1
|
Schall PZ, Meadows JRS, Ramos-Almodovar F, Kidd JM. Characterization of Nuclear Mitochondrial Insertions in Canine Genome Assemblies. Genes (Basel) 2024; 15:1318. [PMID: 39457442 PMCID: PMC11507379 DOI: 10.3390/genes15101318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/03/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND The presence of mitochondrial sequences in the nuclear genome (Numts) confounds analyses of mitochondrial sequence variation, and is a potential source of false positives in disease studies. To improve the analysis of mitochondrial variation in canines, we completed a systematic assessment of Numt content across genome assemblies, canine populations and the carnivore lineage. RESULTS Centering our analysis on the UU_Cfam_GSD_1.0/canFam4/Mischka assembly, a commonly used reference in dog genetic variation studies, we found a total of 321 Numts located throughout the nuclear genome and encompassing the entire sequence of the mitochondria. A comparison with 14 canine genome assemblies identified 63 Numts with presence-absence dimorphism among dogs, wolves, and a coyote. Furthermore, a subset of Numts were maintained across carnivore evolutionary time (arctic fox, polar bear, cat), with eight sequences likely more than 10 million years old, and shared with the domestic cat. On a population level, using structural variant data from the Dog10K Consortium for 1879 dogs and wolves, we identified 11 Numts that are absent in at least one sample, as well as 53 Numts that are absent from the Mischka assembly. CONCLUSIONS We highlight scenarios where the presence of Numts is a potentially confounding factor and provide an annotation of these sequences in canine genome assemblies. This resource will aid the identification and interpretation of polymorphisms in both somatic and germline mitochondrial studies in canines.
Collapse
Affiliation(s)
- Peter Z. Schall
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109, USA; (P.Z.S.); (F.R.-A.)
| | - Jennifer R. S. Meadows
- Department of Medical Biochemistry and Microbiology, Uppsala University, 75132 Uppsala, Sweden;
- SciLifeLab, Uppsala University, 75132 Uppsala, Sweden
| | - Fabian Ramos-Almodovar
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109, USA; (P.Z.S.); (F.R.-A.)
| | - Jeffrey M. Kidd
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109, USA; (P.Z.S.); (F.R.-A.)
- Department of Computational Medicine & Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
2
|
Rebhun RB, York D, De Graaf FMD, Yoon P, Batcher KL, Luker ME, Ryan S, Peyton J, Kent MS, Stern JA, Bannasch DL. A variant in the 5'UTR of ERBB4 is associated with lifespan in Golden Retrievers. GeroScience 2024; 46:2849-2862. [PMID: 37855863 PMCID: PMC11009206 DOI: 10.1007/s11357-023-00968-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 09/29/2023] [Indexed: 10/20/2023] Open
Abstract
Genome-wide association studies (GWAS) in long-lived human populations have led to identification of variants associated with Alzheimer's disease and cardiovascular disease, the latter being the most common cause of mortality in people worldwide. In contrast, naturally occurring cancer represents the leading cause of death in pet dogs, and specific breeds like the Golden Retriever (GR) carry up to a 65% cancer-related death rate. We hypothesized that GWAS of long-lived GRs might lead to the identification of genetic variants capable of modifying longevity within this cancer-predisposed breed. A GWAS was performed comparing GR dogs ≥ 14 years to dogs dying prior to age 12 which revealed a significant association to ERBB4, the only member of the epidermal growth factor receptor family capable of serving as both a tumor suppressor gene and an oncogene. No coding variants were identified, however, distinct haplotypes in the 5'UTR were associated with reduced lifespan in two separate populations of GR dogs. When all GR dogs were analyzed together (n = 304), the presence of haplotype 3 was associated with shorter survival (11.8 years vs. 12.8 years, p = 0.024). GRs homozygous for haplotype 3 had the shortest survival, and GRs homozygous for haplotype 1 had the longest survival (11.6 years vs. 13.5 years, p = 0.0008). Sub-analyses revealed that the difference in lifespan for GRs carrying at least 1 copy of haplotype 3 was specific to female dogs (p = 0.009), whereas survival remained significantly different in both male and female GRs homozygous for haplotype 1 or haplotype 3 (p = 0.026 and p = 0.009, respectively). Taken together, these findings implicate a potential role for ERBB4 in GR longevity and provide evidence that within-breed canine lifespan studies could serve as a mechanism to identify favorable or disease-modifying variants important to the axis of aging and cancer.
Collapse
Affiliation(s)
- Robert B Rebhun
- Department of Surgical and Radiological Sciences, University of California, Davis, CA, USA.
| | - Daniel York
- Department of Surgical and Radiological Sciences, University of California, Davis, CA, USA
| | - Flora M D De Graaf
- Department of Population Health and Reproduction, University of California, Davis, CA, USA
| | - Paula Yoon
- Veterinary Medical Teaching Hospital, University of California, Davis, CA, USA
| | - Kevin L Batcher
- Department of Population Health and Reproduction, University of California, Davis, CA, USA
| | - Madison E Luker
- Department of Surgical and Radiological Sciences, University of California, Davis, CA, USA
| | - Stephanie Ryan
- Department of Population Health and Reproduction, University of California, Davis, CA, USA
| | - Jamie Peyton
- Veterinary Medical Teaching Hospital, University of California, Davis, CA, USA
| | - Michael S Kent
- Department of Surgical and Radiological Sciences, University of California, Davis, CA, USA
| | - Joshua A Stern
- Department of Medicine and Epidemiology, University of California, Davis, CA, USA
| | - Danika L Bannasch
- Department of Population Health and Reproduction, University of California, Davis, CA, USA.
| |
Collapse
|
3
|
Santiago-Rodriguez TM. Comparative oncology using domesticated dogs and their microbiome. Front Vet Sci 2024; 11:1378551. [PMID: 38605920 PMCID: PMC11007225 DOI: 10.3389/fvets.2024.1378551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 03/19/2024] [Indexed: 04/13/2024] Open
|
4
|
Weckman MJ, Karikoski NP, Raekallio MR, Box JR, Kvist L. Genome-wide association study suggests genetic candidate loci of insulin dysregulation in Finnhorses. Vet J 2024; 303:106063. [PMID: 38232813 DOI: 10.1016/j.tvjl.2024.106063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 01/08/2024] [Accepted: 01/08/2024] [Indexed: 01/19/2024]
Abstract
Equine metabolic syndrome (EMS) is a common welfare problem in horses worldwide. It is characterized by insulin dysregulation (ID), predisposition to laminitis and often obesity. EMS is multifactorial by nature, with both the environment and genetics contributing to the phenotype. Environmental factors, such as feeding and exercise, can be controlled, thus forming the basis for treatment and prevention. Genetic factors, by contrast, are less well-known and not easily controllable. The aim of this study was to identify potential genetic loci influencing ID/EMS in Finnhorses. A single-breed (Finnhorse) case-control genome-wide association study (GWAS) of ID was conducted with controls that included age-appropriate non-ID horses. ID status was determined with an oral sugar test (OST) for fasted horses. Seventy-one Finnhorses participated (n = 34 ID, n = 37 control). DNA samples (hair roots) were genotyped for 65 157 single-nucleotide polymorphisms (SNPs) with the Illumina Equine SNP70 BeadChip, and these data were analysed for association and FST outliers with genomic tools. P-values that exceeded the suggestive threshold (P = 1.00 ×10-5) were found in SNP BIEC2_383954 (P = 3.45 ×10-6) in chromosome 17 and SNP BIEC2_312374 (P = 1.89 ×10-5) in chromosome 15. Hierarchical and Bayesian FST outlier tests also detected these SNPs. Potential candidate genes associated with the ID close to SNP BIEC2_383954, with functions in carbohydrate metabolism, were Arginine and Glutamate Rich 1 (ARGLU1) and Ephrin-B2 (EFNB2).
Collapse
Affiliation(s)
- M J Weckman
- Department of Equine and Small Animal Sciences, Faculty of Veterinary Medicine, University of Helsinki, P.O. Box 57, FI-00014 Helsinki, Finland.
| | - N P Karikoski
- Department of Equine and Small Animal Sciences, Faculty of Veterinary Medicine, University of Helsinki, P.O. Box 57, FI-00014 Helsinki, Finland
| | - M R Raekallio
- Department of Equine and Small Animal Sciences, Faculty of Veterinary Medicine, University of Helsinki, P.O. Box 57, FI-00014 Helsinki, Finland
| | - J R Box
- Department of Equine and Small Animal Sciences, Faculty of Veterinary Medicine, University of Helsinki, P.O. Box 57, FI-00014 Helsinki, Finland
| | - L Kvist
- Ecology and Genetics Research Unit, University of Oulu, P.O. Box 8000, FI-3000 Oulu, Finland
| |
Collapse
|
5
|
Schall PZ, Winkler PA, Petersen-Jones SM, Yuzbasiyan-Gurkan V, Kidd JM. Genome-wide methylation patterns from canine nanopore assemblies. G3 (BETHESDA, MD.) 2023; 13:jkad203. [PMID: 37681359 PMCID: PMC10627269 DOI: 10.1093/g3journal/jkad203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/23/2023] [Accepted: 08/29/2023] [Indexed: 09/09/2023]
Abstract
Recent advances in long-read sequencing have enabled the creation of reference-quality genome assemblies for multiple individuals within a species. In particular, 8 long-read genome assemblies have recently been published for the canine model (dogs and wolves). These assemblies were created using a range of sequencing and computational approaches, with only limited comparisons described among subsets of the assemblies. Here we present 3 high-quality de novo reference assemblies based upon Oxford Nanopore long-read sequencing: 2 Bernese Mountain Dogs (BD & OD) and a Cairn terrier (CA611). These breeds are of particular interest due to the enrichment of unresolved genetic disorders. Leveraging advancement in software technologies, we utilized published data of Labrador Retriever (Yella) to generate a new assembly, resulting in a ∼280-fold increase in continuity (N50 size of 91 kbp vs 25.75 Mbp). In conjunction with these 4 new assemblies, we uniformly assessed 8 existing assemblies for generalized quality metrics, sequence divergence, and a detailed BUSCO assessment. We identified a set of ∼400 conserved genes during the BUSCO analysis missing in all assemblies. Genome-wide methylation profiles were generated from the nanopore sequencing, resulting in broad concordance with existing whole-genome and reduced-representation bisulfite sequencing, while highlighting superior overage of mobile elements. These analyses demonstrate the ability of Nanopore sequencing to resolve the sequence and epigenetic profile of canine genomes.
Collapse
Affiliation(s)
- Peter Z Schall
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Paige A Winkler
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824, USA
| | - Simon M Petersen-Jones
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824, USA
| | - Vilma Yuzbasiyan-Gurkan
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824, USA
- Department of Microbiology and Molecular Genetics, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824, USA
| | - Jeffrey M Kidd
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
6
|
Lee BT, Baker LA, Momen M, Terhaar H, Binversie EE, Sample SJ, Muir P. Identification of genetic variants associated with anterior cruciate ligament rupture and AKC standard coat color in the Labrador Retriever. BMC Genom Data 2023; 24:60. [PMID: 37884875 PMCID: PMC10605342 DOI: 10.1186/s12863-023-01164-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 10/09/2023] [Indexed: 10/28/2023] Open
Abstract
Canine anterior cruciate ligament (ACL) rupture is a common complex disease. Prevalence of ACL rupture is breed dependent. In an epidemiological study, yellow coat color was associated with increased risk of ACL rupture in the Labrador Retriever. ACL rupture risk variants may be linked to coat color through genetic selection or through linkage with coat color genes. To investigate these associations, Labrador Retrievers were phenotyped as ACL rupture case or controls and for coat color and were single nucleotide polymorphism (SNP) genotyped. After filtering, ~ 697 K SNPs were analyzed using GEMMA and mvBIMBAM for multivariate association. Functional annotation clustering analysis with DAVID was performed on candidate genes. A large 8 Mb region on chromosome 5 that included ACSF3, as well as 32 additional SNPs, met genome-wide significance at P < 6.07E-7 or Log10(BF) = 3.0 for GEMMA and mvBIMBAM, respectively. On chromosome 23, SNPs were located within or near PCCB and MSL2. On chromosome 30, a SNP was located within IGDCC3. SNPs associated with coat color were also located within ADAM9, FAM109B, SULT1C4, RTDR1, BCR, and RGS7. DZIP1L was associated with ACL rupture. Several significant SNPs on chromosomes 2, 3, 7, 24, and 26 were located within uncharacterized regions or long non-coding RNA sequences. This study validates associations with the previous ACL rupture candidate genes ACSF3 and DZIP1L and identifies novel candidate genes. These variants could act as targets for treatment or as factors in disease prediction modeling. The study highlighted the importance of regulatory SNPs in the disease, as several significant SNPs were located within non-coding regions.
Collapse
Affiliation(s)
- B T Lee
- Department of Surgical Sciences, University of Wisconsin-Madison, School of Veterinary Medicine, 2015 Linden Drive, Madison, WI, 53706, United States of America
| | - L A Baker
- Department of Surgical Sciences, University of Wisconsin-Madison, School of Veterinary Medicine, 2015 Linden Drive, Madison, WI, 53706, United States of America
| | - M Momen
- Department of Surgical Sciences, University of Wisconsin-Madison, School of Veterinary Medicine, 2015 Linden Drive, Madison, WI, 53706, United States of America
| | - H Terhaar
- Department of Surgical Sciences, University of Wisconsin-Madison, School of Veterinary Medicine, 2015 Linden Drive, Madison, WI, 53706, United States of America
| | - E E Binversie
- Department of Surgical Sciences, University of Wisconsin-Madison, School of Veterinary Medicine, 2015 Linden Drive, Madison, WI, 53706, United States of America
| | - S J Sample
- Department of Surgical Sciences, University of Wisconsin-Madison, School of Veterinary Medicine, 2015 Linden Drive, Madison, WI, 53706, United States of America
| | - Peter Muir
- Department of Surgical Sciences, University of Wisconsin-Madison, School of Veterinary Medicine, 2015 Linden Drive, Madison, WI, 53706, United States of America.
| |
Collapse
|
7
|
Leeb T. Special Issue: "Canine Genetics 2". Genes (Basel) 2023; 14:1930. [PMID: 37895280 PMCID: PMC10606197 DOI: 10.3390/genes14101930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 10/07/2023] [Indexed: 10/29/2023] Open
Abstract
Wolves were the first animal species to become domesticated by humans, approximately 30,000-50,000 years ago. Human-directed dog breeding over thousands of generations has generated more than 350 recognized breeds displaying surprisingly different phenotypes with respect to morphology, behavior and disease predispositions. The domestication of wolves and the subsequent breeding of dogs can be viewed as one of humankind's oldest and largest genetic experiments and provides us with unique opportunities for research. Dogs have not only become human's best friend but were also described as geneticists' best friend in a past issue of Science. In recognition of the importance of canine genetics, this Special Issue, entitled "Canine Genetics 2", was compiled. It represents a sequel to the former Special Issue "Canine Genetics", which was published in 2019. During the last 15 years, the canine community has heavily relied on a reference genome derived from the female Boxer Tasha. "Canine Genetics 2" includes an article describing a greatly improved version of this important community resource. This Special Issue further contains several reports related to monogenic or complex inherited diseases in dogs. Finally, important aspects of wild canid research, genetic diversity in different populations and canine morphology were investigated.
