gene. Overall, our data suggested that dmrt1 is the only male pathway gene tested indispensable for sex determination and functional testis development in tilapia.
Collapse
Affiliation(s)
- Shuangshuang Qi
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, China
| | - Shengfei Dai
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, China
| | - Xin Zhou
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, China
| | - Xueyan Wei
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, China
| | - Ping Chen
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, China
| | - Yuanyuan He
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, China
| | - Thomas D. Kocher
- Department of Biology, University of Maryland, College Park, Maryland, United States of America
| | - Deshou Wang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, China
| | - Minghui Li
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, China
| |
Collapse
|
36
|
Huang GY, Fang GZ, Shi WJ, Li XP, Wang CS, Chen HX, Xie L, Ying GG. Interaction of 17α-ethinylestradiol and methyltestosterone in western mosquitofish (Gambusia affinis) across two generations. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 268:106854. [PMID: 38309221 DOI: 10.1016/j.aquatox.2024.106854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/26/2024] [Accepted: 01/28/2024] [Indexed: 02/05/2024]
Abstract
The interactions between estrogen and androgen in aquatic animals remain largely unknown. In this study, two generations (F0 and F1) of western mosquitofish (Gambusia affinis) were continuously exposed to 17α-ethinylestradiol (EE2, 10 ng/L), methyltestosterone (MT, 10 ng/L (MTL); 50 ng/L (MTH)), and mixtures (EE2+MTL and EE2+MTH). Various endpoints, including sex ratio (phenotypic and genetic), secondary sex characteristics, gonadal histology, and transcriptional profile of genes, were examined. The results showed that G. affinis exposed to MTH and EE2+MTH had a > 89.7 % of phenotypic males in F1 generation, with 34.5 and 50.0 % of these males originated from genetic females, respectively. Moreover, females from F0 and F1 generations exposed to MTH and EE2+MTH exhibited masculinized anal fins and skeletons. The combined effect of MT and EE2 on most endpoints was dependent on MT. Furthermore, significant transcriptional alterations in certain target genes were observed in both the F0 and F1 generations by EE2 and MT alone and by mixtures, showing some degree of interactions. These findings that the effects of EE2+MTH were primarily on the phenotypic sex of G. affinis in offspring generation suggest that G. affinis under chronic exposure to the binary mixture contaminated water could have sex-biased populations.
Collapse
Affiliation(s)
- Guo-Yong Huang
- Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, SCNU Environmental Research Institute, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China.
| | - Gui-Zhen Fang
- Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, SCNU Environmental Research Institute, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Wen-Jun Shi
- Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, SCNU Environmental Research Institute, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Xiao-Pei Li
- Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, SCNU Environmental Research Institute, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Chen-Si Wang
- Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, SCNU Environmental Research Institute, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Hong-Xing Chen
- Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, SCNU Environmental Research Institute, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Lingtian Xie
- Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, SCNU Environmental Research Institute, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Guang-Guo Ying
- Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, SCNU Environmental Research Institute, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| |
Collapse
|
37
|
Peedikayil-Kurien S, Setty H, Oren-Suissa M. Environmental experiences shape sexually dimorphic neuronal circuits and behaviour. FEBS J 2024; 291:1080-1101. [PMID: 36582142 DOI: 10.1111/febs.16714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 11/05/2022] [Accepted: 12/23/2022] [Indexed: 12/31/2022]
Abstract
Dimorphic traits, shaped by both natural and sexual selection, ensure optimal fitness and survival of the organism. This includes neuronal circuits that are largely affected by different experiences and environmental conditions. Recent evidence suggests that sexual dimorphism of neuronal circuits extends to different levels such as neuronal activity, connectivity and molecular topography that manifest in response to various experiences, including chemical exposures, starvation and stress. In this review, we propose some common principles that govern experience-dependent sexually dimorphic circuits in both vertebrate and invertebrate organisms. While sexually dimorphic neuronal circuits are predetermined, they have to maintain a certain level of fluidity to be adaptive to different experiences. The first layer of dimorphism is at the level of the neuronal circuit, which appears to be dictated by sex-biased transcription factors. This could subsequently lead to differences in the second layer of regulation namely connectivity and synaptic properties. The third regulator of experience-dependent responses is the receptor level, where dimorphic expression patterns determine the primary sensory encoding. We also highlight missing pieces in this field and propose future directions that can shed light onto novel aspects of sexual dimorphism with potential benefits to sex-specific therapeutic approaches. Thus, sexual identity and experience simultaneously determine behaviours that ultimately result in the maximal survival success.
