1
|
Li D, Zeng L, Zhang W, Wang Q, Wu J, Zhu C, Meng Z. Multi-omics study of sex in greater amberjack (Seriola dumerili): Identifying related genes, analyzing sex-biased expression, and developing sex-specific markers. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2025; 53:101364. [PMID: 39612541 DOI: 10.1016/j.cbd.2024.101364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/17/2024] [Accepted: 11/19/2024] [Indexed: 12/01/2024]
Abstract
The greater amberjack (Seriola dumerili) is a valuable marine fish with significant breeding potential, but does not exhibit clear sexual dimorphism in morphology. Sex research and the development of sex identification technology are important for breeding purposes. Through genome-wide association analysis (GWAS), we identified one significant sex-related SNP and 18 candidate sex-related SNPs, then obtained one significant sex-related gene (hsd17β1) and 20 candidate sex-related genes (hmbox1, ahcyl1, pdzd2, etc.). Key sex-biased genes (sox2, dmrt2, hsd17β3, rnf145, foxo3, etc.) were identified in mature gonads by transcriptome analysis. These genes are important in greater amberjack sex determination and gonad development. In addition, we developed classical PCR and kompetitive allele-specific PCR (KASP) primers to identify the sex of greater amberjack, with an accuracy of 94.87 % and 100 %, respectively. The sex-specific markers can effectively determine the gender of greater amberjack and evaluate the sex ratio and reproductive potential of the breeding population.
Collapse
Affiliation(s)
- Duo Li
- School of Life Sciences, State Key Laboratory of Biocontrol, China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory of Aquatic Economic Animals, Sun Yat-sen University, Guangzhou 510275, China
| | - Leilei Zeng
- School of Life Sciences, State Key Laboratory of Biocontrol, China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory of Aquatic Economic Animals, Sun Yat-sen University, Guangzhou 510275, China
| | - Weiwei Zhang
- School of Life Sciences, State Key Laboratory of Biocontrol, China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory of Aquatic Economic Animals, Sun Yat-sen University, Guangzhou 510275, China
| | - Qinghua Wang
- School of Life Sciences, State Key Laboratory of Biocontrol, China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory of Aquatic Economic Animals, Sun Yat-sen University, Guangzhou 510275, China
| | - Jinhui Wu
- Agro-Tech Extension Center of Guangdong Province, Guangzhou 510520, China
| | - Chunhua Zhu
- Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang 524025, China; Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish, Species, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
| | - Zining Meng
- School of Life Sciences, State Key Laboratory of Biocontrol, China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory of Aquatic Economic Animals, Sun Yat-sen University, Guangzhou 510275, China.
| |
Collapse
|
2
|
Ge S, Liu Y, Huang H, Yu J, Li X, Lin Q, Huang P, Mei J. Chr23-miR-200s and Dmrt1 Control Sexually Dimorphic Trade-Off Between Reproduction and Growth in Zebrafish. Int J Mol Sci 2025; 26:1785. [PMID: 40004248 PMCID: PMC11855846 DOI: 10.3390/ijms26041785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 02/08/2025] [Accepted: 02/16/2025] [Indexed: 02/27/2025] Open
Abstract
In animals, a trade-off exists between reproduction and growth, which are the most fundamental traits. Males and females exhibit profound differences in reproduction and growth in fish species. However, the precise molecular mechanism governing this phenomenon is still not clear. Here, we uncovered that chr23-miR-200s and dmrt1 knockout specifically caused an impairment in reproduction and an increase in body growth in female and male zebrafish, respectively. Chr23-miR-200s and Dmrt1 directly regulate the stat5b gene by targeting its 3'UTR and promoter. The loss of stat5b completely abolished the elevated growth performance in chr23-miR-200s-KO or dmrt1-/- zebrafish. Moreover, the dmrt1 transgenic zebrafish had significantly lower body length and body weight than the control males, accompanied by a significant reduction in stat5b expression in the liver of transgenic fish. In summary, our study proposes a regulatory model elucidating the roles of chr23-miR-200s and Dmrt1 in controlling the sexually dimorphic trade-off between reproduction and growth.
Collapse
Affiliation(s)
- Si Ge
- Hubei Hongshan Laboratory, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; (S.G.); (Y.L.); (J.Y.)
| | - Ying Liu
- Hubei Hongshan Laboratory, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; (S.G.); (Y.L.); (J.Y.)
| | - Haoran Huang
- School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan 430023, China;
| | - Jiawang Yu
- Hubei Hongshan Laboratory, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; (S.G.); (Y.L.); (J.Y.)
| | - Xiaohui Li
- Yangtze River Fisheries Research Institute, Chinese Academy of Fisheries, Wuhan 430223, China;
| | - Qiaohong Lin
- State Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, The Innovative Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China;
| | - Peipei Huang
- School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan 430023, China;
| | - Jie Mei
- Hubei Hongshan Laboratory, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; (S.G.); (Y.L.); (J.Y.)
- State Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, The Innovative Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China;
| |
Collapse
|
3
|
Liesner D, Cossard GG, Zheng M, Godfroy O, Barrera-Redondo J, Haas FB, Coelho SM. Developmental pathways underlying sexual differentiation in the U/V sex chromosome system of giant kelp. Dev Cell 2025:S1534-5807(24)00761-5. [PMID: 39793585 DOI: 10.1016/j.devcel.2024.12.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 06/04/2024] [Accepted: 12/11/2024] [Indexed: 01/13/2025]
Abstract
In many multicellular organisms, sexual development is not determined by XX/XY or ZW/ZZ systems but by U/V sex chromosomes. In U/V systems, sex determination occurs in the haploid phase, with U chromosomes in females and V chromosomes in males. Here, we explore several male, female, and partially sex-reversed male lines of giant kelp to decipher how U/V sex chromosomes and autosomes initiate male versus female development. We identify a key set of genes on the sex chromosomes involved in triggering sexual development and characterize autosomal effector genes underlying sexual differentiation. We show that male, but not female, development involves large-scale transcriptome reorganization with pervasive enrichment in regulatory genes, faster evolutionary rates, and high species-specificity of male-biased genes. Our observations imply that a female-like phenotype is the "ground state", which is complemented by the presence of a U-chromosome but overridden by a dominant male developmental program triggered by the V-chromosome.
Collapse
Affiliation(s)
- Daniel Liesner
- Department of Algal Development and Evolution, Max Planck Institute for Biology Tübingen, Max-Planck-Ring 5, 72076 Tübingen, Germany.
| | - Guillaume G Cossard
- Department of Algal Development and Evolution, Max Planck Institute for Biology Tübingen, Max-Planck-Ring 5, 72076 Tübingen, Germany
| | - Min Zheng
- Department of Algal Development and Evolution, Max Planck Institute for Biology Tübingen, Max-Planck-Ring 5, 72076 Tübingen, Germany
| | - Olivier Godfroy
- Station Biologique de Roscoff CNRS, UMR8227 Laboratory of Integrative Biology of Marine Models, Sorbonne Université, Station Biologique de Roscoff, Roscoff, France
| | - Josué Barrera-Redondo
- Department of Algal Development and Evolution, Max Planck Institute for Biology Tübingen, Max-Planck-Ring 5, 72076 Tübingen, Germany
| | - Fabian B Haas
- Department of Algal Development and Evolution, Max Planck Institute for Biology Tübingen, Max-Planck-Ring 5, 72076 Tübingen, Germany
| | - Susana M Coelho
- Department of Algal Development and Evolution, Max Planck Institute for Biology Tübingen, Max-Planck-Ring 5, 72076 Tübingen, Germany.
| |
Collapse
|
4
|
Kaufmann P, Rönn JL, Immonen E, Arnqvist G. Sex-Specific Dominance of Gene Expression in Seed Beetles. Mol Biol Evol 2024; 41:msae244. [PMID: 39692633 DOI: 10.1093/molbev/msae244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 11/18/2024] [Accepted: 11/20/2024] [Indexed: 12/19/2024] Open
Abstract
When different alleles are favored in different environments, dominance reversal where alternate alleles are dominant in the environment in which they are favored can generate net balancing selection. The sexes represent two distinct genetic environments and sexually antagonistic (SA) selection can maintain genetic variation, especially when the alleles involved show sex-specific dominance. Sexual dimorphism in gene expression is pervasive and has been suggested to result from SA selection. Yet, whether gene-regulatory variation shows sex-specific dominance is poorly understood. We tested for sex-specific dominance in gene expression using three crosses between homozygous lines derived from a population of a seed beetle, where a previous study documented a signal of dominance reversal for fitness between the sexes. Overall, we found that the dominance effects of variants affecting gene expression were positively correlated between the sexes (r = 0.33 to 0.44). Yet, 586 transcripts showed significant differences in dominance between the sexes. Sex-specific dominance was significantly more common in transcripts with more sex-biased expression, in two of three of our crosses. Among transcripts showing sex-specific dominance, lesser sexual dimorphism in gene expression among heterozygotes was somewhat more common than greater. Gene ontology enrichment analyses showed that functional categories associated with known SA phenotypes in Callosobruchus maculatus were overrepresented among transcripts with sex-specific dominance, including genes involved in metabolic processes and the target-of-rapamycin pathway. Our results support the suggestion that sex-specific dominance of regulatory variants contributes to the maintenance of genetic variation in fitness mediated by SA selection in this species.
Collapse
Affiliation(s)
- Philipp Kaufmann
- Department of Ecology and Genetics, Evolutionary Biology, Uppsala University, 75234 Uppsala, Sweden
| | | | - Elina Immonen
- Department of Ecology and Genetics, Evolutionary Biology, Uppsala University, 75234 Uppsala, Sweden
| | - Göran Arnqvist
- Department of Ecology and Genetics, Animal Ecology, Uppsala University, 75234 Uppsala, Sweden
| |
Collapse
|
5
|
Fraser R, Moraa R, Djolai A, Meisenheimer N, Laube S, Vicoso B, Huylmans AK. Evidence for a Novel X Chromosome in Termites. Genome Biol Evol 2024; 16:evae265. [PMID: 39658246 DOI: 10.1093/gbe/evae265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 11/12/2024] [Accepted: 11/19/2024] [Indexed: 12/12/2024] Open
Abstract
Termites, together with cockroaches, belong to the Blattodea. They possess an XX/XY sex determination system which has evolved from an XX/X0 system present in other Blattodean species, such as cockroaches and wood roaches. Little is currently known about the sex chromosomes of termites, their gene content, or their evolution. We here investigate the X chromosome of multiple termite species and compare them with the X chromosome of cockroaches using genomic and transcriptomic data. We find that the X chromosome of the termite Macrotermes natalensis is large and differentiated showing hall marks of sex chromosome evolution such as dosage compensation, while this does not seem to be the case in the other two termite species investigated here where sex chromosomes may be evolutionary younger. Furthermore, the X chromosome in M. natalensis is different from the X chromosome found in the cockroach Blattella germanica indicating that sex chromosome turn-over events may have happened during termite evolution.
Collapse
Affiliation(s)
- Roxanne Fraser
- Institute of Organismic and Molecular Evolution (iomE), Johannes Gutenberg-Universität Mainz, Hanns-Dieter-Hüsch-Weg 15, Mainz 55128, Germany
| | - Ruth Moraa
- Institute of Organismic and Molecular Evolution (iomE), Johannes Gutenberg-Universität Mainz, Hanns-Dieter-Hüsch-Weg 15, Mainz 55128, Germany
| | - Annika Djolai
- Institute of Organismic and Molecular Evolution (iomE), Johannes Gutenberg-Universität Mainz, Hanns-Dieter-Hüsch-Weg 15, Mainz 55128, Germany
| | - Nils Meisenheimer
- Institute of Organismic and Molecular Evolution (iomE), Johannes Gutenberg-Universität Mainz, Hanns-Dieter-Hüsch-Weg 15, Mainz 55128, Germany
| | - Sophie Laube
- Institute of Organismic and Molecular Evolution (iomE), Johannes Gutenberg-Universität Mainz, Hanns-Dieter-Hüsch-Weg 15, Mainz 55128, Germany
| | - Beatriz Vicoso
- Institute of Science and Technology Austria, Am Campus 1, Klosterneuburg, 3400 Austria
| | - Ann Kathrin Huylmans
- Institute of Organismic and Molecular Evolution (iomE), Johannes Gutenberg-Universität Mainz, Hanns-Dieter-Hüsch-Weg 15, Mainz 55128, Germany
- Institute of Science and Technology Austria, Am Campus 1, Klosterneuburg, 3400 Austria
- Institute for Quantitative and Computational Biosciences (IQCB), Johannes Gutenberg-Universität Mainz, Hanns-Dieter-Hüsch-Weg 15, Mainz 55128, Germany
| |
Collapse
|
6
|
Mora P, Hospodářská M, Voleníková AC, Koutecký P, Štundlová J, Dalíková M, Walters JR, Nguyen P. Sex-biased gene content is associated with sex chromosome turnover in Danaini butterflies. Mol Ecol 2024; 33:e17256. [PMID: 38180347 PMCID: PMC11628659 DOI: 10.1111/mec.17256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 12/01/2023] [Accepted: 12/13/2023] [Indexed: 01/06/2024]
Abstract
Sex chromosomes play an outsized role in adaptation and speciation, and thus deserve particular attention in evolutionary genomics. In particular, fusions between sex chromosomes and autosomes can produce neo-sex chromosomes, which offer important insights into the evolutionary dynamics of sex chromosomes. Here, we investigate the evolutionary origin of the previously reported Danaus neo-sex chromosome within the tribe Danaini. We assembled and annotated genomes of Tirumala septentrionis (subtribe Danaina), Ideopsis similis (Amaurina), Idea leuconoe (Euploeina) and Lycorea halia (Itunina) and identified their Z-linked scaffolds. We found that the Danaus neo-sex chromosome resulting from the fusion between a Z chromosome and an autosome corresponding to the Melitaea cinxia chromosome (McChr) 21 arose in a common ancestor of Danaina, Amaurina and Euploina. We also identified two additional fusions as the W chromosome further fused with the synteny block McChr31 in I. similis and independent fusion occurred between ancestral Z chromosome and McChr12 in L. halia. We further tested a possible role of sexually antagonistic selection in sex chromosome turnover by analysing the genomic distribution of sex-biased genes in I. leuconoe and L. halia. The autosomes corresponding to McChr21 and McChr31 involved in the fusions are significantly enriched in female- and male-biased genes, respectively, which could have hypothetically facilitated fixation of the neo-sex chromosomes. This suggests a role of sexual antagonism in sex chromosome turnover in Lepidoptera. The neo-Z chromosomes of both I. leuconoe and L. halia appear fully compensated in somatic tissues, but the extent of dosage compensation for the ancestral Z varies across tissues and species.
