1
|
Wos G, Palomar G, Marszałek M, Sniegula S. Comparative Transcriptomic Reveals Greater Similarities in Response to Temperature Than to Invasive Alien Predator in the Damselfly Ischnura elegans Across Different Geographic Scales. Evol Appl 2024; 17:e70002. [PMID: 39247089 PMCID: PMC11377989 DOI: 10.1111/eva.70002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 07/04/2024] [Accepted: 08/13/2024] [Indexed: 09/10/2024] Open
Abstract
The impact of global changes on populations may not be necessarily uniform across a species' range. Here, we aim at comparing the phenotypic and transcriptomic response to warming and an invasive predator cue in populations across different geographic scales in the damselfly Ischnura elegans. We collected adult females in two ponds in southern Poland (central latitude) and two ponds in southern Sweden (high latitude). We raised their larvae in growth chambers and exposed them to combination of temperature and a predator cue released by the crayfish Orconectes limosus. When larvae reached the prefinal larval stage, they were phenotyped for traits related to growth and size and collected for a gene expression analysis. High-latitude populations exhibited greater phenotypic and transcriptomic variation than central-latitude populations. Across latitudes and ponds, temperature generally increased growth rate and the predator cue decreased mass, but the effects of temperature were also pond-specific. Comparison of the transcriptomic profiles revealed a greater overlap in the response to temperature across latitudes and ponds, especially for pathway-related oxidative stress and sugar and lipid metabolism. The transcriptomic response to a predator cue and to the interaction temperature × predator cue was more pond-specific and overlapped only for few genes and pathways related to cuticle, development and signal transduction. We demonstrated that central- and high-latitude populations may partially respond through similar mechanisms to warming and, to a lower extent to a predator cue and to the interaction temperature × predator cue. For the predator cue and the interaction, the large fraction of ponds-specific genes suggests local adaptation. We show that high-latitude populations were generally more plastic at the phenotypic and transcriptomic level and may be more capable to cope with environmental changes than their central-latitude counterparts.
Collapse
Affiliation(s)
- Guillaume Wos
- Institute of Nature Conservation Polish Academy of Sciences Krakow Poland
| | - Gemma Palomar
- Department of Genetics, Physiology and Microbiology, Faculty of Biological Sciences Complutense University of Madrid Madrid Spain
- Institute of Environmental Sciences Jagiellonian University Kraków Poland
| | - Marzena Marszałek
- Institute of Environmental Sciences Jagiellonian University Kraków Poland
| | - Szymon Sniegula
- Institute of Nature Conservation Polish Academy of Sciences Krakow Poland
| |
Collapse
|
2
|
Gómez-Llano M, Bassar RD, Svensson EI, Tye SP, Siepielski AM. Meta-analytical evidence for frequency-dependent selection across the tree of life. Ecol Lett 2024; 27:e14477. [PMID: 39096013 DOI: 10.1111/ele.14477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/12/2024] [Accepted: 06/20/2024] [Indexed: 08/04/2024]
Abstract
Explaining the maintenance of genetic variation in fitness-related traits within populations is a fundamental challenge in ecology and evolutionary biology. Frequency-dependent selection (FDS) is one mechanism that can maintain such variation, especially when selection favours rare variants (negative FDS). However, our general knowledge about the occurrence of FDS, its strength and direction remain fragmented, limiting general inferences about this important evolutionary process. We systematically reviewed the published literature on FDS and assembled a database of 747 effect sizes from 101 studies to analyse the occurrence, strength, and direction of FDS, and the factors that could explain heterogeneity in FDS. Using a meta-analysis, we found that overall, FDS is more commonly negative, although not significantly when accounting for phylogeny. An analysis of absolute values of effect sizes, however, revealed the widespread occurrence of modest FDS. However, negative FDS was only significant in laboratory experiments and non-significant in mesocosms and field-based studies. Moreover, negative FDS was stronger in studies measuring fecundity and involving resource competition over studies using other fitness components or focused on other ecological interactions. Our study unveils key general patterns of FDS and points in future promising research directions that can help us understand a long-standing fundamental problem in evolutionary biology and its consequences for demography and ecological dynamics.
Collapse
Affiliation(s)
- Miguel Gómez-Llano
- Department of Environmental and Life Science, Karlstad University, Karlstad, Sweden
| | - Ronald D Bassar
- Department of Biological Sciences, Auburn University, Auburn, Alabama, USA
| | | | - Simon P Tye
- Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas, USA
| | - Adam M Siepielski
- Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas, USA
| |
Collapse
|
3
|
Zhang T, Peng W, Xiao H, Cao S, Chen Z, Su X, Luo Y, Liu Z, Peng Y, Yang X, Jiang GF, Xu X, Ma Z, Zhou Y. Population genomics highlights structural variations in local adaptation to saline coastal environments in woolly grape. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:1408-1426. [PMID: 38578160 DOI: 10.1111/jipb.13653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 03/04/2024] [Indexed: 04/06/2024]
Abstract
Structural variations (SVs) are a feature of plant genomes that has been largely unexplored despite their significant impact on plant phenotypic traits and local adaptation to abiotic and biotic stress. In this study, we employed woolly grape (Vitis retordii), a species native to the tropical and subtropical regions of East Asia with both coastal and inland habitats, as a valuable model for examining the impact of SVs on local adaptation. We assembled a haplotype-resolved chromosomal reference genome for woolly grape, and conducted population genetic analyses based on whole-genome sequencing (WGS) data from coastal and inland populations. The demographic analyses revealed recent bottlenecks in all populations and asymmetric gene flow from the inland to the coastal population. In total, 1,035 genes associated with plant adaptive regulation for salt stress, radiation, and environmental adaptation were detected underlying local selection by SVs and SNPs in the coastal population, of which 37.29% and 65.26% were detected by SVs and SNPs, respectively. Candidate genes such as FSD2, RGA1, and AAP8 associated with salt tolerance were found to be highly differentiated and selected during the process of local adaptation to coastal habitats in SV regions. Our study highlights the importance of SVs in local adaptation; candidate genes related to salt stress and climatic adaptation to tropical and subtropical environments are important genomic resources for future breeding programs of grapevine and its rootstocks.
Collapse
Affiliation(s)
- Tianhao Zhang
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518000, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, 530004, China
- Guangxi Key Laboratory of Forest Ecology and Conservation, Guangxi Colleges and Universities Key Laboratory for Cultivation and Utilization of Subtropical Forest Plantation, College of Forestry, Guangxi University, Nanning, 530004, China
- College of Informatics, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wenjing Peng
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518000, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, 530004, China
- Guangxi Key Laboratory of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning, 530004, China
| | - Hua Xiao
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518000, China
| | - Shuo Cao
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518000, China
- Key Laboratory of Horticultural Plant Biology Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhuyifu Chen
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518000, China
| | - Xiangnian Su
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518000, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, 530004, China
- Guangxi Key Laboratory of Forest Ecology and Conservation, Guangxi Colleges and Universities Key Laboratory for Cultivation and Utilization of Subtropical Forest Plantation, College of Forestry, Guangxi University, Nanning, 530004, China
| | - Yuanyuan Luo
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China
| | - Zhongjie Liu
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518000, China
| | - Yanling Peng
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518000, China
| | - Xiping Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, 530004, China
- Guangxi Key Laboratory of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning, 530004, China
| | - Guo-Feng Jiang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, 530004, China
- Guangxi Key Laboratory of Forest Ecology and Conservation, Guangxi Colleges and Universities Key Laboratory for Cultivation and Utilization of Subtropical Forest Plantation, College of Forestry, Guangxi University, Nanning, 530004, China
| | - Xiaodong Xu
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518000, China
| | - Zhiyao Ma
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518000, China
| | - Yongfeng Zhou
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518000, China
- National Key Laboratory of Tropical Crop Breeding, Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| |
Collapse
|
4
|
Singh P, St Clair JB, Lind BM, Cronn R, Wilhelmi NP, Feau N, Lu M, Vidakovic DO, Hamelin RC, Shaw DC, Aitken SN, Yeaman S. Genetic architecture of disease resistance and tolerance in Douglas-fir trees. THE NEW PHYTOLOGIST 2024; 243:705-719. [PMID: 38803110 DOI: 10.1111/nph.19797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 03/18/2024] [Indexed: 05/29/2024]
Abstract
Understanding the genetic basis of how plants defend against pathogens is important to monitor and maintain resilient tree populations. Swiss needle cast (SNC) and Rhabdocline needle cast (RNC) epidemics are responsible for major damage of forest ecosystems in North America. Here we investigate the genetic architecture of tolerance and resistance to needle cast diseases in Douglas-fir (Pseudotsuga menziesii) caused by two fungal pathogens: SNC caused by Nothophaeocryptopus gaeumannii, and RNC caused by Rhabdocline pseudotsugae. We performed case-control genome-wide association analyses and found disease resistance and tolerance in Douglas-fir to be polygenic and under strong selection. We show that stomatal regulation as well as ethylene and jasmonic acid pathways are important for resisting SNC infection, and secondary metabolite pathways play a role in tolerating SNC once the plant is infected. We identify a major transcriptional regulator of plant defense, ERF1, as the top candidate for RNC resistance. Our findings shed light on the highly polygenic architectures underlying fungal disease resistance and tolerance and have important implications for forestry and conservation as the climate changes.
Collapse
Affiliation(s)
- Pooja Singh
- Department of Biological Sciences, University of Calgary, Calgary, AB, T2N 1N4, Canada
- Aquatic Ecology & Evolution Division, Institute of Ecology and Evolution, University of Bern, Bern, CH-3012, Switzerland
- Department of Fish Ecology & Evolution, Swiss Federal Institute of Aquatic Science and Technology (EAWAG), Kastanienbaum, CH-6047, Switzerland
| | - J Bradley St Clair
- USDA Forest Service, Pacific Northwest Research Station, 3200 SW Jefferson Way, Corvallis, OR, 97331, USA
| | - Brandon M Lind
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, V6T1Z4, BC, Canada
| | - Richard Cronn
- USDA Forest Service, Pacific Northwest Research Station, 3200 SW Jefferson Way, Corvallis, OR, 97331, USA
| | - Nicholas P Wilhelmi
- Forest Health Protection, USDA Forest Service, Arizona Zone, Flagstaff, AZ, 86001, USA
| | - Nicolas Feau
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, V6T1Z4, BC, Canada
| | - Mengmeng Lu
- Department of Biological Sciences, University of Calgary, Calgary, AB, T2N 1N4, Canada
| | - Dragana Obreht Vidakovic
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, V6T1Z4, BC, Canada
| | - Richard C Hamelin
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, V6T1Z4, BC, Canada
| | - David C Shaw
- Department of Forest Engineering, Resources and Management, Oregon State University, Corvallis, OR, 97331, USA
| | - Sally N Aitken
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, V6T1Z4, BC, Canada
| | - Sam Yeaman
- Department of Biological Sciences, University of Calgary, Calgary, AB, T2N 1N4, Canada
| |
Collapse
|
5
|
Robert E, Lenz P, Bergeron Y, de Lafontaine G, Bouriaud O, Isabel N, Girardin MP. Future carbon sequestration potential in a widespread transcontinental boreal tree species: Standing genetic variation matters! GLOBAL CHANGE BIOLOGY 2024; 30:e17347. [PMID: 38822663 DOI: 10.1111/gcb.17347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 04/26/2024] [Accepted: 05/01/2024] [Indexed: 06/03/2024]
Abstract
Climate change (CC) necessitates reforestation/afforestation programs to mitigate its impacts and maximize carbon sequestration. But comprehending how tree growth, a proxy for fitness and resilience, responds to CC is critical to maximize these programs' effectiveness. Variability in tree response to CC across populations can notably be influenced by the standing genetic variation encompassing both neutral and adaptive genetic diversity. Here, a framework is proposed to assess tree growth potential at the population scale while accounting for standing genetic variation. We applied this framework to black spruce (BS, Picea mariana [Mill] B.S.P.), with the objectives to (1) determine the key climate variables having impacted BS growth response from 1974 to 2019, (2) examine the relative roles of local adaptation and the phylogeographic structure in this response, and (3) project BS growth under two Shared Socioeconomic Pathways while taking standing genetic variation into account. We modeled growth using a machine learning algorithm trained with dendroecological and genetic data obtained from over 2600 trees (62 populations divided in three genetic clusters) in four 48-year-old common gardens, and simulated growth until year 2100 at the common garden locations. Our study revealed that high summer and autumn temperatures negatively impacted BS growth. As a consequence of warming, this species is projected to experience a decline in growth by the end of the century, suggesting maladaptation to anticipated CC and a potential threat to its carbon sequestration capacity. This being said, we observed a clear difference in response to CC within and among genetic clusters, with the western cluster being more impacted than the central and eastern clusters. Our results show that intraspecific genetic variation, notably associated with the phylogeographic structure, must be considered when estimating the response of widespread species to CC.
Collapse
Affiliation(s)
- Etienne Robert
- Département des Sciences Biologiques, Université du Québec à Montréal, Montréal, Quebec, Canada
- Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, Quebec City, Quebec, Canada
| | - Patrick Lenz
- Natural Resources Canada, Canadian Forest Service, Canadian Wood Fibre Centre, Quebec City, Quebec, Canada
| | - Yves Bergeron
- Département des Sciences Biologiques, Université du Québec à Montréal, Montréal, Quebec, Canada
- Institut de Recherche Sur les forêts, Université du Québec en Abitibi-Témiscamingue, Rouyn-Noranda, Québec, Canada
| | - Guillaume de Lafontaine
- Canada Research Chair in Integrative Biology of the Northern Flora, Département de Biologie, Chimie et Géographie, Université du Québec à Rimouski, Rimouski, Québec, Canada
| | - Olivier Bouriaud
- Ștefan Cel Mare University of Suceava, Suceava, Romania
- IGN, ENSG, Laboratoire d'Inventaire Forestier - LIF, Nancy, France
| | - Nathalie Isabel
- Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, Quebec City, Quebec, Canada
| | - Martin P Girardin
- Département des Sciences Biologiques, Université du Québec à Montréal, Montréal, Quebec, Canada
- Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, Quebec City, Quebec, Canada
- Institut de Recherche Sur les forêts, Université du Québec en Abitibi-Témiscamingue, Rouyn-Noranda, Québec, Canada
| |
Collapse
|
6
|
Wadgymar SM, Sheth S, Josephs E, DeMarche M, Anderson J. Defining fitness in evolutionary ecology. INTERNATIONAL JOURNAL OF PLANT SCIENCES 2024; 185:218-227. [PMID: 39035046 PMCID: PMC11257499 DOI: 10.1086/729360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
An understanding of biological fitness is central to theory and practice in ecology and evolution, yet fitness remains an elusive concept to define and challenging to measure accurately. Fitness reflects an individual's ability to pass its alleles on to subsequent generations. Researchers often quantify proxies for fitness, such as survival, growth or reproductive success. However, it can be difficult to determine lifetime fitness, especially for species with long lifespans. The abiotic and biotic environment strongly affects the expression of fitness, which means that fitness components can vary through both space and time. This spatial and temporal heterogeneity results in the impressive range of adaptations that we see in nature. Here, we review definitions of fitness and approaches to measuring fitness at the level of genes, individuals, genotypes, and populations and highlight that fitness is a key concept linking ecological and evolutionary thought.