Collapse
Affiliation(s)
| | - Hagar Setty
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Meital Oren-Suissa
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
38
|
Zhao H, Xiao Y, Xiao Z, Wu Y, Ma Y, Li J. Genome-wide investigation of the DMRT gene family sheds new insight into the regulation of sex differentiation in spotted knifejaw (Oplegnathus punctatus) with fusion chromosomes (Y). Int J Biol Macromol 2024; 257:128638. [PMID: 38070801 DOI: 10.1016/j.ijbiomac.2023.128638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 12/01/2023] [Accepted: 12/03/2023] [Indexed: 01/26/2024]
Abstract
The role of the DMRT family in male sex determination and differentiation is significant, but its regulatory role in spotted knifejaw with Y fusion chromosomes remains unclear. Through genome-wide scanning, transcriptome analysis, qPCR, FISH, and RNA interference (RNAi), we investigated the DMRT family and the dmrt1-based sex regulation network. Seven DMRTs were identified (DMRT1/2 (2a,2b)/6, DMRT4/5, DMRT3), and dmrt gene dispersion among chromosomes is possibly driven by three whole-genome duplications. Transcriptome analysis enriched genes were associated with sex regulation and constructed a network associated with dmrt1. qPCR and FISH results showed the expression dimorphism of sex-related genes in dmrt-related regulatory networks. RNAi experiments indicated a distinct sex regulation mode in spotted knifejaw. Dmrt1 knockdown upregulated male-related genes (sox9a, sox9b, dmrt1, amh, amhr2) and hsd11b2 expression, which is critical for androgen synthesis. Amhr2 is located on the heterozygous chromosome (Y) and is specifically localized in primary spermatocytes, and is extremely upregulated after dmrt1 knockdown which suggested besides the important role of dmrt1 in male differentiation, the amhr2 along with amhr2/amh system, also play important regulatory roles in maintaining high expression of the hsd11b2 and male differentiation. This study aims to further investigate sex regulatory mechanisms in species with fusion chromosomes.
Collapse
Affiliation(s)
- Haixia Zhao
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Chinese Academy of Sciences, Qingdao, China; University of Chinese Academy of Sciences, Beijing, China
| | - Yongshuang Xiao
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Chinese Academy of Sciences, Qingdao, China.
| | - Zhizhong Xiao
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Chinese Academy of Sciences, Qingdao, China
| | - Yanduo Wu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Chinese Academy of Sciences, Qingdao, China; University of Chinese Academy of Sciences, Beijing, China
| | - Yuting Ma
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Chinese Academy of Sciences, Qingdao, China
| | - Jun Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Chinese Academy of Sciences, Qingdao, China.
| |
Collapse
|
39
|
Gao Y, Wu Q, Wang G, Zhang S, Ma W, Shi X, Liu H, Wu L, Tian X, Li X, Ma X. Histomorphic analysis and expression of mRNA and miRNA in embryonic gonadal differentiation in Chinese soft-shelled turtle (Pelodiscus sinensis). Gene 2024; 893:147913. [PMID: 37866663 DOI: 10.1016/j.gene.2023.147913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 09/07/2023] [Accepted: 10/18/2023] [Indexed: 10/24/2023]
Abstract
The Chinese soft-shelled turtle (Pelodiscus sinensis) is extensively cultured in Asia for its nutritional and medical value. Gonadal differentiation is fantastic in turtles, whereas morphologic, mRNA, and miRNA expressions were insufficient in the turtle. In this study, ovaries and testes histomorphology analysis of 14-23 stage embryos were performed, and mRNA and miRNA expression profiles were analyzed. Histomorphology analysis revealed that gonads were undifferentiated at embryonic stage 14. Ovarian morphological differentiation became evident from stage 15, which was characterized by the development of the cortical region and degeneration of the medullary region. Concurrently, testicular morphological differentiation was apparent from stage 15, marked by the development of the medullary region and degeneration of the cortical region. qRT-PCR results showed that Cyp19a1 and Foxl2 exhibited female-specific expression at stage 15 and the expression increased throughout most of the embryonic development. Dmrt1, Amh, and Sox9 displayed male-specific expression at stage 15 and tended to increase substantially at later developmental stages. The expression of miR-8356 and miR-3299 in ZZ gonads were significantly higher than that in ZW gonads at stage 15, 17 and 19, and they had the highest expression at stage 15. While the expression of miR-8085 and miR-7982 had the highest expression at stage 19. Furthermore, chromatin remodeler genes showed differential expression in female and male P. sinensis gonads. These results of master sex-differentiation genes and morphological characteristics would provide a reference for the research of sex differentiation and sex reversal in turtles. Additionally, the expression of chromatin remodeler genes indicated they might be involved in gonadal differentiation of P. sinensis.
Collapse
Affiliation(s)
- Yijie Gao
- College of Fisheries, Henan Normal University, Xinxiang 453007, China.
| | - Qisheng Wu
- Fisheries Research Institute of Fujian, Xiamen 361000, China.
| | - Guiyu Wang
- College of Fisheries, Henan Normal University, Xinxiang 453007, China.
| | - Shufang Zhang
- College of Fisheries, Henan Normal University, Xinxiang 453007, China.
| | - Wenge Ma
- College of Fisheries, Henan Normal University, Xinxiang 453007, China.
| | - Xi Shi
- College of Fisheries, Henan Normal University, Xinxiang 453007, China.
| | - Huifen Liu
- College of Fisheries, Henan Normal University, Xinxiang 453007, China.
| | - Limin Wu
- College of Fisheries, Henan Normal University, Xinxiang 453007, China.
| | - Xue Tian
- College of Fisheries, Henan Normal University, Xinxiang 453007, China.
