1
|
Huang J, Peng H, Yang D. Research advances in protein lysine 2-hydroxyisobutyrylation: From mechanistic regulation to disease relevance. J Cell Physiol 2024; 239:e31435. [PMID: 39351825 DOI: 10.1002/jcp.31435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/26/2024] [Accepted: 09/03/2024] [Indexed: 12/18/2024]
Abstract
Histone lysine 2-hydroxyisobutyrylation (Khib) was identified as a novel posttranslational modification in 2014. Significant progress has been made in understanding its roles in reproduction, development, and disease. Although 2-hydroxyisobutyrylation shares some overlapping modification sites and regulatory factors with other lysine residue modifications, its unique structure suggests distinct functions. This review summarizes the latest advancements in Khib, including its regulatory mechanisms, roles in mammalian physiological processes, and its relationship with diseases. This provides direction for further research on Khib and offers new perspectives for developing treatment strategies for related diseases.
Collapse
Affiliation(s)
- Jinglei Huang
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan, People's Republic of China
| | - Hui Peng
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan, People's Republic of China
| | - Diqi Yang
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan, People's Republic of China
| |
Collapse
|
2
|
Barakat AJ, Butler MG. Genetics of anomalies of the kidney and urinary tract with congenital heart disease: A review. Clin Genet 2024; 106:667-678. [PMID: 39289831 DOI: 10.1111/cge.14615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 08/21/2024] [Accepted: 08/22/2024] [Indexed: 09/19/2024]
Abstract
Congenital anomalies of the kidney and urinary tract (CAKUT) and congenital heart disease (CHD) are the most common congenital defects and constitute a major cause of morbidity in children. Anomalies of both systems may be isolated or associated with congenital anomalies of other organ systems. Various reports support the co-occurrence of CAKUT and CHD, although the prevalence can vary. Cardiovascular anomalies occur in 11.2% to 34% of patients with CAKUT, and CAKUT occur in 5.3% to 35.8% of those with CHD. The co-occurrence of genetic factors in both CAKUT and CHD would raise common etiologies including genetics, genetic-environmental interactions, or shared molecular mechanisms and pathways such as NODAL, NOTCH, BMP, WNT, and VEGF. Studies in animal models and humans have indicated a genetic etiology for CHD and CAKUT with hundreds of genes recognized and thousands of entries, found in a catalog of human genetic disorders. There are over 80 CAKUT genes and over 100 CHD genes available for clinical testing. For example, the HNFIB gene accounts for 5% to 31% of reported cases of CAKUT. In view of the association between CAKUT and CHD, a thorough cardiac examination should be performed in patients with CAKUT, and a similar evaluation for CAKUT in the presence of CHD. This will allow early diagnosis and therapeutic intervention to improve the long- term outcome of patients affected, and test for at-risk family members. We present here evidence for an association of anomalies involving the two organ systems, and discuss possible etiologies of targeted genes, their functions, biological processes and interactions on embryogenesis.
Collapse
Affiliation(s)
- Amin J Barakat
- Department of Pediatrics, Georgetown University Medical Center, Washington, DC, USA
| | - Merlin G Butler
- Departments of Psychiatry & Behavioral Sciences and Pediatrics, University of Kansas Medical Center, Kansas City, Kansas, USA
| |
Collapse
|
3
|
Alfaifi J. miRNAs Role in Wilms tumor pathogenesis: Signaling pathways interplay. Pathol Res Pract 2024; 256:155254. [PMID: 38460245 DOI: 10.1016/j.prp.2024.155254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/01/2024] [Accepted: 03/04/2024] [Indexed: 03/11/2024]
Abstract
Wilms' tumors (WTs) are the most common type of kidney tumor in children, and a negative outlook is generally associated with widespread anaplastic. MicroRNAs (miRNAs) are crucial in the development of WT by regulating the expression of specific genes. There is an increasing amount of research that connects the dysregulation of miRNAs to the development of various renal illnesses. The conditions encompassed are renal fibrosis, renal cancers, and chronic and polycystic kidney disease. Dysregulation of several important miRNAs, either oncogenic or tumor-suppressing, has been found in WT. The present state of knowledge on the involvement of dysregulated miRNAs in the progression of WT is summarized in this review.
Collapse
Affiliation(s)
- Jaber Alfaifi
- Department of Child Health, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia.
| |
Collapse
|
4
|
Dissanayake LV, Kravtsova O, Lowe M, McCrorey MK, Van Beusecum JP, Palygin O, Staruschenko A. The presence of xanthine dehydrogenase is crucial for the maturation of the rat kidneys. Clin Sci (Lond) 2024; 138:269-288. [PMID: 38358003 DOI: 10.1042/cs20231144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 01/24/2024] [Accepted: 02/14/2024] [Indexed: 02/16/2024]
Abstract
The development of the kidney involves essential cellular processes, such as cell proliferation and differentiation, which are led by interactions between multiple signaling pathways. Xanthine dehydrogenase (XDH) catalyzes the reaction producing uric acid in the purine catabolism, which plays a multifaceted role in cellular metabolism. Our previous study revealed that the genetic ablation of the Xdh gene in rats leads to smaller kidneys, kidney damage, decline of renal functions, and failure to thrive. Rats, unlike humans, continue their kidney development postnatally. Therefore, we explored whether XDH plays a critical role in kidney development using SS-/- rats during postnatal development phase. XDH expression was significantly increased from postnatal day 5 to 15 in wild-type but not homozygote rat kidneys. The transcriptomic profile of renal tissue revealed several dysregulated pathways due to the lack of Xdh expression with the remodeling in inflammasome, purinergic signaling, and redox homeostasis. Further analysis suggested that lack of Xdh affects kidney development, likely via dysregulation of epidermal growth factor and its downstream STAT3 signaling. The present study showed that Xdh is essential for kidney maturation. Our data, alongside the previous research, suggests that loss of Xdh function leads to developmental issues, rendering them vulnerable to kidney diseases in adulthood.
Collapse
Affiliation(s)
- Lashodya V Dissanayake
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida; Tampa, FL 33602, U.S.A
| | - Olha Kravtsova
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida; Tampa, FL 33602, U.S.A
| | - Melissa Lowe
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida; Tampa, FL 33602, U.S.A
| | - Marice K McCrorey
- Department of Medicine, Division of Nephrology, Medical University of South Carolina, Charleston, SC 29425, U.S.A
| | - Justin P Van Beusecum
- Department of Medicine, Division of Nephrology, Medical University of South Carolina, Charleston, SC 29425, U.S.A
- Ralph H. Johnson Veterans Affairs Healthcare System, Charleston, SC 29403, U.S.A
| | - Oleg Palygin
- Department of Medicine, Division of Nephrology, Medical University of South Carolina, Charleston, SC 29425, U.S.A
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, U.S.A
| | - Alexander Staruschenko
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida; Tampa, FL 33602, U.S.A
- Hypertension and Kidney Research Center, University of South Florida, Tampa, FL 33602, U.S.A
- James A. Haley Veterans' Hospital, Tampa, FL 33612, U.S.A
| |
Collapse
|
5
|
Zheng H, Liu J, Pan X, Cui X. Biomarkers for patients with Wilms tumor: a review. Front Oncol 2023; 13:1137346. [PMID: 37554168 PMCID: PMC10405734 DOI: 10.3389/fonc.2023.1137346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 06/27/2023] [Indexed: 08/10/2023] Open
Abstract
Wilms tumor, originating from aberrant fetal nephrogenesis, is the most common renal malignancy in childhood. The overall survival of children is approximately 90%. Although existing risk-stratification systems are helpful in identifying patients with poor prognosis, the recurrence rate of Wilms tumors remains as high as 15%. To resolve this clinical problem, diverse studies on the occurrence and progression of the disease have been conducted, and the results are encouraging. A series of molecular biomarkers have been identified with further studies on the mechanism of tumorigenesis. Some of these show prognostic value and have been introduced into clinical practice. Identification of these biomarkers can supplement the existing risk-stratification systems. In the future, more biomarkers will be discovered, and more studies are required to validate their roles in improving the detection rate of occurrence or recurrence of Wilms tumor and to enhance clinical outcomes.
Collapse
Affiliation(s)
| | | | - Xiuwu Pan
- Department of Urology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xingang Cui
- Department of Urology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
6
|
An Overview of Epithelial-to-Mesenchymal Transition and Mesenchymal-to-Epithelial Transition in Canine Tumors: How Far Have We Come? Vet Sci 2022; 10:vetsci10010019. [PMID: 36669020 PMCID: PMC9865109 DOI: 10.3390/vetsci10010019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/23/2022] [Accepted: 12/24/2022] [Indexed: 12/31/2022] Open
Abstract
Historically, pre-clinical and clinical studies in human medicine have provided new insights, pushing forward the contemporary knowledge. The new results represented a motivation for investigators in specific fields of veterinary medicine, who addressed the same research topics from different perspectives in studies based on experimental and spontaneous animal disease models. The study of different pheno-genotypic contexts contributes to the confirmation of translational models of pathologic mechanisms. This review provides an overview of EMT and MET processes in both human and canine species. While human medicine rapidly advances, having a large amount of information available, veterinary medicine is not at the same level. This situation should provide motivation for the veterinary medicine research field, to apply the knowledge on humans to research in pets. By merging the knowledge of these two disciplines, better and faster results can be achieved, thus improving human and canine health.
