1
|
Iftikhar MS, Naseer Cheema HM, Khan AA, DeLacy IH, Basford KE. Genetic diversity assessment of cucumber landraces using molecular signatures. BMC Genomics 2024; 25:1046. [PMID: 39506650 PMCID: PMC11539674 DOI: 10.1186/s12864-024-10958-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 10/25/2024] [Indexed: 11/08/2024] Open
Abstract
Genetic profiling of the biodiversity in cultivated crop plants is necessary to preserve important genes and utilize them in a breeding program. Cucumber is used as a model plant to study various characteristics of Cucurbitaceae. Its adaptation to a wide range of climatic conditions suggested analyzing the landraces. The present study was conducted to evaluate the differences, at the genetic level, among landraces spanning five continents. DNA extracted from fifty-six landraces selected from USDA germplasm bank to cover a global representative sample of world cucumber landraces was used for polymerase chain reaction using twenty-eight polymorphic expressed sequence tags simple sequence repeat (EST-SSR) markers. Twenty-eight EST-SSR markers covering all seven chromosomes yielded 98 bands with an average of 3.42 bands per marker. Polymorphic information content ranged from 0.00 (EC35) to 0.74 (EC17) with an average of 0.34. Six clusters provided an appropriate summary of the variation among the landraces, with the two largest groups including 32 (Asiatic) and 17 (European and American) landraces, respectively. Four small groups, three with two members, and one with one member (PI 525155-Egypt) were dissimilar to the two main groups. Landraces from the same region were often clustered together. Genetic similarity of the landraces was revealed by marker banding patterns. The locations of genetic diversity for cucumber landraces can be identified from this study.
Collapse
Affiliation(s)
- Muhammad Sarmad Iftikhar
- Department of Plant Breeding and Genetics, University of Agriculture Faisalabad, Faisalabad, 38000, Pakistan.
- School of Agriculture and Food Sustainability, The University of Queensland, Brisbane, 4072, Australia.
| | | | - Asif Ali Khan
- Department of Plant Breeding and Genetics, Muhammad Nawaz Sharif University of Agriculture Multan, Multan, 60000, Pakistan
| | - Ian Henson DeLacy
- School of Agriculture and Food Sustainability, The University of Queensland, Brisbane, 4072, Australia
| | - Kaye Enid Basford
- School of Agriculture and Food Sustainability, The University of Queensland, Brisbane, 4072, Australia
| |
Collapse
|
2
|
Guo W, Bastiaanse H, Maloof JN, Comai L, Henry IM. Induced and natural variation affect traits independently in hybrid Populus. G3 (BETHESDA, MD.) 2024; 14:jkae218. [PMID: 39268720 PMCID: PMC11540314 DOI: 10.1093/g3journal/jkae218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 09/05/2024] [Indexed: 09/15/2024]
Abstract
The genetic control of many plant traits can be highly complex. Both allelic variation (sequence change) and dosage variation (copy number change) contribute to a plant's phenotype. While numerous studies have investigated the effect of allelic or dosage variation, very few have documented both within the same system, leaving their relative contribution to phenotypic effects unclear. The Populus genome is highly polymorphic, and poplars are fairly tolerant of gene dosage variation. Here, using a previously established Populus hybrid F1 population, we assessed and compared the effect of natural allelic variation and induced dosage variation on biomass, phenology, and leaf morphology traits. We identified QTLs for many of these traits, but our results indicate limited overlap between the QTLs associated with natural allelic variation and induced dosage variation. Additionally, the integration of data from both allelic and dosage variation identifies a larger set of QTLs that together explain a larger percentage of the phenotypic variance. Finally, our results suggest that the effect of the large indels might mask that of allelic QTLs. Our study helps clarify the relationship between allelic and dosage variation and their effects on quantitative traits.
Collapse
Affiliation(s)
- Weier Guo
- Genome Center and Department of Plant Biology, University of California Davis, Davis, CA 95616, USA
| | - Héloïse Bastiaanse
- Genome Center and Department of Plant Biology, University of California Davis, Davis, CA 95616, USA
| | - Julin N Maloof
- Department of Plant Biology, University of California Davis, Davis, CA 95616, USA
| | - Luca Comai
- Genome Center and Department of Plant Biology, University of California Davis, Davis, CA 95616, USA
| | - Isabelle M Henry
- Genome Center and Department of Plant Biology, University of California Davis, Davis, CA 95616, USA
| |
Collapse
|
3
|
Oyovwi MOS, Ohwin EP, Rotu RA, Olowe TG. Internet-Based Abnormal Chromosomal Diagnosis During Pregnancy Using a Noninvasive Innovative Approach to Detecting Chromosomal Abnormalities in the Fetus: Scoping Review. JMIR BIOINFORMATICS AND BIOTECHNOLOGY 2024; 5:e58439. [PMID: 39412876 PMCID: PMC11525087 DOI: 10.2196/58439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/13/2024] [Accepted: 08/18/2024] [Indexed: 10/18/2024]
Abstract
BACKGROUND Chromosomal abnormalities are genetic disorders caused by chromosome errors, leading to developmental delays, birth defects, and miscarriages. Currently, invasive procedures such as amniocentesis or chorionic villus sampling are mostly used, which carry a risk of miscarriage. This has led to the need for a noninvasive and innovative approach to detect and prevent chromosomal abnormalities during pregnancy. OBJECTIVE This review aims to describe and appraise the potential of internet-based abnormal chromosomal preventive measures as a noninvasive approach to detecting and preventing chromosomal abnormalities during pregnancy. METHODS A thorough review of existing literature and research on chromosomal abnormalities and noninvasive approaches to prenatal diagnosis and therapy was conducted. Electronic databases such as PubMed, Google Scholar, ScienceDirect, CENTRAL, CINAHL, Embase, OVID MEDLINE, OVID PsycINFO, Scopus, ACM, and IEEE Xplore were searched for relevant studies and articles published in the last 5 years. The keywords used included chromosomal abnormalities, prenatal diagnosis, noninvasive, and internet-based, and diagnosis. RESULTS The review of literature revealed that internet-based abnormal chromosomal diagnosis is a potential noninvasive approach to detecting and preventing chromosomal abnormalities during pregnancy. This innovative approach involves the use of advanced technology, including high-resolution ultrasound, cell-free DNA testing, and bioinformatics, to analyze fetal DNA from maternal blood samples. It allows early detection of chromosomal abnormalities, enabling timely interventions and treatment to prevent adverse outcomes. Furthermore, with the advancement of technology, internet-based abnormal chromosomal diagnosis has emerged as a safe alternative with benefits including its cost-effectiveness, increased accessibility and convenience, potential for earlier detection and intervention, and ethical considerations. CONCLUSIONS Internet-based abnormal chromosomal diagnosis has the potential to revolutionize prenatal care by offering a safe and noninvasive alternative to invasive procedures. It has the potential to improve the detection of chromosomal abnormalities, leading to better pregnancy outcomes and reduced risk of miscarriage. Further research and development in this field is needed to make this approach more accessible and affordable for pregnant women.
Collapse
Affiliation(s)
| | - Ejiro Peggy Ohwin
- Department of Human Physiology, Faculty of Basic Medical Science, Delta State University, Abraka, Nigeria
| | | | - Temitope Gideon Olowe
- Department of Obstetrics & Gynaecology, University of Medical Sciences, Ondo, Nigeria
| |
Collapse
|
4
|
Vera AJ, Soliz AG, Khatchikian CE, de la Mora-Covarrubias A, Watts DM, Lavretsky P. Genomic Analysis of Aedes aegypti in the Northern Chihuahuan Desert of Texas and Mexico. Vector Borne Zoonotic Dis 2024; 24:673-681. [PMID: 38717107 DOI: 10.1089/vbz.2023.0111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024] Open
Abstract
Background: Aedes aegypti, is the primary vector of dengue, Chikungunya, Zika, and yellow fever viruses. Both natural and human-impacted landscapes have selective pressures on Ae. aegypti, resulting in strong genomic structure even within close geographical distances. Materials and Methods: We assess the genetic structure of this medically important mosquito species at the northern leading edge of their distribution in Southwestern USA. Ae. aegypti were collected during 2017 in the urban communities of El Paso and Sparks, Texas (USA) and in the city of Ciudad Juárez, Mexico. Results: Thousands of nuclear loci were sequenced across 260 captured Ae. aegypti. First, we recovered the genetic structure of Ae. aegypti following geography, with all four major collection communities being genetically distinct. Importantly, we found population structure and genetic diversity that suggest rapid expansion through active-short distance dispersals, with Anapra being the likely source for the others. Next, tests of selection recovered eight functional genes across six outliers: calmodulin with olfactory receptor function; the protein superfamily C-type lectin with function in mosquito immune system and development; and TATA box binding protein with function in gene regulation. Conclusion: Despite these populations being documented in the early 2000s, we find that selective pressures on specific genes have already occurred and likely facilitate Ae. aegypti range expansion.
Collapse
Affiliation(s)
- Adam J Vera
- Department of Biological Sciences, The University of Texas at El Paso, El Paso, Texas, USA
| | - Albert G Soliz
- Department of Biological Sciences, The University of Texas at El Paso, El Paso, Texas, USA
| | - Camilo E Khatchikian
- Department of Biological Sciences, The University of Texas at El Paso, El Paso, Texas, USA
- Department of Epidemiology/Department of Biomedical Data Science, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | | | - Douglas M Watts
- Department of Biological Sciences, The University of Texas at El Paso, El Paso, Texas, USA
| | - Philip Lavretsky
- Department of Biological Sciences, The University of Texas at El Paso, El Paso, Texas, USA
| |
Collapse
|
5
|
Mascher M, Jayakodi M, Shim H, Stein N. Promises and challenges of crop translational genomics. Nature 2024:10.1038/s41586-024-07713-5. [PMID: 39313530 PMCID: PMC7616746 DOI: 10.1038/s41586-024-07713-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 06/13/2024] [Indexed: 09/25/2024]
Abstract
Crop translational genomics applies breeding techniques based on genomic datasets to improve crops. Technological breakthroughs in the past ten years have made it possible to sequence the genomes of increasing numbers of crop varieties and have assisted in the genetic dissection of crop performance. However, translating research findings to breeding applications remains challenging. Here we review recent progress and future prospects for crop translational genomics in bringing results from the laboratory to the field. Genetic mapping, genomic selection and sequence-assisted characterization and deployment of plant genetic resources utilize rapid genotyping of large populations. These approaches have all had an impact on breeding for qualitative traits, where single genes with large phenotypic effects exert their influence. Characterization of the complex genetic architectures that underlie quantitative traits such as yield and flowering time, especially in newly domesticated crops, will require further basic research, including research into regulation and interactions of genes and the integration of genomic approaches and high-throughput phenotyping, before targeted interventions can be designed. Future priorities for translation include supporting genomics-assisted breeding in low-income countries and adaptation of crops to changing environments.
Collapse
Affiliation(s)
- Martin Mascher
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany.
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany.
| | - Murukarthick Jayakodi
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Hyeonah Shim
- Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, Korea
| | - Nils Stein
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany.
- Martin Luther University Halle-Wittenberg, Halle, Germany.
| |
Collapse
|
6
|
Zhao S, Wang Y, Zhu Z, Chen P, Liu W, Wang C, Lu H, Xiang Y, Liu Y, Qian Q, Chang Y. Streamlined whole-genome genotyping through NGS-enhanced thermal asymmetric interlaced (TAIL)-PCR. PLANT COMMUNICATIONS 2024; 5:100983. [PMID: 38845197 DOI: 10.1016/j.xplc.2024.100983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/21/2024] [Accepted: 06/02/2024] [Indexed: 07/14/2024]
Abstract
Whole-genome genotyping (WGG) stands as a pivotal element in genomic-assisted plant breeding. Nevertheless, sequencing-based approaches for WGG continue to be costly, primarily owing to the high expenses associated with library preparation and the laborious protocol. During prior development of foreground and background integrated genotyping by sequencing (FBI-seq), we discovered that any sequence-specific primer (SP) inherently possesses the capability to amplify a massive array of stable and reproducible non-specific PCR products across the genome. Here, we further improved FBI-seq by replacing the adapter ligated by Tn5 transposase with an arbitrary degenerate (AD) primer. The protocol for the enhanced FBI-seq unexpectedly mirrors a simplified thermal asymmetric interlaced (TAIL)-PCR, a technique that is widely used for isolation of flanking sequences. However, the improved TAIL-PCR maximizes the primer-template mismatched annealing capabilities of both SP and AD primers. In addition, leveraging of next-generation sequencing enhances the ability of this technique to assay tens of thousands of genome-wide loci for any species. This cost-effective, user-friendly, and powerful WGG tool, which we have named TAIL-PCR by sequencing (TAIL-peq), holds great potential for widespread application in breeding programs, thereby facilitating genome-assisted crop improvement.
Collapse
Affiliation(s)
- Sheng Zhao
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Yue Wang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Zhenghang Zhu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Peng Chen
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Wuge Liu
- Guangdong Provincial Key Laboratory of New Technology in Rice Breeding, Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Chongrong Wang
- Guangdong Provincial Key Laboratory of New Technology in Rice Breeding, Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Hong Lu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Yong Xiang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Yuwen Liu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Qian Qian
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China.
| | - Yuxiao Chang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China.
| |
Collapse
|
7
|
Sari D. Identification of Insertion and Deletion (InDel) Markers for Chickpea ( Cicer arietinum L.) Based on Double-Digest Restriction Site-Associated DNA Sequencing. PLANTS (BASEL, SWITZERLAND) 2024; 13:2530. [PMID: 39274014 PMCID: PMC11397535 DOI: 10.3390/plants13172530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/03/2024] [Accepted: 09/04/2024] [Indexed: 09/16/2024]
Abstract
Enhancing the marker repository and the development of breeder-friendly markers in chickpeas is important in relation to chickpea genomics-assisted breeding applications. Insertion-deletion (InDel) markers are widely distributed across genomes and easily observed with specifically designed primers, leading to less time, cost, and labor requirements. In light of this, the present study focused on the identification and development of InDel markers through the use of double-digest restriction site-associated DNA sequencing (ddRADSeq) data from 20 chickpea accessions. Bioinformatic analysis identified 20,700 InDel sites, including 15,031 (72.61%) deletions and 5669 (27.39%) insertions, among the chickpea accessions. The InDel markers ranged from 1 to 25 bp in length, while single-nucleotide-length InDel markers were found to represent the majority of the InDel sites and account for 79% of the total InDel markers. However, we focused on InDel markers wherein the length was greater than a single nucleotide to avoid any read or alignment errors. Among all of the InDel markers, 96.1% were less than 10 bp, 3.6% were between 10 and 20 bp, and 0.3% were more than 20 bp in length. We examined the InDel markers that were 10 bp and longer for the development of InDel markers based on a consideration of the genomic distribution and low-cost genotyping with agarose gels. A total of 29 InDel regions were selected, and primers were successfully designed to evaluate their efficiency. Annotation analysis of the InDel markers revealed them to be found with the highest frequency in the intergenic regions (82.76%), followed by the introns (6.90%), coding sequences (6.90%), and exons (3.45%). Genetic diversity analysis demonstrated that the polymorphic information content of the markers varied from 0.09 to 0.37, with an average of 0.20. Taken together, these results showed the efficiency of InDel marker development for chickpea genetic and genomic studies using the ddRADSeq method. The identified markers might prove valuable for chickpea breeders.
