1
|
Benowitz KM, Allan CW, Jaworski CC, Sanderson MJ, Diaz F, Chen X, Matzkin LM. Fundamental Patterns of Structural Evolution Revealed by Chromosome-Length Genomes of Cactophilic Drosophila. Genome Biol Evol 2024; 16:evae191. [PMID: 39228294 PMCID: PMC11411373 DOI: 10.1093/gbe/evae191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/22/2024] [Accepted: 08/26/2024] [Indexed: 09/05/2024] Open
Abstract
A thorough understanding of adaptation and speciation requires model organisms with both a history of ecological and phenotypic study as well as a complete set of genomic resources. In particular, high-quality genome assemblies of ecological model organisms are needed to assess the evolution of genome structure and its role in adaptation and speciation. Here, we generate new genomes of cactophilic Drosophila, a crucial model clade for understanding speciation and ecological adaptation in xeric environments. We generated chromosome-level genome assemblies and complete annotations for seven populations across Drosophila mojavensis, Drosophila arizonae, and Drosophila navojoa. We use these data first to establish the most robust phylogeny for this clade to date, and to assess patterns of molecular evolution across the phylogeny, showing concordance with a priori hypotheses regarding adaptive genes in this system. We then show that structural evolution occurs at constant rate across the phylogeny, varies by chromosome, and is correlated with molecular evolution. These results advance the understanding of the D. mojavensis clade by demonstrating core evolutionary genetic patterns and integrating those patterns to generate new gene-level hypotheses regarding adaptation. Our data are presented in a new public database (cactusflybase.arizona.edu), providing one of the most in-depth resources for the analysis of inter- and intraspecific evolutionary genomic data. Furthermore, we anticipate that the patterns of structural evolution identified here will serve as a baseline for future comparative studies to identify the factors that influence the evolution of genome structure across taxa.
Collapse
Affiliation(s)
- Kyle M Benowitz
- Department of Entomology, University of Arizona, Tucson, AZ, USA
| | - Carson W Allan
- Department of Entomology, University of Arizona, Tucson, AZ, USA
| | | | - Michael J Sanderson
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, USA
| | - Fernando Diaz
- Department of Entomology, University of Arizona, Tucson, AZ, USA
| | - Xingsen Chen
- Department of Entomology, University of Arizona, Tucson, AZ, USA
| | - Luciano M Matzkin
- Department of Entomology, University of Arizona, Tucson, AZ, USA
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, USA
- BIO5 Institute, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
2
|
Kitchen SA, Naragon TH, Brückner A, Ladinsky MS, Quinodoz SA, Badroos JM, Viliunas JW, Kishi Y, Wagner JM, Miller DR, Yousefelahiyeh M, Antoshechkin IA, Eldredge KT, Pirro S, Guttman M, Davis SR, Aardema ML, Parker J. The genomic and cellular basis of biosynthetic innovation in rove beetles. Cell 2024; 187:3563-3584.e26. [PMID: 38889727 PMCID: PMC11246231 DOI: 10.1016/j.cell.2024.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 02/29/2024] [Accepted: 05/06/2024] [Indexed: 06/20/2024]
Abstract
How evolution at the cellular level potentiates macroevolutionary change is central to understanding biological diversification. The >66,000 rove beetle species (Staphylinidae) form the largest metazoan family. Combining genomic and cell type transcriptomic insights spanning the largest clade, Aleocharinae, we retrace evolution of two cell types comprising a defensive gland-a putative catalyst behind staphylinid megadiversity. We identify molecular evolutionary steps leading to benzoquinone production by one cell type via a mechanism convergent with plant toxin release systems, and synthesis by the second cell type of a solvent that weaponizes the total secretion. This cooperative system has been conserved since the Early Cretaceous as Aleocharinae radiated into tens of thousands of lineages. Reprogramming each cell type yielded biochemical novelties enabling ecological specialization-most dramatically in symbionts that infiltrate social insect colonies via host-manipulating secretions. Our findings uncover cell type evolutionary processes underlying the origin and evolvability of a beetle chemical innovation.
Collapse
Affiliation(s)
- Sheila A Kitchen
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Thomas H Naragon
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Adrian Brückner
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Mark S Ladinsky
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Sofia A Quinodoz
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Jean M Badroos
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Joani W Viliunas
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Yuriko Kishi
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Julian M Wagner
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - David R Miller
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Mina Yousefelahiyeh
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Igor A Antoshechkin
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - K Taro Eldredge
- Museum of Zoology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Stacy Pirro
- Iridian Genomes, 613 Quaint Acres Dr., Silver Spring, MD 20904, USA
| | - Mitchell Guttman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Steven R Davis
- Division of Invertebrate Zoology, American Museum of Natural History, New York, NY 10024, USA
| | - Matthew L Aardema
- Department of Biology, Montclair State University, Montclair, NJ 07043, USA
| | - Joseph Parker
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA.
| |
Collapse
|
3
|
Xun H, Lv R, Yu Y, Yao J, Wang R, Sha Y, Wang H, Zhang D, Xu C, Wang T, Zhang Z, Liu B, Gong L. Evolutionary genomics of two diploid goat grass species belonging to the section Sitopsis of Aegilops, Aegilops longissima, and Aegilops sharonensis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024. [PMID: 38859560 DOI: 10.1111/tpj.16876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/23/2024] [Accepted: 05/25/2024] [Indexed: 06/12/2024]
Abstract
Aegilops longissima and Ae. sharonensis, being classified into the Sitopsis section of genus Aegilops, are distinct species both taxonomically and ecologically. Nevertheless, earlier observations indicate that the two species are not reproductively isolated to full extent and can inter-bred upon secondary contact. However, the genomic underpinnings of the morpho-ecological differentiation between the two foci species remained unexplored. Here, we resequenced 31 representative accessions of the two species and conducted in-depth comparative genomic analyses. We demonstrate recurrent and ongoing natural hybridizations between Ae. longissima and Ae. sharonensis, and depict features of genome composition of the resultant hybrids at both individual and population levels. We also delineate genomic regions and candidate genes potentially underpinning the differential morphological and edaphic adaptations of the two species. Intriguingly, a binary morphology was observed in the hybrids, suggesting existence of highly diverged genomic regions that remain uneroded by the admixtures. Together, our results provide new insights into the molding effects of interspecific hybridization on genome composition and mechanisms preventing merge of the two species.
Collapse
Affiliation(s)
- Hongwei Xun
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Ruili Lv
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Yue Yu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Jinyang Yao
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Ruisi Wang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Yan Sha
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Han Wang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Deshi Zhang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Chunming Xu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Tianya Wang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Zhibin Zhang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Bao Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Lei Gong
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| |
Collapse
|
4
|
Lindhout FW, Krienen FM, Pollard KS, Lancaster MA. A molecular and cellular perspective on human brain evolution and tempo. Nature 2024; 630:596-608. [PMID: 38898293 DOI: 10.1038/s41586-024-07521-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 04/29/2024] [Indexed: 06/21/2024]
Abstract
The evolution of the modern human brain was accompanied by distinct molecular and cellular specializations, which underpin our diverse cognitive abilities but also increase our susceptibility to neurological diseases. These features, some specific to humans and others shared with related species, manifest during different stages of brain development. In this multi-stage process, neural stem cells proliferate to produce a large and diverse progenitor pool, giving rise to excitatory or inhibitory neurons that integrate into circuits during further maturation. This process unfolds over varying time scales across species and has progressively become slower in the human lineage, with differences in tempo correlating with differences in brain size, cell number and diversity, and connectivity. Here we introduce the terms 'bradychrony' and 'tachycrony' to describe slowed and accelerated developmental tempos, respectively. We review how recent technical advances across disciplines, including advanced engineering of in vitro models, functional comparative genetics and high-throughput single-cell profiling, are leading to a deeper understanding of how specializations of the human brain arise during bradychronic neurodevelopment. Emerging insights point to a central role for genetics, gene-regulatory networks, cellular innovations and developmental tempo, which together contribute to the establishment of human specializations during various stages of neurodevelopment and at different points in evolution.
Collapse
Affiliation(s)
- Feline W Lindhout
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, UK.
| | - Fenna M Krienen
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Katherine S Pollard
- Gladstone Institutes, San Francisco, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
- Department of Epidemiology & Biostatistics, Institute for Computational Health Sciences, and Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA
| | - Madeline A Lancaster
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, UK.
| |
Collapse
|
5
|
McFarlane SE, Jahner JP, Lindtke D, Buerkle CA, Mandeville EG. Selection leads to remarkable variability in the outcomes of hybridisation across replicate hybrid zones. Mol Ecol 2024; 33:e17359. [PMID: 38699787 DOI: 10.1111/mec.17359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 04/03/2024] [Accepted: 04/05/2024] [Indexed: 05/05/2024]
Abstract
Hybrid zones have been viewed as an opportunity to see speciation in action. When hybrid zones are replicated, it is assumed that if the same genetic incompatibilities are maintaining reproductive isolation across all instances of secondary contact, those incompatibilities should be identifiable by consistent patterns in the genome. In contrast, changes in allele frequencies due to genetic drift should be idiosyncratic for each hybrid zone. To test this assumption, we simulated 20 replicates of each of 12 hybrid zone scenarios with varied genetic incompatibilities, rates of migration, selection and different starting population size ratios of parental species. We found remarkable variability in the outcomes of hybridisation in replicate hybrid zones, particularly with Bateson-Dobzhansky-Muller incompatibilities and strong selection. We found substantial differences among replicates in the overall genomic composition of individuals, including admixture proportions, inter-specific ancestry complement and number of ancestry junctions. Additionally, we found substantial variation in genomic clines among replicates at focal loci, regardless of locus-specific selection. We conclude that processes other than selection are responsible for some consistent outcomes of hybridisation, whereas selection on incompatibilities can lead to genomically widespread and highly variable outcomes. We highlight the challenge of mapping between pattern and process in hybrid zones and call attention to how selection against incompatibilities will commonly lead to variable outcomes. We hope that this study informs future research on replicate hybrid zones and encourages further development of statistical techniques, theoretical models and exploration of additional axes of variation to understand reproductive isolation.
Collapse
Affiliation(s)
- S Eryn McFarlane
- Department of Botany, University of Wyoming, Laramie, Wyoming, USA
- Department of Biology, York University, Toronto, Ontario, Canada
| | - Joshua P Jahner
- Department of Botany, University of Wyoming, Laramie, Wyoming, USA
| | | | - C Alex Buerkle
- Department of Botany, University of Wyoming, Laramie, Wyoming, USA
| | - Elizabeth G Mandeville
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada
- Biology Department, Northern Michigan University, Marquette, Michigan, USA
| |
Collapse
|
6
|
Bohutínská M, Peichel CL. Divergence time shapes gene reuse during repeated adaptation. Trends Ecol Evol 2024; 39:396-407. [PMID: 38155043 DOI: 10.1016/j.tree.2023.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 11/15/2023] [Accepted: 11/20/2023] [Indexed: 12/30/2023]
Abstract
When diverse lineages repeatedly adapt to similar environmental challenges, the extent to which the same genes are involved (gene reuse) varies across systems. We propose that divergence time among lineages is a key factor driving this variability: as lineages diverge, the extent of gene reuse should decrease due to reductions in allele sharing, functional differentiation among genes, and restructuring of genome architecture. Indeed, we show that many genomic studies of repeated adaptation find that more recently diverged lineages exhibit higher gene reuse during repeated adaptation, but the relationship becomes less clear at older divergence time scales. Thus, future research should explore the factors shaping gene reuse and their interplay across broad divergence time scales for a deeper understanding of evolutionary repeatability.
Collapse
Affiliation(s)
- Magdalena Bohutínská
- Division of Evolutionary Ecology, Institute of Ecology and Evolution, University of Bern, Bern, 3012, Switzerland; Department of Botany, Faculty of Science, Charles University, Prague, 12800, Czech Republic.
| | - Catherine L Peichel
- Division of Evolutionary Ecology, Institute of Ecology and Evolution, University of Bern, Bern, 3012, Switzerland
| |
Collapse
|
7
|
Flay C, Symonds VV, Storey R, Davy M, Datson P. Mapping QTL associated with resistance to Pseudomonas syringae pv. actinidiae in kiwifruit ( Actinidia chinensis var. chinensis). FRONTIERS IN PLANT SCIENCE 2024; 14:1255506. [PMID: 38596713 PMCID: PMC11003357 DOI: 10.3389/fpls.2023.1255506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 10/25/2023] [Indexed: 04/11/2024]
Abstract
Pseudomonas syringae pv. actinidiae (Psa) is a bacterial pathogen of kiwifruit. This pathogen causes leaf-spotting, cane dieback, wilting, cankers (lesions), and in severe cases, plant death. Families of diploid A. chinensis seedlings grown in the field show a range of susceptibilities to the disease with up to 100% of seedlings in some families succumbing to Psa. But the effect of selection for field resistance to Psa on the alleles that remain in surviving seedlings has not been assessed. The objective of this work was to analyse, the effect of plant removal from Psa on the allele frequency of an incomplete-factorial-cross population. This population was founded using a range of genotypically distinct diploid A. chinensis var. chinensis parents to make 28 F1 families. However, because of the diversity of these families, low numbers of surviving individuals, and a lack of samples from dead individuals, standard QTL mapping approaches were unlikely to yield good results. Instead, a modified bulk segregant analysis (BSA) overcame these drawbacks while reducing the costs of sampling and sample processing, and the complexity of data analysis. Because the method was modified, part one of this work was used to determine the signal strength required for a QTL to be detected with BSA. Once QTL detection accuracy was known, part two of this work analysed the 28 families from the incomplete-factorial-cross population that had multiple individuals removed due to Psa infection. Each family was assigned to one of eight bulks based on a single parent that contributed to the families. DNA was extracted in bulk by grinding sampled leaf discs together before DNA extraction. Each sample bulk was compared against a bulk made up of WGS data from the parents contributing to the sample bulk. The deviation in allele frequency from the expected allele frequency within surviving populations using the modified BSA method was able to identify 11 QTLs for Psa that were present in at least two analyses. The identification of these Psa resistance QTL will enable marker development to selectively breed for resistance to Psa in future kiwifruit breeding programs.
