1
|
Kochunov P, Hong LE, Summerfelt A, Gao S, Brown PL, Terzi M, Acheson A, Woldorff MG, Fieremans E, Abdollahzadeh A, Sathyasaikumar KV, Clark SM, Schwarcz R, Shepard PD, Elmer GI. White matter and latency of visual evoked potentials during maturation: A miniature pig model of adolescent development. J Neurosci Methods 2024; 411:110252. [PMID: 39159872 DOI: 10.1016/j.jneumeth.2024.110252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 07/17/2024] [Accepted: 08/16/2024] [Indexed: 08/21/2024]
Abstract
BACKGROUND Continuous myelination of cerebral white matter (WM) during adolescence overlaps with the formation of higher cognitive skills and the onset of many neuropsychiatric disorders. We developed a miniature-pig model of adolescent brain development for neuroimaging and neurophysiological assessment during this critical period. Minipigs have gyroencephalic brains with a large cerebral WM compartment and a well-defined adolescence period. METHODS Eight Sinclair™ minipigs (Sus scrofa domestica) were evaluated four times during weeks 14-28 (40, 28 and 28 days apart) of adolescence using monocular visual stimulation (1 Hz)-evoked potentials and diffusion MRI (dMRI) of WM. The latency for the pre-positive 30 ms (PP30), positive 30 ms (P30) and negative 50 ms (N50) components of the flash visual evoked potentials (fVEPs) and their interhemispheric latency (IL) were recorded in the frontal, central and occipital areas during ten 60-second stimulations for each eye. The dMRI imaging protocol consisted of fifteen b-shells (b = 0-3500 s/mm2) with 32 directions/shell, providing measurements that included fractional anisotropy (FA), radial kurtosis, kurtosis anisotropy (KA), axonal water fraction (AWF), and the permeability-diffusivity index (PDI). RESULTS Significant reductions (p < 0.05) in the latency and IL of fVEP measurements paralleled significant rises in FA, KA, AWF and PDI over the same period. The longitudinal latency changes in fVEPs were primarily associated with whole-brain changes in diffusion parameters, while fVEP IL changes were related to maturation of the corpus callosum. CONCLUSIONS Good agreement between reduction in the latency of fVEPs and maturation of cerebral WM was interpreted as evidence for ongoing myelination and confirmation of the minipig as a viable research platform. Adolescent development in minipigs can be studied using human neuroimaging and neurophysiological protocols and followed up with more invasive assays to investigate key neurodevelopmental hypotheses in psychiatry.
Collapse
Affiliation(s)
- Peter Kochunov
- Faillace Department of Psychiatry and Behavioral Sciences at McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA; Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA.
| | - L Elliot Hong
- Faillace Department of Psychiatry and Behavioral Sciences at McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Ann Summerfelt
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Si Gao
- Faillace Department of Psychiatry and Behavioral Sciences at McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA; Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - P Leon Brown
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Matthew Terzi
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Ashley Acheson
- Department of Psychiatry, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Marty G Woldorff
- Center for Cognitive Neuroscience, Duke University, Durham, NC. USA
| | - Els Fieremans
- Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY, USA
| | - Ali Abdollahzadeh
- Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY, USA
| | - Korrapati V Sathyasaikumar
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Sarah M Clark
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA; Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Robert Schwarcz
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Paul D Shepard
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Greg I Elmer
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
2
|
Neziri S, Köseoğlu AE, Deniz Köseoğlu G, Özgültekin B, Özgentürk NÖ. Animal models in neuroscience with alternative approaches: Evolutionary, biomedical, and ethical perspectives. Animal Model Exp Med 2024. [PMID: 39375824 DOI: 10.1002/ame2.12487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 08/07/2024] [Indexed: 10/09/2024] Open
Abstract
Animal models have been a crucial tool in neuroscience research for decades, providing insights into the biomedical and evolutionary mechanisms of the nervous system, disease, and behavior. However, their use has raised concerns on several ethical, clinical, and scientific considerations. The welfare of animals and the 3R principles (replacement, reduction, refinement) are the focus of the ethical concerns, targeting the importance of reducing the stress and suffering of these models. Several laws and guidelines are applied and developed to protect animal rights during experimenting. Concurrently, in the clinic and biomedical fields, discussions on the relevance of animal model findings on human organisms have increased. Latest data suggest that in a considerable amount of time the animal model results are not translatable in humans, costing time and money. Alternative methods, such as in vitro (cell culture, microscopy, organoids, and micro physiological systems) techniques and in silico (computational) modeling, have emerged as potential replacements for animal models, providing more accurate data in a minimized cost. By adopting alternative methods and promoting ethical considerations in research practices, we can achieve the 3R goals while upholding our responsibility to both humans and other animals. Our goal is to present a thorough review of animal models used in neuroscience from the biomedical, evolutionary, and ethical perspectives. The novelty of this research lies in integrating diverse points of views to provide an understanding of the advantages and disadvantages of animal models in neuroscience and in discussing potential alternative methods.
Collapse
Affiliation(s)
- Sabina Neziri
- Department of Molecular Biology and Genetics, Faculty of Art and Science, Yıldız Technical University, Istanbul, Turkey
| | | | | | - Buminhan Özgültekin
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Acıbadem University, Istanbul, Turkey
| | - Nehir Özdemir Özgentürk
- Department of Molecular Biology and Genetics, Faculty of Art and Science, Yıldız Technical University, Istanbul, Turkey
| |
Collapse
|
3
|
Bravo-San Pedro JM, Aranda F, Buqué A, Galluzzi L. Preface. Methods Cell Biol 2024; 185:xvii-xxiv. [PMID: 38556455 DOI: 10.1016/s0091-679x(24)00112-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Affiliation(s)
- José Manuel Bravo-San Pedro
- Departamento de Fisiología, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain; Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Fernando Aranda
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain; Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | - Aitziber Buqué
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, United States
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, United States; Sandra and Edward Meyer Cancer Center, New York, NY, United States; Caryl and Israel Englander Institute for Precision Medicine, New York, NY, United States
| |
Collapse
|
4
|
Bravo-San Pedro JM, Aranda F, Buqué A, Galluzzi L. Animal models of disease: Achievements and challenges. Methods Cell Biol 2024; 188:xv-xxi. [PMID: 38880531 DOI: 10.1016/s0091-679x(24)00164-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Affiliation(s)
- José Manuel Bravo-San Pedro
- Departamento de Fisiología, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain; Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Fernando Aranda
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain; Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - Aitziber Buqué
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, United States.