Collapse
Affiliation(s)
| | - Seema Sheth
- Department of Plant and Microbial Biology, North Carolina State University
| | - Emily Josephs
- Department of Plant Biology, Michigan State University
| | | | - Jill Anderson
- Department of Genetics & Odum School of Ecology, University of Georgia
| |
Collapse
|
7
|
Venkataraman P, Nagendra P, Ahlawat N, Brajesh RG, Saini S. Convergent genetic adaptation of Escherichia coli in minimal media leads to pleiotropic divergence. Front Mol Biosci 2024; 11:1286824. [PMID: 38660375 PMCID: PMC11039892 DOI: 10.3389/fmolb.2024.1286824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 02/15/2024] [Indexed: 04/26/2024] Open
Abstract
Adaptation in an environment can either be beneficial, neutral or disadvantageous in another. To test the genetic basis of pleiotropic behaviour, we evolved six lines of E. coli independently in environments where glucose and galactose were the sole carbon sources, for 300 generations. All six lines in each environment exhibit convergent adaptation in the environment in which they were evolved. However, pleiotropic behaviour was observed in several environmental contexts, including other carbon environments. Genome sequencing reveals that mutations in global regulators rpoB and rpoC cause this pleiotropy. We report three new alleles of the rpoB gene, and one new allele of the rpoC gene. The novel rpoB alleles confer resistance to Rifampicin, and alter motility. Our results show how single nucleotide changes in the process of adaptation in minimal media can lead to wide-scale pleiotropy, resulting in changes in traits that are not under direct selection.
Collapse
Affiliation(s)
| | | | | | | | - Supreet Saini
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, India
| |
Collapse
|
8
|
Grieshop K, Ho EKH, Kasimatis KR. Dominance reversals: the resolution of genetic conflict and maintenance of genetic variation. Proc Biol Sci 2024; 291:20232816. [PMID: 38471544 DOI: 10.1098/rspb.2023.2816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 02/05/2024] [Indexed: 03/14/2024] Open
Abstract
Beneficial reversals of dominance reduce the costs of genetic trade-offs and can enable selection to maintain genetic variation for fitness. Beneficial dominance reversals are characterized by the beneficial allele for a given context (e.g. habitat, developmental stage, trait or sex) being dominant in that context but recessive where deleterious. This context dependence at least partially mitigates the fitness consequence of heterozygotes carrying one non-beneficial allele for their context and can result in balancing selection that maintains alternative alleles. Dominance reversals are theoretically plausible and are supported by mounting empirical evidence. Here, we highlight the importance of beneficial dominance reversals as a mechanism for the mitigation of genetic conflict and review the theory and empirical evidence for them. We identify some areas in need of further research and development and outline three methods that could facilitate the identification of antagonistic genetic variation (dominance ordination, allele-specific expression and allele-specific ATAC-Seq (assay for transposase-accessible chromatin with sequencing)). There is ample scope for the development of new empirical methods as well as reanalysis of existing data through the lens of dominance reversals. A greater focus on this topic will expand our understanding of the mechanisms that resolve genetic conflict and whether they maintain genetic variation.
Collapse
Affiliation(s)
- Karl Grieshop
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Canada M5S 1A1
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 10691 Stockholm, Sweden
| | - Eddie K H Ho
- Department of Biology, Reed College, 3203 SE Woodstock Blvd, Portland, OR 97202, USA
| | - Katja R Kasimatis
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Canada M5S 1A1
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA
| |
Collapse
|
9
|
Ludwig E, Sumner J, Berry J, Polydore S, Ficor T, Agnew E, Haines K, Greenham K, Fahlgren N, Mockler TC, Gehan MA. Natural variation in Brachypodium distachyon responses to combined abiotic stresses. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:1676-1701. [PMID: 37483133 DOI: 10.1111/tpj.16387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 06/26/2023] [Accepted: 07/05/2023] [Indexed: 07/25/2023]
Abstract
The demand for agricultural production is becoming more challenging as climate change increases global temperature and the frequency of extreme weather events. This study examines the phenotypic variation of 149 accessions of Brachypodium distachyon under drought, heat, and the combination of stresses. Heat alone causes the largest amounts of tissue damage while the combination of stresses causes the largest decrease in biomass compared to other treatments. Notably, Bd21-0, the reference line for B. distachyon, did not have robust growth under stress conditions, especially the heat and combined drought and heat treatments. The climate of origin was significantly associated with B. distachyon responses to the assessed stress conditions. Additionally, a GWAS found loci associated with changes in plant height and the amount of damaged tissue under stress. Some of these SNPs were closely located to genes known to be involved in responses to abiotic stresses and point to potential causative loci in plant stress response. However, SNPs found to be significantly associated with a response to heat or drought individually are not also significantly associated with the combination of stresses. This, with the phenotypic data, suggests that the effects of these abiotic stresses are not simply additive, and the responses to the combined stresses differ from drought and heat alone.
Collapse
Affiliation(s)
- Ella Ludwig
- Donald Danforth Plant Science Center, St. Louis, Missouri, 63132, USA
| | - Joshua Sumner
- Donald Danforth Plant Science Center, St. Louis, Missouri, 63132, USA
| | - Jeffrey Berry
- Donald Danforth Plant Science Center, St. Louis, Missouri, 63132, USA
- Bayer Crop Sciences, St. Louis, Missouri, 63017, USA
| | - Seth Polydore
- Donald Danforth Plant Science Center, St. Louis, Missouri, 63132, USA
| | - Tracy Ficor
- Donald Danforth Plant Science Center, St. Louis, Missouri, 63132, USA
| | - Erica Agnew
- Donald Danforth Plant Science Center, St. Louis, Missouri, 63132, USA
| | - Kristina Haines
- Donald Danforth Plant Science Center, St. Louis, Missouri, 63132, USA
| | - Kathleen Greenham
- Donald Danforth Plant Science Center, St. Louis, Missouri, 63132, USA
- University of Minnesota, St. Paul, Minnesota, 55108, USA
| | - Noah Fahlgren
- Donald Danforth Plant Science Center, St. Louis, Missouri, 63132, USA
| | - Todd C Mockler
- Donald Danforth Plant Science Center, St. Louis, Missouri, 63132, USA
| | - Malia A Gehan
- Donald Danforth Plant Science Center, St. Louis, Missouri, 63132, USA
| |
Collapse
|
10
|
Martignoni MM, Tyson RC, Kolodny O, Garnier J. Mutualism at the leading edge: insights into the eco-evolutionary dynamics of host-symbiont communities during range expansion. J Math Biol 2024; 88:24. [PMID: 38308102 DOI: 10.1007/s00285-023-02037-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 09/04/2023] [Accepted: 12/14/2023] [Indexed: 02/04/2024]
Abstract
The evolution of mutualism between host and symbiont communities plays an essential role in maintaining ecosystem function and should therefore have a profound effect on their range expansion dynamics. In particular, the presence of mutualistic symbionts at the leading edge of a host-symbiont community should enhance its propagation in space. We develop a theoretical framework that captures the eco-evolutionary dynamics of host-symbiont communities, to investigate how the evolution of resource exchange may shape community structure during range expansion. We consider a community with symbionts that are mutualistic or parasitic to various degrees, where parasitic symbionts receive the same amount of resource from the host as mutualistic symbionts, but at a lower cost. The selective advantage of parasitic symbionts over mutualistic ones is increased with resource availability (i.e. with host density), promoting mutualism at the range edges, where host density is low, and parasitism at the population core, where host density is higher. This spatial selection also influences the speed of spread. We find that the host growth rate (which depends on the average benefit provided by the symbionts) is maximal at the range edges, where symbionts are more mutualistic, and that host-symbiont communities with high symbiont density at their core (e.g. resulting from more mutualistic hosts) spread faster into new territories. These results indicate that the expansion of host-symbiont communities is pulled by the hosts but pushed by the symbionts, in a unique push-pull dynamic where both the host and symbionts are active and tightly-linked players.
Collapse
Affiliation(s)
- Maria M Martignoni
- Department of Ecology, Evolution and Behavior, A. Silberman Institute of Life Sciences, Faculty of Sciences, Hebrew University of Jerusalem, Jerusalem, Israel.
| | - Rebecca C Tyson
- CMPS Department (Mathematics), University of British Columbia Okanagan, Kelowna, BC, Canada
| | - Oren Kolodny
- Department of Ecology, Evolution and Behavior, A. Silberman Institute of Life Sciences, Faculty of Sciences, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Jimmy Garnier
- Laboratory of Mathematics, CNRS, Université Savoie-Mont Blanc, Université Grenoble Alpes, Chambery, France
| |
Collapse
|
11
|
Liu S, Chen L, Qiao X, Ren J, Zhou C, Yang Y. Functional Evolution of Pseudofabraea citricarpa as an Adaptation to Temperature Change. J Fungi (Basel) 2024; 10:109. [PMID: 38392781 PMCID: PMC10890082 DOI: 10.3390/jof10020109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/15/2024] [Accepted: 01/25/2024] [Indexed: 02/24/2024] Open
Abstract
Citrus target spot, caused by Pseudofabraea citricarpa, was formerly considered a cold-tolerant fungal disease. However, it has now spread from high-latitude regions to warmer low-latitude regions. Here, we conducted physiological observations on two different strains of the fungus collected from distinct regions, and evaluated their pathogenicity. Interestingly, the CQWZ collected from a low-latitude orchard, exhibited higher temperature tolerance and pathogenicity when compared to the SXCG collected from a high-latitude orchard. To further understand the evolution of temperature tolerance and virulence in these pathogens during the spread process, as well as the mechanisms underlying these differences, we performed genomic comparative analysis. The genome size of CQWZ was determined to be 44,004,669 bp, while the genome size of SXCG was determined to be 45,377,339 bp. Through genomic collinearity analysis, we identified two breakpoints and rearrangements during the evolutionary process of these two strains. Moreover, gene annotation results revealed that the CQWZ possessed 376 annotated genes in the "Xenobiotics biodegradation and metabolism" pathway, which is 79 genes more than the SXCG. The main factor contributing to this difference was the presence of salicylate hydroxylase. We also observed variations in the oxidative stress pathways and core pathogenic genes. The CQWZ exhibited the presence of a heat shock protein (HSP SSB), a catalase (CAT2), and 13 core pathogenic genes, including a LysM effector, in comparison to the SXCG. Furthermore, there were significant disparities in the gene clusters responsible for the production of seven metabolites, such as Fumonisin and Brefeldin. Finally, we identified the regulatory relationship, with the HOG pathway at its core, that potentially contributes to the differences in thermotolerance and virulence. As the global climate continues to warm, crop pathogens are increasingly expanding to new territories. Our findings will enhance understanding of the evolution mechanisms of pathogens under climate change.
Collapse
Affiliation(s)
- Saifei Liu
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Plant Protection, Southwest University, Beibei, Chongqing 400716, China
| | - Li Chen
- Plant Protection and Fruit Tree Technology Extension Station of Wanzhou District in Chongqing, Chongqing 404199, China
| | - Xinghua Qiao
- Plant Protection and Fruit Tree Technology Extension Station of Wanzhou District in Chongqing, Chongqing 404199, China
| | - Jiequn Ren
- The Chongqing Three Gorges Academy of Agricultural Sciences, Chongqing 404150, China
| | - Changyong Zhou
- Citrus Research Institute, Southwest University, Beibei, Chongqing 400712, China
| | - Yuheng Yang
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Plant Protection, Southwest University, Beibei, Chongqing 400716, China
| |
Collapse
|
12
|
Wade MJ, Sultan SE. Niche construction and the environmental term of the price equation: How natural selection changes when organisms alter their environments. Evol Dev 2023; 25:451-469. [PMID: 37530093 DOI: 10.1111/ede.12452] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/30/2023] [Accepted: 07/07/2023] [Indexed: 08/03/2023]
Abstract
Organisms construct their own environments and phenotypes through the adaptive processes of habitat choice, habitat construction, and phenotypic plasticity. We examine how these processes affect the dynamics of mean fitness change through the environmental change term of the Price Equation. This tends to be ignored in evolutionary theory, owing to the emphasis on the first term describing the effect of natural selection on mean fitness (the additive genetic variance for fitness of Fisher's Fundamental Theorem). Using population genetic models and the Price Equation, we show how adaptive niche constructing traits favorably alter the distribution of environments that organisms encounter and thereby increase population mean fitness. Because niche-constructing traits increase the frequency of higher-fitness environments, selection favors their evolution. Furthermore, their alteration of the actual or experienced environmental distribution creates selective feedback between niche constructing traits and other traits, especially those with genotype-by-environment interaction for fitness. By altering the distribution of experienced environments, niche constructing traits can increase the additive genetic variance for such traits. This effect accelerates the process of overall adaption to the niche-constructed environmental distribution and can contribute to the rapid refinement of alternative phenotypic adaptations to different environments. Our findings suggest that evolutionary biologists revisit and reevaluate the environmental term of the Price Equation: owing to adaptive niche construction, it contributes directly to positive change in mean fitness; its magnitude can be comparable to that of natural selection; and, when there is fitness G × E, it increases the additive genetic variance for fitness, the much-celebrated first term.
Collapse
Affiliation(s)
- Michael J Wade
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| | - Sonia E Sultan
- Department of Biology, Wesleyan University, Middletown, Connecticut, USA
| |
Collapse
|
13
|
Ito S, Chiba S, Konuma J. Overcoming the congenitally disadvantageous mutation through adaptation to environmental UV exposure in land snails. Biol Lett 2023; 19:20230356. [PMID: 37990565 PMCID: PMC10663782 DOI: 10.1098/rsbl.2023.0356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 11/02/2023] [Indexed: 11/23/2023] Open
Abstract
Congenital fitness-disadvantageous mutations are not maintained in the population; they are purged from the population through processes such as purifying selection. However, these mutations could persist in the population as polymorphisms when it is advantageous for the individuals carrying them in adapting to a specific external environment. We tested this hypothesis using the dimorphic land snail Euhadra peliomphala simodae in Japan; these snails have dark or bright coloured shells. The survival rate of dark snails at hatching was lower than that of the bright ones, as observed in the F1 progenies produced through crossing. Dark snails have a congenital fitness-disadvantageous mutation; however, they also have protection against ultraviolet radiation. They have a higher survival rate than the bright snails in a UV environment, as observed using the UV exposure experiments and UV transmittance measurements. This is a good example of a congenitally disadvantageous mutation that is advantageous for adapting to the external environment. These results explain the maintenance of polymorphism and highlight the genotypic and phenotypic diversity in the wild population.