Collapse
Affiliation(s)
- Duygu Sari
- Department of Field Crops, Faculty of Agriculture, Akdeniz University, 07070 Antalya, Turkey
| |
Collapse
|
8
|
Tang L, Long JQ, Wang HY, Rao CK, Long WX, Yan L, Liu YB. Conservation genomic study of Hopea hainanensis (Dipterocarpaceae), an endangered tree with extremely small populations on Hainan Island, China. FRONTIERS IN PLANT SCIENCE 2024; 15:1442807. [PMID: 39297016 PMCID: PMC11408178 DOI: 10.3389/fpls.2024.1442807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 08/09/2024] [Indexed: 09/21/2024]
Abstract
Introduction Hopea hainanensis Merrill & Chun is considered a keystone and indicator species in the tropical lowland rainforests of Hainan Island. Owing to its high-quality timber, H. hainanensis has been heavily exploited, leading to its classification as a first-class national protected plant in China and a plant species with extremely small populations (PSESPs). Methods This study analyzed genome-wide single nucleotide polymorphisms obtained through restriction site-associated DNA sequencing from 78 adult trees across 10 H. hainanensis populations on Hainan Island. Results and discussion The nucleotide diversity of the sampled populations ranged from 0.00096 to 0.00138, which is lower than that observed in several other PSESPs and endangered tree species. Bayesian unsupervised clustering, principal component analysis, and neighbor-joining tree reconstruction identified three to five genetic clusters in H. hainanensis, most of which were geographically widespread and shared by multiple populations. Demographic history analysis based on pooled samples indicated that the decline in the H. hainanensis population began approximately 20,000 years ago, starting from an ancestral population size of approximately 10,000 individuals. The reduction in population size accelerated approximately 4,000 years ago and has continued to the present, resulting in a severely reduced population on Hainan Island. Intensified genetic drift in small and isolated H. hainanensis populations may contribute to moderate differentiation between some of them, as revealed by pairwise F st. In conclusion, our conservation genomic study confirms a severe population decline and an extremely low level of nucleotide variation in H. hainanensis on Hainan Island. These findings provide critical insights for the sustainable management and genetic restoration of H. hainanensis on Hainan Island.
Collapse
Affiliation(s)
- Liang Tang
- International Joint Center for Terrestrial Biodiversity around the South China Sea of Hainan Province, Hainan University, Haikou, China
- School of Ecology, Hainan University, Haikou, China
| | - Jun-Qiao Long
- Haikou Marine Geological Survey Center, China Geological Survey, Haikou, China
| | | | | | - Wen-Xing Long
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| | - Li Yan
- Haikou Marine Geological Survey Center, China Geological Survey, Haikou, China
| | - Yong-Bo Liu
- State Environmental Protection Key Laboratory of Regional Eco-Process and Function Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China
| |
Collapse
|
9
|
Yoo SI, Moon S, Hong CP, Park SG, Shim D, Ryu H. Genome Sequencing of Lentinula edodes Revealed a Genomic Variant Block Associated with a Thermo-Tolerant Trait in Fruit Body Formation. J Fungi (Basel) 2024; 10:628. [PMID: 39330388 PMCID: PMC11432811 DOI: 10.3390/jof10090628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 08/20/2024] [Accepted: 08/23/2024] [Indexed: 09/28/2024] Open
Abstract
The formation of multicellular fruiting bodies in basidiomycete mushrooms is a crucial developmental process for sexual reproduction and subsequent spore development. Temperature is one of the most critical factors influencing the phase transition for mushroom reproduction. During the domestication of mushrooms, traits related to fruiting bodies have significantly impacted agricultural adaptation and human preferences. Recent research has demonstrated that chromosomal variations, such as structural variants (SVs) and variant blocks (VBs), play crucial roles in agronomic traits and evolutionary processes. However, the lack of high-quality genomic information and important trait data have hindered comprehensive identification and characterization in Lentinula edodes breeding processes. In this study, the genomes of two monokaryotic L. edodes strains, characterized by thermo-tolerance and thermo-sensitivity during fruiting body formation, were reassembled at the chromosomal level. Comparative genomic studies of four thermo-tolerant and thermo-sensitive monokaryotic L. edodes strains identified a 0.56 Mbp variant block on chromosome 9. Genes associated with DNA repair or cellular response to DNA damage stimulus were enriched in this variant block. Finally, we developed eight CAPS markers from the variant block to discriminate the thermo-tolerant traits in L. edodes cultivars. Our findings show that the identified variant block is highly correlated with the thermo-tolerant trait for fruiting body formation and that alleles present in this block may have been artificially selected during L. edodes domestication.
Collapse
Affiliation(s)
- Seung-il Yoo
- Division of Bioinformatics, Invites Biocore, Seoul 08511, Republic of Korea; (S.-i.Y.); (S.-G.P.)
| | - Suyun Moon
- Department of Biology, Chungbuk National University, Cheongju 28644, Republic of Korea;
| | - Chang Pyo Hong
- Department of Crop Science and Biotechnology, General Graduate School, Dankook University, Cheonan 31116, Republic of Korea;
| | - Sin-Gi Park
- Division of Bioinformatics, Invites Biocore, Seoul 08511, Republic of Korea; (S.-i.Y.); (S.-G.P.)
| | - Donghwan Shim
- Department of Biological Sciences, Chungnam National University, Daejeon 34134, Republic of Korea
- Center for Genome Engineering, Institute for Basic Science, Daejeon 34126, Republic of Korea
| | - Hojin Ryu
- Department of Biology, Chungbuk National University, Cheongju 28644, Republic of Korea;
| |
Collapse
|
10
|
Jaimes H, Londoño A, Saavedra‐Diaz C, Trujillo‐Montenegro JH, López‐Gerena J, Riascos JJ, Aguilar FS. Sequencing vs. amplification for the estimation of allele dosages in sugarcane ( Saccharum spp.). APPLICATIONS IN PLANT SCIENCES 2024; 12:e11574. [PMID: 39360190 PMCID: PMC11443436 DOI: 10.1002/aps3.11574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 11/21/2023] [Accepted: 12/14/2023] [Indexed: 10/04/2024]
Abstract
Premise Detecting single-nucleotide polymorphisms (SNPs) in a cost-effective way is fundamental in any plant breeding pipeline. Here, we compare three genotyping techniques for their ability to reproduce the allele dosage of SNPs of interest in sugarcane (Saccharum spp.). Methods To identify a reproducible technique to estimate allele dosage for the validation of SNP markers, the correlation between Flex-Seq, kompetitive allele-specific PCR (KASP), and genotyping-by-sequencing and restriction site-associated DNA sequencing (GBS+RADseq) was determined for a set of 76 SNPs. To find alternative methodologies for allele dosage estimation, the KASP and Flex-Seq techniques were compared for the same set of SNPs. For the three techniques, a population of 53 genotypes from the diverse sugarcane panel of the Centro de Investigación de la Caña de Azúcar (Cenicaña), Colombia, was selected. Results The average Pearson correlation coefficients between GBS+RADseq and Flex-Seq, GBS+RADseq and KASP, and Flex-Seq and KASP were 0.62 ± 0.27, 0.38 ± 0.27, and 0.38 ± 0.30, respectively. Discussion Flex-Seq reproduced the allele dosages determined using GBS+RADseq with good levels of precision because of its depth of sequencing and ability to target specific positions in the genome. Additionally, Flex-Seq outperformed KASP by allowing the conversion of a higher number of SNPs and a more accurate estimation of the allele dosage. Flex-Seq has therefore become the genotyping methodology of choice for marker validation at Cenicaña.
Collapse
Affiliation(s)
- Hugo Jaimes
- Colombian Sugarcane Research CenterCenicañaCalle 38N 3CN‐75CaliValle del CaucaColombia
| | - Alejandra Londoño
- Colombian Sugarcane Research CenterCenicañaCalle 38N 3CN‐75CaliValle del CaucaColombia
| | - Carolina Saavedra‐Diaz
- Colombian Sugarcane Research CenterCenicañaCalle 38N 3CN‐75CaliValle del CaucaColombia
- Pontificia Universidad JaverianaCalle 18 118–250CaliColombia
| | | | - Jershon López‐Gerena
- Colombian Sugarcane Research CenterCenicañaCalle 38N 3CN‐75CaliValle del CaucaColombia
| | - John J. Riascos
- Colombian Sugarcane Research CenterCenicañaCalle 38N 3CN‐75CaliValle del CaucaColombia
| | - Fernando S. Aguilar
- Colombian Sugarcane Research CenterCenicañaCalle 38N 3CN‐75CaliValle del CaucaColombia
| |
Collapse
|
11
|
Myburgh AM, Barnes A, Henriques R, Daniels SR. Congruent patterns of cryptic cladogenesis revealed using RADseq and Sanger sequencing in a velvet worm species complex (Onychophora: Peripatopsidae: Peripatopsis sedgwicki). Mol Phylogenet Evol 2024; 198:108132. [PMID: 38909874 DOI: 10.1016/j.ympev.2024.108132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/24/2024] [Accepted: 06/15/2024] [Indexed: 06/25/2024]
Abstract
In the present study, first generation DNA sequencing (mitochondrial cytochrome c oxidase subunit one, COI) and reduced-representative genomic RADseq data were used to understand the patterns and processes of diversification of the velvet worm, Peripatopsis sedgwicki species complex across its distribution range in South Africa. For the RADseq data, three datasets (two primary and one supplementary) were generated corresponding to 1,259-11,468 SNPs, in order to assess the diversity and phylogeography of the species complex. Tree topologies for the two primary datasets were inferred using maximum likelihood and Bayesian inferences methods. Phylogenetic analyses using the COI datasets retrieved four distinct, well-supported clades within the species complex. Five species delimitation methods applied to the COI data (ASAP, bPTP, bGMYC, STACEY and iBPP) all showed support for the distinction of the Fort Fordyce Nature Reserve specimens. In the main P. sedgwicki species complex, the species delimitation methods revealed a variable number of operational taxonomic units and overestimated the number of putative taxa. Divergence time estimates coupled with the geographic exclusivity of species and phylogeographic results suggest recent cladogenesis during the Plio/Pleistocene. The RADseq data were subjected to a principal components analysis and a discriminant analysis of principal components, under a maximum-likelihood framework. The latter results corroborate the four main clades observed using the COI data, however, applying additional filtering revealed additional diversity. The high overall congruence observed between the RADseq data and COI data suggest that first generation sequence data remain a cheap and effective method for evolutionary studies, although RADseq does provide a far greater resolution of contemporary temporo-spatial patterns.
Collapse
Affiliation(s)
- Angus Macgregor Myburgh
- Department of Botany and Zoology, Private Bag X1, Stellenbosch University, 7602, South Africa
| | - Aaron Barnes
- Department of Botany and Zoology, Private Bag X1, Stellenbosch University, 7602, South Africa
| | - Romina Henriques
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, South Africa
| | - Savel R Daniels
- Department of Botany and Zoology, Private Bag X1, Stellenbosch University, 7602, South Africa.
| |
Collapse
|
12
|
Chen Y, Dong L, Yi H, Kidner C, Kang M. Genomic divergence and mutation load in the Begonia masoniana complex from limestone karsts. PLANT DIVERSITY 2024; 46:575-584. [PMID: 39290887 PMCID: PMC11403149 DOI: 10.1016/j.pld.2024.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 04/01/2024] [Accepted: 04/03/2024] [Indexed: 09/19/2024]
Abstract
Understanding genome-wide diversity, inbreeding, and the burden of accumulated deleterious mutations in small and isolated populations is essential for predicting and enhancing population persistence and resilience. However, these effects are rarely studied in limestone karst plants. Here, we re-sequenced the nuclear genomes of 62 individuals of the Begonia masoniana complex (B. liuyanii, B. longgangensis, B. masoniana and B. variegata) and investigated genomic divergence and genetic load for these four species. Our analyses revealed four distinct clusters corresponding to each species within the complex. Notably, there was only limited admixture between B. liuyanii and B. longgangensis occurring in overlapping geographic regions. All species experienced historical bottlenecks during the Pleistocene, which were likely caused by glacial climate fluctuations. We detected an asymmetric historical gene flow between group pairs within this timeframe, highlighting a distinctive pattern of interspecific divergence attributable to karst geographic isolation. We found that isolated populations of B. masoniana have limited gene flow, the smallest recent population size, the highest inbreeding coefficients, and the greatest accumulation of recessive deleterious mutations. These findings underscore the urgency to prioritize conservation efforts for these isolated population. This study is among the first to disentangle the genetic differentiation and specific demographic history of karst Begonia plants at the whole-genome level, shedding light on the potential risks associated with the accumulation of deleterious mutations over generations of inbreeding. Moreover, our findings may facilitate conservation planning by providing critical baseline genetic data and a better understanding of the historical events that have shaped current population structure of rare and endangered karst plants.
Collapse
Affiliation(s)
- Yiqing Chen
- Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, Guangzhou 510650, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lina Dong
- Guangxi Key Laboratory of Conservation and Restoration Ecology in Karst Terrain, Guangxi Institute of Botany, Guangxi Zhang Autonomous Region and the Chinese Academy of Sciences, Guilin 541006, China
| | - Huiqin Yi
- Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, Guangzhou 510650, China
| | - Catherine Kidner
- Institute of Molecular Plant Sciences, University of Edinburgh, Daniel Rutherford Building Max Born Crescent, The King's Buildings, Edinburgh EH9 3BF, UK
- Royal Botanic Garden Edinburgh, 20a Inverleith Row, Edinburgh EH3 5LR, UK
| | - Ming Kang
- Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, Guangzhou 510650, China
- State Key Laboratory of Plant Diversity and Specialty Crops, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| |
Collapse
|
13
|
Nguyen TBH, Foulongne-Oriol M, Jany JL, le Floch G, Picot A. New insights into mycotoxin risk management through fungal population genetics and genomics. Crit Rev Microbiol 2024:1-22. [PMID: 39188135 DOI: 10.1080/1040841x.2024.2392179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 05/08/2024] [Accepted: 08/09/2024] [Indexed: 08/28/2024]
Abstract
Mycotoxin contamination of food and feed is a major global concern. Chronic or acute dietary exposure to contaminated food and feed can negatively affect both human and animal health. Contamination occurs through plant infection by toxigenic fungi, primarily Aspergillus and Fusarium spp., either before or after harvest. Despite the application of various management strategies, controlling these pathogens remains a major challenge primarily because of their ability to adapt to environmental changes and selection pressures. Understanding the genetic structure of plant pathogen populations is pivotal for gaining new insights into their biology and epidemiology, as well as for understanding the mechanisms behind their adaptability. Such deeper understanding is crucial for developing effective and preemptive management strategies tailored to the evolving nature of pathogenic populations. This review focuses on the population-level variations within the two most economically significant toxigenic fungal genera according to space, host, and pathogenicity. Outcomes in terms of migration patterns, gene flow within populations, mating abilities, and the potential for host jumps are examined. We also discuss effective yet often underutilized applications of population genetics and genomics to address practical challenges in the epidemiology and disease control of toxigenic fungi.
Collapse
Affiliation(s)
- Toan Bao Hung Nguyen
- Univ Brest, INRAE, Laboratoire Universitaire de Biodiversité et Écologie Microbienne, Plouzané, France
| | | | - Jean-Luc Jany
- Univ Brest, INRAE, Laboratoire Universitaire de Biodiversité et Écologie Microbienne, Plouzané, France
| | - Gaétan le Floch
- Univ Brest, INRAE, Laboratoire Universitaire de Biodiversité et Écologie Microbienne, Plouzané, France
| | - Adeline Picot
- Univ Brest, INRAE, Laboratoire Universitaire de Biodiversité et Écologie Microbienne, Plouzané, France
| |
Collapse
|
14
|
Schreiber M, Jayakodi M, Stein N, Mascher M. Plant pangenomes for crop improvement, biodiversity and evolution. Nat Rev Genet 2024; 25:563-577. [PMID: 38378816 DOI: 10.1038/s41576-024-00691-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/14/2023] [Indexed: 02/22/2024]
Abstract
Plant genome sequences catalogue genes and the genetic elements that regulate their expression. Such inventories further research aims as diverse as mapping the molecular basis of trait diversity in domesticated plants or inquiries into the origin of evolutionary innovations in flowering plants millions of years ago. The transformative technological progress of DNA sequencing in the past two decades has enabled researchers to sequence ever more genomes with greater ease. Pangenomes - complete sequences of multiple individuals of a species or higher taxonomic unit - have now entered the geneticists' toolkit. The genomes of crop plants and their wild relatives are being studied with translational applications in breeding in mind. But pangenomes are applicable also in ecological and evolutionary studies, as they help classify and monitor biodiversity across the tree of life, deepen our understanding of how plant species diverged and show how plants adapt to changing environments or new selection pressures exerted by human beings.