Collapse
Affiliation(s)
- Pablo Mora
- Faculty of ScienceUniversity of South BohemiaČeské BudějoviceCzech Republic
- Present address:
University of JaénJaénSpain
| | - Monika Hospodářská
- Faculty of ScienceUniversity of South BohemiaČeské BudějoviceCzech Republic
- Institute of EntomologyBiology Centre of the Czech Academy of SciencesČeské BudějoviceCzech Republic
| | | | - Petr Koutecký
- Faculty of ScienceUniversity of South BohemiaČeské BudějoviceCzech Republic
| | - Jana Štundlová
- Faculty of ScienceUniversity of South BohemiaČeské BudějoviceCzech Republic
| | - Martina Dalíková
- Faculty of ScienceUniversity of South BohemiaČeské BudějoviceCzech Republic
- Department of Ecology & Evolutionary BiologyUniversity of KansasLawrenceKansasUSA
| | - James R. Walters
- Department of Ecology & Evolutionary BiologyUniversity of KansasLawrenceKansasUSA
| | - Petr Nguyen
- Faculty of ScienceUniversity of South BohemiaČeské BudějoviceCzech Republic
- Institute of EntomologyBiology Centre of the Czech Academy of SciencesČeské BudějoviceCzech Republic
| |
Collapse
|
7
|
Mishra P, Barrera TS, Grieshop K, Agrawal AF. Cis-regulatory Variation in Relation to Sex and Sexual Dimorphism in Drosophila melanogaster. Genome Biol Evol 2024; 16:evae234. [PMID: 39613311 DOI: 10.1093/gbe/evae234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/11/2024] [Indexed: 12/01/2024] Open
Abstract
Much of sexual dimorphism is likely due to sex-biased gene expression, which results from differential regulation of a genome that is largely shared between males and females. Here, we use allele-specific expression to explore cis-regulatory variation in Drosophila melanogaster in relation to sex. We develop a Bayesian framework to infer the transcriptome-wide joint distribution of cis-regulatory effects across the sexes. We also examine patterns of cis-regulatory variation with respect to two other levels of variation in sexual dimorphism: (i) across genes that vary in their degree of sex-biased expression and (ii) among tissues that vary in their degree of dimorphism (e.g. relatively low dimorphism in heads vs. high dimorphism in gonads). We uncover evidence of widespread cis-regulatory variation in all tissues examined, with female-biased genes being especially enriched for this variation. A sizeable proportion of cis-regulatory variation is inferred to have sex-specific effects, with sex-dependent cis effects being much more frequent in gonads than in heads. Finally, we find some genes where 1 allele contributes to more than 50% of a gene's expression in heterozygous males but <50% of its expression in heterozygous females. Such variants could provide a mechanism for sex-specific dominance reversals, a phenomenon important for sexually antagonistic balancing selection. However, tissue differences in allelic imbalance are approximately as frequent as sex differences, perhaps suggesting that sexual conflict may not be particularly unique in shaping patterns of expression variation.
Collapse
Affiliation(s)
- Prashastha Mishra
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada M5S 3B2
| | - Tania S Barrera
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada M5S 3B2
| | - Karl Grieshop
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada M5S 3B2
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm SE-10691, Sweden
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Aneil F Agrawal
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada M5S 3B2
| |
Collapse
|
8
|
Tosi LL, Templeton K, Pennington AM, Reid KA, Boyan BD. Influence of Sex and Gender on Musculoskeletal Conditions and How They Are Reported. J Bone Joint Surg Am 2024; 106:1512-1519. [PMID: 38954642 PMCID: PMC11338726 DOI: 10.2106/jbjs.24.00194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
ABSTRACT There is increasing evidence that musculoskeletal tissues are differentially regulated by sex hormones in males and females. The influence of sex hormones, in addition to other sex-based differences such as in anatomical alignment and immune-system function, impact the prevalence and severity of disease as well as the types of injuries that affect the musculoskeletal system and the outcomes of prevention measures and treatment. Literature specifically addressing sex differences related to the musculoskeletal system is limited, underscoring the imperative for both basic and clinical research on this topic. This review highlights areas of research that have implications for bone and cartilage health, including growth and development, sports injuries, osteoarthritis, osteoporosis, and bone frailty. It is clear that important aspects of the musculoskeletal system have been understudied. Consideration of how sex hormone therapy will affect musculoskeletal tissues in prepuberty, during puberty, and in adults is vital, yet little is known. The purpose of this article is to foster awareness and interest in advancing our understanding of how sex differences influence orthopaedic practice.
Collapse
Affiliation(s)
- Laura L Tosi
- Division of Pediatric Orthopaedics and Sports Medicine, Children's National Hospital, Washington, DC
| | | | - Andrew M Pennington
- Division of Pediatric Orthopaedics and Sports Medicine, Children's National Hospital, Washington, DC
| | - Kendall A Reid
- Division of Pediatric Orthopaedics and Sports Medicine, Children's National Hospital, Washington, DC
| | - Barbara D Boyan
- Institute for Engineering and Medicine, College of Engineering, Virginia Commonwealth University, Richmond, Virginia
| |
Collapse
|
9
|
Catalán A, Gygax D, Rodríguez-Montes L, Hinzke T, Hoff KJ, Duchen P. Two novel genomes of fireflies with different degrees of sexual dimorphism reveal insights into sex-biased gene expression and dosage compensation. Commun Biol 2024; 7:906. [PMID: 39068254 PMCID: PMC11283472 DOI: 10.1038/s42003-024-06550-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 06/27/2024] [Indexed: 07/30/2024] Open
Abstract
Sexual dimorphism arises because of divergent fitness optima between the sexes. Phenotypic divergence between sexes can range from mild to extreme. Fireflies, bioluminescent beetles, present various degrees of sexual dimorphism, with species showing very mild sexual dimorphism to species presenting female-specific neoteny, posing a unique framework to investigate the evolution of sexually dimorphic traits across species. In this work, we present novel assembled genomes of two firefly species, Lamprohiza splendidula and Luciola italica, species with different degrees of sexual dimorphism. We uncover high synteny conservation of the X-chromosome across ~ 180 Mya and find full X-chromosome dosage compensation in our two fireflies, hinting at common mechanism upregulating the single male X-chromosome. Different degrees of sex-biased expressed genes were found across two body parts showing different proportions of expression conservation between species. Interestingly, we do not find X-chromosome enrichment of sex-biased genes, but retrieve autosomal enrichment of sex-biased genes. We further uncover higher nucleotide diversity in the intronic regions of sex-biased genes, hinting at a maintenance of heterozygosity through sexual selection. We identify different levels of sex-biased gene expression divergence including a set of genes showing conserved sex-biased gene expression between species. Divergent and conserved sex-biased genes are good candidates to test their role in the maintenance of sexually dimorphic traits.
Collapse
Affiliation(s)
- Ana Catalán
- Ludwig-Maximilians-Universität Munich, Division of Evolutionary Biology, Großhaderner Straße 2, Planegg-Martinsried, Bavaria, 82152, Germany.
| | - Daniel Gygax
- Ludwig-Maximilians-Universität Munich, Division of Evolutionary Biology, Großhaderner Straße 2, Planegg-Martinsried, Bavaria, 82152, Germany
- Helmholtz Center Munich, Helmholtz Pioneer Campus, Ingolstädter Landstraße 1, Munich, Oberschleißheim, 85764, Germany
| | - Leticia Rodríguez-Montes
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, D-69120, Heidelberg, Germany
| | - Tjorven Hinzke
- Institute of Microbiology, Department of Microbial Physiology and Molecular Biology, University of Greifswald, Greifswald, Germany
- Department of Pathogen Evolution, Helmholtz Institute for One Health, Greifswald, Germany
| | - Katharina J Hoff
- University of Greifswald, Institute for Mathematics and Computer Science, Walther-Rathenau-Str. 47, 17489, Greifswald, Germany
| | - Pablo Duchen
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg University of Mainz, Hanns-Dieter-Hüsch-Weg 15, 55128, Mainz, Germany
| |
Collapse
|
10
|
Minovic A, Nozawa M. Evolution of sex-biased genes in Drosophila species with neo-sex chromosomes: Potential contribution to reducing the sexual conflict. Ecol Evol 2024; 14:e11701. [PMID: 39050657 PMCID: PMC11266434 DOI: 10.1002/ece3.11701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 06/17/2024] [Accepted: 06/21/2024] [Indexed: 07/27/2024] Open
Abstract
An advantage of sex chromosomes may be the potential to reduce sexual conflict because they provide a basis for selection to operate separately on females and males. However, evaluating the relationship between sex chromosomes and sexual conflict is challenging owing to the difficulty in measuring sexual conflict and substantial divergence between species with and without sex chromosomes. We therefore examined sex-biased gene expression as a proxy for sexual conflict in three sets of Drosophila species with and without young sex chromosomes, the so-called neo-sex chromosomes. In all sets, we detected more sex-biased genes in the species with neo-sex chromosomes than in the species without neo-sex chromosomes in larvae, pupae, and adult somatic tissues but not in gonads. In particular, many unbiased genes became either female- or male-biased after linkage to the neo-sex chromosomes in larvae, despite the low sexual dimorphism. For example, genes involved in metabolism, a key determinant for the rate of development in many animals, were enriched in the genes that acquired sex-biased expression on the neo-sex chromosomes at the larval stage. These genes may be targets of sexually antagonistic selection (i.e., large size and rapid development are selected for in females but selected against in males). These results indicate that acquiring neo-sex chromosomes may have contributed to a reduction in sexual conflict, particularly at the larval stage, in Drosophila..
Collapse
Affiliation(s)
- Anika Minovic
- Department of Biological SciencesTokyo Metropolitan UniversityHachiojiJapan
| | - Masafumi Nozawa
- Department of Biological SciencesTokyo Metropolitan UniversityHachiojiJapan
- Research Center for Genomics and BioinformaticsTokyo Metropolitan UniversityHachiojiJapan
| |
Collapse
|
11
|
Patwary ZP, Zhao M, Paul NA, Cummins SF. Identification of reproductive sex-biased gene expression in Asparagopsis taxiformis (lineage 6) gametophytes. JOURNAL OF PHYCOLOGY 2024; 60:327-342. [PMID: 38156746 DOI: 10.1111/jpy.13419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 11/03/2023] [Accepted: 11/05/2023] [Indexed: 01/03/2024]
Abstract
The sub-tropical red seaweed Asparagopsis taxiformis is of significant interest due to its ability to store halogenated compounds, including bromoform, which can mitigate methane production in ruminants. Significant scale-up of aquaculture production of this seaweed is required; however, relatively little is known about the molecular mechanisms that control fundamental physiological processes, including the regulatory factors that determine sexual dimorphism in gametophytes. In this study, we used comparative RNA-sequencing analysis between different morphological parts of mature male and female A. taxiformis (lineage 6) gametophytes that resulted in greater number of sex-biased gene expression in tips (containing the reproductive structures for both sexes), compared with the somatic main axis and rhizomes. Further comparative RNA-seq against immature tips was used to identify 62 reproductive sex-biased genes (59 male-biased, 3 female-biased). Of the reproductive male-biased genes, 46% had an unknown function, while others were predicted to be regulatory factors and enzymes involved in signaling. We found that bromoform content obtained from female samples (8.5 ± 1.0 mg·g-1 dry weight) was ~10% higher on average than that of male samples (6.5 ± 1.0 mg·g-1 dry weight), although no significant difference was observed (p > 0.05). There was also no significant difference in the marine bromoform biosynthesis locus gene expression. In summary, our comparative RNA-sequencing analysis provides a first insight into the potential molecular factors relevant to gametogenesis and sexual differentiation in A. taxiformis, with potential benefits for identification of sex-specific markers.
Collapse
Affiliation(s)
- Zubaida Parveen Patwary
- Centre for Bioinnovation, University of the Sunshine Coast, Maroochydore, Queensland, Australia
- School of Science, Technology and Engineering, University of the Sunshine Coast, Maroochydore, Queensland, Australia
- Department of Aquaculture, Faculty of Fisheries, Hajee Mohammad Danesh Science and Technology University, Dinajpur, Bangladesh
| | - Min Zhao
- School of Science, Technology and Engineering, University of the Sunshine Coast, Maroochydore, Queensland, Australia
| | - Nicholas A Paul
- School of Science, Technology and Engineering, University of the Sunshine Coast, Maroochydore, Queensland, Australia
| | - Scott F Cummins
- Centre for Bioinnovation, University of the Sunshine Coast, Maroochydore, Queensland, Australia
- School of Science, Technology and Engineering, University of the Sunshine Coast, Maroochydore, Queensland, Australia
| |
Collapse
|
12
|
Zhao L, Zhou W, He J, Li DZ, Li HT. Positive selection and relaxed purifying selection contribute to rapid evolution of male-biased genes in a dioecious flowering plant. eLife 2024; 12:RP89941. [PMID: 38353667 PMCID: PMC10942601 DOI: 10.7554/elife.89941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024] Open
Abstract
Sex-biased genes offer insights into the evolution of sexual dimorphism. Sex-biased genes, especially those with male bias, show elevated evolutionary rates of protein sequences driven by positive selection and relaxed purifying selection in animals. Although rapid sequence evolution of sex-biased genes and evolutionary forces have been investigated in animals and brown algae, less is known about evolutionary forces in dioecious angiosperms. In this study, we separately compared the expression of sex-biased genes between female and male floral buds and between female and male flowers at anthesis in dioecious Trichosanthes pilosa (Cucurbitaceae). In floral buds, sex-biased gene expression was pervasive, and had significantly different roles in sexual dimorphism such as physiology. We observed higher rates of sequence evolution for male-biased genes in floral buds compared to female-biased and unbiased genes. Male-biased genes under positive selection were mainly associated with functions to abiotic stress and immune responses, suggesting that high evolutionary rates are driven by adaptive evolution. Additionally, relaxed purifying selection may contribute to accelerated evolution in male-biased genes generated by gene duplication. Our findings, for the first time in angiosperms, suggest evident rapid evolution of male-biased genes, advance our understanding of the patterns and forces driving the evolution of sexual dimorphism in dioecious plants.