Collapse
Affiliation(s)
- Shun Ito
- Izu Oshima Geopark Promotion Committee Office, Tokyo, Japan
- Department of Biology, Faculty of Science, Toho University, Chiba, Japan
| | - Satoshi Chiba
- Center for Northeast Asian Studies, Tohoku University, Miyagi, Japan
- Graduate School of Life Science, Tohoku University, Miyagi, Japan
| | - Junji Konuma
- Department of Biology, Faculty of Science, Toho University, Chiba, Japan
| |
Collapse
|
14
|
Ethridge SR, Chandra S, Locke AM, Everman WJ, Jordan DL, Owen MDK, Leon RG. Changes in the herbicide sensitivity and competitive ability of Abutilon theophrasti over 28 years: Implications for hormesis and weed evolution. PEST MANAGEMENT SCIENCE 2023; 79:4048-4056. [PMID: 37309719 DOI: 10.1002/ps.7604] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 06/02/2023] [Accepted: 06/13/2023] [Indexed: 06/14/2023]
Abstract
BACKGROUND The potential of weed species to respond to selection forces affecting the evolution of weedy traits such as competitive ability is poorly understood. This research characterized evolutionary growth changes in a single Abutilon theophrasti Medik. population comparing multiple generations collected from 1988 to 2016. A competition study was performed to understand changes in competitive ability, and a herbicide dose-response study was carried out to assess changes in sensitivity to acetolactate synthase-inhibiting herbicides and glyphosate over time. RESULTS When grown in monoculture, A. theophrasti biomass production per plant increased steadily across year-lines while leaf number decreased. In replacement experiments, A. theophrasti plants from newer year-lines were more competitive and produced more biomass and leaf area than the oldest year-line. No clear differences in sensitivity to imazamox were observed among year-lines. However, starting in 1995, this A. theophrasti population exhibited a progressive increase in growth in response to a sublethal dose of glyphosate (52 g a.e. ha-1 ), with the 2009 and 2016 year-lines having more than 50% higher biomass than the nontreated control. CONCLUSION This study demonstrates that weeds can rapidly evolve increased competitive ability. Furthermore, the results indicate the possibility of changes in glyphosate hormesis over time. These results highlight the importance of the role that rapid (i.e., subdecadal) evolution of growth traits might have on the sustainability of weed management strategies. © 2023 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Sandra R Ethridge
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, North Carolina, USA
| | - Saket Chandra
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, North Carolina, USA
| | - Anna M Locke
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, North Carolina, USA
- Soybean & Nitrogen Fixation Research, USDA Agricultural Research Service, Raleigh, North Carolina, USA
| | - Wesley J Everman
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, North Carolina, USA
| | - David L Jordan
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, North Carolina, USA
| | | | - Ramon G Leon
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
15
|
Archambeau J, Benito Garzón M, de Miguel M, Brachi B, Barraquand F, González-Martínez SC. Reduced within-population quantitative genetic variation is associated with climate harshness in maritime pine. Heredity (Edinb) 2023; 131:68-78. [PMID: 37221230 PMCID: PMC10313832 DOI: 10.1038/s41437-023-00622-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 05/01/2023] [Accepted: 05/02/2023] [Indexed: 05/25/2023] Open
Abstract
How evolutionary forces interact to maintain genetic variation within populations has been a matter of extensive theoretical debates. While mutation and exogenous gene flow increase genetic variation, stabilizing selection and genetic drift are expected to deplete it. To date, levels of genetic variation observed in natural populations are hard to predict without accounting for other processes, such as balancing selection in heterogeneous environments. We aimed to empirically test three hypotheses: (i) admixed populations have higher quantitative genetic variation due to introgression from other gene pools, (ii) quantitative genetic variation is lower in populations from harsher environments (i.e., experiencing stronger selection), and (iii) quantitative genetic variation is higher in populations from heterogeneous environments. Using growth, phenological and functional trait data from three clonal common gardens and 33 populations (522 clones) of maritime pine (Pinus pinaster Aiton), we estimated the association between the population-specific total genetic variances (i.e., among-clone variances) for these traits and ten population-specific indices related to admixture levels (estimated based on 5165 SNPs), environmental temporal and spatial heterogeneity and climate harshness. Populations experiencing colder winters showed consistently lower genetic variation for early height growth (a fitness-related trait in forest trees) in the three common gardens. Within-population quantitative genetic variation was not associated with environmental heterogeneity or population admixture for any trait. Our results provide empirical support for the potential role of natural selection in reducing genetic variation for early height growth within populations, which indirectly gives insight into the adaptive potential of populations to changing environments.
Collapse
Affiliation(s)
- Juliette Archambeau
- INRAE, Univ. Bordeaux, BIOGECO, F-33610, Cestas, France.
- UK Centre for Ecology & Hydrology, Bush Estate, Penicuik, UK.
| | | | - Marina de Miguel
- INRAE, Univ. Bordeaux, BIOGECO, F-33610, Cestas, France
- EGFV, Univ. Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, F-33882, Villenave d'Ornon, France
| | | | | | | |
Collapse
|
16
|
Gunkel P, Iino H, Krull S, Cordes VC. An evolutionarily conserved bimodular domain anchors ZC3HC1 and its yeast homologue Pml39p to the nuclear basket. Mol Biol Cell 2023; 34:ar40. [PMID: 36857168 PMCID: PMC10162418 DOI: 10.1091/mbc.e22-09-0402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 02/10/2023] [Accepted: 02/22/2023] [Indexed: 03/02/2023] Open
Abstract
The proteins ZC3HC1 and TPR are structural components of the nuclear basket (NB), a fibrillar structure attached to the nucleoplasmic side of the nuclear pore complex (NPC). ZC3HC1 initially binds to the NB in a TPR-dependent manner and can subsequently recruit additional TPR polypeptides to this structure. Here, we examined the molecular properties of ZC3HC1 that enable its initial binding to the NB and TPR. We report the identification and definition of a nuclear basket-interaction domain (NuBaID) of HsZC3HC1 that comprises two similarly built modules, both essential for binding the NB-resident TPR. We show that such a bimodular construction is evolutionarily conserved, which we further investigated in Dictyostelium discoideum and Saccharomyces cerevisiae. Presenting ScPml39p as the ZC3HC1 homologue in budding yeast, we show that the bimodular NuBaID of Pml39p is essential for binding to the yeast NB and its TPR homologues ScMlp1p and ScMlp2p, and we further demonstrate that Pml39p enables linkage between subpopulations of Mlp1p. We eventually delineate the common NuBaID of the human, amoebic, and yeast homologue as the defining structural entity of a unique protein not found in all but likely present in most taxa of the eukaryotic realm.
Collapse
Affiliation(s)
- Philip Gunkel
- Max Planck Institute for Multidisciplinary Sciences, 37077 Göttingen, Germany
| | - Haruki Iino
- Max Planck Institute for Multidisciplinary Sciences, 37077 Göttingen, Germany
| | - Sandra Krull
- Max Planck Institute for Multidisciplinary Sciences, 37077 Göttingen, Germany
| | - Volker C. Cordes
- Max Planck Institute for Multidisciplinary Sciences, 37077 Göttingen, Germany
| |
Collapse
|
17
|
Gauzere J, Pemberton JM, Slate J, Morris A, Morris S, Walling CA, Johnston SE. A polygenic basis for birth weight in a wild population of red deer (Cervus elaphus). G3 (BETHESDA, MD.) 2023; 13:jkad018. [PMID: 36652410 PMCID: PMC10085764 DOI: 10.1093/g3journal/jkad018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 01/09/2023] [Accepted: 01/13/2023] [Indexed: 01/19/2023]
Abstract
The genetic architecture of traits under selection has important consequences for the response to selection and potentially for population viability. Early QTL mapping studies in wild populations have reported loci with large effect on trait variation. However, these results are contradicted by more recent genome-wide association analyses, which strongly support the idea that most quantitative traits have a polygenic basis. This study aims to re-evaluate the genetic architecture of a key morphological trait, birth weight, in a wild population of red deer (Cervus elaphus), using genomic approaches. A previous study using 93 microsatellite and allozyme markers and linkage mapping on a kindred of 364 deer detected a pronounced QTL on chromosome 21 explaining 29% of the variance in birth weight, suggesting that this trait is partly controlled by genes with large effects. Here, we used data for more than 2,300 calves genotyped at >39,000 SNP markers and two approaches to characterise the genetic architecture of birth weight. First, we performed a genome-wide association (GWA) analysis, using a genomic relatedness matrix to account for population structure. We found no SNPs significantly associated with birth weight. Second, we used genomic prediction to estimate the proportion of variance explained by each SNP and chromosome. This analysis confirmed that most genetic variance in birth weight was explained by loci with very small effect sizes. Third, we found that the proportion of variance explained by each chromosome was slightly positively correlated with its size. These three findings highlight a highly polygenic architecture for birth weight, which contradicts the previous QTL study. These results are probably explained by the differences in how associations are modelled between QTL mapping and GWA. Our study suggests that models of polygenic adaptation are the most appropriate to study the evolutionary trajectory of this trait.
Collapse
Affiliation(s)
- Julie Gauzere
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh EH9 3FL, UK
- AGAP, Université Montpellier, CIRAD, INRAE, Institut Agro, 34090 Montpellier, France
| | | | - Jon Slate
- School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK
| | - Alison Morris
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Sean Morris
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Craig A Walling
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Susan E Johnston
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh EH9 3FL, UK
| |
Collapse
|
18
|
Kaufmann P, Howie JM, Immonen E. Sexually antagonistic selection maintains genetic variance when sexual dimorphism evolves. Proc Biol Sci 2023; 290:20222484. [PMID: 36946115 PMCID: PMC10031426 DOI: 10.1098/rspb.2022.2484] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 02/28/2023] [Indexed: 03/23/2023] Open
Abstract
Genetic variance (VG) in fitness related traits is often unexpectedly high, evoking the question how VG can be maintained in the face of selection. Sexually antagonistic (SA) selection favouring alternative alleles in the sexes is common and predicted to maintain VG, while directional selection should erode it. Both SA and sex-limited directional selection can lead to sex-specific adaptations but how each affect VG when sexual dimorphism evolves remain experimentally untested. Using replicated artificial selection on the seed beetle Callosobruchus maculatus body size we recently demonstrated an increase in size dimorphism under SA and male-limited (ML) selection by 50% and 32%, respectively. Here we test their consequences on genetic variation. We show that SA selection maintained significantly more ancestral, autosomal additive genetic variance than ML selection, while both eroded sex-linked additive variation equally. Ancestral female-specific dominance variance was completely lost under ML, while SA selection consistently sustained it. Further, both forms of selection preserved a high genetic correlation between the sexes (rm,f). These results demonstrate the potential for sexual antagonism to maintain more genetic variance while fuelling sex-specific adaptation in a short evolutionary time scale, and are in line with predicted importance of sex-specific dominance reducing sexual conflict over alternative alleles.
Collapse
Affiliation(s)
- Philipp Kaufmann
- Department of Ecology and Genetics (Evolutionary Biology program), Uppsala University, Norbyvägen 18D, 75234 Uppsala, Sweden
| | - James Malcolm Howie
- Department of Ecology and Genetics (Evolutionary Biology program), Uppsala University, Norbyvägen 18D, 75234 Uppsala, Sweden
- Institute of Forest Entomology, Forest Pathology and Forest Protection, Boku, University of Natural Resources and Life Sciences, Peter-Jordan-Straße 82/I, 1190, Vienna, Austria
| | - Elina Immonen
- Department of Ecology and Genetics (Evolutionary Biology program), Uppsala University, Norbyvägen 18D, 75234 Uppsala, Sweden
| |
Collapse
|
19
|
Lo YC, Blamires SJ, Liao CP, Tso IM. Nocturnal and diurnal predator and prey interactions with crab spider color polymorphs. Behav Ecol Sociobiol 2023. [DOI: 10.1007/s00265-023-03291-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
20
|
Gutiérrez F, Valdesoiro F. The evolution of personality disorders: A review of proposals. Front Psychiatry 2023; 14:1110420. [PMID: 36793943 PMCID: PMC9922784 DOI: 10.3389/fpsyt.2023.1110420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 01/12/2023] [Indexed: 02/02/2023] Open
Abstract
Personality disorders (PDs) are currently considered dysfunctions. However, personality differences are older than humanity and are ubiquitous in nature, from insects to higher primates. This suggests that a number of evolutionary mechanisms-other than dysfunctions-may be able to maintain stable behavioral variation in the gene pool. First of all, apparently maladaptive traits may actually improve fitness by enabling better survival or successful mating or reproduction, as exemplified by neuroticism, psychopathy, and narcissism. Furthermore, some PDs may harm important biological goals while facilitating others, or may be globally beneficial or detrimental depending on environmental circumstances or body condition. Alternatively, certain traits may form part of life history strategies: Coordinated suites of morphological, physiological and behavioral characters that optimize fitness through alternative routes and respond to selection as a whole. Still others may be vestigial adaptations that are no longer beneficial in present times. Finally, variation may be adaptative in and by itself, as it reduces competition for finite resources. These and other evolutionary mechanisms are reviewed and illustrated through human and non-human examples. Evolutionary theory is the best-substantiated explanatory framework across the life sciences, and may shed light on the question of why harmful personalities exist at all.
Collapse
Affiliation(s)
- Fernando Gutiérrez
- Hospital Clínic de Barcelona, Institute of Neuroscience, Barcelona, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | | |
Collapse
|
21
|
Weng X, Haque T, Zhang L, Razzaque S, Lovell JT, Palacio-Mejía JD, Duberney P, Lloyd-Reilley J, Bonnette J, Juenger TE. A Pleiotropic Flowering Time QTL Exhibits Gene-by-Environment Interaction for Fitness in a Perennial Grass. Mol Biol Evol 2022; 39:msac203. [PMID: 36149808 PMCID: PMC9550986 DOI: 10.1093/molbev/msac203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Appropriate flowering time is a crucial adaptation impacting fitness in natural plant populations. Although the genetic basis of flowering variation has been extensively studied, its mechanisms in nonmodel organisms and its adaptive value in the field are still poorly understood. Here, we report new insights into the genetic basis of flowering time and its effect on fitness in Panicum hallii, a native perennial grass. Genetic mapping in populations derived from inland and coastal ecotypes identified flowering time quantitative trait loci (QTL) and many exhibited extensive QTL-by-environment interactions. Patterns of segregation within recombinant hybrids provide strong support for directional selection driving ecotypic divergence in flowering time. A major QTL on chromosome 5 (q-FT5) was detected in all experiments. Fine-mapping and expression studies identified a gene with orthology to a rice FLOWERING LOCUS T-like 9 (PhFTL9) as the candidate underlying q-FT5. We used a reciprocal transplant experiment to test for local adaptation and the specific impact of q-FT5 on performance. We did not observe local adaptation in terms of fitness tradeoffs when contrasting ecotypes in home versus away habitats. However, we observed that the coastal allele of q-FT5 conferred a fitness advantage only in its local habitat but not at the inland site. Sequence analyses identified an excess of low-frequency polymorphisms at the PhFTL9 promoter in the inland lineage, suggesting a role for either selection or population expansion on promoter evolution. Together, our findings demonstrate the genetic basis of flowering variation in a perennial grass and provide evidence for conditional neutrality underlying flowering time divergence.