Collapse
Affiliation(s)
- Mona Schreiber
- Department of Biology, University of Marburg, Marburg, Germany
| | - Murukarthick Jayakodi
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | - Nils Stein
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
- Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Martin Mascher
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany.
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany.
| |
Collapse
|
15
|
Gong S, Gan H, Chu J, Wang Z, Sun J. A chromosome-level genome assembly provides insights into the local adaptation of Tamarix austromongolica in the Yellow River Basin, China. DNA Res 2024; 31:dsae021. [PMID: 38946223 PMCID: PMC11306577 DOI: 10.1093/dnares/dsae021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 06/06/2024] [Accepted: 06/29/2024] [Indexed: 07/02/2024] Open
Abstract
Tamarix austromongolica is endemic to the Yellow River Basin and has adapted to diverse ecological settings in the region, including the arid areas of northwestern China and the saline soil regions of the Yellow River Delta. However, the genetic basis of its local adaptation remains unclear. We report a chromosome-level assembly of the T. austromongolica genome based on PacBio high-fidelity sequencing and Hi-C technology. The 12 pseudochromosomes cover 98.44% of the 1.32 Gb assembly, with a contig N50 of 52.57 Mb and a BUSCO score of 98.2%. The genome comprises 913.6 Mb (68.83%) of repetitive sequences and 22,374 protein-coding genes. Genome evolution analyses suggest that genes under positive selection and significantly expanded gene families have facilitated T. austromongolica's adaptability to diverse environmental factors and high resistance to diseases. Using genotyping-by-sequencing, we conducted population structure and selection analyses of 114 samples from 15 sites. Two genetic groups were identified, and 114 and 289 candidate genes were assigned to the populations of the northwestern and eastern parts of the Yellow River, respectively. Furthermore, we discovered numerous candidate genes associated with high-altitude adaptability and salt tolerance. This research provides valuable genomic resources for the evolutionary study and genetic breeding of tamarisk.
Collapse
Affiliation(s)
- Shuai Gong
- Coastal Forestry Research Center of National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, PR China
| | - Honghao Gan
- Coastal Forestry Research Center of National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, PR China
| | - Jianmin Chu
- Coastal Forestry Research Center of National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, PR China
- Experimental Center of Desert Forestry, Chinese Academy of Forestry, Dengkou 015200, PR China
| | - Zhaoshan Wang
- Coastal Forestry Research Center of National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, PR China
| | - Jia Sun
- Coastal Forestry Research Center of National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, PR China
| |
Collapse
|
16
|
Doublet M, Degalez F, Lagarrigue S, Lagoutte L, Gueret E, Allais S, Lecerf F. Variant calling and genotyping accuracy of ddRAD-seq: Comparison with 20X WGS in layers. PLoS One 2024; 19:e0298565. [PMID: 39058708 PMCID: PMC11280156 DOI: 10.1371/journal.pone.0298565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 05/23/2024] [Indexed: 07/28/2024] Open
Abstract
Whole Genome Sequencing (WGS) remains a costly or unsuitable method for routine genotyping of laying hens. Until now, breeding companies have been using or developing SNP chips. Nevertheless, alternatives methods based on sequencing have been developed. Among these, reduced representation sequencing approaches can offer sequencing quality and cost-effectiveness by reducing the genomic regions covered by sequencing. The aim of this study was to evaluate the ability of double digested Restriction site Associated DNA sequencing (ddRAD-seq) to identify and genotype SNPs in laying hens, by comparison with a presumed reliable WGS approach. Firstly, the sensitivity and precision of variant calling and the genotyping reliability of ddRADseq were determined. Next, the SNP Call Rate (CRSNP) and mean depth of sequencing per SNP (DPSNP) were compared between both methods. Finally, the effect of multiple combinations of thresholds for these parameters on genotyping reliability and amount of remaining SNPs in ddRAD-seq was studied. In raw form, the ddRAD-seq identified 349,497 SNPs evenly distributed on the genome with a CRSNP of 0.55, a DPSNP of 11X and a mean genotyping reliability rate per SNP of 80%. Considering genomic regions covered by expected enzymatic fragments (EFs), the sensitivity of the ddRAD-seq was estimated at 32.4% and its precision at 96.4%. The low CRSNP and DPSNP values were explained by the detection of SNPs outside the EFs theoretically generated by the ddRAD-seq protocol. Indeed, SNPs outside the EFs had significantly lower CRSNP (0.25) and DPSNP (1X) values than SNPs within the EFs (0.7 and 17X, resp.). The study demonstrated the relationship between CRSNP, DPSNP, genotyping reliability and the number of SNPs retained, to provide a decision-support tool for defining filtration thresholds. Severe quality control over ddRAD-seq data allowed to retain a minimum of 40% of the SNPs with a CcR of 98%. Then, ddRAD-seq was defined as a suitable method for variant calling and genotyping in layers.
Collapse
Affiliation(s)
| | | | | | | | - Elise Gueret
- MGX-Montpellier GenomiX, Univ. Montpellier, CNRS, INSERM, Montpellier, France
| | | | | |
Collapse
|
17
|
Guo S, Tian M, Du H, Liu S, Yu R, Shen H. Quantitative Trait Loci Mapping and Comparative Transcriptome Analysis of Fruit Weight (FW) in Watermelon ( Citrullus lanatus L.). Genes (Basel) 2024; 15:933. [PMID: 39062712 PMCID: PMC11276344 DOI: 10.3390/genes15070933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/08/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
The watermelon (Citrullus lanatus L.) holds substantial economic value as a globally cultivated horticultural crop. However, the genetic architecture of watermelon fruit weight (FW) remains poorly understood. In this study, we used sh14-11 with small fruit and N14 with big fruit to construct 100 recombinant inbred lines (RILs). Based on whole-genome resequencing (WGR), 218,127 single nucleotide polymorphisms (SNPs) were detected to construct a high-quality genetic map. After quantitative trait loci (QTL) mapping, a candidate interval of 31-38 Mb on chromosome 2 was identified for FW. Simultaneously, the bulked segregant analysis (BSA) in the F2 population corroborated the identification of the same interval, encompassing the homologous gene linked to the known FW-related gene fas. Additionally, RNA-seq was carried out across 11 tissues from sh14-11 and N14, revealing expression profiles that identified 1695 new genes and corrected the annotation of 2941 genes. Subsequent differential expression analysis unveiled 8969 differentially expressed genes (DEGs), with 354 of these genes exhibiting significant differences across four key developmental stages. The integration of QTL mapping and differential expression analysis facilitated the identification of 14 FW-related genes, including annotated TGA and NAC transcription factors implicated in fruit development. This combined approach offers valuable insights into the genetic basis of FW, providing crucial resources for enhancing watermelon cultivation.
Collapse
Affiliation(s)
- Song Guo
- Horticulture College, China Agricultural University, Beijing 100193, China;
| | - Mei Tian
- Institute of Horticultural Research, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan 750002, China; (M.T.); (H.D.); (S.L.)
| | - Huiying Du
- Institute of Horticultural Research, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan 750002, China; (M.T.); (H.D.); (S.L.)
| | - Shengfeng Liu
- Institute of Horticultural Research, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan 750002, China; (M.T.); (H.D.); (S.L.)
| | - Rong Yu
- Institute of Horticultural Research, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan 750002, China; (M.T.); (H.D.); (S.L.)
| | - Huolin Shen
- Horticulture College, China Agricultural University, Beijing 100193, China;
| |
Collapse
|
18
|
Cho MS, Kim Y, Kim SH, Jeon JH, Yang J, Kim SC. Phylogenetic relationships and genetic diversity of the Korean endemic Phedimus latiovalifolius (Crassulaceae) and its close relatives. Sci Rep 2024; 14:16255. [PMID: 39009598 PMCID: PMC11251145 DOI: 10.1038/s41598-024-63272-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 05/27/2024] [Indexed: 07/17/2024] Open
Abstract
Phedimus latiovalifolius (Y.N.Lee) D.C.Son & H.J.Kim is exclusively distributed in the high mountains in the Korean Peninsula, mainly along the Baekdudaegan mountain range. Despite its morphological and distributional distinction from other Phedimus Raf. species, its taxonomic identity and phylogenetic relationship with congeneric species remain unclear. This study employs genotyping-by-sequencing-derived genome-wide single nucleotide polymorphisms to establish the monophyly of P. latiovalifolius and its relationship with closely related species. Genetic diversity and population differentiation of P. latiovalifolius are also assessed to provide baseline genetic information for future conservation and management strategies. Our phylogenetic analyses robustly demonstrate the monophyletic nature of P. latiovalifolius, with P. aizoon (L.) 't Hart identified as its closest sister lineage. There is no genetic evidence supporting a hybrid origin of P. latiovalifolius from P. aizoon involving either P. ellacombeanus (Praeger) 't Hart or P. kamtschaticus (Fisch.) 't Hart. Population genetic analyses reveal two major groups within P. latiovalifolius. A higher genetic variation is observed in P. ellacombeanus than in the congeneric species. Notably, most of the genetic variation exists within P. latiovalifolius populations. Given its distribution and the potential role of Baekdudaegan as an East Asian Pleistocene refugia, P. latiovalifolius could be considered rare and endemic, persisting in the refugium across glacial/interglacial cycles.
Collapse
Affiliation(s)
- Myong-Suk Cho
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Yongsung Kim
- Honam National Institute of Biological Resources, Mokpo, 58762, Korea
| | - Seon-Hee Kim
- Department of Botany, Graduate School of Science, Kyoto University, Sakyo-Ku, Kyoto, 606-8502, Japan
| | - Ji-Hyeon Jeon
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - JiYoung Yang
- Institute for Dok-Do and Ulleung-Do Island, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Seung-Chul Kim
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| |
Collapse
|
19
|
Valdés-Florido A, González-Toral C, Maguilla E, Cires E, Díaz-Lifante Z, Andrés-Camacho C, Nieto Feliner G, Arroyo J, Escudero M. Polyploidy and hybridization in the Mediterranean: unravelling the evolutionary history of Centaurium (Gentianaceae). ANNALS OF BOTANY 2024; 134:247-262. [PMID: 38687133 PMCID: PMC11232519 DOI: 10.1093/aob/mcae066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 04/29/2024] [Indexed: 05/02/2024]
Abstract
BACKGROUND AND AIMS Polyploidy is considered one of the main mechanisms of plant evolution and speciation. In the Mediterranean Basin, polyploidy has contributed to making this region a biodiversity hotspot, along with its geological and climatic history and other ecological and biogeographical factors. The Mediterranean genus Centaurium (Gentianaceae) comprises ~25 species, of which 60 % are polyploids, including tetraploids and hexaploids. To date, the evolutionary history of centauries has been studied using Sanger sequencing phylogenies, which have been insufficient to fully understand the phylogenetic relationships in this lineage. The goal of this study is to gain a better understanding of the evolutionary history of Centaurium by exploring the mechanisms that have driven its diversification, specifically hybridization and polyploidy. We aim to identify the parentage of hybrid species, at the species or clade level, as well as assessing whether morphological traits are associated with particular ploidy levels. METHODS We sequenced RADseq markers from 42 samples of 28 Centaurium taxa, and performed phylogenomic analyses using maximum likelihood, summary coalescent SVDquartets and Neighbor-Net approaches. To identify hybrid taxa, we used PhyloNetworks and the fastSTRUCTURE algorithm. To infer the putative parental species of the allopolyploids, we employed genomic analyses (SNIPloid). The association between different traits and particular ploidy levels was explored with non-metric multidimensional scaling. KEY RESULTS Our phylogenetic analyses confirmed the long-suspected occurrence of recurrent hybridization. The allopolyploid origin of the tetraploid C. serpentinicola and the hexaploids C. mairei, C. malzacianum and C. centaurioides was also confirmed, unlike that of C. discolor. We inferred additional signatures of hybridization events within the genus and identified morphological traits differentially distributed in different ploidy levels. CONCLUSIONS This study highlights the important role that hybridization has played in the evolution of a Mediterranean genus such as Centaurium, leading to a polyploid complex, which facilitated its diversification and may exemplify that of other Mediterranean groups.
Collapse
Affiliation(s)
- Ana Valdés-Florido
- Department of Plant Biology and Ecology, Faculty of Biology, University of Seville, Seville, 41012, Spain
| | | | - Enrique Maguilla
- Department of Molecular Biology and Biochemical Engineering, Pablo de Olavide University, Seville, 41013, Spain
| | - Eduardo Cires
- Department of Organisms and Systems Biology, University of Oviedo, Oviedo, 33071, Spain
- Institute of Natural Resources and Territorial Planning (INDUROT), Campus de Mieres, Mieres, 33600, Spain
| | - Zoila Díaz-Lifante
- Department of Plant Biology and Ecology, Faculty of Biology, University of Seville, Seville, 41012, Spain
| | - Cristina Andrés-Camacho
- Department of Plant Biology and Ecology, Faculty of Biology, University of Seville, Seville, 41012, Spain
| | | | - Juan Arroyo
- Department of Plant Biology and Ecology, Faculty of Biology, University of Seville, Seville, 41012, Spain
| | - Marcial Escudero
- Department of Plant Biology and Ecology, Faculty of Biology, University of Seville, Seville, 41012, Spain
| |
Collapse
|
20
|
Huang PH, Wang TR, Li M, Fang OY, Su RP, Meng HH, Song YG, Li J. Different reference genomes determine different results: Comparing SNP calling in RAD-seq of Engelhardia roxburghiana using different reference genomes. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 344:112109. [PMID: 38704094 DOI: 10.1016/j.plantsci.2024.112109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 04/23/2024] [Accepted: 04/30/2024] [Indexed: 05/06/2024]
Abstract
Advances in next-generation sequencing (NGS) have significantly reduced the cost and improved the efficiency of obtaining single nucleotide polymorphism (SNP) markers, particularly through restriction site-associated DNA sequencing (RAD-seq). Meanwhile, the progression in whole genome sequencing has led to the utilization of an increasing number of reference genomes in SNP calling processes. This study utilized RAD-seq data from 242 individuals of Engelhardia roxburghiana, a tropical tree of the walnut family (Juglandaceae), with SNP calling conducted using the STACKS pipeline. We aimed to compare both reference-based approaches, namely, employing a closely related species as the reference genome versus the species itself as the reference genome, to evaluate their respective merits and limitations. Our findings indicate a substantial discrepancy in the number of obtained SNPs between using a closely related species as opposed to the species itself as reference genomes, the former yielded approximately an order of magnitude fewer SNPs compared to the latter. While the missing rate of individuals and sites of the final SNPs obtained in the two scenarios showed no significant difference. The results showed that using the reference genome of the species itself tends to be prioritized in RAD-seq studies. However, if this is unavailable, considering closely related genomes is feasible due to their wide applicability and low missing rate as alternatives. This study contributes to enrich the understanding of the impact of SNP acquisition when utilizing different reference genomes.