Collapse
Affiliation(s)
- Tosso Leeb
- Institute of Genetics, Vetsuisse Faculty, University of Bern, 3001 Bern, Switzerland
| |
Collapse
|
8
|
Kim K, Song JE, Joo JB, Park HA, Choi CH, Je CY, Kim OK, Park SW, Do YJ, Hur TY, Park SI, Lee CM. Genome-wide association study of mammary gland tumors in Maltese dogs. Front Vet Sci 2023; 10:1255981. [PMID: 37859946 PMCID: PMC10583716 DOI: 10.3389/fvets.2023.1255981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 09/19/2023] [Indexed: 10/21/2023] Open
Abstract
Background A genome-wide association study (GWAS) is a valuable tool for investigating genetic and phenotypic variation in many diseases. Objective The objective of this study was to identify variations in the genomes of Maltese dogs that are associated with the mammary gland tumor (MGT) phenotype and to assess the association between each biological condition and MGT phenotype in Maltese dogs. Methods DNA was extracted from 22 tumor samples and 11 whole blood samples from dogs with MGTs. Genome-wide single-nucleotide polymorphism (SNP) genotyping was performed, and the top 20 SNPs associated with various conditions and genetic variations were mapped to their corresponding gene locations. Results The genotyping process successfully identified 173,662 loci, with an overall genotype completion rate of 99.92%. Through the quality control analysis, 46,912 of these SNPs were excluded. Allelic tests were conducted to generate Manhattan plots, which showed several significant SNPs associated with MGT phenotype in intergenic region. The most prominent SNP, located within a region associated with transcription and linked to the malignancy grade of MGT, was identified on chromosome 5 (p = 0.00001) though there may be lack of statistical significance. Other SNPs were also found in several genes associated with oncogenesis, including TNFSF18, WDR3, ASIC5, STAR, and IL1RAP. Conclusion To our knowledge, this is the first GWAS to analyze the genetic predisposition to MGT in Maltese dogs. Despite the limited number of cases, these analyzed data could provide the basis for further research on the genetic predisposition to MGTs in Maltese dogs.
Collapse
Affiliation(s)
- Keon Kim
- Department of Veterinary Internal Medicine, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju, Republic of Korea
| | - Jung Eun Song
- Department of Veterinary Internal Medicine, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju, Republic of Korea
- Gwangju Animal Medical Center, Gwangju, Republic of Korea
| | - Jae Beom Joo
- Department of Veterinary Internal Medicine, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju, Republic of Korea
| | - Hyeon A Park
- Department of Veterinary Internal Medicine, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju, Republic of Korea
| | - Chang Hyeon Choi
- Department of Veterinary Internal Medicine, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju, Republic of Korea
| | - Chang Yun Je
- Department of Veterinary Internal Medicine, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju, Republic of Korea
| | - Ock Kyu Kim
- Department of Veterinary Internal Medicine, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju, Republic of Korea
| | - Sin Wook Park
- Department of Veterinary Internal Medicine, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju, Republic of Korea
| | - Yoon Jung Do
- Division of Animal Diseases and Health, National Institute of Animal Science, Rural Development Administration, Wanju-gun, Republic of Korea
| | - Tai-Young Hur
- Division of Animal Diseases and Health, National Institute of Animal Science, Rural Development Administration, Wanju-gun, Republic of Korea
| | - Sang-Ik Park
- Department of Veterinary Pathology, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju, Republic of Korea
| | - Chang-Min Lee
- Department of Veterinary Internal Medicine, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju, Republic of Korea
| |
Collapse
|
9
|
Li Z, Wang Z, Chen Z, Voegeli H, Lichtman JH, Smith P, Liu J, DeWan AT, Hoh J. Systematically identifying genetic signatures including novel SNP-clusters, nonsense variants, frame-shift INDELs, and long STR expansions that potentially link to unknown phenotypes existing in dog breeds. BMC Genomics 2023; 24:302. [PMID: 37277710 DOI: 10.1186/s12864-023-09390-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 05/19/2023] [Indexed: 06/07/2023] Open
Abstract
BACKGROUND In light of previous studies that profiled breed-specific traits or used genome-wide association studies to refine loci associated with characteristic morphological features in dogs, the field has gained tremendous genetic insights for known dog traits observed among breeds. Here we aim to address the question from a reserve perspective: whether there are breed-specific genotypes that may underlie currently unknown phenotypes. This study provides a complete set of breed-specific genetic signatures (BSGS). Several novel BSGS with significant protein-altering effects were highlighted and validated. RESULTS Using the next generation whole-genome sequencing technology coupled with unsupervised machine learning for pattern recognitions, we constructed and analyzed a high-resolution sequence map for 76 breeds of 412 dogs. Genomic structures including novel single nucleotide polymorphisms (SNPs), SNP clusters, insertions, deletions (INDELs) and short tandem repeats (STRs) were uncovered mutually exclusively among breeds. We also partially validated some novel nonsense variants by Sanger sequencing with additional dogs. Four novel nonsense BSGS were found in the Bernese Mountain Dog, Samoyed, Bull Terrier, and Basset Hound, respectively. Four INDELs resulting in either frame-shift or codon disruptions were found in the Norwich Terrier, Airedale Terrier, Chow Chow and Bernese Mountain Dog, respectively. A total of 15 genomic regions containing three types of BSGS (SNP-clusters, INDELs and STRs) were identified in the Akita, Alaskan Malamute, Chow Chow, Field Spaniel, Keeshond, Shetland Sheepdog and Sussex Spaniel, in which Keeshond and Sussex Spaniel each carried one amino-acid changing BSGS in such regions. CONCLUSION Given the strong relationship between human and dog breed-specific traits, this study might be of considerable interest to researchers and all. Novel genetic signatures that can differentiate dog breeds were uncovered. Several functional genetic signatures might indicate potentially breed-specific unknown phenotypic traits or disease predispositions. These results open the door for further investigations. Importantly, the computational tools we developed can be applied to any dog breeds as well as other species. This study will stimulate new thinking, as the results of breed-specific genetic signatures may offer an overarching relevance of the animal models to human health and disease.
Collapse
Affiliation(s)
- Zicheng Li
- Department of Chronic Disease Epidemiology, School of Public Health, Yale University, New Haven, CT, 06510, USA.
| | - Zuoheng Wang
- Department of Biostatistics, School of Public Health, Yale University, New Haven, CT, 06510, USA
| | - Zhiyuan Chen
- Department of Chronic Disease Epidemiology, School of Public Health, Yale University, New Haven, CT, 06510, USA
| | - Heidi Voegeli
- Department of Chronic Disease Epidemiology, School of Public Health, Yale University, New Haven, CT, 06510, USA
| | - Judith H Lichtman
- Department of Chronic Disease Epidemiology, School of Public Health, Yale University, New Haven, CT, 06510, USA
| | - Peter Smith
- Department of Comparative Medicine, School of Medicine, Yale University, New Haven, CT, 06510, USA
| | - Ju Liu
- Medical Research Center, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, 16766 Jingshi Road, Jinan, Shandong, 250014, China
| | - Andrew T DeWan
- Department of Chronic Disease Epidemiology, School of Public Health, Yale University, New Haven, CT, 06510, USA
- Center for Perinatal Pediatric and Environmental Epidemiology, Yale University, New Haven, CT, 06510, USA
| | - Josephine Hoh
- Department of Chronic Disease Epidemiology, School of Public Health, Yale University, New Haven, CT, 06510, USA.
- Department of Ophthalmology and Visual Science, School of Medicine, Yale University, New Haven, CT, 06510, USA.
- Department of Applied Mathematics, Yale University, New Haven, CT, 06510, USA.
| |
Collapse
|
10
|
McCoy BM, Brassington L, Jin K, Dolby GA, Shrager S, Collins D, Dunbar M, Ruple A, Snyder-Mackler N. Social determinants of health and disease in companion dogs: a cohort study from the Dog Aging Project. Evol Med Public Health 2023; 11:187-201. [PMID: 37388194 PMCID: PMC10306367 DOI: 10.1093/emph/eoad011] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 03/03/2023] [Indexed: 07/01/2023] Open
Abstract
Exposure to social environmental adversity is associated with health and survival across many social species, including humans. However, little is known about how these health and mortality effects vary across the lifespan and may be differentially impacted by various components of the environment. Here, we leveraged a relatively new and powerful model for human aging, the companion dog, to investigate which components of the social environment are associated with dog health and how these associations vary across the lifespan. We drew on comprehensive survey data collected on 21,410 dogs from the Dog Aging Project and identified five factors that together explained 33.7% of the variation in a dog's social environment. Factors capturing financial and household adversity were associated with poorer health and lower physical mobility in companion dogs, while factors that captured social support, such as living with other dogs, were associated with better health when controlling for dog age and weight. Notably, the effects of each environmental component were not equal: the effect of social support was 5× stronger than financial factors. The strength of these associations depended on the age of the dog, including a stronger relationship between the owner's age and the dog's health in younger as compared to older dogs. Taken together, these findings suggest the importance of income, stability and owner's age on owner-reported health outcomes in companion dogs and point to potential behavioral and/or environmental modifiers that can be used to promote healthy aging across species.
Collapse
Affiliation(s)
- Brianah M McCoy
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ, USA
| | - Layla Brassington
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ, USA
| | - Kelly Jin
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Greer A Dolby
- Department of Biology, University of Alabama at Birmingham, Birmingham, ALUSA
| | - Sandi Shrager
- Collaborative Health Studies Coordinating Center, Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Devin Collins
- Department of Sociology, University of Washington, Seattle, WA, USA
| | - Matthew Dunbar
- Center for Studies in Demography & Ecology, University of Washington, Seattle, WA, USA
| | - Audrey Ruple
- Department of Population Health Sciences, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, USA
| | - Noah Snyder-Mackler
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ, USA
- School for Human Evolution and Social Change, Arizona State University, Tempe, AZ, USA
| |
Collapse
|
11
|
Kraus C, Snyder-Mackler N, Promislow DEL. How size and genetic diversity shape lifespan across breeds of purebred dogs. GeroScience 2023; 45:627-643. [PMID: 36066765 PMCID: PMC9886701 DOI: 10.1007/s11357-022-00653-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 08/27/2022] [Indexed: 02/03/2023] Open
Abstract
While the lifespan advantage of small body size and mixed breed status has been documented repeatedly, evidence for an effect of genetic diversity across dog breeds is equivocal. We hypothesized that this might be due to a strong right-censoring bias in available breed-specific lifespan estimates where early-dying dogs from birth cohorts that have not died off completely at the time of data collection are sampled disproportionately, especially in breeds with rapidly growing populations. We took advantage of data on owner reported lifespan and cause of death from a large public database to quantify the effect of size and genetic diversity (heterozygosity) on mortality patterns across 118 breeds based on more than 40,000 dogs. After documenting and removing the right-censoring bias from the breed-specific lifespan estimates by including only completed birth cohorts in our analyses, we show that small size and genetic diversity are both linked to a significant increase in mean lifespan across breeds. To better understand the proximate mechanisms underlying these patterns, we then investigated two major mortality causes in dogs - the cumulative pathophysiologies of old age and cancer. Old age lifespan, as well as the percentage of old age mortality, decreased with increasing body size and increased with increasing genetic diversity. The lifespan of dogs dying of cancer followed the same patterns, but while large size significantly increased proportional cancer mortality, we could not detect a significant signal for lowered cancer mortality with increasing diversity. Our findings suggest that outcross programs will be beneficial for breed health and longevity. They also emphasize the need for high-quality mortality data for veterinary epidemiology as well as for developing the dog as a translational model for human geroscience.
Collapse
Affiliation(s)
| | - Noah Snyder-Mackler
- School of Life Sciences, Center for Evolution and Medicine, School for Human Evolution and Social Change, Arizona State University, Tempe, AZ USA
| | - Daniel E. L. Promislow
- Department of Laboratory Medicine & Pathology, University of Washington School of Medicine, Seattle, WA 98195 USA
- Department of Biology, University of Washington, Seattle, WA 98195 USA
| |
Collapse
|
12
|
Charalambous M, Fischer A, Potschka H, Walker MC, Raedt R, Vonck K, Boon P, Lohi H, Löscher W, Worrell G, Leeb T, McEvoy A, Striano P, Kluger G, Galanopoulou AS, Volk HA, Bhatti SFM. Translational veterinary epilepsy: A win-win situation for human and veterinary neurology. Vet J 2023; 293:105956. [PMID: 36791876 DOI: 10.1016/j.tvjl.2023.105956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 02/07/2023] [Accepted: 02/09/2023] [Indexed: 02/15/2023]
Abstract
Epilepsy is a challenging multifactorial disorder with a complex genetic background. Our current understanding of the pathophysiology and treatment of epilepsy has substantially increased due to animal model studies, including canine studies, but additional basic and clinical research is required. Drug-resistant epilepsy is an important problem in both dogs and humans, since seizure freedom is not achieved with the available antiseizure medications. The evaluation and exploration of pharmacological and particularly non-pharmacological therapeutic options need to remain a priority in epilepsy research. Combined efforts and sharing knowledge and expertise between human medical and veterinary neurologists are important for improving the treatment outcomes or even curing epilepsy in dogs. Such interactions could offer an exciting approach to translate the knowledge gained from people and rodents to dogs and vice versa. In this article, a panel of experts discusses the similarities and knowledge gaps in human and animal epileptology, with the aim of establishing a common framework and the basis for future translational epilepsy research.