| | - Xuejun Li
- College of Fisheries, Henan Normal University, Xinxiang 453007, China.
| | - Xiao Ma
- College of Fisheries, Henan Normal University, Xinxiang 453007, China.
| |
Collapse
|
40
|
Parker CG, Gruenhagen GW, Hegarty BE, Histed AR, Streelman JT, Rhodes JS, Johnson ZV. Adult sex change leads to extensive forebrain reorganization in clownfish. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.29.577753. [PMID: 38352560 PMCID: PMC10862741 DOI: 10.1101/2024.01.29.577753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Sexual differentiation of the brain occurs in all major vertebrate lineages but is not well understood at a molecular and cellular level. Unlike most vertebrates, sex-changing fishes have the remarkable ability to change reproductive sex during adulthood in response to social stimuli, offering a unique opportunity to understand mechanisms by which the nervous system can initiate and coordinate sexual differentiation. This study explores sexual differentiation of the forebrain using single nucleus RNA-sequencing in the anemonefish Amphiprion ocellaris, producing the first cellular atlas of a sex-changing brain. We uncover extensive sex differences in cell type-specific gene expression, relative proportions of cells, baseline neuronal excitation, and predicted inter-neuronal communication. Additionally, we identify the cholecystokinin, galanin, and estrogen systems as central molecular axes of sexual differentiation. Supported by these findings, we propose a model of neurosexual differentiation in the conserved vertebrate social decision-making network spanning multiple subtypes of neurons and glia, including neuronal subpopulations within the preoptic area that are positioned to regulate gonadal differentiation. This work deepens our understanding of sexual differentiation in the vertebrate brain and defines a rich suite of molecular and cellular pathways that differentiate during adult sex change in anemonefish.
Collapse
Affiliation(s)
- Coltan G. Parker
- Neuroscience Program, University of Illinois, Urbana-Champaign, Illinois, USA
| | - George W. Gruenhagen
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Brianna E. Hegarty
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Abigail R. Histed
- Neuroscience Program, University of Illinois, Urbana-Champaign, Illinois, USA
| | - Jeffrey T. Streelman
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Justin S. Rhodes
- Neuroscience Program, University of Illinois, Urbana-Champaign, Illinois, USA
- Department of Psychology, University of Illinois, Urbana-Champaign, Illinois, USA
| | - Zachary V. Johnson
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA, USA
- Emory National Primate Research Center, Emory University, Atlanta, GA, USA
| |
Collapse
|
41
|
Sánchez-Baizán N, Jarne-Sanz I, Roco ÁS, Schartl M, Piferrer F. Extraordinary variability in gene activation and repression programs during gonadal sex differentiation across vertebrates. Front Cell Dev Biol 2024; 12:1328365. [PMID: 38322165 PMCID: PMC10844511 DOI: 10.3389/fcell.2024.1328365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 01/11/2024] [Indexed: 02/08/2024] Open
Abstract
Genes involved in gonadal sex differentiation have been traditionally thought to be fairly conserved across vertebrates, but this has been lately questioned. Here, we performed the first comparative analysis of gonadal transcriptomes across vertebrates, from fish to mammals. Our results unambiguously show an extraordinary overall variability in gene activation and repression programs without a phylogenetic pattern. During sex differentiation, genes such as dmrt1, sox9, amh, cyp19a and foxl2 were consistently either male- or female-enriched across species while many genes with the greatest expression change within each sex were not. We also found that downregulation in the opposite sex, which had only been quantified in the mouse model, was also prominent in the rest of vertebrates. Finally, we report 16 novel conserved markers (e.g., fshr and dazl) and 11 signaling pathways. We propose viewing vertebrate gonadal sex differentiation as a hierarchical network, with conserved hub genes such as sox9 and amh alongside less connected and less conserved nodes. This proposed framework implies that evolutionary pressures may impact genes based on their level of connectivity.