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, United States; Sandra and Edward Meyer Cancer Center, New York, NY, United States; Caryl and Israel Englander Institute for Precision Medicine, New York, NY, United States.
| |
Collapse
|
5
|
Wu J, Zhang B, Liu X, Peng L, Liu J, Hu Y, Ji X, Lv H, Wang S. Current gut-on-a-chip platforms for clarifying the interactions between diet, gut microbiota, and host health. Trends Food Sci Technol 2023. [DOI: 10.1016/j.tifs.2023.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
|
6
|
Iriki A, Tramacere A. “Natural Laboratory Complex” for novel primate neuroscience. Front Integr Neurosci 2022; 16:927605. [PMID: 36274659 PMCID: PMC9581230 DOI: 10.3389/fnint.2022.927605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 08/23/2022] [Indexed: 11/25/2022] Open
Abstract
We propose novel strategies for primate experimentation that are ethically valuable and pragmatically useful for cognitive neuroscience and neuropsychiatric research. Specifically, we propose Natural Laboratory Complex or Natural Labs, which are a combination of indoor-outdoor structures for studying free moving and socially housed primates in natural or naturalistic environment. We contend that Natural Labs are pivotal to improve primate welfare, and at the same time to implement longitudinal and socio-ecological studies of primate brain and behavior. Currently emerging advanced technologies and social systems (including recent COVID-19 induced “remote” infrastructures) can speed-up cognitive neuroscience approaches in freely behaving animals. Experimental approaches in natural(istic) settings are not in competition with conventional approaches of laboratory investigations, and could establish several benefits at the ethical, experimental, and economic levels.
Collapse
Affiliation(s)
- Atsushi Iriki
- Laboratory for Symbolic Cognitive Development, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
- *Correspondence: Atsushi Iriki,
| | - Antonella Tramacere
- Department of Philosophy and Communication Studies, University of Bologna, Bologna, Italy
- Department of Cultural and Linguistic Evolution, Max Planck Institute for the Science of Human History, Jena, Germany
| |
Collapse
|
7
|
Bets VD, Achasova KM, Borisova MA, Kozhevnikova EN, Litvinova EA. Role of Mucin 2 Glycoprotein and L-Fucose in Interaction of Immunity and Microbiome within the Experimental Model of Inflammatory Bowel Disease. BIOCHEMISTRY. BIOKHIMIIA 2022; 87:301-318. [PMID: 35527372 DOI: 10.1134/s0006297922040010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Many factors underlie the development of inflammatory bowel disease (IBD) in humans. In particular, imbalance of microbiota and thinning of the mucosal layer in the large intestine play a huge role. Pathogenic microorganisms also exacerbate the course of diseases. In this research the role of mucin 2 deficiency in the formation of intestinal microflora in the experimental model using the Muc2 gene knockout mice in the presence of Helicobacter spp. was investigated. Also, restorative and anti-inflammatory effect of the dietary L-fucose in the Muc2-/- mice on microflora and immunity was evaluated. For this purpose, bacterial diversity in feces was studied in the animals before and after antibiotic therapy and role of the dietary L-fucose in their recovery was assessed. To determine the effect of bacterial imbalance and fucose on the immune system, mRNA levels of the genes encoding pro-inflammatory cytokines (Tnf, Il1a, Il1b, Il6) and transcription factors of T cells (Foxp3 - Treg, Rorc - Th17, Tbx21 - Th1) were determined in the colon tissue of the Muc2-/- mice. Significant elimination of bacteria due to antibiotic therapy caused decrease of the fucose levels in the intestine and facilitated reduction of the regulatory T cell transcription factor (Foxp3). When the dietary L-fucose was added to antibiotics, the level of bacterial DNA of Bacteroides spp. in the feces of the Muc2-/- mice was partially restored. T regulatory cells are involved in the regulation of inflammation in the Muc2-/- mice. Antibiotics reduced the number of regulatory T cell but did not decrease the inflammatory response to infection. Fucose, as a component of mucin 2, helped to maintain the level of Bacteroides spp. during antibiotic therapy of the Muc2-/- mice and restored biochemical parameters, but did not affect the inflammatory response.
Collapse
Affiliation(s)
- Victoria D Bets
- Novosibirsk State Agrarian University, Novosibirsk, 630039, Russia
| | - Kseniya M Achasova
- Research Institute of Neurosciences and Medicine, Novosibirsk, 630117, Russia.,Institute of Molecular and Cellular Biology, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - Mariya A Borisova
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - Elena N Kozhevnikova
- Novosibirsk State Agrarian University, Novosibirsk, 630039, Russia.,Research Institute of Neurosciences and Medicine, Novosibirsk, 630117, Russia.,Institute of Molecular and Cellular Biology, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | | |
Collapse
|
8
|
Anjum M, Laitila A, Ouwehand AC, Forssten SD. Current Perspectives on Gastrointestinal Models to Assess Probiotic-Pathogen Interactions. Front Microbiol 2022; 13:831455. [PMID: 35173703 PMCID: PMC8841803 DOI: 10.3389/fmicb.2022.831455] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 01/06/2022] [Indexed: 12/12/2022] Open
Abstract
There are different models available that mimic the human intestinal epithelium and are thus available for studying probiotic and pathogen interactions in the gastrointestinal tract. Although, in vivo models make it possible to study the overall effects of a probiotic on a living subject, they cannot always be conducted and there is a general commitment to reduce the use of animal models. Hence, in vitro methods provide a more rapid tool for studying the interaction between probiotics and pathogens; as well as being ethically superior, faster, and less expensive. The in vitro models are represented by less complex traditional models, standard 2D models compromised of culture plates as well as Transwell inserts, and newer 3D models like organoids, enteroids, as well as organ-on-a-chip. The optimal model selected depends on the research question. Properly designed in vitro and/or in vivo studies are needed to examine the mechanism(s) of action of probiotics on pathogens to obtain physiologically relevant results.