Collapse
Affiliation(s)
- Pei-Han Huang
- Plant Phylogenetics and Conservation Group, Center for Integrative Conservation & Yunnan Key Laboratory for Conservation of Tropical Rainforests and Asian Elephants, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla 666303, China; Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai, 201602, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tian-Rui Wang
- Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai, 201602, China; Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Min Li
- Plant Phylogenetics and Conservation Group, Center for Integrative Conservation & Yunnan Key Laboratory for Conservation of Tropical Rainforests and Asian Elephants, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla 666303, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ou-Yan Fang
- Plant Phylogenetics and Conservation Group, Center for Integrative Conservation & Yunnan Key Laboratory for Conservation of Tropical Rainforests and Asian Elephants, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla 666303, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ren-Ping Su
- Plant Phylogenetics and Conservation Group, Center for Integrative Conservation & Yunnan Key Laboratory for Conservation of Tropical Rainforests and Asian Elephants, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla 666303, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hong-Hu Meng
- Plant Phylogenetics and Conservation Group, Center for Integrative Conservation & Yunnan Key Laboratory for Conservation of Tropical Rainforests and Asian Elephants, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla 666303, China; Southeast Asia Biodiversity Research Institute, Chinese Academy of Sciences, Nay Pyi Taw 05282, Myanmar.
| | - Yi-Gang Song
- Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai, 201602, China.
| | - Jie Li
- Plant Phylogenetics and Conservation Group, Center for Integrative Conservation & Yunnan Key Laboratory for Conservation of Tropical Rainforests and Asian Elephants, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla 666303, China.
| |
Collapse
|
21
|
Ning W, Meudt HM, Tate JA. A roadmap of phylogenomic methods for studying polyploid plant genera. APPLICATIONS IN PLANT SCIENCES 2024; 12:e11580. [PMID: 39184196 PMCID: PMC11342234 DOI: 10.1002/aps3.11580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 12/10/2023] [Accepted: 01/13/2024] [Indexed: 08/27/2024]
Abstract
Phylogenetic inference of polyploid species is the first step towards understanding their patterns of diversification. In this paper, we review the challenges and limitations of inferring species relationships of polyploid plants using traditional phylogenetic sequencing approaches, as well as the mischaracterization of the species tree from single or multiple gene trees. We provide a roadmap to infer interspecific relationships among polyploid lineages by comparing and evaluating the application of current phylogenetic, phylogenomic, transcriptomic, and whole-genome approaches using different sequencing platforms. For polyploid species tree reconstruction, we assess the following criteria: (1) the amount of prior information or tools required to capture the genetic region(s) of interest; (2) the probability of recovering homeologs for polyploid species; and (3) the time efficiency of downstream data analysis. Moreover, we discuss bioinformatic pipelines that can reconstruct networks of polyploid species relationships. In summary, although current phylogenomic approaches have improved our understanding of reticulate species relationships in polyploid-rich genera, the difficulties of recovering reliable orthologous genes and sorting all homeologous copies for allopolyploids remain a challenge. In the future, assembled long-read sequencing data will assist the recovery and identification of multiple gene copies, which can be particularly useful for reconstructing the multiple independent origins of polyploids.
Collapse
Affiliation(s)
- Weixuan Ning
- School of Natural SciencesMassey UniversityPalmerston North4442New Zealand
| | - Heidi M. Meudt
- Museum of New Zealand Te Papa TongarewaWellington6011New Zealand
| | - Jennifer A. Tate
- School of Natural SciencesMassey UniversityPalmerston North4442New Zealand
| |
Collapse
|
22
|
Dantas CWD, da Costa Neto SR, Alves SIA, da Costa Pinheiro K, De Los Santos EFF, Ramos RTJ. SATIN: a micro and mini satellite mining tool of total genome and coding regions with analysis of perfect repeats polymorphism in coding regions. BMC Bioinformatics 2024; 25:217. [PMID: 38890569 PMCID: PMC11186120 DOI: 10.1186/s12859-024-05842-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 06/12/2024] [Indexed: 06/20/2024] Open
Abstract
BACKGROUND Tandem repeats are specific sequences in genomic DNA repeated in tandem that are present in all organisms. Among the subcategories of TRs we have Satellite repeats, that is divided into macrosatellites, minisatellites, and microsatellites, being the last two of specific interest because they can identify polymorphisms between organisms due to their instability. Currently, most mining tools focus on Simple Sequence Repeats (SSR) mining, and only a few can identify SSRs in the coding regions. RESULTS We developed a microsatellite mining software called SATIN (Micro and Mini SATellite IdentificatioN tool) based on a new sliding window algorithm written in C and Python. It represents a new approach to SSR mining by addressing the limitations of existing tools, particularly in coding region SSR mining. SATIN is available at https://github.com/labgm/SATIN.git . It was shown to be the second fastest for perfect and compound SSR mining. It can identify SSRs from coding regions plus SSRs with motif sizes bigger than 6. Besides the SSR mining, SATIN can also analyze SSRs polymorphism on coding-regions from pre-determined groups, and identify SSRs differentially abundant among them on a per-gene basis. To validate, we analyzed SSRs from two groups of Escherichia coli (K12 and O157) and compared the results with 5 known SSRs from coding regions. SATIN identified all 5 SSRs from 237 genes with at least one SSR on it. CONCLUSIONS The SATIN is a novel microsatellite search software that utilizes an innovative sliding window technique based on a numerical list for repeat region search to identify perfect, and composite SSRs while generating comprehensible and analyzable outputs. It is a tool capable of using files in fasta or GenBank format as input for microsatellite mining, also being able to identify SSRs present in coding regions for GenBank files. In conclusion, we expect SATIN to help identify potential SSRs to be used as genetic markers.
Collapse
Affiliation(s)
| | | | - Sandy Ingrid Aguiar Alves
- Simulation and Computational Biology Laboratory, High Performance Computing Center, Federal University of Pará, Belém, Brazil
| | - Kenny da Costa Pinheiro
- Simulation and Computational Biology Laboratory, High Performance Computing Center, Federal University of Pará, Belém, Brazil
| | | | - Rommel Thiago Jucá Ramos
- Simulation and Computational Biology Laboratory, High Performance Computing Center, Federal University of Pará, Belém, Brazil.
| |
Collapse
|
23
|
Gómez-Palacio A, Morinaga G, Turner PE, Micieli MV, Elnour MAB, Salim B, Surendran SN, Ramasamy R, Powell JR, Soghigian J, Gloria-Soria A. Robustness in population-structure and demographic-inference results derived from the Aedes aegypti genotyping chip and whole-genome sequencing data. G3 (BETHESDA, MD.) 2024; 14:jkae082. [PMID: 38626295 PMCID: PMC11152066 DOI: 10.1093/g3journal/jkae082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 03/04/2024] [Accepted: 04/04/2024] [Indexed: 04/18/2024]
Abstract
The mosquito Aedes aegypti is the primary vector of many human arboviruses such as dengue, yellow fever, chikungunya, and Zika, which affect millions of people worldwide. Population genetic studies on this mosquito have been important in understanding its invasion pathways and success as a vector of human disease. The Axiom aegypti1 SNP chip was developed from a sample of geographically diverse A. aegypti populations to facilitate genomic studies on this species. We evaluate the utility of the Axiom aegypti1 SNP chip for population genetics and compare it with a low-depth shotgun sequencing approach using mosquitoes from the native (Africa) and invasive ranges (outside Africa). These analyses indicate that results from the SNP chip are highly reproducible and have a higher sensitivity to capture alternative alleles than a low-coverage whole-genome sequencing approach. Although the SNP chip suffers from ascertainment bias, results from population structure, ancestry, demographic, and phylogenetic analyses using the SNP chip were congruent with those derived from low-coverage whole-genome sequencing, and consistent with previous reports on Africa and outside Africa populations using microsatellites. More importantly, we identified a subset of SNPs that can be reliably used to generate merged databases, opening the door to combined analyses. We conclude that the Axiom aegypti1 SNP chip is a convenient, more accurate, low-cost alternative to low-depth whole-genome sequencing for population genetic studies of A. aegypti that do not rely on full allelic frequency spectra. Whole-genome sequencing and SNP chip data can be easily merged, extending the usefulness of both approaches.
Collapse
Affiliation(s)
- Andrés Gómez-Palacio
- Department of Entomology, Center for Vector Biology & Zoonotic Diseases, The Connecticut Agricultural Experiment Station, 123 Huntington St., New Haven, CT 06511, USA
- Laboratorio de Investigación en Genética Evolutiva, Universidad Pedagógica y Tecnológica de Colombia, Avenida Central del Norte 39-115, Boyacá 150003, Colombia
| | - Gen Morinaga
- Faculty of Veterinary Medicine, University of Calgary, 2500 University Drive NW., Calgary, AB 2TN 1N4, Canada
| | - Paul E Turner
- Department of Ecology and Evolutionary Biology, Yale University, 165 Prospect St., New Haven, CT 06511, USA
- Quantitative Biology Institute, Yale University, 260 Whitney Ave., New Haven, CT 06511, USA
| | - Maria Victoria Micieli
- Centro de Estudios Parasitológicos y de Vectores (CEPAVE), CONICET, Universidad Nacional de la Plata, Boulevard 120 s/n between Av. 60 and Calle 64, La Plata 1900, Argentina
| | - Mohammed-Ahmed B Elnour
- Department of Parasitology and Medical Entomology, Tropical Medicine Research Institute, National Center for Research, Khartoum 11111, Sudan
| | - Bashir Salim
- Faculty of Veterinary Medicine, Department of Parasitology, University of Khartoum, Khartoum North 11111, Sudan
- Camel Research Center, King Faisal University, P.O. Box. 400, Al-Ahsa 31982, Saudi Arabia
| | | | - Ranjan Ramasamy
- Department of Zoology, University of Jaffna, Jaffna 40000, Sri Lanka
| | - Jeffrey R Powell
- Department of Ecology and Evolutionary Biology, Yale University, 165 Prospect St., New Haven, CT 06511, USA
| | - John Soghigian
- Faculty of Veterinary Medicine, University of Calgary, 2500 University Drive NW., Calgary, AB 2TN 1N4, Canada
| | - Andrea Gloria-Soria
- Department of Entomology, Center for Vector Biology & Zoonotic Diseases, The Connecticut Agricultural Experiment Station, 123 Huntington St., New Haven, CT 06511, USA
- Department of Ecology and Evolutionary Biology, Yale University, 165 Prospect St., New Haven, CT 06511, USA
| |
Collapse
|
24
|
Aghogho CI, Kayondo SI, Eleblu SJY, Ige A, Asante I, Offei SK, Parkes E, Egesi C, Mbanjo EGN, Shah T, Kulakow P, Rabbi IY. Genome-wide association study for yield and quality of granulated cassava processed product. THE PLANT GENOME 2024; 17:e20469. [PMID: 38880944 DOI: 10.1002/tpg2.20469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 04/27/2024] [Accepted: 05/03/2024] [Indexed: 06/18/2024]
Abstract
The starchy storage roots of cassava are commonly processed into a variety of products, including cassava granulated processed products (gari). The commercial value of cassava roots depends on the yield and quality of processed products, directly influencing the acceptance of new varieties by farmers, processors, and consumers. This study aims to estimate genetic advance through phenotypic selection and identify genomic regions associated and candidate genes linked with gari yield and quality. Higher single nucleotide polymorphism (SNP)-based heritability estimates compared to broad-sense heritability estimates were observed for most traits highlighting the influence of genetic factors on observed variation. Using genome-wide association analysis of 188 clones, genotyped using 53,150 genome-wide SNPs, nine SNPs located on seven chromosomes were significantly associated with peel loss, gari yield, color parameters for gari and eba, bulk density, swelling index, and textural properties of eba. Future research will focus on validating and understanding the functions of identified genes and their influence on gari yield and quality traits.
Collapse
Affiliation(s)
- Cynthia Idhigu Aghogho
- West Africa Centre for Crop Improvement (WACCI), College of Basic and Applied Sciences, University of Ghana, Legon, Ghana
- International Institute of Tropical Agriculture (IITA), Ibadan, Nigeria
| | - Siraj Ismail Kayondo
- International Institute of Tropical Agriculture (IITA), Eastern Africa Hub, Dar es Salaam, Tanzania
| | - Saviour J Y Eleblu
- West Africa Centre for Crop Improvement (WACCI), College of Basic and Applied Sciences, University of Ghana, Legon, Ghana
| | - Adenike Ige
- Department of Agronomy and Plant Genetics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Isaac Asante
- West Africa Centre for Crop Improvement (WACCI), College of Basic and Applied Sciences, University of Ghana, Legon, Ghana
| | - Samuel K Offei
- West Africa Centre for Crop Improvement (WACCI), College of Basic and Applied Sciences, University of Ghana, Legon, Ghana
| | - Elizabeth Parkes
- International Institute of Tropical Agriculture (IITA), Ibadan, Nigeria
| | - Chiedozie Egesi
- National Root Crops Research Institute, Umuahia, Nigeria
- Plant Breeding and Genetics Section, School of Integrative Plant Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, New York, USA
| | | | - Trushar Shah
- International Institute of Tropical Agriculture (IITA), c/o ILRI, Nairobi, Kenya
| | - Peter Kulakow
- International Institute of Tropical Agriculture (IITA), Ibadan, Nigeria
| | - Ismail Y Rabbi
- International Institute of Tropical Agriculture (IITA), Ibadan, Nigeria
| |
Collapse
|
25
|
Tung KF, Pan CY, Lin WC. Housekeeping protein-coding genes interrogated with tissue and individual variations. Sci Rep 2024; 14:12454. [PMID: 38816574 PMCID: PMC11139953 DOI: 10.1038/s41598-024-63269-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 05/27/2024] [Indexed: 06/01/2024] Open
Abstract
Housekeeping protein-coding genes are stably expressed genes in cells and tissues that are thought to be engaged in fundamental cellular biological functions. They are often utilized as normalization references in molecular biology research and are especially important in integrated bioinformatic investigations. Prior studies have examined human housekeeping protein-coding genes by analyzing various gene expression datasets. The inclusion of different tissue types significantly impacted the discovery of housekeeping genes. In this report, we investigated particularly individual human subject expression differences in protein-coding genes across different tissue types. We used GTEx V8 gene expression datasets obtained from more than 16,000 human normal tissue samples. Furthermore, the Gini index is utilized to investigate the expression variations of protein-coding genes between tissue and individual donor subjects. Housekeeping protein-coding genes found using Gini index profiles may vary depending on the tissue subtypes investigated, particularly given the diverse sample size collections across the GTEx tissue subtypes. We subsequently selected major tissues and identified subsets of housekeeping genes with stable expression levels among human donors within those tissues. In this work, we provide alternative sets of housekeeping protein-coding genes that show more consistent expression patterns in human subjects across major solid organs. Weblink: https://hpsv.ibms.sinica.edu.tw .
Collapse
Affiliation(s)
- Kuo-Feng Tung
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 115, Taiwan, R.O.C
| | - Chao-Yu Pan
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 115, Taiwan, R.O.C
| | - Wen-Chang Lin
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 115, Taiwan, R.O.C..
| |
Collapse
|
26
|
Wang D, Cheng B, Zhang J. High-density genetic map and quantitative trait loci map of skin color in hawthorn ( Crataegus pinnatifida bge. Var. major N.E.Br.). Front Genet 2024; 15:1405604. [PMID: 38873113 PMCID: PMC11169616 DOI: 10.3389/fgene.2024.1405604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 05/09/2024] [Indexed: 06/15/2024] Open
Abstract
Fruit skin color is an important trait of the hawthorn tree, which has an important influence on fruit quality. Crataegus pinnatifida Bge. var. Major N.E.Br. Is one of the most widely cultivated varieties in China and has a long history of medicinal use. In recent years, it has attracted the attention of the world due to its nutritional and medicinal values. Skin color is the focus of breeders and food processors. At present, skin color-related genes have still not been mapped. In this study, "Shandong Da Mianqiu" (♀, red skin color), "Da Huang Mianzha" (♂, yellow skin color) and 131 F1 hybrids were used to construct genetic map of hawthorn by RAD-seq, and QTL mapping was performed by combining these features with the hue angle and the observed color. In this study, 13,260 SNP was assigned to 17 linkage groups, with an integrated map covering 2,297.75 cM was constructed. A total of 5 QTLs related to hawthorn skin color were detected on LG1, LG3 and LG15. Whether hue angle or pericarp color acts as phenotype for QTL mapping, the candidate genes include bHLH086, WD repeat regions and Myb-like. bHLH, WD and Myb play an important role in the color regulation of Hawthorn skin color. These results lay a solid foundation for QTL mapping and molecular marker-assisted breeding of hawthorn.