Collapse
Affiliation(s)
- Núria Sánchez-Baizán
- Institut de Ciències del Mar (ICM), Spanish National Research Council (CSIC), Barcelona, Spain
| | - Ignasi Jarne-Sanz
- Institut de Ciències del Mar (ICM), Spanish National Research Council (CSIC), Barcelona, Spain
| | - Álvaro S. Roco
- Developmental Biochemistry, Biocenter, University of Wuerzburg, Wuerzburg, Germany
- Department of Experimental Biology, Faculty of Experimental Sciences, University of Jaén, Jaén, Spain
| | - Manfred Schartl
- Developmental Biochemistry, Biocenter, University of Wuerzburg, Wuerzburg, Germany
- Xiphophorus Genetic Stock Center, Texas State University, San Marcos, TX, United States
| | - Francesc Piferrer
- Institut de Ciències del Mar (ICM), Spanish National Research Council (CSIC), Barcelona, Spain
| |
Collapse
|
42
|
Fagbémi MNA, Nivelle R, Muller M, Mélard C, Lalèyè P, Rougeot C. Effect of high temperatures on sex ratio and differential expression analysis (RNA-seq) of sex-determining genes in Oreochromis niloticus from different river basins in Benin. ENVIRONMENTAL EPIGENETICS 2024; 9:dvad009. [PMID: 38487307 PMCID: PMC10939319 DOI: 10.1093/eep/dvad009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/09/2023] [Accepted: 01/10/2024] [Indexed: 03/17/2024]
Abstract
The high temperature sex reversal process leading to functional phenotypic masculinization during development has been widely described in Nile tilapia (Oreochromis n iloticus) under laboratory or aquaculture conditions and in the wild. In this study, we selected five wild populations of O. niloticus from different river basins in Benin and produced twenty full-sib families of mixed-sex (XY and XX) by natural reproduction. Progenies were exposed to room temperature or high (36.5°C) temperatures between 10 and 30 days post-fertilization (dpf). In control groups, we observed sex ratios from 40% to 60% males as expected, except for 3 families from the Gobé region which showed a bias towards males. High temperature treatment significantly increased male rates in each family up to 88%. Transcriptome analysis was performed by RNA-sequencing (RNA-seq) on brains and gonads from control and treated batches of six families at 15 dpf and 40 dpf. Analysis of differentially expressed genes, differentially spliced genes, and correlations with sex reversal was performed. In 40 dpf gonads, genes involved in sex determination such as dmrt1, cyp11c1, amh, cyp19a1b, ara, and dax1 were upregulated. In 15 dpf brains, a negative correlation was found between the expression of cyp19a1b and the reversal rate, while at 40 dpf a negative correlation was found between the expression of foxl2, cyp11c1, and sf1 and positive correlation was found between dmrt1 expression and reversal rate. Ontology analysis of the genes affected by high temperatures revealed that male sex differentiation processes, primary male sexual characteristics, autophagy, and cilium organization were affected. Based on these results, we conclude that sex reversal by high temperature treatment leads to similar modifications of the transcriptomes in the gonads and brains in offspring of different natural populations of Nile tilapia, which thus may activate a common cascade of reactions inducing sex reversal in progenies.
Collapse
Affiliation(s)
- Mohammed Nambyl A Fagbémi
- Aquaculture Research and Education Centre (CEFRA), Liège University, query author on which is prefered, 10 Chemin de la Justice B-4500, Tihange, Belgium
- Laboratory of Hydrobiology and Aquaculture (LHA), Faculty of Agricultural Sciences, University of Abomey-Calavi, 01 BP: 526, Cotonou, Benin
| | - Renaud Nivelle
- Aquaculture Research and Education Centre (CEFRA), Liège University, query author on which is prefered, 10 Chemin de la Justice B-4500, Tihange, Belgium
- Laboratory for Organogenesis and Regeneration (LOR), Interdisciplinary Research Institute in Biomedical Sciences (GIGA-I3), Liège University, Sart Tilman, Liège, Belgium
| | - Marc Muller
- Laboratory for Organogenesis and Regeneration (LOR), Interdisciplinary Research Institute in Biomedical Sciences (GIGA-I3), Liège University, Sart Tilman, Liège, Belgium
| | - Charles Mélard
- Aquaculture Research and Education Centre (CEFRA), Liège University, query author on which is prefered, 10 Chemin de la Justice B-4500, Tihange, Belgium
| | - Philippe Lalèyè
- Laboratory of Hydrobiology and Aquaculture (LHA), Faculty of Agricultural Sciences, University of Abomey-Calavi, 01 BP: 526, Cotonou, Benin
| | - Carole Rougeot
- Aquaculture Research and Education Centre (CEFRA), Liège University, query author on which is prefered, 10 Chemin de la Justice B-4500, Tihange, Belgium
| |
Collapse
|
43
|
Guirandy N, Simon O, Geffroy B, Daffe G, Daramy F, Houdelet C, Gonzalez P, Pierron F. Gamma irradiation-induced offspring masculinization is associated with epigenetic changes in female zebrafish. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 269:115790. [PMID: 38086259 DOI: 10.1016/j.ecoenv.2023.115790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 11/27/2023] [Accepted: 12/04/2023] [Indexed: 01/12/2024]
Abstract
Sex ratio variation is a key topic in ecology, because of its direct effects on population dynamics and thus, on animal conservation strategies. Among factors affecting sex ratio, types of sex determination systems have a central role, since some species could have a sex determined by genetic factors, environmental factors or a mix of those two. Yet, most studies on the factors affecting sex determination have focused on temperature or endocrine-disrupting chemicals (EDCs), and much less is known regarding other factors. Exposure to gamma irradiation was found to trigger offspring masculinization in zebrafish. Here we aimed at deciphering the potential mechanisms involved, by focusing on stress (i.e. cortisol) and epigenetic regulation of key genes involved in sex differentiation in fish. Cortisol levels in exposed and control (F0) zebrafish females' gonads were similar. However, irradiation increased the DNA methylation level of foxl2a and cyp19a1a in females of the F0 and F1 generation, respectively, while no effects were detected in testis. Overall, our results suggest that parental exposure could alter offspring sex ratio, at least in part by inducing methylation changes in ovaries.