Collapse
Affiliation(s)
- Casey Flay
- School of Natural Sciences, Massey University, Palmerston North, New Zealand
- The New Zealand Institute for Plant and Food Research Limited, Te Puke, New Zealand
| | - V. Vaughan Symonds
- School of Natural Sciences, Massey University, Palmerston North, New Zealand
| | - Roy Storey
- The New Zealand Institute for Plant and Food Research Limited, Te Puke, New Zealand
| | - Marcus Davy
- The New Zealand Institute for Plant and Food Research Limited, Te Puke, New Zealand
| | - Paul Datson
- The New Zealand Institute for Plant and Food Research Limited, Te Puke, New Zealand
- Kiwifruit Breeding Centre, Te Puke, New Zealand
| |
Collapse
|
8
|
Lee G, Sanderson BJ, Ellis TJ, Dilkes BP, McKay JK, Ågren J, Oakley CG. A large-effect fitness trade-off across environments is explained by a single mutation affecting cold acclimation. Proc Natl Acad Sci U S A 2024; 121:e2317461121. [PMID: 38289961 PMCID: PMC10861903 DOI: 10.1073/pnas.2317461121] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 12/26/2023] [Indexed: 02/01/2024] Open
Abstract
Identifying the genetic basis of local adaptation and fitness trade-offs across environments is a central goal of evolutionary biology. Cold acclimation is an adaptive plastic response for surviving seasonal freezing, and costs of acclimation may be a general mechanism for fitness trade-offs across environments in temperate zone species. Starting with locally adapted ecotypes of Arabidopsis thaliana from Italy and Sweden, we examined the fitness consequences of a naturally occurring functional polymorphism in CBF2. This gene encodes a transcription factor that is a major regulator of cold-acclimated freezing tolerance and resides within a locus responsible for a genetic trade-off for long-term mean fitness. We estimated the consequences of alternate genotypes of CBF2 on 5-y mean fitness and fitness components at the native field sites by comparing near-isogenic lines with alternate genotypes of CBF2 to their genetic background ecotypes. The effects of CBF2 were validated at the nucleotide level using gene-edited lines in the native genetic backgrounds grown in simulated parental environments. The foreign CBF2 genotype in the local genetic background reduced long-term mean fitness in Sweden by more than 10%, primarily via effects on survival. In Italy, fitness was reduced by more than 20%, primarily via effects on fecundity. At both sites, the effects were temporally variable and much stronger in some years. The gene-edited lines confirmed that CBF2 encodes the causal variant underlying this genetic trade-off. Additionally, we demonstrated a substantial fitness cost of cold acclimation, which has broad implications for potential maladaptive responses to climate change.
Collapse
Affiliation(s)
- Gwonjin Lee
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN47907
- Center for Plant Biology, Purdue University, West Lafayette, IN47907
| | - Brian J. Sanderson
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN47907
- Center for Plant Biology, Purdue University, West Lafayette, IN47907
| | - Thomas J. Ellis
- Plant Ecology and Evolution, Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, UppsalaSE-752 36, Sweden
| | - Brian P. Dilkes
- Center for Plant Biology, Purdue University, West Lafayette, IN47907
- Department of Biochemistry, Purdue University, West Lafayette, IN47907
| | - John K. McKay
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO80523
| | - Jon Ågren
- Plant Ecology and Evolution, Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, UppsalaSE-752 36, Sweden
| | - Christopher G. Oakley
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN47907
- Center for Plant Biology, Purdue University, West Lafayette, IN47907
| |
Collapse
|
9
|
Delmore K, Justen H, Kay KM, Kitano J, Moyle LC, Stelkens R, Streisfeld MA, Yamasaki YY, Ross J. Genomic Approaches Are Improving Taxonomic Representation in Genetic Studies of Speciation. Cold Spring Harb Perspect Biol 2024; 16:a041438. [PMID: 37848243 PMCID: PMC10835617 DOI: 10.1101/cshperspect.a041438] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2023]
Abstract
Until recently, our understanding of the genetics of speciation was limited to a narrow group of model species with a specific set of characteristics that made genetic analysis feasible. Rapidly advancing genomic technologies are eliminating many of the distinctions between laboratory and natural systems. In light of these genomic developments, we review the history of speciation genetics, advances that have been gleaned from model and non-model organisms, the current state of the field, and prospects for broadening the diversity of taxa included in future studies. Responses to a survey of speciation scientists across the world reveal the ongoing division between the types of questions that are addressed in model and non-model organisms. To bridge this gap, we suggest integrating genetic studies from model systems that can be reared in the laboratory or greenhouse with genomic studies in related non-models where extensive ecological knowledge exists.
Collapse
Affiliation(s)
- Kira Delmore
- Department of Biology, Texas A&M University, College Station, Texas 77843, USA
| | - Hannah Justen
- Department of Biology, Texas A&M University, College Station, Texas 77843, USA
| | - Kathleen M Kay
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, Santa Cruz, California 95060, USA
| | - Jun Kitano
- Ecological Genetics Laboratory, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| | - Leonie C Moyle
- Department of Biology, Indiana University, Bloomington, Indiana 47405, USA
| | - Rike Stelkens
- Division of Population Genetics, Department of Zoology, Stockholm University, 106 91 Stockholm, Sweden
| | - Matthew A Streisfeld
- Institute of Ecology and Evolution, University of Oregon, Eugene, Oregon 97403, USA
| | - Yo Y Yamasaki
- Ecological Genetics Laboratory, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| | - Joseph Ross
- Department of Biology, California State University, Fresno, California 93740, USA
| |
Collapse
|
10
|
Sun BJ, Li WM, Lv P, Wen GN, Wu DY, Tao SA, Liao ML, Yu CQ, Jiang ZW, Wang Y, Xie HX, Wang XF, Chen ZQ, Liu F, Du WG. Genetically Encoded Lizard Color Divergence for Camouflage and Thermoregulation. Mol Biol Evol 2024; 41:msae009. [PMID: 38243850 PMCID: PMC10835340 DOI: 10.1093/molbev/msae009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 01/03/2024] [Accepted: 01/08/2024] [Indexed: 01/22/2024] Open
Abstract
Local adaptation is critical in speciation and evolution, yet comprehensive studies on proximate and ultimate causes of local adaptation are generally scarce. Here, we integrated field ecological experiments, genome sequencing, and genetic verification to demonstrate both driving forces and molecular mechanisms governing local adaptation of body coloration in a lizard from the Qinghai-Tibet Plateau. We found dark lizards from the cold meadow population had lower spectrum reflectance but higher melanin contents than light counterparts from the warm dune population. Additionally, the colorations of both dark and light lizards facilitated the camouflage and thermoregulation in their respective microhabitat simultaneously. More importantly, by genome resequencing analysis, we detected a novel mutation in Tyrp1 that underpinned this color adaptation. The allele frequencies at the site of SNP 459# in the gene of Tyrp1 are 22.22% G/C and 77.78% C/C in dark lizards and 100% G/G in light lizards. Model-predicted structure and catalytic activity showed that this mutation increased structure flexibility and catalytic activity in enzyme TYRP1, and thereby facilitated the generation of eumelanin in dark lizards. The function of the mutation in Tyrp1 was further verified by more melanin contents and darker coloration detected in the zebrafish injected with the genotype of Tyrp1 from dark lizards. Therefore, our study demonstrates that a novel mutation of a major melanin-generating gene underpins skin color variation co-selected by camouflage and thermoregulation in a lizard. The resulting strong selection may reinforce adaptive genetic divergence and enable the persistence of adjacent populations with distinct body coloration.
Collapse
Affiliation(s)
- Bao-Jun Sun
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Wei-Ming Li
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Peng Lv
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guan-Nan Wen
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Dan-Yang Wu
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Shi-Ang Tao
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Ming-Ling Liao
- The Key Laboratory of Mariculture, Ministry of Education, Fisheries College, Ocean University of China, Qingdao 266003, China
| | - Chang-Qing Yu
- Ecology Laboratory, Beijing Ecotech Science and Technology Ltd, Beijing 100190, China
| | - Zhong-Wen Jiang
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yang Wang
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Hong-Xin Xie
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xi-Feng Wang
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | | | - Feng Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Wei-Guo Du
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
11
|
Berdan EL, Barton NH, Butlin R, Charlesworth B, Faria R, Fragata I, Gilbert KJ, Jay P, Kapun M, Lotterhos KE, Mérot C, Durmaz Mitchell E, Pascual M, Peichel CL, Rafajlović M, Westram AM, Schaeffer SW, Johannesson K, Flatt T. How chromosomal inversions reorient the evolutionary process. J Evol Biol 2023; 36:1761-1782. [PMID: 37942504 DOI: 10.1111/jeb.14242] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 09/13/2023] [Accepted: 10/05/2023] [Indexed: 11/10/2023]
Abstract
Inversions are structural mutations that reverse the sequence of a chromosome segment and reduce the effective rate of recombination in the heterozygous state. They play a major role in adaptation, as well as in other evolutionary processes such as speciation. Although inversions have been studied since the 1920s, they remain difficult to investigate because the reduced recombination conferred by them strengthens the effects of drift and hitchhiking, which in turn can obscure signatures of selection. Nonetheless, numerous inversions have been found to be under selection. Given recent advances in population genetic theory and empirical study, here we review how different mechanisms of selection affect the evolution of inversions. A key difference between inversions and other mutations, such as single nucleotide variants, is that the fitness of an inversion may be affected by a larger number of frequently interacting processes. This considerably complicates the analysis of the causes underlying the evolution of inversions. We discuss the extent to which these mechanisms can be disentangled, and by which approach.
Collapse
Affiliation(s)
- Emma L Berdan
- Bioinformatics Core, Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, USA
- Department of Marine Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Nicholas H Barton
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
| | - Roger Butlin
- Department of Marine Sciences, University of Gothenburg, Gothenburg, Sweden
- Ecology and Evolutionary Biology, School of Bioscience, The University of Sheffield, Sheffield, UK
| | - Brian Charlesworth
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Rui Faria
- CIBIO-InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão, Portugal
| | - Inês Fragata
- CHANGE - Global Change and Sustainability Institute/Animal Biology Department, cE3c - Center for Ecology, Evolution and Environmental Changes, Faculty of Sciences, University of Lisbon, Lisbon, Portugal
| | | | - Paul Jay
- Center for GeoGenetics, University of Copenhagen, Copenhagen, Denmark
| | - Martin Kapun
- Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
- Central Research Laboratories, Natural History Museum of Vienna, Vienna, Austria
| | - Katie E Lotterhos
- Department of Marine and Environmental Sciences, Northeastern University, Boston, Massachusetts, USA
| | - Claire Mérot
- UMR 6553 Ecobio, Université de Rennes, OSUR, CNRS, Rennes, France
| | - Esra Durmaz Mitchell
- Department of Biology, University of Fribourg, Fribourg, Switzerland
- Functional Genomics & Metabolism Research Unit, Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense M, Denmark
| | - Marta Pascual
- Departament de Genètica, Microbiologia i Estadística, Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
| | - Catherine L Peichel
- Division of Evolutionary Ecology, Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
| | - Marina Rafajlović
- Department of Marine Sciences, University of Gothenburg, Gothenburg, Sweden
- Linnaeus Centre for Marine Evolutionary Biology, University of Gothenburg, Gothenburg, Sweden
| | - Anja M Westram
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| | - Stephen W Schaeffer
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Kerstin Johannesson
- Linnaeus Centre for Marine Evolutionary Biology, University of Gothenburg, Gothenburg, Sweden
- Tjärnö Marine Laboratory, Department of Marine Sciences, University of Gothenburg, Strömstad, Sweden
| | - Thomas Flatt
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
12
|
Rosing-Asvid A, Löytynoja A, Momigliano P, Hansen RG, Scharff-Olsen CH, Valtonen M, Kammonen J, Dietz R, Rigét FF, Ferguson SH, Lydersen C, Kovacs KM, Holland DM, Jernvall J, Auvinen P, Tange Olsen M. An evolutionarily distinct ringed seal in the Ilulissat Icefjord. Mol Ecol 2023; 32:5932-5943. [PMID: 37855154 DOI: 10.1111/mec.17163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/20/2023] [Accepted: 10/02/2023] [Indexed: 10/20/2023]
Abstract
The Earth's polar regions are low rates of inter- and intraspecific diversification. An extreme mammalian example is the Arctic ringed seal (Pusa hispida hispida), which is assumed to be panmictic across its circumpolar Arctic range. Yet, local Inuit communities in Greenland and Canada recognize several regional variants; a finding supported by scientific studies of body size variation. It is however unclear whether this phenotypic variation reflects plasticity, morphs or distinct ecotypes. Here, we combine genomic, biologging and survey data, to document the existence of a unique ringed seal ecotype in the Ilulissat Icefjord (locally 'Kangia'), Greenland; a UNESCO World Heritage site, which is home to the most productive marine-terminating glacier in the Arctic. Genomic analyses reveal a divergence of Kangia ringed seals from other Arctic ringed seals about 240 kya, followed by secondary contact since the Last Glacial Maximum. Despite ongoing gene flow, multiple genomic regions appear under strong selection in Kangia ringed seals, including candidate genes associated with pelage coloration, growth and osmoregulation, potentially explaining the Kangia seal's phenotypic and behavioural uniqueness. The description of 'hidden' diversity and adaptations in yet another Arctic species merits a reassessment of the evolutionary processes that have shaped Arctic diversity and the traditional view of this region as an evolutionary freezer. Our study highlights the value of indigenous knowledge in guiding science and calls for efforts to identify distinct populations or ecotypes to understand how these might respond differently to environmental change.