Collapse
Affiliation(s)
- Dongsheng Wang
- Engineering Research Center of Chestnut Industry Technology, Ministry of Education, Hebei Normal University of Science and Technology, Qinhuangdao, China
| | - Beibei Cheng
- College of Horticulture Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao, China
- Hebei Key Laboratory of Horticultural Germplasm Excavation and Innovative Utilization, Qinhuangdao, China
- Hebei Higher Institute Application Technology Research and Development Center of Horticultural Plant Biological Breeding, Qinhuangdao, China
| | - Jijun Zhang
- College of Horticulture Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao, China
- Hebei Key Laboratory of Horticultural Germplasm Excavation and Innovative Utilization, Qinhuangdao, China
- Hebei Higher Institute Application Technology Research and Development Center of Horticultural Plant Biological Breeding, Qinhuangdao, China
| |
Collapse
|
27
|
Kazilas C, Dufresnes C, France J, Kalaentzis K, Martínez-Solano I, de Visser MC, Arntzen JW, Wielstra B. Spatial genetic structure in European marbled newts revealed with target enrichment by sequence capture. Mol Phylogenet Evol 2024; 194:108043. [PMID: 38382821 DOI: 10.1016/j.ympev.2024.108043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 12/21/2023] [Accepted: 02/18/2024] [Indexed: 02/23/2024]
Abstract
European marbled newts come in two species that have abutting ranges. The northern species, Triturus marmoratus, is found in France and the northern part of the Iberian Peninsula, whereas the southern species, T. pygmaeus, is found in the southwestern corner of the Iberian Peninsula. We study the intraspecific genetic differentiation of the group because morphological data show geographical variation and because the Iberian Peninsula is a recognized center of speciation and intraspecific genetic diversity for all kinds of organisms, amphibians included. We use target enrichment by sequence capture to generate c. 7 k nuclear DNA markers. We observe limited genetic exchange between the species, which confirms their distinctiveness. Both species show substantial genetic structuring that is only in part mirrored by morphological variation. Genetically differentiated groups are found in the south (T. marmoratus) and west (T. pygmaeus) of the species ranges. Our observations highlight the position of the Iberian Peninsula as a hotspot for genetic differentiation.
Collapse
Affiliation(s)
- Christos Kazilas
- Naturalis Biodiversity Center, P.O. Box 9517, 2300 RA Leiden, The Netherlands; Institute of Biology Leiden, Leiden University, P.O. Box 9505, 2300 RA Leiden, The Netherlands.
| | - Christophe Dufresnes
- LASER, College of Biology and the Environment, Nanjing Forestry University, Nanjing, People's Republic of China; Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum national d'Histoire naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, Paris, France
| | - James France
- Naturalis Biodiversity Center, P.O. Box 9517, 2300 RA Leiden, The Netherlands; Institute of Biology Leiden, Leiden University, P.O. Box 9505, 2300 RA Leiden, The Netherlands
| | - Konstantinos Kalaentzis
- Naturalis Biodiversity Center, P.O. Box 9517, 2300 RA Leiden, The Netherlands; Institute of Biology Leiden, Leiden University, P.O. Box 9505, 2300 RA Leiden, The Netherlands
| | - Iñigo Martínez-Solano
- Museo Nacional de Ciencias Naturales, MNCN-CSIC, c/ José Gutiérrez Abascal 2, 28006 Madrid, Spain
| | - Manon C de Visser
- Naturalis Biodiversity Center, P.O. Box 9517, 2300 RA Leiden, The Netherlands; Institute of Biology Leiden, Leiden University, P.O. Box 9505, 2300 RA Leiden, The Netherlands
| | - Jan W Arntzen
- Naturalis Biodiversity Center, P.O. Box 9517, 2300 RA Leiden, The Netherlands; Institute of Biology Leiden, Leiden University, P.O. Box 9505, 2300 RA Leiden, The Netherlands
| | - Ben Wielstra
- Naturalis Biodiversity Center, P.O. Box 9517, 2300 RA Leiden, The Netherlands; Institute of Biology Leiden, Leiden University, P.O. Box 9505, 2300 RA Leiden, The Netherlands
| |
Collapse
|
28
|
Cho S, Shin E, Park YG, Choi SH, Choe EK, Bae JH, Lee JE, Lee SD. A novel approach of kinship determination based on the physical length of genetically shared regions of chromosomes. Genes Genomics 2024; 46:577-587. [PMID: 38180716 PMCID: PMC11024047 DOI: 10.1007/s13258-023-01485-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 12/17/2023] [Indexed: 01/06/2024]
Abstract
BACKGROUND Determination of genetic relatedness between individuals plays a crucial role in resolving numerous civil cases involving familial relationships and in forensic investigation concerning missing persons. Short tandem repeats (STRs), known for their high degree of DNA polymorphism, have traditionally been the primary choice of DNA markers in genetic testing, but their application for kinships testing is limited to cases involving close kinship. SNPs have emerged as promising supplementary markers for kinship determination. Nevertheless, the challenging remains in discriminating between third-degree or more distant relatives, such as first cousins, using SNPs. OBJECTIVE To investigate a kinship analysis method for distant degree of familial relationships using high-density SNP data. METHODS A high-density SNP data from 337 individuals of Korean families using Affymetrix Axiom KORV1.0-96 Array was obtained for this study. SNPs were aligned by chromosomal positions, and identity-by-state (IBS) was determined, and then shared regions as consecutive SNPs with IBS of 1 or 2 were investigated. The physical lengths of these IBS segments were measured and summed them to create an Index, as a measure of kinship. RESULTS The kinship was determined by the physical length of shared chromosomal regions that are distinguished by each kinship. Using this method, the relationship was able be distinguished up to the fourth degree of kinship, and non-relatives were clearly distinguished from true relatives. We also found a potential for this approach to be used universally, regardless of microarray platforms for SNP genotyping and populations. CONCLUSION This method has a potential to determine the different degree of kinship between individuals and to distinguish non-relatives from true relatives, which can be of great help for practical applications in kinship determination.
Collapse
Affiliation(s)
- Sohee Cho
- Institute of Forensic and Anthropological Science, Seoul National University Medical Research Center, Seoul, South Korea
| | | | | | - Seung Ho Choi
- Department of Internal Medicine, Seoul National University Hospital Healthcare System Gangnam Center, Seoul, South Korea
| | - Eun Kyung Choe
- Department of Internal Medicine, Seoul National University Hospital Healthcare System Gangnam Center, Seoul, South Korea
| | - Jung Ho Bae
- Department of Internal Medicine, Seoul National University Hospital Healthcare System Gangnam Center, Seoul, South Korea
| | | | - Soong Deok Lee
- Institute of Forensic and Anthropological Science, Seoul National University Medical Research Center, Seoul, South Korea.
- Department of Forensic Medicine, Seoul National University College of Medicine, Seoul, South Korea.
| |
Collapse
|
29
|
Pal L, Sandhu SK, Kaur J, Bhatia D. Deciphering variations, identification of marker-trait associations and candidate genes for seed oil content under terminal heat stress in Indian mustard ( Brassica juncea L. Czern & Coss) germplasm stock. 3 Biotech 2024; 14:140. [PMID: 38689736 PMCID: PMC11056352 DOI: 10.1007/s13205-024-03985-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 04/03/2024] [Indexed: 05/02/2024] Open
Abstract
This research paper investigates the variability in seed oil content (SOC) in Indian mustard (Brassica juncea L.) under terminal heat stress (THS) conditions. A genetic stock of 488 genotypes of B. juncea was evaluated over two years and grouped into five classes based on the reduction in oil content under THS compared to normal sown crop. Based on heat susceptibility index (HSI), a diverse panel of 96 genotypes was selected and evaluated under THS. Twenty-two heat-tolerant donor genotypes were identified, including introgression lines derived from B. tournefortii, B. carinata and Erucastrum cardaminoides. This study is the first to report on marker-trait associations for SOC in B. juncea under THS using a GWAS approach. Furthermore, candidate genes associated with abiotic stress tolerance and lipid metabolism were identified near the significant SNPs, emphasizing their role in SOC regulation under stress. Notable candidate genes include BjuA003240 (encoding for alcohol-forming fatty acyl-CoA reductase), BjuA003242 (involving in lipid biosynthesis), BjuA003244 (associated with mitochondrial functions and stress tolerance), and BjuA003245 (related to MYB transcription factors regulating lipid biosynthesis). This study provides valuable insights into the genetic basis of SOC variation under THS in B. juncea, highlighting potential breeding targets for improved heat stress resilience in Indian mustard cultivation. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-024-03985-w.
Collapse
Affiliation(s)
- Lalit Pal
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, 141 004 Punjab India
| | - Surinder K. Sandhu
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, 141 004 Punjab India
| | - Jasneet Kaur
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, 141 004 Punjab India
| | - Dharminder Bhatia
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, 141 004 Punjab India
| |
Collapse
|
30
|
Paterson AH, Queitsch C. Genome organization and botanical diversity. THE PLANT CELL 2024; 36:1186-1204. [PMID: 38382084 PMCID: PMC11062460 DOI: 10.1093/plcell/koae045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 02/07/2024] [Accepted: 02/07/2024] [Indexed: 02/23/2024]
Abstract
The rich diversity of angiosperms, both the planet's dominant flora and the cornerstone of agriculture, is integrally intertwined with a distinctive evolutionary history. Here, we explore the interplay between angiosperm genome organization and botanical diversity, empowered by genomic approaches ranging from genetic linkage mapping to analysis of gene regulation. Commonality in the genetic hardware of plants has enabled robust comparative genomics that has provided a broad picture of angiosperm evolution and implicated both general processes and specific elements in contributing to botanical diversity. We argue that the hardware of plant genomes-both in content and in dynamics-has been shaped by selection for rather substantial differences in gene regulation between plants and animals such as maize and human, organisms of comparable genome size and gene number. Their distinctive genome content and dynamics may reflect in part the indeterminate development of plants that puts strikingly different demands on gene regulation than in animals. Repeated polyploidization of plant genomes and multiplication of individual genes together with extensive rearrangement and differential retention provide rich raw material for selection of morphological and/or physiological variations conferring fitness in specific niches, whether natural or artificial. These findings exemplify the burgeoning information available to employ in increasing knowledge of plant biology and in modifying selected plants to better meet human needs.
Collapse
Affiliation(s)
- Andrew H Paterson
- Plant Genome Mapping Laboratory, University of Georgia, Athens, GA, USA
| | - Christine Queitsch
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| |
Collapse
|
31
|
Wang X, Wang J, Xia X, Xu X, Li L, Cao S, Hao Y, Zhang L. Effect of genotyping errors on linkage map construction based on repeated chip analysis of two recombinant inbred line populations in wheat (Triticum aestivum L.). BMC PLANT BIOLOGY 2024; 24:306. [PMID: 38644480 PMCID: PMC11034145 DOI: 10.1186/s12870-024-05005-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 04/10/2024] [Indexed: 04/23/2024]
Abstract
Linkage maps are essential for genetic mapping of phenotypic traits, gene map-based cloning, and marker-assisted selection in breeding applications. Construction of a high-quality saturated map requires high-quality genotypic data on a large number of molecular markers. Errors in genotyping cannot be completely avoided, no matter what platform is used. When genotyping error reaches a threshold level, it will seriously affect the accuracy of the constructed map and the reliability of consequent genetic studies. In this study, repeated genotyping of two recombinant inbred line (RIL) populations derived from crosses Yangxiaomai × Zhongyou 9507 and Jingshuang 16 × Bainong 64 was used to investigate the effect of genotyping errors on linkage map construction. Inconsistent data points between the two replications were regarded as genotyping errors, which were classified into three types. Genotyping errors were treated as missing values, and therefore the non-erroneous data set was generated. Firstly, linkage maps were constructed using the two replicates as well as the non-erroneous data set. Secondly, error correction methods implemented in software packages QTL IciMapping (EC) and Genotype-Corrector (GC) were applied to the two replicates. Linkage maps were therefore constructed based on the corrected genotypes and then compared with those from the non-erroneous data set. Simulation study was performed by considering different levels of genotyping errors to investigate the impact of errors and the accuracy of error correction methods. Results indicated that map length and marker order differed among the two replicates and the non-erroneous data sets in both RIL populations. For both actual and simulated populations, map length was expanded as the increase in error rate, and the correlation coefficient between linkage and physical maps became lower. Map quality can be improved by repeated genotyping and error correction algorithm. When it is impossible to genotype the whole mapping population repeatedly, 30% would be recommended in repeated genotyping. The EC method had a much lower false positive rate than did the GC method under different error rates. This study systematically expounded the impact of genotyping errors on linkage analysis, providing potential guidelines for improving the accuracy of linkage maps in the presence of genotyping errors.
Collapse
Affiliation(s)
- Xinru Wang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081, China
| | - Jiankang Wang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081, China
| | - Xianchun Xia
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081, China
| | - Xiaowan Xu
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081, China
| | - Lingli Li
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081, China
| | - Shuanghe Cao
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081, China.
| | - Yuanfeng Hao
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081, China.
| | - Luyan Zhang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081, China.
| |
Collapse
|
32
|
Garcia CB, da Silva AV, de Carvalho IAS, do Nascimento WF, Ramos SLF, Rodrigues DP, Zucchi MI, Costa FM, Alves-Pereira A, Batista CEDA, Amaral DD, Veasey EA. Low Diversity and High Genetic Structure for Platonia insignis Mart., an Endangered Fruit Tree Species. PLANTS (BASEL, SWITZERLAND) 2024; 13:1033. [PMID: 38611562 PMCID: PMC11013813 DOI: 10.3390/plants13071033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 02/17/2024] [Accepted: 03/06/2024] [Indexed: 04/14/2024]
Abstract
Platonia insignis is a fruit tree native to Brazil of increasing economic importance, with its pulp trading among the highest market values. This study aimed to evaluate the structure and genomic diversity of P. insignis (bacurizeiro) accessions from six locations in the Brazilian States of Roraima, Amazonas, Pará (Amazon biome), and Maranhão (Cerrado biome). A total of 2031 SNP markers were obtained using genotyping-by-sequencing (GBS), from which 625 outlier SNPs were identified. High genetic structure was observed, with most of the genetic variability (59%) concentrated among locations, mainly between biomes (Amazon and Cerrado). A positive and significant correlation (r = 0.85; p < 0.005) was detected between genetic and geographic distances, indicating isolation by distance. The highest genetic diversity was observed for the location in the Cerrado biome (HE = 0.1746; HO = 0.2078). The locations in the Amazon biome showed low genetic diversity indexes with significant levels of inbreeding. The advance of urban areas, events of burning, and expansion of agricultural activities are most probably the main factors for the genetic diversity reduction of P. insignis. Approaches to functional analysis showed that most of the outlier loci found may be related to genes involved in cellular and metabolic processes.