Collapse
Affiliation(s)
- Noëmie Guirandy
- IRSN/PSE-ENV/SRTE/LECO, Centre de Cadarache-B.P. 3 - Bat 183, 13115 St Paul Lez Durance, France.
| | - Olivier Simon
- IRSN/PSE-ENV/SRTE/LECO, Centre de Cadarache-B.P. 3 - Bat 183, 13115 St Paul Lez Durance, France
| | - Benjamin Geffroy
- MARBEC, Univ Montpellier, CNRS, Ifremer, IRD, Montpellier, France
| | - Guillemine Daffe
- Univ. Bordeaux, CNRS, Bordeaux INP, EPOC, UMR 5805, F-33600 Pessac, France
| | - Flore Daramy
- Univ. Bordeaux, CNRS, Bordeaux INP, EPOC, UMR 5805, F-33600 Pessac, France
| | - Camille Houdelet
- MARBEC, Univ Montpellier, CNRS, Ifremer, IRD, Montpellier, France
| | - Patrice Gonzalez
- Univ. Bordeaux, CNRS, Bordeaux INP, EPOC, UMR 5805, F-33600 Pessac, France
| | - Fabien Pierron
- Univ. Bordeaux, CNRS, Bordeaux INP, EPOC, UMR 5805, F-33600 Pessac, France
| |
Collapse
|
44
|
Zhu J, Wang Y, Lei L, Chen C, Ji L, Li J, Wu C, Yu W, Luo L, Chen W, Liu P, Hong X, Liu X, Chen H, Wei C, Zhu X, Li W. Comparative genomic survey and functional analysis of DKKL1 during spermatogenesis in the Chinese soft-shelled turtle (Pelodiscus sinensis). Int J Biol Macromol 2024; 254:127696. [PMID: 37913874 DOI: 10.1016/j.ijbiomac.2023.127696] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 09/27/2023] [Accepted: 10/15/2023] [Indexed: 11/03/2023]
Abstract
A feature of the Chinese soft-shelled turtle (Pelodiscus sinensis) is seasonal spermatogenesis; however, the underlying molecular mechanism is not well clarified. Here, we firstly cloned and characterized P. sinensis DKKL1, and then performed comparative genomic studies, expression analysis, and functional validation. P. sinensis DKKL1 had 2 putative N-glycosylation sites and 16 phosphorylation sites. DKKL1 also had classic transmembrane structures that were extracellularly localized. DKKL1's genetic distance was close to turtles, followed by amphibians and mammals, but its genetic distance was far from fishes. DKKL1 genes from different species shared distinct genomic characteristics. Meanwhile, they were also relatively conserved among themselves, at least from the perspective of classes. Notably, the transcription factors associated with spermatogenesis were also identified, containing CTCF, EWSR1, and FOXL2. DKKL1 exhibited sexually dimorphic expression only in adult gonads, which was significantly higher than that in other somatic tissues (P < 0.001), and was barely expressed in embryonic gonads. DKKL1 transcripts showed a strong signal in sperm, while faint signals were detected in other male germ cells. DKKL1 in adult testes progressively increased per month (P < 0.05), displaying a seasonal expression trait. DKKL1 was significantly downregulated in testes cells after the sex hormones (17β-estradiol and 17α-methyltestosterone) and Wnt/β-catenin inhibitor treatment (P < 0.05). Likewise, the Wnt/β-catenin inhibitor treatment dramatically repressed CTCF, EWSR1, and FOXL2 expression. Conversely, they were markedly upregulated after the 17β-estradiol and 17α-methyltestosterone treatment, suggesting that the three transcription factors might bind to different promoter regions, thereby negatively regulating DKKL1 transcription in response to the changes in the estrogen and androgen pathways, and positively controlling DKKL1 transcription in answer to the alterations in the Wnt/β-catenin pathway. Knockdown of DKKL1 significantly reduced the relative expression of HMGB2 and SPATS1 (P < 0.01), suggesting that it may be involved in seasonal spermatogenesis of P. sinensis through a positive regulatory interaction with these two genes. Overall, our findings provide novel insights into the genome evolution and potential functions of seasonal spermatogenesis of P. sinensis DKKL1.
Collapse
Affiliation(s)
- Junxian Zhu
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, PR China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, PR China
| | - Yongchang Wang
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, PR China; College of Life Science, Xinjiang Agricultural University, Ulumuqi, Xinjiang, PR China
| | - Luo Lei
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, PR China
| | - Chen Chen
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, PR China
| | - Liqin Ji
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, PR China
| | - Jiansong Li
- Huizhou Wealth Xing Industrial Co., Ltd., Huizhou, Guangdong, PR China
| | - Congcong Wu
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, PR China
| | - Wenjun Yu
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, PR China
| | - Laifu Luo
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, PR China
| | - Weiqin Chen
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, PR China
| | - Pan Liu
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, PR China
| | - Xiaoyou Hong
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, PR China
| | - Xiaoli Liu
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, PR China
| | - Haigang Chen
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, PR China
| | - Chengqing Wei
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, PR China
| | - Xinping Zhu
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, PR China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, PR China.