Collapse
Affiliation(s)
| | | | | | - Sofia D. Forssten
- International Flavors and Fragrances, Health and Biosciences, Danisco Sweeteners Oy, Kantvik, Finland
| |
Collapse
|
9
|
Hvitved AN. Engaging Ethicists in Animal Research Policymaking. ILAR J 2021; 60:318-323. [PMID: 31836879 DOI: 10.1093/ilar/ilz023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 10/27/2019] [Accepted: 10/31/2019] [Indexed: 11/12/2022] Open
Abstract
The significance of ethical considerations for animal research policy has long been acknowledged, but the role of philosophical ethics in the policymaking process has been less clear. By comparing the ethical framework of animal research policy with that for human subjects research, this article considers how the legacies of these two policy areas influence current policy and suggests that ethicists and ethical scholarship have been underutilized in developing animal research policy. An important aspect of policymaking is gathering and responding to input provided by various stakeholders. Given their expertise in a highly relevant area, ethicists should be considered key stakeholders in animal research policy deliberations. This article explores the role of ethicists and ethical scholarship in influencing animal research policy and suggests that a more robust engagement with the professional ethics community throughout the deliberative process is vital for policymakers to adequately account for ethical considerations.
Collapse
Affiliation(s)
- Angela N Hvitved
- William H. Miller III Department of Philosophy, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
10
|
The Moral Status of Cognitively Enhanced Monkeys and Other Novel Beings. Camb Q Healthc Ethics 2021; 30:492-503. [PMID: 34109929 DOI: 10.1017/s0963180120001048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The discussion about the moral status of novel beings tends to focus on artificial intelligence, robots, and other man-made systems. We should, however, also consider a likelier kind of novel beings: animals that are genetically modified to develop human-like cognitive capabilities. This paper focuses on the possibility of conferring human characteristics on nonhuman primates (NHPs) in the context of neuroscientific research. It first discusses the use of NHPs for neuroscientific research and then, second, describes recent developments that promise to revolutionize the field and how that may lead to NHPs attaining human-like cognitive capabilities. Third, an account of moral status is developed to ground the central claim, that making the NHP brain more human-like is unproblematic as long as the NHPs do not become persons. In conclusion, this paper discusses the implications for the moral status of cognitively enhanced NHPs, as well as the implications for other novel beings.
Collapse
|
11
|
Hosszu A, Kaucsar T, Seeliger E, Fekete A. Animal Models of Renal Pathophysiology and Disease. Methods Mol Biol 2021; 2216:27-44. [PMID: 33475992 DOI: 10.1007/978-1-0716-0978-1_2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Renal diseases remain devastating illnesses with unacceptably high rates of mortality and morbidity worldwide. Animal models are essential tools to better understand the pathomechanisms of kidney-related illnesses and to develop new, successful therapeutic strategies. Magnetic resonance imaging (MRI) has been actively explored in the last decades for assessing renal function, perfusion, tissue oxygenation as well as the degree of fibrosis and inflammation. This chapter aims to provide a comprehensive overview of animal models of acute and chronic kidney diseases, highlighting MRI-specific considerations, advantages, and pitfalls, and thus assisting the researcher in experiment planning.This publication is based upon work from the COST Action PARENCHIMA, a community-driven network funded by the European Cooperation in Science and Technology (COST) program of the European Union, which aims to improve the reproducibility and standardization of renal MRI biomarkers.
Collapse
Affiliation(s)
- Adam Hosszu
- 1st Department of Pediatrics, Semmelweis University, Budapest, Hungary
| | - Tamas Kaucsar
- 1st Department of Pediatrics, Semmelweis University, Budapest, Hungary
| | - Erdmann Seeliger
- Working Group Integrative Kidney Physiology, Institute of Physiology, Charité-University Medicine Berlin, Berlin, Germany
| | - Andrea Fekete
- 1st Department of Pediatrics, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
12
|
Markus J, Landry T, Stevens Z, Scott H, Llanos P, Debatis M, Armento A, Klausner M, Ayehunie S. Human small intestinal organotypic culture model for drug permeation, inflammation, and toxicity assays. In Vitro Cell Dev Biol Anim 2020; 57:160-173. [PMID: 33237403 PMCID: PMC7687576 DOI: 10.1007/s11626-020-00526-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 10/23/2020] [Indexed: 02/06/2023]
Abstract
The gastrointestinal tract (GIT), in particular, the small intestine, plays a significant role in food digestion, fluid and electrolyte transport, drug absorption and metabolism, and nutrient uptake. As the longest portion of the GIT, the small intestine also plays a vital role in protecting the host against pathogenic or opportunistic microbial invasion. However, establishing polarized intestinal tissue models in vitro that reflect the architecture and physiology of the gut has been a challenge for decades and the lack of translational models that predict human responses has impeded research in the drug absorption, metabolism, and drug-induced gastrointestinal toxicity space. Often, animals fail to recapitulate human physiology and do not predict human outcomes. Also, certain human pathogens are species specific and do not infect other hosts. Concerns such as variability of results, a low throughput format, and ethical considerations further complicate the use of animals for predicting the safety and efficacy xenobiotics in humans. These limitations necessitate the development of in vitro 3D human intestinal tissue models that recapitulate in vivo–like microenvironment and provide more physiologically relevant cellular responses so that they can better predict the safety and efficacy of pharmaceuticals and toxicants. Over the past decade, much progress has been made in the development of in vitro intestinal models (organoids and 3D-organotypic tissues) using either inducible pluripotent or adult stem cells. Among the models, the MatTek’s intestinal tissue model (EpiIntestinal™ Ashland, MA) has been used extensively by the pharmaceutical industry to study drug permeation, metabolism, drug-induced GI toxicity, pathogen infections, inflammation, wound healing, and as a predictive model for a clinical adverse outcome (diarrhea) to pharmaceutical drugs. In this paper, our review will focus on the potential of in vitro small intestinal tissues as preclinical research tool and as alternative to the use of animals.