Collapse
Affiliation(s)
- Lei Zhao
- Germplasm Bank of Wild Species & Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of SciencesKunming, YunnanChina
| | - Wei Zhou
- Germplasm Bank of Wild Species & Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of SciencesKunming, YunnanChina
| | - Jun He
- Germplasm Bank of Wild Species & Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of SciencesKunming, YunnanChina
| | - De-Zhu Li
- Germplasm Bank of Wild Species & Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of SciencesKunming, YunnanChina
- Kunming College of Life Science, University of Chinese Academy of SciencesKunmingChina
| | - Hong-Tao Li
- Germplasm Bank of Wild Species & Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of SciencesKunming, YunnanChina
- Kunming College of Life Science, University of Chinese Academy of SciencesKunmingChina
| |
Collapse
|
13
|
Shaw DE, Naftaly AS, White MA. Positive Selection Drives cis-regulatory Evolution Across the Threespine Stickleback Y Chromosome. Mol Biol Evol 2024; 41:msae020. [PMID: 38306314 PMCID: PMC10899008 DOI: 10.1093/molbev/msae020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 12/31/2023] [Accepted: 01/24/2024] [Indexed: 02/04/2024] Open
Abstract
Allele-specific gene expression evolves rapidly on heteromorphic sex chromosomes. Over time, the accumulation of mutations on the Y chromosome leads to widespread loss of gametolog expression, relative to the X chromosome. It remains unclear if expression evolution on degrading Y chromosomes is primarily driven by mutations that accumulate through processes of selective interference, or if positive selection can also favor the down-regulation of coding regions on the Y chromosome that contain deleterious mutations. Identifying the relative rates of cis-regulatory sequence evolution across Y chromosomes has been challenging due to the limited number of reference assemblies. The threespine stickleback (Gasterosteus aculeatus) Y chromosome is an excellent model to identify how regulatory mutations accumulate on Y chromosomes due to its intermediate state of divergence from the X chromosome. A large number of Y-linked gametologs still exist across 3 differently aged evolutionary strata to test these hypotheses. We found that putative enhancer regions on the Y chromosome exhibited elevated substitution rates and decreased polymorphism when compared to nonfunctional sites, like intergenic regions and synonymous sites. This suggests that many cis-regulatory regions are under positive selection on the Y chromosome. This divergence was correlated with X-biased gametolog expression, indicating the loss of expression from the Y chromosome may be favored by selection. Our findings provide evidence that Y-linked cis-regulatory regions exhibit signs of positive selection quickly after the suppression of recombination and allow comparisons with recent theoretical models that suggest the rapid divergence of regulatory regions may be favored to mask deleterious mutations on the Y chromosome.
Collapse
Affiliation(s)
- Daniel E Shaw
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | | | - Michael A White
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
14
|
Cīrulis A, Nordén AK, Churcher AM, Ramm SA, Zadesenets KS, Abbott JK. Sex-limited experimental evolution drives transcriptomic divergence in a hermaphrodite. Genome Biol Evol 2024; 16:evad235. [PMID: 38155579 PMCID: PMC10786194 DOI: 10.1093/gbe/evad235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 12/12/2023] [Accepted: 12/23/2023] [Indexed: 12/30/2023] Open
Abstract
The evolution of gonochorism from hermaphroditism is linked with the formation of sex chromosomes, as well as the evolution of sex-biased and sex-specific gene expression to allow both sexes to reach their fitness optimum. There is evidence that sexual selection drives the evolution of male-biased gene expression in particular. However, previous research in this area in animals comes from either theoretical models or comparative studies of already old sex chromosomes. We therefore investigated changes in gene expression under 3 different selection regimes for the simultaneous hermaphrodite Macrostomum lignano subjected to sex-limited experimental evolution (i.e. selection for fitness via eggs, sperm, or a control regime allowing both). After 21 and 22 generations of selection for male-specific or female-specific fitness, we characterized changes in whole-organism gene expression. We found that female-selected lines had changed the most in their gene expression. Although annotation for this species is limited, gene ontology term and Kyoto Encyclopedia of Genes and Genomes pathway analyses suggest that metabolic changes (e.g. biosynthesis of amino acids and carbon metabolism) are an important adaptive component. As predicted, we found that the expression of genes previously identified as testis-biased candidates tended to be downregulated in the female-selected lines. We did not find any significant expression differences for previously identified candidates of other sex-specific organs, but this may simply reflect that few transcripts have been characterized in this way. In conclusion, our experiment suggests that changes in testis-biased gene expression are important in the early evolution of sex chromosomes and gonochorism.
Collapse
Affiliation(s)
- Aivars Cīrulis
- Department of Biology, Lund University, 223 62 Lund, Sweden
- Laboratory of Microbiology and Pathology, Institute of Food Safety, Animal Health and Environment “BIOR,”Riga LV-1076, Latvia
- Faculty of Biology, University of Latvia, Riga LV-1004, Latvia
| | - Anna K Nordén
- Department of Biology, Lund University, 223 62 Lund, Sweden
| | - Allison M Churcher
- Department of Molecular Biology, National Bioinformatics Infrastructure Sweden, Umeå University, 901 87 Umeå, Sweden
| | - Steven A Ramm
- Department of Evolutionary Biology, Bielefeld University, 33615 Bielefeld, Germany
- UMR 6553 ECOBIO, Université de Rennes, 35042 Rennes, France
| | - Kira S Zadesenets
- Department of Molecular Genetics, Cell Biology and Bionformatics, The Federal Research Center Institute of Cytology and Genetics SB RAS, 630090 Novosibirsk, Russian Federation
| | | |
Collapse
|
15
|
Rödelsperger C. Comparative Genomics of Sex, Chromosomes, and Sex Chromosomes in Caenorhabditis elegans and Other Nematodes. Methods Mol Biol 2024; 2802:455-472. [PMID: 38819568 DOI: 10.1007/978-1-0716-3838-5_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
The nematode phylum has evolved a remarkable diversity of reproductive modes, including the repeated emergence of asexuality and hermaphroditism across divergent clades. The species-richness and small genome size of nematodes make them ideal systems for investigating the genome-wide causes and consequences of such major transitions. The availability of functional annotations for most Caenorhabditis elegans genes further allows the linking of patterns of gene content evolution with biological processes. Such gene-centric studies were recently complemented by investigations of chromosome evolution that made use of the first chromosome-scale genome assemblies outside the Caenorhabditis genus. This review highlights recent comparative genomic studies of reproductive mode evolution addressing the hybrid origin of asexuality and the parallel gene loss following the emergence of hermaphroditism. It further summarizes ongoing efforts to characterize ancient linkage blocks called Nigon elements, which form central units of chromosome evolution. Fusions between Nigon elements have been demonstrated to impact recombination and speciation. Finally, multiple recent fusions between autosomal and the sex-linked Nigon element reveal insights into the dynamic evolution of sex chromosomes across various timescales.
Collapse
Affiliation(s)
- Christian Rödelsperger
- Department for Integrative Evolutionary Biology, Max Planck Institute for Biology, Tübingen, Germany.
| |
Collapse
|
16
|
McDaniel SF. Divergent outcomes of genetic conflict on the UV sex chromosomes of Marchantia polymorpha and Ceratodon purpureus. Curr Opin Genet Dev 2023; 83:102129. [PMID: 37864936 DOI: 10.1016/j.gde.2023.102129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/22/2023] [Accepted: 09/24/2023] [Indexed: 10/23/2023]
Abstract
In species with separate sexes, the genome must produce two distinct developmental programs. Sexually dimorphic development may be controlled by either sex-limited loci or biased expression of loci transmitted through both sexes. Variation in the gene content of sex-limited chromosomes demonstrates that eukaryotic species differ markedly in the roles of these two mechanisms in governing sexual dimorphism. The bryophyte model systems Marchantia polymorpha and Ceratodon purpureus provide a particularly striking contrast. Although both species possess a haploid UV sex chromosome system, in which females carry a U chromosome and males carry a V, M. polymorpha relies on biased autosomal expression, while in C. purpureus, sex-linked genes drive dimorphism. Framing these genetic architectures as divergent outcomes of genetic conflict highlights comparative genomic analyses to better understand the evolution of sexual dimorphism.
Collapse
Affiliation(s)
- Stuart F McDaniel
- Biology Department, University of Florida, Gainesville, FL 32611-8525, USA.
| |
Collapse
|
17
|
Rodríguez-Montes L, Ovchinnikova S, Yuan X, Studer T, Sarropoulos I, Anders S, Kaessmann H, Cardoso-Moreira M. Sex-biased gene expression across mammalian organ development and evolution. Science 2023; 382:eadf1046. [PMID: 37917687 PMCID: PMC7615307 DOI: 10.1126/science.adf1046] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 09/18/2023] [Indexed: 11/04/2023]
Abstract
Sexually dimorphic traits are common among mammals and are specified during development through the deployment of sex-specific genetic programs. Because little is known about these programs, we investigated them using a resource of gene expression profiles in males and females throughout the development of five organs in five mammals (human, mouse, rat, rabbit, and opossum) and a bird (chicken). We found that sex-biased gene expression varied considerably across organs and species and was often cell-type specific. Sex differences increased abruptly around sexual maturity instead of increasing gradually during organ development. Finally, sex-biased gene expression evolved rapidly at the gene level, with differences between organs in the evolutionary mechanisms used, but more slowly at the cellular level, with the same cell types being sexually dimorphic across species.
Collapse
Affiliation(s)
- Leticia Rodríguez-Montes
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, D-69120 Heidelberg, Germany
| | | | - Xuefei Yuan
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, D-69120 Heidelberg, Germany
| | - Tania Studer
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, D-69120 Heidelberg, Germany
| | - Ioannis Sarropoulos
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, D-69120 Heidelberg, Germany
| | - Simon Anders
- BioQuant, Heidelberg University, D-69120 Heidelberg, Germany
| | - Henrik Kaessmann
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, D-69120 Heidelberg, Germany
| | | |
Collapse
|
18
|
Nicolini F, Ghiselli F, Luchetti A, Milani L. Bivalves as Emerging Model Systems to Study the Mechanisms and Evolution of Sex Determination: A Genomic Point of View. Genome Biol Evol 2023; 15:evad181. [PMID: 37850870 PMCID: PMC10588774 DOI: 10.1093/gbe/evad181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 09/26/2023] [Accepted: 10/03/2023] [Indexed: 10/19/2023] Open
Abstract
Bivalves are a diverse group of molluscs that have recently attained a central role in plenty of biological research fields, thanks to their peculiar life history traits. Here, we propose that bivalves should be considered as emerging model systems also in sex-determination (SD) studies, since they would allow to investigate: 1) the transition between environmental and genetic SD, with respect to different reproductive backgrounds and sexual systems (from species with strict gonochorism to species with various forms of hermaphroditism); 2) the genomic evolution of sex chromosomes (SCs), considering that no heteromorphic SCs are currently known and that homomorphic SCs have been identified only in a few species of scallops; 3) the putative role of mitochondria at some level of the SD signaling pathway, in a mechanism that may resemble the cytoplasmatic male sterility of plants; 4) the evolutionary history of SD-related gene (SRG) families with respect to other animal groups. In particular, we think that this last topic may lay the foundations for expanding our understanding of bivalve SD, as our current knowledge is quite fragmented and limited to a few species. As a matter of fact, tracing the phylogenetic history and diversity of SRG families (such as the Dmrt, Sox, and Fox genes) would allow not only to perform more targeted functional experiments and genomic analyses, but also to foster the possibility of establishing a solid comparative framework.
Collapse
Affiliation(s)
- Filippo Nicolini
- Department of Biological, Geological and Environmental Science, University of Bologna, Bologna, Italy
- Fano Marine Center, Fano, Italy
| | - Fabrizio Ghiselli
- Department of Biological, Geological and Environmental Science, University of Bologna, Bologna, Italy
| | - Andrea Luchetti
- Department of Biological, Geological and Environmental Science, University of Bologna, Bologna, Italy
| | - Liliana Milani
- Department of Biological, Geological and Environmental Science, University of Bologna, Bologna, Italy
| |
Collapse
|
19
|
Darolti I, Mank JE. Sex-biased gene expression at single-cell resolution: cause and consequence of sexual dimorphism. Evol Lett 2023; 7:148-156. [PMID: 37251587 PMCID: PMC10210449 DOI: 10.1093/evlett/qrad013] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 03/08/2023] [Accepted: 04/06/2023] [Indexed: 05/31/2023] Open
Abstract
Gene expression differences between males and females are thought to be key for the evolution of sexual dimorphism, and sex-biased genes are often used to study the molecular footprint of sex-specific selection. However, gene expression is often measured from complex aggregations of diverse cell types, making it difficult to distinguish between sex differences in expression that are due to regulatory rewiring within similar cell types and those that are simply a consequence of developmental differences in cell-type abundance. To determine the role of regulatory versus developmental differences underlying sex-biased gene expression, we use single-cell transcriptomic data from multiple somatic and reproductive tissues of male and female guppies, a species that exhibits extensive phenotypic sexual dimorphism. Our analysis of gene expression at single-cell resolution demonstrates that nonisometric scaling between the cell populations within each tissue and heterogeneity in cell-type abundance between the sexes can influence inferred patterns of sex-biased gene expression by increasing both the false-positive and false-negative rates. Moreover, we show that, at the bulk level, the subset of sex-biased genes that are the product of sex differences in cell-type abundance can significantly confound patterns of coding-sequence evolution. Taken together, our results offer a unique insight into the effects of allometry and cellular heterogeneity on perceived patterns of sex-biased gene expression and highlight the power of single-cell RNA-sequencing in distinguishing between sex-biased genes that are the result of regulatory change and those that stem from sex differences in cell-type abundance, and hence are a consequence rather than a cause of sexual dimorphism.