Collapse
Affiliation(s)
- Marios Charalambous
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine Hannover, Hannover 30559, Germany.
| | - Andrea Fischer
- Centre for Clinical Veterinary Medicine, Ludwig-Maximilians-University Munich, Munich 80539, Germany
| | - Heidrun Potschka
- Institute of Pharmacology, Toxicology and Pharmacy, Ludwig-Maximilians-University, Munich 80539, Germany
| | - Matthew C Walker
- Institute of Neurology, University College London, London WC1N 3JD, UK
| | - Robrecht Raedt
- Department of Neurology, 4brain, Ghent University, Ghent 9000, Belgium
| | - Kristl Vonck
- Department of Neurology, 4brain, Ghent University, Ghent 9000, Belgium
| | - Paul Boon
- Department of Neurology, 4brain, Ghent University, Ghent 9000, Belgium
| | - Hannes Lohi
- Department of Veterinary Biosciences, Department of Medical and Clinical Genetics, and Folkhälsan Research Center, University of Helsinki, Helsinki 00014, Finland
| | - Wolfgang Löscher
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Hannover 30559, Germany
| | | | - Tosso Leeb
- Institute of Genetics, University of Bern, Bern 3001, Switzerland
| | - Andrew McEvoy
- Institute of Neurology, University College London, London WC1N 3JD, UK
| | - Pasquale Striano
- IRCCS 'G. Gaslini', Genova 16147, Italy; Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Genova, Italy
| | - Gerhard Kluger
- Research Institute, Rehabilitation, Transition-Palliation', PMU Salzburg, Salzburg 5020, Austria; Clinic for Neuropediatrics and Neurorehabilitation, Epilepsy Center for Children and Adolescents, Schoen Clinic Vogtareuth, Vogtareuth 83569, Germany
| | - Aristea S Galanopoulou
- Saul R Korey Department of Neurology, Isabelle Rapin Division of Child Neurology, Dominick P. Purpura Department of Neuroscience, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Holger A Volk
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine Hannover, Hannover 30559, Germany
| | - Sofie F M Bhatti
- Faculty of Veterinary Medicine, Small Animal Department, Ghent University, Merelbeke 9820, Belgium
| |
Collapse
|
13
|
Leeb T, Bannasch D, Schoenebeck JJ. Identification of Genetic Risk Factors for Monogenic and Complex Canine Diseases. Annu Rev Anim Biosci 2023; 11:183-205. [PMID: 36322969 DOI: 10.1146/annurev-animal-050622-055534] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Advances in DNA sequencing and other technologies have greatly facilitated the identification of genetic risk factors for inherited diseases in dogs. We review recent technological developments based on selected examples from canine disease genetics. The identification of disease-causing variants in dogs with monogenic diseases may become a widely employed diagnostic approach in clinical veterinary medicine in the not-too-distant future. Diseases with complex modes of inheritance continue to pose challenges to researchers but have also become much more tangible than in the past. In addition to strategies for identifying genetic risk factors, we provide some thoughts on the interpretation of sequence variants that are largely inspired by developments in human clinical genetics.
Collapse
Affiliation(s)
- Tosso Leeb
- Institute of Genetics, Vetsuisse Faculty, University of Bern, Bern, Switzerland;
| | - Danika Bannasch
- Department of Population Health and Reproduction, University of California, Davis, California, USA;
| | - Jeffrey J Schoenebeck
- The Roslin Institute and Royal (Dick) School for Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, United Kingdom;
| |
Collapse
|
14
|
Binversie EE, Momen M, Rosa GJM, Davis BW, Muir P. Across-breed genetic investigation of canine hip dysplasia, elbow dysplasia, and anterior cruciate ligament rupture using whole-genome sequencing. Front Genet 2022; 13:913354. [PMID: 36531249 PMCID: PMC9755188 DOI: 10.3389/fgene.2022.913354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 11/07/2022] [Indexed: 12/03/2022] Open
Abstract
Here, we report the use of genome-wide association study (GWAS) for the analysis of canine whole-genome sequencing (WGS) repository data using breed phenotypes. Single-nucleotide polymorphisms (SNPs) were called from WGS data from 648 dogs that included 119 breeds from the Dog10K Genomes Project. Next, we assigned breed phenotypes for hip dysplasia (Orthopedic Foundation for Animals (OFA) HD, n = 230 dogs from 27 breeds; hospital HD, n = 279 dogs from 38 breeds), elbow dysplasia (ED, n = 230 dogs from 27 breeds), and anterior cruciate ligament rupture (ACL rupture, n = 279 dogs from 38 breeds), the three most important canine spontaneous complex orthopedic diseases. Substantial morbidity is common with these diseases. Previous within- and between-breed GWAS for HD, ED, and ACL rupture using array SNPs have identified disease-associated loci. Individual disease phenotypes are lacking in repository data. There is a critical knowledge gap regarding the optimal approach to undertake categorical GWAS without individual phenotypes. We considered four GWAS approaches: a classical linear mixed model, a haplotype-based model, a binary case-control model, and a weighted least squares model using SNP average allelic frequency. We found that categorical GWAS was able to validate HD candidate loci. Additionally, we discovered novel candidate loci and genes for all three diseases, including FBX025, IL1A, IL1B, COL27A1, SPRED2 (HD), UGDH, FAF1 (ED), TGIF2 (ED & ACL rupture), and IL22, IL26, CSMD1, LDHA, and TNS1 (ACL rupture). Therefore, categorical GWAS of ancestral dog populations may contribute to the understanding of any disease for which breed epidemiological risk data are available, including diseases for which GWAS has not been performed and candidate loci remain elusive.
Collapse
Affiliation(s)
- Emily E. Binversie
- Comparative Orthopaedic and Genetics Research Laboratory, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, United States
| | - Mehdi Momen
- Comparative Orthopaedic and Genetics Research Laboratory, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, United States
| | - Guilherme J. M. Rosa
- Department of Animal and Dairy Sciences, College of Agricultural and Life Sciences, University of Wisconsin-Madison, Madison, WI, United States
| | - Brian W. Davis
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, United States
| | - Peter Muir
- Comparative Orthopaedic and Genetics Research Laboratory, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, United States,*Correspondence: Peter Muir,
| |
Collapse
|
15
|
Four novel genes associated with longevity found in Cane corso purebred dogs. BMC Vet Res 2022; 18:188. [PMID: 35590325 PMCID: PMC9118790 DOI: 10.1186/s12917-022-03290-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 05/11/2022] [Indexed: 02/04/2023] Open
Abstract
Background Longevity-related genes have been found in several animal species as well as in humans. The goal of this study was to perform genetic analysis of long-lived Cane corso dogs with the aim to find genes that are associated with longevity. Results SNPs with particular nucleotides were significantly overrepresented in long-lived dogs in four genes, TDRP, MC2R, FBXO25 and FBXL21. In FBXL21, the longevity-associated SNP localises to the exon. In the FBXL21 protein, tryptophan in long-lived dogs replaced arginine present in reference dogs. Conclusions Four SNPs associated with longevity in dogs were identified using GWAS and validated by DNA sequencing. We conclude that genes TDRP, MC2R, FBXO25 and FBXL21 are associated with longevity in Cane corso dogs. Supplementary Information The online version contains supplementary material available at 10.1186/s12917-022-03290-9.
Collapse
|
16
|
Morrill K, Hekman J, Li X, McClure J, Logan B, Goodman L, Gao M, Dong Y, Alonso M, Carmichael E, Snyder-Mackler N, Alonso J, Noh HJ, Johnson J, Koltookian M, Lieu C, Megquier K, Swofford R, Turner-Maier J, White ME, Weng Z, Colubri A, Genereux DP, Lord KA, Karlsson EK. Ancestry-inclusive dog genomics challenges popular breed stereotypes. Science 2022; 376:eabk0639. [PMID: 35482869 DOI: 10.1126/science.abk0639] [Citation(s) in RCA: 75] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Behavioral genetics in dogs has focused on modern breeds, which are isolated subgroups with distinctive physical and, purportedly, behavioral characteristics. We interrogated breed stereotypes by surveying owners of 18,385 purebred and mixed-breed dogs and genotyping 2155 dogs. Most behavioral traits are heritable [heritability (h2) > 25%], and admixture patterns in mixed-breed dogs reveal breed propensities. Breed explains just 9% of behavioral variation in individuals. Genome-wide association analyses identify 11 loci that are significantly associated with behavior, and characteristic breed behaviors exhibit genetic complexity. Behavioral loci are not unusually differentiated in breeds, but breed propensities align, albeit weakly, with ancestral function. We propose that behaviors perceived as characteristic of modern breeds derive from thousands of years of polygenic adaptation that predates breed formation, with modern breeds distinguished primarily by aesthetic traits.
Collapse
Affiliation(s)
- Kathleen Morrill
- Bioinformatics and Integrative Biology, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA.,Morningside Graduate School of Biomedical Sciences, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA.,Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Jessica Hekman
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Xue Li
- Bioinformatics and Integrative Biology, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA.,Morningside Graduate School of Biomedical Sciences, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA.,Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Jesse McClure
- Bioinformatics and Integrative Biology, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| | - Brittney Logan
- Bioinformatics and Integrative Biology, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA.,Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Linda Goodman
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.,Fauna Bio Inc., Emeryville, CA 94608, USA
| | - Mingshi Gao
- Bioinformatics and Integrative Biology, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA.,Morningside Graduate School of Biomedical Sciences, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| | - Yinan Dong
- Bioinformatics and Integrative Biology, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA.,Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Marjie Alonso
- The International Association of Animal Behavior Consultants, Cranberry Township, PA 16066, USA.,IAABC Foundation, Cranberry Township, PA 16066, USA
| | - Elena Carmichael
- Bioinformatics and Integrative Biology, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA.,Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.,Rice University, Houston, TX 77005, USA
| | - Noah Snyder-Mackler
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ 85251, USA.,School for Human Evolution and Social Change, Arizona State University, Tempe, AZ 85251, USA.,School of Life Sciences, Arizona State University, Tempe, AZ 85251, USA
| | - Jacob Alonso
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Hyun Ji Noh
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Jeremy Johnson
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | | | - Charlie Lieu
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.,Darwin's Ark Foundation, Seattle, WA 98026, USA
| | - Kate Megquier
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Ross Swofford
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | | | - Michelle E White
- Bioinformatics and Integrative Biology, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA.,Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Zhiping Weng
- Bioinformatics and Integrative Biology, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| | - Andrés Colubri
- Bioinformatics and Integrative Biology, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA.,Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | | | - Kathryn A Lord
- Bioinformatics and Integrative Biology, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA.,Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Elinor K Karlsson
- Bioinformatics and Integrative Biology, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA.,Morningside Graduate School of Biomedical Sciences, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA.,Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.,Darwin's Ark Foundation, Seattle, WA 98026, USA.,Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| |
Collapse
|
17
|
Bulla SC, Badial PR, Bulla C. Canine Cancer Cells Activate Platelets via the Platelet P2Y12 Receptor. J Comp Pathol 2022; 192:41-49. [PMID: 35305713 DOI: 10.1016/j.jcpa.2022.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 11/09/2021] [Accepted: 01/13/2022] [Indexed: 11/16/2022]
Abstract
In addition to their well-known functions in haemostasis, anucleated platelets have a critical role in cancer biology. Many human and non-human cancer types can directly interact with and activate platelets, promoting cancer malignancy and progression. Although naturally occurring canine neoplastic diseases mimic the biologically complex conditions of human cancers more closely than laboratory-bred mice, studies evaluating the relationship between cancer cells and platelets in dogs are scarce, and the effects of tumour cells on platelets in these animals are unknown. To evaluate whether cancer cells could activate canine platelets, we assessed the response of platelet-rich plasma to cultured canine cancer cells using light transmittance aggregometry. Similar to human and murine cancer cell research, we demonstrated that both canine osteosarcoma and mammary carcinoma cells activated canine platelets in vitro, resulting in platelet aggregation. The degree of aggregation was most pronounced at a cancer cell to platelet ratio of 1:200 for most cell lines. Mechanistic studies revealed that the platelet adenosine diphosphate (ADP) receptor P2Y12 is essential for canine platelet aggregation induced by canine cancer. ADP receptor blockage on platelets inhibited >50% of cancer cell-induced maximum platelet aggregation in all cell lines evaluated. As in other species, our results suggest that canine cancers may activate canine platelets in vivo. This mechanism is likely relevant for the biology and progression of cancer in the dog.
Collapse
Affiliation(s)
- Sandra C Bulla
- Department of Pathobiology and Population Medicine, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi, USA
| | - Peres R Badial
- Department of Pathobiology and Population Medicine, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi, USA
| | - Camilo Bulla
- Department of Pathobiology and Population Medicine, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi, USA.
| |
Collapse
|
18
|
Halo JV, Kidd JM. Canis familiaris (Great Dane domestic dog). Trends Genet 2022; 38:514-515. [PMID: 35232612 DOI: 10.1016/j.tig.2022.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/28/2022] [Accepted: 01/31/2022] [Indexed: 11/18/2022]
Affiliation(s)
- Julia V Halo
- Department of Biological Sciences, Bowling Green State University, Bowling Green, OH 43403, USA
| | - Jeffrey M Kidd
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109, USA; Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
19
|
Leeb T, Roosje P, Welle M. Genetics of inherited skin disorders in dogs. Vet J 2021; 279:105782. [PMID: 34861369 DOI: 10.1016/j.tvjl.2021.105782] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 11/16/2021] [Accepted: 11/29/2021] [Indexed: 01/22/2023]
Abstract
Canine genodermatoses represent a broad spectrum of diseases with diverse phenotypes. Modern genetic technology including whole genome sequencing has expedited the identification of novel genes and greatly simplified the establishment of genetic diagnoses in such heterogeneous disorders. The precise genetic diagnosis of a heritable skin disorder is essential for the appropriate counselling of owners regarding the course of the disease, prognosis and implications for breeding. Understanding the underlying pathophysiology is a prerequisite to developing specific, targeted or individualized therapeutic approaches. This review aims to create a comprehensive overview of canine genodermatoses and their respective genetic aetiology known to date. Raising awareness of genodermatoses in dogs is important and this review may help clinicians to apply modern genetics in daily clinical practice, so that a precise diagnoses can be established in suspected genodermatoses.
Collapse
Affiliation(s)
- Tosso Leeb
- Institute of Genetics, Vetsuisse Faculty, University of Bern, 3001 Bern, Switzerland; Dermfocus, University of Bern, 3001 Bern, Switzerland.
| | - Petra Roosje
- Dermfocus, University of Bern, 3001 Bern, Switzerland; Division of Clinical Dermatology, Department of Clinical Veterinary Medicine, Vetsuisse Faculty, University of Bern, 3001 Bern, Switzerland
| | - Monika Welle
- Dermfocus, University of Bern, 3001 Bern, Switzerland; Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, 3001 Bern, Switzerland
| |
Collapse
|
20
|
Lagarrigue S, Lorthiois M, Degalez F, Gilot D, Derrien T. LncRNAs in domesticated animals: from dog to livestock species. Mamm Genome 2021; 33:248-270. [PMID: 34773482 PMCID: PMC9114084 DOI: 10.1007/s00335-021-09928-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 10/19/2021] [Indexed: 11/29/2022]
Abstract
Animal genomes are pervasively transcribed into multiple RNA molecules, of which many will not be translated into proteins. One major component of this transcribed non-coding genome is the long non-coding RNAs (lncRNAs), which are defined as transcripts longer than 200 nucleotides with low coding-potential capabilities. Domestic animals constitute a unique resource for studying the genetic and epigenetic basis of phenotypic variations involving protein-coding and non-coding RNAs, such as lncRNAs. This review presents the current knowledge regarding transcriptome-based catalogues of lncRNAs in major domesticated animals (pets and livestock species), covering a broad phylogenetic scale (from dogs to chicken), and in comparison with human and mouse lncRNA catalogues. Furthermore, we describe different methods to extract known or discover novel lncRNAs and explore comparative genomics approaches to strengthen the annotation of lncRNAs. We then detail different strategies contributing to a better understanding of lncRNA functions, from genetic studies such as GWAS to molecular biology experiments and give some case examples in domestic animals. Finally, we discuss the limitations of current lncRNA annotations and suggest research directions to improve them and their functional characterisation.