Collapse
Affiliation(s)
- Jan Markus
- In Vitro Life Science Laboratories, Bratislava, Slovak Republic
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Prescott MJ. Ethical and Welfare Implications of Genetically Altered Non-Human Primates for Biomedical Research. JOURNAL OF APPLIED ANIMAL ETHICS RESEARCH 2020; 2:151-176. [PMID: 33851094 PMCID: PMC7610575 DOI: 10.1163/25889567-bja10002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Breakthroughs in gene editing technologies have made it feasible to create genetically altered (GA) non-human primate (NHP) models of disease. This area of research is accelerating, particularly in China, Japan and the USA, and could lead to an increase in NHP use globally. The hope is that genetic models in animal species closely related to humans will significantly improve understanding of neurological diseases and validation of potential therapeutic interventions, for which there is a dire need. However, the creation and use of GA NHPS raises serious animal welfare and ethical issues, which are highlighted here. It represents a step change in how these highly sentient animals are used in biomedical research, because of the large numbers required, inherent wastage and the sum of the harms caused to the animals involved. There is little evidence of these important issues being addressed alongside the rapidly advancing science. We are still learning about how gene editing tools work in NHPS, and significant added scientific and medical benefit from GA NHP models has yet to be demonstrated. Together, this suggests that current regulatory and review frameworks, in some jurisdictions at least, are not adequately equipped to deal with this emerging, complex area of NHP use.
Collapse
Affiliation(s)
- Mark J. Prescott
- National Centre for the Replacement, Refinement and Reduction of Animals in Research (NC3Rs), Gibbs Building, 215 Euston Road, London, NW1 2BE, UK
| |
Collapse
|
14
|
Choi KYG, Wu BC, Lee AHY, Baquir B, Hancock REW. Utilizing Organoid and Air-Liquid Interface Models as a Screening Method in the Development of New Host Defense Peptides. Front Cell Infect Microbiol 2020; 10:228. [PMID: 32509598 PMCID: PMC7251080 DOI: 10.3389/fcimb.2020.00228] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 04/23/2020] [Indexed: 12/24/2022] Open
Abstract
Host defense peptides (HDPs), also known as antimicrobial peptides, are naturally occurring polypeptides (~12–50 residues) composed of cationic and hydrophobic amino acids that adopt an amphipathic conformation upon folding usually after contact with membranes. HDPs have a variety of biological activities including immunomodulatory, anti-inflammatory, anti-bacterial, and anti-biofilm functions. Although HDPs have the potential to address the global threat of antibiotic resistance and to treat immune and inflammatory disorders, they have yet to achieve this promise. Indeed, there are several challenges associated with bringing peptide-based drug candidates from the lab bench to clinical practice, including identifying appropriate indications, stability, toxicity, and cost. These challenges can be addressed in part by the development of innate defense regulator (IDR) peptides and peptidomimetics, which are synthetic derivatives of HDPs with similar or better efficacy, increased stability, and reduced toxicity and cost of the original HDP. However, one of the largest gaps between basic research and clinical application is the validity and translatability of conventional model systems, such as cell lines and animal models, for screening HDPs and their derivatives as potential drug therapies. Indeed, such translation has often relied on animal models, which have only limited validity. Here we discuss the recent development of human organoids for disease modeling and drug screening, assisted by the use of omics analyses. Organoids, developed from primary cells, cell lines, or human pluripotent stem cells, are three-dimensional, self-organizing structures that closely resemble their corresponding in vivo organs with regards to immune responses, tissue organization, and physiological properties; thus, organoids represent a reliable method for studying efficacy, formulation, toxicity and to some extent drug stability and pharmacodynamics. The use of patient-derived organoids enables the study of patient-specific efficacy, toxicogenomics and drug response predictions. We outline how organoids and omics data analysis can be leveraged to aid in the clinical translation of IDR peptides.
Collapse
Affiliation(s)
- Ka-Yee Grace Choi
- Department of Microbiology and Immunology, Centre for Microbial Diseases and Immunity Research, University of British Columbia, Vancouver, BC, Canada
| | - Bing Catherine Wu
- Department of Microbiology and Immunology, Centre for Microbial Diseases and Immunity Research, University of British Columbia, Vancouver, BC, Canada
| | - Amy Huei-Yi Lee
- Department of Microbiology and Immunology, Centre for Microbial Diseases and Immunity Research, University of British Columbia, Vancouver, BC, Canada.,Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
| | - Beverlie Baquir
- Department of Microbiology and Immunology, Centre for Microbial Diseases and Immunity Research, University of British Columbia, Vancouver, BC, Canada
| | - Robert E W Hancock
- Department of Microbiology and Immunology, Centre for Microbial Diseases and Immunity Research, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
15
|
Grogan KE, Perry GH. Studying human and nonhuman primate evolutionary biology with powerful in vitro and in vivo functional genomics tools. Evol Anthropol 2020; 29:143-158. [PMID: 32142200 PMCID: PMC10574139 DOI: 10.1002/evan.21825] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 09/18/2019] [Accepted: 02/06/2020] [Indexed: 12/19/2022]
Abstract
In recent years, tools for functional genomic studies have become increasingly feasible for use by evolutionary anthropologists. In this review, we provide brief overviews of several exciting in vitro techniques that can be paired with "-omics" approaches (e.g., genomics, epigenomics, transcriptomics, proteomics, and metabolomics) for potentially powerful evolutionary insights. These in vitro techniques include ancestral protein resurrection, cell line experiments using primary, immortalized, and induced pluripotent stem cells, and CRISPR-Cas9 genetic manipulation. We also discuss how several of these methods can be used in vivo, for transgenic organism studies of human and nonhuman primate evolution. Throughout this review, we highlight example studies in which these approaches have already been used to inform our understanding of the evolutionary biology of modern and archaic humans and other primates while simultaneously identifying future opportunities for anthropologists to use this toolkit to help answer additional outstanding questions in evolutionary anthropology.
Collapse
Affiliation(s)
- Kathleen E. Grogan
- Department of Anthropology, Pennsylvania State University, University Park, PA 16802
- Department of Biology, Pennsylvania State University, University Park, PA 16802
| | - George H. Perry
- Department of Anthropology, Pennsylvania State University, University Park, PA 16802
- Department of Biology, Pennsylvania State University, University Park, PA 16802
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802
| |
Collapse
|
16
|
Uhlhorn J, Wernet MF. Colour Vision: Self-Centered Fly Photoreceptors Communicate over Distances. Curr Biol 2020; 30:R78-R81. [PMID: 31962082 DOI: 10.1016/j.cub.2019.11.050] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
A new study shows that the synaptically interconnected axon terminals of colour-sensitive fly photoreceptors that sample the same point in visual space receive additional inhibition from surrounding units; the resulting additional chromatic comparisons result in an optimal decorrelation of photoreceptor inputs. There are striking parallels between newly identified horizontal interactions and those mediated by mammalian horizontal cells.