Collapse
Affiliation(s)
- Iulia Darolti
- Department of Zoology and Biodiversity Research Centre, University of British Columbia, Vancouver, BC, Canada
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Judith E Mank
- Department of Zoology and Biodiversity Research Centre, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
20
|
Gu H, Wang L, Lv X, Yang W, Zhang L, Zhang Z, Zhu T, Jia Y, Chen Y, Qu L. Domestication affects sex-biased gene expression evolution in the duck. ROYAL SOCIETY OPEN SCIENCE 2023; 10:221313. [PMID: 37035296 PMCID: PMC10073915 DOI: 10.1098/rsos.221313] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 02/27/2023] [Indexed: 06/19/2023]
Abstract
Genes with sex-biased expression are thought to underlie sexually dimorphic phenotypes and are therefore subject to different selection pressures in males and females. Many authors have proposed that sexual conflict leads to the evolution of sex-biased expression, which allows males and females to reach separate phenotypic and fitness optima. The selection pressures associated with domestication may cause changes in population architectures and mating systems, which in turn can alter their direction and strength. We compared sex-biased expression and genetic signatures in wild and domestic ducks (Anas platyrhynchos), and observed changes of sexual selection and identified the genomic divergence affected by selection forces. The extent of sex-biased expression in both sexes is positively correlated with the level of both d N /d S and nucleotide diversity. This observed changing pattern may mainly be owing to relaxed genetic constraints. We also demonstrate a clear link between domestication and sex-biased evolutionary rate in a comparative framework. Decreased polymorphism and evolutionary rate in domesticated populations generally matched life-history phenotypes known to experience artificial selection. Taken together, our work suggests the important implications of domestication in sex-biased evolution and the roles of artificial selection and sexual selection for shaping the diversity and evolutionary rate of the genome.
Collapse
Affiliation(s)
- Hongchang Gu
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, People's Republic of China
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, People's Republic of China
| | - Liang Wang
- Beijing Municipal General Station of Animal Science, Beijing, People's Republic of China
| | - Xueze Lv
- Beijing Municipal General Station of Animal Science, Beijing, People's Republic of China
| | - Weifang Yang
- Beijing Municipal General Station of Animal Science, Beijing, People's Republic of China
| | - Li Zhang
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, People's Republic of China
| | - Zebin Zhang
- Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| | - Tao Zhu
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, People's Republic of China
| | - Yaxiong Jia
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Yu Chen
- Beijing Municipal General Station of Animal Science, Beijing, People's Republic of China
| | - Lujiang Qu
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, People's Republic of China
| |
Collapse
|
21
|
Hatchett WJ, Jueterbock AO, Kopp M, Coyer JA, Coelho SM, Hoarau G, Lipinska AP. Evolutionary dynamics of sex-biased gene expression in a young XY system: insights from the brown alga genus Fucus. THE NEW PHYTOLOGIST 2023; 238:422-437. [PMID: 36597732 DOI: 10.1111/nph.18710] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 12/16/2022] [Indexed: 06/17/2023]
Abstract
Sex-biased gene expression is considered to be an underlying cause of sexually dimorphic traits. Although the nature and degree of sex-biased expression have been well documented in several animal and plant systems, far less is known about the evolution of sex-biased genes in more distant eukaryotic groups. Here, we investigate sex-biased gene expression in two brown algal dioecious species, Fucus serratus and Fucus vesiculosus, where male heterogamety (XX/XY) has recently emerged. We find that in contrast to evolutionary distant plant and animal lineages, male-biased genes do not experience high turnover rates, but instead reveal remarkable conservation of bias and expression levels between the two species, suggesting their importance in sexual differentiation. Genes with consistent male bias were enriched in functions related to gamete production, along with sperm competition and include three flagellar proteins under positive selection. We present one of the first reports, outside of the animal kingdom, showing that male-biased genes display accelerated rates of coding sequence evolution compared with female-biased or unbiased genes. Our results imply that evolutionary forces affect male and female sex-biased genes differently on structural and regulatory levels, resulting in unique properties of differentially expressed transcripts during reproductive development in Fucus algae.
Collapse
Affiliation(s)
- William J Hatchett
- Faculty of Biosciences and Aquaculture, Nord University, 8026, Bodø, Norway
| | | | - Martina Kopp
- Faculty of Biosciences and Aquaculture, Nord University, 8026, Bodø, Norway
| | - James A Coyer
- Shoals Marine Laboratory, University of New Hampshire, Durham, NH, 03824, USA
| | - Susana M Coelho
- CNRS, Algal Genetics Group, UMR 8227, Integrative Biology of Marine Models, Sorbonne Université, Station Biologique de Roscoff, 29680, Roscoff, France
- Department of Algal Development and Evolution, Max Planck Institute for Biology, 72076, Tuebingen, Germany
| | - Galice Hoarau
- Faculty of Biosciences and Aquaculture, Nord University, 8026, Bodø, Norway
| | - Agnieszka P Lipinska
- CNRS, Algal Genetics Group, UMR 8227, Integrative Biology of Marine Models, Sorbonne Université, Station Biologique de Roscoff, 29680, Roscoff, France
- Department of Algal Development and Evolution, Max Planck Institute for Biology, 72076, Tuebingen, Germany
| |
Collapse
|
22
|
Kaczanowski S. Detection of positive selection acting on protein surfaces at the whole-genome scale in the human malaria parasite Plasmodium falciparum. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2023; 107:105397. [PMID: 36572055 DOI: 10.1016/j.meegid.2022.105397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 09/20/2022] [Accepted: 12/21/2022] [Indexed: 12/24/2022]
Abstract
The host-parasite evolutionary arms race is a fundamental process with medical implications. During this process, the host develops parasite resistance, and the parasite develops host immune evasion strategies. Thus, this process accelerates relevant protein evolution. This study test hypothesizes that proteins subject to sequence evolution structural constraints play a crucial role and that these constraints hinder the modification of such proteins in this process. These hypotheses were tested using Plasmodium falciparum model and evaluated protein structures predicted for the entire proteome by the AlphaFold method. Based on dN/dS test results and P. falciparum and P. reichenowi comparisons, the presented approach identified proteins subject to purifying selection acting on the whole sequence and buried residues (dN < dS) and positive selection on nonburied residues. Of the 26 proteins, some known antigens (ring-exported protein 3, RAP protein, erythrocyte binding antigen-140, and protein P47) targeted by the host immune system are promising vaccine candidates. The set also contained 11 enzymes, including FIKK kinase, which modifies host proteins. This set was compared with genes for which the dN/dS test suggested that positive selection acts on the whole gene (i.e., dN > dS). The present study found that such genes encode enzymes and antigenic vaccine candidates less frequently than genes for which evolution is not subject to selection constraints and positive selection acts on only exposed residues. The analysis was repeated comparing P. falciparum with P. alderi, which is more distantly related. The study discusses the potential implications of the presented methodology for rational vaccine design and the parasitology and evolutionary biology fields.
Collapse
Affiliation(s)
- Szymon Kaczanowski
- Department of Bioinformatics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland.
| |
Collapse
|
23
|
Xu R, Martelossi J, Smits M, Iannello M, Peruzza L, Babbucci M, Milan M, Dunham JP, Breton S, Milani L, Nuzhdin SV, Bargelloni L, Passamonti M, Ghiselli F. Multi-tissue RNA-Seq Analysis and Long-read-based Genome Assembly Reveal Complex Sex-specific Gene Regulation and Molecular Evolution in the Manila Clam. Genome Biol Evol 2022; 14:6889380. [PMID: 36508337 PMCID: PMC9803972 DOI: 10.1093/gbe/evac171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 11/26/2022] [Accepted: 11/30/2022] [Indexed: 12/14/2022] Open
Abstract
The molecular factors and gene regulation involved in sex determination and gonad differentiation in bivalve molluscs are unknown. It has been suggested that doubly uniparental inheritance (DUI) of mitochondria may be involved in these processes in species such as the ubiquitous and commercially relevant Manila clam, Ruditapes philippinarum. We present the first long-read-based de novo genome assembly of a Manila clam, and a RNA-Seq multi-tissue analysis of 15 females and 15 males. The highly contiguous genome assembly was used as reference to investigate gene expression, alternative splicing, sequence evolution, tissue-specific co-expression networks, and sexual contrasting SNPs. Differential expression (DE) and differential splicing (DS) analyses revealed sex-specific transcriptional regulation in gonads, but not in somatic tissues. Co-expression networks revealed complex gene regulation in gonads, and genes in gonad-associated modules showed high tissue specificity. However, male gonad-associated modules showed contrasting patterns of sequence evolution and tissue specificity. One gene set was related to the structural organization of male gametes and presented slow sequence evolution but high pleiotropy, whereas another gene set was enriched in reproduction-related processes and characterized by fast sequence evolution and tissue specificity. Sexual contrasting SNPs were found in genes overrepresented in mitochondrial-related functions, providing new candidates for investigating the relationship between mitochondria and sex in DUI species. Together, these results increase our understanding of the role of DE, DS, and sequence evolution of sex-specific genes in an understudied taxon. We also provide resourceful genomic data for studies regarding sex diagnosis and breeding in bivalves.
Collapse
Affiliation(s)
- Ran Xu
- Corresponding authors: E-mail: (R.X.); E-mail: (F.G.)
| | | | | | | | - Luca Peruzza
- Department of Comparative Biomedicine and Food Science, University of Padova, Padova, Italy
| | - Massimiliano Babbucci
- Department of Comparative Biomedicine and Food Science, University of Padova, Padova, Italy
| | - Massimo Milan
- Department of Comparative Biomedicine and Food Science, University of Padova, Padova, Italy
| | - Joseph P Dunham
- Program in Molecular and Computational Biology, University of Southern California, Los Angeles, CA, USA,SeqOnce Biosciences Inc., Pasadena, CA, USA
| | - Sophie Breton
- Department of Biological Sciences, University of Montreal, Montreal, Canada
| | - Liliana Milani
- Department of Biological, Geological, and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Sergey V Nuzhdin
- Program in Molecular and Computational Biology, University of Southern California, Los Angeles, CA, USA
| | - Luca Bargelloni
- Department of Comparative Biomedicine and Food Science, University of Padova, Padova, Italy
| | | | | |
Collapse
|
24
|
Möllmann JS, Colgan TJ. Genomic architecture and sexually dimorphic expression underlying immunity in the red mason bee, Osmia bicornis. INSECT MOLECULAR BIOLOGY 2022; 31:686-700. [PMID: 35716016 DOI: 10.1111/imb.12796] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 06/09/2022] [Indexed: 06/15/2023]
Abstract
Insect pollinators provide crucial ecosystem services yet face increasing environmental pressures. The challenges posed by novel and reemerging pathogens on bee health means we need to improve our understanding of the immune system, an important barrier to infections and disease. Despite the importance of solitary bees, which are ecologically relevant, our understanding of the genomic basis and molecular mechanisms underlying their immune potential, and how intrinsic and extrinsic factors may influence it is limited. To improve our understanding of the genomic architecture underlying immunity of a key solitary bee pollinator, we characterized putative immune genes of the red mason bee, Osmia bicornis. In addition, we used publicly available RNA-seq datasets to determine how sexes differ in immune gene expression and splicing but also how pesticide exposure may affect immune gene expression in females. Through comparative genomics, we reveal an evolutionarily conserved set of more than 500 putative immune-related genes. We found genome-wide patterns of sex-biased gene expression, with greater enrichment of immune-related processes among genes with higher constitutive expression in males than females. Our results also suggest an up-regulation of immune-related genes in response to exposure to two common neonicotinoids, thiacloprid and imidacloprid. Collectively, our study provides important insights into the gene repertoire, regulation and expression differences in the sexes of O. bicornis, as well as providing additional support for how neonicotinoids can affect immune gene expression, which may affect the capacity of solitary bees to respond to pathogenic threats.
Collapse
Affiliation(s)
- Jannik S Möllmann
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Thomas J Colgan
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg University Mainz, Mainz, Germany
| |
Collapse
|
25
|
McCombe PA, Greer JM. Effects of biological sex and pregnancy in experimental autoimmune encephalomyelitis: It's complicated. Front Immunol 2022; 13:1059833. [PMID: 36518769 PMCID: PMC9742606 DOI: 10.3389/fimmu.2022.1059833] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 11/03/2022] [Indexed: 11/29/2022] Open
Abstract
Experimental autoimmune encephalomyelitis (EAE) can be induced in many animal strains by inoculation with central nervous system antigens and adjuvant or by the passive transfer of lymphocytes reactive with these antigens and is widely used as an animal model for multiple sclerosis (MS). There are reports that female sex and pregnancy affect EAE. Here we review the effects of biological sex and the effects of pregnancy on the clinical features (including disease susceptibility) and pathophysiology of EAE. We also review reports of the possible mechanisms underlying these differences. These include sex-related differences in the immune system and in the central nervous system, the effects of hormones and the sex chromosomes and molecules unique to pregnancy. We also review sex differences in the response to factors that can modify the course of EAE. Our conclusion is that the effects of biological sex in EAE vary amongst animal models and should not be widely extrapolated. In EAE, it is therefore essential that studies looking at the effects of biological sex or pregnancy give full information about the model that is used (i.e. animal strain, sex, the inducing antigen, timing of EAE induction in relation to pregnancy, etc.). In addition, it would be preferable if more than one EAE model were used, to show if any observed effects are generalizable. This is clearly a field that requires further work. However, understanding of the mechanisms of sex differences could lead to greater understanding of EAE, and suggest possible therapies for MS.