Collapse
|
7
|
Khan K, Ahram DF, Liu YP, Westland R, Sampogna RV, Katsanis N, Davis EE, Sanna-Cherchi S. Multidisciplinary approaches for elucidating genetics and molecular pathogenesis of urinary tract malformations. Kidney Int 2022; 101:473-484. [PMID: 34780871 PMCID: PMC8934530 DOI: 10.1016/j.kint.2021.09.034] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 09/15/2021] [Accepted: 09/30/2021] [Indexed: 12/28/2022]
Abstract
Advances in clinical diagnostics and molecular tools have improved our understanding of the genetically heterogeneous causes underlying congenital anomalies of kidney and urinary tract (CAKUT). However, despite a sharp incline of CAKUT reports in the literature within the past 2 decades, there remains a plateau in the genetic diagnostic yield that is disproportionate to the accelerated ability to generate robust genome-wide data. Explanations for this observation include (i) diverse inheritance patterns with incomplete penetrance and variable expressivity, (ii) rarity of single-gene drivers such that large sample sizes are required to meet the burden of proof, and (iii) multigene interactions that might produce either intra- (e.g., copy number variants) or inter- (e.g., effects in trans) locus effects. These challenges present an opportunity for the community to implement innovative genetic and molecular avenues to explain the missing heritability and to better elucidate the mechanisms that underscore CAKUT. Here, we review recent multidisciplinary approaches at the intersection of genetics, genomics, in vivo modeling, and in vitro systems toward refining a blueprint for overcoming the diagnostic hurdles that are pervasive in urinary tract malformation cohorts. These approaches will not only benefit clinical management by reducing age at molecular diagnosis and prompting early evaluation for comorbid features but will also serve as a springboard for therapeutic development.
Collapse
Affiliation(s)
- Kamal Khan
- Center for Human Disease Modeling, Duke University, Durham, North Carolina, USA.,Stanley Manne Children’s Research Institute, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, Illinois, USA (current address)
| | - Dina F. Ahram
- Division of Nephrology, Columbia University, New York, USA
| | - Yangfan P. Liu
- Center for Human Disease Modeling, Duke University, Durham, North Carolina, USA
| | - Rik Westland
- Division of Nephrology, Columbia University, New York, USA.,Department of Pediatric Nephrology, Amsterdam UMC- Emma Children’s Hospital, Amsterdam, NL
| | | | - Nicholas Katsanis
- Center for Human Disease Modeling, Duke University, Durham, North Carolina, USA; Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois, USA (current address); Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA; Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA.
| | - Erica E. Davis
- Center for Human Disease Modeling, Duke University, Durham, North Carolina, USA.,Stanley Manne Children’s Research Institute, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, Illinois, USA (current address).,Department of Pediatrics and Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA.,To whom correspondence should be addressed: ADDRESS CORRESPONDENCE TO: Simone Sanna-Cherchi, MD, Division of Nephrology, Columbia University, College of Physicians and Surgeons, New York, NY 10032, USA; Phone: 212-851-4925; Fax: 212-851-5461; . Erica E. Davis, PhD, Stanley Manne Children’s Research Institute, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL 60611, USA; Phone: 312-503-7662; Fax: 312-503-7343; , Nicholas Katsanis, PhD, Stanley Manne Children’s Research Institute, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL 60611, USA; Phone: 312-503-7339; Fax: 312-503-7343;
| | - Simone Sanna-Cherchi
- Department of Medicine, Division of Nephrology, Columbia University Irving Medical Center, New York, New York, USA.
| |
Collapse
|
8
|
Su C, Huang R, Yu Z, Zheng J, Liu F, Liang H, Mo Z. Myelin and lymphocyte protein serves as a prognostic biomarker and is closely associated with the tumor microenvironment in the nephroblastoma. Cancer Med 2022; 11:1427-1438. [PMID: 35023304 PMCID: PMC8894696 DOI: 10.1002/cam4.4542] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/05/2021] [Accepted: 12/06/2021] [Indexed: 12/30/2022] Open
Abstract
Nephroblastoma, also known as Wilms' tumor (WT), is the most common renal tumor that occurs in children. Although the efficacy of treatment has been significantly improved by a series of comprehensive treatments, some patients still have poor prognosis. Myelin and lymphocyte (MAL) protein, a highly hydrophobic integrated membrane‐bound protein, has been implicated in many tumors and is also closely linked to kidney development. However, the relationship between MAL and WT has not yet been elucidated. Therefore, we attempted to evaluate the feasibility of MAL as a promising prognosis factor for WT. The differential expression of MAL was investigated using TARGET database and was verified using the Gene Expression Omnibus database and real‐time quantitative PCR. The prognostic ability of MAL was determined using Kaplan–Meier and Cox regression analyses. Pearson correlation analysis was applied to explore the relationship between MAL expression and methylation sites. The ESTIMATE and CIBERSORT algorithms showed that MAL expression was associated with the WT tumor microenvironment. Gene Set Enrichment Analysis (GSEA) indicated that multiple signaling pathways closely associated with tumorigenesis were differentially enriched between the high‐ and low‐MAL groups. In conclusion, our study comprehensively explored the potential of MAL as a prognosis factor for WT. Meanwhile, we also demonstrated that MAL, as a prognostic factor for WT, may be closely related to the tumor microenvironment.
Collapse
Affiliation(s)
- Cheng Su
- Department of Pediatric Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China.,Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China.,Guangxi Medical University, Nanning, China
| | | | - Zhenyuan Yu
- Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China.,Guangxi Medical University, Nanning, China.,Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Key Laboratory of Colleges and Universities, Nanning, China
| | - Jie Zheng
- Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China.,Guangxi Medical University, Nanning, China.,Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Key Laboratory of Colleges and Universities, Nanning, China
| | | | | | - Zengnan Mo
- Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China.,Guangxi Medical University, Nanning, China.,Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Key Laboratory of Colleges and Universities, Nanning, China.,Institute of Urology and Nephrology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China.,Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, China
| |
Collapse
|
9
|
Narikot A, Pardeshi VC, Shubha AM, Iyengar A, Vasudevan A. Deciphering the mutation spectrum in south Indian children with congenital anomalies of the kidney and urinary tract. BMC Nephrol 2022; 23:1. [PMID: 34979951 PMCID: PMC8722277 DOI: 10.1186/s12882-021-02628-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 11/29/2021] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Congenital anomalies of the kidney and urinary tract (CAKUT) cover a spectrum of structural malformations that result from aberrant morphogenesis of kidney and urinary tract. It is the most prevalent cause of kidney failure in children. Hence, it is important from a clinical perspective to unravel the molecular etiology of kidney and urinary tract malformations. Causal variants in genes that direct various stages of development of kidney and urinary tract in fetal life have been identified in 5-20% of CAKUT patients from Western countries. Recent advances in next generation sequencing technology and decreasing cost offer the opportunity to characterize the genetic profile of CAKUT in Indian population and facilitate integration of genetic diagnostics in care of children with CAKUT. METHODS Customized targeted panel sequencing was performed to identify pathogenic variants in 31 genes known to cause human CAKUT in 69 south Indian children with CAKUT. The NGS data was filtered using standardized pipeline and the variants were classified using ACMG criteria. Genotype and phenotype correlations were performed. RESULTS The cohort consisted of children mostly with posterior urethral valve (PUV) (39.1%), vesico-ureteric reflux (VUR) (33.3%) and multi-cystic dysplastic kidney (MCDK) (7.2%). No pathogenic or likely pathogenic variants were identified in the study. Most of our variants (n = 39, 60%) were variants of unknown significance with 25.6% (10/39) of them were identified as potentially damaging but were novel variants. CONCLUSIONS The present study did not identify any disease-causing monogenic variants in the cohort. The absence of genetic cause may be due to limitations of panel-based testing and also due to higher proportion of children with abnormalities in lower urinary tract than hypodysplasia of kidneys. Clinical, larger targeted panel or whole exome sequencing may be a better method to characterize the genetic profile of Indians patients with CAKUT.
Collapse
Affiliation(s)
- Ambili Narikot
- Divsion of Molecular Medicine, St. John's Research Institute, St. John's Medical College, Bengaluru, India
| | - Varsha Chhotusing Pardeshi
- Divsion of Molecular Medicine, St. John's Research Institute, St. John's Medical College, Bengaluru, India
| | - A M Shubha
- Department of Pediatric Surgery, St. John's Medical College, Bengaluru, India
| | - Arpana Iyengar
- Department of Pediatric Nephrology, St. John's Medical College, Bengaluru, 560034, India
| | - Anil Vasudevan
- Divsion of Molecular Medicine, St. John's Research Institute, St. John's Medical College, Bengaluru, India.
- Department of Pediatric Nephrology, St. John's Medical College, Bengaluru, 560034, India.
| |
Collapse
|
10
|
Perico L, Morigi M, Pezzotta A, Corna D, Brizi V, Conti S, Zanchi C, Sangalli F, Trionfini P, Buttò S, Xinaris C, Tomasoni S, Zoja C, Remuzzi G, Benigni A, Imberti B. Post-translational modifications by SIRT3 de-2-hydroxyisobutyrylase activity regulate glycolysis and enable nephrogenesis. Sci Rep 2021; 11:23580. [PMID: 34880332 PMCID: PMC8655075 DOI: 10.1038/s41598-021-03039-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 11/26/2021] [Indexed: 01/07/2023] Open
Abstract
Abnormal kidney development leads to lower nephron number, predisposing to renal diseases in adulthood. In embryonic kidneys, nephron endowment is dictated by the availability of nephron progenitors, whose self-renewal and differentiation require a relatively repressed chromatin state. More recently, NAD+-dependent deacetylase sirtuins (SIRTs) have emerged as possible regulators that link epigenetic processes to the metabolism. Here, we discovered a novel role for the NAD+-dependent deacylase SIRT3 in kidney development. In the embryonic kidney, SIRT3 was highly expressed only as a short isoform, with nuclear and extra-nuclear localisation. The nuclear SIRT3 did not act as deacetylase but exerted de-2-hydroxyisobutyrylase activity on lysine residues of histone proteins. Extra-nuclear SIRT3 regulated lysine 2-hydroxyisobutyrylation (Khib) levels of phosphofructokinase (PFK) and Sirt3 deficiency increased PFK Khib levels, inducing a glycolysis boost. This altered Khib landscape in Sirt3−/− metanephroi was associated with decreased nephron progenitors, impaired nephrogenesis and a reduced number of nephrons. These data describe an unprecedented role of SIRT3 in controlling early renal development through the regulation of epigenetics and metabolic processes.