Collapse
Affiliation(s)
| | - Matthias Lorthiois
- Univ Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) - UMR 6290, 2 av Prof Leon Bernard, F-35000, Rennes, France
| | - Fabien Degalez
- INRAE, INSTITUT AGRO, PEGASE UMR 1348, 35590, Saint-Gilles, France
| | - David Gilot
- CLCC Eugène Marquis, INSERM, Université Rennes, UMR_S 1242, 35000, Rennes, France
| | - Thomas Derrien
- Univ Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) - UMR 6290, 2 av Prof Leon Bernard, F-35000, Rennes, France.
| |
Collapse
|
21
|
Kaldunski ML, Smith JR, Hayman GT, Brodie K, De Pons JL, Demos WM, Gibson AC, Hill ML, Hoffman MJ, Lamers L, Laulederkind SJF, Nalabolu HS, Thorat K, Thota J, Tutaj M, Tutaj MA, Vedi M, Wang SJ, Zacher S, Dwinell MR, Kwitek AE. The Rat Genome Database (RGD) facilitates genomic and phenotypic data integration across multiple species for biomedical research. Mamm Genome 2021; 33:66-80. [PMID: 34741192 PMCID: PMC8570235 DOI: 10.1007/s00335-021-09932-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 10/21/2021] [Indexed: 01/21/2023]
Abstract
Model organism research is essential for discovering the mechanisms of human diseases by defining biologically meaningful gene to disease relationships. The Rat Genome Database (RGD, ( https://rgd.mcw.edu )) is a cross-species knowledgebase and the premier online resource for rat genetic and physiologic data. This rich resource is enhanced by the inclusion and integration of comparative data for human and mouse, as well as other human disease models including chinchilla, dog, bonobo, pig, 13-lined ground squirrel, green monkey, and naked mole-rat. Functional information has been added to records via the assignment of annotations based on sequence similarity to human, rat, and mouse genes. RGD has also imported well-supported cross-species data from external resources. To enable use of these data, RGD has developed a robust infrastructure of standardized ontologies, data formats, and disease- and species-centric portals, complemented with a suite of innovative tools for discovery and analysis. Using examples of single-gene and polygenic human diseases, we illustrate how data from multiple species can help to identify or confirm a gene as involved in a disease and to identify model organisms that can be studied to understand the pathophysiology of a gene or pathway. The ultimate aim of this report is to demonstrate the utility of RGD not only as the core resource for the rat research community but also as a source of bioinformatic tools to support a wider audience, empowering the search for appropriate models for human afflictions.
Collapse
Affiliation(s)
- M L Kaldunski
- Department of Biomedical Engineering, The Rat Genome Database, Medical College of Wisconsin, Milwaukee, WI, USA
| | - J R Smith
- Department of Biomedical Engineering, The Rat Genome Database, Medical College of Wisconsin, Milwaukee, WI, USA
| | - G T Hayman
- Department of Biomedical Engineering, The Rat Genome Database, Medical College of Wisconsin, Milwaukee, WI, USA
| | - K Brodie
- Clinical and Translational Science Institute, Medical College of Wisconsin, Milwaukee, WI, USA
| | - J L De Pons
- Department of Biomedical Engineering, The Rat Genome Database, Medical College of Wisconsin, Milwaukee, WI, USA
| | - W M Demos
- Department of Biomedical Engineering, The Rat Genome Database, Medical College of Wisconsin, Milwaukee, WI, USA
| | - A C Gibson
- Department of Biomedical Engineering, The Rat Genome Database, Medical College of Wisconsin, Milwaukee, WI, USA
| | - M L Hill
- Department of Biomedical Engineering, The Rat Genome Database, Medical College of Wisconsin, Milwaukee, WI, USA
| | - M J Hoffman
- Department of Biomedical Engineering, The Rat Genome Database, Medical College of Wisconsin, Milwaukee, WI, USA
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - L Lamers
- Department of Biomedical Engineering, The Rat Genome Database, Medical College of Wisconsin, Milwaukee, WI, USA
| | - S J F Laulederkind
- Department of Biomedical Engineering, The Rat Genome Database, Medical College of Wisconsin, Milwaukee, WI, USA
| | - H S Nalabolu
- Department of Biomedical Engineering, The Rat Genome Database, Medical College of Wisconsin, Milwaukee, WI, USA
| | - K Thorat
- Department of Biomedical Engineering, The Rat Genome Database, Medical College of Wisconsin, Milwaukee, WI, USA
| | - J Thota
- Department of Biomedical Engineering, The Rat Genome Database, Medical College of Wisconsin, Milwaukee, WI, USA
| | - M Tutaj
- Department of Biomedical Engineering, The Rat Genome Database, Medical College of Wisconsin, Milwaukee, WI, USA
| | - M A Tutaj
- Department of Biomedical Engineering, The Rat Genome Database, Medical College of Wisconsin, Milwaukee, WI, USA
| | - M Vedi
- Department of Biomedical Engineering, The Rat Genome Database, Medical College of Wisconsin, Milwaukee, WI, USA
| | - S J Wang
- Department of Biomedical Engineering, The Rat Genome Database, Medical College of Wisconsin, Milwaukee, WI, USA
| | - S Zacher
- Information Services, Medical College of Wisconsin, Milwaukee, WI, USA
| | - M R Dwinell
- Department of Biomedical Engineering, The Rat Genome Database, Medical College of Wisconsin, Milwaukee, WI, USA
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - A E Kwitek
- Department of Biomedical Engineering, The Rat Genome Database, Medical College of Wisconsin, Milwaukee, WI, USA.
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA.
| |
Collapse
|
22
|
Wang A, Neill SG, Newman S, Tryfonidou MA, Ioachimescu A, Rossi MR, Meij BP, Oyesiku NM. The genomic profiling and MAMLD1 expression in human and canines with Cushing's disease. BMC Endocr Disord 2021; 21:185. [PMID: 34517852 PMCID: PMC8438999 DOI: 10.1186/s12902-021-00845-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 08/20/2021] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Cushing's disease (CD) is defined as hypercortisolemia caused by adrenocorticotropic hormone (ACTH)-secreting pituitary adenomas (corticotroph PA) that afflicts humans and dogs. In order to map common aberrant genomic features of CD between humans and dogs, we performed genomic sequencing and immunostaining on corticotroph PA. METHODS For inclusion, humans and dog were diagnosed with CD. Whole exome sequencing (WES) was conducted on 6 human corticotroph PA. Transcriptome RNA-Seq was performed on 6 human and 7 dog corticotroph PA. Immunohistochemistry (IHC) was complete on 31 human corticotroph PA. Corticotroph PA were compared with normal tissue and between species analysis were also performed. RESULTS Eight genes (MAMLD1, MNX1, RASEF, TBX19, BIRC5, TK1, GLDC, FAM131B) were significantly (P < 0.05) overexpressed across human and canine corticotroph PA. IHC revealed MAMLD1 to be positively (3+) expressed in the nucleus of ACTH-secreting tumor cells of human corticotroph PA (22/31, 70.9%), but absent in healthy human pituitary glands. CONCLUSIONS In this small exploratory cohort, we provide the first preliminary insights into profiling the genomic characterizations of human and dog corticotroph PA with respect to MAMLD1 overexpression, a finding of potential direct impact to CD microadenoma diagnosis. Our study also offers a rationale for potential use of the canine model in development of precision therapeutics.
Collapse
Affiliation(s)
- Andrew Wang
- David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- College of Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, CA, USA
| | - Stewart G Neill
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Scott Newman
- Department of Computational Biology, St. Jude Children's Research Hospital, Anchorage, TN, USA
| | - Marianna A Tryfonidou
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Adriana Ioachimescu
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA , USA
- Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Michael R Rossi
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Björn P Meij
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Nelson M Oyesiku
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA , USA.
- Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
23
|
Axelsson E, Ljungvall I, Bhoumik P, Conn LB, Muren E, Ohlsson Å, Olsen LH, Engdahl K, Hagman R, Hanson J, Kryvokhyzha D, Pettersson M, Grenet O, Moggs J, Del Rio-Espinola A, Epe C, Taillon B, Tawari N, Mane S, Hawkins T, Hedhammar Å, Gruet P, Häggström J, Lindblad-Toh K. The genetic consequences of dog breed formation-Accumulation of deleterious genetic variation and fixation of mutations associated with myxomatous mitral valve disease in cavalier King Charles spaniels. PLoS Genet 2021; 17:e1009726. [PMID: 34473707 PMCID: PMC8412370 DOI: 10.1371/journal.pgen.1009726] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 07/20/2021] [Indexed: 02/07/2023] Open
Abstract
Selective breeding for desirable traits in strictly controlled populations has generated an extraordinary diversity in canine morphology and behaviour, but has also led to loss of genetic variation and random entrapment of disease alleles. As a consequence, specific diseases are now prevalent in certain breeds, but whether the recent breeding practice led to an overall increase in genetic load remains unclear. Here we generate whole genome sequencing (WGS) data from 20 dogs per breed from eight breeds and document a ~10% rise in the number of derived alleles per genome at evolutionarily conserved sites in the heavily bottlenecked cavalier King Charles spaniel breed (cKCs) relative to in most breeds studied here. Our finding represents the first clear indication of a relative increase in levels of deleterious genetic variation in a specific breed, arguing that recent breeding practices probably were associated with an accumulation of genetic load in dogs. We then use the WGS data to identify candidate risk alleles for the most common cause for veterinary care in cKCs–the heart disease myxomatous mitral valve disease (MMVD). We verify a potential link to MMVD for candidate variants near the heart specific NEBL gene in a dachshund population and show that two of the NEBL candidate variants have regulatory potential in heart-derived cell lines and are associated with reduced NEBL isoform nebulette expression in papillary muscle (but not in mitral valve, nor in left ventricular wall). Alleles linked to reduced nebulette expression may hence predispose cKCs and other breeds to MMVD via loss of papillary muscle integrity. As a consequence of selective breeding, specific disease-causing mutations have become more frequent in certain dog breeds. Whether the breeding practice also resulted in a general increase in the overall number of disease-causing mutations per dog genome is however not clear. To address this question, we compare the amount of harmful, potentially disease-causing, mutations in dogs from eight common breeds that have experienced varying degrees of intense selective breeding. We find that individuals belonging to the breed affected by the most intense breeding—cavalier King Charles spaniel (cKCs)—carry more harmful variants than other breeds, indicating that past breeding practices may have increased the overall levels of harmful genetic variation in dogs. The most common disease in cKCs is myxomatous mitral valve disease (MMVD). To identify variants linked to this disease we next characterize mutations that are common in cKCs, but rare in other breeds, and then investigate if these mutations can predict MMVD in dachshunds. We find that variants that regulate the expression of the gene NEBL in papillary muscles may increase the risk of the disease, indicating that loss of papillary muscle integrity could contribute to the development of MMVD.
Collapse
Affiliation(s)
- Erik Axelsson
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
- * E-mail:
| | - Ingrid Ljungvall
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Priyasma Bhoumik
- Translational Medicine, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Laura Bas Conn
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Eva Muren
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Åsa Ohlsson
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Lisbeth Høier Olsen
- Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Karolina Engdahl
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Ragnvi Hagman
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Jeanette Hanson
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Dmytro Kryvokhyzha
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Mats Pettersson
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Olivier Grenet
- Translational Medicine, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Jonathan Moggs
- Translational Medicine, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | | | - Christian Epe
- Elanco Animal Health, Greenfield, Indiana, United States of America
| | - Bruce Taillon
- Elanco Animal Health, Greenfield, Indiana, United States of America
| | - Nilesh Tawari
- Elanco Animal Health, Greenfield, Indiana, United States of America
| | - Shrinivas Mane
- Elanco Animal Health, Greenfield, Indiana, United States of America
| | - Troy Hawkins
- Elanco Animal Health, Greenfield, Indiana, United States of America
| | - Åke Hedhammar
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | | | - Jens Häggström
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Kerstin Lindblad-Toh
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| |
Collapse
|
24
|
Evans JM, Parker HG, Rutteman GR, Plassais J, Grinwis GCM, Harris AC, Lana SE, Ostrander EA. Multi-omics approach identifies germline regulatory variants associated with hematopoietic malignancies in retriever dog breeds. PLoS Genet 2021; 17:e1009543. [PMID: 33983928 PMCID: PMC8118335 DOI: 10.1371/journal.pgen.1009543] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 04/12/2021] [Indexed: 12/18/2022] Open
Abstract
Histiocytic sarcoma is an aggressive hematopoietic malignancy of mature tissue histiocytes with a poorly understood etiology in humans. A histologically and clinically similar counterpart affects flat-coated retrievers (FCRs) at unusually high frequency, with 20% developing the lethal disease. The similar clinical presentation combined with the closed population structure of dogs, leading to high genetic homogeneity, makes dogs an excellent model for genetic studies of cancer susceptibility. To determine the genetic risk factors underlying histiocytic sarcoma in FCRs, we conducted multiple genome-wide association studies (GWASs), identifying two loci that confer significant risk on canine chromosomes (CFA) 5 (Pwald = 4.83x10-9) and 19 (Pwald = 2.25x10-7). We subsequently undertook a multi-omics approach that has been largely unexplored in the canine model to interrogate these regions, generating whole genome, transcriptome, and chromatin immunoprecipitation sequencing. These data highlight the PI3K pathway gene PIK3R6 on CFA5, and proximal candidate regulatory variants that are strongly associated with histiocytic sarcoma and predicted to impact transcription factor binding. The CFA5 association colocalizes with susceptibility loci for two hematopoietic malignancies, hemangiosarcoma and B-cell lymphoma, in the closely related golden retriever breed, revealing the risk contribution this single locus makes to multiple hematological cancers. By comparison, the CFA19 locus is unique to the FCR and harbors risk alleles associated with upregulation of TNFAIP6, which itself affects cell migration and metastasis. Together, these loci explain ~35% of disease risk, an exceptionally high value that demonstrates the advantages of domestic dogs for complex trait mapping and genetic studies of cancer susceptibility. We have identified two regions of the canine genome that explain a striking 35% of risk for developing histiocytic sarcoma in FCRs. The disease is uniformly lethal, affects 20% of FCRs, and parallels a cancer of the same name in humans. Both regions harbor genes involved in cell migration and cancer-related pathways. The first includes variants in regulatory regions at the tumor suppressor PIK3R6 locus that are strongly associated with histiocytic sarcoma and likely confer risk for other hematopoietic cancers. FCRs with risk alleles at the second locus demonstrate increased expression of TNFAIP6, which correlates with poor prognosis in multiple human cancers. In identifying genomic differences between affected and unaffected dogs, we advance our understanding of both canine and human health biology and set the stage for the development of diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Jacquelyn M. Evans
- Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Heidi G. Parker
- Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Gerard R. Rutteman
- Department of Clinical Sciences, division Internal Medicine of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Jocelyn Plassais
- Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Guy C. M. Grinwis
- Department Biomedical Health Sciences, division Pathology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Alexander C. Harris
- Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Susan E. Lana
- College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Elaine A. Ostrander
- Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
25
|
Serres-Armero A, Davis BW, Povolotskaya IS, Morcillo-Suarez C, Plassais J, Juan D, Ostrander EA, Marques-Bonet T. Copy number variation underlies complex phenotypes in domestic dog breeds and other canids. Genome Res 2021; 31:762-774. [PMID: 33863806 PMCID: PMC8092016 DOI: 10.1101/gr.266049.120] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 02/26/2021] [Indexed: 01/02/2023]
Abstract
Extreme phenotypic diversity, a history of artificial selection, and socioeconomic value make domestic dog breeds a compelling subject for genomic research. Copy number variation (CNV) is known to account for a significant part of inter-individual genomic diversity in other systems. However, a comprehensive genome-wide study of structural variation as it relates to breed-specific phenotypes is lacking. We have generated whole genome CNV maps for more than 300 canids. Our data set extends the canine structural variation landscape to more than 100 dog breeds, including novel variants that cannot be assessed using microarray technologies. We have taken advantage of this data set to perform the first CNV-based genome-wide association study (GWAS) in canids. We identify 96 loci that display copy number differences across breeds, which are statistically associated with a previously compiled set of breed-specific morphometrics and disease susceptibilities. Among these, we highlight the discovery of a long-range interaction involving a CNV near MED13L and TBX3, which could influence breed standard height. Integration of the CNVs with chromatin interactions, long noncoding RNA expression, and single nucleotide variation highlights a subset of specific loci and genes with potential functional relevance and the prospect to explain trait variation between dog breeds.