Collapse
Affiliation(s)
- Xiaoyu Weng
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, USA
| | - Taslima Haque
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, USA
| | - Li Zhang
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, USA
| | - Samsad Razzaque
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, USA
| | - John T Lovell
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | - Juan Diego Palacio-Mejía
- Corporación Colombiana de Investigación Agropecuaria – AGROSAVIA, Centro de Investigación Tibaitatá. Kilómetro 14 vía Mosquera-Bogotá, Mosquera. Código postal 250047, Colombia
| | - Perla Duberney
- Kika de la Garza Plant Materials Center, USDA-NRCS, Kingsville, TX, USA
| | | | - Jason Bonnette
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, USA
| | - Thomas E Juenger
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
22
|
Nabutanyi P, Wittmann MJ. Modeling minimum viable population size with multiple genetic problems of small populations. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2022; 36:e13940. [PMID: 35674090 DOI: 10.1111/cobi.13940] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 02/14/2022] [Accepted: 02/18/2022] [Indexed: 06/15/2023]
Abstract
An important goal for conservation is to define minimum viable population (MVP) sizes for long-term persistence of a species. There is increasing evidence of the role of genetics in population extinction; thus, conservation practitioners are starting to consider the effects of deleterious mutations (DM), in particular the effects of inbreeding depression on fitness. We sought to develop methods to account for genetic problems other than inbreeding depression in MVP estimates, quantify the effect of the interaction of multiple genetic problems on MVP sizes, and find ways to reduce the arbitrariness of time and persistence probability thresholds in MVP analyses. To do so, we developed ecoevolutionary quantitative models to track population size and levels of genetic diversity. We assumed a biallelic multilocus genome with loci under single or multiple, interacting genetic forces. We included mutation-selection-drift balance (for loci with DM) and 3 forms of balancing selection for loci for which variation is lost through genetic drift. We defined MVP size as the lowest population size that avoids an ecoevolutionary extinction vortex. For populations affected by only balancing selection, MVP size decreased rapidly as mutation rates increased. For populations affected by mutation-selection-drift balance, the MVP size increased rapidly. In addition, MVP sizes increased rapidly as the number of loci increased under the same or different selection mechanisms until even arbitrarily large populations could not survive. In the case of fixed number of loci under selection, interaction of genetic problems did not always increase MVP sizes. To further enhance understanding about interaction of genetic problems, there is need for more empirical studies to reveal how different genetic processes interact in the genome.
Collapse
Affiliation(s)
- Peter Nabutanyi
- Department of Theoretical Biology, Faculty of Biology, Bielefeld University, Bielefeld, Germany
| | - Meike J Wittmann
- Department of Theoretical Biology, Faculty of Biology, Bielefeld University, Bielefeld, Germany
| |
Collapse
|
23
|
McMinn R, Salmela MJ, Weinig C. Naturally segregating genetic variation in circadian period exhibits a regional elevational and climatic cline. PLANT, CELL & ENVIRONMENT 2022; 45:2696-2707. [PMID: 35686466 DOI: 10.1111/pce.14377] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 05/15/2022] [Accepted: 05/21/2022] [Indexed: 06/15/2023]
Abstract
Circadian clocks confer adaptation to predictable 24-h fluctuations in the exogenous environment, but it has yet to be determined what ecological factors maintain natural genetic variation in endogenous circadian period outside of the hypothesized optimum of 24 h. We estimated quantitative genetic variation in circadian period in leaf movement in 30 natural populations of the Arabidopsis relative Boechera stricta sampled within only 1° of latitude but across an elevation gradient spanning 2460-3300 m in the Rocky Mountains. Measuring ~3800 plants from 473 maternal families (7-20 per population), we found that genetic variation was of similar magnitude among versus within populations, with population means varying between 21.9 and 24.9 h and maternal family means within populations varying by up to ~6 h. After statistically accounting for spatial autocorrelation at a habitat extreme, we found that elevation explained a significant proportion of genetic variation in the circadian period, such that higher-elevation populations had shorter mean period lengths and reduced intrapopulation ranges. Environmental data indicate that these spatial trends could be related to steep regional climatic gradients in temperature, precipitation, and their intra-annual variability. Our findings suggest that spatially fine-grained environmental heterogeneity contributes to naturally occurring genetic variation in circadian traits in wild populations.
Collapse
Affiliation(s)
- Rob McMinn
- Department of Botany, University of Wyoming, Laramie, Wyoming, USA
- Program in Ecology, University of Wyoming, Laramie, Wyoming, USA
| | | | - Cynthia Weinig
- Department of Botany, University of Wyoming, Laramie, Wyoming, USA
- Program in Ecology, University of Wyoming, Laramie, Wyoming, USA
- Department of Molecular Biology, University of Wyoming, Laramie, Wyoming, USA
| |
Collapse
|
24
|
Histological Study of Glandular Variability in the Skin of the Natterjack Toad—Epidalea calamita (Laurenti, 1768)—Used in Spanish Historical Ethnoveterinary Medicine and Ethnomedicine. Vet Sci 2022; 9:vetsci9080423. [PMID: 36006338 PMCID: PMC9414601 DOI: 10.3390/vetsci9080423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/30/2022] [Accepted: 08/09/2022] [Indexed: 12/04/2022] Open
Abstract
Simple Summary Common toads, including the natterjack toad (Epidalea calamita), have been used since ancient times for remedies, and thus constitute excellent biological material for pharmacological and natural product research. After a previous analysis of the historical-folk therapeutic use of amphibians in Spain, a histological study was carried out to provide a complementary ethnopharmacological view through the analysis of the integumentary heterogeneity of the serous (venom) and mucous glands from two adult specimens. Plastic-embedded semi-thin sections showed that serous/venom glands are cytologically homogeneous in spite of their genetic and biochemical complexity, leading to a cocktail that remains stored until extrusion. On the contrary, mucous glands, working continuously, show a more complex cytological variation and regional heterogeneity, which suggests an adaptive variability, leading to an invisible topographic map of skin toxicity. Natterjack toad-based folk remedies are usually extracted from the whole animal as a therapeutic unit in ethnoveterinary practice. However, a new ethnopharmacological vision could emerge from the study of tegumentary regional variation. Abstract Common toads have been used since ancient times for remedies and thus constitute excellent biological material for pharmacological and natural product research. According to the results of a previous analysis of the therapeutic use of amphibians in Spain, we decided to carry out a histological study that provides a complementary view of their ethnopharmacology, through the natterjack toad (Epidalea calamita). This species possesses a characteristic integument, where the parotoid glands stand out, and it has been used in different ethnoveterinary and ethnomedical practices. This histological study of their glandular variability allow us to understand the stages through which the animal synthesises and stores a heterogeneous glandular content according to the areas of the body and the functional moment of the glands. To study tegumentary cytology, a high-resolution, plastic embedding, semi-thin (1 micron) section method was applied. Up to 20 skin patches sampled from the dorsal and ventral sides were processed from the two adult specimens collected, which were roadkill. Serous/venom glands display a genetic and biochemical complexity, leading to a cocktail that remains stored (and perhaps changes over time) until extrusion, but mucous glands, working continuously to produce a surface protection layer, also produce a set of active protein (and other) substances that dissolve into mucous material, making a biologically active covering. This study provides a better understanding of the use of traditional remedies in ethnoveterinary medicine.
Collapse
|
25
|
Javaid N, Ramzan M, Khan IA, Alahmadi TA, Datta R, Fahad S, Danish S. The chloroplast genome of Farsetia hamiltonii Royle, phylogenetic analysis, and comparative study with other members of Clade C of Brassicaceae. BMC PLANT BIOLOGY 2022; 22:384. [PMID: 35918648 PMCID: PMC9344719 DOI: 10.1186/s12870-022-03750-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 07/13/2022] [Indexed: 06/01/2023]
Abstract
BACKGROUND Farsetia hamiltonii Royle is a medicinally important annual plant from the Cholistan desert that belongs to the tribe Anastaticeae and clade C of the Brassicaceae family. We provide the entire chloroplast sequence of F.hamiltonii, obtained using the Illumina HiSeq2500 and paired-end sequencing. We compared F. hamiltonii to nine other clade C species, including Farsetia occidentalis, Lobularia libyca, Notoceras bicorne, Parolinia ornata, Morettia canescens, Cochlearia borzaeana, Megacarpaea polyandra, Biscutella laevigata, and Iberis amara. We conducted phylogenetic research on the 22 Brassicaceae species, which included members from 17 tribes and six clades. RESULTS The chloroplast genome sequence of F.hamiltonii of 154,802 bp sizes with 36.30% GC content and have a typical structure comprised of a Large Single Copy (LSC) of 83,906 bp, a Small Single Copy (SSC) of 17,988 bp, and two copies of Inverted Repeats (IRs) of 26,454 bp. The genomes of F. hamiltonii and F. occidentalis show shared amino acid frequencies and codon use, RNA editing sites, simple sequence repeats, and oligonucleotide repeats. The maximum likelihood tree revealed Farsetia as a monophyletic genus, closely linked to Morettia, with a bootstrap score of 100. The rate of transversion substitutions (Tv) was higher than the rate of transition substitutions (Ts), resulting in Ts/Tv less than one in all comparisons with F. hamiltonii, indicating that the species are closely related. The rate of synonymous substitutions (Ks) was greater than non-synonymous substitutions (Ka) in all comparisons with F. hamiltonii, with a Ka/Ks ratio smaller than one, indicating that genes underwent purifying selection. Low nucleotide diversity values range from 0.00085 to 0.08516, and IR regions comprise comparable genes on junctions with minimal change, supporting the conserved status of the selected chloroplast genomes of the clade C of the Brassicaceae family. We identified ten polymorphic regions, including rps8-rpl14, rps15-ycf1, ndhG-ndhI, psbK-psbI, ccsA-ndhD, rpl36-rps8, petA-psbJ, ndhF-rpl32, psaJ-rpl3, and ycf1 that might be exploited to construct genuine and inexpensive to solve taxonomic discrepancy and understand phylogenetic relationship amongst Brassicaceae species. CONCLUSION The entire chloroplast sequencing of F. hamiltonii sheds light on the divergence of genic chloroplast sequences among members of the clade C. When other Farsetia species are sequenced in the future, the full F. hamiltonii chloroplast will be used as a source for comprehensive taxonomical investigations of the genus. The comparison of F. hamiltonii and other clade C species adds new information to the phylogenetic data and evolutionary processes of the clade. The results of this study will also provide further molecular uses of clade C chloroplasts for possible plant genetic modifications and will help recognise more Brassicaceae family species.
Collapse
Affiliation(s)
- Nida Javaid
- Department of Botany, The Islamia University, Bahawalpur, Pakistan
| | - Musarrat Ramzan
- Department of Botany, The Islamia University, Bahawalpur, Pakistan
| | - Ishtiaq Ahmad Khan
- Jamil-ur-Rahman Center for Genome Research, Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences University of Karachi, Karachi, 75270 Pakistan
| | - Tahani Awad Alahmadi
- Department of Pediatrics, College of Medicine and King Khalid University Hospital, King Saud University, Medical City, PO Box-2925, Riyadh, 11461 Saudi Arabia
| | - Rahul Datta
- Department of Geology and Pedology, Faculty of Forestry and Wood Technology, Mendel University in Brno, Zemedelska1, 61300 Brno, Czech Republic
| | - Shah Fahad
- Department of Agronomy, The University of Haripur, Khyber Pakhtunkhwa, Haripur, 22620 Pakistan
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, College of Tropical Crops, Hainan University, Haikou, 570228 China
| | - Subhan Danish
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, College of Tropical Crops, Hainan University, Haikou, 570228 China
- Department of Soil Science, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Multan, 60800 Punjab Pakistan
| |
Collapse
|
26
|
Gramlich S, Liu X, Favre A, Buerkle CA, Karrenberg S. A polygenic architecture with habitat-dependent effects underlies ecological differentiation in Silene. THE NEW PHYTOLOGIST 2022; 235:1641-1652. [PMID: 35586969 PMCID: PMC9544174 DOI: 10.1111/nph.18260] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 05/04/2022] [Indexed: 05/27/2023]
Abstract
Ecological differentiation can drive speciation but it is unclear how the genetic architecture of habitat-dependent fitness contributes to lineage divergence. We investigated the genetic architecture of cumulative flowering, a fitness component, in second-generation hybrids between Silene dioica and Silene latifolia transplanted into the natural habitat of each species. We used reduced-representation sequencing and Bayesian sparse linear mixed models (BSLMMs) to analyze the genetic control of cumulative flowering in each habitat. Our results point to a polygenic architecture of cumulative flowering. Allelic effects were mostly beneficial or deleterious in one habitat and neutral in the other. Positive-effect alleles often were derived from the native species, whereas negative-effect alleles, at other loci, tended to originate from the non-native species. We conclude that ecological differentiation is governed and maintained by many loci with small, habitat-dependent effects consistent with conditional neutrality. This pattern may result from differences in selection targets in the two habitats and from environmentally dependent deleterious load. Our results further suggest that selection for native alleles and against non-native alleles acts as a barrier to gene flow between species.