| | - Wei Li
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, PR China.
| |
Collapse
|
45
|
Li M, Sun L, Zhou L, Wang D. Tilapia, a good model for studying reproductive endocrinology. Gen Comp Endocrinol 2024; 345:114395. [PMID: 37879418 DOI: 10.1016/j.ygcen.2023.114395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/07/2023] [Accepted: 10/21/2023] [Indexed: 10/27/2023]
Abstract
The Nile tilapia (Oreochromis niloticus), with a system of XX/XY sex determination, is a worldwide farmed fish with a shorter sexual maturation time than that of most cultured fish. Tilapia show a spawning cycle of approximately 14 days and can be artificially propagated in the laboratory all year round to obtain genetically all female (XX) and all male (XY) fry. Its genome sequence has been opened, and a perfect gene editing platform has been established. With a moderate body size, it is convenient for taking enough blood to measure hormone level. In recent years, using tilapia as animal model, we have confirmed that estrogen is crucial for female development because 1) mutation of star2, cyp17a1 or cyp19a1a (encoding aromatase, the key enzyme for estrogen synthesis) results in sex reversal (SR) due to estrogen deficiency in XX tilapia, while mutation of star1, cyp11a1, cyp17a2, cyp19a1b or cyp11c1 affects fertility due to abnormal androgen, cortisol and DHP levels in XY tilapia; 2) when the estrogen receptors (esr2a/esr2b) are mutated, the sex is reversed from female to male, while when the androgen receptors are mutated, the sex cannot be reversed; 3) the differentiated ovary can be transdifferentiated into functional testis by inhibition of estrogen synthesis, and the differentiated testis can be transdifferentiated into ovary by simultaneous addition of exogenous estrogen and androgen synthase inhibitor; 4) loss of male pathway genes amhy, dmrt1, gsdf causes SR with upregulation of cyp19a1a in XY tilapia. Disruption of estrogen synthesis rescues the male to female SR of amhy and gsdf but not dmrt1 mutants; 5) mutation of female pathway genes foxl2 and sf-1 causes SR with downregulation of cyp19a1a in XX tilapia; 6) the germ cell SR of foxl3 mutants fails to be rescued by estrogen treatment, indicating that estrogen determines female germ cell fate through foxl3. This review also summarized the effects of deficiency of other steroid hormones, such as androgen, DHP and cortisol, on fish reproduction. Overall, these studies demonstrate that tilapia is an excellent animal model for studying reproductive endocrinology of fish.
Collapse
Affiliation(s)
- Minghui Li
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, China
| | - Lina Sun
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, China
| | - Linyan Zhou
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, China
| | - Deshou Wang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, China.
| |
Collapse
|
46
|
Smiley KO, Munley KM, Aghi K, Lipshutz SE, Patton TM, Pradhan DS, Solomon-Lane TK, Sun SED. Sex diversity in the 21st century: Concepts, frameworks, and approaches for the future of neuroendocrinology. Horm Behav 2024; 157:105445. [PMID: 37979209 PMCID: PMC10842816 DOI: 10.1016/j.yhbeh.2023.105445] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/11/2023] [Accepted: 10/18/2023] [Indexed: 11/20/2023]
Abstract
Sex is ubiquitous and variable throughout the animal kingdom. Historically, scientists have used reductionist methodologies that rely on a priori sex categorizations, in which two discrete sexes are inextricably linked with gamete type. However, this binarized operationalization does not adequately reflect the diversity of sex observed in nature. This is due, in part, to the fact that sex exists across many levels of biological analysis, including genetic, molecular, cellular, morphological, behavioral, and population levels. Furthermore, the biological mechanisms governing sex are embedded in complex networks that dynamically interact with other systems. To produce the most accurate and scientifically rigorous work examining sex in neuroendocrinology and to capture the full range of sex variability and diversity present in animal systems, we must critically assess the frameworks, experimental designs, and analytical methods used in our research. In this perspective piece, we first propose a new conceptual framework to guide the integrative study of sex. Then, we provide practical guidance on research approaches for studying sex-associated variables, including factors to consider in study design, selection of model organisms, experimental methodologies, and statistical analyses. We invite fellow scientists to conscientiously apply these modernized approaches to advance our biological understanding of sex and to encourage academically and socially responsible outcomes of our work. By expanding our conceptual frameworks and methodological approaches to the study of sex, we will gain insight into the unique ways that sex exists across levels of biological organization to produce the vast array of variability and diversity observed in nature.