Collapse
Affiliation(s)
- Luca Perico
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Via Stezzano 87, 24126, Bergamo, Italy
| | - Marina Morigi
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Via Stezzano 87, 24126, Bergamo, Italy
| | - Anna Pezzotta
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Via Stezzano 87, 24126, Bergamo, Italy
| | - Daniela Corna
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Via Stezzano 87, 24126, Bergamo, Italy
| | - Valerio Brizi
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Via Stezzano 87, 24126, Bergamo, Italy
| | - Sara Conti
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Via Stezzano 87, 24126, Bergamo, Italy
| | - Cristina Zanchi
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Via Stezzano 87, 24126, Bergamo, Italy
| | - Fabio Sangalli
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Via Stezzano 87, 24126, Bergamo, Italy
| | - Piera Trionfini
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Via Stezzano 87, 24126, Bergamo, Italy
| | - Sara Buttò
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Via Stezzano 87, 24126, Bergamo, Italy
| | - Christodoulos Xinaris
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Via Stezzano 87, 24126, Bergamo, Italy
| | - Susanna Tomasoni
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Via Stezzano 87, 24126, Bergamo, Italy
| | - Carlamaria Zoja
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Via Stezzano 87, 24126, Bergamo, Italy
| | - Giuseppe Remuzzi
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Via Stezzano 87, 24126, Bergamo, Italy
| | - Ariela Benigni
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Via Stezzano 87, 24126, Bergamo, Italy
| | - Barbara Imberti
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Via Stezzano 87, 24126, Bergamo, Italy.
| |
Collapse
|
11
|
Pastor-Arroyo EM, Rodriguez JMM, Pellegrini G, Bettoni C, Levi M, Hernando N, Wagner CA. Constitutive depletion of Slc34a2/NaPi-IIb in rats causes perinatal mortality. Sci Rep 2021; 11:7943. [PMID: 33846411 PMCID: PMC8042035 DOI: 10.1038/s41598-021-86874-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 03/15/2021] [Indexed: 11/23/2022] Open
Abstract
Absorption of dietary phosphate (Pi) across intestinal epithelia is a regulated process mediated by transcellular and paracellular pathways. Although hyperphosphatemia is a risk factor for the development of cardiovascular disease, the amount of ingested Pi in a typical Western diet is above physiological needs. While blocking intestinal absorption has been suggested as a therapeutic approach to prevent hyperphosphatemia, a complete picture regarding the identity and regulation of the mechanism(s) responsible for intestinal absorption of Pi is missing. The Na+/Pi cotransporter NaPi-IIb is a secondary active transporter encoded by the Slc34a2 gene. This transporter has a wide tissue distribution and within the intestinal tract is located at the apical membrane of epithelial cells. Based on mouse models deficient in NaPi-IIb, this cotransporter is assumed to mediate the bulk of active intestinal absorption of Pi. However, whether or not this is also applicable to humans is unknown, since human patients with inactivating mutations in SLC34A2 have not been reported to suffer from Pi depletion. Thus, mice may not be the most appropriate experimental model for the translation of intestinal Pi handling to humans. Here, we describe the generation of a rat model with Crispr/Cas-driven constitutive depletion of Slc34a2. Slc34a2 heterozygous rats were indistinguishable from wild type animals under standard dietary conditions as well as upon 3 days feeding on low Pi. However, unlike in humans, homozygosity resulted in perinatal lethality.
Collapse
Affiliation(s)
- Eva Maria Pastor-Arroyo
- Institute of Physiology, University of Zürich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Josep M Monné Rodriguez
- Laboratory for Animal Model Pathology (LAMP), Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 268, 8057, Zurich, Switzerland
| | - Giovanni Pellegrini
- Laboratory for Animal Model Pathology (LAMP), Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 268, 8057, Zurich, Switzerland
| | - Carla Bettoni
- Institute of Physiology, University of Zürich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Moshe Levi
- Department of Biochemistry and Molecular and Cellular Biology, Georgetown University, Washington, DC, USA
| | - Nati Hernando
- Institute of Physiology, University of Zürich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.
| | - Carsten A Wagner
- Institute of Physiology, University of Zürich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.
| |
Collapse
|
12
|
Adelfio M, Szymkowiak S, Kaplan DL. Matrigel-Free Laminin-Entactin Matrix to Induce Human Renal Proximal Tubule Structure Formation In Vitro. ACS Biomater Sci Eng 2020; 6:6618-6625. [PMID: 33320630 DOI: 10.1021/acsbiomaterials.0c01385] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A successful in vitro tissue model must recapitulate the native tissue features while also being reproducible. Currently, Matrigel is the principal biomaterial used to induce the formation of proximal convoluted tubules (PCTs) in vitro, because of its similar composition and structure with the kidney tubular basement membrane and the presence of critical growth factors. However, Matrigel is not well-defined, and batch-to-batch variability is a significant issue. Here, we define a Matrigel-free method, using a laminin-entactin (L-E) matrix to support the formation of proximal tubular-like structures in vitro using immortalized human renal epithelial cells (RPTEC/TERT1) cocultured with murine fibroblast stromal cells (FOXD1lacZ+). The matrix supports the presence of specific components of the tubular basement membrane (laminin, entactin/nidogen, and heparan sulfate proteoglycan) in addition to fibroblast growth factor 8a (FGF-8a). The matrix also induces tubulogenesis, leading to the formation of PCTs based on several key markers, including E-cadherin, aquaporin-1, and Na+/K+ ATPase. Moreover, these PCT structures displayed cell polarity and a well-defined lumen after 18 days in culture. This laminin-entactin (L-E) matrix constitutes a defined and consistent biomaterial that can be used in kidney tissue engineering for understanding in vitro proximal tubule development and for nephrotoxicity studies.
Collapse
Affiliation(s)
- M Adelfio
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
| | - S Szymkowiak
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
| | - D L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
| |
Collapse
|
13
|
Cardoso-Moreira M, Sarropoulos I, Velten B, Mort M, Cooper DN, Huber W, Kaessmann H. Developmental Gene Expression Differences between Humans and Mammalian Models. Cell Rep 2020; 33:108308. [PMID: 33113372 PMCID: PMC7610014 DOI: 10.1016/j.celrep.2020.108308] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 08/16/2020] [Accepted: 10/05/2020] [Indexed: 11/21/2022] Open
Abstract
Identifying the molecular programs underlying human organ development and how they differ from model species is key for understanding human health and disease. Developmental gene expression profiles provide a window into the genes underlying organ development and a direct means to compare them across species. We use a transcriptomic resource covering the development of seven organs to characterize the temporal profiles of human genes associated with distinct disease classes and to determine, for each human gene, the similarity of its spatiotemporal expression with its orthologs in rhesus macaque, mouse, rat, and rabbit. We find clear associations between spatiotemporal profiles and the phenotypic manifestations of diseases. We also find that half of human genes differ from their mouse orthologs in their temporal trajectories in at least one of the organs. These include more than 200 genes associated with brain, heart, and liver disease for which mouse models should undergo extra scrutiny.
Collapse
Affiliation(s)
- Margarida Cardoso-Moreira
- Center for Molecular Biology (ZMBH), DKFZ-ZMBH Alliance, Heidelberg University, 69120 Heidelberg, Germany.
| | - Ioannis Sarropoulos
- Center for Molecular Biology (ZMBH), DKFZ-ZMBH Alliance, Heidelberg University, 69120 Heidelberg, Germany
| | - Britta Velten
- Genome Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Matthew Mort
- Institute of Medical Genetics, Cardiff University, Cardiff CF14 4XN, UK
| | - David N Cooper
- Institute of Medical Genetics, Cardiff University, Cardiff CF14 4XN, UK
| | - Wolfgang Huber
- Genome Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Henrik Kaessmann
- Center for Molecular Biology (ZMBH), DKFZ-ZMBH Alliance, Heidelberg University, 69120 Heidelberg, Germany.
| |
Collapse
|
14
|
Mota C, Camarero-Espinosa S, Baker MB, Wieringa P, Moroni L. Bioprinting: From Tissue and Organ Development to in Vitro Models. Chem Rev 2020; 120:10547-10607. [PMID: 32407108 PMCID: PMC7564098 DOI: 10.1021/acs.chemrev.9b00789] [Citation(s) in RCA: 153] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Indexed: 02/08/2023]
Abstract
Bioprinting techniques have been flourishing in the field of biofabrication with pronounced and exponential developments in the past years. Novel biomaterial inks used for the formation of bioinks have been developed, allowing the manufacturing of in vitro models and implants tested preclinically with a certain degree of success. Furthermore, incredible advances in cell biology, namely, in pluripotent stem cells, have also contributed to the latest milestones where more relevant tissues or organ-like constructs with a certain degree of functionality can already be obtained. These incredible strides have been possible with a multitude of multidisciplinary teams around the world, working to make bioprinted tissues and organs more relevant and functional. Yet, there is still a long way to go until these biofabricated constructs will be able to reach the clinics. In this review, we summarize the main bioprinting activities linking them to tissue and organ development and physiology. Most bioprinting approaches focus on mimicking fully matured tissues. Future bioprinting strategies might pursue earlier developmental stages of tissues and organs. The continuous convergence of the experts in the fields of material sciences, cell biology, engineering, and many other disciplines will gradually allow us to overcome the barriers identified on the demanding path toward manufacturing and adoption of tissue and organ replacements.