Collapse
Affiliation(s)
| | - Judith M. Greer
- UQ Centre for Clinical Research, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
26
|
Khodursky S, Jiang CS, Zheng EB, Vaughan R, Schrider DR, Zhao L. Sex differences in interindividual gene expression variability across human tissues. PNAS NEXUS 2022; 1:pgac243. [PMID: 36712323 PMCID: PMC9802459 DOI: 10.1093/pnasnexus/pgac243] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 10/21/2022] [Indexed: 11/07/2022]
Abstract
Understanding phenotypic sex differences has long been a goal of biology from both a medical and evolutionary perspective. Although much attention has been paid to mean differences in phenotype between the sexes, little is known about sex differences in phenotypic variability. To gain insight into sex differences in interindividual variability at the molecular level, we analyzed RNA-seq data from 43 tissues from the Genotype-Tissue Expression project (GTEx). Within each tissue, we identified genes that show sex differences in gene expression variability. We found that these sex-differentially variable (SDV) genes are associated with various important biological functions, including sex hormone response, immune response, and other signaling pathways. By analyzing single-cell RNA sequencing data collected from breast epithelial cells, we found that genes with sex differences in gene expression variability in breast tissue tend to be expressed in a cell-type-specific manner. We looked for an association between SDV expression and Graves' disease, a well-known heavily female-biased disease, and found a significant enrichment of Graves' associated genes among genes with higher variability in females in thyroid tissue. This suggests a possible role for SDV expression in sex-biased disease. We then examined the evolutionary constraints acting on genes with sex differences in variability and found that they exhibit evidence of increased selective constraint. Through analysis of sex-biased eQTL data, we found evidence that SDV expression may have a genetic basis. Finally, we propose a simple evolutionary model for the emergence of SDV expression from sex-specific constraints.
Collapse
Affiliation(s)
- Samuel Khodursky
- Laboratory of Evolutionary Genetics and Genomics, The Rockefeller University, New York, NY 10065, USA
| | - Caroline S Jiang
- Department of Biostatistics, The Rockefeller University, New York, NY 10065, USA
| | - Eric B Zheng
- Laboratory of Evolutionary Genetics and Genomics, The Rockefeller University, New York, NY 10065, USA
| | - Roger Vaughan
- Department of Biostatistics, The Rockefeller University, New York, NY 10065, USA
| | - Daniel R Schrider
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27514, USA
| | - Li Zhao
- Laboratory of Evolutionary Genetics and Genomics, The Rockefeller University, New York, NY 10065, USA
| |
Collapse
|
27
|
Olasege BS, Porto-Neto LR, Tahir MS, Gouveia GC, Cánovas A, Hayes BJ, Fortes MRS. Correlation scan: identifying genomic regions that affect genetic correlations applied to fertility traits. BMC Genomics 2022; 23:684. [PMID: 36195838 PMCID: PMC9533527 DOI: 10.1186/s12864-022-08898-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 09/19/2022] [Indexed: 11/10/2022] Open
Abstract
Although the genetic correlations between complex traits have been estimated for more than a century, only recently we have started to map and understand the precise localization of the genomic region(s) that underpin these correlations. Reproductive traits are often genetically correlated. Yet, we don't fully understand the complexities, synergism, or trade-offs between male and female fertility. In this study, we used reproductive traits in two cattle populations (Brahman; BB, Tropical Composite; TC) to develop a novel framework termed correlation scan (CS). This framework was used to identify local regions associated with the genetic correlations between male and female fertility traits. Animals were genotyped with bovine high-density single nucleotide polymorphisms (SNPs) chip assay. The data used consisted of ~1000 individual records measured through frequent ovarian scanning for age at first corpus luteum (AGECL) and a laboratory assay for serum levels of insulin growth hormone (IGF1 measured in bulls, IGF1b, or cows, IGF1c). The methodology developed herein used correlations of 500-SNP effects in a 100-SNPs sliding window in each chromosome to identify local genomic regions that either drive or antagonize the genetic correlations between traits. We used Fisher's Z-statistics through a permutation method to confirm which regions of the genome harboured significant correlations. About 30% of the total genomic regions were identified as driving and antagonizing genetic correlations between male and female fertility traits in the two populations. These regions confirmed the polygenic nature of the traits being studied and pointed to genes of interest. For BB, the most important chromosome in terms of local regions is often located on bovine chromosome (BTA) 14. However, the important regions are spread across few different BTA's in TC. Quantitative trait loci (QTLs) and functional enrichment analysis revealed many significant windows co-localized with known QTLs related to milk production and fertility traits, especially puberty. In general, the enriched reproductive QTLs driving the genetic correlations between male and female fertility are the same for both cattle populations, while the antagonizing regions were population specific. Moreover, most of the antagonizing regions were mapped to chromosome X. These results suggest regions of chromosome X for further investigation into the trade-offs between male and female fertility. We compared the CS with two other recently proposed methods that map local genomic correlations. Some genomic regions were significant across methods. Yet, many significant regions identified with the CS were overlooked by other methods.
Collapse
Affiliation(s)
- Babatunde S Olasege
- The University of Queensland, School of Chemistry and Molecular Biosciences, Saint Lucia Campus, Brisbane, QLD, 4072, Australia.,CSIRO Agriculture and Food, Saint Lucia, QLD, 4067, Australia
| | | | - Muhammad S Tahir
- The University of Queensland, School of Chemistry and Molecular Biosciences, Saint Lucia Campus, Brisbane, QLD, 4072, Australia.,CSIRO Agriculture and Food, Saint Lucia, QLD, 4067, Australia
| | - Gabriela C Gouveia
- Animal Science Department, Veterinary School, Federal University of Minas Gerais, Belo Horizonte, 31270-901, Brazil
| | - Angela Cánovas
- Department of Animal Biosciences, Centre for Genetic Improvement of Livestock, University of Guelph, 50 Stone Rd E, Guelph, ON, N1G 2W1, Canada
| | - Ben J Hayes
- The University of Queensland, Queensland Alliance for Agriculture and Food Innovation (QAAFI), Saint Lucia Campus, Brisbane, QLD, 4072, Australia
| | - Marina R S Fortes
- The University of Queensland, School of Chemistry and Molecular Biosciences, Saint Lucia Campus, Brisbane, QLD, 4072, Australia. .,The University of Queensland, Queensland Alliance for Agriculture and Food Innovation (QAAFI), Saint Lucia Campus, Brisbane, QLD, 4072, Australia.
| |
Collapse
|
28
|
Wigby S, Brown NC, Sepil I, Wolfner MF. On how to identify a seminal fluid protein: A commentary on Hurtado et al. INSECT MOLECULAR BIOLOGY 2022; 31:533-536. [PMID: 35975871 PMCID: PMC9452446 DOI: 10.1111/imb.12783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 05/05/2022] [Indexed: 06/15/2023]
Abstract
Seminal fluid proteins (Sfps) have striking effects on the behaviour and physiology of females in many insects. Some Drosophila melanogaster Sfps are not highly or exclusively expressed in the accessory glands, but derive from, or are additionally expressed in other male reproductive tissues. The full suite of Sfps includes transferred proteins from all male reproductive tissues, regardless of expression level or presence of a signal peptide.
Collapse
Affiliation(s)
- Stuart Wigby
- Department of Ecology Evolution and Behaviour, Institute
of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool
L69 7ZB, UK
| | - Nora C Brown
- Department of Molecular Biology and Genetics, Cornell
University, Ithaca, NY, USA
| | - Irem Sepil
- Department of Zoology, University of Oxford, Oxford OX1
3PS, UK
| | - Mariana F Wolfner
- Department of Molecular Biology and Genetics, Cornell
University, Ithaca, NY, USA
| |
Collapse
|
29
|
Potential Involvement of ewsr1-w Gene in Ovarian Development of Chinese Tongue Sole, Cynoglossus semilaevis. Animals (Basel) 2022; 12:ani12192503. [PMID: 36230245 PMCID: PMC9559465 DOI: 10.3390/ani12192503] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/09/2022] [Accepted: 09/13/2022] [Indexed: 11/29/2022] Open
Abstract
Simple Summary Sexual dimorphism is a phenomenon commonly existing in animals. Chinese tongue sole Cynoglossus semilaevis is an economical marine fish with obvious female-biased size dimorphism. So, it is important to explore the molecular mechanism beyond gonadal development for sex control in aquaculture industry. RNA-binding protein Ewing Sarcoma protein-like (ewsr1) gene is important for mouse gonadal development and reproduction, however there are limited studies on this gene in teleost. In this study, two ewsr1 genes were cloned and characterized from C. semilaevis. The ewsr1-w gene, located in W chromosomes, showed female-biased expression during C. semilaevis gonadal development. In addition, knock-down effect and transcriptional regulation of Cs-ewsr1-w further suggested its essential role in ovarian development. This study broadened our understanding on ewsr1 function in teleost, and provided genetic resources for the further development of sex control breeding techniques in C. semilaevis aquaculture. Abstract Ewsr1 encodes a protein that acts as a multifunctional molecule in a variety of cellular processes. The full-length of Cs-ewsr1-w and Cs-ewsr1-z were cloned in Chinese tongue sole (Cynoglossus semilaevis). The open reading frame (ORF) of Cs-ewsr1-w was 1,767 bp that encoded 589 amino acids, while Cs-ewsr1-z was 1,794 bp that encoded 598 amino acids. Real-time PCR assays showed that Cs-ewsr1-w exhibited significant female-biased expression and could be hardly detected in male. It has the most abundant expression in ovaries among eight healthy tissues. Its expression in ovary increased gradually from 90 d to 3 y with C. semilaevis ovarian development and reached the peak at 3 y. After Cs-ewsr1-w knockdown with siRNA interference, several genes related to gonadal development including foxl2, sox9b and pou5f1 were down-regulated in ovarian cell line, suggesting the possible participation of Cs-ewsr1-w in C. semilaevis ovarian development. The dual-luciferase reporter assay revealed that the -733/-154 bp Cs-ewsr1-w promoter fragment exhibited strong transcription activity human embryonic kidney (HEK) 293T cell line. The mutation of a MAF BZIP Transcription Factor K (Mafk) binding site located in this fragment suggested that transcription factor Mafk might play an important role in Cs-ewsr1-w basal transcription. Our results will provide clues on the gene expression level, transcriptional regulation and knock-down effect of ewsr1 gene during ovarian development in teleost.
Collapse
|
30
|
Schield DR, Perry BW, Card DC, Pasquesi GIM, Westfall AK, Mackessy SP, Castoe TA. The Rattlesnake W Chromosome: A GC-Rich Retroelement Refugium with Retained Gene Function Across Ancient Evolutionary Strata. Genome Biol Evol 2022; 14:evac116. [PMID: 35867356 PMCID: PMC9447483 DOI: 10.1093/gbe/evac116] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/17/2022] [Indexed: 11/18/2022] Open
Abstract
Sex chromosomes diverge after the establishment of recombination suppression, resulting in differential sex-linkage of genes involved in genetic sex determination and dimorphic traits. This process produces systems of male or female heterogamety wherein the Y and W chromosomes are only present in one sex and are often highly degenerated. Sex-limited Y and W chromosomes contain valuable information about the evolutionary transition from autosomes to sex chromosomes, yet detailed characterizations of the structure, composition, and gene content of sex-limited chromosomes are lacking for many species. In this study, we characterize the female-specific W chromosome of the prairie rattlesnake (Crotalus viridis) and evaluate how recombination suppression and other processes have shaped sex chromosome evolution in ZW snakes. Our analyses indicate that the rattlesnake W chromosome is over 80% repetitive and that an abundance of GC-rich mdg4 elements has driven an overall high degree of GC-richness despite a lack of recombination. The W chromosome is also highly enriched for repeat sequences derived from endogenous retroviruses and likely acts as a "refugium" for these and other retroelements. We annotated 219 putatively functional W-linked genes across at least two evolutionary strata identified based on estimates of sequence divergence between Z and W gametologs. The youngest of these strata is relatively gene-rich, however gene expression across strata suggests retained gene function amidst a greater degree of degeneration following ancient recombination suppression. Functional annotation of W-linked genes indicates a specialization of the W chromosome for reproductive and developmental function since recombination suppression from the Z chromosome.
Collapse
Affiliation(s)
- Drew R Schield
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, Colorado, USA
| | - Blair W Perry
- Department of Biology, University of Texas at Arlington, Arlington, Texas, USA
- School of Biological Sciences, Washington State University, Pullman, Washington, USA
| | - Daren C Card
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, USA
- Museum of Comparative Zoology, Harvard University, Cambridge, Massachusetts, USA
| | - Giulia I M Pasquesi
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Colorado, USA
| | - Aundrea K Westfall
- Department of Biology, University of Texas at Arlington, Arlington, Texas, USA
| | - Stephen P Mackessy
- School of Biological Sciences, University of Northern Colorado, Greeley, Colorado, USA
| | - Todd A Castoe
- Department of Biology, University of Texas at Arlington, Arlington, Texas, USA
| |
Collapse
|
31
|
Parker DJ, Jaron KS, Dumas Z, Robinson‐Rechavi M, Schwander T. X chromosomes show relaxed selection and complete somatic dosage compensation across
Timema
stick insect species. J Evol Biol 2022; 35:1734-1750. [PMID: 35933721 PMCID: PMC10087215 DOI: 10.1111/jeb.14075] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 05/06/2022] [Accepted: 07/14/2022] [Indexed: 11/29/2022]
Abstract
Sex chromosomes have evolved repeatedly across the tree of life. As they are present in different copy numbers in males and females, they are expected to experience different selection pressures than the autosomes, with consequences including a faster rate of evolution, increased accumulation of sexually antagonistic alleles and the evolution of dosage compensation. Whether these consequences are general or linked to idiosyncrasies of specific taxa is not clear as relatively few taxa have been studied thus far. Here, we use whole-genome sequencing to identify and characterize the evolution of the X chromosome in five species of Timema stick insects with XX:X0 sex determination. The X chromosome had a similar size (approximately 12% of the genome) and gene content across all five species, suggesting that the X chromosome originated prior to the diversification of the genus. Genes on the X showed evidence of relaxed selection (elevated dN/dS) and a slower evolutionary rate (dN + dS) than genes on the autosomes, likely due to sex-biased mutation rates. Genes on the X also showed almost complete dosage compensation in somatic tissues (heads and legs), but dosage compensation was absent in the reproductive tracts. Contrary to prediction, sex-biased genes showed little enrichment on the X, suggesting that the advantage X-linkage provides to the accumulation of sexually antagonistic alleles is weak. Overall, we found the consequences of X-linkage on gene sequences and expression to be similar across Timema species, showing the characteristics of the X chromosome are surprisingly consistent over 30 million years of evolution.