Collapse
Affiliation(s)
- Susanne Gramlich
- Department of Ecology and Genetics, Plant Ecology and EvolutionUppsala UniversityNorbyvägen 18D75267UppsalaSweden
| | - Xiaodong Liu
- Department of Ecology and Genetics, Plant Ecology and EvolutionUppsala UniversityNorbyvägen 18D75267UppsalaSweden
- Department of Biology, The Bioinformatics CenterUniversity of CopenhagenOle Maaløes Vej 52200CopenhagenDenmark
| | - Adrien Favre
- Senckenberg Research Institute and Natural History MuseumSenckenberganlage 2560325Frankfurt/MainGermany
| | - C. Alex Buerkle
- Department of BotanyUniversity of Wyoming1000 E. University AveLaramieWY82071USA
| | - Sophie Karrenberg
- Department of Ecology and Genetics, Plant Ecology and EvolutionUppsala UniversityNorbyvägen 18D75267UppsalaSweden
| |
Collapse
|
27
|
Proćków M, Kuźnik-Kowalska E, Żeromska A, Mackiewicz P. Temporal variation in climatic factors influences phenotypic diversity of Trochulus land snails. Sci Rep 2022; 12:12357. [PMID: 35853920 PMCID: PMC9296580 DOI: 10.1038/s41598-022-16638-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 07/13/2022] [Indexed: 11/26/2022] Open
Abstract
Organisms with limited dispersal capabilities should show phenotypic plasticity in situ to keep pace with environmental changes. Therefore, to study the influence of environmental variation on the phenotypic diversity, we chose land snails, Trochulus hispidus and T. sericeus, characterized by high population variability. We performed long-term field studies as well as laboratory and common garden experiments, which revealed that temporal environmental changes generate visible variation in shell size and shape of these snails. Many shell measurements of T. hispidus varied significantly with temperature and humidity in individual years. According to this, the first generation of T. hispidus, bred in controlled laboratory conditions, became significantly different in higher spire and narrower umbilicus from its wild parents. Interestingly, offspring produced by this generation and transplanted to wild conditions returned to the ‘wild’ flat and wide-umbilicated shell shape. Moreover, initially different species T. hispidus and T. sericeus transferred into common environment conditions revealed rapid and convergent shell modifications within one generation. Such morphological flexibility and high genetic variation can be evolutionarily favored, when the environment is heterogeneous in time. The impact of climate change on the shell morphometry can lead to incorrect taxonomic classification or delimitation of artificial taxa in land snails. These findings have also important implications in the context of changing climate and environment.
Collapse
Affiliation(s)
- Małgorzata Proćków
- Museum of Natural History, University of Wrocław, Sienkiewicza 21, 50-335, Wrocław, Poland. .,Department of Bioinformatics and Genomics, Faculty of Biotechnology, University of Wrocław, Joliot-Curie 14a, 50-383, Wrocław, Poland.
| | - Elżbieta Kuźnik-Kowalska
- Department of Invertebrate Systematics and Ecology, Institute of Environmental Biology, Wrocław University of Environmental and Life Sciences, Kożuchowska 5b, 51-631, Wrocław, Poland
| | - Aleksandra Żeromska
- Department of Bioinformatics and Genomics, Faculty of Biotechnology, University of Wrocław, Joliot-Curie 14a, 50-383, Wrocław, Poland
| | - Paweł Mackiewicz
- Department of Bioinformatics and Genomics, Faculty of Biotechnology, University of Wrocław, Joliot-Curie 14a, 50-383, Wrocław, Poland.
| |
Collapse
|
28
|
Zahid G, Aka Kaçar Y, Dönmez D, Küden A, Giordani T. Perspectives and recent progress of genome-wide association studies (GWAS) in fruits. Mol Biol Rep 2022; 49:5341-5352. [PMID: 35064403 DOI: 10.1007/s11033-021-07055-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 12/06/2021] [Indexed: 11/25/2022]
Abstract
BACKGROUND Earlier next-generation sequencing technologies are being vastly used to explore, administer, and investigate the gene space with accurate profiling of nucleotide variations in the germplasm. OVERVIEW AND PROGRESS: Recently, novel advancements in high-throughput sequencing technologies allow a genotyping-by-sequencing approach that has opened up new horizons for extensive genotyping exploiting single-nucleotide-polymorphisms (SNPs). This method acts as a bridge to support and minimize a genotype to phenotype gap allowing genetic selection at the genome-wide level, named genomic selection that could facilitate the selection of traits also in the pomology sector. In addition to this, genome-wide genotyping is a prerequisite for genome-wide association studies that have been used successfully to discover the genes, which control polygenic traits including the genetic loci, associated with the trait of interest in fruit crops. AIMS AND PROSPECTS This review article emphasizes the role of genome-wide approaches to unlock and explore the genetic potential along with the detection of SNPs affecting the phenotype of fruit crops and highlights the prospects of genome-wide association studies in fruits.
Collapse
Affiliation(s)
- Ghassan Zahid
- Department of Biotechnology, Institute of Natural and Applied Sciences, Çukurova University, 01330, Adana, Turkey.
| | - Yıldız Aka Kaçar
- Department of Horticulture, Faculty of Agriculture, Çukurova University, 01330, Adana, Turkey
| | - Dicle Dönmez
- Biotechnology Research and Application Center, Çukurova University, 01330, Adana, Turkey
| | - Ayzin Küden
- Department of Horticulture, Faculty of Agriculture, Çukurova University, 01330, Adana, Turkey
| | - Tommaso Giordani
- Department of Agriculture, Food and Environment, University of Pisa, 56124, Pisa, Italy
| |
Collapse
|
29
|
Anderson JT. Genetic trade-offs and unexpected life history traits shape local adaptation in Trifolium repens. Mol Ecol 2022; 31:3739-3741. [PMID: 35598168 DOI: 10.1111/mec.16544] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 05/10/2022] [Indexed: 11/28/2022]
Affiliation(s)
- Jill T Anderson
- Department of Genetics and Odum School of Ecology, University of Georgia, Athens, GA, USA
| |
Collapse
|
30
|
Liang YY, Chen XY, Zhou BF, Mitchell-Olds T, Wang B. Globally Relaxed Selection and Local Adaptation in Boechera stricta. Genome Biol Evol 2022; 14:evac043. [PMID: 35349686 PMCID: PMC9011030 DOI: 10.1093/gbe/evac043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/23/2022] [Indexed: 11/25/2022] Open
Abstract
The strength of selection varies among populations and across the genome, but the determinants of efficacy of selection remain unclear. In this study, we used whole-genome sequencing data from 467 Boechera stricta accessions to quantify the strength of selection and characterize the pattern of local adaptation. We found low genetic diversity on 0-fold degenerate sites and conserved non-coding sites, indicating functional constraints on these regions. The estimated distribution of fitness effects and the proportion of fixed substitutions suggest relaxed negative and positive selection in B. stricta. Among the four population groups, the NOR and WES groups have smaller effective population size (Ne), higher proportions of effectively neutral sites, and lower rates of adaptive evolution compared with UTA and COL groups, reflecting the effect of Ne on the efficacy of natural selection. We also found weaker selection on GC-biased sites compared with GC-conservative (unbiased) sites, suggested that GC-biased gene conversion has affected the strength of selection in B. stricta. We found mixed evidence for the role of the recombination rate on the efficacy of selection. The positive and negative selection was stronger in high-recombination regions compared with low-recombination regions in COL but not in other groups. By scanning the genome, we found different subsets of selected genes suggesting differential adaptation among B. stricta groups. These results show that differences in effective population size, nucleotide composition, and recombination rate are important determinants of the efficacy of selection. This study enriches our understanding of the roles of natural selection and local adaptation in shaping genomic variation.
Collapse
Affiliation(s)
- Yi-Ye Liang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences,
Guangzhou, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Xue-Yan Chen
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences,
Guangzhou, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Biao-Feng Zhou
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences,
Guangzhou, China
- University of the Chinese Academy of Sciences, Beijing, China
| | | | - Baosheng Wang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences,
Guangzhou, China
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, China
| |
Collapse
|
31
|
Phenotypic Diversity in Wild and Cultivated Date Palm (Phoenix, Arecaceae): Quantitative Analysis Using Information Theory. HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8040287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The quantitative study of genetic diversity requires tools to describe quantitatively and in parallel the whole phenotypic diversity in order to produce meaningful comparisons. The genus Phoenix offers examples of species with very different levels of diversity or heterogeneity. Within Phoenix, date palm (Phoenix dactylifera L.) is a major food crop of global relevance. The concept of information entropy was introduced by Claude Shannon; although initially intended to evaluate data communication systems, it has been used to measure biodiversity in terms of richness, evenness and dominance. In the present work, we will use it to describe heterogeneity within the different taxonomic units in the genus Phoenix. The description of the Phoenix morphological diversity in the present work is based on 596 accessions or populations belonging to 43 mutually exclusive taxonomic units (species, subspecies, varieties, landrace groups and hybrids). As Phoenix is a dioecious palm genus, female and male individuals are described separately. Each accession or sample is described using 116 characters totaling 449 states. The Shannon information entropy index allows the quantitative representation of the different levels of heterogeneity in the various taxonomic units of the genus Phoenix. Morphology, consistency and coloration of fruit and seed, followed by the inflorescences and female flowers, comprise the taxonomic characters that contribute the most to heterogeneity. Vegetative characters contribute less than the characters of the reproductive organs as a whole. Phoenix dactylifera and related Mediterranean and Macaronesian taxa present the maximum heterogeneity. Immediately afterwards we find P. loureiroi and, behind, the group of P. pusilla. At the lower limit of heterogeneity, we find species restricted in their distribution area: P. rupicola, P. theophrasti, P. roebelenii and P. acaulis. Phoenix dactylifera conforms to a complex of landraces and cultivars that coexist as phenotypically well-defined geographical groups with numerous intermediate forms and the long-distance translocation of otherwise local cultivars. This results in high heterogeneity. For the western and eastern groups of Phoenix dactylifera, it is extremely difficult to find a set of well-defined differential characters. However, some of the variables analyzed here allow us to propose a set of their respective syndromes. The high phenotypic heterogeneity in various Phoenix species is related to the genetic diversity, age and ancestry of different taxa, hybridization events and introgressions prior to domestication, and selective pressures after domestication and, again, interspecific crosses after domestication.
Collapse
|
32
|
Perez-Limón S, Li M, Cintora-Martinez GC, Aguilar-Rangel MR, Salazar-Vidal MN, González-Segovia E, Blöcher-Juárez K, Guerrero-Zavala A, Barrales-Gamez B, Carcaño-Macias J, Costich DE, Nieto-Sotelo J, Martinez de la Vega O, Simpson J, Hufford MB, Ross-Ibarra J, Flint-Garcia S, Diaz-Garcia L, Rellán-Álvarez R, Sawers RJH. A B73×Palomero Toluqueño mapping population reveals local adaptation in Mexican highland maize. G3 (BETHESDA, MD.) 2022; 12:jkab447. [PMID: 35100386 PMCID: PMC8896015 DOI: 10.1093/g3journal/jkab447] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 12/16/2021] [Indexed: 01/31/2023]
Abstract
Generations of farmer selection in the central Mexican highlands have produced unique maize varieties adapted to the challenges of the local environment. In addition to possessing great agronomic and cultural value, Mexican highland maize represents a good system for the study of local adaptation and acquisition of adaptive phenotypes under cultivation. In this study, we characterize a recombinant inbred line population derived from the B73 reference line and the Mexican highland maize variety Palomero Toluqueño. B73 and Palomero Toluqueño showed classic rank-changing differences in performance between lowland and highland field sites, indicative of local adaptation. Quantitative trait mapping identified genomic regions linked to effects on yield components that were conditionally expressed depending on the environment. For the principal genomic regions associated with ear weight and total kernel number, the Palomero Toluqueño allele conferred an advantage specifically in the highland site, consistent with local adaptation. We identified Palomero Toluqueño alleles associated with expression of characteristic highland traits, including reduced tassel branching, increased sheath pigmentation and the presence of sheath macrohairs. The oligogenic architecture of these three morphological traits supports their role in adaptation, suggesting they have arisen from consistent directional selection acting at distinct points across the genome. We discuss these results in the context of the origin of phenotypic novelty during selection, commenting on the role of de novo mutation and the acquisition of adaptive variation by gene flow from endemic wild relatives.
Collapse
Affiliation(s)
- Sergio Perez-Limón
- Laboratorio Nacional de Genómica para la Biodiversidad/Unidad de Genómica Avanzada, Centro de Investigación y de Estudios Avanzados, Instituto Politécnico Nacional (CINVESTAV-IPN), Irapuato, Guanajuato 36821, México
- Department of Plant Science, The Pennsylvania State University, State College, PA 16802, USA
| | - Meng Li
- Department of Plant Science, The Pennsylvania State University, State College, PA 16802, USA
| | - G Carolina Cintora-Martinez
- Laboratorio Nacional de Genómica para la Biodiversidad/Unidad de Genómica Avanzada, Centro de Investigación y de Estudios Avanzados, Instituto Politécnico Nacional (CINVESTAV-IPN), Irapuato, Guanajuato 36821, México
| | - M Rocio Aguilar-Rangel
- Laboratorio Nacional de Genómica para la Biodiversidad/Unidad de Genómica Avanzada, Centro de Investigación y de Estudios Avanzados, Instituto Politécnico Nacional (CINVESTAV-IPN), Irapuato, Guanajuato 36821, México
| | - M Nancy Salazar-Vidal
- Laboratorio Nacional de Genómica para la Biodiversidad/Unidad de Genómica Avanzada, Centro de Investigación y de Estudios Avanzados, Instituto Politécnico Nacional (CINVESTAV-IPN), Irapuato, Guanajuato 36821, México
- Department of Evolution and Ecology, UC Davis, CA 95616 USA
| | - Eric González-Segovia
- Laboratorio Nacional de Genómica para la Biodiversidad/Unidad de Genómica Avanzada, Centro de Investigación y de Estudios Avanzados, Instituto Politécnico Nacional (CINVESTAV-IPN), Irapuato, Guanajuato 36821, México
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Karla Blöcher-Juárez
- Laboratorio Nacional de Genómica para la Biodiversidad/Unidad de Genómica Avanzada, Centro de Investigación y de Estudios Avanzados, Instituto Politécnico Nacional (CINVESTAV-IPN), Irapuato, Guanajuato 36821, México
| | - Alejandro Guerrero-Zavala
- Laboratorio Nacional de Genómica para la Biodiversidad/Unidad de Genómica Avanzada, Centro de Investigación y de Estudios Avanzados, Instituto Politécnico Nacional (CINVESTAV-IPN), Irapuato, Guanajuato 36821, México
| | - Benjamin Barrales-Gamez
- Laboratorio Nacional de Genómica para la Biodiversidad/Unidad de Genómica Avanzada, Centro de Investigación y de Estudios Avanzados, Instituto Politécnico Nacional (CINVESTAV-IPN), Irapuato, Guanajuato 36821, México
| | - Jessica Carcaño-Macias
- Laboratorio Nacional de Genómica para la Biodiversidad/Unidad de Genómica Avanzada, Centro de Investigación y de Estudios Avanzados, Instituto Politécnico Nacional (CINVESTAV-IPN), Irapuato, Guanajuato 36821, México
| | - Denise E Costich
- International Center for Maize and Wheat Improvement (CIMMyT), De México 56237, México
| | - Jorge Nieto-Sotelo
- Jardín Botánico, Instituto de Biología, Universidad Nacional Autónoma de México, Ciudad de México 04510, México
| | - Octavio Martinez de la Vega
- Laboratorio Nacional de Genómica para la Biodiversidad/Unidad de Genómica Avanzada, Centro de Investigación y de Estudios Avanzados, Instituto Politécnico Nacional (CINVESTAV-IPN), Irapuato, Guanajuato 36821, México
| | - June Simpson
- Laboratorio Nacional de Genómica para la Biodiversidad/Unidad de Genómica Avanzada, Centro de Investigación y de Estudios Avanzados, Instituto Politécnico Nacional (CINVESTAV-IPN), Irapuato, Guanajuato 36821, México
| | - Matthew B Hufford
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA 50011, USA
| | - Jeffrey Ross-Ibarra
- Department of Evolution and Ecology, UC Davis, CA 95616 USA
- Center for Population Biology, and Genome Center, UC Davis, Davis, CA 95616, USA
| | - Sherry Flint-Garcia
- U.S. Department of Agriculture, Agricultural Research Service Plant Genetics Research Unit, Columbia, MO 65211, USA
| | - Luis Diaz-Garcia
- Campo Experimental Pabellón-INIFAP. Carretera Aguascalientes-Zacatecas, Aguascalientes, CP 20660, México
| | - Rubén Rellán-Álvarez
- Laboratorio Nacional de Genómica para la Biodiversidad/Unidad de Genómica Avanzada, Centro de Investigación y de Estudios Avanzados, Instituto Politécnico Nacional (CINVESTAV-IPN), Irapuato, Guanajuato 36821, México
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC 27695, USA
| | - Ruairidh J H Sawers
- Laboratorio Nacional de Genómica para la Biodiversidad/Unidad de Genómica Avanzada, Centro de Investigación y de Estudios Avanzados, Instituto Politécnico Nacional (CINVESTAV-IPN), Irapuato, Guanajuato 36821, México
- Department of Plant Science, The Pennsylvania State University, State College, PA 16802, USA
| |
Collapse
|
33
|
Peris D, Lu DS, Kinneberg VB, Methlie IS, Dahl MS, James TY, Kauserud H, Skrede I. Large-scale fungal strain sequencing unravels the molecular diversity in mating loci maintained by long-term balancing selection. PLoS Genet 2022; 18:e1010097. [PMID: 35358178 PMCID: PMC8970355 DOI: 10.1371/journal.pgen.1010097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 02/14/2022] [Indexed: 11/19/2022] Open
Abstract
Balancing selection, an evolutionary force that retains genetic diversity, has been detected in multiple genes and organisms, such as the sexual mating loci in fungi. However, to quantify the strength of balancing selection and define the mating-related genes require a large number of strains. In tetrapolar basidiomycete fungi, sexual type is determined by two unlinked loci, MATA and MATB. Genes in both loci define mating type identity, control successful mating and completion of the life cycle. These loci are usually highly diverse. Previous studies have speculated, based on culture crosses, that species of the non-model genus Trichaptum (Hymenochaetales, Basidiomycota) possess a tetrapolar mating system, with multiple alleles. Here, we sequenced a hundred and eighty strains of three Trichaptum species. We characterized the chromosomal location of MATA and MATB, the molecular structure of MAT regions and their allelic richness. The sequencing effort was sufficient to molecularly characterize multiple MAT alleles segregating before the speciation event of Trichaptum species. Analyses suggested that long-term balancing selection has generated trans-species polymorphisms. Mating sequences were classified in different allelic classes based on an amino acid identity (AAI) threshold supported by phylogenetics. 17,550 mating types were predicted based on the allelic classes. In vitro crosses allowed us to support the degree of allelic divergence needed for successful mating. Even with the high amount of divergence, key amino acids in functional domains are conserved. We conclude that the genetic diversity of mating loci in Trichaptum is due to long-term balancing selection, with limited recombination and duplication activity. The large number of sequenced strains highlighted the importance of sequencing multiple individuals from different species to detect the mating-related genes, the mechanisms generating diversity and the evolutionary forces maintaining them.