Collapse
Affiliation(s)
| | - Ari Löytynoja
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Paolo Momigliano
- Department of Biochemistry, Genetics, and Immunology, Universidade de Vigo, Vigo, Spain
- Area of Ecology and Biodiversity, School of Biological Sciences, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | | | | | - Mia Valtonen
- Wildlife Ecology Group, Natural Resources Institute Finland, Helsinki, Finland
| | - Juhana Kammonen
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Rune Dietz
- Department of Ecoscience, Aarhus University, Roskilde, Denmark
| | | | | | | | - Kit M Kovacs
- Norwegian Polar Institute, Fram Centre, Tromsø, Norway
| | - David M Holland
- Mathematics and Atmosphere/Ocean Science, Courant Institute of Mathematical Sciences, New York University, New York City, New York, USA
| | - Jukka Jernvall
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Petri Auvinen
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Morten Tange Olsen
- Section for Molecular Ecology and Evolution, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
13
|
Mathur S, Mason AJ, Bradburd GS, Gibbs HL. Functional genomic diversity is correlated with neutral genomic diversity in populations of an endangered rattlesnake. Proc Natl Acad Sci U S A 2023; 120:e2303043120. [PMID: 37844221 PMCID: PMC10614936 DOI: 10.1073/pnas.2303043120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 09/19/2023] [Indexed: 10/18/2023] Open
Abstract
Theory predicts that genetic erosion in small, isolated populations of endangered species can be assessed using estimates of neutral genetic variation, yet this widely used approach has recently been questioned in the genomics era. Here, we leverage a chromosome-level genome assembly of an endangered rattlesnake (Sistrurus catenatus) combined with whole genome resequencing data (N = 110 individuals) to evaluate the relationship between levels of genome-wide neutral and functional diversity over historical and future timescales. As predicted, we found positive correlations between genome-wide estimates of neutral genetic diversity (π) and inferred levels of adaptive variation and an estimate of inbreeding mutation load, and a negative relationship between neutral diversity and an estimate of drift mutation load. However, these correlations were half as strong for projected future levels of neutral diversity based on contemporary effective population sizes. Broadly, our results confirm that estimates of neutral genetic diversity provide an accurate measure of genetic erosion in populations of a threatened vertebrate. They also provide nuance to the neutral-functional diversity controversy by suggesting that while these correlations exist, anthropogenetic impacts may have weakened these associations in the recent past and into the future.
Collapse
Affiliation(s)
- Samarth Mathur
- Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, Columbus, OH48824
- Ohio Biodiversity Conservation Partnership, The Ohio State University, Columbus, OH43210
| | - Andrew J. Mason
- Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, Columbus, OH48824
- Ohio Biodiversity Conservation Partnership, The Ohio State University, Columbus, OH43210
| | - Gideon S. Bradburd
- Evolution and Behavior Program, Department of Integrative Biology, Ecology, Michigan State University, East Lansing, MI48824
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI48109
| | - H. Lisle Gibbs
- Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, Columbus, OH48824
- Ohio Biodiversity Conservation Partnership, The Ohio State University, Columbus, OH43210
| |
Collapse
|
14
|
James ME, Allsopp RN, Groh JS, Kaur A, Wilkinson MJ, Ortiz-Barrientos D. Uncovering the genetic architecture of parallel evolution. Mol Ecol 2023; 32:5575-5589. [PMID: 37740681 DOI: 10.1111/mec.17134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 07/31/2023] [Accepted: 08/07/2023] [Indexed: 09/25/2023]
Abstract
Identifying the genetic architecture underlying adaptive traits is exceptionally challenging in natural populations. This is because associations between traits not only mask the targets of selection but also create correlated patterns of genomic divergence that hinder our ability to isolate causal genetic effects. Here, we examine the repeated evolution of components of the auxin pathway that have contributed to the replicated loss of gravitropism (i.e. the ability of a plant to bend in response to gravity) in multiple populations of the Senecio lautus species complex in Australia. We use a powerful approach which combines parallel population genomics with association mapping in a Multiparent Advanced Generation Inter-Cross (MAGIC) population to break down genetic and trait correlations to reveal how adaptive traits evolve during replicated evolution. We sequenced auxin and shoot gravitropism-related gene regions in 80 individuals from six natural populations (three parallel divergence events) and 133 individuals from a MAGIC population derived from two of the recently diverged natural populations. We show that artificial tail selection on gravitropism in the MAGIC population recreates patterns of parallel divergence in the auxin pathway in the natural populations. We reveal a set of 55 auxin gene regions that have evolved repeatedly during the evolution of the species, of which 50 are directly associated with gravitropism divergence in the MAGIC population. Our work creates a strong link between patterns of genomic divergence and trait variation contributing to replicated evolution by natural selection, paving the way to understand the origin and maintenance of adaptations in natural populations.
Collapse
Affiliation(s)
- Maddie E James
- School of Biological Sciences, The University of Queensland, St Lucia, Queensland, Australia
- Australian Research Council Centre of Excellence for Plant Success in Nature and Agriculture, The University of Queensland, St Lucia, Queensland, Australia
| | - Robin N Allsopp
- School of Biological Sciences, The University of Queensland, St Lucia, Queensland, Australia
| | - Jeffrey S Groh
- School of Biological Sciences, The University of Queensland, St Lucia, Queensland, Australia
| | - Avneet Kaur
- School of Biological Sciences, The University of Queensland, St Lucia, Queensland, Australia
- Australian Research Council Centre of Excellence for Plant Success in Nature and Agriculture, The University of Queensland, St Lucia, Queensland, Australia
| | - Melanie J Wilkinson
- School of Biological Sciences, The University of Queensland, St Lucia, Queensland, Australia
- Australian Research Council Centre of Excellence for Plant Success in Nature and Agriculture, The University of Queensland, St Lucia, Queensland, Australia
| | - Daniel Ortiz-Barrientos
- School of Biological Sciences, The University of Queensland, St Lucia, Queensland, Australia
- Australian Research Council Centre of Excellence for Plant Success in Nature and Agriculture, The University of Queensland, St Lucia, Queensland, Australia
| |
Collapse
|
15
|
Abstract
AbstractEvolutionary biologists have thought about the role of genetic variation during adaptation for a very long time-before we understood the organization of the genetic code, the provenance of genetic variation, and how such variation influenced the phenotypes on which natural selection acts. Half a century after the discovery of the structure of DNA and the unraveling of the genetic code, we have a rich understanding of these problems and the means to both delve deeper and widen our perspective across organisms and natural populations. The 2022 Vice Presidential Symposium of the American Society of Naturalists highlighted examples of recent insights into the role of genetic variation in adaptive processes, which are compiled in this special section. The work was conducted in different parts of the world, included theoretical and empirical studies with diverse organisms, and addressed distinct aspects of how genetic variation influences adaptation. In our introductory article to the special section, we discuss some important recent insights about the generation and maintenance of genetic variation, its impacts on phenotype and fitness, its fate in natural populations, and its role in driving adaptation. By placing the special section articles in the broader context of recent developments, we hope that this overview will also serve as a useful introduction to the field.
Collapse
|
16
|
Enbody ED, Sendell-Price AT, Sprehn CG, Rubin CJ, Visscher PM, Grant BR, Grant PR, Andersson L. Community-wide genome sequencing reveals 30 years of Darwin's finch evolution. Science 2023; 381:eadf6218. [PMID: 37769091 DOI: 10.1126/science.adf6218] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 08/22/2023] [Indexed: 09/30/2023]
Abstract
A fundamental goal in evolutionary biology is to understand the genetic architecture of adaptive traits. Using whole-genome data of 3955 of Darwin's finches on the Galápagos Island of Daphne Major, we identified six loci of large effect that explain 45% of the variation in the highly heritable beak size of Geospiza fortis, a key ecological trait. The major locus is a supergene comprising four genes. Abrupt changes in allele frequencies at the loci accompanied a strong change in beak size caused by natural selection during a drought. A gradual change in Geospiza scandens occurred across 30 years as a result of introgressive hybridization with G. fortis. This study shows how a few loci with large effect on a fitness-related trait contribute to the genetic potential for rapid adaptive radiation.
Collapse
Affiliation(s)
- Erik D Enbody
- Department of Medical Biochemistry and Microbiology, Uppsala University, Box 582, 751 23 Uppsala, Sweden
| | - Ashley T Sendell-Price
- Department of Medical Biochemistry and Microbiology, Uppsala University, Box 582, 751 23 Uppsala, Sweden
| | - C Grace Sprehn
- Department of Medical Biochemistry and Microbiology, Uppsala University, Box 582, 751 23 Uppsala, Sweden
| | - Carl-Johan Rubin
- Department of Medical Biochemistry and Microbiology, Uppsala University, Box 582, 751 23 Uppsala, Sweden
| | - Peter M Visscher
- Institute for Molecular Bioscience, The University of Queensland, 306 Carmody Rd., St. Lucia QLD 4072, Australia
| | - B Rosemary Grant
- Department of Ecology and Evolutionary Biology, Princeton University, 106A Guyot Hall, Princeton, NJ 08544, USA
| | - Peter R Grant
- Department of Ecology and Evolutionary Biology, Princeton University, 106A Guyot Hall, Princeton, NJ 08544, USA
| | - Leif Andersson
- Department of Medical Biochemistry and Microbiology, Uppsala University, Box 582, 751 23 Uppsala, Sweden
- Department of Veterinary Integrative Biosciences, Texas A&M University, 402 Raymond Stotzer Pkwy Building 2, College Station, TX 77843, USA
| |
Collapse
|
17
|
Matthews DG, Dial TR, Lauder GV. Genes, Morphology, Performance, and Fitness: Quantifying Organismal Performance to Understand Adaptive Evolution. Integr Comp Biol 2023; 63:843-859. [PMID: 37422435 DOI: 10.1093/icb/icad096] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 06/06/2023] [Accepted: 06/22/2023] [Indexed: 07/10/2023] Open
Abstract
To understand the complexities of morphological evolution, we must understand the relationships between genes, morphology, performance, and fitness in complex traits. Genomicists have made tremendous progress in finding the genetic basis of many phenotypes, including a myriad of morphological characters. Similarly, field biologists have greatly advanced our understanding of the relationship between performance and fitness in natural populations. However, the connection from morphology to performance has primarily been studied at the interspecific level, meaning that in most cases we lack a mechanistic understanding of how evolutionarily relevant variation among individuals affects organismal performance. Therefore, functional morphologists need methods that will allow for the analysis of fine-grained intraspecific variation in order to close the path from genes to fitness. We suggest three methodological areas that we believe are well suited for this research program and provide examples of how each can be applied within fish model systems to build our understanding of microevolutionary processes. Specifically, we believe that structural equation modeling, biological robotics, and simultaneous multi-modal functional data acquisition will open up fruitful collaborations among biomechanists, evolutionary biologists, and field biologists. It is only through the combined efforts of all three fields that we will understand the connection between evolution (acting at the level of genes) and natural selection (acting on fitness).