Collapse
Affiliation(s)
- Darren J. Parker
- Department of Ecology and Evolution University of Lausanne Lausanne Switzerland
- Swiss Institute of Bioinformatics Lausanne Switzerland
- School of Natural Sciences Bangor University Bangor UK
| | - Kamil S. Jaron
- Department of Ecology and Evolution University of Lausanne Lausanne Switzerland
- Swiss Institute of Bioinformatics Lausanne Switzerland
- School of Biological Sciences Institute of Evolutionary Biology University of Edinburgh Edinburgh UK
| | - Zoé Dumas
- Department of Ecology and Evolution University of Lausanne Lausanne Switzerland
| | - Marc Robinson‐Rechavi
- Department of Ecology and Evolution University of Lausanne Lausanne Switzerland
- Swiss Institute of Bioinformatics Lausanne Switzerland
| | - Tanja Schwander
- Department of Ecology and Evolution University of Lausanne Lausanne Switzerland
| |
Collapse
|
32
|
Dufresnes C, Crochet PA. Sex chromosomes as supergenes of speciation: why amphibians defy the rules? Philos Trans R Soc Lond B Biol Sci 2022; 377:20210202. [PMID: 35694748 PMCID: PMC9189495 DOI: 10.1098/rstb.2021.0202] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
As reflected by the two rules of speciation (Haldane's rule and the large X-/Z-effect), sex chromosomes are expected to behave like supergenes of speciation: they recombine only in one sex (XX females or ZZ males), supposedly recruit sexually antagonistic genes and evolve faster than autosomes, which can all contribute to pre-zygotic and post-zygotic isolation. While this has been mainly studied in organisms with conserved sex-determining systems and highly differentiated (heteromorphic) sex chromosomes like mammals, birds and some insects, these expectations are less clear in organismal groups where sex chromosomes repeatedly change and remain mostly homomorphic, like amphibians. In this article, we review the proposed roles of sex-linked genes in isolating nascent lineages throughout the speciation continuum and discuss their support in amphibians given current knowledge of sex chromosome evolution and speciation modes. Given their frequent recombination and lack of differentiation, we argue that amphibian sex chromosomes are not expected to become supergenes of speciation, which is reflected by the rarity of empirical studies consistent with a 'large sex chromosome effect' in frogs and toads. The diversity of sex chromosome systems in amphibians has a high potential to disentangle the evolutionary mechanisms responsible for the emergence of sex-linked speciation genes in other organisms. This article is part of the theme issue 'Genomic architecture of supergenes: causes and evolutionary consequences'.
Collapse
Affiliation(s)
- Christophe Dufresnes
- LASER, College of Biology and Environment, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | | |
Collapse
|
33
|
Deng D, Xing S, Liu X, Ji Q, Zhai Z, Peng W. Transcriptome analysis of sex-biased gene expression in the spotted-wing Drosophila, Drosophila suzukii (Matsumura). G3 GENES|GENOMES|GENETICS 2022; 12:6588685. [PMID: 35587603 PMCID: PMC9339319 DOI: 10.1093/g3journal/jkac127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 05/11/2022] [Indexed: 11/16/2022]
Abstract
Sexual dimorphism occurs widely throughout insects and has profound influences on evolutionary path. Sex-biased genes are considered to account for most of phenotypic differences between sexes. In order to explore the sex-biased genes potentially associated with sexual dimorphism and sexual development in Drosophila suzukii, a major devastating and invasive crop pest, we conducted whole-organism transcriptome profiling and sex-biased gene expression analysis on adults of both sexes. We identified transcripts of genes involved in several sex-specific physiological and functional processes, including transcripts involved in sex determination, reproduction, olfaction, and innate immune signals. A total of 11,360 differentially expressed genes were identified in the comparison, and 1,957 differentially expressed genes were female-biased and 4,231 differentially expressed genes were male-biased. The pathway predominantly enriched for differentially expressed genes was related to spliceosome, which might reflect the differences in the alternative splicing mechanism between males and females. Twenty-two sex determination and 16 sex-related reproduction genes were identified, and expression pattern analysis revealed that the majority of genes were differentially expressed between sexes. Additionally, the differences in sex-specific olfactory and immune processes were analyzed and the sex-biased expression of these genes may play important roles in pheromone and odor detection, and immune response. As a valuable dataset, our sex-specific transcriptomic data can significantly contribute to the fundamental elucidation of the molecular mechanisms of sexual dimorphism in fruit flies, and may provide candidate genes potentially useful for the development of genetic sexing strains, an important tool for sterile insect technique applications against this economically important species.
Collapse
Affiliation(s)
- Dan Deng
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Hunan Normal University , Changsha 410081, China
| | - Shisi Xing
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Hunan Normal University , Changsha 410081, China
| | - Xuxiang Liu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Lab of Biopesticide and Chemical Biology, Ministry of Education, Institute of Biological Control, Fujian Agriculture and Forestry University , Fuzhou 350002, China
| | - Qinge Ji
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Lab of Biopesticide and Chemical Biology, Ministry of Education, Institute of Biological Control, Fujian Agriculture and Forestry University , Fuzhou 350002, China
| | - Zongzhao Zhai
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Hunan Normal University , Changsha 410081, China
| | - Wei Peng
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Hunan Normal University , Changsha 410081, China
| |
Collapse
|
34
|
Cīrulis A, Hansson B, Abbott JK. Sex-limited chromosomes and non-reproductive traits. BMC Biol 2022; 20:156. [PMID: 35794589 PMCID: PMC9261002 DOI: 10.1186/s12915-022-01357-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 06/22/2022] [Indexed: 12/03/2022] Open
Abstract
Sex chromosomes are typically viewed as having originated from a pair of autosomes, and differentiated as the sex-limited chromosome (e.g. Y) has degenerated by losing most genes through cessation of recombination. While often thought that degenerated sex-limited chromosomes primarily affect traits involved in sex determination and sex cell production, accumulating evidence suggests they also influence traits not sex-limited or directly involved in reproduction. Here, we provide an overview of the effects of sex-limited chromosomes on non-reproductive traits in XY, ZW or UV sex determination systems, and discuss evolutionary processes maintaining variation at sex-limited chromosomes and molecular mechanisms affecting non-reproductive traits.
Collapse
Affiliation(s)
- Aivars Cīrulis
- Department of Biology, Lund University, 223 62, Lund, Sweden.
| | - Bengt Hansson
- Department of Biology, Lund University, 223 62, Lund, Sweden
| | | |
Collapse
|
35
|
Detecting signatures of selection on gene expression. Nat Ecol Evol 2022; 6:1035-1045. [PMID: 35551249 DOI: 10.1038/s41559-022-01761-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 04/01/2022] [Indexed: 12/15/2022]
Abstract
A substantial amount of phenotypic diversity results from changes in gene expression levels and patterns. Understanding how the transcriptome evolves is therefore a key priority in identifying mechanisms of adaptive change. However, in contrast to powerful models of sequence evolution, we lack a consensus model of gene expression evolution. Furthermore, recent work has shown that many of the comparative approaches used to study gene expression are subject to biases that can lead to false signatures of selection. Here we first outline the main approaches for describing expression evolution and their inherent biases. Next, we bridge the gap between the fields of phylogenetic comparative methods and transcriptomics to reinforce the main pitfalls of inferring selection on expression patterns and use simulation studies to show that shifts in tissue composition can heavily bias inferences of selection. We close by highlighting the multi-dimensional nature of transcriptional variation and identifying major unanswered questions in disentangling how selection acts on the transcriptome.
Collapse
|
36
|
Evolution of sexual systems, sex chromosomes and sex-linked gene transcription in flatworms and roundworms. Nat Commun 2022; 13:3239. [PMID: 35688815 PMCID: PMC9187692 DOI: 10.1038/s41467-022-30578-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 05/06/2022] [Indexed: 12/02/2022] Open
Abstract
Many species with separate male and female individuals (termed ‘gonochorism’ in animals) have sex-linked genome regions. Here, we investigate evolutionary changes when genome regions become completely sex-linked, by analyses of multiple species of flatworms (Platyhelminthes; among which schistosomes recently evolved gonochorism from ancestral hermaphroditism), and roundworms (Nematoda) which have undergone independent translocations of different autosomes. Although neither the evolution of gonochorism nor translocations fusing ancestrally autosomal regions to sex chromosomes causes inevitable loss of recombination, we document that formerly recombining regions show genomic signatures of recombination suppression in both taxa, and become strongly genetically degenerated, with a loss of most genes. Comparisons with hermaphroditic flatworm transcriptomes show masculinisation and some defeminisation in schistosome gonad gene expression. We also find evidence that evolution of sex-linkage in nematodes is accompanied by transcriptional changes and dosage compensation. Our analyses also identify sex-linked genes that could assist future research aimed at controlling some of these important parasites. Transitions between hermaphroditic and separate sexes are relatively understudied in animals compared to pants. Here, Wang et al. reconstruct the evolution of separate sexes in the flatworms and complex changes of sex chromosomes in the roundworms.
Collapse
|
37
|
Li XY, Mei J, Ge CT, Liu XL, Gui JF. Sex determination mechanisms and sex control approaches in aquaculture animals. SCIENCE CHINA. LIFE SCIENCES 2022; 65:1091-1122. [PMID: 35583710 DOI: 10.1007/s11427-021-2075-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 01/14/2022] [Indexed: 01/21/2023]
Abstract
Aquaculture is one of the most efficient modes of animal protein production and plays an important role in global food security. Aquaculture animals exhibit extraordinarily diverse sexual phenotypes and underlying mechanisms, providing an ideal system to perform sex determination research, one of the important areas in life science. Moreover, sex is also one of the most valuable traits because sexual dimorphism in growth, size, and other economic characteristics commonly exist in aquaculture animals. Here, we synthesize current knowledge of sex determination mechanisms, sex chromosome evolution, reproduction strategies, and sexual dimorphism, and also review several approaches for sex control in aquaculture animals, including artificial gynogenesis, application of sex-specific or sex chromosome-linked markers, artificial sex reversal, as well as gene editing. We anticipate that better understanding of sex determination mechanisms and innovation of sex control approaches will facilitate sustainable development of aquaculture.
Collapse
Affiliation(s)
- Xi-Yin Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, The Innovative Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Wuhan, 430072, China
| | - Jie Mei
- College of Fisheries, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chu-Tian Ge
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, 315100, China
| | - Xiao-Li Liu
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation of Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, China
| | - Jian-Fang Gui
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, The Innovative Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Wuhan, 430072, China.
| |
Collapse
|
38
|
Genome-wide association study reveals the genetic basis of growth trait in yellow catfish with sexual size dimorphism. Genomics 2022; 114:110380. [PMID: 35533968 DOI: 10.1016/j.ygeno.2022.110380] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 04/20/2022] [Accepted: 05/02/2022] [Indexed: 01/14/2023]
Abstract
Sexual size dimorphism has been widely observed in a large number of animals including fish species. Genome-wide association study (GWAS) is a powerful tool to dissect the genetic basis of complex traits, whereas the sex-differences in the genomics of animal complex traits have been ignored in the GWAS analysis. Yellow catfish (Pelteobagrus fulvidraco) is an important aquaculture fish in China with significant sexual size dimorphism. In this study, GWAS was conducted to identify candidate SNPs and genes related to body length (BL) and body weight (BW) in 125 female yellow catfish from a breeding population. In total, one BL-related SNP and three BW-related SNPs were identified to be significantly associated with the traits. Besides, one of these SNPs (Chr15:19195072) was shared in both the BW and BL traits in female yellow catfish, which was further validated in 185 male individuals and located on the exon of stat5b gene. Transgenic yellow catfish and zebrafish that expressed yellow catfish stat5b showed increased growth rate and reduction of sexual size dimorphism. These results not only reveal the genetic basis of growth trait and sexual size dimorphism in fish species, but also provide useful information for the marker-assisted breeding in yellow catfish.
Collapse
|
39
|
Cossard GG, Godfroy O, Nehr Z, Cruaud C, Cock JM, Lipinska AP, Coelho SM. Selection drives convergent gene expression changes during transitions to co-sexuality in haploid sexual systems. Nat Ecol Evol 2022; 6:579-589. [PMID: 35314785 PMCID: PMC9085613 DOI: 10.1038/s41559-022-01692-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 02/07/2022] [Indexed: 11/25/2022]
Abstract
Co-sexuality has evolved repeatedly from unisexual (dioicous) ancestors across a wide range of taxa. However, the molecular changes underpinning this important transition remain unknown, particularly in organisms with haploid sexual systems such as bryophytes, red algae and brown algae. Here we explore four independent events of emergence of co-sexuality from unisexual ancestors in brown algal clades to examine the nature, evolution and degree of convergence of gene expression changes that accompany the breakdown of dioicy. The amounts of male versus female phenotypic differences in dioicous species were not correlated with the extent of sex-biased gene expression, in stark contrast to what is observed in animals. Although sex-biased genes exhibited a high turnover rate during brown alga diversification, some of their predicted functions were conserved across species. Transitions to co-sexuality consistently involved adaptive gene expression shifts and rapid sequence evolution, particularly for male-biased genes. Gene expression in co-sexual species was more similar to that in females rather than males of related dioicous species, suggesting that co-sexuality may have arisen from ancestral females. Finally, extensive convergent gene expression changes, driven by selection, were associated with the transition to co-sexuality. Together, our observations provide insights on how co-sexual systems arise from ancestral, haploid UV sexual systems.