Collapse
Affiliation(s)
- Aitor Serres-Armero
- IBE, Institut de Biologia Evolutiva (Universitat Pompeu Fabra/CSIC), Ciencies Experimentals i de la Salut, Barcelona 08003, Spain
| | - Brian W Davis
- Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA.,Department of Veterinary Integrative Biosciences, College of Veterinary Medicine, Texas A&M University, College Station, Texas 77843, USA
| | - Inna S Povolotskaya
- Veltischev Research and Clinical Institute for Pediatrics of the Pirogov Russian National Research Medical University, Moscow 117997, Russia
| | - Carlos Morcillo-Suarez
- IBE, Institut de Biologia Evolutiva (Universitat Pompeu Fabra/CSIC), Ciencies Experimentals i de la Salut, Barcelona 08003, Spain
| | - Jocelyn Plassais
- Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - David Juan
- IBE, Institut de Biologia Evolutiva (Universitat Pompeu Fabra/CSIC), Ciencies Experimentals i de la Salut, Barcelona 08003, Spain
| | - Elaine A Ostrander
- Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Tomas Marques-Bonet
- IBE, Institut de Biologia Evolutiva (Universitat Pompeu Fabra/CSIC), Ciencies Experimentals i de la Salut, Barcelona 08003, Spain.,CNAG-CRG, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), Barcelona 08028, Spain.,Institucio Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Catalonia 08010, Spain.,Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Catalonia 08201, Spain
| |
Collapse
|
26
|
Halo JV, Pendleton AL, Shen F, Doucet AJ, Derrien T, Hitte C, Kirby LE, Myers B, Sliwerska E, Emery S, Moran JV, Boyko AR, Kidd JM. Long-read assembly of a Great Dane genome highlights the contribution of GC-rich sequence and mobile elements to canine genomes. Proc Natl Acad Sci U S A 2021; 118:e2016274118. [PMID: 33836575 PMCID: PMC7980453 DOI: 10.1073/pnas.2016274118] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Technological advances have allowed improvements in genome reference sequence assemblies. Here, we combined long- and short-read sequence resources to assemble the genome of a female Great Dane dog. This assembly has improved continuity compared to the existing Boxer-derived (CanFam3.1) reference genome. Annotation of the Great Dane assembly identified 22,182 protein-coding gene models and 7,049 long noncoding RNAs, including 49 protein-coding genes not present in the CanFam3.1 reference. The Great Dane assembly spans the majority of sequence gaps in the CanFam3.1 reference and illustrates that 2,151 gaps overlap the transcription start site of a predicted protein-coding gene. Moreover, a subset of the resolved gaps, which have an 80.95% median GC content, localize to transcription start sites and recombination hotspots more often than expected by chance, suggesting the stable canine recombinational landscape has shaped genome architecture. Alignment of the Great Dane and CanFam3.1 assemblies identified 16,834 deletions and 15,621 insertions, as well as 2,665 deletions and 3,493 insertions located on secondary contigs. These structural variants are dominated by retrotransposon insertion/deletion polymorphisms and include 16,221 dimorphic canine short interspersed elements (SINECs) and 1,121 dimorphic long interspersed element-1 sequences (LINE-1_Cfs). Analysis of sequences flanking the 3' end of LINE-1_Cfs (i.e., LINE-1_Cf 3'-transductions) suggests multiple retrotransposition-competent LINE-1_Cfs segregate among dog populations. Consistent with this conclusion, we demonstrate that a canine LINE-1_Cf element with intact open reading frames can retrotranspose its own RNA and that of a SINEC_Cf consensus sequence in cultured human cells, implicating ongoing retrotransposon activity as a driver of canine genetic variation.
Collapse
Affiliation(s)
- Julia V Halo
- Department of Biological Sciences, Bowling Green State University, Bowling Green, OH 43403
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109
| | - Amanda L Pendleton
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109
| | - Feichen Shen
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109
| | - Aurélien J Doucet
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109
- Université Côte d'Azur, CNRS, INSERM, Institut de Recherche sur le Cancer et le Vieillissement de Nice, F-06100 Nice, France
| | - Thomas Derrien
- Université de Rennes 1, CNRS, Institut de Génétique et Développement de Rennes-UMR 6290, F-35000 Rennes, France
| | - Christophe Hitte
- Université de Rennes 1, CNRS, Institut de Génétique et Développement de Rennes-UMR 6290, F-35000 Rennes, France
| | - Laura E Kirby
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109
| | - Bridget Myers
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109
| | - Elzbieta Sliwerska
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109
| | - Sarah Emery
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109
| | - John V Moran
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109
| | - Adam R Boyko
- Department of Biomedical Sciences, Cornell University, Ithaca, NY 14850
| | - Jeffrey M Kidd
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109;
- Department Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109
| |
Collapse
|
27
|
Baker LA, Momen M, McNally R, Berres ME, Binversie EE, Sample SJ, Muir P. Biologically Enhanced Genome-Wide Association Study Provides Further Evidence for Candidate Loci and Discovers Novel Loci That Influence Risk of Anterior Cruciate Ligament Rupture in a Dog Model. Front Genet 2021; 12:593515. [PMID: 33763109 PMCID: PMC7982834 DOI: 10.3389/fgene.2021.593515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 02/01/2021] [Indexed: 11/20/2022] Open
Abstract
Anterior cruciate ligament (ACL) rupture is a common condition that disproportionately affects young people, 50% of whom will develop knee osteoarthritis (OA) within 10 years of rupture. ACL rupture exhibits both hereditary and environmental risk factors, but the genetic basis of the disease remains unexplained. Spontaneous ACL rupture in the dog has a similar disease presentation and progression, making it a valuable genomic model for ACL rupture. We leveraged the dog model with Bayesian mixture model (BMM) analysis (BayesRC) to identify novel and relevant genetic variants associated with ACL rupture. We performed RNA sequencing of ACL and synovial tissue and assigned single nucleotide polymorphisms (SNPs) within differentially expressed genes to biological prior classes. SNPs with the largest effects were on chromosomes 3, 5, 7, 9, and 24. Selection signature analysis identified several regions under selection in ACL rupture cases compared to controls. These selection signatures overlapped with genome-wide associations with ACL rupture as well as morphological traits. Notable findings include differentially expressed ACSF3 with MC1R (coat color) and an association on chromosome 7 that overlaps the boundaries of SMAD2 (weight and body size). Smaller effect associations were within or near genes associated with regulation of the actin cytoskeleton and the extracellular matrix, including several collagen genes. The results of the current analysis are consistent with previous work published by our laboratory and others, and also highlight new genes in biological pathways that have not previously been associated with ACL rupture. The genetic associations identified in this study mirror those found in human beings, which lays the groundwork for development of disease-modifying therapies for both species.
Collapse
Affiliation(s)
- Lauren A Baker
- Department of Surgical Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, United States
| | - Mehdi Momen
- Department of Surgical Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, United States
| | - Rachel McNally
- Department of Surgical Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, United States
| | - Mark E Berres
- Bioinformatics Resource Center, Biotechnology Center, University of Wisconsin-Madison, Madison, WI, United States
| | - Emily E Binversie
- Department of Surgical Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, United States
| | - Susannah J Sample
- Department of Surgical Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, United States
| | - Peter Muir
- Department of Surgical Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
28
|
Genetics of canine diabetes mellitus part 1: Phenotypes of disease. Vet J 2021; 270:105611. [PMID: 33641807 DOI: 10.1016/j.tvjl.2021.105611] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 01/05/2021] [Accepted: 01/12/2021] [Indexed: 01/09/2023]
Abstract
This two-part article discusses the mechanisms by which genetic variation can influence the risk of complex diseases, with a focus on canine diabetes mellitus. In Part 1, presented here, the importance of accurate methods for classifying different types of diabetes will be discussed, since this underpins the selection of cases and controls for genetic studies. Part 2 will focus on our current understanding of the genes involved in diabetes risk, and the way in which new genome sequencing technologies are poised to reveal new diabetes genes in veterinary species.
Collapse
|
29
|
Denyer AL, Catchpole B, Davison LJ. Genetics of canine diabetes mellitus part 2: Current understanding and future directions. Vet J 2021; 270:105612. [PMID: 33641811 DOI: 10.1016/j.tvjl.2021.105612] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 01/05/2021] [Accepted: 01/12/2021] [Indexed: 02/08/2023]
Abstract
Part 1 of this 2-part review outlined the importance of disease classification in diabetes genetic studies, as well as the ways in which genetic variants may contribute to risk of a complex disease within an individual, or within a particular group of individuals. Part 2, presented here, describes in more detail our current understanding of the genetics of canine diabetes mellitus compared to our knowledge of the human disease. Ongoing work to improve our knowledge, using new technologies, is also introduced.
Collapse
Affiliation(s)
- Alice L Denyer
- Department of Pathology and Pathogen Biology, Royal Veterinary College, Hatfield, UK
| | - Brian Catchpole
- Department of Pathology and Pathogen Biology, Royal Veterinary College, Hatfield, UK
| | - Lucy J Davison
- Department of Clinical Sciences and Services, Royal Veterinary College, Hatfield, UK; Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK.
| | | |
Collapse
|
30
|
Binversie EE, Baker LA, Engelman CD, Hao Z, Moran JJ, Piazza AM, Sample SJ, Muir P. Analysis of copy number variation in dogs implicates genomic structural variation in the development of anterior cruciate ligament rupture. PLoS One 2020; 15:e0244075. [PMID: 33382735 PMCID: PMC7774950 DOI: 10.1371/journal.pone.0244075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 12/02/2020] [Indexed: 11/19/2022] Open
Abstract
Anterior cruciate ligament (ACL) rupture is an important condition of the human knee. Second ruptures are common and societal costs are substantial. Canine cranial cruciate ligament (CCL) rupture closely models the human disease. CCL rupture is common in the Labrador Retriever (5.79% prevalence), ~100-fold more prevalent than in humans. Labrador Retriever CCL rupture is a polygenic complex disease, based on genome-wide association study (GWAS) of single nucleotide polymorphism (SNP) markers. Dissection of genetic variation in complex traits can be enhanced by studying structural variation, including copy number variants (CNVs). Dogs are an ideal model for CNV research because of reduced genetic variability within breeds and extensive phenotypic diversity across breeds. We studied the genetic etiology of CCL rupture by association analysis of CNV regions (CNVRs) using 110 case and 164 control Labrador Retrievers. CNVs were called from SNPs using three different programs (PennCNV, CNVPartition, and QuantiSNP). After quality control, CNV calls were combined to create CNVRs using ParseCNV and an association analysis was performed. We found no strong effect CNVRs but found 46 small effect (max(T) permutation P<0.05) CCL rupture associated CNVRs in 22 autosomes; 25 were deletions and 21 were duplications. Of the 46 CCL rupture associated CNVRs, we identified 39 unique regions. Thirty four were identified by a single calling algorithm, 3 were identified by two calling algorithms, and 2 were identified by all three algorithms. For 42 of the associated CNVRs, frequency in the population was <10% while 4 occurred at a frequency in the population ranging from 10–25%. Average CNVR length was 198,872bp and CNVRs covered 0.11 to 0.15% of the genome. All CNVRs were associated with case status. CNVRs did not overlap previous canine CCL rupture risk loci identified by GWAS. Associated CNVRs contained 152 annotated genes; 12 CNVRs did not have genes mapped to CanFam3.1. Using pathway analysis, a cluster of 19 homeobox domain transcript regulator genes was associated with CCL rupture (P = 6.6E-13). This gene cluster influences cranial-caudal body pattern formation during embryonic limb development. Clustered genes were found in 3 CNVRs on chromosome 14 (HoxA), 28 (NKX6-2), and 36 (HoxD). When analysis was limited to deletion CNVRs, the association was strengthened (P = 8.7E-16). This study suggests a component of the polygenic risk of CCL rupture in Labrador Retrievers is associated with small effect CNVs and may include aspects of stifle morphology regulated by homeobox domain transcript regulator genes.
Collapse
Affiliation(s)
- Emily E. Binversie
- Comparative Orthopaedic and Genetics Research Laboratory, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Lauren A. Baker
- Comparative Orthopaedic and Genetics Research Laboratory, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Corinne D. Engelman
- Department of Population Health Sciences, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Zhengling Hao
- Comparative Orthopaedic and Genetics Research Laboratory, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - John J. Moran
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Alexander M. Piazza
- Comparative Orthopaedic and Genetics Research Laboratory, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Susannah J. Sample
- Comparative Orthopaedic and Genetics Research Laboratory, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Peter Muir
- Comparative Orthopaedic and Genetics Research Laboratory, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
31
|
Zarzycki A, Thomas ZM, Mazrier H. Comparison of inherited neural tube defects in companion animals and livestock. Birth Defects Res 2020; 113:319-348. [PMID: 33615733 DOI: 10.1002/bdr2.1848] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 11/19/2020] [Accepted: 11/20/2020] [Indexed: 11/10/2022]
Abstract
Neural tube defects (NTDs) are congenital malformations resulting from the improper or incomplete closure of the neural tube during embryonic development. A number of similar malformations of the protective coverings surrounding the central nervous system are also often included under this umbrella term, which may not strictly fit this definition. A range of NTD phenotypes exist and have been reported in humans and a wide range of domestic and livestock species. In the veterinary literature, these include cases of anencephaly, encephalocele, dermoid sinus, spina bifida, and craniorachischisis. While environmental factors have a role, genetic predisposition may account for a significant part of the risk of NTDs in these animal cases. Studies of laboratory model species (fish, birds, amphibians, and rodents) have been instrumental in improving our understanding of the neurulation process. In mice, over 200 genes that may be involved in this process have been identified and variant phenotypes investigated. Like laboratory mouse models, domestic animals and livestock species display a wide range of NTD phenotypes. They remain, however, a largely underutilized population and could complement already established laboratory models. Here we review reports of NTDs in companion animals and livestock, and compare these to other animal species and human cases. We aim to highlight the potential of nonlaboratory animal models for mutation discovery as well as general insights into the mechanisms of neurulation and the development of NTDs.