Collapse
Affiliation(s)
- David Peris
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, Oslo, Norway
- Department of Health, Valencian International University (VIU), Valencia, Spain
| | - Dabao Sun Lu
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, Oslo, Norway
| | - Vilde Bruhn Kinneberg
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, Oslo, Norway
| | - Ine-Susanne Methlie
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, Oslo, Norway
| | - Malin Stapnes Dahl
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, Oslo, Norway
| | - Timothy Y. James
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Håvard Kauserud
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, Oslo, Norway
| | - Inger Skrede
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, Oslo, Norway
| |
Collapse
|
34
|
Satake A, Nagahama A, Sasaki E. A cross-scale approach to unravel the molecular basis of plant phenology in temperate and tropical climates. THE NEW PHYTOLOGIST 2022; 233:2340-2353. [PMID: 34862973 DOI: 10.1111/nph.17897] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 10/24/2021] [Indexed: 06/13/2023]
Abstract
Plants have evolved to time their leafing, flowering and fruiting in appropriate seasons for growth, reproduction and resting. As a consequence of their adaptation to geographically different environments, there is a rich diversity in plant phenology from temperate and tropical climates. Recent progress in genetic and molecular studies will provide numerous opportunities to study the genetic basis of phenological traits and the history of adaptation of phenological traits to seasonal and aseasonal environments. Integrating molecular data with long-term phenology and climate data into predictive models will be a powerful tool to forecast future phenological changes in the face of global environmental change. Here, we review the cross-scale approach from genes to plant communities from three aspects: the latitudinal gradient of plant phenology at the community level, the environmental and genetic factors underlying the diversity of plant phenology, and an integrated approach to forecast future plant phenology based on genetically informed knowledge. Synthesizing the latest knowledge about plant phenology from molecular, ecological and mathematical perspectives will help us understand how natural selection can lead to the further evolution of the gene regulatory mechanisms in phenological traits in future forest ecosystems.
Collapse
Affiliation(s)
- Akiko Satake
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka, 819-0395, Japan
| | - Ai Nagahama
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka, 819-0395, Japan
| | - Eriko Sasaki
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka, 819-0395, Japan
| |
Collapse
|
35
|
Clark MI, Bradburd GS, Akopyan M, Vega A, Rosenblum EB, Robertson JM. Genetic isolation by distance underlies colour pattern divergence in red-eyed treefrogs (Agalychnis callidryas). Mol Ecol 2022; 31:1666-1681. [PMID: 35034406 PMCID: PMC8923152 DOI: 10.1111/mec.16350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 10/21/2021] [Accepted: 01/04/2022] [Indexed: 10/19/2022]
Abstract
Investigating the spatial distribution of genetic and phenotypic variation can provide insights into the evolutionary processes that shape diversity in natural systems. We characterized patterns of genetic and phenotypic diversity to learn about drivers of colour-pattern diversification in red-eyed treefrogs (Agalychnis callidryas) in Costa Rica. Along the Pacific coast, red-eyed treefrogs have conspicuous leg colour patterning that transitions from orange in the north to purple in the south. We measured phenotypic variation of frogs, with increased sampling at sites where the orange-to-purple transition occurs. At the transition zone, we discovered the co-occurrence of multiple colour-pattern morphs. To explore possible causes of this variation, we generated a single nucleotide polymorphism data set to analyse population genetic structure, measure genetic diversity and infer the processes that mediate genotype-phenotype dynamics. We investigated how patterns of genetic relatedness correspond to individual measures of colour pattern along the coast, including testing for the role of hybridization in geographic regions where orange and purple phenotypic groups co-occur. We found no evidence that colour-pattern polymorphism in the transition zone arose through recent hybridization. Instead, a strong pattern of genetic isolation by distance indicates that colour-pattern variation was either retained through other processes such as ancestral colour polymorphisms or ancient secondary contact, or else it was generated by novel mutations. We found that phenotype changes along the Pacific coast more than would be expected based on genetic divergence and geographic distance alone. Combined, our results suggest the possibility of selective pressures acting on colour pattern at a small geographic scale.
Collapse
Affiliation(s)
- Meaghan I. Clark
- Department of Biology, California State University Northridge, Northridge, California, USA,Department of integrative Biology, Ecology, Evolution and Behavior Program, Michigan State University, East Lansing, Michigan, USA,W.K. Kellogg Biological Station, Michigan State University, Hickory Corners, Michigan, USA
| | - Gideon S. Bradburd
- Department of integrative Biology, Ecology, Evolution and Behavior Program, Michigan State University, East Lansing, Michigan, USA
| | - Maria Akopyan
- Department of Biology, California State University Northridge, Northridge, California, USA,Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York, USA
| | | | - Erica Bree Rosenblum
- Department of Environmental Science, Policy, and Management, University of California Berkeley, Berkeley, California, USA,Museum of Vertebrate Zoology, University of California Berkeley, Berkeley, California, USA
| | - Jeanne M. Robertson
- Department of Biology, California State University Northridge, Northridge, California, USA,Department of Herpetology, Natural History Museum of Los Angeles County, Los Angeles, California, USA
| |
Collapse
|
36
|
de Aquino SO, Kiwuka C, Tournebize R, Gain C, Marraccini P, Mariac C, Bethune K, Couderc M, Cubry P, Andrade AC, Lepelley M, Darracq O, Crouzillat D, Anten N, Musoli P, Vigouroux Y, de Kochko A, Manel S, François O, Poncet V. Adaptive potential of
Coffea canephora
from Uganda in response to climate change. Mol Ecol 2022; 31:1800-1819. [DOI: 10.1111/mec.16360] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 11/12/2021] [Accepted: 01/06/2022] [Indexed: 11/28/2022]
Affiliation(s)
| | - Catherine Kiwuka
- NARO Kampala Uganda
- Centre for Crop Systems Analysis Wageningen Univ. Wageningen Netherlands
| | | | - Clément Gain
- U. Grenoble‐Alpes, TIMC‐IMAG, CNRS UMR 5525, Grenoble, France and LJK, Inria, CNRS UMR 5224 Grenoble France
| | | | - Cédric Mariac
- DIADE, Univ. Montpellier, CIRAD, IRD Montpellier France
| | - Kévin Bethune
- DIADE, Univ. Montpellier, CIRAD, IRD Montpellier France
| | - Marie Couderc
- DIADE, Univ. Montpellier, CIRAD, IRD Montpellier France
| | | | | | | | | | | | - Niels Anten
- Centre for Crop Systems Analysis Wageningen Univ. Wageningen Netherlands
| | | | | | | | - Stéphanie Manel
- CEFE, Univ Montpellier, CNRS, EPHE‐PSL University, IRD Montpellier France
| | - Olivier François
- U. Grenoble‐Alpes, TIMC‐IMAG, CNRS UMR 5525, Grenoble, France and LJK, Inria, CNRS UMR 5224 Grenoble France
| | | |
Collapse
|
37
|
Boughman JW, Servedio MR. The ecological stage maintains preference differentiation and promotes speciation. Ecol Lett 2022; 25:926-938. [DOI: 10.1111/ele.13970] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 10/12/2021] [Accepted: 12/31/2021] [Indexed: 12/19/2022]
Affiliation(s)
- Janette W. Boughman
- Department of Integrative Biology; Ecology, Evolution & Behavior Program Michigan State University East Lansing Michigan USA
| | - Maria R. Servedio
- Department of Biology University of North Carolina Chapel Hill North Carolina USA
| |
Collapse
|
38
|
The genetic architecture underlying prey-dependent performance in a microbial predator. Nat Commun 2022; 13:319. [PMID: 35031602 PMCID: PMC8760311 DOI: 10.1038/s41467-021-27844-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 12/10/2021] [Indexed: 11/30/2022] Open
Abstract
Natural selection should favour generalist predators that outperform specialists across all prey types. Two genetic solutions could explain why intraspecific variation in predatory performance is, nonetheless, widespread: mutations beneficial on one prey type are costly on another (antagonistic pleiotropy), or mutational effects are prey-specific, which weakens selection, allowing variation to persist (relaxed selection). To understand the relative importance of these alternatives, we characterised natural variation in predatory performance in the microbial predator Dictyostelium discoideum. We found widespread nontransitive differences among strains in predatory success across different bacterial prey, which can facilitate stain coexistence in multi-prey environments. To understand the genetic basis, we developed methods for high throughput experimental evolution on different prey (REMI-seq). Most mutations (~77%) had prey-specific effects, with very few (~4%) showing antagonistic pleiotropy. This highlights the potential for prey-specific effects to dilute selection, which would inhibit the purging of variation and prevent the emergence of an optimal generalist predator. What prevents a generalist predator from evolving and outperforming specialist predators? By combing analyses of natural variation with experimental evolution, Stewart et al. suggest that predator variation persists because most mutations have prey-specific effects, which results in relaxed selection
Collapse
|
39
|
Nantongo JS, Potts BM, Frickey T, Telfer E, Dungey H, Fitzgerald H, O'Reilly-Wapstra JM. Analysis of the transcriptome of the needles and bark of Pinus radiata induced by bark stripping and methyl jasmonate. BMC Genomics 2022; 23:52. [PMID: 35026979 PMCID: PMC8759178 DOI: 10.1186/s12864-021-08231-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 11/30/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Plants are attacked by diverse insect and mammalian herbivores and respond with different physical and chemical defences. Transcriptional changes underlie these phenotypic changes. Simulated herbivory has been used to study the transcriptional and other early regulation events of these plant responses. In this study, constitutive and induced transcriptional responses to artificial bark stripping are compared in the needles and the bark of Pinus radiata to the responses from application of the plant stressor, methyl jasmonate. The time progression of the responses was assessed over a 4-week period. RESULTS Of the 6312 unique transcripts studied, 86.6% were differentially expressed between the needles and the bark prior to treatment. The most abundant constitutive transcripts were related to defence and photosynthesis and their expression did not differ between the needles and the bark. While no differential expression of transcripts were detected in the needles following bark stripping, in the bark this treatment caused an up-regulation and down-regulation of genes associated with primary and secondary metabolism. Methyl jasmonate treatment caused differential expression of transcripts in both the bark and the needles, with individual genes related to primary metabolism more responsive than those associated with secondary metabolism. The up-regulation of genes related to sugar break-down and the repression of genes related with photosynthesis, following both treatments was consistent with the strong down-regulation of sugars that has been observed in the same population. Relative to the control, the treatments caused a differential expression of genes involved in signalling, photosynthesis, carbohydrate and lipid metabolism as well as defence and water stress. However, non-overlapping transcripts were detected between the needles and the bark, between treatments and at different times of assessment. Methyl jasmonate induced more transcriptional responses in the bark than bark stripping, although the peak of expression following both treatments was detected 7 days post treatment application. The effects of bark stripping were localised, and no systemic changes were detected in the needles. CONCLUSION There are constitutive and induced differences in the needle and bark transcriptome of Pinus radiata. Some expression responses to bark stripping may differ from other biotic and abiotic stresses, which contributes to the understanding of plant molecular responses to diverse stresses. Whether the gene expression changes are heritable and how they differ between resistant and susceptible families identified in earlier studies needs further investigation.
Collapse
Affiliation(s)
- J S Nantongo
- School of Natural Sciences, University of Tasmania, Private Bag 5, Hobart, Tasmania, 7001, Australia.