Collapse
Affiliation(s)
- Carlos Mota
- Department of Complex Tissue Regeneration,
MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, 6211 LK Maastricht, The Netherlands
| | - Sandra Camarero-Espinosa
- Department of Complex Tissue Regeneration,
MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, 6211 LK Maastricht, The Netherlands
| | - Matthew B. Baker
- Department of Complex Tissue Regeneration,
MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, 6211 LK Maastricht, The Netherlands
| | - Paul Wieringa
- Department of Complex Tissue Regeneration,
MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, 6211 LK Maastricht, The Netherlands
| | - Lorenzo Moroni
- Department of Complex Tissue Regeneration,
MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, 6211 LK Maastricht, The Netherlands
| |
Collapse
|
15
|
Wu J, Tian Y, Han L, Liu C, Sun T, Li L, Yu Y, Lamichhane B, D'Souza RN, Millar SE, Krumlauf R, Ornitz DM, Feng JQ, Klein O, Zhao H, Zhang F, Linhardt RJ, Wang X. FAM20B-catalyzed glycosaminoglycans control murine tooth number by restricting FGFR2b signaling. BMC Biol 2020; 18:87. [PMID: 32664967 PMCID: PMC7359594 DOI: 10.1186/s12915-020-00813-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 06/17/2020] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND The formation of supernumerary teeth is an excellent model for studying the molecular mechanisms that control stem/progenitor cell homeostasis needed to generate a renewable source of replacement cells and tissues. Although multiple growth factors and transcriptional factors have been associated with supernumerary tooth formation, the regulatory inputs of extracellular matrix in this regenerative process remains poorly understood. RESULTS In this study, we present evidence that disrupting glycosaminoglycans (GAGs) in the dental epithelium of mice by inactivating FAM20B, a xylose kinase essential for GAG assembly, leads to supernumerary tooth formation in a pattern reminiscent of replacement teeth. The dental epithelial GAGs confine murine tooth number by restricting the homeostasis of Sox2(+) dental epithelial stem/progenitor cells in a non-autonomous manner. FAM20B-catalyzed GAGs regulate the cell fate of dental lamina by restricting FGFR2b signaling at the initial stage of tooth development to maintain a subtle balance between the renewal and differentiation of Sox2(+) cells. At the later cap stage, WNT signaling functions as a relay cue to facilitate the supernumerary tooth formation. CONCLUSIONS The novel mechanism we have characterized through which GAGs control the tooth number in mice may also be more broadly relevant for potentiating signaling interactions in other tissues during development and tissue homeostasis.
Collapse
Affiliation(s)
- Jingyi Wu
- Southern Medical University Hospital of Stomatology, Guangzhou, 510280, Guangdong, China.,Department of Biomedical Sciences, Texas A&M University College of Dentistry, 3302 Gaston Ave, Dallas, TX, 75246, USA
| | - Ye Tian
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, 3302 Gaston Ave, Dallas, TX, 75246, USA.,West China Hospital of Stomatology, Sichuan University, Chengdu, 610000, Sichuan, China
| | - Lu Han
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, 3302 Gaston Ave, Dallas, TX, 75246, USA.,West China Hospital of Stomatology, Sichuan University, Chengdu, 610000, Sichuan, China
| | - Chao Liu
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, 3302 Gaston Ave, Dallas, TX, 75246, USA.,Department of Oral Pathology, College of Stomatology, Dalian Medical University, Dalian, 116044, Liaoning, China
| | - Tianyu Sun
- Southern Medical University Hospital of Stomatology, Guangzhou, 510280, Guangdong, China.,Department of Biomedical Sciences, Texas A&M University College of Dentistry, 3302 Gaston Ave, Dallas, TX, 75246, USA
| | - Ling Li
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Yanlei Yu
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Bikash Lamichhane
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, 3302 Gaston Ave, Dallas, TX, 75246, USA
| | - Rena N D'Souza
- School of Dentistry, University of Utah, Salt Lake City, UT, 84108, USA
| | - Sarah E Millar
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Robb Krumlauf
- Stowers Institute for Medical Research, Kansas City, MO, 64110, USA.,Department of Anatomy and Cell Biology, Kansas University Medical Center, Kansas City, KS, 66160, USA
| | - David M Ornitz
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Jian Q Feng
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, 3302 Gaston Ave, Dallas, TX, 75246, USA
| | - Ophir Klein
- Department of Orofacial Sciences and Program in Craniofacial Biology, University of California, San Francisco, San Francisco, CA, 94143, USA.,Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Hu Zhao
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, 3302 Gaston Ave, Dallas, TX, 75246, USA
| | - Fuming Zhang
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Robert J Linhardt
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Xiaofang Wang
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, 3302 Gaston Ave, Dallas, TX, 75246, USA.
| |
Collapse
|
16
|
Kirschen GW, Wood LF, Semenyuk N. A Practical Approach to Congenital Urogenital Anomalies in Female Pediatric Patients. Pediatr Ann 2020; 49:e188-e195. [PMID: 32275764 DOI: 10.3928/19382359-20200323-02] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Congenital anomalies of the female reproductive tract are relatively common and can be both confusing to understand as well as challenging to diagnose and manage in a busy pediatric clinical practice. Here, we lay out some of the most common genitourinary tract anomalies in female pediatric patients. We highlight the key embryologic development, present case examples, and discuss appropriate testing, treatment, and counseling for patients and their families regarding congenital disorders of the vulva, vagina, uterus, ovaries, and associated pathology. The goal of this review is to demystify these conditions and provide a practical guide for the general pediatrician who is often at the frontline making the initial diagnosis and caring for these patients. [Pediatr Ann. 2020;49(4):e188-e195.].
Collapse
|
17
|
Shao A, Chan SC, Igarashi P. Role of transcription factor hepatocyte nuclear factor-1β in polycystic kidney disease. Cell Signal 2020; 71:109568. [PMID: 32068086 DOI: 10.1016/j.cellsig.2020.109568] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 02/09/2020] [Accepted: 02/12/2020] [Indexed: 02/07/2023]
Abstract
Hepatocyte nuclear factor-1β (HNF-1β) is a DNA-binding transcription factor that is essential for normal kidney development. Mutations of HNF1B in humans produce cystic kidney diseases, including renal cysts and diabetes, multicystic dysplastic kidneys, glomerulocystic kidney disease, and autosomal dominant tubulointerstitial kidney disease. Expression of HNF1B is reduced in cystic kidneys from humans with ADPKD, and HNF1B has been identified as a modifier gene in PKD. Genome-wide analysis of chromatin binding has revealed that HNF-1β directly regulates the expression of known PKD genes, such as PKHD1 and PKD2, as well as genes involved in PKD pathogenesis, including cAMP-dependent signaling, renal fibrosis, and Wnt signaling. In addition, a role of HNF-1β in regulating the expression of noncoding RNAs (microRNAs and long noncoding RNAs) has been identified. These findings indicate that HNF-1β regulates a transcriptional and post-transcriptional network that plays a central role in renal cystogenesis.
Collapse
Affiliation(s)
- Annie Shao
- Department of Medicine, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Siu Chiu Chan
- Department of Medicine, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Peter Igarashi
- Department of Medicine, University of Minnesota Medical School, Minneapolis, MN, USA.
| |
Collapse
|
18
|
Abstract
Wilms tumour is the most common renal malignancy of childhood. The disease is curable in the majority of cases, albeit at considerable cost in terms of late treatment-related effects in some children. However, one in ten children with Wilms tumour will die of their disease despite modern treatment approaches. The genetic changes that underpin Wilms tumour have been defined by studies of familial cases and by unbiased DNA sequencing of tumour genomes. Together, these approaches have defined the landscape of cancer genes that are operative in Wilms tumour, many of which are intricately linked to the control of fetal nephrogenesis. Advances in our understanding of the germline and somatic genetic changes that underlie Wilms tumour may translate into better patient outcomes. Improvements in risk stratification have already been seen through the introduction of molecular biomarkers into clinical practice. A host of additional biomarkers are due to undergo clinical validation. Identifying actionable mutations has led to potential new targets, with some novel compounds undergoing testing in early phase trials. Avenues that warrant further exploration include targeting Wilms tumour cancer genes with a non-redundant role in nephrogenesis and targeting the fetal renal transcriptome.
Collapse
Affiliation(s)
- Taryn Dora Treger
- Wellcome Sanger Institute, Cambridge, UK
- Department of Paediatrics, University of Cambridge, Cambridge, UK
- UCL Great Ormond Street Institute of Child Health, London, UK
| | - Tanzina Chowdhury
- Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Kathy Pritchard-Jones
- UCL Great Ormond Street Institute of Child Health, London, UK.
- Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK.
| | - Sam Behjati
- Wellcome Sanger Institute, Cambridge, UK
- Department of Paediatrics, University of Cambridge, Cambridge, UK
- Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| |
Collapse
|
19
|
Verbitsky M, Westland R, Perez A, Kiryluk K, Liu Q, Krithivasan P, Mitrotti A, Fasel DA, Batourina E, Sampson MG, Bodria M, Werth M, Kao C, Martino J, Capone VP, Vivante A, Shril S, Kil BH, Marasà M, Zhang JY, Na YJ, Lim TY, Ahram D, Weng PL, Heinzen EL, Carrea A, Piaggio G, Gesualdo L, Manca V, Masnata G, Gigante M, Cusi D, Izzi C, Scolari F, van Wijk JAE, Saraga M, Santoro D, Conti G, Zamboli P, White H, Drozdz D, Zachwieja K, Miklaszewska M, Tkaczyk M, Tomczyk D, Krakowska A, Sikora P, Jarmoliński T, Borszewska-Kornacka MK, Pawluch R, Szczepanska M, Adamczyk P, Mizerska-Wasiak M, Krzemien G, Szmigielska A, Zaniew M, Dobson MG, Darlow JM, Puri P, Barton DE, Furth SL, Warady BA, Gucev Z, Lozanovski VJ, Tasic V, Pisani I, Allegri L, Rodas LM, Campistol JM, Jeanpierre C, Alam S, Casale P, Wong CS, Lin F, Miranda DM, Oliveira EA, Simões-E-Silva AC, Barasch JM, Levy B, Wu N, Hildebrandt F, Ghiggeri GM, Latos-Bielenska A, Materna-Kiryluk A, Zhang F, Hakonarson H, Papaioannou VE, Mendelsohn CL, Gharavi AG, Sanna-Cherchi S. The copy number variation landscape of congenital anomalies of the kidney and urinary tract. Nat Genet 2018; 51:117-127. [PMID: 30578417 PMCID: PMC6668343 DOI: 10.1038/s41588-018-0281-y] [Citation(s) in RCA: 142] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 10/18/2018] [Indexed: 12/18/2022]
Abstract
Congenital anomalies of the kidney and urinary tract (CAKUT) are a major cause of pediatric kidney failure. We performed a genome-wide analysis of copy number variants (CNVs) in 2,824 cases and 21,498 controls. Affected individuals carried a significant burden of rare exonic (i.e. affecting coding regions) CNVs and were enriched for known genomic disorders (GD). Kidney anomaly (KA) cases were most enriched for exonic CNVs, encompassing GD-CNVs and novel deletions; obstructive uropathy (OU) had a lower CNV burden and an intermediate prevalence of GD-CNVs; vesicoureteral reflux (VUR) had the fewest GD-CNVs but was enriched for novel exonic CNVs, particularly duplications. Six loci (1q21, 4p16.1-p16.3, 16p11.2, 16p13.11, 17q12, and 22q11.2) accounted for 65% of patients with GD-CNVs. Deletions at 17q12, 4p16.1-p16.3, and 22q11.2 were specific for KA; the 16p11.2 locus showed extensive pleiotropy. Using a multidisciplinary approach, we identified TBX6 as a driver for the CAKUT subphenotypes in the 16p11.2 microdeletion syndrome.