Collapse
Affiliation(s)
- Alexandra Zarzycki
- Faculty of Science, School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Zoe M Thomas
- Faculty of Science, Sydney School of Veterinary Science, The University of Sydney, Sydney, New South Wales, Australia
| | - Hamutal Mazrier
- Faculty of Science, School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia.,Faculty of Science, Sydney School of Veterinary Science, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
32
|
Wallis N, Raffan E. The Genetic Basis of Obesity and Related Metabolic Diseases in Humans and Companion Animals. Genes (Basel) 2020; 11:E1378. [PMID: 33233816 PMCID: PMC7699880 DOI: 10.3390/genes11111378] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/13/2020] [Accepted: 11/16/2020] [Indexed: 12/18/2022] Open
Abstract
Obesity is one of the most prevalent health conditions in humans and companion animals globally. It is associated with premature mortality, metabolic dysfunction, and multiple health conditions across species. Obesity is, therefore, of importance in the fields of medicine and veterinary medicine. The regulation of adiposity is a homeostatic process vulnerable to disruption by a multitude of genetic and environmental factors. It is well established that the heritability of obesity is high in humans and laboratory animals, with ample evidence that the same is true in companion animals. In this review, we provide an overview of how genes link to obesity in humans, drawing on a wealth of information from laboratory animal models, and summarise the mechanisms by which obesity causes related disease. Throughout, we focus on how large-scale human studies and niche investigations of rare mutations in severely affected patients have improved our understanding of obesity biology and can inform our ability to interpret results of animal studies. For dogs, cats, and horses, we compare the similarities in obesity pathophysiology to humans and review the genetic studies that have been previously reported in those species. Finally, we discuss how veterinary genetics may learn from humans about studying precise, nuanced phenotypes and implementing large-scale studies, but also how veterinary studies may be able to look past clinical findings to mechanistic ones and demonstrate translational benefits to human research.
Collapse
Affiliation(s)
- Natalie Wallis
- Anatomy Building, Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| | - Eleanor Raffan
- Anatomy Building, Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| |
Collapse
|
33
|
Becker D, Weikard R, Schulze C, Wohlsein P, Kühn C. A 50-kb deletion disrupting the RSPO2 gene is associated with tetradysmelia in Holstein Friesian cattle. Genet Sel Evol 2020; 52:68. [PMID: 33176673 PMCID: PMC7661195 DOI: 10.1186/s12711-020-00586-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 10/27/2020] [Indexed: 11/16/2022] Open
Abstract
Background Tetradysmelia is a rare genetic disorder that is characterized by an extremely severe reduction of all limb parts distal of the scapula and pelvic girdle. We studied a Holstein Friesian backcross family with 24 offspring, among which six calves displayed autosomal recessive tetradysmelia. In order to identify the genetic basis of the disorder, we genotyped three affected calves, five dams and nine unaffected siblings using a Bovine Illumina 50 k BeadChip and sequenced the whole genome of the sire. Results Pathological examination of four tetradysmelia cases revealed a uniform and severe dysmelia of all limbs. Applying a homozygosity mapping approach, we identified a homozygous region of 10.54 Mb on chromosome 14 (Bos taurus BTA14). Only calves that were diagnosed with tetradysmelia shared a distinct homozygous haplotype for this region. We sequenced the whole genome of the cases’ sire and searched for heterozygous single nucleotide polymorphisms (SNPs) and small variants on BTA14 that were uniquely present in the sire and absent from 3102 control whole-genome sequences of the 1000 Bull Genomes Project, but none were identified in the 10.54-Mb candidate region on BTA14. Therefore, we subsequently performed a more comprehensive analysis by also considering structural variants and detected a 50-kb deletion in the targeted chromosomal region that was in the heterozygous state in the cases’ sire. Using PCR, we confirmed that this detected deletion segregated perfectly within the family with tetradysmelia. The deletion spanned three exons of the bovine R-spondin 2 (RSPO2) gene, which encode three domains of the respective protein. R-spondin 2 is a secreted ligand of leucine-rich repeats containing G protein-coupled receptors that enhance Wnt signalling and is involved in a broad range of developmental processes during embryogenesis. Conclusions We identified a 50-kb deletion on BTA14 that disrupts the coding sequence of the RSPO2 gene and is associated with bovine tetradysmelia. To our knowledge, this is the first reported candidate causal mutation for tetradysmelia in a large animal model. Since signalling pathways involved in limb development are conserved across species, the observed inherited defect may serve as a model to further elucidate fundamental pathways of limb development.
Collapse
Affiliation(s)
- Doreen Becker
- Leibniz Institute for Farm Animal Biology (FBN), Institute of Genome Biology, Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
| | - Rosemarie Weikard
- Leibniz Institute for Farm Animal Biology (FBN), Institute of Genome Biology, Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
| | - Christoph Schulze
- Department of Pathology, University of Veterinary Medicine, Hannover, Germany.,Landeslabor Berlin-Brandenburg, Frankfurt (Oder), Germany
| | - Peter Wohlsein
- Department of Pathology, University of Veterinary Medicine, Hannover, Germany
| | - Christa Kühn
- Leibniz Institute for Farm Animal Biology (FBN), Institute of Genome Biology, Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany. .,Rostock, Faculty of Agricultural and Environmental Sciences, Rostock, Germany.
| |
Collapse
|
34
|
Abstract
The prevalence of urolithiasis in humans is increasing worldwide; however, non-surgical treatment and prevention options remain limited despite decades of investigation. Most existing laboratory animal models for urolithiasis rely on highly artificial methods of stone induction and, as a result, might not be fully applicable to the study of natural stone initiation and growth. Animal models that naturally and spontaneously form uroliths are an underused resource in the study of human stone disease and offer many potential opportunities for improving insight into stone pathogenesis. These models include domestic dogs and cats, as well as a variety of other captive and wild species, such as otters, dolphins and ferrets, that form calcium oxalate, struvite, uric acid, cystine and other stone types. Improved collaboration between urologists, basic scientists and veterinarians is warranted to further our understanding of how stones form and to consider possible new preventive and therapeutic treatment options.
Collapse
|
35
|
Ali MB, Evans JM, Parker HG, Kim J, Pearce-Kelling S, Whitaker DT, Plassais J, Khan QM, Ostrander EA. Genetic analysis of the modern Australian labradoodle dog breed reveals an excess of the poodle genome. PLoS Genet 2020; 16:e1008956. [PMID: 32911491 PMCID: PMC7482835 DOI: 10.1371/journal.pgen.1008956] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 06/24/2020] [Indexed: 12/17/2022] Open
Abstract
The genomic diversity of the domestic dog is an invaluable resource for advancing understanding of mammalian biology, evolutionary biology, morphologic variation, and behavior. There are approximately 350 recognized breeds in the world today, many established through hybridization and selection followed by intense breeding programs aimed at retaining or enhancing specific traits. As a result, many breeds suffer from an excess of particular diseases, one of many factors leading to the recent trend of "designer breed" development, i.e. crossing purebred dogs from existing breeds in the hope that offspring will be enriched for desired traits and characteristics of the parental breeds. We used a dense panel of 150,106 SNPs to analyze the population structure of the Australian labradoodle (ALBD), to understand how such breeds are developed. Haplotype and admixture analyses show that breeds other than the poodle (POOD) and Labrador retriever (LAB) contributed to ALBD formation, but that the breed is, at the genetic level, predominantly POOD, with all small and large varieties contributing to its construction. Allele frequency analysis reveals that the breed is enhanced for variants associated with a poodle-like coat, which is perceived by breeders to have an association with hypoallergenicity. We observed little enhancement for LAB-specific alleles. This study provides a blueprint for understanding how dog breeds are formed, highlighting the limited scope of desired traits in defining new breeds.
Collapse
Affiliation(s)
- Muhammad Basil Ali
- Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda MD, United States of America
- National Institute for Biotechnology and Genetic Engineering (NIBGE), Jhang Road Faisalabad, Punjab, Pakistan
- Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad, Punjab, Pakistan
| | - Jacquelyn M. Evans
- Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda MD, United States of America
| | - Heidi G. Parker
- Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda MD, United States of America
| | - Jaemin Kim
- Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda MD, United States of America
| | - Susan Pearce-Kelling
- OptiGen, LLC Cornell Business and Technology Park, Ithaca, NY, United States of America
| | - D. Thad Whitaker
- Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda MD, United States of America
| | - Jocelyn Plassais
- Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda MD, United States of America
| | - Qaiser M. Khan
- National Institute for Biotechnology and Genetic Engineering (NIBGE), Jhang Road Faisalabad, Punjab, Pakistan
- Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad, Punjab, Pakistan
| | - Elaine A. Ostrander
- Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda MD, United States of America
| |
Collapse
|
36
|
Bayesian and Machine Learning Models for Genomic Prediction of Anterior Cruciate Ligament Rupture in the Canine Model. G3-GENES GENOMES GENETICS 2020; 10:2619-2628. [PMID: 32499222 PMCID: PMC7407450 DOI: 10.1534/g3.120.401244] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Anterior cruciate ligament (ACL) rupture is a common, debilitating condition that leads to early-onset osteoarthritis and reduced quality of human life. ACL rupture is a complex disease with both genetic and environmental risk factors. Characterizing the genetic basis of ACL rupture would provide the ability to identify individuals that have high genetic risk and allow the opportunity for preventative management. Spontaneous ACL rupture is also common in dogs and shows a similar clinical presentation and progression. Thus, the dog has emerged as an excellent genomic model for human ACL rupture. Genome-wide association studies (GWAS) in the dog have identified a number of candidate genetic variants, but research in genomic prediction has been limited. In this analysis, we explore several Bayesian and machine learning models for genomic prediction of ACL rupture in the Labrador Retriever dog. Our work demonstrates the feasibility of predicting ACL rupture from SNPs in the Labrador Retriever model with and without consideration of non-genetic risk factors. Genomic prediction including non-genetic risk factors approached clinical relevance using multiple linear Bayesian and non-linear models. This analysis represents the first steps toward development of a predictive algorithm for ACL rupture in the Labrador Retriever model. Future work may extend this algorithm to other high-risk breeds of dog. The ability to accurately predict individual dogs at high risk for ACL rupture would identify candidates for clinical trials that would benefit both veterinary and human medicine.
Collapse
|
37
|
Gnanadesikan GE, Hare B, Snyder-Mackler N, Call J, Kaminski J, Miklósi Á, MacLean EL. Breed Differences in Dog Cognition Associated with Brain-Expressed Genes and Neurological Functions. Integr Comp Biol 2020; 60:976-990. [PMID: 32726413 DOI: 10.1093/icb/icaa112] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Given their remarkable phenotypic diversity, dogs present a unique opportunity for investigating the genetic bases of cognitive and behavioral traits. Our previous work demonstrated that genetic relatedness among breeds accounts for a substantial portion of variation in dog cognition. Here, we investigated the genetic architecture of breed differences in cognition, seeking to identify genes that contribute to variation in cognitive phenotypes. To do so, we combined cognitive data from the citizen science project Dognition.com with published breed-average genetic polymorphism data, resulting in a dataset of 1654 individuals with cognitive phenotypes representing 49 breeds. We conducted a breed-average genome-wide association study to identify specific polymorphisms associated with breed differences in inhibitory control, communication, memory, and physical reasoning. We found five single nucleotide polymorphisms (SNPs) that reached genome-wide significance after Bonferroni correction, located in EML1, OR52E2, HS3ST5, a U6 spliceosomal RNA, and a long noncoding RNA. When we combined results across multiple SNPs within the same gene, we identified 188 genes implicated in breed differences in cognition. This gene set included more genes than expected by chance that were (1) differentially expressed in brain tissue and (2) involved in nervous system functions including peripheral nervous system development, Wnt signaling, presynapse assembly, and synaptic vesicle exocytosis. These results advance our understanding of the genetic underpinnings of complex cognitive phenotypes and identify specific genetic variants for further research.
Collapse
Affiliation(s)
- Gitanjali E Gnanadesikan
- School of Anthropology, University of Arizona, Tucson, AZ, USA.,Cognitive Science Program, University of Arizona, Tucson, AZ, USA
| | - Brian Hare
- Department of Evolutionary Anthropology, Duke University, Durham, NC, USA.,Center for Cognitive Neuroscience, Duke University, Durham, NC, USA
| | - Noah Snyder-Mackler
- Department of Psychology, University of Washington, Seattle, WA, USA.,Center for Evolution and Medicine, Arizona State University, Tempe, AZ, USA.,School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Josep Call
- School of Psychology and Neuroscience, University of St Andrews, St Andrews, UK
| | - Juliane Kaminski
- Department of Psychology, University of Portsmouth, Portsmouth, UK
| | - Ádám Miklósi
- Department of Ethology, Eötvös Loránd University, Budapest, Hungary.,MTA-ELTE Comparative Ethology Research Group, Budapest, Hungary
| | - Evan L MacLean
- School of Anthropology, University of Arizona, Tucson, AZ, USA.,Cognitive Science Program, University of Arizona, Tucson, AZ, USA.,Psychology Department, University of Arizona, Tucson, AZ, USA.,College of Veterinary Medicine, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
38
|
Doherty A, Lopes I, Ford CT, Monaco G, Guest P, de Magalhães JP. A scan for genes associated with cancer mortality and longevity in pedigree dog breeds. Mamm Genome 2020; 31:215-227. [PMID: 32661568 PMCID: PMC7496057 DOI: 10.1007/s00335-020-09845-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 06/29/2020] [Indexed: 12/20/2022]
Abstract
Selective breeding of the domestic dog (Canis lupus familiaris) rigidly retains desirable features, and could inadvertently fix disease-causing variants within a breed. We combine phenotypic data from > 72,000 dogs with a large genotypic dataset to search for genes associated with cancer mortality and longevity in pedigree dog breeds. We validated previous findings that breeds with higher average body weight have higher cancer mortality rates and lower life expectancy. We identified a significant positive correlation between life span and cancer mortality residuals corrected for body weight, implying that long-lived breeds die more frequently from cancer compared to short-lived breeds. We replicated a number of known genetic associations with body weight (IGF1, GHR, CD36, SMAD2 and IGF2BP2). Subsequently, we identified five genetic variants in known cancer-related genes (located within SIPA1, ADCY7 and ARNT2) that could be associated with cancer mortality residuals corrected for confounding factors. One putative genetic variant was marginally significantly associated with longevity residuals that had been corrected for the effects of body weight; this genetic variant is located within PRDX1, a peroxiredoxin that belongs to an emerging class of pro-longevity associated genes. This research should be considered as an exploratory analysis to uncover associations between genes and longevity/cancer mortality.