- National Forestry Resources Research Institute, Mukono, Uganda.
| | - B M Potts
- School of Natural Sciences, University of Tasmania, Private Bag 5, Hobart, Tasmania, 7001, Australia
- ARC Training Centre for Forest Value, Hobart, Tasmania, Australia
| | | | | | | | - H Fitzgerald
- School of Natural Sciences, University of Tasmania, Private Bag 5, Hobart, Tasmania, 7001, Australia
| | - J M O'Reilly-Wapstra
- School of Natural Sciences, University of Tasmania, Private Bag 5, Hobart, Tasmania, 7001, Australia
- ARC Training Centre for Forest Value, Hobart, Tasmania, Australia
| |
Collapse
|
40
|
Liang YY, Shi Y, Yuan S, Zhou BF, Chen XY, An QQ, Ingvarsson PK, Plomion C, Wang B. Linked selection shapes the landscape of genomic variation in three oak species. THE NEW PHYTOLOGIST 2022; 233:555-568. [PMID: 34637540 DOI: 10.1111/nph.17793] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 09/27/2021] [Indexed: 06/13/2023]
Abstract
Natural selection shapes genome-wide patterns of diversity within species and divergence between species. However, quantifying the efficacy of selection and elucidating the relative importance of different types of selection in shaping genomic variation remain challenging. We sequenced whole genomes of 101 individuals of three closely related oak species to track the divergence history, and to dissect the impacts of selective sweeps and background selection on patterns of genomic variation. We estimated that the three species diverged around the late Neogene and experienced a bottleneck during the Pleistocene. We detected genomic regions with elevated relative differentiation ('FST -islands'). Population genetic inferences from the site frequency spectrum and ancestral recombination graph indicated that FST -islands were formed by selective sweeps. We also found extensive positive selection; the fixation of adaptive mutations and reduction neutral diversity around substitutions generated a signature of selective sweeps. Prevalent negative selection and background selection have reduced genetic diversity in both genic and intergenic regions, and contributed substantially to the baseline variation in genetic diversity. Our results demonstrate the importance of linked selection in shaping genomic variation, and illustrate how the extent and strength of different selection models vary across the genome.
Collapse
Affiliation(s)
- Yi-Ye Liang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Yong Shi
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Shuai Yuan
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Biao-Feng Zhou
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Xue-Yan Chen
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Qing-Qing An
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Pär K Ingvarsson
- Department of Plant Biology, Linnean Center for Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences, Uppsala, SE-75007, Sweden
| | | | - Baosheng Wang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, 510650, China
| |
Collapse
|
41
|
Bertola LD, Miller SM, Williams VL, Naude VN, Coals P, Dures SG, Henschel P, Chege M, Sogbohossou EA, Ndiaye A, Kiki M, Gaylard A, Ikanda DK, Becker MS, Lindsey P. Genetic guidelines for translocations: Maintaining intraspecific diversity in the lion ( Panthera leo). Evol Appl 2022; 15:22-39. [PMID: 35126646 PMCID: PMC8792481 DOI: 10.1111/eva.13318] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 10/05/2021] [Accepted: 10/06/2021] [Indexed: 11/26/2022] Open
Abstract
Conservation translocations have become an important management tool, particularly for large wildlife species such as the lion (Panthera leo). When planning translocations, the genetic background of populations needs to be taken into account; failure to do so risks disrupting existing patterns of genetic variation, ultimately leading to genetic homogenization, and thereby reducing resilience and adaptability of the species. We urge wildlife managers to include knowledge of the genetic background of source/target populations, as well as species-wide patterns, in any management intervention. We present a hierarchical decision-making tool in which we list 132 lion populations/lion conservation units and provide information on genetic assignment, uncertainty and suitability for translocation for each source/target combination. By including four levels of suitability, from 'first choice' to 'no option', we provide managers with a range of options. To illustrate the extent of international trade of lions, and the potential disruption of natural patterns of intraspecific diversity, we mined the CITES Trade Database for estimated trade quantities of live individuals imported into lion range states during the past 4 decades. We identified 1056 recorded individuals with a potential risk of interbreeding with wild lions, 772 being captive-sourced. Scoring each of the records with our decision-making tool illustrates that only 7% of the translocated individuals were 'first choice' and 73% were 'no option'. We acknowledge that other, nongenetic factors are important in the decision-making process, and hence a pragmatic approach is needed. A framework in which source/target populations are scored based on suitability is not only relevant to lion, but also to other species of wildlife that are frequently translocated. We hope that the presented overview supports managers to include genetics in future management decisions and contributes towards conservation of the lion in its full diversity.
Collapse
Affiliation(s)
- Laura D. Bertola
- Department of BiologyUniversity of CopenhagenCopenhagenDenmark
- City College of New YorkNew YorkNew YorkUSA
| | - Susan M. Miller
- FitzPatrick Institute of African OrnithologyDSI‐NRF Centre of ExcellenceUniversity of Cape TownCape TownSouth Africa
- Institute for Communities and Wildlife in AfricaUniversity of Cape TownCape TownSouth Africa
| | - Vivienne L. Williams
- School of Animal, Plant and Environmental SciencesUniversity of the WitwatersrandJohannesburgSouth Africa
| | - Vincent N. Naude
- Institute for Communities and Wildlife in AfricaUniversity of Cape TownCape TownSouth Africa
| | - Peter Coals
- School of Animal, Plant and Environmental SciencesUniversity of the WitwatersrandJohannesburgSouth Africa
- Wildlife Conservation Research UnitUniversity of OxfordOxfordUK
| | | | | | - Monica Chege
- Institute of Environmental Sciences (CML)Leiden UniversityLeidenThe Netherlands
- Kenya Wildlife ServiceNairobiKenya
| | | | | | - Martial Kiki
- Département de Génie de l’EnvironnementUniversité d’Abomey‐CalaviCotonouBenin
| | - Angela Gaylard
- Conservation Development & Assurance DepartmentAfrican Parks NetworkJohannesburgSouth Africa
| | | | | | - Peter Lindsey
- Department of Zoology and EntomologyMammal Research InstituteUniversity of PretoriaPretoriaSouth Africa
- Environmental Futures Research InstituteGriffith UniversityNathanQueenslandAustralia
- Wildlife Conservation NetworkSan FranciscoCaliforniaUSA
| |
Collapse
|
42
|
Satake A, Kelly D. Studying the genetic basis of masting. Philos Trans R Soc Lond B Biol Sci 2021; 376:20210116. [PMID: 34657458 PMCID: PMC8520782 DOI: 10.1098/rstb.2021.0116] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/24/2021] [Indexed: 11/12/2022] Open
Abstract
The mechanisms underlying mast seeding have traditionally been studied by collecting long-term observational data on seed crops and correlating seedfall with environmental variables. Significant progress in ecological genomics will improve our understanding of the evolution of masting by clarifying the genetic basis of masting traits and the role of natural selection in shaping those traits. Here, we summarize three important aspects in studying the evolution of masting at the genetic level: which traits govern masting, whether those traits are genetically regulated, and which taxa show wide variation in these traits. We then introduce recent studies on the molecular mechanisms of masting. Those studies measure seasonal changes in gene expression in natural conditions to quantify how multiple environmental factors combine to regulate floral initiation, which in many masting plant species is the single largest contributor to among-year variation in seed crops. We show that Fagaceae offers exceptional opportunities for evolutionary investigations because of its diversity at both the phenotypic and genetic levels and existing documented genome sequences. This article is part of the theme issue 'The ecology and evolution of synchronized seed production in plants'.
Collapse
Affiliation(s)
- Akiko Satake
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka 819-0395, Japan
| | - Dave Kelly
- Department of Biological Sciences, University of Canterbury, Christchurch 8140, New Zealand
| |
Collapse
|
43
|
Dumartinet T, Ravel S, Roussel V, Perez-Vicente L, Aguayo J, Abadie C, Carlier J. Complex adaptive architecture underlies adaptation to quantitative host resistance in a fungal plant pathogen. Mol Ecol 2021; 31:1160-1179. [PMID: 34845779 DOI: 10.1111/mec.16297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/12/2021] [Accepted: 11/17/2021] [Indexed: 11/26/2022]
Abstract
Plant pathogens often adapt to plant genetic resistance so characterization of the architecture underlying such an adaptation is required to understand the adaptive potential of pathogen populations. Erosion of banana quantitative resistance to a major leaf disease caused by polygenic adaptation of the causal agent, the fungus Pseudocercospora fijiensis, was recently identified in the northern Caribbean region. Genome scan and quantitative genetics approaches were combined to investigate the adaptive architecture underlying this adaptation. Thirty-two genomic regions showing host selection footprints were identified by pool sequencing of isolates collected from seven plantation pairs of two cultivars with different levels of quantitative resistance. Individual sequencing and phenotyping of isolates from one pair revealed significant and variable levels of correlation between haplotypes in 17 of these regions with a quantitative trait of pathogenicity (the diseased leaf area). The multilocus pattern of haplotypes detected in the 17 regions was found to be highly variable across all the population pairs studied. These results suggest complex adaptive architecture underlying plant pathogen adaptation to quantitative resistance with a polygenic basis, redundancy, and a low level of parallel evolution between pathogen populations. Candidate genes involved in quantitative pathogenicity and host adaptation of P. fijiensis were identified in genomic regions by combining annotation analysis with available biological data.
Collapse
Affiliation(s)
- Thomas Dumartinet
- CIRAD, UMR PHIM, Montpellier, France.,PHIM, Univ Montpellier, INRAe, CIRAD, Montpellier SupAgro, Montpellier, France
| | - Sébastien Ravel
- CIRAD, UMR PHIM, Montpellier, France.,PHIM, Univ Montpellier, INRAe, CIRAD, Montpellier SupAgro, Montpellier, France
| | - Véronique Roussel
- CIRAD, UMR PHIM, Montpellier, France.,PHIM, Univ Montpellier, INRAe, CIRAD, Montpellier SupAgro, Montpellier, France
| | | | - Jaime Aguayo
- ANSES, Laboratoire de la Santé des Végétaux (LSV), Unité de Mycologie, Malzéville, France
| | - Catherine Abadie
- CIRAD, UMR PHIM, Montpellier, France.,PHIM, Univ Montpellier, INRAe, CIRAD, Montpellier SupAgro, Montpellier, France
| | - Jean Carlier
- CIRAD, UMR PHIM, Montpellier, France.,PHIM, Univ Montpellier, INRAe, CIRAD, Montpellier SupAgro, Montpellier, France
| |
Collapse
|
44
|
Griffiths JS, Johnson KM, Kelly MW. Evolutionary Change in the Eastern Oyster, Crassostrea Virginica, Following Low Salinity Exposure. Integr Comp Biol 2021; 61:1730-1740. [PMID: 34448845 DOI: 10.1093/icb/icab185] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The presence of standing genetic variation will play a role in determining a population's capacity to adapt to environmentally relevant stressors. In the Gulf of Mexico, extreme climatic events and anthropogenic changes to local hydrology will expose productive oyster breeding grounds to stressful low salinity conditions. We identified genetic variation for performance under low salinity (due to the combined effects of low salinity and genetic load) using a single-generation selection experiment on larvae from two populations of the eastern oyster, Crassostrea virginica. We used pool-sequencing to test for allele frequency differences at 152 salinity-associated genes for larval families pre- and post-low salinity exposure. Our results have implications for how evolutionary change occurs during early life history stages at environmentally relevant salinities. Consistent with observations of high genetic load observed in oysters, we demonstrate evidence for purging of deleterious alleles at the larval stage in C. virginica. In addition, we observe increases in allele frequencies at multiple loci, suggesting that natural selection for low salinity performance at the larval stage can act as a filter for genotypes found in adult populations.
Collapse
Affiliation(s)
- Joanna S Griffiths
- Department of Environmental Toxicology and Department of Wildlife, Fish, and Conservation Biology, University of California, Davis, CA 95616, USA
| | - Kevin M Johnson
- Department of Biological Sciences, California Polytechnic State University, San Luis Obispo, CA 93407, USA.,California Sea Grant, University of California San Diego, La Jolla, CA 92093, USA
| | - Morgan W Kelly
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| |
Collapse
|
45
|
Ho PW, Piampongsant S, Gallone B, Del Cortona A, Peeters PJ, Reijbroek F, Verbaet J, Herrera B, Cortebeeck J, Nolmans R, Saels V, Steensels J, Jarosz DF, Verstrepen KJ. Massive QTL analysis identifies pleiotropic genetic determinants for stress resistance, aroma formation, and ethanol, glycerol and isobutanol production in Saccharomyces cerevisiae. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:211. [PMID: 34727964 PMCID: PMC8564995 DOI: 10.1186/s13068-021-02059-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 10/16/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND The brewer's yeast Saccharomyces cerevisiae is exploited in several industrial processes, ranging from food and beverage fermentation to the production of biofuels, pharmaceuticals and complex chemicals. The large genetic and phenotypic diversity within this species offers a formidable natural resource to obtain superior strains, hybrids, and variants. However, most industrially relevant traits in S. cerevisiae strains are controlled by multiple genetic loci. Over the past years, several studies have identified some of these QTLs. However, because these studies only focus on a limited set of traits and often use different techniques and starting strains, a global view of industrially relevant QTLs is still missing. RESULTS Here, we combined the power of 1125 fully sequenced inbred segregants with high-throughput phenotyping methods to identify as many as 678 QTLs across 18 different traits relevant to industrial fermentation processes, including production of ethanol, glycerol, isobutanol, acetic acid, sulfur dioxide, flavor-active esters, as well as resistance to ethanol, acetic acid, sulfite and high osmolarity. We identified and confirmed several variants that are associated with multiple different traits, indicating that many QTLs are pleiotropic. Moreover, we show that both rare and common variants, as well as variants located in coding and non-coding regions all contribute to the phenotypic variation. CONCLUSIONS Our findings represent an important step in our understanding of the genetic underpinnings of industrially relevant yeast traits and open new routes to study complex genetics and genetic interactions as well as to engineer novel, superior industrial yeasts. Moreover, the major role of rare variants suggests that there is a plethora of different combinations of mutations that can be explored in genome editing.