Collapse
Affiliation(s)
- Kristina O Smiley
- Department of Psychological and Brain Sciences, University of Massachusetts Amherst, 639 North Pleasant Street, Morrill IVN Neuroscience, Amherst, MA 01003, USA.
| | - Kathleen M Munley
- Department of Psychology, University of Houston, 3695 Cullen Boulevard, Houston, TX 77204, USA.
| | - Krisha Aghi
- Department of Integrative Biology and Physiology, University of California Los Angeles, 405 Hilgard Ave, Los Angeles, CA 90095, USA.
| | - Sara E Lipshutz
- Department of Biology, Duke University, 130 Science Drive, Durham, NC 27708, USA.
| | - Tessa M Patton
- Bioinformatics Program, Loyola University Chicago, 1032 West Sheridan Road, LSB 317, Chicago, IL 60660, USA.
| | - Devaleena S Pradhan
- Department of Biological Sciences, Idaho State University, 921 South 8th Avenue, Mail Stop 8007, Pocatello, ID 83209, USA.
| | - Tessa K Solomon-Lane
- Scripps, Pitzer, Claremont McKenna Colleges, 925 North Mills Avenue, Claremont, CA 91711, USA.
| | - Simón E D Sun
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA.
| |
Collapse
|
47
|
Akashi H, Hasui D, Ueda K, Ishikawa M, Takeda M, Miyagawa S. Understanding the role of environmental temperature on sex determination through comparative studies in reptiles and amphibians. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2024; 341:48-59. [PMID: 37905472 DOI: 10.1002/jez.2760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 09/26/2023] [Accepted: 09/28/2023] [Indexed: 11/02/2023]
Abstract
In vertebrates, species exhibit phenotypic plasticity of sex determination that the sex can plastically be determined by the external environmental temperature through a mechanism, temperature-dependent sex determination (TSD). Temperature exerts influence over the direction of sexual differentiation pathways, resulting in distinct primary sex ratios in a temperature-dependent manner. This review provides a summary of the thermal sensitivities associated with sex determination in reptiles and amphibians, with a focus on the pattern of TSD, gonadal differentiation, temperature sensing, and the molecular basis underlying thermal sensitivity in sex determination. Comparative studies across diverse lineages offer valuable insights into comprehending the evolution of sex determination as a phenotypic plasticity. While evidence of molecular mechanisms governing sexual differentiation pathways continues to accumulate, the intracellular signaling linking temperature sensing and sexual differentiation pathways remains elusive. We emphasize that uncovering these links is a key for understanding species-specific thermal sensitivities in TSD and will contribute to a more comprehensive understanding of ecosystem and biodiversity conservations.
Collapse
Affiliation(s)
- Hiroshi Akashi
- Department of Integrated Biosciences, The University of Tokyo, Chiba, Japan
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, Tokyo, Japan
| | - Daiki Hasui
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, Tokyo, Japan
| | - Kai Ueda
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, Tokyo, Japan
| | - Momoka Ishikawa
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, Tokyo, Japan
| | | | - Shinichi Miyagawa
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, Tokyo, Japan
- Research Institute for Science and Technology, Tokyo University of Science, Tokyo, Japan
| |
Collapse
|
48
|
Toyota K, Akashi H, Ishikawa M, Yamaguchi K, Shigenobu S, Sato T, Lange A, Tyler CR, Iguchi T, Miyagawa S. Comparative analysis of gonadal transcriptomes between turtle and alligator identifies common molecular cues activated during the temperature-sensitive period for sex determination. Gene 2023; 888:147763. [PMID: 37666375 DOI: 10.1016/j.gene.2023.147763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/09/2023] [Accepted: 09/01/2023] [Indexed: 09/06/2023]
Abstract
The mode of sex determination in vertebrates can be categorized as genotypic or environmental. In the case of genotypic sex determination (GSD), the sexual fate of an organism is determined by the chromosome composition with some having dominant genes, named sex-determining genes, that drive the sex phenotypes. By contrast, many reptiles exhibit environmental sex determination (ESD), whereby environmental stimuli drive sex determination, and most notably temperature. To date, temperature-dependent sex determination (TSD) has been found in most turtles, some lizards, and all crocodylians, but commonalities in the controlling processes are not well established. Recent innovative sequencing technology has enabled investigations into gonadal transcriptomic profiles during temperature-sensitive periods (TSP) in various TSD species which can help elucidate the controlling mechanisms. In this study, we conducted a time-course analysis of the gonadal transcriptome during the male-producing temperature (26℃) of the Reeve's turtle (Chinese three-keeled pond turtle) Mauremys reevesii. We then compared the transcriptome profiles for this turtle species during the TSP with that for the American alligator Alligator mississippiensis to identify conserved reptilian TSD-related genes. Our transcriptome-based findings provide an opportunity to retrieve the candidate molecular cues that are activated during TSP and compare these target responses between TSD and GSD turtle species, and between TSD species.
Collapse
Affiliation(s)
- Kenji Toyota
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan; Noto Marine Laboratory, Institute of Nature and Environmental Technology, Kanazawa University, Ogi, Noto-cho, Ishikawa 927-0553, Japan; Department of Biological Sciences, Faculty of Science, Kanagawa University, 2946 Tsuchiya, Hiratsuka, Kanagawa 259-1293, Japan.