Collapse
Affiliation(s)
- David G Matthews
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
- Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138, USA
| | - Terry R Dial
- Department of Biology and Ecology Center, Utah State University, Moab, UT 84322, USA
- Department of Environment and Society, Utah State University, Moab, UT 84322, USA
| | - George V Lauder
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
- Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
18
|
Recuerda M, Palacios M, Frías O, Hobson K, Nabholz B, Blanco G, Milá B. Adaptive phenotypic and genomic divergence in the common chaffinch (Fringilla coelebs) following niche expansion within a small oceanic island. J Evol Biol 2023; 36:1226-1241. [PMID: 37485603 DOI: 10.1111/jeb.14200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 06/06/2023] [Accepted: 06/09/2023] [Indexed: 07/25/2023]
Abstract
According to models of ecological speciation, adaptation to adjacent, contrasting habitat types can lead to population divergence given strong enough environment-driven selection to counteract the homogenizing effect of gene flow. We tested this hypothesis in the common chaffinch (Fringilla coelebs) on the small island of La Palma, Canary Islands, where it occupies two markedly different habitats. Isotopic (δ13 C, δ15 N) analysis of feathers indicated that birds in the two habitats differed in ecosystem and/or diet, and analysis of phenotypic traits revealed significant differences in morphology and plumage colouration that are consistent with ecomorphological and ecogeographical predictions respectively. A genome-wide survey of single-nucleotide polymorphism revealed marked neutral structure that was consistent with geography and isolation by distance, suggesting low dispersal. In contrast, loci putatively under selection identified through genome-wide association and genotype-environment association analyses, revealed amarked adaptive divergence between birds in both habitats. Loci associated with phenotypic and environmental differences among habitats were distributed across the genome, as expected for polygenic traits involved in local adaptation. Our results suggest a strong role for habitat-driven local adaptation in population divergence in the chaffinches of La Palma, a process that appears to be facilitated by a strong reduction in effective dispersal distances despite the birds' high dispersal capacity.
Collapse
Affiliation(s)
- María Recuerda
- National Museum of Natural Sciences, Spanish National Research Council (CSIC), Madrid, Spain
| | - Mercè Palacios
- Department of Biodiversity, Ecology and Evolution, Universidad Complutense de Madrid, Madrid, Spain
| | - Oscar Frías
- National Museum of Natural Sciences, Spanish National Research Council (CSIC), Madrid, Spain
| | - Keith Hobson
- Biology Department, Western University, London, Ontario, Canada
| | - Benoit Nabholz
- Institut des Sciences de l'Évolution de Montpellier (ISEM), CNRS, EPHE, IRD, Université de Montpellier, Montpellier, France
- Institut Universitaire de France (IUF), Paris, France
| | - Guillermo Blanco
- National Museum of Natural Sciences, Spanish National Research Council (CSIC), Madrid, Spain
| | - Borja Milá
- National Museum of Natural Sciences, Spanish National Research Council (CSIC), Madrid, Spain
| |
Collapse
|
19
|
Oakley CG, Schemske DW, McKay JK, Ågren J. Ecological genetics of local adaptation in Arabidopsis: An 8-year field experiment. Mol Ecol 2023; 32:4570-4583. [PMID: 37317048 DOI: 10.1111/mec.17045] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 05/16/2023] [Accepted: 05/30/2023] [Indexed: 06/16/2023]
Abstract
There is considerable evidence for local adaptation in nature, yet important questions remain regarding its genetic basis. How many loci are involved? What are their effect sizes? What is the relative importance of conditional neutrality versus genetic trade-offs? Here we address these questions in the self-pollinating, annual plant Arabidopsis thaliana. We used 400 recombinant inbred lines (RILs) derived from two locally adapted populations in Italy and Sweden, grew the RILs and parents at the parental locations, and mapped quantitative trait loci (QTL) for mean fitness (fruits/seedling planted). We previously published results from the first 3 years of the study, and here add five additional years, providing a unique opportunity to assess how temporal variation in selection might affect QTL detection and classification. We found 10 adaptive and one maladaptive QTL in Italy, and six adaptive and four maladaptive QTL in Sweden. The discovery of maladaptive QTL at both sites suggests that even locally adapted populations are not always at their genotypic optimum. Mean effect sizes for adaptive QTL, 0.97 and 0.55 fruits in Italy and Sweden, respectively, were large relative to the mean fitness of the RILs (approximately 8 fruits/seedling planted at both sites). Both genetic trade-offs (four cases) and conditional neutrality (seven cases) contribute to local adaptation in this system. The 8-year dataset provided greater power to detect QTL and to estimate their locations compared to our previous 3-year study, identifying one new genetic trade-off and resolving one genetic trade-off into two conditionally adaptive QTL.
Collapse
Affiliation(s)
- Christopher G Oakley
- Department of Botany and Plant Pathology, and the Center for Plant Biology, Purdue University, West Lafayette, Indiana, USA
| | - Douglas W Schemske
- Department of Plant Biology and W. K. Kellogg Biological Station, Michigan State University, East Lansing, Michigan, USA
| | - John K McKay
- College of Agricultural Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Jon Ågren
- Plant Ecology and Evolution, Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| |
Collapse
|
20
|
Elkin J, Martin A, Courtier-Orgogozo V, Santos ME. Analysis of the genetic loci of pigment pattern evolution in vertebrates. Biol Rev Camb Philos Soc 2023; 98:1250-1277. [PMID: 37017088 DOI: 10.1111/brv.12952] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/08/2023] [Accepted: 03/14/2023] [Indexed: 04/06/2023]
Abstract
Vertebrate pigmentation patterns are amongst the best characterised model systems for studying the genetic basis of adaptive evolution. The wealth of available data on the genetic basis for pigmentation evolution allows for analysis of trends and quantitative testing of evolutionary hypotheses. We employed Gephebase, a database of genetic variants associated with natural and domesticated trait variation, to examine trends in how cis-regulatory and coding mutations contribute to vertebrate pigmentation phenotypes, as well as factors that favour one mutation type over the other. We found that studies with lower ascertainment bias identified higher proportions of cis-regulatory mutations, and that cis-regulatory mutations were more common amongst animals harbouring a higher number of pigment cell classes. We classified pigmentation traits firstly according to their physiological basis and secondly according to whether they affect colour or pattern, and identified that carotenoid-based pigmentation and variation in pattern boundaries are preferentially associated with cis-regulatory change. We also classified genes according to their developmental, cellular, and molecular functions. We found a greater proportion of cis-regulatory mutations in genes implicated in upstream developmental processes compared to those involved in downstream cellular functions, and that ligands were associated with a higher proportion of cis-regulatory mutations than their respective receptors. Based on these trends, we discuss future directions for research in vertebrate pigmentation evolution.
Collapse
Affiliation(s)
- Joel Elkin
- Department of Zoology, University of Cambridge, Downing Street, Cambridge, CB2 3EJ, UK
| | - Arnaud Martin
- Department of Biological Sciences, The George Washington University, 800 22nd St. NW, Suite 6000, Washington, DC, 20052, USA
| | | | - M Emília Santos
- Department of Zoology, University of Cambridge, Downing Street, Cambridge, CB2 3EJ, UK
| |
Collapse
|
21
|
Kitchen SA, Naragon TH, Brückner A, Ladinsky MS, Quinodoz SA, Badroos JM, Viliunas JW, Wagner JM, Miller DR, Yousefelahiyeh M, Antoshechkin IA, Eldredge KT, Pirro S, Guttman M, Davis SR, Aardema ML, Parker J. The genomic and cellular basis of biosynthetic innovation in rove beetles. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.29.542378. [PMID: 37398185 PMCID: PMC10312436 DOI: 10.1101/2023.05.29.542378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
How evolution at the cellular level potentiates change at the macroevolutionary level is a major question in evolutionary biology. With >66,000 described species, rove beetles (Staphylinidae) comprise the largest metazoan family. Their exceptional radiation has been coupled to pervasive biosynthetic innovation whereby numerous lineages bear defensive glands with diverse chemistries. Here, we combine comparative genomic and single-cell transcriptomic data from across the largest rove beetle clade, Aleocharinae. We retrace the functional evolution of two novel secretory cell types that together comprise the tergal gland-a putative catalyst behind Aleocharinae's megadiversity. We identify key genomic contingencies that were critical to the assembly of each cell type and their organ-level partnership in manufacturing the beetle's defensive secretion. This process hinged on evolving a mechanism for regulated production of noxious benzoquinones that appears convergent with plant toxin release systems, and synthesis of an effective benzoquinone solvent that weaponized the total secretion. We show that this cooperative biosynthetic system arose at the Jurassic-Cretaceous boundary, and that following its establishment, both cell types underwent ∼150 million years of stasis, their chemistry and core molecular architecture maintained almost clade-wide as Aleocharinae radiated globally into tens of thousands of lineages. Despite this deep conservation, we show that the two cell types have acted as substrates for the emergence of adaptive, biochemical novelties-most dramatically in symbiotic lineages that have infiltrated social insect colonies and produce host behavior-manipulating secretions. Our findings uncover genomic and cell type evolutionary processes underlying the origin, functional conservation and evolvability of a chemical innovation in beetles.
Collapse
|
22
|
Nandakumar M, Lundberg M, Carlsson F, Råberg L. Balancing selection on the complement system of a wild rodent. BMC Ecol Evol 2023; 23:21. [PMID: 37231383 DOI: 10.1186/s12862-023-02122-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 05/10/2023] [Indexed: 05/27/2023] Open
Abstract
BACKGROUND Selection pressure exerted by pathogens can influence patterns of genetic diversity in the host. In the immune system especially, numerous genes encode proteins involved in antagonistic interactions with pathogens, paving the way for coevolution that results in increased genetic diversity as a consequence of balancing selection. The complement system is a key component of innate immunity. Many complement proteins interact directly with pathogens, either by recognising pathogen molecules for complement activation, or by serving as targets of pathogen immune evasion mechanisms. Complement genes can therefore be expected to be important targets of pathogen-mediated balancing selection, but analyses of such selection on this part of the immune system have been limited. RESULTS Using a population sample of whole-genome resequencing data from wild bank voles (n = 31), we estimated the extent of genetic diversity and tested for signatures of balancing selection in multiple complement genes (n = 44). Complement genes showed higher values of standardised β (a statistic expected to be high under balancing selection) than the genome-wide average of protein coding genes. One complement gene, FCNA, a pattern recognition molecule that interacts directly with pathogens, was found to have a signature of balancing selection, as indicated by the Hudson-Kreitman-Aguadé test (HKA) test. Scans for localised signatures of balancing selection in this gene indicated that the target of balancing selection was found in exonic regions involved in ligand binding. CONCLUSION The present study adds to the growing evidence that balancing selection may be an important evolutionary force on components of the innate immune system. The identified target in the complement system typifies the expectation that balancing selection acts on genes encoding proteins involved in direct interactions with pathogens.
Collapse
Affiliation(s)
| | - Max Lundberg
- Department of Biology, Lund University, Lund, Sweden
| | | | - Lars Råberg
- Department of Biology, Lund University, Lund, Sweden
| |
Collapse
|
23
|
Moniruzzaman M, Datta U, Saha NC, Bhowmick AR, Mukherjee J. Abiotic factors and heavy metals defining eco-physiological niche in fish. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 874:162328. [PMID: 36863592 DOI: 10.1016/j.scitotenv.2023.162328] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 02/06/2023] [Accepted: 02/15/2023] [Indexed: 06/18/2023]
Abstract
Ecosystem dynamics undergoing alterations in structure and function highlights the need to look into the relations between ecological parameters and organismal fitness and tolerance. Ecophysiological studies are used to understand how organisms adapt to and cope up with environmental stress. Current study uses a process-based approach to model physiochemical parameters regarding seven different fish species. Species respond to climatic variations via acclimation or adaptation through physiological plasticity. Four sites are differentiated into two types based on the water quality parameters and metal contamination. Seven fish species are clustered into two groups, each group depicting separate pattern of response in similar habitat. In this manner, biomarkers from three different physiological axes- stress, reproduction, and neurology were taken to determine the organism's ecological niche. Cortisol, Testosterone, Estradiol, and AChE are the signature molecules estimated for the said physiological axes. The ordination technique, nonmetric multidimensional scaling, has been utilized to visualize the differentiated physiological response to changing environmental conditions. Then, Bayesian Model Averaging (BMA) was used to identify the factors that play a key role in refining the stress physiology and determining the niche. Current study confirms different species belonging to similar habitats respond to various environmental and physiological factors in a different manner as various biomarkers respond in a species-specific pattern that induces the choice of habitat preference controlling its ecophysiological niche. In the present study, it is quite apparent that adaptive mechanism of fish to environmental stress is achieved through modification of physiological mechanisms through a panel of biochemical markers. These markers organize a cascade of physiological event at various levels including reproduction.