Collapse
Affiliation(s)
- Caroline Bertocco Garcia
- Genetics Department, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba 13418-900, SP, Brazil
| | - Allison Vieira da Silva
- Genetics Department, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba 13418-900, SP, Brazil
| | | | | | | | | | | | - Flaviane Malaquias Costa
- Genetics Department, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba 13418-900, SP, Brazil
| | | | | | | | - Elizabeth Ann Veasey
- Genetics Department, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba 13418-900, SP, Brazil
| |
Collapse
|
33
|
Maier PA, Vandergast AG, Bohonak AJ. Yosemite toad (Anaxyrus canorus) transcriptome reveals interplay between speciation genes and adaptive introgression. Mol Ecol 2024; 33:e17317. [PMID: 38488670 DOI: 10.1111/mec.17317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 02/15/2024] [Accepted: 02/23/2024] [Indexed: 04/09/2024]
Abstract
Genomes are heterogeneous during the early stages of speciation, with small 'islands' of DNA appearing to reflect strong adaptive differences, surrounded by vast seas of relative homogeneity. As species diverge, secondary contact zones between them can act as an interface and selectively filter through advantageous alleles of hybrid origin. Such introgression is another important adaptive process, one that allows beneficial mosaics of recombinant DNA ('rivers') to flow from one species into another. Although genomic islands of divergence appear to be associated with reproductive isolation, and genomic rivers form by adaptive introgression, it is unknown whether islands and rivers tend to be the same or different loci. We examined three replicate secondary contact zones for the Yosemite toad (Anaxyrus canorus) using two genomic data sets and a morphometric data set to answer the questions: (1) How predictably different are islands and rivers, both in terms of genomic location and gene function? (2) Are the adaptive genetic trait loci underlying tadpole growth and development reliably islands, rivers or neither? We found that island and river loci have significant overlap within a contact zone, suggesting that some loci are first islands, and later are predictably converted into rivers. However, gene ontology enrichment analysis showed strong overlap in gene function unique to all island loci, suggesting predictability in overall gene pathways for islands. Genome-wide association study outliers for tadpole development included LPIN3, a lipid metabolism gene potentially involved in climate change adaptation, that is island-like for all three contact zones, but also appears to be introgressing (as a river) across one zone. Taken together, our results suggest that adaptive divergence and introgression may be more complementary forces than currently appreciated.
Collapse
Affiliation(s)
- Paul A Maier
- Department of Biology, San Diego State University, San Diego, California, USA
- Family TreeDNA, Gene by Gene, Houston, Texas, USA
| | - Amy G Vandergast
- Western Ecological Research Center, San Diego Field Station, U.S. Geological Survey, San Diego, California, USA
| | - Andrew J Bohonak
- Department of Biology, San Diego State University, San Diego, California, USA
| |
Collapse
|
34
|
Viana MC, Alves-Pereira A, Oliveira MAP, Valença-Barbosa C, Folly-Ramos E, Souza AP, Takiya DM, Almeida CE. Population genetics and genomics of Triatoma brasiliensis (Hemiptera, Reduviidae) in an area of high pressure of domiciliary infestation in Northeastern Brazil. Acta Trop 2024; 252:107144. [PMID: 38336343 DOI: 10.1016/j.actatropica.2024.107144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/05/2024] [Accepted: 02/06/2024] [Indexed: 02/12/2024]
Abstract
Understanding the population dynamics of vectors is crucial for effective control of vector-borne diseases. In the Northeastern Brazilian semi-arid region, Triatoma brasiliensis persists as the most significant Chagas disease vector, frequently displaying recurrent domiciliary infestations. This situation raises relevant public health concerns in the municipality of Currais Novos in the state of Rio Grande do Norte. This area has experienced a high prevalence of peridomiciliary re-infestations by T. brasiliensis, coupled with elevated rates of Trypanosoma cruzi infection. Therefore, we assessed the distribution of genetic variation via mitochondrial Cytochrome b gene (MT-CYB) sequencing (n = 109) and single nucleotide polymorphisms (SNPs, n = 86) to assess the gene flow among distinct populations distributed in varied geographic spots and environments, mainly sylvatic and peridomiciliary. Insects were collected from rural communities at Currais Novos, enclosed within a 16 km radius. Sampling included 13 populations: one intradomiciliary, eight peridomiciliary, and four sylvatic. Furthermore, an external population located 220 km from Currais Novos was also included in the study. The method employed to obtain SNP information relied on ddRAD-seq genotyping-by-sequencing (GBS), enabling a genome-wide analysis to infer genetic variation. Through AMOVA analysis of MT-CYB gene variation, we identified four distinct population groups with statistical significance (FCT= 0.42; p<0.05). We identified a total of 3,013 SNPs through GBS, with 11 loci showing putative signs of being under selection. The variation based on 3,002 neutral loci evidenced low genetic structuration based on low FST values (p>0.05), indicating local panmixia. However, resampling algorithms pointed out that three samples from the external population were assigned (>98 %) in a cluster contrasting from the ones putatively under local panmixia - validating the newly applied genome-wide marker for studies on the population genetics at finer-scale resolution for T. brasiliensis. The presence of population structuring in some of the sampled points, as suggested by the mitochondrial marker, leads us to assume that infestations were probably initiated by small populations of females - demographic event poses a risk for rapid re-infestations. The local panmictic pattern revealed by the GBS marker poses a challenge for vector control measures, as re-infestation foci may be distributed over a wide geographical and ecological range. In such instances, vectors exhibit reduced susceptibility to conventional insecticide spraying operations since sylvatic populations are beyond the reach of these interventions. The pattern of infestation exhibited by T. brasiliensis necessitates integrating innovative strategies into the existing control framework, holding the potential to create a more resilient and adaptive vector control program. In our dataset, the results demonstrated that the genetic signals from both markers were complementary. Therefore, it is essential to consider the nature and inheritance pattern of each marker when inferring the pattern of re-infestations.
Collapse
Affiliation(s)
- Maria Carolina Viana
- Instituto de Biologia (IB), Universidade de Campinas - UNICAMP, Campinas, Brazil; Programa de Pós-Graduação em Genética e Biologia Molecular, IB, UNICAMP; Coordenação de Prevenção e Vigilância do Câncer (CONPREV), Instituto Nacional de Câncer, Rio de Janeiro, Brazil
| | | | - Marcelo A P Oliveira
- Programa de Pós-Graduação em Genética- IB, Universidade Federal do Rio de Janeiro - UFRJ, Rio de Janeiro, Brazil
| | - Carolina Valença-Barbosa
- Instituto de Biologia (IB), Universidade de Campinas - UNICAMP, Campinas, Brazil; Grupo Triatomíneos, Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Fiocruz, Brazil
| | | | | | | | - Carlos E Almeida
- Instituto de Biologia (IB), Universidade de Campinas - UNICAMP, Campinas, Brazil; Programa de Pós-Graduação em Genética e Biologia Molecular, IB, UNICAMP; Laboratorio de Entomologia, Instituto de Biologia, UFRJ.
| |
Collapse
|
35
|
Xie K, Ning C, Yang A, Zhang Q, Wang D, Fan X. Resequencing Analyses Revealed Genetic Diversity and Selection Signatures during Rabbit Breeding and Improvement. Genes (Basel) 2024; 15:433. [PMID: 38674368 PMCID: PMC11049387 DOI: 10.3390/genes15040433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/23/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
Domestication has shaped the diverse characteristics of rabbits, including coat color, fur structure, body size, and various physiological traits. Utilizing whole-genome resequencing (DNBSEQ-T7), we analyzed the genetic diversity, population structure, and genomic selection across 180 rabbits from 17 distinct breeds to uncover the genetic basis of these traits. We conducted whole-genome sequencing on 17 rabbit breeds, identifying 17,430,184 high-quality SNPs and analyzing genomic diversity, patterns of genomic variation, population structure, and selection signatures related to coat color, coat structure, long hair, body size, reproductive capacity, and disease resistance. Through PCA and NJ tree analyses, distinct clusters emerged among Chinese indigenous rabbits, suggesting varied origins and domestication histories. Selective sweep testing pinpointed regions and genes linked to domestication and key morphological and economic traits, including those affecting coat color (TYR, ASIP), structure (LIPH), body size (INSIG2, GLI3), fertility (EDNRA, SRD5A2), heat stress adaptation (PLCB1), and immune response (SEC31A, CD86, LAP3). Our study identified key genomic signatures of selection related to traits such as coat color, fur structure, body size, and fertility; these findings highlight the genetic basis underlying phenotypic diversification in rabbits and have implications for breeding programs aiming to improve productive, reproductive, and adaptive traits. The detected genomic signatures of selection also provide insights into rabbit domestication and can aid conservation efforts for indigenous breeds.
Collapse
Affiliation(s)
- Kerui Xie
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai’an 271018, China;
| | - Chao Ning
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai’an 271018, China; (C.N.); (Q.Z.)
| | - Aiguo Yang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai’an 271018, China; (C.N.); (Q.Z.)
| | - Qin Zhang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai’an 271018, China; (C.N.); (Q.Z.)
| | - Dan Wang
- Key Laboratory of Efficient Utilization of Non-Grain Feed Resources (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai’an 271018, China
| | - Xinzhong Fan
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai’an 271018, China;
| |
Collapse
|
36
|
Aguirre NC, Villalba PV, García MN, Filippi CV, Rivas JG, Martínez MC, Acuña CV, López AJ, López JA, Pathauer P, Palazzini D, Harrand L, Oberschelp J, Marcó MA, Cisneros EF, Carreras R, Martins Alves AM, Rodrigues JC, Hopp HE, Grattapaglia D, Cappa EP, Paniego NB, Marcucci Poltri SN. Comparison of ddRADseq and EUChip60K SNP genotyping systems for population genetics and genomic selection in Eucalyptus dunnii (Maiden). Front Genet 2024; 15:1361418. [PMID: 38606359 PMCID: PMC11008695 DOI: 10.3389/fgene.2024.1361418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 02/19/2024] [Indexed: 04/13/2024] Open
Abstract
Eucalyptus dunnii is one of the most important Eucalyptus species for short-fiber pulp production in regions where other species of the genus are affected by poor soil and climatic conditions. In this context, E. dunnii holds promise as a resource to address and adapt to the challenges of climate change. Despite its rapid growth and favorable wood properties for solid wood products, the advancement of its improvement remains in its early stages. In this work, we evaluated the performance of two single nucleotide polymorphism, (SNP), genotyping methods for population genetics analysis and Genomic Selection in E. dunnii. Double digest restriction-site associated DNA sequencing (ddRADseq) was compared with the EUChip60K array in 308 individuals from a provenance-progeny trial. The compared SNP set included 8,011 and 19,008 informative SNPs distributed along the 11 chromosomes, respectively. Although the two datasets differed in the percentage of missing data, genome coverage, minor allele frequency and estimated genetic diversity parameters, they revealed a similar genetic structure, showing two subpopulations with little differentiation between them, and low linkage disequilibrium. GS analyses were performed for eleven traits using Genomic Best Linear Unbiased Prediction (GBLUP) and a conventional pedigree-based model (ABLUP). Regardless of the SNP dataset, the predictive ability (PA) of GBLUP was better than that of ABLUP for six traits (Cellulose content, Total and Ethanolic extractives, Total and Klason lignin content and Syringyl and Guaiacyl lignin monomer ratio). When contrasting the SNP datasets used to estimate PAs, the GBLUP-EUChip60K model gave higher and significant PA values for six traits, meanwhile, the values estimated using ddRADseq gave higher values for three other traits. The PAs correlated positively with narrow sense heritabilities, with the highest correlations shown by the ABLUP and GBLUP-EUChip60K. The two genotyping methods, ddRADseq and EUChip60K, are generally comparable for population genetics and genomic prediction, demonstrating the utility of the former when subjected to rigorous SNP filtering. The results of this study provide a basis for future whole-genome studies using ddRADseq in non-model forest species for which SNP arrays have not yet been developed.
Collapse
Affiliation(s)
| | | | - Martín Nahuel García
- Instituto de Agrobiotecnología y Biología Molecular, UEDD INTA-CONICET, Hurlingham, Argentina
| | - Carla Valeria Filippi
- Instituto de Agrobiotecnología y Biología Molecular, UEDD INTA-CONICET, Hurlingham, Argentina
- Laboratorio de Bioquímica, Departamento de Biología Vegetal, Facultad de Agronomía, Universidad de la República, Montevideo, Uruguay
| | - Juan Gabriel Rivas
- Instituto de Agrobiotecnología y Biología Molecular, UEDD INTA-CONICET, Hurlingham, Argentina
| | - María Carolina Martínez
- Instituto de Agrobiotecnología y Biología Molecular, UEDD INTA-CONICET, Hurlingham, Argentina
| | - Cintia Vanesa Acuña
- Instituto de Agrobiotecnología y Biología Molecular, UEDD INTA-CONICET, Hurlingham, Argentina
| | - Augusto J. López
- Estación Experimental Agropecuaria de Bella Vista, Instituto Nacional de Tecnología Agropecuaria, Bella Vista, Argentina
| | - Juan Adolfo López
- Estación Experimental Agropecuaria de Bella Vista, Instituto Nacional de Tecnología Agropecuaria, Bella Vista, Argentina
| | - Pablo Pathauer
- Instituto de Recursos Biológicos, Instituto Nacional de Tecnología Agropecuaria, Hurlingham, Argentina
| | - Dino Palazzini
- Instituto de Recursos Biológicos, Instituto Nacional de Tecnología Agropecuaria, Hurlingham, Argentina
| | - Leonel Harrand
- Estación Experimental Agropecuaria de Concordia, Instituto Nacional de Tecnología Agropecuaria, Concordia, Argentina
| | - Javier Oberschelp
- Estación Experimental Agropecuaria de Concordia, Instituto Nacional de Tecnología Agropecuaria, Concordia, Argentina
| | - Martín Alberto Marcó
- Estación Experimental Agropecuaria de Concordia, Instituto Nacional de Tecnología Agropecuaria, Concordia, Argentina
| | - Esteban Felipe Cisneros
- Facultad de Ciencias Forestales, Universidad Nacional de Santiago del Estero (UNSE), Santiago del Estero, Argentina
| | - Rocío Carreras
- Facultad de Ciencias Forestales, Universidad Nacional de Santiago del Estero (UNSE), Santiago del Estero, Argentina
| | - Ana Maria Martins Alves
- Centro de Estudos Florestais e Laboratório Associado TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, Lisboa, Portugal
| | - José Carlos Rodrigues
- Centro de Estudos Florestais e Laboratório Associado TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, Lisboa, Portugal
| | - H. Esteban Hopp
- Instituto de Agrobiotecnología y Biología Molecular, UEDD INTA-CONICET, Hurlingham, Argentina
| | - Dario Grattapaglia
- Empresa Brasileira de Pesquisa Agropecuária (EMBRAPA), Recursos Genéticos e Biotecnologia, Brasilia, Brazil
| | - Eduardo Pablo Cappa
- Instituto de Recursos Biológicos, Instituto Nacional de Tecnología Agropecuaria, Hurlingham, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Norma Beatriz Paniego
- Instituto de Agrobiotecnología y Biología Molecular, UEDD INTA-CONICET, Hurlingham, Argentina
| | | |
Collapse
|
37
|
Raggi L, Caproni L, Ciancaleoni S, D'Amato R, Businelli D, Negri V. Investigating the genetic basis of salt-tolerance in common bean: a genome-wide association study at the early vegetative stage. Sci Rep 2024; 14:5315. [PMID: 38438439 PMCID: PMC10912697 DOI: 10.1038/s41598-024-55403-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 02/22/2024] [Indexed: 03/06/2024] Open
Abstract
Salinity poses a significant challenge to global crop productivity, affecting approximately 20% of cultivated and 33% of irrigated farmland, and this issue is on the rise. Negative impact of salinity on plant development and metabolism leads to physiological and morphological alterations mainly due to high ion concentration in tissues and the reduced water and nutrients uptake. Common bean (Phaseolus vulgaris L.), a staple food crop accounting for a substantial portion of consumed grain legumes worldwide, is highly susceptible to salt stress resulting in noticeable reduction in dry matter gain in roots and shoots even at low salt concentrations. In this study we screened a common bean panel of diversity encompassing 192 homozygous genotypes for salt tolerance at seedling stage. Phenotypic data were leveraged to identify genomic regions involved in salt stress tolerance in the species through GWAS. We detected seven significant associations between shoot dry weight and SNP markers. The candidate genes, in linkage with the regions associated to salt tolerance or harbouring the detected SNP, showed strong homology with genes known to be involved in salt tolerance in Arabidopsis. Our findings provide valuable insights onto the genetic control of salt tolerance in common bean and represent a first contribution to address the challenge of salinity-induced yield losses in this species and poses the ground to eventually breed salt tolerant common bean varieties.