Collapse
Affiliation(s)
- Miguel Verbitsky
- Division of Nephrology, Department of Medicine, Columbia University, New York, NY, USA
| | - Rik Westland
- Division of Nephrology, Department of Medicine, Columbia University, New York, NY, USA.,Department of Pediatric Nephrology, Amsterdam UMC, Amsterdam, the Netherlands
| | - Alejandra Perez
- Division of Nephrology, Department of Medicine, Columbia University, New York, NY, USA
| | - Krzysztof Kiryluk
- Division of Nephrology, Department of Medicine, Columbia University, New York, NY, USA
| | - Qingxue Liu
- Division of Nephrology, Department of Medicine, Columbia University, New York, NY, USA
| | - Priya Krithivasan
- Division of Nephrology, Department of Medicine, Columbia University, New York, NY, USA
| | - Adele Mitrotti
- Division of Nephrology, Department of Medicine, Columbia University, New York, NY, USA
| | - David A Fasel
- Division of Nephrology, Department of Medicine, Columbia University, New York, NY, USA
| | - Ekaterina Batourina
- Department of Urology, Columbia University College of Physicians and Surgeons, New York, NY, USA
| | - Matthew G Sampson
- University of Michigan School of Medicine, Department of Pediatrics-Nephrology, Ann Arbor, MI, USA
| | - Monica Bodria
- Division of Nephrology, Dialysis, Transplantation, and Laboratory on Pathophysiology of Uremia, Istituto G. Gaslini, Genoa, Italy
| | - Max Werth
- Division of Nephrology, Department of Medicine, Columbia University, New York, NY, USA
| | - Charlly Kao
- Center for Applied Genomics, The Children's Hospital of Philadelphia and Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Jeremiah Martino
- Division of Nephrology, Department of Medicine, Columbia University, New York, NY, USA
| | - Valentina P Capone
- Division of Nephrology, Department of Medicine, Columbia University, New York, NY, USA
| | - Asaf Vivante
- Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.,Pediatric Department B and Pediatric Nephrology Unit, Edmond and Lily Safra Children's Hospital, Chaim Sheba Medical Center, Tel Hashomer and the Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Shirlee Shril
- Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Byum Hee Kil
- Division of Nephrology, Department of Medicine, Columbia University, New York, NY, USA
| | - Maddalena Marasà
- Division of Nephrology, Department of Medicine, Columbia University, New York, NY, USA
| | - Jun Y Zhang
- Division of Nephrology, Department of Medicine, Columbia University, New York, NY, USA
| | - Young-Ji Na
- Division of Nephrology, Department of Medicine, Columbia University, New York, NY, USA
| | - Tze Y Lim
- Division of Nephrology, Department of Medicine, Columbia University, New York, NY, USA
| | - Dina Ahram
- Division of Nephrology, Department of Medicine, Columbia University, New York, NY, USA
| | - Patricia L Weng
- Department of Pediatric Nephrology, UCLA Medical Center and UCLA Medical Center-Santa Monica, Los Angeles, CA, USA
| | - Erin L Heinzen
- Institute for Genomic Medicine, Columbia University Medical Center, New York, NY, USA
| | - Alba Carrea
- Division of Nephrology, Dialysis, Transplantation, and Laboratory on Pathophysiology of Uremia, Istituto G. Gaslini, Genoa, Italy
| | - Giorgio Piaggio
- Division of Nephrology, Dialysis, Transplantation, and Laboratory on Pathophysiology of Uremia, Istituto G. Gaslini, Genoa, Italy
| | - Loreto Gesualdo
- Section of Nephrology, Department of Emergency and Organ Transplantation, University of Bari, Bari, Italy
| | - Valeria Manca
- Department of Pediatric Urology, Azienda Ospedaliera Brotzu, Cagliari, Italy
| | - Giuseppe Masnata
- Department of Pediatric Urology, Azienda Ospedaliera Brotzu, Cagliari, Italy
| | - Maddalena Gigante
- Section of Nephrology, Department of Emergency and Organ Transplantation, University of Bari, Bari, Italy
| | - Daniele Cusi
- National Research Council of Italy, Inst. Biomedical Technologies Milano Bio4dreams Scientific Unit, Milano, Italy
| | - Claudia Izzi
- Dipartimento Ostetrico-Ginecologico e Seconda Divisione di Nefrologia ASST, Spedali Civili e Presidio di Montichiari, Brescia, Italy
| | - Francesco Scolari
- Cattedra di Nefrologia, Università di Brescia, Seconda Divisione di Nefrologia, Azienda Ospedaliera Spedali Civili di Brescia Presidio di Montichiari, Brescia, Italy
| | - Joanna A E van Wijk
- Department of Pediatric Nephrology, Amsterdam UMC, Amsterdam, the Netherlands
| | - Marijan Saraga
- Department of Pediatrics, University Hospital of Split, Split, Croatia.,School of Medicine, University of Split, Split, Croatia
| | - Domenico Santoro
- Dipartimento di Medicina Clinica e Sperimentale, Università degli Studi di Messina, Messina, Italy
| | - Giovanni Conti
- Department of Pediatric Nephrology, Azienda Ospedaliera Universitaria "G. Martino", Messina, Italy
| | - Pasquale Zamboli
- Division of Nephrology, University of Campania "Luigi Vanvitell", Naples, Italy
| | - Hope White
- Division of Nephrology, Department of Medicine, Columbia University, New York, NY, USA
| | - Dorota Drozdz
- Department of Pediatric Nephrology and Hypertension, Dialysis Unit, Jagiellonian University Medical College, Krakow, Poland
| | - Katarzyna Zachwieja
- Department of Pediatric Nephrology and Hypertension, Dialysis Unit, Jagiellonian University Medical College, Krakow, Poland
| | - Monika Miklaszewska
- Department of Pediatric Nephrology, Jagiellonian University Medical College, Krakow, Poland
| | - Marcin Tkaczyk
- Department of Pediatrics, Immunology and Nephrology, Polish Mother's Memorial Hospital Research Institute, Lodz, Poland
| | - Daria Tomczyk
- Department of Pediatrics, Immunology and Nephrology, Polish Mother's Memorial Hospital Research Institute, Lodz, Poland
| | - Anna Krakowska
- Department of Pediatrics, Immunology and Nephrology, Polish Mother's Memorial Hospital Research Institute, Lodz, Poland
| | - Przemyslaw Sikora
- Department of Pediatric Nephrology Medical University of Lublin, Lublin, Poland
| | | | - Maria K Borszewska-Kornacka
- Department of Pediatrics, School of Medicine with the Division of Dentistry in Zabrze, Medical University of Silesia in Katowice, Katowice, Poland
| | - Robert Pawluch
- Department of Pediatrics, School of Medicine with the Division of Dentistry in Zabrze, Medical University of Silesia in Katowice, Katowice, Poland
| | - Maria Szczepanska
- Department of Pediatrics, School of Medicine with the Division of Dentistry in Zabrze, Medical University of Silesia in Katowice, Katowice, Poland
| | - Piotr Adamczyk
- Department of Pediatrics, School of Medicine with the Division of Dentistry in Zabrze, Medical University of Silesia in Katowice, Katowice, Poland
| | | | - Grazyna Krzemien
- Department of Pediatrics and Nephrology, Medical University of Warsaw, Warsaw, Poland
| | - Agnieszka Szmigielska
- Department of Pediatrics and Nephrology, Medical University of Warsaw, Warsaw, Poland
| | - Marcin Zaniew
- Department of Pediatrics, University of Zielona Góra, Zielona Góra, Poland
| | - Mark G Dobson
- Department of Clinical Genetics, Our Lady's Children's Hospital Crumlin, Dublin, Ireland.,National Children's Research Centre, Our Lady's Children's Hospital Crumlin, Dublin, Ireland
| | - John M Darlow
- Department of Clinical Genetics, Our Lady's Children's Hospital Crumlin, Dublin, Ireland.,National Children's Research Centre, Our Lady's Children's Hospital Crumlin, Dublin, Ireland
| | - Prem Puri
- National Children's Research Centre, Our Lady's Children's Hospital Crumlin, Dublin, Ireland.,National Children's Hospital Tallaght, Dublin, Ireland
| | - David E Barton
- Department of Clinical Genetics, Our Lady's Children's Hospital Crumlin, Dublin, Ireland.,University College Dublin UCD School of Medicine, Our Lady's Children's Hospital Crumlin, Dublin, Ireland
| | - Susan L Furth
- Departments of Pediatrics and Epidemiology, Perelman School of Medicine at the University of Pennsylvania, Division of Nephrology, Children's Hospital of Philadelphia (CHOP), Philadelphia, PA, USA
| | - Bradley A Warady
- Department of Pediatrics, University of Missouri-Kansas City School of Medicine, Division of Nephrology, Children's Mercy Kansas City, Kansas City, MO, USA
| | - Zoran Gucev
- University Children's Hospital, Medical Faculty of Skopje, Skopje, Macedonia
| | - Vladimir J Lozanovski
- University Children's Hospital, Medical Faculty of Skopje, Skopje, Macedonia.,University Clinic for General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany
| | - Velibor Tasic
- University Children's Hospital, Medical Faculty of Skopje, Skopje, Macedonia
| | - Isabella Pisani
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Landino Allegri