Collapse
Affiliation(s)
- Juliane Uhlhorn
- Freie Universität Berlin, Fachbereich Biologie, Chemie & Pharmazie, Institut für Biologie, Division of Neurobiology. Königin-Luise Strasse 1-3, 14195 Berlin, Germany
| | - Mathias F Wernet
- Freie Universität Berlin, Fachbereich Biologie, Chemie & Pharmazie, Institut für Biologie, Division of Neurobiology. Königin-Luise Strasse 1-3, 14195 Berlin, Germany.
| |
Collapse
|
17
|
Fois CAM, Le TYL, Schindeler A, Naficy S, McClure DD, Read MN, Valtchev P, Khademhosseini A, Dehghani F. Models of the Gut for Analyzing the Impact of Food and Drugs. Adv Healthc Mater 2019; 8:e1900968. [PMID: 31592579 DOI: 10.1002/adhm.201900968] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 08/30/2019] [Indexed: 12/16/2022]
Abstract
Models of the human gastrointestinal tract (GIT) can be powerful tools for examining the biological interactions of food products and pharmaceuticals. This can be done under normal healthy conditions or using models of disease-many of which have no curative therapy. This report outlines the field of gastrointestinal modeling, with a particular focus on the intestine. Traditional in vivo animal models are compared to a range of in vitro models. In vitro systems are elaborated over time, recently culminating with microfluidic intestines-on-chips (IsOC) and 3D bioengineered models. Macroscale models are also reviewed for their important contribution in the microbiota studies. Lastly, it is discussed how in silico approaches may have utility in predicting and interpreting experimental data. The various advantages and limitations of the different systems are contrasted. It is posited that only through complementary use of these models will salient research questions be able to be addressed.
Collapse
Affiliation(s)
- Chiara Anna Maria Fois
- School of Chemical and Biomolecular Engineering Centre for Advanced Food Enginomics University of Sydney Sydney NSW 2006 Australia
| | - Thi Yen Loan Le
- School of Chemical and Biomolecular Engineering Centre for Advanced Food Enginomics University of Sydney Sydney NSW 2006 Australia
| | - Aaron Schindeler
- School of Chemical and Biomolecular Engineering Centre for Advanced Food Enginomics University of Sydney Sydney NSW 2006 Australia
| | - Sina Naficy
- School of Chemical and Biomolecular Engineering Centre for Advanced Food Enginomics University of Sydney Sydney NSW 2006 Australia
| | - Dale David McClure
- School of Chemical and Biomolecular Engineering Centre for Advanced Food Enginomics University of Sydney Sydney NSW 2006 Australia
| | - Mark Norman Read
- School of Chemical and Biomolecular Engineering Centre for Advanced Food Enginomics University of Sydney Sydney NSW 2006 Australia
| | - Peter Valtchev
- School of Chemical and Biomolecular Engineering Centre for Advanced Food Enginomics University of Sydney Sydney NSW 2006 Australia
| | - Ali Khademhosseini
- Department of Chemical and Biomolecular Engineering Department of Bioengineering Department of Radiology California NanoSystems Institute (CNSI) University of California Los Angeles CA 90095 USA
| | - Fariba Dehghani
- School of Chemical and Biomolecular Engineering Centre for Advanced Food Enginomics University of Sydney Sydney NSW 2006 Australia
| |
Collapse
|
18
|
Abstract
The underlying mechanisms that result in neurophysiological changes and cognitive sequelae in the context of repetitive mild traumatic brain injury (rmTBI) remain poorly understood. Animal models provide a unique opportunity to examine cellular and molecular responses using histological assessment, which can give important insights on the neurophysiological changes associated with the evolution of brain injury. To better understand the potential cumulative effects of multiple concussions, the focus of animal models is shifting from single to repetitive head impacts. With a growing body of literature on this subject, a review and discussion of current findings is valuable to better understand the neuropathology associated with rmTBI, to evaluate the current state of the field, and to guide future research efforts. Despite variability in experimental settings, existing animal models of rmTBI have contributed to our understanding of the underlying mechanisms following repeat concussion. However, how to reconcile the various impact methods remains one of the major challenges in the field today.
Collapse
Affiliation(s)
- Wouter S Hoogenboom
- The Gruss Magnetic Resonance Research Center, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY 10641, USA; Department of Clinical Investigation, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY 10641, USA.
| | - Craig A Branch
- The Gruss Magnetic Resonance Research Center, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY 10641, USA; Department of Physiology and Biophysics, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY 10461, USA; Department of Radiology, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY 10461, USA.
| | - Michael L Lipton
- The Gruss Magnetic Resonance Research Center, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY 10641, USA; Department of Radiology, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY 10461, USA; Departments of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY 10461, USA; The Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY 10461, USA.
| |
Collapse
|
19
|
Abstract
Why humans have large brains with higher cognitive abilities is a question long asked by scientists. However, much remains unknown, especially the underlying genetic mechanisms. With the use of a transgenic monkey model, we showed that human-specific sequence changes of a key brain development gene (primary microcephaly1, MCPH1) could result in detectable molecular and cognitive changes resembling human neoteny, a notable characteristic developed during human evolution.
Collapse
Affiliation(s)
- Lei Shi
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming Yunnan 650223, China
- Primate Research Center, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming Yunnan 650223, China
| | - Bing Su
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming Yunnan 650223, China
- Primate Research Center, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming Yunnan 650223, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming Yunnan 650223, China
| |
Collapse
|
20
|
Shi L, Luo X, Jiang J, Chen Y, Liu C, Hu T, Li M, Lin Q, Li Y, Huang J, Wang H, Niu Y, Shi Y, Styner M, Wang J, Lu Y, Sun X, Yu H, Ji W, Su B. Transgenic rhesus monkeys carrying the human MCPH1 gene copies show human-like neoteny of brain development. Natl Sci Rev 2019; 6:480-493. [PMID: 34691896 PMCID: PMC8291473 DOI: 10.1093/nsr/nwz043] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 03/06/2019] [Accepted: 03/23/2019] [Indexed: 12/16/2022] Open
Abstract
Brain size and cognitive skills are the most dramatically changed traits in humans during evolution and yet the genetic mechanisms underlying these human-specific changes remain elusive. Here, we successfully generated 11 transgenic rhesus monkeys (8 first-generation and 3 second-generation) carrying human copies of MCPH1, an important gene for brain development and brain evolution. Brain-image and tissue-section analyses indicated an altered pattern of neural-cell differentiation, resulting in a delayed neuronal maturation and neural-fiber myelination of the transgenic monkeys, similar to the known evolutionary change of developmental delay (neoteny) in humans. Further brain-transcriptome and tissue-section analyses of major developmental stages showed a marked human-like expression delay of neuron differentiation and synaptic-signaling genes, providing a molecular explanation for the observed brain-developmental delay of the transgenic monkeys. More importantly, the transgenic monkeys exhibited better short-term memory and shorter reaction time compared with the wild-type controls in the delayed-matching-to-sample task. The presented data represent the first attempt to experimentally interrogate the genetic basis of human brain origin using a transgenic monkey model and it values the use of non-human primates in understanding unique human traits.