Collapse
Affiliation(s)
- Mahammed Moniruzzaman
- Department of Zoology, University of Calcutta, Kolkata 700019, India; Estuarine and Coastal Studies Foundation, Howrah, West Bengal, India
| | - Urbi Datta
- Department of Mathematics, Institute of Chemical Technology, Mumbai, India
| | - Nimai Chandra Saha
- Department of Zoology, The University of Burdwan, Burdwan, West Bengal, India
| | | | - Joyita Mukherjee
- Department of Zoology, Krishna Chandra College, Hetampur, Birbhum, West Bengal, India.
| |
Collapse
|
24
|
Thorn CS, Maness RW, Hulke JM, Delmore KE, Criscione CD. Population genomics of helminth parasites. J Helminthol 2023; 97:e29. [PMID: 36927601 DOI: 10.1017/s0022149x23000123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
Next generation sequencing technologies have facilitated a shift from a few targeted loci in population genetic studies to whole genome approaches. Here, we review the types of questions and inferences regarding the population biology and evolution of parasitic helminths being addressed within the field of population genomics. Topics include parabiome, hybridization, population structure, loci under selection and linkage mapping. We highlight various advances, and note the current trends in the field, particularly a focus on human-related parasites despite the inherent biodiversity of helminth species. We conclude by advocating for a broader application of population genomics to reflect the taxonomic and life history breadth displayed by helminth parasites. As such, our basic knowledge about helminth population biology and evolution would be enhanced while the diversity of helminths in itself would facilitate population genomic comparative studies to address broader ecological and evolutionary concepts.
Collapse
Affiliation(s)
- C S Thorn
- Department of Biology, Texas A&M University, 3258 TAMU, College Station, TX, 77843, USA
| | - R W Maness
- Department of Biology, Texas A&M University, 3258 TAMU, College Station, TX, 77843, USA
| | - J M Hulke
- Department of Biology, Texas A&M University, 3258 TAMU, College Station, TX, 77843, USA
| | - K E Delmore
- Department of Biology, Texas A&M University, 3258 TAMU, College Station, TX, 77843, USA
| | - C D Criscione
- Department of Biology, Texas A&M University, 3258 TAMU, College Station, TX, 77843, USA
| |
Collapse
|
25
|
Small ST, Costantini C, Sagnon N, Guelbeogo MW, Emrich SJ, Kern AD, Fontaine MC, Besansky NJ. Standing genetic variation and chromosome differences drove rapid ecotype formation in a major malaria mosquito. Proc Natl Acad Sci U S A 2023; 120:e2219835120. [PMID: 36881629 PMCID: PMC10089221 DOI: 10.1073/pnas.2219835120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 02/09/2023] [Indexed: 03/08/2023] Open
Abstract
Species distributed across heterogeneous environments often evolve locally adapted ecotypes, but understanding of the genetic mechanisms involved in their formation and maintenance in the face of gene flow is incomplete. In Burkina Faso, the major African malaria mosquito Anopheles funestus comprises two strictly sympatric and morphologically indistinguishable yet karyotypically differentiated forms reported to differ in ecology and behavior. However, knowledge of the genetic basis and environmental determinants of An. funestus diversification was impeded by lack of modern genomic resources. Here, we applied deep whole-genome sequencing and analysis to test the hypothesis that these two forms are ecotypes differentially adapted to breeding in natural swamps versus irrigated rice fields. We demonstrate genome-wide differentiation despite extensive microsympatry, synchronicity, and ongoing hybridization. Demographic inference supports a split only ~1,300 y ago, closely following the massive expansion of domesticated African rice cultivation ~1,850 y ago. Regions of highest divergence, concentrated in chromosomal inversions, were under selection during lineage splitting, consistent with local adaptation. The origin of nearly all variations implicated in adaptation, including chromosomal inversions, substantially predates the ecotype split, suggesting that rapid adaptation was fueled mainly by standing genetic variation. Sharp inversion frequency differences likely facilitated adaptive divergence between ecotypes by suppressing recombination between opposing chromosomal orientations of the two ecotypes, while permitting free recombination within the structurally monomorphic rice ecotype. Our results align with growing evidence from diverse taxa that rapid ecological diversification can arise from evolutionarily old structural genetic variants that modify genetic recombination.
Collapse
Affiliation(s)
- Scott T. Small
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN46556
- Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN46556
- Institute for Ecology and Evolution, University of Oregon, Eugene, OR97403
| | - Carlo Costantini
- Centre National de Recherche et Formation sur le Paludisme, Ouagadougou01 BP 2208, Burkina Faso
- Infectious Diseases and Vectors: Ecology, Genetics, Evolution and Control (MIVEGEC), Université de Montpellier, CNRS 5290, Institute of Research for Development (IRD) 224, F-34394Montpellier, France
| | - N’Fale Sagnon
- Centre National de Recherche et Formation sur le Paludisme, Ouagadougou01 BP 2208, Burkina Faso
| | - Moussa W. Guelbeogo
- Centre National de Recherche et Formation sur le Paludisme, Ouagadougou01 BP 2208, Burkina Faso
| | - Scott J. Emrich
- Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN46556
- Department of Computer Science and Engineering, University of Notre Dame, Notre Dame, IN46556
| | - Andrew D. Kern
- Institute for Ecology and Evolution, University of Oregon, Eugene, OR97403
| | - Michael C. Fontaine
- Infectious Diseases and Vectors: Ecology, Genetics, Evolution and Control (MIVEGEC), Université de Montpellier, CNRS 5290, Institute of Research for Development (IRD) 224, F-34394Montpellier, France
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, 9747 AGGroningen, The Netherlands
| | - Nora J. Besansky
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN46556
- Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN46556
| |
Collapse
|
26
|
Cortés AJ, Barnaby JY. Editorial: Harnessing genebanks: High-throughput phenotyping and genotyping of crop wild relatives and landraces. FRONTIERS IN PLANT SCIENCE 2023; 14:1149469. [PMID: 36968416 PMCID: PMC10036837 DOI: 10.3389/fpls.2023.1149469] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Accepted: 01/26/2023] [Indexed: 06/18/2023]
Affiliation(s)
- Andrés J. Cortés
- Corporación Colombiana de Investigación Agropecuaria – AGROSAVIA, C.I. La Selva, Rionegro, Colombia
| | - Jinyoung Y. Barnaby
- U.S. Department of Agriculture, U.S. National Arboretum, Floral and Nursery Plants Research Unit, Beltsville, MD, United States
| |
Collapse
|
27
|
Brown KE, Koenig D. On the hidden temporal dynamics of plant adaptation. CURRENT OPINION IN PLANT BIOLOGY 2022; 70:102298. [PMID: 36126489 DOI: 10.1016/j.pbi.2022.102298] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 07/28/2022] [Accepted: 08/12/2022] [Indexed: 06/15/2023]
Abstract
Adaptation to a wide range of environments is a major driver of plant diversity. It is now possible to catalog millions of potential adaptive genomic differences segregating between environments within a plant species in a single experiment. Understanding which of these changes contributes to adaptive phenotypic divergence between plant populations is a major goal of evolutionary biologists and crop breeders. In this review, we briefly highlight the approaches frequently used to understand the genetic basis of adaptive phenotypes in plants, and we discuss some of the limitations of these methods. We propose that direct observation of the process of adaptation using multigenerational studies and whole genome sequencing is a crucial missing component of recent studies of plant adaptation because it complements several shortcomings of sampling-based techniques.
Collapse
Affiliation(s)
- Keely E Brown
- Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA.
| | - Daniel Koenig
- Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA; Institute for Integrative Genome Biology, University of California, Riverside, CA 92521, USA
| |
Collapse
|
28
|
Hoedjes KM, Kostic H, Keller L, Flatt T. Natural alleles at the Doa locus underpin evolutionary changes in Drosophila lifespan and fecundity. Proc Biol Sci 2022; 289:20221989. [PMID: 36350205 PMCID: PMC9653240 DOI: 10.1098/rspb.2022.1989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
'Evolve and resequence' (E&R) studies in Drosophila melanogaster have identified many candidate loci underlying the evolution of ageing and life history, but experiments that validate the effects of such candidates remain rare. In a recent E&R study we have identified several alleles of the LAMMER kinase Darkener of apricot (Doa) as candidates for evolutionary changes in lifespan and fecundity. Here, we use two complementary approaches to confirm a functional role of Doa in life-history evolution. First, we used transgenic RNAi to study the effects of Doa at the whole-gene level. Ubiquitous silencing of expression in adult flies reduced both lifespan and fecundity, indicating pleiotropic effects. Second, to characterize segregating variation at Doa, we examined four candidate single nucleotide polymorphisms (SNPs; Doa-1, -2, -3, -4) using a genetic association approach. Three candidate SNPs had effects that were qualitatively consistent with expectations based on our E&R study: Doa-2 pleiotropically affected both lifespan and late-life fecundity; Doa-1 affected lifespan (but not fecundity); and Doa-4 affected late-life fecundity (but not lifespan). Finally, the last candidate allele (Doa-3) also affected lifespan, but in the opposite direction from predicted.
Collapse
Affiliation(s)
- Katja M. Hoedjes
- Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland
| | - Hristina Kostic
- Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland
| | - Laurent Keller
- Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland
| | - Thomas Flatt
- Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland,Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland
| |
Collapse
|
29
|
Population genomics of the neotropical palm Copernicia prunifera (Miller) H. E. Moore: Implications for conservation. PLoS One 2022; 17:e0276408. [PMID: 36327224 PMCID: PMC9632875 DOI: 10.1371/journal.pone.0276408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 10/05/2022] [Indexed: 11/06/2022] Open
Abstract
Copernicia prunifera (Miller) H. E. Moore is a palm tree native to Brazil. The products obtained from its leaf extracts are a source of income for local families and the agroindustry. Owing to the reduction of natural habitats and the absence of a sustainable management plan, the maintenance of the natural populations of this palm tree has been compromised. Therefore, this study aimed to evaluate the diversity and genetic structure of 14 C. prunifera populations using single nucleotide polymorphisms (SNPs) identified through genotyping-by-sequencing (GBS) to provide information that contributes to the conservation of this species. A total of 1,013 SNP markers were identified, of which 84 loci showed outlier behavior and may reflect responses to natural selection. Overall, the level of genomic diversity was compatible with the biological aspects of this species. The inbreeding coefficient (f) was negative for all populations, indicating excess heterozygotes. Most genetic variations occurred within populations (77.26%), and a positive correlation existed between genetic and geographic distances. The population structure evaluated through discriminant analysis of principal components (DAPC) revealed low genetic differentiation between populations. The results highlight the need for efforts to conserve C. prunifera as well as its distribution range to preserve its global genetic diversity and evolutionary potential.
Collapse
|
30
|
Bazzicalupo A. Local adaptation in fungi. FEMS Microbiol Rev 2022; 46:6604384. [PMID: 35675293 DOI: 10.1093/femsre/fuac026] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 05/24/2022] [Accepted: 05/30/2022] [Indexed: 01/09/2023] Open
Abstract
In this review, I explore the pervasive but underappreciated role of local adaptation in fungi. It has been difficult historically to study local adaptation in fungi because of the limited understanding of fungal species and their traits, but new hope has been offered with technological advances in sequencing. The filamentous nature of fungi invalidates some assumptions made in evolution because of their ability to exist as multinucleate entities with genetically different nuclei sharing the same cytoplasm. Many insights on local adaptation have come from studying fungi, and much of the empirical evidence gathered about local adaptation in the context of host-pathogen interactions comes from studying fungal virulence genes, drug resistance, and environmental adaptation. Together, these insights paint a picture of the variety of processes involved in fungal local adaptation and their connections to the unusual cell biology of Fungi (multinucleate, filamentous habit), but there is much that remains unknown, with major gaps in our knowledge of fungal species, their phenotypes, and the ways by which they adapt to local conditions.
Collapse
Affiliation(s)
- Anna Bazzicalupo
- Department of Zoology, University of British Columbia, 4200 - 6270 University Blvd., Vancouver V6T 1Z4, Canada
| |
Collapse
|
31
|
Winchell KM, Aviles‐Rodriguez KJ, Carlen EJ, Miles LS, Charmantier A, De León LF, Gotanda KM, Rivkin LR, Szulkin M, Verrelli BC. Moving past the challenges and misconceptions in urban adaptation research. Ecol Evol 2022; 12:e9552. [PMID: 36425909 PMCID: PMC9679025 DOI: 10.1002/ece3.9552] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 10/25/2022] [Accepted: 11/04/2022] [Indexed: 10/14/2023] Open
Abstract
Although the field of urban evolutionary ecology has recently expanded, much progress has been made in identifying adaptations that arise as a result of selective pressures within these unique environments. However, as studies within urban environments have rapidly increased, researchers have recognized that there are challenges and opportunities in characterizing urban adaptation. Some of these challenges are a consequence of increased direct and indirect human influence, which compounds long-recognized issues with research on adaptive evolution more generally. In this perspective, we discuss several common research challenges to urban adaptation related to (1) methodological approaches, (2) trait-environment relationships and the natural history of organisms, (3) agents and targets of selection, and (4) habitat heterogeneity. Ignoring these challenges may lead to misconceptions and further impede our ability to draw conclusions regarding evolutionary and ecological processes in urban environments. Our goal is to first shed light on the conceptual challenges of conducting urban adaptation research to help avoid the propagation of these misconceptions. We further summarize potential strategies to move forward productively to construct a more comprehensive picture of urban adaptation, and discuss how urban environments also offer unique opportunities and applications for adaptation research.