Collapse
Affiliation(s)
- Lorenzo Raggi
- Dipartimento di Scienze Agrarie Alimentari e Ambientali (DSA3), Università degli Studi di Perugia, Perugia, Italy.
| | - Leonardo Caproni
- Dipartimento di Scienze Agrarie Alimentari e Ambientali (DSA3), Università degli Studi di Perugia, Perugia, Italy
- Center of Plant Sciences, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Simona Ciancaleoni
- Dipartimento di Scienze Agrarie Alimentari e Ambientali (DSA3), Università degli Studi di Perugia, Perugia, Italy
| | - Roberto D'Amato
- Dipartimento di Scienze Agrarie Alimentari e Ambientali (DSA3), Università degli Studi di Perugia, Perugia, Italy
| | - Daniela Businelli
- Dipartimento di Scienze Agrarie Alimentari e Ambientali (DSA3), Università degli Studi di Perugia, Perugia, Italy
| | - Valeria Negri
- Dipartimento di Scienze Agrarie Alimentari e Ambientali (DSA3), Università degli Studi di Perugia, Perugia, Italy
| |
Collapse
|
38
|
Salter JF, Brumfield RT, Faircloth BC. An island 'endemic' born out of hybridization between introduced lineages. Mol Ecol 2024; 33:e16990. [PMID: 37208829 DOI: 10.1111/mec.16990] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 04/06/2023] [Accepted: 05/04/2023] [Indexed: 05/21/2023]
Abstract
Humans have profoundly impacted the distribution of plant and animal species over thousands of years. The most direct example of these effects is human-mediated movement of individuals, either through translocation of individuals within their range or through the introduction of species to new habitats. While human involvement may be suspected in species with obvious range disjunctions, it can be difficult to detect natural versus human-mediated dispersal events for populations at the edge of a species' range, and this uncertainty muddles how we understand the evolutionary history of populations and broad biogeographical patterns. Studies combining genetic data with archaeological, linguistic and historical evidence have confirmed prehistoric examples of human-mediated dispersal; however, it is unclear whether these methods can disentangle recent dispersal events, such as species translocated by European colonizers during the past 500 years. We use genomic DNA from historical museum specimens and historical records to evaluate three hypotheses regarding the timing and origin of Northern Bobwhites (Colinus virginianus) in Cuba, whose status as an endemic or introduced population has long been debated. We discovered that bobwhites from southern Mexico arrived in Cuba between the 12th and 16th centuries, followed by the subsequent introduction of bobwhites from the southeastern USA to Cuba between the 18th and 20th centuries. These dates suggest the introduction of bobwhites to Cuba was human-mediated and concomitant with Spanish colonial shipping routes between Veracruz, Mexico and Havana, Cuba during this period. Our results identify endemic Cuban bobwhites as a genetically distinct population born of hybridization between divergent, introduced lineages.
Collapse
Affiliation(s)
- Jessie F Salter
- Museum of Natural Science and Department of Biological Sciences, Louisiana State University, Louisiana, Baton Rouge, USA
| | - Robb T Brumfield
- Museum of Natural Science and Department of Biological Sciences, Louisiana State University, Louisiana, Baton Rouge, USA
| | - Brant C Faircloth
- Museum of Natural Science and Department of Biological Sciences, Louisiana State University, Louisiana, Baton Rouge, USA
| |
Collapse
|
39
|
Selmoni O, Bay LK, Exposito-Alonso M, Cleves PA. Finding genes and pathways that underlie coral adaptation. Trends Genet 2024; 40:213-227. [PMID: 38320882 DOI: 10.1016/j.tig.2024.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 01/08/2024] [Accepted: 01/10/2024] [Indexed: 02/08/2024]
Abstract
Mass coral bleaching is one of the clearest threats of climate change to the persistence of marine biodiversity. Despite the negative impacts of bleaching on coral health and survival, some corals may be able to rapidly adapt to warming ocean temperatures. Thus, a significant focus in coral research is identifying the genes and pathways underlying coral heat adaptation. Here, we review state-of-the-art methods that may enable the discovery of heat-adaptive loci in corals and identify four main knowledge gaps. To fill these gaps, we describe an experimental approach combining seascape genomics with CRISPR/Cas9 gene editing to discover and validate heat-adaptive loci. Finally, we discuss how information on adaptive genotypes could be used in coral reef conservation and management strategies.
Collapse
Affiliation(s)
- Oliver Selmoni
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD 21218, USA; Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305, USA.
| | - Line K Bay
- Reef Recovery, Adaptation, and Restoration, Australian Institute of Marine Science; Townsville, QLD 4810, Australia
| | - Moises Exposito-Alonso
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305, USA; Department of Biology, Stanford University, Stanford, CA 94305, USA; Department of Global Ecology, Carnegie Institution for Science, Stanford, CA 94305, USA.
| | - Phillip A Cleves
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD 21218, USA; Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA.
| |
Collapse
|
40
|
Jiao X, Wu L, Zhang D, Wang H, Dong F, Yang L, Wang S, Amano HE, Zhang W, Jia C, Rheindt FE, Lei F, Song G. Landscape Heterogeneity Explains the Genetic Differentiation of a Forest Bird across the Sino-Himalayan Mountains. Mol Biol Evol 2024; 41:msae027. [PMID: 38318973 PMCID: PMC10919924 DOI: 10.1093/molbev/msae027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 01/26/2024] [Accepted: 01/31/2024] [Indexed: 02/07/2024] Open
Abstract
Mountains are the world's most important centers of biodiversity. The Sino-Himalayan Mountains are global biodiversity hotspot due to their extremely high species richness and endemicity. Ample research investigated the impact of the Qinghai-Tibet Plateau uplift and Quaternary glaciations in driving species diversification in plants and animals across the Sino-Himalayan Mountains. However, little is known about the role of landscape heterogeneity and other environmental features in driving diversification in this region. We utilized whole genomes and phenotypic data in combination with landscape genetic approaches to investigate population structure, demography, and genetic diversity in a forest songbird species native to the Sino-Himalayan Mountains, the red-billed leiothrix (Leiothrix lutea). We identified 5 phylogeographic clades, including 1 in the East of China, 1 in Yunnan, and 3 in Tibet, roughly consistent with differences in song and plumage coloration but incongruent with traditional subspecies boundaries. Isolation-by-resistance model best explained population differentiation within L. lutea, with extensive secondary contact after allopatric isolation leading to admixture among clades. Ecological niche modeling indicated relative stability in the extent of suitable distribution areas of the species across Quaternary glacial cycles. Our results underscore the importance of mountains in the diversification of this species, given that most of the distinct genetic clades are concentrated in a relatively small area in the Sino-Himalayan Mountain region, while a single shallow clade populates vast lower-lying areas to the east. This study highlights the crucial role of landscape heterogeneity in promoting differentiation and provides a deep genomic perspective on the mechanisms through which diversity hotspots form.
Collapse
Affiliation(s)
- Xiaolu Jiao
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Lei Wu
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Dezhi Zhang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Huan Wang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Feng Dong
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Le Yang
- Tibet Plateau Institute of Biology, Lhasa 850000, China
| | - Shangyu Wang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | | | - Weiwei Zhang
- Center for Wildlife Resources Conservation Research, Jiangxi Agricultural University, Nanchang, China
| | - Chenxi Jia
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Frank E Rheindt
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Fumin Lei
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Gang Song
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
41
|
Andersson L, Bekkevold D, Berg F, Farrell ED, Felkel S, Ferreira MS, Fuentes-Pardo AP, Goodall J, Pettersson M. How Fish Population Genomics Can Promote Sustainable Fisheries: A Road Map. Annu Rev Anim Biosci 2024; 12:1-20. [PMID: 37906837 DOI: 10.1146/annurev-animal-021122-102933] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Maintenance of genetic diversity in marine fishes targeted by commercial fishing is a grand challenge for the future. Most of these species are abundant and therefore important for marine ecosystems and food security. Here, we present a road map of how population genomics can promote sustainable fisheries. In these species, the development of reference genomes and whole genome sequencing is key, because genetic differentiation at neutral loci is usually low due to large population sizes and gene flow. First, baseline allele frequencies representing genetically differentiated populations within species must be established. These can then be used to accurately determine the composition of mixed samples, forming the basis for population demographic analysis to inform sustainably set fish quotas. SNP-chip analysis is a cost-effective method for determining baseline allele frequencies and for population identification in mixed samples. Finally, we describe how genetic marker analysis can transform stock identification and management.
Collapse
Affiliation(s)
- Leif Andersson
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden;
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas, USA
| | - Dorte Bekkevold
- National Institute of Aquatic Resources, Technical University of Denmark, Silkeborg, Denmark
| | | | - Edward D Farrell
- Killybegs Fishermen's Organisation, Killybegs, County Donegal, Ireland
| | - Sabine Felkel
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden;
| | - Mafalda S Ferreira
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden;
| | - Angela P Fuentes-Pardo
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden;
| | - Jake Goodall
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden;
| | - Mats Pettersson
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden;
| |
Collapse
|
42
|
Furuta T, Yamamoto T. MCPtaggR: R package for accurate genotype calling in reduced representation sequencing data by eliminating error-prone markers based on genome comparison. DNA Res 2024; 31:dsad027. [PMID: 38134958 PMCID: PMC10799318 DOI: 10.1093/dnares/dsad027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/11/2023] [Accepted: 12/18/2023] [Indexed: 12/24/2023] Open
Abstract
Reduced representation sequencing (RRS) offers cost-effective, high-throughput genotyping platforms such as genotyping-by-sequencing (GBS). RRS reads are typically mapped onto a reference genome. However, mapping reads harbouring mismatches against the reference can potentially result in mismapping and biased mapping, leading to the detection of error-prone markers that provide incorrect genotype information. We established a genotype-calling pipeline named mappable collinear polymorphic tag genotyping (MCPtagg) to achieve accurate genotyping by eliminating error-prone markers. MCPtagg was designed for the RRS-based genotyping of a population derived from a biparental cross. The MCPtagg pipeline filters out error-prone markers prior to genotype calling based on marker collinearity information obtained by comparing the genome sequences of the parents of a population to be genotyped. A performance evaluation on real GBS data from a rice F2 population confirmed its effectiveness. Furthermore, our performance test using a genome assembly that was obtained by genome sequence polishing on an available genome assembly suggests that our pipeline performs well with converted genomes, rather than necessitating de novo assembly. This demonstrates its flexibility and scalability. The R package, MCPtaggR, was developed to provide functions for the pipeline and is available at https://github.com/tomoyukif/MCPtaggR.
Collapse
Affiliation(s)
- Tomoyuki Furuta
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama, Japan
| | - Toshio Yamamoto
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama, Japan
| |
Collapse
|
43
|
Delmore K, Justen H, Kay KM, Kitano J, Moyle LC, Stelkens R, Streisfeld MA, Yamasaki YY, Ross J. Genomic Approaches Are Improving Taxonomic Representation in Genetic Studies of Speciation. Cold Spring Harb Perspect Biol 2024; 16:a041438. [PMID: 37848243 PMCID: PMC10835617 DOI: 10.1101/cshperspect.a041438] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2023]
Abstract
Until recently, our understanding of the genetics of speciation was limited to a narrow group of model species with a specific set of characteristics that made genetic analysis feasible. Rapidly advancing genomic technologies are eliminating many of the distinctions between laboratory and natural systems. In light of these genomic developments, we review the history of speciation genetics, advances that have been gleaned from model and non-model organisms, the current state of the field, and prospects for broadening the diversity of taxa included in future studies. Responses to a survey of speciation scientists across the world reveal the ongoing division between the types of questions that are addressed in model and non-model organisms. To bridge this gap, we suggest integrating genetic studies from model systems that can be reared in the laboratory or greenhouse with genomic studies in related non-models where extensive ecological knowledge exists.
Collapse
Affiliation(s)
- Kira Delmore
- Department of Biology, Texas A&M University, College Station, Texas 77843, USA
| | - Hannah Justen
- Department of Biology, Texas A&M University, College Station, Texas 77843, USA
| | - Kathleen M Kay
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, Santa Cruz, California 95060, USA
| | - Jun Kitano
- Ecological Genetics Laboratory, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| | - Leonie C Moyle
- Department of Biology, Indiana University, Bloomington, Indiana 47405, USA
| | - Rike Stelkens
- Division of Population Genetics, Department of Zoology, Stockholm University, 106 91 Stockholm, Sweden
| | - Matthew A Streisfeld
- Institute of Ecology and Evolution, University of Oregon, Eugene, Oregon 97403, USA
| | - Yo Y Yamasaki
- Ecological Genetics Laboratory, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| | - Joseph Ross
- Department of Biology, California State University, Fresno, California 93740, USA
| |
Collapse
|
44
|
Song H, Shin U, Nam U, Lee Y. Exploring hematopoiesis in zebrafish using forward genetic screening. Exp Mol Med 2024; 56:51-58. [PMID: 38172599 PMCID: PMC10834449 DOI: 10.1038/s12276-023-01138-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 10/11/2023] [Accepted: 10/13/2023] [Indexed: 01/05/2024] Open
Abstract
Zebrafish have emerged as a powerful animal model for investigating the genetic basis of hematopoiesis. Owing to its close genetic and developmental similarities to humans, combined with its rapid reproduction and extensive genomic resources, zebrafish have become a versatile and efficient platform for genetic studies. In particular, the forward genetic screening approach has enabled the unbiased identification of novel genes and pathways related to blood development, from hematopoietic stem cell formation to terminal differentiation. Recent advances in mutant gene mapping have further expanded the scope of forward genetic screening, facilitating the identification of previously unknown genes and pathways relevant to hematopoiesis. In this review, we provide an overview of the zebrafish forward screening approach for hematopoietic gene discovery and highlight the key genes and pathways identified using this method. This review emphasizes the importance of zebrafish as a model system for understanding the genetic basis of hematopoiesis and its associated disorders.
Collapse
Affiliation(s)
- Hyemin Song
- Department of Biomedical Sciences, UC San Diego School of Medicine, La Jolla, CA, 92093, USA
- Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Unbeom Shin
- School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Uijeong Nam
- Department of Biomedical Science and Technology, Kyung Hee University, Seoul, 05278, Republic of Korea
| | - Yoonsung Lee
- Clinical Research Institute, Kyung Hee University Hospital at Gangdong, School of Medicine, Kyung Hee University, Seoul, 05278, Republic of Korea.
| |
Collapse
|
45
|
Jiang L, Xie S, Zhou C, Tian C, Zhu C, You X, Chen C, Lai Z, Guo Y. Analysis of the Genetic Diversity in Tea Plant Germplasm in Fujian Province Based on Restriction Site-Associated DNA Sequencing. PLANTS (BASEL, SWITZERLAND) 2023; 13:100. [PMID: 38202408 PMCID: PMC10780744 DOI: 10.3390/plants13010100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 12/21/2023] [Accepted: 12/24/2023] [Indexed: 01/12/2024]
Abstract
Fujian province, an important tea-producing area in China, has abundant tea cultivars. To investigate the genetic relationships of tea plant cultivars in Fujian province and the characteristics of the tea plant varieties, a total of 70 tea cultivars from Fujian and other 12 provinces in China were subjected to restriction site-associated DNA sequencing (RAD-seq). A total of 60,258,975 single nucleotide polymorphism (SNP) sites were obtained. These 70 tea plant cultivars were divided into three groups based on analyzing the phylogenetic tree, principal component, and population structure. Selection pressure analysis indicated that nucleotide diversity was high in Southern China and genetically distinct from cultivars of Fujian tea plant cultivars, according to selection pressure analysis. The selected genes have significant enrichment in pathways associated with metabolism, photosynthesis, and respiration. There were ten characteristic volatiles screened by gas chromatography-mass spectrometry (GC-MS) coupled with multivariate statistical methods, among which the differences in the contents of methyl salicylate, 3-carene, cis-3-hexen-1-ol, (E)-4-hexen-1-ol, and 3-methylbutyraldehyde can be used as reference indicators of the geographical distribution of tea plants. Furthermore, a metabolome genome-wide association study (mGWAS) revealed that 438 candidate genes were related to the aroma metabolic pathway. Further analysis showed that 31 genes of all the selected genes were screened and revealed the reasons for the genetic differences in aroma among tea plant cultivars in Fujian and Southern China. These results reveal the genetic diversity in the Fujian tea plants as well as a theoretical basis for the conservation, development, and utilization of the Fujian highly aromatic tea plant cultivars.