Collapse
Affiliation(s)
- Lei Shi
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- Primate Research Center, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, China
| | - Xin Luo
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- Primate Research Center, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing 100101, China
| | - Jin Jiang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- Primate Research Center, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing 100101, China
| | - Yongchang Chen
- Yunnan Key Laboratory of Primate Biomedical Research, Institute of Primate Translation Medicine, Kunming University of Science and Technology, Kunming 650500, China
| | - Cirong Liu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Ting Hu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- Primate Research Center, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing 100101, China
| | - Min Li
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Qiang Lin
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Yanjiao Li
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Jun Huang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Hong Wang
- Yunnan Key Laboratory of Primate Biomedical Research, Institute of Primate Translation Medicine, Kunming University of Science and Technology, Kunming 650500, China
| | - Yuyu Niu
- Yunnan Key Laboratory of Primate Biomedical Research, Institute of Primate Translation Medicine, Kunming University of Science and Technology, Kunming 650500, China
| | - Yundi Shi
- Department of Psychiatry, University of North Carolina, Chapel Hill, NC 27599-7160, USA
| | - Martin Styner
- Department of Psychiatry, University of North Carolina, Chapel Hill, NC 27599-7160, USA
- Department of Computer Science, University of North Carolina, Chapel Hill, NC 27599-7160, USA
| | - Jianhong Wang
- Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Yi Lu
- Department of Medical Imaging, the First Affiliated Hospital of Kunming Medical University, Kunming 650032, China
| | - Xuejin Sun
- Department of Medical Imaging, the First Affiliated Hospital of Kunming Medical University, Kunming 650032, China
| | - Hualin Yu
- Department of Minimally Invasive Neurosurgery, the First Affiliated Hospital of Kunming Medical University, Kunming 650032, China
| | - Weizhi Ji
- Yunnan Key Laboratory of Primate Biomedical Research, Institute of Primate Translation Medicine, Kunming University of Science and Technology, Kunming 650500, China
| | - Bing Su
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- Primate Research Center, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, China
| |
Collapse
|
21
|
Dahlhaus R. Of Men and Mice: Modeling the Fragile X Syndrome. Front Mol Neurosci 2018; 11:41. [PMID: 29599705 PMCID: PMC5862809 DOI: 10.3389/fnmol.2018.00041] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 01/31/2018] [Indexed: 12/26/2022] Open
Abstract
The Fragile X Syndrome (FXS) is one of the most common forms of inherited intellectual disability in all human societies. Caused by the transcriptional silencing of a single gene, the fragile x mental retardation gene FMR1, FXS is characterized by a variety of symptoms, which range from mental disabilities to autism and epilepsy. More than 20 years ago, a first animal model was described, the Fmr1 knock-out mouse. Several other models have been developed since then, including conditional knock-out mice, knock-out rats, a zebrafish and a drosophila model. Using these model systems, various targets for potential pharmaceutical treatments have been identified and many treatments have been shown to be efficient in preclinical studies. However, all attempts to turn these findings into a therapy for patients have failed thus far. In this review, I will discuss underlying difficulties and address potential alternatives for our future research.
Collapse
Affiliation(s)
- Regina Dahlhaus
- Institute for Biochemistry, Emil-Fischer Centre, University of Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
22
|
Ryan MC, Sherman P, Rowland LM, Wijtenburg SA, Acheson A, Fieremans E, Veraart J, Novikov DS, Hong LE, Sladky J, Peralta PD, Kochunov P, McGuire SA. Miniature pig model of human adolescent brain white matter development. J Neurosci Methods 2018; 296:99-108. [PMID: 29277719 PMCID: PMC5817010 DOI: 10.1016/j.jneumeth.2017.12.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 12/21/2017] [Accepted: 12/21/2017] [Indexed: 12/14/2022]
Abstract
BACKGROUND Neuroscience research in brain development and disorders can benefit from an in vivo animal model that portrays normal white matter (WM) development trajectories and has a sufficiently large cerebrum for imaging with human MRI scanners and protocols. NEW METHOD Twelve three-month-old Sinclair™ miniature pigs (Sus scrofa domestica) were longitudinally evaluated during adolescent development using advanced diffusion weighted imaging (DWI) focused on cerebral WM. Animals had three MRI scans every 23.95 ± 3.73 days using a 3-T scanner. The DWI imaging protocol closely modeled advanced human structural protocols and consisted of fifteen b-shells (b = 0-3500 s/mm2) with 32-directions/shell. DWI data were analyzed using diffusion kurtosis and bi-exponential modeling that provided measurements that included fractional anisotropy (FA), radial kurtosis, kurtosis anisotropy (KA), axial kurtosis, tortuosity, and permeability-diffusivity index (PDI). RESULTS Significant longitudinal effects of brain development were observed for whole-brain average FA, KA, and PDI (all p < 0.001). There were expected regional differences in trends, with corpus callosum fibers showing the highest rate of change. COMPARISON WITH EXISTING METHOD(S) Pigs have a large, gyrencephalic brain that can be studied using clinical MRI scanners/protocols. Pigs are less complex than non-human primates thus satisfying the "replacement" principle of animal research. CONCLUSIONS Longitudinal effects were observed for whole-brain and regional diffusion measurements. The changes in diffusion measurements were interepreted as evidence for ongoing myelination and maturation of cerebral WM. Corpus callosum and superficial cortical WM showed the expected higher rates of change, mirroring results in humans.