Collapse
Affiliation(s)
- Aoife Doherty
- Integrative Genomics of Ageing Group, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, L7 8TX, UK
| | - Inês Lopes
- Integrative Genomics of Ageing Group, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, L7 8TX, UK
| | - Christopher T Ford
- Integrative Genomics of Ageing Group, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, L7 8TX, UK
| | - Gianni Monaco
- Integrative Genomics of Ageing Group, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, L7 8TX, UK
| | - Patrick Guest
- School of Biology, Medical and Biological Sciences Building, University of St. Andrews, North Haugh, St. Andrews, KY16 9TF, UK
| | - João Pedro de Magalhães
- Integrative Genomics of Ageing Group, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, L7 8TX, UK.
| |
Collapse
|
39
|
Labadie JD, Elvers I, Feigelson HS, Magzamen S, Yoshimoto J, Dossey J, Burnett R, Avery AC. Genome-wide association analysis of canine T zone lymphoma identifies link to hypothyroidism and a shared association with mast-cell tumors. BMC Genomics 2020; 21:464. [PMID: 32631225 PMCID: PMC7339439 DOI: 10.1186/s12864-020-06872-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 06/26/2020] [Indexed: 01/23/2023] Open
Abstract
Background T zone lymphoma (TZL), a histologic variant of peripheral T cell lymphoma, represents about 12% of all canine lymphomas. Golden Retrievers appear predisposed, representing over 40% of TZL cases. Prior research found that asymptomatic aged Golden Retrievers frequently have populations of T zone-like cells (phenotypically identical to TZL) of undetermined significance (TZUS), potentially representing a pre-clinical state. These findings suggest a genetic risk factor for this disease and caused us to investigate potential genes of interest using a genome-wide association study of privately-owned U.S. Golden Retrievers. Results Dogs were categorized as TZL (n = 95), TZUS (n = 142), or control (n = 101) using flow cytometry and genotyped using the Illumina CanineHD BeadChip. Using a mixed linear model adjusting for population stratification, we found association with genome-wide significance in regions on chromosomes 8 and 14. The chromosome 14 peak included four SNPs (Odds Ratio = 1.18–1.19, p = .3 × 10− 5–5.1 × 10− 5) near three hyaluronidase genes (SPAM1, HYAL4, and HYALP1). Targeted resequencing of this region using a custom sequence capture array identified missense mutations in all three genes; the variant in SPAM1 was predicted to be damaging. These mutations were also associated with risk for mast cell tumors among Golden Retrievers in an unrelated study. The chromosome 8 peak contained 7 SNPs (Odds Ratio = 1.24–1.42, p = 2.7 × 10− 7–7.5 × 10− 5) near genes involved in thyroid hormone regulation (DIO2 and TSHR). A prior study from our laboratory found hypothyroidism is inversely associated with TZL risk. No coding mutations were found with targeted resequencing but identified variants may play a regulatory role for all or some of the genes. Conclusions The pathogenesis of canine TZL may be related to hyaluronan breakdown and subsequent production of pro-inflammatory and pro-oncogenic byproducts. The association on chromosome 8 may indicate thyroid hormone is involved in TZL development, consistent with findings from a previous study evaluating epidemiologic risk factors for TZL. Future work is needed to elucidate these mechanisms.
Collapse
Affiliation(s)
- Julia D Labadie
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA. .,Department of Environmental and Radiological Health Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA.
| | - Ingegerd Elvers
- Department of Medical Biochemistry and Microbiology, Uppsala University, Broad Institute of MIT and Harvard, Cambridge, Massachusetts and Science for Life Laboratory, Uppsala, Sweden
| | | | - Sheryl Magzamen
- Department of Environmental and Radiological Health Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Janna Yoshimoto
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Jeremy Dossey
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Robert Burnett
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Anne C Avery
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
40
|
Whole-genome genotyping and resequencing reveal the association of a deletion in the complex interferon alpha gene cluster with hypothyroidism in dogs. BMC Genomics 2020; 21:307. [PMID: 32299354 PMCID: PMC7160888 DOI: 10.1186/s12864-020-6700-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 03/24/2020] [Indexed: 12/30/2022] Open
Abstract
Background Hypothyroidism is a common complex endocrinopathy that typically has an autoimmune etiology, and it affects both humans and dogs. Genetic and environmental factors are both known to play important roles in the disease development. In this study, we sought to identify the genetic risk factors potentially involved in the susceptibility to the disease in the high-risk Giant Schnauzer dog breed. Results By employing genome-wide association followed by fine-mapping (top variant p-value = 5.7 × 10− 6), integrated with whole-genome resequencing and copy number variation analysis, we detected a ~ 8.9 kbp deletion strongly associated (p-value = 0.0001) with protection against development of hypothyroidism. The deletion is located between two predicted Interferon alpha (IFNA) genes and it may eliminate functional elements potentially involved in the transcriptional regulation of these genes. Remarkably, type I IFNs have been extensively associated to human autoimmune hypothyroidism and general autoimmunity. Nonetheless, the extreme genomic complexity of the associated region on CFA11 warrants further long-read sequencing and annotation efforts in order to ascribe functions to the identified deletion and to characterize the canine IFNA gene cluster in more detail. Conclusions Our results expand the current knowledge on genetic determinants of canine hypothyroidism by revealing a significant link with the human counterpart disease, potentially translating into better diagnostic tools across species, and may contribute to improved canine breeding strategies.
Collapse
|
41
|
Amini P, Nassiri S, Malbon A, Markkanen E. Differential stromal reprogramming in benign and malignant naturally occurring canine mammary tumours identifies disease-modulating stromal components. Sci Rep 2020; 10:5506. [PMID: 32218455 PMCID: PMC7099087 DOI: 10.1038/s41598-020-62354-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 03/12/2020] [Indexed: 01/05/2023] Open
Abstract
While cancer-associated stroma (CAS) in malignant tumours is well described, stromal changes in benign forms of naturally occurring tumours remain poorly characterized. Spontaneous canine mammary carcinomas (mCA) are viewed as excellent models of human mCA. We have recently reported highly conserved stromal reprogramming between canine and human mCA based on transcriptome analysis of laser-capture-microdissected FFPE specimen. To identify stromal changes between benign and malignant mammary tumours, we have analysed matched normal and adenoma-associated stroma (AAS) from 13 canine mammary adenomas and compared them to previous data from 15 canine mCA. Our analyses reveal distinct stromal reprogramming even in small benign tumours. While similarities between AAS and CAS exist, the stromal signature clearly distinguished adenomas from mCA. The distinction between AAS and CAS is further substantiated by differential enrichment in several hallmark signalling pathways as well as differential abundance in cellular composition. Finally, we identify COL11A1, VIT, CD74, HLA-DRA, STRA6, IGFBP4, PIGR, and TNIP1 as strongly discriminatory stromal genes between adenoma and mCA, and demonstrate their prognostic value for human breast cancer. Given the relevance of canine CAS as a model for the human disease, our approach identifies disease-modulating stromal components with implications for both human and canine breast cancer.
Collapse
Affiliation(s)
- Parisa Amini
- Institute of Veterinary Pharmacology and Toxicology, Vetsuisse Faculty, University of Zürich, Zürich, Switzerland
| | - Sina Nassiri
- Bioinformatics Core Facility, SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Alexandra Malbon
- Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zürich, Zürich, Switzerland.,The Royal (Dick) School of Veterinary Studies and The Roslin Institute Easter Bush Campus, Midlothian, EH25 9RG, Scotland
| | - Enni Markkanen
- Institute of Veterinary Pharmacology and Toxicology, Vetsuisse Faculty, University of Zürich, Zürich, Switzerland.
| |
Collapse
|
42
|
Sykes N, Beirne P, Horowitz A, Jones I, Kalof L, Karlsson E, King T, Litwak H, McDonald RA, Murphy LJ, Pemberton N, Promislow D, Rowan A, Stahl PW, Tehrani J, Tourigny E, Wynne CDL, Strauss E, Larson G. Humanity's Best Friend: A Dog-Centric Approach to Addressing Global Challenges. Animals (Basel) 2020; 10:E502. [PMID: 32192138 PMCID: PMC7142965 DOI: 10.3390/ani10030502] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 03/04/2020] [Accepted: 03/07/2020] [Indexed: 12/25/2022] Open
Abstract
No other animal has a closer mutualistic relationship with humans than the dog (Canis familiaris). Domesticated from the Eurasian grey wolf (Canis lupus), dogs have evolved alongside humans over millennia in a relationship that has transformed dogs and the environments in which humans and dogs have co-inhabited. The story of the dog is the story of recent humanity, in all its biological and cultural complexity. By exploring human-dog-environment interactions throughout time and space, it is possible not only to understand vital elements of global history, but also to critically assess our present-day relationship with the natural world, and to begin to mitigate future global challenges. In this paper, co-authored by researchers from across the natural and social sciences, arts and humanities, we argue that a dog-centric approach provides a new model for future academic enquiry and engagement with both the public and the global environmental agenda.
Collapse
Affiliation(s)
- Naomi Sykes
- Department of Archaeology, University of Exeter, Exeter, Devon EX4 4QE, UK;
| | - Piers Beirne
- Department of Criminology, University of Southern Maine, Portland, ME 04104, USA;
| | - Alexandra Horowitz
- Department of Psychology, Barnard College, 3009 Broadway, New York, NY 10027, USA;
| | - Ione Jones
- Department of Math and Sciences, Exeter College, Exeter EX4 4HF, UK;
| | - Linda Kalof
- Department of Sociology, Michigan State University, East Lansing, MI 48824, USA;
| | - Elinor Karlsson
- Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA;
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Tammie King
- WALTHAM Petcare Science Institute, Waltham on the Wolds LE14 4RT, UK;
| | - Howard Litwak
- Annenberg PetSpace Foundation, 12005 Bluff Creek Dr, Playa Vista, CA 90094, USA;
| | - Robbie A. McDonald
- Environment and Sustainability Institute, University of Exeter, Penryn Campus, Penryn TR10 9FE, UK;
| | - Luke John Murphy
- Department of Archaeology, University of Iceland, 102 Reykjavík, Iceland;
| | - Neil Pemberton
- Centre for the History of Science, Technology and Medicine (CHSTM), University of Manchester, Oxford Rd, Manchester M13 9PL, UK;
| | - Daniel Promislow
- Department of Biology and Department of Pathology, University of Washington, Seattle, WA 98195, USA;
| | - Andrew Rowan
- Wellbeing International, 9812 Falls Road #114-288, Potomac, MD 20854-3963, USA;
| | - Peter W. Stahl
- Department of Anthropology, University of Victoria, Victoria, BC V8W 2Y2, Canada;
| | - Jamshid Tehrani
- Department of Anthropology, Durham University, Durham DH1 1LE, UK;
| | - Eric Tourigny
- School of History, Classics and Archaeology, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK;
| | - Clive D. L. Wynne
- Department of Psychology, Arizona State University, Box 871104, Tempe, AZ 85281, USA;
| | - Eric Strauss
- LMU Center for Urban Resilience, Loyola Marymount University, LMU Drive Los Angeles, CA 90045-2659, USA;
| | - Greger Larson
- Palaeogenomics & Bio-Archaeology Research Network, School of Archaeology, 1 South Parks Road, Oxford OX1 3TG, UK
| |
Collapse
|
43
|
Whole Genome Analysis of a Single Scottish Deerhound Dog Family Provides Independent Corroboration That a SGK3 Coding Variant Leads to Hairlessness. G3-GENES GENOMES GENETICS 2020; 10:293-297. [PMID: 31727632 PMCID: PMC6945040 DOI: 10.1534/g3.119.400885] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The breeds of domestic dog, Canis lupus familiaris, display a range of coat types with variation in color, texture, length, curl, and growth pattern. One trait of interest is that of partial or full hairlessness, which is found in a small number of breeds. While the standard for some breeds, such as the Xoloitzcuintli, requires sparse hair on their extremities, others are entirely bald, including the American Hairless Terrier. We identified a small, rare family of Scottish Deerhounds in which coated parents produced a mixed litter of coated and hairless offspring. To identify the underlying variant, we performed whole genome sequencing of the dam and five offspring, comparing single nucleotide polymorphisms and small insertions/deletions against an established catalog of 91 million canine variants. Of 325 homozygous alternative alleles found in both hairless dogs, 56 displayed the expected pattern of segregation and only a single, high impact variant within a coding region was observed: a single base pair insertion in exon two of SGK3 leading to a potential frameshift, thus verifying recently published findings. In addition, we observed that gene expression levels between coated and hairless dogs are similar, suggesting a mechanism other than non-sense mediated decay is responsible for the phenotype.
Collapse
|
44
|
Markkanen E. Know Thy Model: Charting Molecular Homology in Stromal Reprogramming Between Canine and Human Mammary Tumors. Front Cell Dev Biol 2019; 7:348. [PMID: 31921858 PMCID: PMC6927989 DOI: 10.3389/fcell.2019.00348] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 12/03/2019] [Indexed: 12/24/2022] Open
Abstract
Spontaneous canine simple mammary tumors (CMTs) are often viewed as models of human breast cancer. Cancer-associated stroma (CAS) is central for initiation and progression of human cancer, and is likely to play a key role in canine tumors as well. Until recently, however, canine CAS in general, and in CMT in particular, lacked detailed characterization and it remained unclear how canine and human CAS compare. This void in knowledge regarding canine CAS and the resulting lack of unbiased cross-species analysis of molecular homologies and differences undermined the validity of the canine model for human disease. To assess stromal reprogramming in canine breast tumors, we have recently established a protocol to specifically isolate and analyze CAS and matched normal stroma from archival, formalin-fixed paraffin embedded (FFPE) clinical tumor samples using laser-capture microdissection followed by next-generation RNA-sequencing. Using this approach, we have analyzed stromal reprogramming in both malignant canine mammary carcinomas (mCAs) as well as benign canine mammary adenomas in a series of studies. Our results demonstrate strong stromal reprogramming in CMTs and identify high-grade molecular homology between human and canine CAS. Here, I aim to give a short background on the value of comparative oncology in general, and spontaneous CMT in particular. This will be followed by a concise review of the current knowledge of stromal reprogramming in both malignant canine mCA and benign adenoma. Finally, I will conclude with insights on highly conserved aspects of stromal reprogramming between CMT and human breast cancer that accentuate the relevance of CAS in CMT as a model for the human disease.