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Lida M Rodas
- Renal Division, Hospital Clinic, IDIBAPS, University of Barcelona, Barcelona, Spain
| | - Josep M Campistol
- Renal Division, Hospital Clinic, IDIBAPS, University of Barcelona, Barcelona, Spain
| | - Cécile Jeanpierre
- Laboratory of Hereditary Kidney Diseases, Inserm UMR 1163, Imagine Institute, Paris Descartes-Sorbonne Paris Cité University, Paris, France
| | - Shumyle Alam
- Department of Pediatric Urology, Columbia University College of Physicians and Surgeons, New York, NY, USA
| | - Pasquale Casale
- Department of Pediatric Urology, Columbia University College of Physicians and Surgeons, New York, NY, USA.,Mount Sinai Medical Center, Kravis Children's Hospital, New York, NY, USA
| | - Craig S Wong
- Division of Pediatric Nephrology, University of New Mexico Children's Hospital, Albuquerque, NM, USA
| | - Fangming Lin
- Division of Pediatric Nephrology, Department of Pediatrics, Columbia University, New York, NY, USA
| | - Débora M Miranda
- Department of Pediatrics, Unit of Pediatric Nephrology, Interdisciplinary Laboratory of Medical Investigation, Faculty of Medicine, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Eduardo A Oliveira
- Department of Pediatrics, Unit of Pediatric Nephrology, Interdisciplinary Laboratory of Medical Investigation, Faculty of Medicine, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Ana Cristina Simões-E-Silva
- Department of Pediatrics, Unit of Pediatric Nephrology, Interdisciplinary Laboratory of Medical Investigation, Faculty of Medicine, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Jonathan M Barasch
- Division of Nephrology, Department of Medicine, Columbia University, New York, NY, USA
| | - Brynn Levy
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
| | - Nan Wu
- Department of Orthopedic Surgery, Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Medical Research Center of Orthopedics, all at Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Friedhelm Hildebrandt
- Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Gian Marco Ghiggeri
- Division of Nephrology, Dialysis, Transplantation, and Laboratory on Pathophysiology of Uremia, Istituto G. Gaslini, Genoa, Italy
| | - Anna Latos-Bielenska
- Department of Medical Genetics, Poznan University of Medical Sciences, and NZOZ Center for Medical Genetics GENESIS, Poznan, Poland
| | - Anna Materna-Kiryluk
- Department of Medical Genetics, Poznan University of Medical Sciences, and NZOZ Center for Medical Genetics GENESIS, Poznan, Poland
| | - Feng Zhang
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Hakon Hakonarson
- Center for Applied Genomics, The Children's Hospital of Philadelphia and Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Virginia E Papaioannou
- Department of Genetics and Development, Columbia University Medical Center, New York, NY, USA.
| | - Cathy L Mendelsohn
- Department of Urology, Columbia University College of Physicians and Surgeons, New York, NY, USA.
| | - Ali G Gharavi
- Division of Nephrology, Department of Medicine, Columbia University, New York, NY, USA.
| | - Simone Sanna-Cherchi
- Division of Nephrology, Department of Medicine, Columbia University, New York, NY, USA.
| |
Collapse
|
20
|
Tan Z, Shan J, Rak-Raszewska A, Vainio SJ. Embryonic Stem Cells Derived Kidney Organoids as Faithful Models to Target Programmed Nephrogenesis. Sci Rep 2018; 8:16618. [PMID: 30413738 PMCID: PMC6226521 DOI: 10.1038/s41598-018-34995-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 10/26/2018] [Indexed: 12/12/2022] Open
Abstract
The kidney is a complex organ that is comprised of thousands of nephrons developing through reciprocal inductive interactions between metanephric mesenchyme (MM) and ureteric bud (UB). The MM undergoes mesenchymal to epithelial transition (MET) in response to the signaling from the UB. The secreted protein Wnt4, one of the Wnt family members, is critical for nephrogenesis as mouse Wnt4−/− mutants fail to form pretubular aggregates (PTA) and therefore lack functional nephrons. Here, we generated mouse embryonic stem cell (mESC) line lacking Wnt4 by applying the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated systems 9 (Cas9). We describe here, differentiation of the wild type and Wnt4 knockout mESCs into kidney progenitors, and such cells induced to undergo nephrogenesis by the mouse E11.5 UB mediated induction. The wild type three-dimensional (3D) self-organized organoids depict appropriately segmented nephron structures, while the Wnt4-deficient organoids fail to undergo the MET, as is the case in the phenotype of the Wnt4 knockout mouse model in vivo. In summary, we have established a platform that combine CRISPR/Cas9 and kidney organoid technologies to model kidney development in vitro and confirmed that mutant organoids are able to present similar actions as in the in vivo studies.
Collapse
Affiliation(s)
- Zenglai Tan
- Biocenter Oulu, Infotech Oulu, Center for Cell Matrix Research, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Aapistie 5A, 90220, Oulu, Finland.
| | - Jingdong Shan
- Biocenter Oulu, Infotech Oulu, Center for Cell Matrix Research, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Aapistie 5A, 90220, Oulu, Finland
| | - Aleksandra Rak-Raszewska
- Biocenter Oulu, Infotech Oulu, Center for Cell Matrix Research, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Aapistie 5A, 90220, Oulu, Finland
| | - Seppo J Vainio
- Biocenter Oulu, Infotech Oulu, Center for Cell Matrix Research, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Aapistie 5A, 90220, Oulu, Finland.
| |
Collapse
|
21
|
Oldani G, Peloso A, Vijgen S, Wilson EM, Slits F, Gex Q, Morel P, Delaune V, Orci LA, Yamaguchi T, Kobayashi T, Rubbia-Brandt L, Nakauchi H, Lacotte S, Toso C. Chimeric liver transplantation reveals interspecific graft remodelling. J Hepatol 2018; 69:1025-1036. [PMID: 30031887 DOI: 10.1016/j.jhep.2018.07.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 07/05/2018] [Accepted: 07/10/2018] [Indexed: 01/22/2023]
Abstract
BACKGROUND & AIMS A major limitation in the field of liver transplantation is the shortage of transplantable organs. Chimeric animals carrying human tissue have the potential to solve this problem. However, currently available chimeric organs retain a high level of xenogeneic cells, and the transplantation of impure organs needs to be tested. METHODS We created chimeric livers by injecting Lewis rat hepatocytes into C57Bl/6Fah-/-Rag2-/-Il2rg-/- mice, and further transplanted them into newly weaned Lewis rats (45 ± 3 g) with or without suboptimal immunosuppression (tacrolimus 0.6 mg/kg/day for 56 or 112 days). Control donors included wild-type C57Bl/6 mice (xenogeneic) and Lewis rats (syngeneic). RESULTS Without immunosuppression, recipients of chimeric livers experienced acute rejection, and died within 8 to 11 days. With immunosuppression, they all survived for >112 days with normal weight gain compared to syngeneic controls, while all xenogeneic controls died within 98 days due to rejection with Banff scores >6 (p = 0.0014). The chimeric grafts underwent post-transplant remodelling, growing by 670% on average. Rat hepatocytes fully replaced mouse hepatocytes starting from day 56 (absence of detectable mouse serum albumin, histological clearance of mouse hepatocytes). In addition, rat albumin levels reached those of syngeneic recipients. Four months after transplantation of chimeric livers, we observed the development of diffuse mature rat bile ducts through transdifferentiation of hepatocytes (up to 72% of cholangiocytes), and patchy areas of portal endothelium originating from the host (seen in one out of five recipients). CONCLUSIONS Taken together, these data demonstrate the efficacy of transplanting rat-to-mouse chimeric livers into rats, with a high potential for post-transplant recipient-oriented graft remodelling. Validation in a large animal model is still needed. LAY SUMMARY Chimeric animals are composed of cells from different species. Chimeric animals carrying human tissue have the potential to increase the availability of transplantable organs. We transplanted rat-to-mouse liver grafts into newly weaned rats. The chimeric grafts underwent post-transplant remodelling with rat hepatocytes replacing all mouse hepatocytes within 56 days. In addition, we observed the post-transplant development of diffuse mature rat bile ducts through the transformation of hepatocytes, and patchy areas of portal endothelium originating from the host. These data demonstrate the efficacy of transplanting rat-to-mouse chimeric livers into rats, with a high potential for post-transplant graft remodelling.