Collapse
Affiliation(s)
- Kristin M. Winchell
- Department of BiologyNew York UniversityNew YorkNYUSA
- Department of BiologyWashington University in St. LouisSt. LouisMissouriUSA
| | - Kevin J. Aviles‐Rodriguez
- Department of BiologyUniversity of Massachusetts BostonBostonMassachusettsUSA
- Department of BiologyFordham UniversityBronxNew YorkUSA
| | - Elizabeth J. Carlen
- Department of BiologyWashington University in St. LouisSt. LouisMissouriUSA
- Department of BiologyFordham UniversityBronxNew YorkUSA
- Living Earth CollaborativeWashington University in St. LouisSt. LouisMissouriUSA
| | - Lindsay S. Miles
- Center for Biological Data ScienceVirginia Commonwealth UniversityRichmondVirginiaUSA
| | - Anne Charmantier
- Centre d'Ecologie Fonctionnelle et EvolutiveUniversité de Montpellier, CNRS, EPHE, IRDMontpellierFrance
| | - Luis F. De León
- Department of BiologyUniversity of Massachusetts BostonBostonMassachusettsUSA
| | - Kiyoko M. Gotanda
- Department of BiologyUniversité de SherbrookeSherbrookeQuebecCanada
- Department of Biological SciencesBrock UniversitySt. Catharine'sOntarioCanada
| | - L. Ruth Rivkin
- Department of Ecology and Evolutionary BiologyUniversity of TorontoTorontoOntarioCanada
- Department of BiologyUniversity of Toronto MississaugaMississaugaOntarioCanada
- Centre for Urban EnvironmentsUniversity of Toronto MississaugaMississaugaOntarioCanada
| | - Marta Szulkin
- Centre of New TechnologiesUniversity of WarsawWarsawPoland
| | - Brian C. Verrelli
- Center for Biological Data ScienceVirginia Commonwealth UniversityRichmondVirginiaUSA
| |
Collapse
|
32
|
Genomic basis of neotropical primate adaptations. Proc Natl Acad Sci U S A 2022; 119:e2213527119. [PMID: 36170247 PMCID: PMC9546596 DOI: 10.1073/pnas.2213527119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
33
|
Two Conserved Amino Acids Characterized in the Island Domain Are Essential for the Biological Functions of Brassinolide Receptors. Int J Mol Sci 2022; 23:ijms231911454. [PMID: 36232750 PMCID: PMC9570414 DOI: 10.3390/ijms231911454] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/19/2022] [Accepted: 09/26/2022] [Indexed: 11/16/2022] Open
Abstract
Brassinosteroids (BRs) play important roles in plant growth and development, and BR perception is the pivotal process required to trigger BR signaling. In angiosperms, BR insensitive 1 (BRI1) is the essential BR receptor, because its mutants exhibit an extremely dwarf phenotype in Arabidopsis. Two other BR receptors, BRI1-like 1 (BRL1) and BRI1-like 3 (BRL3), are shown to be not indispensable. All BR receptors require an island domain (ID) responsible for BR perception. However, the biological functional significance of residues in the ID remains unknown. Based on the crystal structure and sequence alignments analysis of BR receptors, we identified two residues 597 and 599 of AtBRI1 that were highly conserved within a BR receptor but diversified among different BR receptors. Both of these residues are tyrosine in BRI1, while BRL1/BRL3 fixes two phenylalanines. The experimental findings revealed that, except BRI1Y597F and BRI1Y599F, substitutions of residues 597 and 599 with the remaining 18 amino acids differently impaired BR signaling and, surprisingly, BRI1Y599F showed a weaker phenotype than BRI1Y599 did, implying that these residues were the key sites to differentiate BR receptors from a non-BR receptor, and the essential BR receptor BRI1 from BRL1/3, which possibly results from positive selection via gain of function during evolution.
Collapse
|
34
|
Abstract
The rediscovery of Mendel’s work showing that the heredity of phenotypes is controlled by discrete genes was followed by the reconciliation of Mendelian genetics with evolution by natural selection in the middle of the last century with the Modern Synthesis. In the past two decades, dramatic advances in genomic methods have facilitated the identification of the loci, genes, and even individual mutations that underlie phenotypic variants that are the putative targets of natural selection. Moreover, these methods have also changed how we can study adaptation by flipping the problem around, allowing us to first examine what loci show evidence of having been under selection, and then connecting these genetic variants to phenotypic variation. As a result, we now have an expanding list of actual genetic changes that underlie potentially adaptive phenotypic variation. Here, we synthesize how considering the effects of these adaptive loci in the context of cellular environments, genomes, organisms, and populations has provided new insights to the genetic architecture of adaptation.
Collapse
|
35
|
Ansai S, Kitano J. Speciation and adaptation research meets genome editing. Philos Trans R Soc Lond B Biol Sci 2022; 377:20200516. [PMID: 35634923 PMCID: PMC9149800 DOI: 10.1098/rstb.2020.0516] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 02/07/2022] [Indexed: 07/20/2023] Open
Abstract
Understanding the genetic basis of reproductive isolation and adaptive traits in natural populations is one of the fundamental goals in evolutionary biology. Genome editing technologies based on CRISPR-Cas systems and site-specific recombinases have enabled us to modify a targeted genomic region as desired and thus to conduct functional analyses of target loci, genes and mutations even in non-conventional model organisms. Here, we review the technical properties of genome editing techniques by classifying them into the following applications: targeted gene knock-out for investigating causative gene functions, targeted gene knock-in of marker genes for visualizing expression patterns and protein functions, precise gene replacement for identifying causative alleles and mutations, and targeted chromosomal rearrangement for investigating the functional roles of chromosomal structural variations. We describe examples of their application to demonstrate functional analysis of naturally occurring genetic variations and discuss how these technologies can be applied to speciation and adaptation research. This article is part of the theme issue 'Genetic basis of adaptation and speciation: from loci to causative mutations'.
Collapse
Affiliation(s)
- Satoshi Ansai
- Graduate School of Life Sciences, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai, Miyagi 980-8577, Japan
| | - Jun Kitano
- Ecological Genetics Laboratory, Department of Genomics and Evolutionary Biology, National Institute of Genetics, Yata 1111, Mishima, Shizuoka 411-8540, Japan
| |
Collapse
|
36
|
Velotta JP, McCormick SD, Whitehead A, Durso CS, Schultz ET. Repeated Genetic Targets of Natural Selection Underlying Adaptation of Fishes to Changing Salinity. Integr Comp Biol 2022; 62:357-375. [PMID: 35661215 DOI: 10.1093/icb/icac072] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/16/2022] [Accepted: 05/05/2022] [Indexed: 11/12/2022] Open
Abstract
Ecological transitions across salinity boundaries have led to some of the most important diversification events in the animal kingdom, especially among fishes. Adaptations accompanying such transitions include changes in morphology, diet, whole-organism performance, and osmoregulatory function, which may be particularly prominent since divergent salinity regimes make opposing demands on systems that maintain ion and water balance. Research in the last decade has focused on the genetic targets underlying such adaptations, most notably by comparing populations of species that are distributed across salinity boundaries. Here, we synthesize research on the targets of natural selection using whole-genome approaches, with a particular emphasis on the osmoregulatory system. Given the complex, integrated and polygenic nature of this system, we expected that signatures of natural selection would span numerous genes across functional levels of osmoregulation, especially salinity sensing, hormonal control, and cellular ion exchange mechanisms. We find support for this prediction: genes coding for V-type, Ca2+, and Na+/K+-ATPases, which are key cellular ion exchange enzymes, are especially common targets of selection in species from six orders of fishes. This indicates that while polygenic selection contributes to adaptation across salinity boundaries, changes in ATPase enzymes may be of particular importance in supporting such transitions.
Collapse
Affiliation(s)
- Jonathan P Velotta
- Department of Biological Sciences, University of Denver, Denver, CO 80210, USA
| | - Stephen D McCormick
- USGS, Eastern Ecological Science Center, Conte Anadromous Fish Research Center, Turners Falls, MA 01376, USA.,Department of Biology, University of Massachusetts, Amherst, MA, 01003USA
| | - Andrew Whitehead
- Department of Environmental Toxicology, University of California, Davis, Davis, CA 95616, USA
| | - Catherine S Durso
- Department of Computer Science, University of Denver, Denver, CO 80210, USA
| | - Eric T Schultz
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT 06269, USA
| |
Collapse
|
37
|
EST-Microsatellite Types and Structural Scenarios in European Hake Fisheries. Animals (Basel) 2022; 12:ani12111462. [PMID: 35681926 PMCID: PMC9179439 DOI: 10.3390/ani12111462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/01/2022] [Accepted: 06/02/2022] [Indexed: 11/17/2022] Open
Abstract
A fishery’s structure and connectivity are priors to its effective management. A successful description of such processes depends on both the sampling design and the choice of adequate genetic markers. EST markers are perfusing the studies of marine metapopulations and are believed to provide access to functional polymorphisms. However, the assumed adaptive role of outlier EST loci might not be generalizable. EST-microsatellites represent the upper polymorphic boundary in these regions because of their high mutation rate. We have subclassified the polymorphisms of EST-microsatellites to assess their structural contribution in the European hake, a paradigmatic and highly mobile marine species (HMMS). Because of the counterbalanced forces between directional markers (15%) and balanced markers (23%), the whole marker set offers the same structural situation as the one observed with neutral markers (62%), i.e., k = 2 gene pools. In contrast to outlier EST- microsatellites, neutral EST subsets allow one to measure crucial population phenomena for fisheries’ management. The high inter-population divergence of outlier EST-microsatellites is compatible with drifted post-selection genomic regions rather than with ongoing local selective pressures. The structural scenario in hake is explainable by a limited gene flow across the Almería-Oran Front (AOF) and by the within-basin IBD pattern of connectivity plus drift-related demographic events. This study highlights how polymorphic properties of EST-microsatellite types can be useful to address mutually excluding research tasks in fisheries, i.e., to address its evolutionary history (directional markers or FAPS: Fossil Adaptive Polymorphic Systems); to delineate management units (neutral markers or NAPS: Non Adaptive Polymorphic Systems); or to ensure sustainability (balanced markers or APS: Adaptive Polymorphic Systems).
Collapse
|
38
|
Diamond SE, Prileson EG, Martin RA. Adaptation to urban environments. CURRENT OPINION IN INSECT SCIENCE 2022; 51:100893. [PMID: 35240334 DOI: 10.1016/j.cois.2022.100893] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/18/2022] [Accepted: 02/21/2022] [Indexed: 06/14/2023]
Abstract
Despite widespread evidence of urban evolution, the adaptive nature of these changes is often unclear. We review different phenotypic and molecular lines of evidence used for assessing urban adaptation, discussing the benefits and limitations of each approach, and rare examples of their integration. We then provide a synthesis of local adaptation to urban and rural environments. These data were drawn from phenotypic reciprocal transplant studies, the majority of which focus on insects and other arthropods. Broadly, we found support for local adaptation to urban and rural environments. However, there was asymmetry in the evidence for local adaptation depending on population of origin, with urban adaptation being less prevalent than rural adaptation, suggesting many urban populations are still adapting to urban environments. Further, the general patterns were underlain by considerable variation among study systems; we discuss how environmental heterogeneity and costs of adaptation might explain system-specific variation in urban-rural local adaptation. We then look to the future of urban adaptation research, considering the magnitude and direction of adaptation in context of different agents of selection including urban heat islands, chemical pollutants, and biotic interactions.
Collapse
Affiliation(s)
- Sarah E Diamond
- Department of Biology, Case Western Reserve University, Cleveland, OH, USA.
| | - Eric G Prileson
- Department of Biology, Case Western Reserve University, Cleveland, OH, USA
| | - Ryan A Martin
- Department of Biology, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
39
|
Kitano J, Ishikawa A, Ravinet M, Courtier-Orgogozo V. Genetic basis of speciation and adaptation: from loci to causative mutations. Philos Trans R Soc Lond B Biol Sci 2022; 377:20200503. [PMID: 35634921 PMCID: PMC9149796 DOI: 10.1098/rstb.2020.0503] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Does evolution proceed in small steps or large leaps? How repeatable is evolution? How constrained is the evolutionary process? Answering these long-standing questions in evolutionary biology is indispensable for both understanding how extant biodiversity has evolved and predicting how organisms and ecosystems will respond to changing environments in the future. Understanding the genetic basis of phenotypic diversification and speciation in natural populations is key to properly answering these questions. The leap forward in genome sequencing technologies has made it increasingly easier to not only investigate the genetic architecture but also identify the variant sites underlying adaptation and speciation in natural populations. Furthermore, recent advances in genome editing technologies are making it possible to investigate the functions of each candidate gene in organisms from natural populations. In this article, we discuss how these recent technological advances enable the analysis of causative genes and mutations and how such analysis can help answer long-standing evolutionary biology questions. This article is part of the theme issue ‘Genetic basis of adaptation and speciation: from loci to causative mutations’.