Collapse
Affiliation(s)
- Enni Markkanen
- Institute of Veterinary Pharmacology and Toxicology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| |
Collapse
|
45
|
Imputation of canine genotype array data using 365 whole-genome sequences improves power of genome-wide association studies. PLoS Genet 2019; 15:e1008003. [PMID: 31525180 PMCID: PMC6762211 DOI: 10.1371/journal.pgen.1008003] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 09/26/2019] [Accepted: 08/19/2019] [Indexed: 12/11/2022] Open
Abstract
Genomic resources for the domestic dog have improved with the widespread adoption of a 173k SNP array platform and updated reference genome. SNP arrays of this density are sufficient for detecting genetic associations within breeds but are underpowered for finding associations across multiple breeds or in mixed-breed dogs, where linkage disequilibrium rapidly decays between markers, even though such studies would hold particular promise for mapping complex diseases and traits. Here we introduce an imputation reference panel, consisting of 365 diverse, whole-genome sequenced dogs and wolves, which increases the number of markers that can be queried in genome-wide association studies approximately 130-fold. Using previously genotyped dogs, we show the utility of this reference panel in identifying potentially novel associations, including a locus on CFA20 significantly associated with cranial cruciate ligament disease, and fine-mapping for canine body size and blood phenotypes, even when causal loci are not in strong linkage disequilibrium with any single array marker. This reference panel resource will improve future genome-wide association studies for canine complex diseases and other phenotypes. Complex traits are controlled by more than one gene and as such are difficult to map. For complex trait mapping in the domestic dog, researchers use the current array of 173,000 variants, with only minimal success. Here, we use a method called imputation to increase the number of variants–from 173,000 to 24 million–that can be queried in canine association studies. We use sequence data from the whole genomes of 365 dogs and wolves to accurately predict variants, in a separate cohort of dogs, that are not present on the array. Using dog body size, blood phenotypes, and a common orthopedic disease that involves rupture of the cranial cruciate ligament, we show that the increase in variants results in an increase in mapping power, through the identification of new associations and the narrowing of regions of interest. This imputation panel is particularly important because of its usefulness in improving complex trait mapping in the dog, which has significant implications for discovery of variants in humans with similar diseases.
Collapse
|
46
|
Amini P, Nassiri S, Ettlin J, Malbon A, Markkanen E. Next-generation RNA sequencing of FFPE subsections reveals highly conserved stromal reprogramming between canine and human mammary carcinoma. Dis Model Mech 2019; 12:dmm.040444. [PMID: 31308057 PMCID: PMC6737962 DOI: 10.1242/dmm.040444] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 07/09/2019] [Indexed: 01/05/2023] Open
Abstract
Spontaneous canine simple mammary carcinomas (mCA) are often viewed as models of human mCA. Cancer-associated stroma (CAS) is central for initiation and progression of human cancer, and is likely to play a key role in canine tumours as well. However, canine CAS lacks characterisation and it remains unclear how canine and human CAS compare. Formalin-fixed paraffin embedded (FFPE) tissue constitutes a valuable resource of patient material, but chemical crosslinking has largely precluded its analysis by next-generation RNA sequencing (RNAseq). We have recently established a protocol to isolate CAS and normal stroma from archival FFPE tumours using laser-capture microdissection followed by RNAseq. Using this approach, we have analysed stroma from 15 canine mCA. Our data reveal strong reprogramming of canine CAS. We demonstrate a high-grade molecular homology between canine and human CAS, and show that enrichment of upregulated canine CAS genes strongly correlates with the enrichment of an independently derived human stromal signature in the TCGA breast tumour dataset. Relationships between different gene signatures observed in human breast cancer are largely maintained in the canine model, suggesting a close interspecies similarity in the network of cancer signalling circuitries. Finally, we establish the prognostic potential of the canine CAS signature in human samples, emphasising the relevance of studying canine CAS as a model of the human disease. In conclusion, we provide a proof-of-principle to analyse specific subsections of FFPE tissue by RNAseq, and compare stromal gene expression between human and canine mCA to reveal molecular drivers in CAS supporting tumour growth and malignancy. Summary: This study offers proof-of-principle for a novel protocol to analyse gene expression in subsections of FFPE patient tissue, supporting the use of spontaneous canine mammary tumours as models for the human disease.
Collapse
Affiliation(s)
- Parisa Amini
- Institute of Veterinary Pharmacology and Toxicology, Vetsuisse Faculty, University of Zürich, CH-8057 Zürich, Switzerland
| | - Sina Nassiri
- Bioinformatics Core Facility, Swiss Institute of Bioinformatics, CH-1015 Lausanne, Switzerland
| | - Julia Ettlin
- Institute of Veterinary Pharmacology and Toxicology, Vetsuisse Faculty, University of Zürich, CH-8057 Zürich, Switzerland
| | - Alexandra Malbon
- Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zürich, CH-8057 Zürich, Switzerland
| | - Enni Markkanen
- Institute of Veterinary Pharmacology and Toxicology, Vetsuisse Faculty, University of Zürich, CH-8057 Zürich, Switzerland
| |
Collapse
|
47
|
Ostrander EA, Wang GD, Larson G, vonHoldt BM, Davis BW, Jagannathan V, Hitte C, Wayne RK, Zhang YP. Dog10K: an international sequencing effort to advance studies of canine domestication, phenotypes and health. Natl Sci Rev 2019; 6:810-824. [PMID: 31598383 PMCID: PMC6776107 DOI: 10.1093/nsr/nwz049] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 03/14/2019] [Accepted: 04/09/2019] [Indexed: 12/18/2022] Open
Abstract
Dogs are the most phenotypically diverse mammalian species, and they possess more known heritable disorders than any other non-human mammal. Efforts to catalog and characterize genetic variation across well-chosen populations of canines are necessary to advance our understanding of their evolutionary history and genetic architecture. To date, no organized effort has been undertaken to sequence the world's canid populations. The Dog10K Consortium (http://www.dog10kgenomes.org) is an international collaboration of researchers from across the globe who will generate 20× whole genomes from 10 000 canids in 5 years. This effort will capture the genetic diversity that underlies the phenotypic and geographical variability of modern canids worldwide. Breeds, village dogs, niche populations and extended pedigrees are currently being sequenced, and de novo assemblies of multiple canids are being constructed. This unprecedented dataset will address the genetic underpinnings of domestication, breed formation, aging, behavior and morphological variation. More generally, this effort will advance our understanding of human and canine health.
Collapse
Affiliation(s)
- Elaine A Ostrander
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Guo-Dong Wang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, China
| | - Greger Larson
- Palaeogenomics and Bio-Archaeology Research Network, School of Archaeology, University of Oxford, Oxford OX1 3TG, UK
| | - Bridgett M vonHoldt
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544-1014, USA
| | - Brian W Davis
- College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77840, USA
| | - Vidhya Jagannathan
- Institute of Genetics, Vetsuisse Faculty, University of Bern, Bern CH-3001, Switzerland
| | | | - Robert K Wayne
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Ya-Ping Zhang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| |
Collapse
|
48
|
Megquier K, Genereux DP, Hekman J, Swofford R, Turner-Maier J, Johnson J, Alonso J, Li X, Morrill K, Anguish LJ, Koltookian M, Logan B, Sharp CR, Ferrer L, Lindblad-Toh K, Meyers-Wallen VN, Hoffman A, Karlsson EK. BarkBase: Epigenomic Annotation of Canine Genomes. Genes (Basel) 2019; 10:E433. [PMID: 31181663 PMCID: PMC6627511 DOI: 10.3390/genes10060433] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 05/29/2019] [Accepted: 06/03/2019] [Indexed: 12/20/2022] Open
Abstract
Dogs are an unparalleled natural model for investigating the genetics of health and disease, particularly for complex diseases like cancer. Comprehensive genomic annotation of regulatory elements active in healthy canine tissues is crucial both for identifying candidate causal variants and for designing functional studies needed to translate genetic associations into disease insight. Currently, canine geneticists rely primarily on annotations of the human or mouse genome that have been remapped to dog, an approach that misses dog-specific features. Here, we describe BarkBase, a canine epigenomic resource available at barkbase.org. BarkBase hosts data for 27 adult tissue types, with biological replicates, and for one sample of up to five tissues sampled at each of four carefully staged embryonic time points. RNA sequencing is complemented with whole genome sequencing and with assay for transposase-accessible chromatin using sequencing (ATAC-seq), which identifies open chromatin regions. By including replicates, we can more confidently discern tissue-specific transcripts and assess differential gene expression between tissues and timepoints. By offering data in easy-to-use file formats, through a visual browser modeled on similar genomic resources for human, BarkBase introduces a powerful new resource to support comparative studies in dogs and humans.
Collapse
Affiliation(s)
- Kate Megquier
- Vertebrate Genomics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| | - Diane P Genereux
- Vertebrate Genomics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| | - Jessica Hekman
- Vertebrate Genomics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| | - Ross Swofford
- Vertebrate Genomics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| | - Jason Turner-Maier
- Vertebrate Genomics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| | - Jeremy Johnson
- Vertebrate Genomics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| | - Jacob Alonso
- Vertebrate Genomics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| | - Xue Li
- Vertebrate Genomics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
- Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA 01655, USA.
| | - Kathleen Morrill
- Vertebrate Genomics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
- Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA 01655, USA.
| | - Lynne J Anguish
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA.
| | - Michele Koltookian
- Vertebrate Genomics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| | - Brittney Logan
- Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA 01655, USA.
| | - Claire R Sharp
- School of Veterinary and Life Sciences, College of Veterinary Medicine, Murdoch University, Perth, Murdoch, WA 6150, Australia.
| | - Lluis Ferrer
- Departament de Medicina i Cirurgia Animals Veterinary School, Universitat Autonoma de Barcelona, 08193 Barcelona, Spain.
| | - Kerstin Lindblad-Toh
- Vertebrate Genomics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
- Science for Life Laboratory, Department of Medical Biochemistry & Microbiology, Uppsala University, 751 23 Uppsala, Sweden.
| | - Vicki N Meyers-Wallen
- Baker Institute for Animal Health and Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14850, USA.
| | - Andrew Hoffman
- School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
- Cummings School of Veterinary Medicine, Tufts University, Grafton, MA 01536, USA.
| | - Elinor K Karlsson
- Vertebrate Genomics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
- Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA 01655, USA.
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01655, USA.
| |
Collapse
|
49
|
Smith SP, Phillips JB, Johnson ML, Abbot P, Capra JA, Rokas A. Genome-wide association analysis uncovers variants for reproductive variation across dog breeds and links to domestication. Evol Med Public Health 2019; 2019:93-103. [PMID: 31263560 PMCID: PMC6592264 DOI: 10.1093/emph/eoz015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Accepted: 05/09/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND AND OBJECTIVES The diversity of eutherian reproductive strategies has led to variation in many traits, such as number of offspring, age of reproductive maturity and gestation length. While reproductive trait variation has been extensively investigated and is well established in mammals, the genetic loci contributing to this variation remain largely unknown. The domestic dog, Canis lupus familiaris is a powerful model for studies of the genetics of inherited disease due to its unique history of domestication. To gain insight into the genetic basis of reproductive traits across domestic dog breeds, we collected phenotypic data for four traits, cesarean section rate, litter size, stillbirth rate and gestation length, from primary literature and breeders' handbooks. METHODOLOGY By matching our phenotypic data to genomic data from the Cornell Veterinary Biobank, we performed genome-wide association analyses for these four reproductive traits, using body mass and kinship among breeds as covariates. RESULTS We identified 12 genome-wide significant associations between these traits and genetic loci, including variants near CACNA2D3 with gestation length, MSRB3 and MSANTD1 with litter size, SMOC2 with cesarean section rate and UFM1 with stillbirth rate. A few of these loci, such as CACNA2D3 and MSRB3, have been previously implicated in human reproductive pathologies, whereas others have been associated with domestication-related traits, including brachycephaly (SMOC2) and coat curl (KRT71). CONCLUSIONS AND IMPLICATIONS We hypothesize that the artificial selection that gave rise to dog breeds also influenced the observed variation in their reproductive traits. Overall, our work establishes the domestic dog as a system for studying the genetics of reproductive biology and disease. LAY SUMMARY The genetic contributors to variation in mammalian reproductive traits remain largely unknown. We took advantage of the domestic dog, a powerful model system, to test for associations between genome-wide variants and four reproductive traits (cesarean section rate, litter size, stillbirth rate and gestation length) that vary extensively across breeds. We identified associations at a dozen loci, including ones previously associated with domestication-related traits, suggesting that selection on dog breeds also influenced their reproductive traits.
Collapse
Affiliation(s)
- Samuel P Smith
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37203, USA
- Center for Computational Molecular Biology, Brown University, Providence, RI 02912, USA
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI 02912, USA
| | - Julie B Phillips
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37203, USA
- Department of Biological Sciences, Cumberland University, Lebanon, TN 37087, USA
| | - Maddison L Johnson
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37203, USA
| | - Patrick Abbot
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37203, USA
| | - John A Capra
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37203, USA
- Department of Biomedical Informatics, Vanderbilt University, Nashville, TN 37203, USA
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Antonis Rokas
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37203, USA
- Department of Biomedical Informatics, Vanderbilt University, Nashville, TN 37203, USA
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| |
Collapse
|
50
|
Alhaddad H, Alhajeri BH. Cdrom Archive: A Gateway to Study Camel Phenotypes. Front Genet 2019; 10:48. [PMID: 30804986 PMCID: PMC6370635 DOI: 10.3389/fgene.2019.00048] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 01/21/2019] [Indexed: 11/30/2022] Open
Abstract
Camels are livestock that exhibit unique morphological, biochemical, and behavioral traits, which arose by natural and artificial selection. Investigating the molecular basis of camel traits has been limited by: (1) the absence of a comprehensive record of morphological trait variation (e.g., diseases) and the associated mode of inheritance, (2) the lack of extended pedigrees of specific trait(s), and (3) the long reproductive cycle of the camel, which makes the cost of establishing and maintaining a breeding colony (i.e., monitoring crosses) prohibitively high. Overcoming these challenges requires (1) detailed documentation of phenotypes/genetic diseases and their likely mode of inheritance (and collection of related DNA samples), (2) conducting association studies to identify phenotypes/genetic diseases causing genetic variants (instead of classical linkage analysis, which requires extended pedigrees), and (3) validating likely causative variants by screening a large number of camel samples from different populations. We attempt to address these issues by establishing a systematic way of collecting camel DNA samples, and associated phenotypic information, which we call the "Cdrom Archive." Here, we outline the process of building this archive to introduce it to other camel researchers (as an example). Additionally, we discuss the use of this archive to study the phenotypic traits of Arabian Peninsula camel breeds (the "Mezayen" camels). Using the Cdrom Archive, we report variable phenotypic traits related to the coat (color, length, and texture), ear and tail lengths, along with other morphological measurements.
Collapse
Affiliation(s)
- Hasan Alhaddad
- Department of Biological Sciences, Kuwait University, Kuwait City, Kuwait
| | | |
Collapse
|