Collapse
Affiliation(s)
- Ping-Wei Ho
- VIB–KU Leuven Center for Microbiology, Leuven, Belgium
- CMPG Laboratory of Genetics and Genomics, Department M2S, KU Leuven, Leuven, Belgium
- Leuven Institute for Beer Research, Leuven, Belgium
| | - Supinya Piampongsant
- VIB–KU Leuven Center for Microbiology, Leuven, Belgium
- CMPG Laboratory of Genetics and Genomics, Department M2S, KU Leuven, Leuven, Belgium
- Leuven Institute for Beer Research, Leuven, Belgium
| | - Brigida Gallone
- VIB–KU Leuven Center for Microbiology, Leuven, Belgium
- CMPG Laboratory of Genetics and Genomics, Department M2S, KU Leuven, Leuven, Belgium
- Leuven Institute for Beer Research, Leuven, Belgium
| | - Andrea Del Cortona
- VIB–KU Leuven Center for Microbiology, Leuven, Belgium
- CMPG Laboratory of Genetics and Genomics, Department M2S, KU Leuven, Leuven, Belgium
- Leuven Institute for Beer Research, Leuven, Belgium
| | - Pieter-Jan Peeters
- VIB–KU Leuven Center for Microbiology, Leuven, Belgium
- CMPG Laboratory of Genetics and Genomics, Department M2S, KU Leuven, Leuven, Belgium
- Leuven Institute for Beer Research, Leuven, Belgium
| | - Frank Reijbroek
- VIB–KU Leuven Center for Microbiology, Leuven, Belgium
- CMPG Laboratory of Genetics and Genomics, Department M2S, KU Leuven, Leuven, Belgium
- Leuven Institute for Beer Research, Leuven, Belgium
| | - Jules Verbaet
- VIB–KU Leuven Center for Microbiology, Leuven, Belgium
- CMPG Laboratory of Genetics and Genomics, Department M2S, KU Leuven, Leuven, Belgium
- Leuven Institute for Beer Research, Leuven, Belgium
| | - Beatriz Herrera
- VIB–KU Leuven Center for Microbiology, Leuven, Belgium
- CMPG Laboratory of Genetics and Genomics, Department M2S, KU Leuven, Leuven, Belgium
- Leuven Institute for Beer Research, Leuven, Belgium
| | - Jeroen Cortebeeck
- VIB–KU Leuven Center for Microbiology, Leuven, Belgium
- CMPG Laboratory of Genetics and Genomics, Department M2S, KU Leuven, Leuven, Belgium
- Leuven Institute for Beer Research, Leuven, Belgium
| | - Robbe Nolmans
- VIB–KU Leuven Center for Microbiology, Leuven, Belgium
- CMPG Laboratory of Genetics and Genomics, Department M2S, KU Leuven, Leuven, Belgium
- Leuven Institute for Beer Research, Leuven, Belgium
| | - Veerle Saels
- VIB–KU Leuven Center for Microbiology, Leuven, Belgium
- CMPG Laboratory of Genetics and Genomics, Department M2S, KU Leuven, Leuven, Belgium
- Leuven Institute for Beer Research, Leuven, Belgium
| | - Jan Steensels
- VIB–KU Leuven Center for Microbiology, Leuven, Belgium
- CMPG Laboratory of Genetics and Genomics, Department M2S, KU Leuven, Leuven, Belgium
- Leuven Institute for Beer Research, Leuven, Belgium
| | - Daniel F. Jarosz
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305 USA
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305 USA
| | - Kevin J. Verstrepen
- VIB–KU Leuven Center for Microbiology, Leuven, Belgium
- CMPG Laboratory of Genetics and Genomics, Department M2S, KU Leuven, Leuven, Belgium
- Leuven Institute for Beer Research, Leuven, Belgium
- Labo VIB-CMPG, Bio-Incubator, Gaston Geenslaan 1, 3001 Leuven, Heverlee Belgium
| |
Collapse
|
46
|
Thompson MJ, Capilla-Lasheras P, Dominoni DM, Réale D, Charmantier A. Phenotypic variation in urban environments: mechanisms and implications. Trends Ecol Evol 2021; 37:171-182. [PMID: 34690006 DOI: 10.1016/j.tree.2021.09.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 09/16/2021] [Accepted: 09/27/2021] [Indexed: 12/14/2022]
Abstract
In the past decade, numerous studies have explored how urbanisation affects the mean phenotypes of populations, but it remains unknown how urbanisation impacts phenotypic variation, a key target of selection that shapes, and is shaped by, eco-evolutionary processes. Our review suggests that urbanisation may often increase intraspecific phenotypic variation through several processes; a conclusion aligned with results from our illustrative analysis on tit morphology across 13 European city/forest population pairs. Urban-driven changes in phenotypic variation will have immense implications for urban populations and communities, particularly through urbanisation's effects on individual fitness, species interactions, and conservation. We call here for studies that incorporate phenotypic variation in urban eco-evolutionary research alongside advances in theory.
Collapse
Affiliation(s)
- M J Thompson
- Département des sciences biologiques, Université du Québec à Montréal, 141 Avenue du Président-Kennedy, Montréal, QC H2X 1Y4, Canada; CEFE, Univ Montpellier, CNRS, EPHE, IRD, Montpellier, France.
| | - P Capilla-Lasheras
- Institute of Biodiversity, Animal Health & Comparative Medicine, Graham Kerr Building, University of Glasgow, Glasgow, G12 8QQ, UK
| | - D M Dominoni
- Institute of Biodiversity, Animal Health & Comparative Medicine, Graham Kerr Building, University of Glasgow, Glasgow, G12 8QQ, UK
| | - D Réale
- Département des sciences biologiques, Université du Québec à Montréal, 141 Avenue du Président-Kennedy, Montréal, QC H2X 1Y4, Canada
| | - A Charmantier
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, Montpellier, France
| |
Collapse
|
47
|
Sun WH, Chen DQ, Carballar-Lejarazu R, Yang Y, Xiang S, Qiu MY, Zou SQ. Genetic diversity and population structure of Euscaphis japonica, a monotypic species. PeerJ 2021; 9:e12024. [PMID: 34513336 PMCID: PMC8395579 DOI: 10.7717/peerj.12024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 07/29/2021] [Indexed: 01/28/2023] Open
Abstract
Background Understanding plant genetic diversity is important for effective conservation and utilization of genetic resources. Euscaphis japonica (Thunb.) Dippel, is a monotypic species with high phenotypic diversity, narrow distribution, and small population size. In this study, we estimated the genetic diversity and population structure of E. japonica using nine natural populations and inter-simple sequence repeat (ISSR) markers. Our results could provide a theoretical reference for future conservation and utilization of E. japonica. Results We obtained a total of 122 DNA bands, of which 121 (99.18%) were polymorphic. The average number of effective alleles (Ne = 1.4975), Nei’s gene diversity index (H = 0.3016), and Shannon’s information index (I = 0.4630) revealed that E. japonica possessed a high level of genetic diversity. We observed that E. japonica consisted of both deciduous and evergreen populations. UPGMA tree showed that the evergreen and deciduous E. japonica form a sister group. There is little genetic differentiation among geographic populations based on STRUCTURE analysis. The Dice’s similarity coefficient between the deciduous and evergreen populations was low, and the Fst value was high, indicating that these two types of groups have high degree of differentiation. Conclusion Rich genetic diversity has been found in E. japonica, deciduous E. japonica and evergreen E. japonica populations, and genetic variation mainly exists within the population. The low-frequency gene exchange between deciduous and evergreen populations may be the result of the differentiation of deciduous and evergreen populations. We suggest that in-situ protection, seed collection, and vegetative propagation could be the methods for maintenance and conservation of E. japonica populations.
Collapse
Affiliation(s)
- Wei-Hong Sun
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China.,Fujian Colleges and Universities Engineering Research Institute of Conservation and Utilization of Natural Bioresources, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China.,Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - De-Qiang Chen
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China.,Fujian Colleges and Universities Engineering Research Institute of Conservation and Utilization of Natural Bioresources, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China.,Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
| | | | - Yi Yang
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China.,Fujian Colleges and Universities Engineering Research Institute of Conservation and Utilization of Natural Bioresources, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China.,Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shuang Xiang
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China.,Fujian Colleges and Universities Engineering Research Institute of Conservation and Utilization of Natural Bioresources, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China.,Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Meng-Yuan Qiu
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China.,Fujian Colleges and Universities Engineering Research Institute of Conservation and Utilization of Natural Bioresources, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China.,Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shuang-Quan Zou
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China.,Fujian Colleges and Universities Engineering Research Institute of Conservation and Utilization of Natural Bioresources, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China.,Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
48
|
Liao G, Zhong M, Jiang Z, Tao J, Jia D, Qu X, Huang C, Liu Q, Xu X. Genome-Wide Association Studies Provide Insights into the Genetic Determination of Flower and Leaf Traits of Actinidia eriantha. FRONTIERS IN PLANT SCIENCE 2021; 12:730890. [PMID: 34490026 PMCID: PMC8417775 DOI: 10.3389/fpls.2021.730890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 07/23/2021] [Indexed: 06/13/2023]
Abstract
Kiwifruit (Actinidia eriantha) is a dioecious vine, and the pollen of its male cultivars has a direct effect on the quality of its fruits. In this study, to facilitate molecular breeding and gene identification, we performed genome-wide association studies (GWAS) on 11 traits of flower and leaf. A total of 946,337 highly consistent SNP markers were obtained in the whole genome. Phylogenetic tree analysis and population structure analysis showed that the 143 germplasms can be divided into two groups. The linkage disequilibrium analysis showed that A. eriantha have a relatively fast attenuation rate, and that the average attenuation distance of LD was 0.1-0.3 Kb. The MLM (QK) model was determined as best for correlation analysis, and eight and three SNPs associated with flower- and leaf-related traits were identified, respectively, at 0.01 significance level. However, SNP markers associated with stamen number per flower, pollen viability, total chlorophyll content, and total flavonoid content were not identified at the 0.01 significant level, although it is worth noting that one, one, five, and two SNPs were identified to be associated with these traits at the 0.05 significant level. This study provides insights into the complex flower- and leaf-related biology, and identifies genes controlling important traits in A. eriantha through GWAS, which extends the genetic resources and basis for facilitating molecular breeding in kiwifruits.
Collapse
|
49
|
Rainha RN, Martinez PA, Moraes LJCL, Castro KMSA, Réjaud A, Fouquet A, Leite RN, Rodrigues MT, Werneck FP. Subtle environmental variation affects phenotypic differentiation of shallow divergent treefrog lineages in Amazonia. Biol J Linn Soc Lond 2021. [DOI: 10.1093/biolinnean/blab056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Abstract
Amazonia harbours a vast biotic and ecological diversity, enabling investigation of the effects of microevolutionary processes and environmental variation on species diversification. Integrative approaches combining phenotypic and genetic variation can improve our knowledge on diversification processes in megadiverse regions. Here, we investigate the influence of environmental and geographic variation on the genetic and morphological differentiation in the Amazonian Boana calcarata-fasciata (Anura: Hylidae) species complex. We analysed the variation of one mtDNA gene from individuals of different forest environments, and assessed their phylogenetic relationships and species limits to define the lineages to perform a phenotypic-environmental approach. We collected morphological data (head shape and size) using 3D models and investigated the phylogenetic signal, evolutionary model and influence of environmental variables on morphology. We verified associations between environmental and geographical distances with morphological and genetic variation using distance-based redundancy analyses and Mantel tests. We found an even higher cryptic diversity than already recognized within the species complex. Body size and head shape varied among specimens, but did not present phylogenetic signal, diverging under a selective evolutionary model. Our results show that diverse factors have influenced morphological and genetic variation, but environmental conditions such as vegetation cover, precipitation and climate change velocity influenced morphological diversification. Possible population-level mechanisms such as parallel morphological evolution or plastic responses to similar environments could account for such patterns in these typical Amazonian treefrogs.
Collapse
Affiliation(s)
- Raíssa N Rainha
- Programa de Pós-Graduação em Ecologia, Instituto Nacional de Pesquisas da Amazônia, Avenida André Araújo, Manaus, Amazonas, Brazil
| | - Pablo A Martinez
- Laboratorio de Pesquisas Integrativas em Biodiversidade, Departamento de Biologia, Universidade Federal de Sergipe, Avenida Marechal Rondon, Aracaju, Sergipe, Brazil
| | - Leandro J C L Moraes
- Coordenação de Biodiversidade, Instituto Nacional de Pesquisas da Amazônia, Avenida André Araújo, Manaus, Amazonas, Brazil
| | - Kathleen M S A Castro
- Laboratorio de Pesquisas Integrativas em Biodiversidade, Departamento de Biologia, Universidade Federal de Sergipe, Avenida Marechal Rondon, Aracaju, Sergipe, Brazil
| | - Alexandre Réjaud
- Laboratoire Evolution et Diversité Biologique, UMR5174, Université Paul Sabatier, Bâtiment, CNRS, IRD, Toulouse, France
| | - Antoine Fouquet
- Laboratoire Evolution et Diversité Biologique, UMR5174, Université Paul Sabatier, Bâtiment, CNRS, IRD, Toulouse, France
| | - Rafael N Leite
- Programa de Pós-Graduação em Ecologia, Instituto Nacional de Pesquisas da Amazônia, Avenida André Araújo, Manaus, Amazonas, Brazil
| | - Miguel T Rodrigues
- Departamento de Zoologia, Universidade de São Paulo Instituto de Biociências, Rua do Matão, travessa, nº. São Paulo, São Paulo, Brazil
| | - Fernanda P Werneck
- Programa de Pós-Graduação em Ecologia, Instituto Nacional de Pesquisas da Amazônia, Avenida André Araújo, Manaus, Amazonas, Brazil
- Coordenação de Biodiversidade, Instituto Nacional de Pesquisas da Amazônia, Avenida André Araújo, Manaus, Amazonas, Brazil
| |
Collapse
|
50
|
Chen W, Wang L, Wang J, Joshi S, Xiang S, Tariq A, Liu X, Liao Y, Wu Y. Divergent Responses of Floral Traits of Lonicera nervosa to Altitudinal Gradients at the Eastern Margin of Hengduan Mountains. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.719838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Understanding phenotypic responses is crucial for predicting and managing the effects of environmental change on native species. Color and display size are typically used to evaluate the utilization value of ornamental plants, which are also important ornamental characters of Lonicera nervosa Maxim. (L. nervosa). However, there is limited documentation of its floral environmental adaptation. The environmental conditions for the development of an organism changes with altitudinal variation. The aim of this research was to find flower trait variability maintenance and the tradeoff among the organs in five different populations of L. nervosa growing at distinct altitudes. We investigated the distribution patterns of floral color, floral display, and biomass tradeoff along a 700-m altitude gradient from 2,950 to 3,650 m. One-way ANOVA analysis was performed to assess the variability of flower traits and floral color across different altitudes. Moreover, correlations and tradeoffs between flowers and vegetative organs were also observed at different altitude ranges. The results indicated that L. nervosa flowers had a strong adaptability along the elevation and divergent altitude-range-specific patterns, which was divided by an altitude breakpoint at around 3,300 m. Below 3,300 m, petal lightness (petal L) decreased, but total floral display area (TFDA), individual floral dry mass (IFDM), and total floral dry mass (TFDM) increased with an increase in altitude. Whereas, above 3,300 m no significant difference was observed in petal L, TFDA, IFDM, and TFDM decreased slightly with an increase in altitude. The responsibility for the selection on floral color at a lower altitude was stronger than that at a higher altitude, while the selection agents on floral biomass had significant effects within the entire altitude range. However, the effects on floral biomass were opposite on both sides of 3,300 m. Thus, floral trait and floral color can be useful indicators for the domestication of horticultural plants and help to evaluate and initiate management and conservation actions.
Collapse
|