Collapse
Affiliation(s)
- Lele Jiang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (L.J.); (C.Z.); (C.T.); (Z.L.)
| | - Siyi Xie
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China;
| | - Chengzhe Zhou
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (L.J.); (C.Z.); (C.T.); (Z.L.)
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Caiyun Tian
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (L.J.); (C.Z.); (C.T.); (Z.L.)
| | - Chen Zhu
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, No. 723 Xingke Road, Tianhe District, Guangzhou 510650, China;
| | - Xiaomei You
- Tea Research Institute, Fujian Academy of Agricultural Sciences, No. 104 Pudang Road, Xindian Town, Jin’an District, Fuzhou 350012, China; (X.Y.); (C.C.)
| | - Changsong Chen
- Tea Research Institute, Fujian Academy of Agricultural Sciences, No. 104 Pudang Road, Xindian Town, Jin’an District, Fuzhou 350012, China; (X.Y.); (C.C.)
| | - Zhongxiong Lai
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (L.J.); (C.Z.); (C.T.); (Z.L.)
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yuqiong Guo
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (L.J.); (C.Z.); (C.T.); (Z.L.)
- Anxi College of Tea Science (College of Digital Economy), Fujian Agriculture and Forestry University, Quanzhou 362400, China
| |
Collapse
|
46
|
Wang J, Chen H, Li Y, Shi D, Wang W, Yan C, Yuan M, Sun Q, Chen J, Mou Y, Qu C, Shan S. Identification of Quantitative Trait Nucleotides and Development of Diagnostic Markers for Nine Fatty Acids in the Peanut. PLANTS (BASEL, SWITZERLAND) 2023; 13:16. [PMID: 38202325 PMCID: PMC10780752 DOI: 10.3390/plants13010016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/15/2023] [Accepted: 12/15/2023] [Indexed: 01/12/2024]
Abstract
The cultivated peanut (Arachis hypogaea L.) is an important oilseed crop worldwide, and fatty acid composition is a major determinant of peanut oil quality. In the present study, we conducted a genome-wide association study (GWAS) for nine fatty acid traits using the whole genome sequences of 160 representative Chinese peanut landraces and identified 6-1195 significant SNPs for different fatty acid contents. Particularly for oleic acid and linoleic acid, two peak SNP clusters on Arahy.09 and Arahy.19 were found to contain the majority of the significant SNPs associated with these two fatty acids. Additionally, a significant proportion of the candidate genes identified on Arahy.09 overlap with those identified in early studies, among which three candidate genes are of special interest. One possesses a significant missense SNP and encodes a known candidate gene FAD2A. The second gene is the gene closest to the most significant SNP for linoleic acid. It codes for an MYB protein that has been demonstrated to impact fatty acid biosynthesis in Arabidopsis. The third gene harbors a missense SNP and encodes a JmjC domain-containing protein. The significant phenotypic difference in the oleic acid/linoleic acid between the genotypes at the first and third candidate genes was further confirmed with PARMS analysis. In addition, we have also identified different candidate genes (i.e., Arahy.ZV39IJ, Arahy.F9E3EA, Arahy.X9ZZC1, and Arahy.Z0ELT9) for the remaining fatty acids. Our findings can help us gain a better understanding of the genetic foundation of peanut fatty acid contents and may hold great potential for enhancing peanut quality in the future.
Collapse
Affiliation(s)
- Juan Wang
- Shandong Peanut Research Institute, Qingdao 266100, China; (J.W.)
| | - Haoning Chen
- Shandong Peanut Research Institute, Qingdao 266100, China; (J.W.)
| | - Yuan Li
- National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Lund University, 22100 Lund, Sweden
- Department of Immunotechnology, Lund University, Medicon Village, 22100 Lund, Sweden
| | - Dachuan Shi
- Qingdao Academy of Agricultural Sciences, Qingdao 266100, China
| | - Wenjiao Wang
- Qingdao Academy of Agricultural Sciences, Qingdao 266100, China
| | - Caixia Yan
- Shandong Peanut Research Institute, Qingdao 266100, China; (J.W.)
| | - Mei Yuan
- Shandong Peanut Research Institute, Qingdao 266100, China; (J.W.)
| | - Quanxi Sun
- Shandong Peanut Research Institute, Qingdao 266100, China; (J.W.)
| | - Jing Chen
- Shandong Peanut Research Institute, Qingdao 266100, China; (J.W.)
| | - Yifei Mou
- Shandong Peanut Research Institute, Qingdao 266100, China; (J.W.)
| | - Chunjuan Qu
- Shandong Peanut Research Institute, Qingdao 266100, China; (J.W.)
| | - Shihua Shan
- Shandong Peanut Research Institute, Qingdao 266100, China; (J.W.)
| |
Collapse
|
47
|
Chhotaray S, Vohra V, Uttam V, Santhosh A, Saxena P, Gahlyan RK, Gowane G. TWAS revealed significant causal loci for milk production and its composition in Murrah buffaloes. Sci Rep 2023; 13:22401. [PMID: 38104199 PMCID: PMC10725422 DOI: 10.1038/s41598-023-49767-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 12/12/2023] [Indexed: 12/19/2023] Open
Abstract
Milk yield is the most complex trait in dairy animals, and mapping all causal variants even with smallest effect sizes has been difficult with the genome-wide association study (GWAS) sample sizes available in geographical regions with small livestock holdings such as Indian sub-continent. However, Transcriptome-wide association studies (TWAS) could serve as an alternate for fine mapping of expression quantitative trait loci (eQTLs). This is a maiden attempt to identify milk production and its composition related genes using TWAS in Murrah buffaloes (Bubalus bubalis). TWAS was conducted on a test (N = 136) set of Murrah buffaloes genotyped through ddRAD sequencing. Their gene expression level was predicted using reference (N = 8) animals having both genotype and mammary epithelial cell (MEC) transcriptome information. Gene expression prediction was performed using Elastic-Net and Dirichlet Process Regression (DPR) model with fivefold cross-validation and without any cross-validation. DPR model without cross-validation predicted 80.92% of the total genes in the test group of Murrah buffaloes which was highest compared to other methods. TWAS in test individuals based on predicted gene expression, identified a significant association of one unique gene for Fat%, and two for SNF% at Bonferroni corrected threshold. The false discovery rates (FDR) corrected P-values of the top ten SNPs identified through GWAS were comparatively higher than TWAS. Gene ontology of TWAS-identified genes was performed to understand the function of these genes, it was revealed that milk production and composition genes were mainly involved in Relaxin, AMPK, and JAK-STAT signaling pathway, along with CCRI, and several key metabolic processes. The present study indicates that TWAS offers a lower false discovery rate and higher significant hits than GWAS for milk production and its composition traits. Hence, it is concluded that TWAS can be effectively used to identify genes and cis-SNPs in a population, which can be used for fabricating a low-density genomic chip for predicting milk production in Murrah buffaloes.
Collapse
Affiliation(s)
- Supriya Chhotaray
- Division of Animal Genetics and Breeding, ICAR-Central Institute for Research on Buffaloes, Hisar, Haryana, 125001, India
- Animal Genetics and Breeding Division, ICAR-National Dairy Research Institute, Karnal, Haryana, 132001, India
| | - Vikas Vohra
- Animal Genetics and Breeding Division, ICAR-National Dairy Research Institute, Karnal, Haryana, 132001, India.
| | - Vishakha Uttam
- Animal Genetics and Breeding Division, ICAR-National Dairy Research Institute, Karnal, Haryana, 132001, India
| | - Ameya Santhosh
- Animal Genetics and Breeding Division, ICAR-National Dairy Research Institute, Karnal, Haryana, 132001, India
| | - Punjika Saxena
- Animal Genetics and Breeding Division, ICAR-National Dairy Research Institute, Karnal, Haryana, 132001, India
| | - Rajesh Kumar Gahlyan
- Animal Genetics and Breeding Division, ICAR-National Dairy Research Institute, Karnal, Haryana, 132001, India
| | - Gopal Gowane
- Animal Genetics and Breeding Division, ICAR-National Dairy Research Institute, Karnal, Haryana, 132001, India
| |
Collapse
|
48
|
Campos DP, Granger-Neto HP, Júnior JES, Faux P, Santos FR. Population Genomics of the Critically Endangered Brazilian Merganser. Animals (Basel) 2023; 13:3759. [PMID: 38136797 PMCID: PMC10741106 DOI: 10.3390/ani13243759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/20/2023] [Accepted: 11/30/2023] [Indexed: 12/24/2023] Open
Abstract
The Brazilian merganser (Mergus octosetaceus) is one of the most endangered bird species in South America and comprises less than 250 mature individuals in wild environments. This is a species extremely sensitive to environmental disturbances and restricted to a few "pristine" freshwater habitats in Brazil, and it has been classified as Critically Endangered on the IUCN Red List since 1994. Thus, biological conservation studies are vital to promote adequate management strategies and to avoid the decline of merganser populations. In this context, to understand the evolutionary dynamics and the current genetic diversity of remaining Brazilian merganser populations, we used the "Genotyping by Sequencing" approach to genotype 923 SNPs in 30 individuals from all known areas of occurrence. These populations revealed a low genetic diversity and high inbreeding levels, likely due to the recent population decline associated with habitat loss. Furthermore, it showed a moderate level of genetic differentiation between all populations located in four separated areas of the highly threatened Cerrado biome. The results indicate that urgent actions for the conservation of the species should be accompanied by careful genetic monitoring to allow appropriate in situ and ex situ management to increase the long-term species' survival in its natural environment.
Collapse
Affiliation(s)
- Davidson P. Campos
- Department of Genetics, Ecology and Evolution, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (D.P.C.); (H.P.G.-N.); (J.E.S.J.)
| | - Henry Paul Granger-Neto
- Department of Genetics, Ecology and Evolution, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (D.P.C.); (H.P.G.-N.); (J.E.S.J.)
| | - José E. Santos Júnior
- Department of Genetics, Ecology and Evolution, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (D.P.C.); (H.P.G.-N.); (J.E.S.J.)
| | - Pierre Faux
- GenPhySE, Université de Toulouse, INRAE, ENVT, 31326 Castanet-Tolosan, France;
| | - Fabrício R. Santos
- Department of Genetics, Ecology and Evolution, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (D.P.C.); (H.P.G.-N.); (J.E.S.J.)
| |
Collapse
|
49
|
Haqani MI, Nakano M, Nagano AJ, Nakamura Y, Tsudzuki M. Association analysis of production traits of Japanese quail (Coturnix japonica) using restriction-site associated DNA sequencing. Sci Rep 2023; 13:21307. [PMID: 38042890 PMCID: PMC10693557 DOI: 10.1038/s41598-023-48293-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 10/10/2023] [Accepted: 11/24/2023] [Indexed: 12/04/2023] Open
Abstract
This study was designed to perform an association analysis and identify SNP markers associated with production traits of Japanese quail using restriction-site-associated DNA sequencing. Weekly body weight data from 805 quail were collected from hatching to 16 weeks of age. A total number of 3990 eggs obtained from 399 female quail were used to assess egg quality traits. Egg-related traits were measured at the beginning of egg production (first stage) and at 12 weeks of age (second stage). Five eggs were analyzed at each stage. Traits, such as egg weight, egg length and short axes, eggshell strength and weight, egg equator thickness, yolk weight, diameter, and colour, albumen weight, age of first egg, total number of laid eggs, and egg production rate, were assessed. A total of 383 SNPs and 1151 associations as well as 734 SNPs and 1442 associations were identified in relation to quail production traits using general linear model (GLM) and mixed linear model (MLM) approaches, respectively. The GLM-identified SNPs were located on chromosomes 1-13, 15, 17-20, 24, 26-28, and Z, underlying phenotypic traits, except for egg and albumen weight at the first stage and yolk yellowness at the second stage. The MLM-identified SNPs were positioned on defined chromosomes associated with phenotypic traits except for the egg long axis at the second stage of egg production. Finally, 35 speculated genes were identified as candidate genes for the targeted traits based on their nearest positions. Our findings provide a deeper understanding and allow a more precise genetic improvement of production traits of Galliformes, particularly in Japanese quail.
Collapse
Affiliation(s)
- Mohammad Ibrahim Haqani
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima, 739-8525, Japan.
| | - Michiharu Nakano
- Faculty of Agriculture and Marine Sciences, Kochi University, Nankoku, Kochi, 783-8502, Japan
| | - Atsushi J Nagano
- Faculty of Agriculture, Ryukoku University, Otsu, Shiga, 520-2194, Japan
- Institute for Advanced Biosciences, Keio University, Yamagata, 997-0017, Japan
| | - Yoshiaki Nakamura
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima, 739-8525, Japan
- Japanese Avian Bioresource Project Research Center, Hiroshima University, Higashi-Hiroshima, Hiroshima, 739-8525, Japan
| | - Masaoki Tsudzuki
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima, 739-8525, Japan.
- Japanese Avian Bioresource Project Research Center, Hiroshima University, Higashi-Hiroshima, Hiroshima, 739-8525, Japan.
| |
Collapse
|
50
|
Jaglan K, Ravikumar D, Sukhija N, George L, Alex R, Vohra V, Verma A. Genomic clues of association between clinical mastitis and SNPs identified by ddRAD sequencing in Murrah buffaloes. Anim Biotechnol 2023; 34:4538-4546. [PMID: 36639144 DOI: 10.1080/10495398.2023.2165937] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The total milk production of India is 209.96 MT out of which 45% is contributed by the indigenous buffalo and due to their high producing virtue, the prevalence of mastitis is 5-20%. Despite the increasing level of technological advancement, mastitis is still an issue of concern for dairy industry in India as well as across the world. Therefore, the present study aimed to identify the SNPs and associate them with the incidence of clinical mastitis in Murrah buffalo using the ddRAD sequencing approach taking mastitis incidence data of 96 Murrah buffaloes. A total of 246 million quality controlled reads were obtained with an average alignment rate of 99.01% and at a read depth of 10, quality controlled SNPs obtained were 18,056. The logistic regression model was used and a total of seven SNPs were found significantly associated (p < 0.001) with mastitis incidence and seven genes were identified viz., NCBP1, FOXN3, TPK1, XYLT2, CPXM2, HERC1, and OPCML. The majority of them were having tumor suppressing action, related to immunogenetics or glycolytic and energy production. Conclusively, the SNPs identified in this study may be useful for future studies on mastitis incidence in Murrah buffalo and the SNP associations can be further validated.
Collapse
Affiliation(s)
- Komal Jaglan
- Division of Animal Genetics and Breeding, ICAR-National Dairy Research Institute, Karnal, India
| | - D Ravikumar
- Division of Animal Genetics and Breeding, ICAR-National Dairy Research Institute, Karnal, India
| | - Nidhi Sukhija
- Division of Animal Genetics and Breeding, ICAR-National Dairy Research Institute, Karnal, India
| | - Linda George
- Division of Animal Genetics and Breeding, ICAR-National Dairy Research Institute, Karnal, India
| | - Rani Alex
- Division of Animal Genetics and Breeding, ICAR-National Dairy Research Institute, Karnal, India
| | - Vikas Vohra
- Division of Animal Genetics and Breeding, ICAR-National Dairy Research Institute, Karnal, India
| | - Archana Verma
- Division of Animal Genetics and Breeding, ICAR-National Dairy Research Institute, Karnal, India
| |
Collapse
|