Collapse
Affiliation(s)
- Guillaume G Cossard
- Sorbonne Université, UPMC Univ Paris 06, CNRS, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS, Roscoff, France
- Max Plank Institute for Biology Tübingen, Tübingen, Germany
| | - Olivier Godfroy
- Sorbonne Université, UPMC Univ Paris 06, CNRS, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS, Roscoff, France
| | - Zofia Nehr
- Sorbonne Université, UPMC Univ Paris 06, CNRS, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS, Roscoff, France
| | - Corinne Cruaud
- Genoscope, Institut de Biologie François Jacob, CEA, Université Paris-Saclay, Evry, France
| | - J Mark Cock
- Sorbonne Université, UPMC Univ Paris 06, CNRS, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS, Roscoff, France
| | - Agnieszka P Lipinska
- Sorbonne Université, UPMC Univ Paris 06, CNRS, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS, Roscoff, France
- Max Plank Institute for Biology Tübingen, Tübingen, Germany
| | - Susana M Coelho
- Sorbonne Université, UPMC Univ Paris 06, CNRS, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS, Roscoff, France.
- Max Plank Institute for Biology Tübingen, Tübingen, Germany.
| |
Collapse
|
40
|
Kopania EEK, Larson EL, Callahan C, Keeble S, Good JM. Molecular Evolution across Mouse Spermatogenesis. Mol Biol Evol 2022; 39:6517785. [PMID: 35099536 PMCID: PMC8844503 DOI: 10.1093/molbev/msac023] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Genes involved in spermatogenesis tend to evolve rapidly, but we lack a clear understanding of how protein sequences and patterns of gene expression evolve across this complex developmental process. We used fluorescence-activated cell sorting (FACS) to generate expression data for early (meiotic) and late (postmeiotic) cell types across 13 inbred strains of mice (Mus) spanning ∼7 My of evolution. We used these comparative developmental data to investigate the evolution of lineage-specific expression, protein-coding sequences, and expression levels. We found increased lineage specificity and more rapid protein-coding and expression divergence during late spermatogenesis, suggesting that signatures of rapid testis molecular evolution are punctuated across sperm development. Despite strong overall developmental parallels in these components of molecular evolution, protein and expression divergences were only weakly correlated across genes. We detected more rapid protein evolution on the X chromosome relative to the autosomes, whereas X-linked gene expression tended to be relatively more conserved likely reflecting chromosome-specific regulatory constraints. Using allele-specific FACS expression data from crosses between four strains, we found that the relative contributions of different regulatory mechanisms also differed between cell types. Genes showing cis-regulatory changes were more common late in spermatogenesis, and tended to be associated with larger differences in expression levels and greater expression divergence between species. In contrast, genes with trans-acting changes were more common early and tended to be more conserved across species. Our findings advance understanding of gene evolution across spermatogenesis and underscore the fundamental importance of developmental context in molecular evolutionary studies.
Collapse
Affiliation(s)
- Emily E K Kopania
- Division of Biological Sciences, University of Montana, Missoula, MT, 59812, USA
| | - Erica L Larson
- Department of Biological Sciences, University of Denver, Denver, CO, 80208, USA
| | - Colin Callahan
- Division of Biological Sciences, University of Montana, Missoula, MT, 59812, USA
| | - Sara Keeble
- Division of Biological Sciences, University of Montana, Missoula, MT, 59812, USA
| | - Jeffrey M Good
- Division of Biological Sciences, University of Montana, Missoula, MT, 59812, USA
| |
Collapse
|
41
|
Lucotte EA, Albiñana C, Laurent R, Bhérer C, Bataillon T, Toupance B. Detection of sexually antagonistic transmission distortions in trio datasets. Evol Lett 2022; 6:203-216. [PMID: 35386833 PMCID: PMC8966469 DOI: 10.1002/evl3.271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 12/07/2021] [Accepted: 12/14/2021] [Indexed: 11/24/2022] Open
Abstract
Sexual dimorphisms are widespread in animals and plants, for morphological as well as physiological traits. Understanding the genetic basis of sexual dimorphism and its evolution is crucial for understanding biological differences between the sexes. Genetic variants with sex‐antagonistic effects on fitness are expected to segregate in populations at the early phases of sexual dimorphism emergence. Detecting such variants is notoriously difficult, and the few genome‐scan methods employed so far have limited power and little specificity. Here, we propose a new framework to detect a signature of sexually antagonistic (SA) selection. We rely on trio datasets where sex‐biased transmission distortions can be directly tracked from parents to offspring, and identify signals of SA transmission distortions in genomic regions. We report the genomic location of six candidate regions detected in human populations as potentially under sexually antagonist selection. We find an enrichment of genes associated with embryonic development within these regions. Last, we highlight two candidate regions for SA selection in humans.
Collapse
Affiliation(s)
- Elise A. Lucotte
- Bioinformatic Research Center Aarhus University Aarhus 8000 Denmark
- Eco‐anthropologie (EA) Muséum national d'Histoire naturelle, CNRS, Université de Paris Paris 75016 France
- Cancer Epidemiology: Gene and Environment INSERM U1018 Paris 75654 France
- Ecologie Systématique Evolution Univ. Paris‐Sud, AgroParisTech, CNRS, Université Paris‐Saclay Orsay 91400 France
| | - Clara Albiñana
- Bioinformatic Research Center Aarhus University Aarhus 8000 Denmark
- National Centre for Register‐based Research, Department of Economics and Business Economics, Aarhus BSS Aarhus University Aarhus 8210 Denmark
| | - Romain Laurent
- Eco‐anthropologie (EA) Muséum national d'Histoire naturelle, CNRS, Université de Paris Paris 75016 France
| | - Claude Bhérer
- Department of Human Genetics, Faculty of Medicine McGill University Montreal QC H3G 2M1 Canada
| | - Thomas Bataillon
- Bioinformatic Research Center Aarhus University Aarhus 8000 Denmark
| | - Bruno Toupance
- Eco‐anthropologie (EA) Muséum national d'Histoire naturelle, CNRS, Université de Paris Paris 75016 France
| | | |
Collapse
|
42
|
Sex differences in immune gene expression in the brain of a small shorebird. Immunogenetics 2022; 74:487-496. [PMID: 35084547 PMCID: PMC8792134 DOI: 10.1007/s00251-022-01253-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 01/17/2022] [Indexed: 11/30/2022]
Abstract
Males and females often exhibit differences in behaviour, life histories, and ecology, many of which are typically reflected in their brains. Neuronal protection and maintenance include complex processes led by the microglia, which also interacts with metabolites such as hormones or immune components. Despite increasing interest in sex-specific brain function in laboratory animals, the significance of sex-specific immune activation in the brain of wild animals along with the variables that could affect it is widely lacking. Here, we use the Kentish plover (Charadrius alexandrinus) to study sex differences in expression of immune genes in the brain of adult males and females, in two wild populations breeding in contrasting habitats: a coastal sea-level population and a high-altitude inland population in China. Our analysis yielded 379 genes associated with immune function. We show a significant male-biased immune gene upregulation. Immune gene expression in the brain did not differ in upregulation between the coastal and inland populations. We discuss the role of dosage compensation in our findings and their evolutionary significance mediated by sex-specific survival and neuronal deterioration. Similar expression profiles in the coastal and inland populations suggest comparable genetic control by the microglia and possible similarities in pathogen pressures between habitats. We call for further studies on gene expression of males and females in wild population to understand the implications of immune function for life-histories and demography in natural systems.
Collapse
|
43
|
Lee JW, Profant M, Wang C. Metabolic Sex Dimorphism of the Brain at the Gene, Cell, and Tissue Level. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:212-220. [PMID: 35017210 DOI: 10.4049/jimmunol.2100853] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 11/09/2021] [Indexed: 12/21/2022]
Abstract
The palpable observation in the sex bias of disease prevalence in the CNS has fascinated scientists for several generations. Brain sex dimorphism has been visualized by imaging and analytical tools at the tissue, cellular, and molecular levels. Recent work highlighted the specificity of such sex bias in the brain and its subregions, offering a unique lens through which disease pathogenesis can be investigated. The brain is the largest consumer of energy in the body and provides a unique metabolic environment for diverse lineages of cells. Immune cells are increasingly recognized as an integral part of brain physiology, and their function depends on metabolic homeostasis. This review focuses on metabolic sex dimorphism in brain tissue, resident, and infiltrating immune cells. In this context, we highlight the relevance of recent advances in metabolomics and RNA sequencing technologies at the single cell resolution and the development of novel computational approaches.
Collapse
Affiliation(s)
- Jun Won Lee
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada; and
| | - Martin Profant
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada; and.,Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Chao Wang
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada; and .,Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
44
|
Sun Y, Wei H, Chen J, Li P, Yang Q, Wang G, Li Q. Tissue-Specific Expression Pattern in Ancherythroculter nigrocauda, a Sexually Size Dimorphic Fish. Front Genet 2021; 12:777581. [PMID: 34956327 PMCID: PMC8694267 DOI: 10.3389/fgene.2021.777581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 11/12/2021] [Indexed: 11/25/2022] Open
Abstract
Certain members of the Actinopterygii class are known to exhibit sexual dimorphism (SD) that results in major phenotypic differences between male and female fishes of a species. One of the most common differences between the two sexes is in body weight, a factor with a high economic value in aquaculture. In this study, we used RNA sequencing (RNA-seq) to study the liver and brain transcriptomes of Ancherythroculter nigrocauda, a fish exhibiting SD. Females attain about fourfold body weight of males at sexual maturity. Sample clustering showed that both sexes were grouped well with their sex phenotypes. In addition, 2,395 and 457 differentially expressed genes (DEGs) were identified in the liver and brain tissues, respectively. The gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses predicted the association of PPAR signaling, cytochrome P450, and steroid hormone biosynthesis to the differences in sexual size. In addition, weighted gene co-expression network analyses (WGCNA) were conducted, and the green module was identified to be significantly correlated with sexual size dimorphism (SSD). Altogether, these results improve our understanding of the molecular mechanism underlying SSD in A. nigrocauda.
Collapse
Affiliation(s)
- Yanhong Sun
- Fisheries Research Institute, Wuhan Academy of Agricultural Sciences, Wuhan, China.,Wuhan Xianfeng Aquaculture Technology Co., Ltd., Wuhan, China
| | - Huijie Wei
- Fisheries Research Institute, Wuhan Academy of Agricultural Sciences, Wuhan, China
| | - Jian Chen
- Fisheries Research Institute, Wuhan Academy of Agricultural Sciences, Wuhan, China.,Wuhan Xianfeng Aquaculture Technology Co., Ltd., Wuhan, China
| | - Pei Li
- Fisheries Research Institute, Wuhan Academy of Agricultural Sciences, Wuhan, China.,Wuhan Xianfeng Aquaculture Technology Co., Ltd., Wuhan, China
| | - Qing Yang
- Key Laboratory of Ecological Impacts of Hydraulic-Projects and Restoration of Aquatic Ecosystem of Ministry of Water Resources, Institute of Hydroecology, Ministry of Water Resources and Chinese Academy of Sciences, Wuhan, China
| | - Guiying Wang
- Fisheries Research Institute, Wuhan Academy of Agricultural Sciences, Wuhan, China.,Wuhan Xianfeng Aquaculture Technology Co., Ltd., Wuhan, China
| | - Qing Li
- Fisheries Research Institute, Wuhan Academy of Agricultural Sciences, Wuhan, China.,Wuhan Xianfeng Aquaculture Technology Co., Ltd., Wuhan, China
| |
Collapse
|
45
|
Lyu Y, Liufu Z, Xiao J, Tang T. A Rapid Evolving microRNA Cluster Rewires Its Target Regulatory Networks in Drosophila. Front Genet 2021; 12:760530. [PMID: 34777478 PMCID: PMC8581666 DOI: 10.3389/fgene.2021.760530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 10/11/2021] [Indexed: 11/13/2022] Open
Abstract
New miRNAs are evolutionarily important but their functional evolution remains unclear. Here we report that the evolution of a microRNA cluster, mir-972C rewires its downstream regulatory networks in Drosophila. Genomic analysis reveals that mir-972C originated in the common ancestor of Drosophila where it comprises six old miRNAs. It has subsequently recruited six new members in the melanogaster subgroup after evolving for at least 50 million years. Both the young and the old mir-972C members evolved rapidly in seed and non-seed regions. Combining target prediction and cell transfection experiments, we found that the seed and non-seed changes in individual mir-972C members cause extensive target divergence among D. melanogaster, D. simulans, and D. virilis, consistent with the functional evolution of mir-972C reported recently. Intriguingly, the target pool of the cluster as a whole remains relatively conserved. Our results suggest that clustering of young and old miRNAs broadens the target repertoires by acquiring new targets without losing many old ones. This may facilitate the establishment of new miRNAs in existing regulatory networks.
Collapse
Affiliation(s)
- Yang Lyu
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Zhongqi Liufu
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Juan Xiao
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Tian Tang
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
46
|
Scharmann M, Rebelo AG, Pannell JR. High rates of evolution preceded shifts to sex-biased gene expression in Leucadendron, the most sexually dimorphic angiosperms. eLife 2021; 10:e67485. [PMID: 34726596 PMCID: PMC8635981 DOI: 10.7554/elife.67485] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 10/27/2021] [Indexed: 11/21/2022] Open
Abstract
Differences between males and females are usually more subtle in dioecious plants than animals, but strong sexual dimorphism has evolved convergently in the South African Cape plant genus Leucadendron. Such sexual dimorphism in leaf size is expected largely to be due to differential gene expression between the sexes. We compared patterns of gene expression in leaves among 10 Leucadendron species across the genus. Surprisingly, we found no positive association between sexual dimorphism in morphology and the number or the percentage of sex-biased genes (SBGs). Sex bias in most SBGs evolved recently and was species specific. We compared rates of evolutionary change in expression for genes that were sex biased in one species but unbiased in others and found that SBGs evolved faster in expression than unbiased genes. This greater rate of expression evolution of SBGs, also documented in animals, might suggest the possible role of sexual selection in the evolution of gene expression. However, our comparative analysis clearly indicates that the more rapid rate of expression evolution of SBGs predated the origin of bias, and shifts towards bias were depleted in signatures of adaptation. Our results are thus more consistent with the view that sex bias is simply freer to evolve in genes less subject to constraints in expression level.