Collapse
Affiliation(s)
- Meghann C Ryan
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, 55 Wade Avenue, Catonsville, MD 21228, United States
| | - Paul Sherman
- U.S. Air Force School of Aerospace Medicine, Aeromedical Research Department, 2510 5th Street, Building 840, Wright-Patterson AFB, OH 45433-7913, United States
| | - Laura M Rowland
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, 55 Wade Avenue, Catonsville, MD 21228, United States
| | - S Andrea Wijtenburg
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, 55 Wade Avenue, Catonsville, MD 21228, United States
| | - Ashley Acheson
- Department of Psychiatry, University of Arkansas for Medical Sciences, 4301 W Markham St, Little Rock, AR 72205, United States
| | - Els Fieremans
- Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, 660 1st Avenue, New York, NY 10016, United States
| | - Jelle Veraart
- Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, 660 1st Avenue, New York, NY 10016, United States
| | - Dmitry S Novikov
- Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, 660 1st Avenue, New York, NY 10016, United States
| | - L Elliot Hong
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, 55 Wade Avenue, Catonsville, MD 21228, United States
| | - John Sladky
- U.S. Air Force School of Aerospace Medicine, Aeromedical Research Department, 2510 5th Street, Building 840, Wright-Patterson AFB, OH 45433-7913, United States; Department of Neurology, 59th Medical Wing, 2200 Bergquist Drive, Suite 1, Joint Base San Antonio-Lackland AFB, TX 78236, United States
| | - P Dana Peralta
- Department of Neurology, 59th Medical Wing, 2200 Bergquist Drive, Suite 1, Joint Base San Antonio-Lackland AFB, TX 78236, United States
| | - Peter Kochunov
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, 55 Wade Avenue, Catonsville, MD 21228, United States.
| | - Stephen A McGuire
- U.S. Air Force School of Aerospace Medicine, Aeromedical Research Department, 2510 5th Street, Building 840, Wright-Patterson AFB, OH 45433-7913, United States; Department of Neurology, 59th Medical Wing, 2200 Bergquist Drive, Suite 1, Joint Base San Antonio-Lackland AFB, TX 78236, United States
| |
Collapse
|
23
|
Sikela JM, Searles Quick VB. Genomic trade-offs: are autism and schizophrenia the steep price of the human brain? Hum Genet 2018; 137:1-13. [PMID: 29335774 PMCID: PMC5898792 DOI: 10.1007/s00439-017-1865-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 12/29/2017] [Indexed: 01/29/2023]
Abstract
Evolution often deals in genomic trade-offs: changes in the genome that are beneficial overall persist even though they also produce disease in a subset of individuals. Here, we explore the possibility that such trade-offs have occurred as part of the evolution of the human brain. Specifically, we provide support for the possibility that the same key genes that have been major contributors to the rapid evolutionary expansion of the human brain and its exceptional cognitive capacity also, in different combinations, are significant contributors to autism and schizophrenia. Furthermore, the model proposes that one of the primary genes behind this trade-off may not technically be "a gene" or "genes" but rather are the highly duplicated sequences that encode the Olduvai protein domain family (formerly called DUF1220). This is not an entirely new idea. Others have proposed that the same genes involved in schizophrenia were also critical to the rapid expansion of the human brain, a view that has been expressed as "the same 'genes' that drive us mad have made us human". What is new is that a "gene", or more precisely a protein domain family, has been found that may satisfy these requirements.
Collapse
Affiliation(s)
- J M Sikela
- University of Colorado School of Medicine, Aurora, CO, USA.
| | - V B Searles Quick
- University of Colorado School of Medicine, Aurora, CO, USA
- Department of Psychiatry, University of California, San Francisco, California, USA
| |
Collapse
|
24
|
Atchaneeyasakul K, Guada L, Ramdas K, Watanabe M, Bhattacharya P, Raval AP, Yavagal DR. Large animal canine endovascular ischemic stroke models: A review. Brain Res Bull 2016; 127:134-140. [PMID: 27496066 DOI: 10.1016/j.brainresbull.2016.07.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 07/10/2016] [Accepted: 07/12/2016] [Indexed: 02/08/2023]
Abstract
BACKGROUND Stroke is one of the leading causes of death and long-term disability worldwide. Recent exciting developments in the field with endovascular treatments have shown excellent outcomes in acute ischemic stroke. Prior to translating these treatments to human populations, a large-animal ischemic stroke model is needed. With the advent of new technologies in digital subtraction angiography, less invasive endovascular stroke models have been developed. Canines have gyrencephalic brain similar to human brain and accessible neurovascular anatomy for stroke model creation. Canine stroke model can be widely utilized to understand the disease process of stroke and to develop novel treatment. Less invasive endovascular internal carotid emboli injection and coil embolization methods can be used to simulate transient or permanent middle cerebral artery occlusion. Major restriction includes the extensive collateral circulation of canine cerebral arteries that can limit the stroke size. Transient internal carotid artery occlusion can decrease collateral circulation and increase stroke size to some degree. Additional method of manipulating the extent of collateral circulation needs to be studied. Other types of canine stroke models, including vertebral artery occlusion and basilar artery occlusion, can also be accomplished by endovascular thrombi injection. CONCLUSIONS We extensively review the literature on endovascular technique of creating canine ischemic stroke models and their application in finding new therapies for ischemic stroke.
Collapse
Affiliation(s)
- Kunakorn Atchaneeyasakul
- Neurology Department/Interventional Division, University of Miami Miller School of Medicine, Miami, FL 33136, United States
| | - Luis Guada
- Neurology Department/Interventional Division, University of Miami Miller School of Medicine, Miami, FL 33136, United States
| | - Kevin Ramdas
- Neurology Department/Interventional Division, University of Miami Miller School of Medicine, Miami, FL 33136, United States
| | - Mitsuyoshi Watanabe
- Neurology Department/Interventional Division, University of Miami Miller School of Medicine, Miami, FL 33136, United States
| | - Pallab Bhattacharya
- Neurology Department/Interventional Division, University of Miami Miller School of Medicine, Miami, FL 33136, United States
| | - Ami P Raval
- Neurology Department/Interventional Division, University of Miami Miller School of Medicine, Miami, FL 33136, United States
| | - Dileep R Yavagal
- Neurology Department/Interventional Division, University of Miami Miller School of Medicine, Miami, FL 33136, United States.