| | - Hiroshi Akashi
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan; Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-0882, Japan
| | - Momoka Ishikawa
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan
| | - Katsushi Yamaguchi
- Trans-Omics Facility, National Institute for Basic Biology, 38 Nishigonaka, Myodaiji-cho, Okazaki, Aichi 444-8585, Japan
| | - Shuji Shigenobu
- Trans-Omics Facility, National Institute for Basic Biology, 38 Nishigonaka, Myodaiji-cho, Okazaki, Aichi 444-8585, Japan
| | - Tomomi Sato
- Graduate School of Nanobioscience, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama, Kanagawa 236-0027, Japan
| | - Anke Lange
- Biosciences, Faculty of Health and Life Sciences, University of Exeter, Stocker Road, Exeter EX4 4QD, UK
| | - Charles R Tyler
- Biosciences, Faculty of Health and Life Sciences, University of Exeter, Stocker Road, Exeter EX4 4QD, UK
| | - Taisen Iguchi
- Noto Marine Laboratory, Institute of Nature and Environmental Technology, Kanazawa University, Ogi, Noto-cho, Ishikawa 927-0553, Japan; Graduate School of Nanobioscience, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama, Kanagawa 236-0027, Japan
| | - Shinichi Miyagawa
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan.
| |
Collapse
|
49
|
Pierron F, Daramy F, Heroin D, Daffe G, Barré A, Bouchez O, Nikolski M. Sex-specific DNA methylation and transcription of zbtb38 and effects of gene-environment interactions on its natural antisense transcript in zebrafish. Epigenetics 2023; 18:2260963. [PMID: 37782752 PMCID: PMC10547075 DOI: 10.1080/15592294.2023.2260963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 09/06/2023] [Indexed: 10/04/2023] Open
Abstract
There is increasing evidence for the involvement of epigenetics in sex determination, maintenance, and plasticity, from plants to humans. In our previous work, we reported a transgenerational feminization of a zebrafish population for which the first generation was exposed to cadmium, a metal with endocrine disrupting effects. In this study, starting from the previously performed whole methylome analysis, we focused on the zbtb38 gene and hypothesized that it could be involved in sex differentiation and Cd-induced offspring feminization. We observed sex-specific patterns of both DNA methylation and RNA transcription levels of zbtb38. We also discovered that the non-coding exon 3 of zbtb38 encodes for a natural antisense transcript (NAT). The activity of this NAT was found to be influenced by both genetic and environmental factors. Furthermore, increasing transcription levels of this NAT in parental gametes was highly correlated with offspring sex ratios. Since zbtb38 itself encodes for a transcription factor that binds methylated DNA, our results support a non-negligible role of zbtb38 not only in orchestrating the sex-specific transcriptome (i.e., sex differentiation) but also, via its NAT, offspring sex ratios.
Collapse
Affiliation(s)
| | - Flore Daramy
- Univ Bordeaux, CNRS, Bordeaux INP, Pessac, France
| | | | | | - Aurélien Barré
- Univ Bordeaux, Bordeaux Bioinformatics Center, Bordeaux, France
| | - Olivier Bouchez
- INRAE, US 1426, GeT-PlaGe, Genotoul, Castanet-Tolosan, France
| | - Macha Nikolski
- Univ Bordeaux, Bordeaux Bioinformatics Center, Bordeaux, France
- Univ Bordeaux, CNRS, IBGC, Bordeaux, France
| |
Collapse
|
50
|
Tamagawa K, Sunobe T, Makino T, Kawata M. Transcriptomic signatures associated with underlying rapid changes in the early phase brain of bi-directional sex change in Trimma okinawae. ROYAL SOCIETY OPEN SCIENCE 2023; 10:231450. [PMID: 38077214 PMCID: PMC10698487 DOI: 10.1098/rsos.231450] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 11/16/2023] [Indexed: 01/11/2024]
Abstract
Teleost fish exhibit remarkable sexual plasticity and divergent developmental systems, including sequential hermaphroditism. One of the more fascinating models of sexual plasticity is socially controlled sex change, which is often observed in coral reef fish. The Okinawa rubble goby, Trimma okinawae, is a bi-directional sex-changing fish. It can rapidly change sex in either direction based on social circumstances. Although behavioural and neuroendocrine sex change occurs immediately and is believed to trigger gonadal changes, the underlying mechanisms remain poorly understood. In this study, we conducted a de novo transcriptome analysis of the T. okinawae brain and identified genes that are differentially expressed between the sexes and genes that were immediately controlled by social stimulation implicating sex change. Several genes showed concordant expression shifts regardless of the sex change direction and were associated with histone modification in nerve cells. These genes are known to function in the neuroendocrine control of reproduction in nerve cells. Overall, we identified genes associated with the initiation of sex change, which provides insight into the regulation of sex change and sexual plasticity.
Collapse
Affiliation(s)
- Katsunori Tamagawa
- Graduate School of Life Sciences, Tohoku University, Aoba-ku, Sendai 980-8578, Japan
| | - Tomoki Sunobe
- Laboratory of Fish Behavioral Ecology, Tateyama Station, Field Science Center, Tokyo University of Marine Science and Technology, 670 Banda, Tateyama, Chiba 294-0308, Japan
| | - Takashi Makino
- Graduate School of Life Sciences, Tohoku University, Aoba-ku, Sendai 980-8578, Japan
| | - Masakado Kawata
- Graduate School of Life Sciences, Tohoku University, Aoba-ku, Sendai 980-8578, Japan
| |
Collapse
|