Collapse
Affiliation(s)
- Mathias Scharmann
- Department of Ecology and Evolution, University of LausanneLausanneSwitzerland
| | - Anthony G Rebelo
- Applied Biodiversity Research Division, South African National Biodiversity InstituteCape TownSouth Africa
| | - John R Pannell
- Department of Ecology and Evolution, University of LausanneLausanneSwitzerland
| |
Collapse
|
47
|
Matthews BJ, Melia T, Waxman DJ. Harnessing natural variation to identify cis regulators of sex-biased gene expression in a multi-strain mouse liver model. PLoS Genet 2021; 17:e1009588. [PMID: 34752452 PMCID: PMC8664386 DOI: 10.1371/journal.pgen.1009588] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 12/10/2021] [Accepted: 10/27/2021] [Indexed: 12/13/2022] Open
Abstract
Sex differences in gene expression are widespread in the liver, where many autosomal factors act in tandem with growth hormone signaling to regulate individual variability of sex differences in liver metabolism and disease. Here, we compare hepatic transcriptomic and epigenetic profiles of mouse strains C57BL/6J and CAST/EiJ, representing two subspecies separated by 0.5-1 million years of evolution, to elucidate the actions of genetic factors regulating liver sex differences. We identify 144 protein coding genes and 78 lncRNAs showing strain-conserved sex bias; many have gene ontologies relevant to liver function, are more highly liver-specific and show greater sex bias, and are more proximally regulated than genes whose sex bias is strain-dependent. The strain-conserved genes include key growth hormone-dependent transcriptional regulators of liver sex bias; however, three other transcription factors, Trim24, Tox, and Zfp809, lose their sex-biased expression in CAST/EiJ mouse liver. To elucidate the observed strain specificities in expression, we characterized the strain-dependence of sex-biased chromatin opening and enhancer marks at cis regulatory elements (CREs) within expression quantitative trait loci (eQTL) regulating liver sex-biased genes. Strikingly, 208 of 286 eQTLs with strain-specific, sex-differential effects on expression were associated with a complete gain, loss, or reversal of the sex differences in expression between strains. Moreover, 166 of the 286 eQTLs were linked to the strain-dependent gain or loss of localized sex-biased CREs. Remarkably, a subset of these CREs apparently lacked strain-specific genetic variants yet showed coordinated, strain-dependent sex-biased epigenetic regulation. Thus, we directly link hundreds of strain-specific genetic variants to the high variability in CRE activity and expression of sex-biased genes and uncover underlying genetically-determined epigenetic states controlling liver sex bias in genetically diverse mouse populations.
Collapse
Affiliation(s)
- Bryan J. Matthews
- Department of Biology, Boston University, Boston, Massachusetts, United States of America
| | - Tisha Melia
- Department of Biology, Boston University, Boston, Massachusetts, United States of America
- Bioinformatics Program, Boston University, Boston, Massachusetts, United States of America
| | - David J. Waxman
- Department of Biology, Boston University, Boston, Massachusetts, United States of America
- Bioinformatics Program, Boston University, Boston, Massachusetts, United States of America
| |
Collapse
|
48
|
Gamache I, Legault MA, Grenier JC, Sanchez R, Rhéaume E, Asgari S, Barhdadi A, Zada YF, Trochet H, Luo Y, Lecca L, Murray M, Raychaudhuri S, Tardif JC, Dubé MP, Hussin J. A sex-specific evolutionary interaction between ADCY9 and CETP. eLife 2021; 10:e69198. [PMID: 34609279 PMCID: PMC8594919 DOI: 10.7554/elife.69198] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 10/04/2021] [Indexed: 12/14/2022] Open
Abstract
Pharmacogenomic studies have revealed associations between rs1967309 in the adenylyl cyclase type 9 (ADCY9) gene and clinical responses to the cholesteryl ester transfer protein (CETP) modulator dalcetrapib, however, the mechanism behind this interaction is still unknown. Here, we characterized selective signals at the locus associated with the pharmacogenomic response in human populations and we show that rs1967309 region exhibits signatures of positive selection in several human populations. Furthermore, we identified a variant in CETP, rs158477, which is in long-range linkage disequilibrium with rs1967309 in the Peruvian population. The signal is mainly seen in males, a sex-specific result that is replicated in the LIMAA cohort of over 3400 Peruvians. Analyses of RNA-seq data further suggest an epistatic interaction on CETP expression levels between the two SNPs in multiple tissues, which also differs between males and females. We also detected interaction effects of the two SNPs with sex on cardiovascular phenotypes in the UK Biobank, in line with the sex-specific genotype associations found in Peruvians at these loci. We propose that ADCY9 and CETP coevolved during recent human evolution due to sex-specific selection, which points toward a biological link between dalcetrapib's pharmacogene ADCY9 and its therapeutic target CETP.
Collapse
Affiliation(s)
- Isabel Gamache
- Université de MontréalMontréalCanada
- Montreal Heart InstituteMontréalCanada
| | - Marc-André Legault
- Université de MontréalMontréalCanada
- Montreal Heart InstituteMontréalCanada
- Université de Montréal Beaulieu-Saucier Pharmacogenomics CentreMontréalCanada
| | | | | | - Eric Rhéaume
- Université de MontréalMontréalCanada
- Montreal Heart InstituteMontréalCanada
| | - Samira Asgari
- Center for Data Sciences, Brigham and Women’s Hospital, Harvard Medical SchoolBostonUnited States
- Program in Medical and Population Genetics, Broad Institute of MIT and HarvardCambridgeUnited States
| | - Amina Barhdadi
- Montreal Heart InstituteMontréalCanada
- Université de Montréal Beaulieu-Saucier Pharmacogenomics CentreMontréalCanada
| | - Yassamin Feroz Zada
- Université de Montréal Beaulieu-Saucier Pharmacogenomics CentreMontréalCanada
| | - Holly Trochet
- Université de MontréalMontréalCanada
- Montreal Heart InstituteMontréalCanada
| | - Yang Luo
- Center for Data Sciences, Brigham and Women’s Hospital, Harvard Medical SchoolBostonUnited States
- Program in Medical and Population Genetics, Broad Institute of MIT and HarvardCambridgeUnited States
| | - Leonid Lecca
- Socios En SaludLimaPeru
- Harvard Medical SchoolBostonUnited States
| | - Megan Murray
- Center for Data Sciences, Brigham and Women’s Hospital, Harvard Medical SchoolBostonUnited States
| | - Soumya Raychaudhuri
- Center for Data Sciences, Brigham and Women’s Hospital, Harvard Medical SchoolBostonUnited States
- Program in Medical and Population Genetics, Broad Institute of MIT and HarvardCambridgeUnited States
- Centre for Genetics and Genomics Versus Arthritis, Manchester Academic Health Science Centre, University of ManchesterManchesterUnited Kingdom
- Department of Biomedical Informatics, Harvard Medical SchoolBostonUnited States
- Department of Medicine, Brigham and Women’s Hospital and Harvard Medical SchoolBostonUnited States
| | - Jean-Claude Tardif
- Université de MontréalMontréalCanada
- Montreal Heart InstituteMontréalCanada
| | - Marie-Pierre Dubé
- Université de MontréalMontréalCanada
- Montreal Heart InstituteMontréalCanada
- Université de Montréal Beaulieu-Saucier Pharmacogenomics CentreMontréalCanada
| | - Julie Hussin
- Université de MontréalMontréalCanada
- Montreal Heart InstituteMontréalCanada
| |
Collapse
|
49
|
Haeusler M, Grunstra ND, Martin RD, Krenn VA, Fornai C, Webb NM. The obstetrical dilemma hypothesis: there's life in the old dog yet. Biol Rev Camb Philos Soc 2021; 96:2031-2057. [PMID: 34013651 PMCID: PMC8518115 DOI: 10.1111/brv.12744] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 05/06/2021] [Accepted: 05/10/2021] [Indexed: 12/17/2022]
Abstract
The term 'obstetrical dilemma' was coined by Washburn in 1960 to describe the trade-off between selection for a larger birth canal, permitting successful passage of a big-brained human neonate, and the smaller pelvic dimensions required for bipedal locomotion. His suggested solution to these antagonistic pressures was to give birth prematurely, explaining the unusual degree of neurological and physical immaturity, or secondary altriciality, observed in human infants. This proposed trade-off has traditionally been offered as the predominant evolutionary explanation for why human childbirth is so challenging, and inherently risky, compared to that of other primates. This perceived difficulty is likely due to the tight fit of fetal to maternal pelvic dimensions along with the convoluted shape of the birth canal and a comparatively low degree of ligamentous flexibility. Although the ideas combined under the obstetrical dilemma hypothesis originated almost a century ago, they have received renewed attention and empirical scrutiny in the last decade, with some researchers advocating complete rejection of the hypothesis and its assumptions. However, the hypothesis is complex because it presently captures several, mutually non-exclusive ideas: (i) there is an evolutionary trade-off resulting from opposing selection pressures on the pelvis; (ii) selection favouring a narrow pelvis specifically derives from bipedalism; (iii) human neonates are secondarily altricial because they are born relatively immature to ensure that they fit through the maternal bony pelvis; (iv) as a corollary to the asymmetric selection pressure for a spacious birth canal in females, humans evolved pronounced sexual dimorphism of pelvic shape. Recently, the hypothesis has been challenged on both empirical and theoretical grounds. Here, we appraise the original ideas captured under the 'obstetrical dilemma' and their subsequent evolution. We also evaluate complementary and alternative explanations for a tight fetopelvic fit and obstructed labour, including ecological factors related to nutrition and thermoregulation, constraints imposed by the stability of the pelvic floor or by maternal and fetal metabolism, the energetics of bipedalism, and variability in pelvic shape. This reveals that human childbirth is affected by a complex combination of evolutionary, ecological, and biocultural factors, which variably constrain maternal pelvic form and fetal growth. Our review demonstrates that it is unwarranted to reject the obstetrical dilemma hypothesis entirely because several of its fundamental assumptions have not been successfully discounted despite claims to the contrary. As such, the obstetrical dilemma remains a tenable hypothesis that can be used productively to guide evolutionary research.
Collapse
Affiliation(s)
- Martin Haeusler
- Institute of Evolutionary MedicineUniversity of ZurichWinterthurerstrasse 190Zürich8057Switzerland
| | - Nicole D.S. Grunstra
- Konrad Lorenz Institute (KLI) for Evolution and Cognition ResearchMartinstrasse 12Klosterneuburg3400Austria
- Department of Evolutionary BiologyUniversity of ViennaUniversity Biology Building (UBB), Carl Djerassi Platz 1Vienna1030Austria
- Mammal CollectionNatural History Museum ViennaBurgring 7Vienna1010Austria
| | - Robert D. Martin
- Institute of Evolutionary MedicineUniversity of ZurichWinterthurerstrasse 190Zürich8057Switzerland
- The Field Museum1400 S Lake Shore DrChicagoIL60605U.S.A.
| | - Viktoria A. Krenn
- Institute of Evolutionary MedicineUniversity of ZurichWinterthurerstrasse 190Zürich8057Switzerland
- Department of Evolutionary AnthropologyUniversity of ViennaUniversity Biology Building (UBB), Carl Djerassi Platz 1Vienna1030Austria
| | - Cinzia Fornai
- Institute of Evolutionary MedicineUniversity of ZurichWinterthurerstrasse 190Zürich8057Switzerland
- Department of Evolutionary AnthropologyUniversity of ViennaUniversity Biology Building (UBB), Carl Djerassi Platz 1Vienna1030Austria
| | - Nicole M. Webb
- Institute of Evolutionary MedicineUniversity of ZurichWinterthurerstrasse 190Zürich8057Switzerland
- Senckenberg Research Institute and Natural History Museum FrankfurtSenckenberganlage 25Frankfurt am Main60325Germany
| |
Collapse
|
50
|
Huylmans AK, Macon A, Hontoria F, Vicoso B. Transitions to asexuality and evolution of gene expression in Artemia brine shrimp. Proc Biol Sci 2021; 288:20211720. [PMID: 34547909 PMCID: PMC8456138 DOI: 10.1098/rspb.2021.1720] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 08/31/2021] [Indexed: 11/12/2022] Open
Abstract
While sexual reproduction is widespread among many taxa, asexual lineages have repeatedly evolved from sexual ancestors. Despite extensive research on the evolution of sex, it is still unclear whether this switch represents a major transition requiring major molecular reorganization, and how convergent the changes involved are. In this study, we investigated the phylogenetic relationship and patterns of gene expression of sexual and asexual lineages of Eurasian Artemia brine shrimp, to assess how gene expression patterns are affected by the transition to asexuality. We find only a few genes that are consistently associated with the evolution of asexuality, suggesting that this shift may not require an extensive overhauling of the meiotic machinery. While genes with sex-biased expression have high rates of expression divergence within Eurasian Artemia, neither female- nor male-biased genes appear to show unusual evolutionary patterns after sexuality is lost, contrary to theoretical expectations.
Collapse
Affiliation(s)
- Ann Kathrin Huylmans
- Institute of Science and Technology Austria, Am Campus 1, Klosterneuburg 3400, Austria
| | - Ariana Macon
- Institute of Science and Technology Austria, Am Campus 1, Klosterneuburg 3400, Austria
| | - Francisco Hontoria
- Instituto de Acuicultura de Torre de la Sal (IATS-CSIC), 12595 Ribera de Cabanes, Castellón, Spain
| | - Beatriz Vicoso
- Institute of Science and Technology Austria, Am Campus 1, Klosterneuburg 3400, Austria
| |
Collapse
|