| |
Collapse
|
25
|
Jiminez JA, Uwiera TC, Douglas Inglis G, Uwiera RRE. Animal models to study acute and chronic intestinal inflammation in mammals. Gut Pathog 2015; 7:29. [PMID: 26561503 PMCID: PMC4641401 DOI: 10.1186/s13099-015-0076-y] [Citation(s) in RCA: 133] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 10/22/2015] [Indexed: 02/06/2023] Open
Abstract
Acute and chronic inflammatory diseases of the intestine impart a significant and negative impact on the health and well-being of human and non-human mammalian animals. Understanding the underlying mechanisms of inflammatory disease is mandatory to develop effective treatment and prevention strategies. As inflammatory disease etiologies are multifactorial, the use of appropriate animal models and associated metrics of disease are essential. In this regard, animal models used alone or in combination to study acute and chronic inflammatory disease of the mammalian intestine paired with commonly used inflammation-inducing agents are reviewed. This includes both chemical and biological incitants of inflammation, and both non-mammalian (i.e. nematodes, insects, and fish) and mammalian (i.e. rodents, rabbits, pigs, ruminants, dogs, and non-human primates) models of intestinal inflammation including germ-free, gnotobiotic, as well as surgical, and genetically modified animals. Importantly, chemical and biological incitants induce inflammation via a multitude of mechanisms, and intestinal inflammation and injury can vary greatly according to the incitant and animal model used, allowing studies to ascertain both long-term and short-term effects of inflammation. Thus, researchers and clinicians should be aware of the relative strengths and limitations of the various animal models used to study acute and chronic inflammatory diseases of the mammalian intestine, and the scope and relevance of outcomes achievable based on this knowledge. The ability to induce inflammation to mimic common human diseases is an important factor of a successful animal model, however other mechanisms of disease such as the amount of infective agent to induce disease, invasion mechanisms, and the effect various physiologic changes can have on inducing damage are also important features. In many cases, the use of multiple animal models in combination with both chemical and biological incitants is necessary to answer the specific question being addressed regarding intestinal disease. Some incitants can induce acute responses in certain animal models while others can be used to induce chronic responses; this review aims to illustrate the strengths and weaknesses in each animal model and to guide the choice of an appropriate acute or chronic incitant to facilitate intestinal disease.
Collapse
Affiliation(s)
- Janelle A. Jiminez
- />Agriculture and Agri-Food Canada Research Centre, Lethbridge, AB Canada
- />Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB Canada
| | - Trina C. Uwiera
- />Department of Surgery, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB Canada
| | - G. Douglas Inglis
- />Agriculture and Agri-Food Canada Research Centre, Lethbridge, AB Canada
| | - Richard R. E. Uwiera
- />Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB Canada
| |
Collapse
|
26
|
Gross D, Tolba RH. Ethics in Animal-Based Research. Eur Surg Res 2015; 55:43-57. [PMID: 25871531 DOI: 10.1159/000377721] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2014] [Accepted: 02/05/2015] [Indexed: 11/19/2022]
Abstract
In recent years, there have been a number of new demands and regulations which have reignited the discussion on ethics in animal-based research. In the light of this development, the present review first presents an overview of underlying core ethical questions and issues. This is followed by an outline of the current discussion on whether animals (used for experimentation) should have rights ascribed to them and whether animals need to have certain characteristics in order to be the beneficiaries of rights. The discourse on concepts of sentience and the 'sociozoological scale' in particular is mapped out in this regard. There follows an outline of relevant ethical positions and current moral approaches to animal-based research (animal rights position, utilitarianism, 'convergence position', intrinsic cultural value of fundamental research, 'contractarianism', anthropocentrism, principle of the three Rs).
Collapse
Affiliation(s)
- Dominik Gross
- Institute for History, Theory and Ethics in Medicine, Medical School MTI II, RWTH Aachen University, Aachen, Germany
| | | |
Collapse
|
27
|
Becker GJ, Hewitson TD. Animal models of chronic kidney disease: useful but not perfect. Nephrol Dial Transplant 2013; 28:2432-8. [PMID: 23817139 DOI: 10.1093/ndt/gft071] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Animal models of chronic kidney disease (CKD) approximate the human condition and are keys to understanding its pathogenesis and to developing rational treatment strategies. The ethical use of animals requires a detailed understanding of the strengths and limitations of each species and the disease model, and the way in which findings can be translated from animals to humans. While not perfect, the careful use of animal experiments offers the opportunity to examine individual mechanisms in an accelerated time frame.
Collapse
Affiliation(s)
- Gavin J Becker
- Department of Nephrology, The Royal Melbourne Hospital and Department of Medicine, University of Melbourne, Melbourne, Vic, Australia
| | | |
Collapse
|
28
|
Haber MH, Benham B. Reframing the ethical issues in part-human animal research: the unbearable ontology of inexorable moral confusion. THE AMERICAN JOURNAL OF BIOETHICS : AJOB 2012; 12:17-25. [PMID: 22881848 DOI: 10.1080/15265161.2012.699139] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Research that involves the creation of animals with human-derived parts opens the door to potentially valuable scientific and therapeutic advances, yet invokes unsettling moral questions. Critics and champions alike stand to gain from clear identification and careful consideration of the strongest ethical objections to this research. A prevailing objection argues that crossing the human/nonhuman species boundary introduces inexorable moral confusion (IMC) that warrants a restriction to this research on precautionary grounds. Though this objection may capture the intuitions of many who find this research unsettling, it relies on mistaken views of both biology and moral standing, ultimately distorting the morally relevant facts. We critically examine IMC, identify mistaken essentialist assumptions, and reframe ethical concerns. The upshot is a stronger line of objection that encourages a more inclusive and productive ethical discourse.
Collapse
|
29
|
Abstract
This article provides an overview of the ethical issues raised by the use of non-human primates (NHPs) in research involving scientific procedures which may cause pain, suffering, distress or lasting harm. It is not an exhaustive review of the literature and views on this subject, and it does not present any conclusions about the moral acceptability or otherwise of NHP research. Rather the aim has been to identify the ethical issues involved and to provide guidance on how these might be addressed, in particular by carefully examining the scientific rationale for NHP use, implementing fully the 3Rs principle of Russell and Burch (1959) and applying a robust "harm-benefit assessment" to research proposals involving NHPs.
Collapse
Affiliation(s)
- M J Prescott
- National Centre for the Replacement, Refinement and Reduction of Animals in Research (NC3Rs), 20 Park Crescent, London, W1B 1AL, UK
| |
Collapse
|