Collapse
Affiliation(s)
- Jun Kitano
- Ecological Genetics Laboratory, National Institute of Genetics, Yata 1111, Mishima, Shizuoka 411-8540, Japan
| | - Asano Ishikawa
- Ecological Genetics Laboratory, National Institute of Genetics, Yata 1111, Mishima, Shizuoka 411-8540, Japan
- Laboratory of Molecular Ecological Genetics, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwanoha 5-1-5, Chiba 277-8562, Japan
| | - Mark Ravinet
- School of Life Sciences, University of Nottingham, Nottingham NG7 2RD, UK
| | | |
Collapse
|
40
|
Whole Transcriptome Sequencing Unveils the Genomic Determinants of Putative Somaclonal Variation in Mint ( Mentha L.). Int J Mol Sci 2022; 23:ijms23105291. [PMID: 35628103 PMCID: PMC9141282 DOI: 10.3390/ijms23105291] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 05/06/2022] [Accepted: 05/07/2022] [Indexed: 12/21/2022] Open
Abstract
Mint (Mentha L., Lamiaceae) is a strongly scented herb of the family Lamiaceae that is grown mostly by clonal propagation, making it a valuable species for the study of somaclonal variation and its phenotypic consequences. The recent introduction of a few species of mint in South America, followed by a presumably rampant propagation, make this region particularly ideal for studying the extent of somaclonal genetic diversity. Hence, the objective of this work was to offer a preliminary characterization of somaclonal genetically coding diversity of the mint in the northern Andes in order to address the question of whether somaclonal variants may have emerged despite relatively recent introductions in a region where mint is not native. A total of 29 clonally propagated specimens, collected in mint export farms in the province of Antioquia, a major region for mint production in the northwest Andes of Colombia, were genotyped using RNA sequencing (RNA-Seq). SNP calling was carried out from the leaves’ transcriptome profiles of each plant by combining the GATK4 and TRINITY protocols, obtaining a total of 2033 loci across 912 transcripts with a minimum read depth of 20X and 4% of missing data. Unsupervised machine learning algorithms considered the K-means, AGNES and UPGMA approaches, all of which suggested three genetic clusters for M. spicata and a unique cluster for M. × piperita. The results indicate that at least two different origins of M. spicata reached the eastern region of the Antioquia province, clonally propagated in the locality ever since for local consumption and export. One of these ancestries had more population structure, possibly due to environmental or anthropological pressures that intervened in the fragmentation of this genetic group or to a higher somaclonal mutation rate. This work offers a first step into the study of the accumulation and transmission of presumably quasi-neutral somatic mutations at coding regions in an herbaceous clonally propagated scented species such as mint, likely favored by an expected population expansion after its Andean introduction. These ad hoc hypotheses warrant further study as part of future research.
Collapse
|
41
|
Mason AJ, Holding ML, Rautsaw RM, Rokyta DR, Parkinson CL, Gibbs HL. Venom gene sequence diversity and expression jointly shape diet adaptation in pitvipers. Mol Biol Evol 2022; 39:6567549. [PMID: 35413123 PMCID: PMC9040050 DOI: 10.1093/molbev/msac082] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Understanding the joint roles of protein sequence variation and differential expression during adaptive evolution is a fundamental, yet largely unrealized goal of evolutionary biology. Here, we use phylogenetic path analysis to analyze a comprehensive venom-gland transcriptome dataset spanning three genera of pitvipers to identify the functional genetic basis of a key adaptation (venom complexity) linked to diet breadth (DB). The analysis of gene-family-specific patterns reveals that, for genes encoding two of the most important venom proteins (snake venom metalloproteases and snake venom serine proteases), there are direct, positive relationships between sequence diversity (SD), expression diversity (ED), and increased DB. Further analysis of gene-family diversification for these proteins showed no constraint on how individual lineages achieved toxin gene SD in terms of the patterns of paralog diversification. In contrast, another major venom protein family (PLA2s) showed no relationship between venom molecular diversity and DB. Additional analyses suggest that other molecular mechanisms—such as higher absolute levels of expression—are responsible for diet adaptation involving these venom proteins. Broadly, our findings argue that functional diversity generated through sequence and expression variations jointly determine adaptation in the key components of pitviper venoms, which mediate complex molecular interactions between the snakes and their prey.
Collapse
Affiliation(s)
- Andrew J Mason
- Department of Evolution, Ecology and Organismal Biology, The Ohio State University, Columbus, OH, USA
| | | | - Rhett M Rautsaw
- Department of Biological Sciences, Clemson University, Clemson, SC, USA
| | - Darin R Rokyta
- Department of Biological Science, Florida State University, Tallahassee, FL, USA
| | - Christopher L Parkinson
- Department of Biological Sciences, Clemson University, Clemson, SC, USA.,Department of Forestry and Environmental Conservation, Clemson University, Clemson, SC, USA
| | - H Lisle Gibbs
- Department of Evolution, Ecology and Organismal Biology, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
42
|
Cheek RG, Forester BR, Salerno PE, Trumbo DR, Chen N, Sillett TS, Morrison SA, Ghalambor CK, Funk WC. Habitat-linked genetic variation supports microgeographic adaptive divergence in an island-endemic bird species. Mol Ecol 2022; 31:2830-2846. [PMID: 35315161 PMCID: PMC9325526 DOI: 10.1111/mec.16438] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 03/03/2022] [Accepted: 03/14/2022] [Indexed: 11/27/2022]
Abstract
We investigated the potential mechanisms driving habitat-linked genetic divergence within a bird species endemic to a single 250 km2 island. The island scrub-jay (Aphelocoma insularis) exhibits microgeographic divergence in bill morphology across pine-oak ecotones on Santa Cruz Island, California (USA) similar to adaptive differences described in mainland congeners over much larger geographic scales. To test whether individuals exhibit genetic differentiation related to habitat type and divergence in bill length, we genotyped over 3,000 single nucleotide polymorphisms (SNPs) in 123 adult island scrub-jay males from across Santa Cruz Island using restriction site-associated DNA sequencing (RADseq). Neutral landscape genomic analyses revealed that genome-wide genetic differentiation was primarily related to geographic distance and differences in habitat composition. We also found 168 putatively adaptive loci associated with habitat type using multivariate redundancy analysis (RDA) while controlling for spatial effects. Finally, two genome-wide association analyses revealed a polygenic basis to variation in bill length with multiple loci detected in or near genes known to affect bill morphology in other birds. Our findings support the hypothesis that divergent selection at microgeographic scales can cause adaptive divergence in the presence of ongoing gene flow.
Collapse
Affiliation(s)
- Rebecca G Cheek
- Department of Biology, Colorado State University, Fort Collins, Colorado, 80523, USA.,Graduate Degree Program in Ecology, Colorado State University, Fort Collins, Colorado, 80523, USA
| | - Brenna R Forester
- Department of Biology, Colorado State University, Fort Collins, Colorado, 80523, USA
| | - Patricia E Salerno
- Department of Biology, Colorado State University, Fort Collins, Colorado, 80523, USA.,Centro de Investigación de la Biodiversidad y Cambio Climático (BioCamb), Facultad de Ciencias de Medio Ambiente, Universidad Tecnológica Indoamérica, Quito, Ecuador
| | - Daryl R Trumbo
- Department of Biology, Colorado State University, Fort Collins, Colorado, 80523, USA
| | - Nancy Chen
- Department of Biology, University of Rochester, Rochester, NY, 14627, USA
| | - T Scott Sillett
- Migratory Bird Center, Smithsonian's National Zoo and Conservation Biology Institute, Washington, DC, 20013, USA
| | | | - Cameron K Ghalambor
- Department of Biology, Colorado State University, Fort Collins, Colorado, 80523, USA.,Graduate Degree Program in Ecology, Colorado State University, Fort Collins, Colorado, 80523, USA.,Department of Biology, Centre for Biodiversity Dynamics (CBD), Norwegian University of Science and Technology (NTNU), N-7491, Trondheim, Norway
| | - W Chris Funk
- Department of Biology, Colorado State University, Fort Collins, Colorado, 80523, USA.,Graduate Degree Program in Ecology, Colorado State University, Fort Collins, Colorado, 80523, USA
| |
Collapse
|
43
|
Alves-Pereira A, Zucchi MI, Clement CR, Viana JPG, Pinheiro JB, Veasey EA, de Souza AP. Selective signatures and high genome-wide diversity in traditional Brazilian manioc (Manihot esculenta Crantz) varieties. Sci Rep 2022; 12:1268. [PMID: 35075210 PMCID: PMC8786832 DOI: 10.1038/s41598-022-05160-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 01/05/2022] [Indexed: 11/09/2022] Open
Abstract
Knowledge about genetic diversity is essential to promote effective use and conservation of crops, because it enables farmers to adapt their crops to specific needs and is the raw material for breeding. Manioc (Manihot esculenta ssp. esculenta) is one of the world's major food crops and has the potential to help achieve food security in the context of on-going climate changes. We evaluated single nucleotide polymorphisms in traditional Brazilian manioc varieties conserved in the gene bank of the Luiz de Queiroz College of Agriculture, University of São Paulo. We assessed genome-wide diversity and identified selective signatures contrasting varieties from different biomes with samples of manioc's wild ancestor M. esculenta ssp. flabellifolia. We identified signatures of selection putatively associated with resistance genes, plant development and response to abiotic stresses that might have been important for the crop's domestication and diversification resulting from cultivation in different environments. Additionally, high neutral genetic diversity within groups of varieties from different biomes and low genetic divergence among biomes reflect the complexity of manioc's evolutionary dynamics under traditional cultivation. Our results exemplify how smallholder practices contribute to conserve manioc's genetic resources, maintaining variation of potential adaptive significance and high levels of neutral genetic diversity.
Collapse
Affiliation(s)
- Alessandro Alves-Pereira
- Departamento de Biologia Vegetal, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Av. Cândido Rondon, 400, Cidade Universitária, CP: 6010, Campinas, SP, 13083-875, Brazil.,Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas (UNICAMP), Av. Cândido Rondon, 400, Cidade Universitária, CP: 6010, Campinas, SP, 13083-875, Brazil
| | - Maria Imaculada Zucchi
- Agência Paulista de Tecnologia Dos Agronegócios (APTA), Pólo Centro-Sul. Rodovia SP 127, km 30, Piracicaba, SP, 13400-970, Brazil
| | - Charles R Clement
- Instituto Nacional de Pesquisas da Amazônia (INPA), Av. André Araújo, 2936, Petrópolis, Manaus, AM, 69067-375, Brazil
| | - João Paulo Gomes Viana
- Department of Crop Sciences, University of Illinois at Urbana-Champaign (UIUC), AW-101 Turner Hall, 1102 South Goodwin Avenue, Urbana, IL, 61801-4798, USA
| | - José Baldin Pinheiro
- Departamento de Genética, Escola Superior de Agricultura "Luiz de Queiróz", Universidade de São Paulo (ESALQ/USP), Av. Pádua Dias, 11, Piracicaba, SP, 13400-970, Brazil
| | - Elizabeth Ann Veasey
- Departamento de Genética, Escola Superior de Agricultura "Luiz de Queiróz", Universidade de São Paulo (ESALQ/USP), Av. Pádua Dias, 11, Piracicaba, SP, 13400-970, Brazil
| | - Anete Pereira de Souza
- Departamento de Biologia Vegetal, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Av. Cândido Rondon, 400, Cidade Universitária, CP: 6010, Campinas, SP, 13083-875, Brazil. .,Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas (UNICAMP), Av. Cândido Rondon, 400, Cidade Universitária, CP: 6010, Campinas, SP, 13083-875, Brazil.
| |
Collapse
|
44
|
Toczydlowski RH, Waller DM. Plastic and quantitative genetic divergence mirror environmental gradients among wild, fragmented populations of Impatiens capensis. AMERICAN JOURNAL OF BOTANY 2022; 109:99-114. [PMID: 34643270 DOI: 10.1002/ajb2.1782] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 09/29/2021] [Accepted: 10/01/2021] [Indexed: 06/13/2023]
Abstract
PREMISE Habitat fragmentation generates molecular genetic divergence among isolated populations, but few studies have assessed phenotypic divergence and fitness in populations where the genetic consequences of habitat fragmentation are known. Phenotypic divergence could reflect plasticity, local adaptation, and/or genetic drift. METHODS We examined patterns and potential drivers of phenotypic divergence among 12 populations of jewelweed (Impatiens capensis) that show strong molecular genetic signals of isolation and drift among fragmented habitats. We measured morphological and reproductive traits in both maternal plants within natural populations and their self-fertilized progeny grown together in a common garden. We also quantified environmental divergence between home sites and the common garden. RESULTS Populations with less molecular genetic variation expressed less maternal phenotypic variation. Progeny in the common garden converged in phenotypes relative to their wild mothers but retained among-population differences in morphology, survival, and reproduction. Among-population phenotypic variance was 3-10× greater in home sites than in the common garden for 6 of 7 morphological traits measured. Patterns of phenotypic divergence paralleled environmental gradients in ways suggestive of adaptation. Progeny resembled their mothers less as the environmental distance between their home site and the common garden increased. CONCLUSIONS Despite strong molecular signatures of isolation and drift, phenotypic differences among these Impatiens populations appear to reflect both adaptive quantitative genetic divergence and plasticity. Quantifying the extent of local adaptation and plasticity and how these covary with molecular and phenotypic variation help us predict when populations may lose their adaptive capacity.