Collapse
Affiliation(s)
- Graziano Oldani
- Division of Abdominal Surgery, Department of Surgery, Faculty of Medicine, University of Geneva, Geneva, Switzerland; Hepato-Pancreato-Biliary Centre, Geneva University Hospitals, Geneva, Switzerland.
| | - Andrea Peloso
- Division of Abdominal Surgery, Department of Surgery, Faculty of Medicine, University of Geneva, Geneva, Switzerland; Hepato-Pancreato-Biliary Centre, Geneva University Hospitals, Geneva, Switzerland
| | - Sandrine Vijgen
- Hepato-Pancreato-Biliary Centre, Geneva University Hospitals, Geneva, Switzerland; Division of Clinical Pathology, Department of Pathology and Immunology, Geneva University Hospitals and Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | | | - Florence Slits
- Division of Abdominal Surgery, Department of Surgery, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Quentin Gex
- Division of Abdominal Surgery, Department of Surgery, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Philippe Morel
- Division of Abdominal Surgery, Department of Surgery, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Vaihere Delaune
- Division of Abdominal Surgery, Department of Surgery, Faculty of Medicine, University of Geneva, Geneva, Switzerland; Hepato-Pancreato-Biliary Centre, Geneva University Hospitals, Geneva, Switzerland
| | - Lorenzo A Orci
- Division of Abdominal Surgery, Department of Surgery, Faculty of Medicine, University of Geneva, Geneva, Switzerland; Hepato-Pancreato-Biliary Centre, Geneva University Hospitals, Geneva, Switzerland
| | - Tomoyuki Yamaguchi
- Division of Stem Cell Therapy, Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo, Japan
| | - Toshihiro Kobayashi
- Section of Mammalian Transgenesis, Center for Genetic Analysis of Behavior, National Institute for Physiological Sciences, Okazaki, Japan
| | - Laura Rubbia-Brandt
- Hepato-Pancreato-Biliary Centre, Geneva University Hospitals, Geneva, Switzerland; Division of Clinical Pathology, Department of Pathology and Immunology, Geneva University Hospitals and Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Hiromitsu Nakauchi
- Division of Stem Cell Therapy, Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo, Japan; Institute for Stem Cell Biology and Regenerative Medicine, Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Stéphanie Lacotte
- Division of Abdominal Surgery, Department of Surgery, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Christian Toso
- Division of Abdominal Surgery, Department of Surgery, Faculty of Medicine, University of Geneva, Geneva, Switzerland; Hepato-Pancreato-Biliary Centre, Geneva University Hospitals, Geneva, Switzerland.
| |
Collapse
|
22
|
Ide S, Finer G, Maezawa Y, Onay T, Souma T, Scott R, Ide K, Akimoto Y, Li C, Ye M, Zhao X, Baba Y, Minamizuka T, Jin J, Takemoto M, Yokote K, Quaggin SE. Transcription Factor 21 Is Required for Branching Morphogenesis and Regulates the Gdnf-Axis in Kidney Development. J Am Soc Nephrol 2018; 29:2795-2808. [PMID: 30377232 DOI: 10.1681/asn.2017121278] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 09/27/2018] [Indexed: 11/03/2022] Open
Abstract
BACKGROUND The mammalian kidney develops through reciprocal inductive signals between the metanephric mesenchyme and ureteric bud. Transcription factor 21 (Tcf21) is highly expressed in the metanephric mesenchyme, including Six2-expressing cap mesenchyme and Foxd1-expressing stromal mesenchyme. Tcf21 knockout mice die in the perinatal period from severe renal hypodysplasia. In humans, Tcf21 mRNA levels are reduced in renal tissue from human fetuses with renal dysplasia. The molecular mechanisms underlying these renal defects are not yet known. METHODS Using a variety of techniques to assess kidney development and gene expression, we compared the phenotypes of wild-type mice, mice with germline deletion of the Tcf21 gene, mice with stromal mesenchyme-specific Tcf21 deletion, and mice with cap mesenchyme-specific Tcf21 deletion. RESULTS Germline deletion of Tcf21 leads to impaired ureteric bud branching and is accompanied by downregulated expression of Gdnf-Ret-Wnt11, a key pathway required for branching morphogenesis. Selective removal of Tcf21 from the renal stroma is also associated with attenuation of the Gdnf signaling axis and leads to a defect in ureteric bud branching, a paucity of collecting ducts, and a defect in urine concentration capacity. In contrast, deletion of Tcf21 from the cap mesenchyme leads to abnormal glomerulogenesis and massive proteinuria, but no downregulation of Gdnf-Ret-Wnt11 or obvious defect in branching. CONCLUSIONS Our findings indicate that Tcf21 has distinct roles in the cap mesenchyme and stromal mesenchyme compartments during kidney development and suggest that Tcf21 regulates key molecular pathways required for branching morphogenesis.
Collapse
Affiliation(s)
- Shintaro Ide
- Department of Clinical Cell Biology and Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Gal Finer
- Division of Kidney Diseases, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois.,Feinberg Cardiovascular and Renal Research Institute and
| | - Yoshiro Maezawa
- Department of Clinical Cell Biology and Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan;
| | - Tuncer Onay
- Feinberg Cardiovascular and Renal Research Institute and.,Division of Nephrology/Hypertension, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Tomokazu Souma
- Feinberg Cardiovascular and Renal Research Institute and.,Division of Nephrology/Hypertension, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Rizaldy Scott
- Feinberg Cardiovascular and Renal Research Institute and.,Division of Nephrology/Hypertension, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Kana Ide
- Department of Clinical Cell Biology and Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Yoshihiro Akimoto
- Department of Anatomy, Kyorin University School of Medicine, Tokyo, Japan
| | - Chengjin Li
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada; and
| | - Minghao Ye
- Feinberg Cardiovascular and Renal Research Institute and.,Division of Nephrology/Hypertension, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Xiangmin Zhao
- Division of Kidney Diseases, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois.,Feinberg Cardiovascular and Renal Research Institute and
| | - Yusuke Baba
- Department of Clinical Cell Biology and Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan;
| | - Takuya Minamizuka
- Department of Clinical Cell Biology and Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan;
| | - Jing Jin
- Feinberg Cardiovascular and Renal Research Institute and.,Division of Nephrology/Hypertension, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Minoru Takemoto
- Department of Clinical Cell Biology and Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan.,Division of Diabetes, Metabolism and Endocrinology, International University of Health and Welfare, Narita, Japan
| | - Koutaro Yokote
- Department of Clinical Cell Biology and Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Susan E Quaggin
- Feinberg Cardiovascular and Renal Research Institute and .,Division of Nephrology/Hypertension, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| |
Collapse
|
23
|
Sanna-Cherchi S, Westland R, Ghiggeri GM, Gharavi AG. Genetic basis of human congenital anomalies of the kidney and urinary tract. J Clin Invest 2018; 128:4-15. [PMID: 29293093 DOI: 10.1172/jci95300] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The clinical spectrum of congenital anomalies of the kidney and urinary tract (CAKUT) encompasses a common birth defect in humans that has significant impact on long-term patient survival. Overall, data indicate that approximately 20% of patients may have a genetic disorder that is usually not detected based on standard clinical evaluation, implicating many different mutational mechanisms and pathogenic pathways. In particular, 10% to 15% of CAKUT patients harbor an unsuspected genomic disorder that increases risk of neurocognitive impairment and whose early recognition can impact clinical care. The emergence of high-throughput genomic technologies is expected to provide insight into the common and rare genetic determinants of diseases and offer opportunities for early diagnosis with genetic testing.
Collapse
Affiliation(s)
- Simone Sanna-Cherchi
- Division of Nephrology, Department of Medicine, Columbia University College of Physicians and Surgeons, New York, New York, USA
| | - Rik Westland
- Division of Nephrology, Department of Medicine, Columbia University College of Physicians and Surgeons, New York, New York, USA.,Department of Pediatric Nephrology, VU University Medical Center, Amsterdam, Netherlands
| | - Gian Marco Ghiggeri
- Division of Nephrology, Dialysis and Transplantation, Istituto Giannina Gaslini, Genoa, Italy
| | - Ali G Gharavi
- Division of Nephrology, Department of Medicine, Columbia University College of Physicians and Surgeons, New York, New York, USA
| |
Collapse
|
24
|
Lee KH, Gee HY, Shin JI. Genetics of vesicoureteral reflux and congenital anomalies of the kidney and urinary tract. Investig Clin Urol 2017; 58:S4-S13. [PMID: 28612055 PMCID: PMC5468264 DOI: 10.4111/icu.2017.58.s1.s4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Accepted: 03/20/2017] [Indexed: 01/17/2023] Open
Abstract
The definition of congenital anomalies of the kidney and urinary tract (CAKUT) is the disease of structural malformations in the kidney and/or urinary tract containing vesicoureteral reflux (VUR). These anomalies can cause pediatric chronic kidney disease. However, the pathogenesis of CAKUT is not well understood, because identifying the genetic architecture of CAKUT is difficult due to the phenotypic heterogeneity and multifactorial genetic penetrance. We describe the current genetic basis and mechanisms of CAKUT including VUR via approaching the steps and signaling pathways of kidney developmental processes. We also focus on the newly developed strategies and challenges to fully address the role of the associated genes in the pathogenesis of the disease.
Collapse
Affiliation(s)
- Keum Hwa Lee
- Department of Pediatrics, Yonsei University College of Medicine, Seoul, Korea.,Department of Pediatric Nephrology, Severance Children's Hospital, Seoul, Korea.,Institute of Kidney Disease Research, Yonsei University College of Medicine, Seoul, Korea
| | - Heon Yung Gee
- Department of Pharmacology, Brain Korea 21 PLUS Project for Medical Sciences, Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Jae Il Shin
- Department of Pediatrics, Yonsei University College of Medicine, Seoul, Korea.,Department of Pediatric Nephrology, Severance Children's Hospital, Seoul, Korea.,Institute of Kidney Disease Research, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
25
|
Hall G, Routh JC, Gbadegesin RA. Urinary Anomalies in 22q11.2 Deletion (DiGeorge syndrome): From Copy Number Variations to Single-Gene Determinants of Phenotype. Am J Kidney Dis 2017; 70:8-10. [PMID: 28456345 DOI: 10.1053/j.ajkd.2017.03.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 03/06/2017] [Indexed: 11/11/2022]
Affiliation(s)
- Gentzon Hall
- Duke University School of Medicine and Duke University Medical Center, Durham, North Carolina
| | - Jonathan C Routh
- Duke University School of Medicine and Duke University Medical Center, Durham, North Carolina
| | - Rasheed A Gbadegesin
- Duke University School of Medicine and Duke University Medical Center, Durham, North Carolina.
| |
Collapse
|
26
|
Genetics of Congenital Anomalies of the Kidney and Urinary Tract: The Current State of Play. Int J Mol Sci 2017; 18:ijms18040796. [PMID: 28398236 PMCID: PMC5412380 DOI: 10.3390/ijms18040796] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 03/29/2017] [Accepted: 04/07/2017] [Indexed: 01/13/2023] Open
Abstract
Congenital anomalies of the kidney and urinary tract (CAKUT) are the most frequent form of malformation at birth and represent the cause of 40–50% of pediatric and 7% of adult end-stage renal disease worldwide. The pathogenesis of CAKUT is based on the disturbance of normal nephrogenesis, secondary to environmental and genetic causes. Often CAKUT is the first clinical manifestation of a complex systemic disease, so an early molecular diagnosis can help the physician identify other subtle clinical manifestations, significantly affecting the management and prognosis of patients. The number of sporadic CAKUT cases explained by highly penetrant mutations in a single gene may have been overestimated over the years and a genetic diagnosis is missed in most cases, hence the importance of identifying new genetic approaches which can help unraveling the vast majority of unexplained CAKUT cases. The aim of our review is to clarify the current state of play and the future perspectives of the genetic bases of CAKUT.