Collapse
Affiliation(s)
- Rachel H Toczydlowski
- Department of Botany, University of Wisconsin-Madison, 430 Lincoln Drive, Madison, WI, 53706, USA
| | - Donald M Waller
- Department of Botany, University of Wisconsin-Madison, 430 Lincoln Drive, Madison, WI, 53706, USA
| |
Collapse
|
45
|
Chebib J, Guillaume F. Pleiotropy or linkage? Their relative contributions to the genetic correlation of quantitative traits and detection by multitrait GWA studies. Genetics 2021; 219:6375447. [PMID: 34849850 PMCID: PMC8664587 DOI: 10.1093/genetics/iyab159] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 09/05/2021] [Indexed: 11/23/2022] Open
Abstract
Genetic correlations between traits may cause correlated responses to selection. Previous models described the conditions under which genetic correlations are expected to be maintained. Selection, mutation, and migration are all proposed to affect genetic correlations, regardless of whether the underlying genetic architecture consists of pleiotropic or tightly linked loci affecting the traits. Here, we investigate the conditions under which pleiotropy and linkage have different effects on the genetic correlations between traits by explicitly modeling multiple genetic architectures to look at the effects of selection strength, degree of correlational selection, mutation rate, mutational variance, recombination rate, and migration rate. We show that at mutation-selection(-migration) balance, mutation rates differentially affect the equilibrium levels of genetic correlation when architectures are composed of pairs of physically linked loci compared to architectures of pleiotropic loci. Even when there is perfect linkage (no recombination within pairs of linked loci), a lower genetic correlation is maintained than with pleiotropy, with a lower mutation rate leading to a larger decrease. These results imply that the detection of causal loci in multitrait association studies will be affected by the type of underlying architectures, whereby pleiotropic variants are more likely to be underlying multiple detected associations. We also confirm that tighter linkage between nonpleiotropic causal loci maintains higher genetic correlations at the traits and leads to a greater proportion of false positives in association analyses.
Collapse
Affiliation(s)
- Jobran Chebib
- Department of Evolutionary Biology and Environmental Studies, University of Zürich, 8057 Zürich, Switzerland.,Institute of Evolutionary Biology, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Frédéric Guillaume
- Department of Evolutionary Biology and Environmental Studies, University of Zürich, 8057 Zürich, Switzerland.,Organismal and Evolutionary Biology Research Program, University of Helsinki, 00014 Helsinki, Finland
| |
Collapse
|
46
|
Evolutionary assembly of cooperating cell types in an animal chemical defense system. Cell 2021; 184:6138-6156.e28. [PMID: 34890552 DOI: 10.1016/j.cell.2021.11.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 09/29/2021] [Accepted: 11/10/2021] [Indexed: 12/21/2022]
Abstract
How the functions of multicellular organs emerge from the underlying evolution of cell types is poorly understood. We deconstructed evolution of an organ novelty: a rove beetle gland that secretes a defensive cocktail. We show how gland function arose via assembly of two cell types that manufacture distinct compounds. One cell type, comprising a chemical reservoir within the abdomen, produces alkane and ester compounds. We demonstrate that this cell type is a hybrid of cuticle cells and ancient pheromone and adipocyte-like cells, executing its function via a mosaic of enzymes from each parental cell type. The second cell type synthesizes benzoquinones using a chimera of conserved cellular energy and cuticle formation pathways. We show that evolution of each cell type was shaped by coevolution between the two cell types, yielding a potent secretion that confers adaptive value. Our findings illustrate how cooperation between cell types arises, generating new, organ-level behaviors.
Collapse
|
47
|
Castiglione GM, Zhou L, Xu Z, Neiman Z, Hung CF, Duh EJ. Evolutionary pathways to SARS-CoV-2 resistance are opened and closed by epistasis acting on ACE2. PLoS Biol 2021; 19:e3001510. [PMID: 34932561 PMCID: PMC8730403 DOI: 10.1371/journal.pbio.3001510] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 01/05/2022] [Accepted: 12/08/2021] [Indexed: 02/06/2023] Open
Abstract
Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infects a broader range of mammalian species than previously predicted, binding a diversity of angiotensin converting enzyme 2 (ACE2) orthologs despite extensive sequence divergence. Within this sequence degeneracy, we identify a rare sequence combination capable of conferring SARS-CoV-2 resistance. We demonstrate that this sequence was likely unattainable during human evolution due to deleterious effects on ACE2 carboxypeptidase activity, which has vasodilatory and cardioprotective functions in vivo. Across the 25 ACE2 sites implicated in viral binding, we identify 6 amino acid substitutions unique to mouse-one of the only known mammalian species resistant to SARS-CoV-2. Substituting human variants at these positions is sufficient to confer binding of the SARS-CoV-2 S protein to mouse ACE2, facilitating cellular infection. Conversely, substituting mouse variants into either human or dog ACE2 abolishes viral binding, diminishing cellular infection. However, these same substitutions decrease human ACE2 activity by 50% and are predicted as pathogenic, consistent with the extreme rarity of human polymorphisms at these sites. This trade-off can be avoided, however, depending on genetic background; if substituted simultaneously, these same mutations have no deleterious effect on dog ACE2 nor that of the rodent ancestor estimated to exist 70 million years ago. This genetic contingency (epistasis) may have therefore opened the road to resistance for some species, while making humans susceptible to viruses that use these ACE2 surfaces for binding, as does SARS-CoV-2.
Collapse
Affiliation(s)
- Gianni M. Castiglione
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Lingli Zhou
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Zhenhua Xu
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Zachary Neiman
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Chien-Fu Hung
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Elia J. Duh
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| |
Collapse
|
48
|
Kardos M, Armstrong EE, Fitzpatrick SW, Hauser S, Hedrick PW, Miller JM, Tallmon DA, Funk WC. The crucial role of genome-wide genetic variation in conservation. Proc Natl Acad Sci U S A 2021; 118:e2104642118. [PMID: 34772759 PMCID: PMC8640931 DOI: 10.1073/pnas.2104642118] [Citation(s) in RCA: 150] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/02/2021] [Indexed: 12/30/2022] Open
Abstract
The unprecedented rate of extinction calls for efficient use of genetics to help conserve biodiversity. Several recent genomic and simulation-based studies have argued that the field of conservation biology has placed too much focus on conserving genome-wide genetic variation, and that the field should instead focus on managing the subset of functional genetic variation that is thought to affect fitness. Here, we critically evaluate the feasibility and likely benefits of this approach in conservation. We find that population genetics theory and empirical results show that conserving genome-wide genetic variation is generally the best approach to prevent inbreeding depression and loss of adaptive potential from driving populations toward extinction. Focusing conservation efforts on presumably functional genetic variation will only be feasible occasionally, often misleading, and counterproductive when prioritized over genome-wide genetic variation. Given the increasing rate of habitat loss and other environmental changes, failure to recognize the detrimental effects of lost genome-wide genetic variation on long-term population viability will only worsen the biodiversity crisis.
Collapse
Affiliation(s)
- Marty Kardos
- Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, WA 98112;
| | | | - Sarah W Fitzpatrick
- W.K. Kellogg Biological Station, Michigan State University, Hickory Corners, MI 49060
- Department of Integrative Biology, Michigan State University, East Lansing, MI 48824
- Ecology, Evolution, and Behavior Program, Michigan State University, East Lansing, MI 48824
| | - Samantha Hauser
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI 53211
| | - Philip W Hedrick
- School of Life Sciences, Arizona State University, Tempe, AZ 85287
| | - Joshua M Miller
- San Diego Zoo Wildlife Alliance, Escondido, CA 92027
- Polar Bears International, Bozeman, MT 59772
- Department of Biological Sciences, MacEwan University, Edmonton, AB T5J 4S2, Canada
| | - David A Tallmon
- Biology and Marine Biology Program, University of Alaska Southeast, Juneau, AK 99801
| | - W Chris Funk
- Department of Biology, Graduate Degree Program in Ecology, Colorado State University, Fort Collins, CO 80523
| |
Collapse
|
49
|
Gamboa MP, Ghalambor CK, Scott Sillett T, Morrison SA, Chris Funk W. Adaptive divergence in bill morphology and other thermoregulatory traits is facilitated by restricted gene flow in song sparrows on the California Channel Islands. Mol Ecol 2021; 31:603-619. [PMID: 34704295 DOI: 10.1111/mec.16253] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 09/20/2021] [Accepted: 09/27/2021] [Indexed: 02/06/2023]
Abstract
Disentangling the effects of neutral and adaptive processes in maintaining phenotypic variation across environmental gradients is challenging in natural populations. Song sparrows (Melospiza melodia) on the California Channel Islands occupy a pronounced east-west climate gradient within a small spatial scale, providing a unique opportunity to examine the interaction of genetic isolation (reduced gene flow) and the environment (selection) in driving variation. We used reduced representation genomic libraries to infer the role of neutral processes (drift and restricted gene flow) and divergent selection in driving variation in thermoregulatory traits with an emphasis on the mechanisms that maintain bill divergence among islands. Analyses of 22,029 neutral SNPs confirm distinct population structure by island with restricted gene flow and relatively large effective population sizes, suggesting bill differences are probably not a product of genetic drift. Instead, we found strong support for local adaptation using 3294 SNPs in differentiation-based and environmental association analyses coupled with genome-wide association tests. Specifically, we identified several putatively adaptive and candidate loci in or near genes involved in bill development pathways (e.g., BMP, CaM, Wnt), confirming the highly complex and polygenic architecture underlying bill morphology. Furthermore, we found divergence in genes associated with other thermoregulatory traits (i.e., feather structure, plumage colour, and physiology). Collectively, these results suggest strong divergent selection across an island archipelago results in genomic changes in a suite of traits associated with climate adaptation over small spatial scales. Future research should move beyond studying univariate traits to better understand multidimensional responses to complex environmental conditions.
Collapse
Affiliation(s)
- Maybellene P Gamboa
- Department of Organismal Biology and Ecology, Colorado College, Colorado Springs, Colorado, USA
| | - Cameron K Ghalambor
- Department of Biology, Graduate Degree Program in Ecology, Colorado State University, Fort Collins, Colorado, USA.,Department of Biology, Centre for Biodiversity Dynamics (CBD), Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - T Scott Sillett
- Migratory Bird Center, Smithsonian Conservation Biology Institute, National Zoological Park, Washington, District of Columbia, USA
| | | | - W Chris Funk
- Department of Biology, Graduate Degree Program in Ecology, Colorado State University, Fort Collins, Colorado, USA
| |
Collapse
|
50
|
O’Connor TK, Sandoval MC, Wang J, Hans JC, Takenaka R, Child M, Whiteman NK. Ecological basis and genetic architecture of crypsis polymorphism in the desert clicker grasshopper (Ligurotettix coquilletti). Evolution 2021; 75:2441-2459. [PMID: 34370317 PMCID: PMC8932956 DOI: 10.1111/evo.14321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/09/2021] [Accepted: 07/20/2021] [Indexed: 11/28/2022]
Abstract
Color polymorphic species can offer exceptional insight into the ecology and genetics of adaptation. Although the genetic architecture of animal coloration is diverse, many color polymorphisms are associated with large structural variants and maintained by biotic interactions. Grasshoppers are notably polymorphic in both color and karyotype, which makes them excellent models for understanding the ecological drivers and genetic underpinnings of color variation. Banded and uniform morphs of the desert clicker grasshopper (Ligurotettix coquilletti) are found across the western deserts of North America. To address the hypothesis that predation maintains local color polymorphism and shapes regional crypsis variation, we surveyed morph frequencies and tested for covariation with two predation environments. Morphs coexisted at intermediate frequencies at most sites, consistent with local balancing selection. Morph frequencies covaried with the appearance of desert substrate-an environment used only by females-suggesting that ground-foraging predators are major agents of selection on crypsis. We next addressed the hypothesized link between morph variation and genome structure. To do so, we designed an approach for detecting inversions and indels using only RADseq data. The banded morph was perfectly correlated with a large putative indel. Remarkably, indel dominance differed among populations, a rare example of dominance evolution in nature.
Collapse
Affiliation(s)
- Timothy K. O’Connor
- Department of Integrative Biology, University of California, Berkeley, CA 94720
- Current address: Department of Ecology and Evolution, University of Chicago, Chicago, IL 60637
| | - Marissa C. Sandoval
- Department of Integrative Biology, University of California, Berkeley, CA 94720
| | - Jiarui Wang
- Department of Integrative Biology, University of California, Berkeley, CA 94720
| | - Jacob C. Hans
- Department of Entomology, University of California, Riverside, CA 92521
| | - Risa Takenaka
- Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, WA 98195
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109
| | - Myron Child
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112
| | - Noah K. Whiteman
- Department of Integrative Biology, University of California, Berkeley, CA 94720
| |
Collapse
|