Collapse
|
27
|
Luna-Antonio BI, Rodriguez-Muñoz R, Namorado-Tonix C, Vergara P, Segovia J, Reyes JL. Gas1 expression in parietal cells of Bowman’s capsule in experimental diabetic nephropathy. Histochem Cell Biol 2017; 148:33-47. [DOI: 10.1007/s00418-017-1550-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/15/2017] [Indexed: 12/25/2022]
|
28
|
Expression and functional activity of bitter taste receptors in primary renal tubular epithelial cells and M-1 cells. Mol Cell Biochem 2017; 428:193-202. [DOI: 10.1007/s11010-016-2929-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2016] [Accepted: 12/21/2016] [Indexed: 10/20/2022]
|
29
|
Chuah JKC, Zink D. Stem cell-derived kidney cells and organoids: Recent breakthroughs and emerging applications. Biotechnol Adv 2016; 35:150-167. [PMID: 28017905 DOI: 10.1016/j.biotechadv.2016.12.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 12/12/2016] [Accepted: 12/17/2016] [Indexed: 02/09/2023]
Abstract
The global rise in the numbers of kidney patients and the shortage in transplantable organs have led to an increasing interest in kidney-specific regenerative therapies, renal disease modelling and bioartificial kidneys. Sources for large quantities of high-quality renal cells and tissues would be required, also for applications in in vitro platforms for compound safety and efficacy screening. Stem cell-based approaches for the generation of renal-like cells and tissues would be most attractive, but such methods were not available until recently. This situation has drastically changed since 2013, and various protocols for the generation of renal-like cells and precursors from pluripotent stem cells (PSC) have been established. The most recent breakthroughs were related to the establishment of various protocols for the generation of PSC-derived kidney organoids. In combination with recent advances in genome editing, bioprinting and the establishment of predictive renal screening platforms this results in exciting new possibilities. This review will give a comprehensive overview over current PSC-based protocols for the generation of renal-like cells, precursors and organoids, and their current and potential applications in regenerative medicine, compound screening, disease modelling and bioartificial organs.
Collapse
Affiliation(s)
- Jacqueline Kai Chin Chuah
- Institute of Bioengineering and Nanotechnology, Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, The Nanos, Singapore 138669, Singapore.
| | - Daniele Zink
- Institute of Bioengineering and Nanotechnology, Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, The Nanos, Singapore 138669, Singapore.
| |
Collapse
|
30
|
Kim CS, Shin DM. Improper hydration induces global gene expression changes associated with renal development in infant mice. GENES AND NUTRITION 2016; 11:28. [PMID: 27785155 PMCID: PMC5072351 DOI: 10.1186/s12263-016-0544-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 10/03/2016] [Indexed: 11/10/2022]
Abstract
BACKGROUND The kidney is a major organ in which fluid balance and waste excretion is regulated. For the kidney to achieve maturity with functions, normal renal developmental processes need to occur. Comprehensive genetic programs underlying renal development during the prenatal period have been widely studied. However, postnatal renal development, from infancy to the juvenile period, has not been studied yet. Here, we investigated whether structural and functional kidney development was still ongoing in early life by analyzing the renal transcriptional networks of infant (4 weeks old) and juvenile (7 weeks old) mice. We further examined the effects of dehydration on kidney development to unravel the mechanistic bases underlying deteriorative impact of pediatric dehydration on renal development. METHODS 3-week-old infant mice that just finished weaning period were provided limited access to a water for fifteen minutes per day for one week (RES 1W) and four weeks (RES 4W) to induce dehydration while control group consumed water ad libitum with free access to the water bottle. Transcriptome analysis was conducted to understand physiological changes during postnatal renal development and dehydration. RESULTS Kidneys in 4-week- and 7-week-old mice showed significantly distinctive functional gene networks. Gene sets related to cell cycle regulators, fetal kidney patterning molecules, and immature basement membrane integrity were upregulated in infantile kidneys while heightened expressions of genes associated with ion transport and drug metabolism were observed in juvenile kidneys. Dehydration during infancy suppressed renal growth by interrupting the SHH signaling pathway, which targets cell cycle regulators. Importantly, it is likely that disruption of the developmental program ultimately led to a decline in gene expression associated with basement membrane integrity. CONCLUSIONS Altogether, we demonstrate transcriptional events during renal development in infancy and show that the impacts of inadequate water intake in the early postnatal state heavily rely on the impairment of normal renal development. Here, we provide a meaningful perspective of renal development in infancy with a molecular and physiological explanation of why infants are more vulnerable to dehydration than adults. These results provide new insights into the molecular effects of dehydration on renal physiology and indicate that optimal nutritional interventions are necessary for pediatric renal development.
Collapse
Affiliation(s)
- Chong-Su Kim
- Department of Food and Nutrition, Seoul National University, Seoul, 08826 South Korea
| | - Dong-Mi Shin
- Department of Food and Nutrition, Seoul National University, Seoul, 08826 South Korea ; Research Institute of Human Ecology, Seoul National University, Seoul, 08826 South Korea
| |
Collapse
|
31
|
Well-organized spheroids as a new platform to examine cell interaction and behaviour during organ development. Cell Tissue Res 2016; 366:601-615. [PMID: 27599480 DOI: 10.1007/s00441-016-2487-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 08/05/2016] [Indexed: 10/21/2022]
Abstract
We present an experimental method allowing the production of three-dimensional organ-like structures, namely microtissues (MTs), in vitro without the need for exogenous extracellular matrix (ECM) or growth factors. Submandibular salivary glands (embryonic day ED14), kidneys (ED13) and lungs (ED13) were harvested from mouse embryos and dissociated into single cells by enzyme treatment. Single cells were seeded into special hanging drop culture plates (InSphero) and cultured for up to 14 days to obtain MTs. This strategy permitted full control of the quantity of seeded cells. The development of the MTs into organs was followed histologically and immunohistochemically. Well-organized epithelial structures surrounded by a basal lamina were formed, as confirmed by transmission electron microscopy. Expression of E-cadherin, vimentin, fibronectin and α-SMA was compared in organs and corresponding MTs by real-time quantitative polymerase chain reaction. Branching morphogenesis was induced in MTs (as shown by histology and immunostaining for fibronectin and perlecan) and was conserved even after 14 days of culture. MTs continued their development and their epithelial structures were comparable with those of the physiological organ at postnatal day 2 (PN2). Expression of aquaporins was investigated to obtain better support for the functional differentiation of epithelial cells. Histogenesis proceeded and led to the start of organogenesis. This experimental model might improve our knowledge of epithelial-mesenchymal histogenesis and can be employed to study development or cellular organization during the embryonic formation of organs.
Collapse
|
32
|
Son HK, Park I, Kim JY, Kim DK, Illeperuma RP, Bae JY, Lee DY, Oh ES, Jung DW, Williams DR, Kim J. A distinct role for interleukin-6 as a major mediator of cellular adjustment to an altered culture condition. J Cell Biochem 2016; 116:2552-62. [PMID: 25939389 PMCID: PMC4832257 DOI: 10.1002/jcb.25200] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 04/14/2015] [Accepted: 04/14/2015] [Indexed: 12/22/2022]
Abstract
Tissue microenvironment adjusts biological properties of different cells by modulating signaling pathways and cell to cell interactions. This study showed that epithelial–mesenchymal transition (EMT)/ mesenchymal–epithelial transition (MET) can be modulated by altering culture conditions. HPV E6/E7‐transfected immortalized oral keratinocytes (IHOK) cultured in different media displayed reversible EMT/MET accompanied by changes in cell phenotype, proliferation, gene expression at transcriptional, and translational level, and migratory and invasive activities. Cholera toxin, a major supplement to culture medium, was responsible for inducing the morphological and biological changes of IHOK. Cholera toxin per se induced EMT by triggering the secretion of interleukin 6 (IL‐6) from IHOK. We found IL‐6 to be a central molecule that modulates the reversibility of EMT based not only on the mRNA level but also on the level of secretion. Taken together, our results demonstrate that IL‐6, a cytokine whose transcription is activated by alterations in culture conditions, is a key molecule for regulating reversible EMT/MET. This study will contribute to understand one way of cellular adjustment for surviving in unfamiliar conditions. J. Cell. Biochem. 116: 2552–2562, 2015. © 2015 The Authors. Journal of Cellular Biochemistry Published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Hwa-Kyung Son
- Department of Dental Hygiene, Division of Health science, Yeungnam University College, Daegu, Korea.,Department of Oral Pathology, Oral Cancer Research Institute, Brain Korea 21 Plus Project, Yonsei University, College of Dentistry, Seoul, Korea
| | - Iha Park
- Chonnam National University Research Institute of Medical Sciences, Gwangju, Korea
| | - Jue Young Kim
- Department of Oral Pathology, Oral Cancer Research Institute, Brain Korea 21 Plus Project, Yonsei University, College of Dentistry, Seoul, Korea
| | - Do Kyeong Kim
- Department of Oral Pathology, Oral Cancer Research Institute, Brain Korea 21 Plus Project, Yonsei University, College of Dentistry, Seoul, Korea
| | - Rasika P Illeperuma
- Department of Medical Laboratory Science, Faculty of Allied Health Sciences, University of Peradeniya, Sri Lanka
| | - Jung Yoon Bae
- Department of Oral Pathology, Oral Cancer Research Institute, Brain Korea 21 Plus Project, Yonsei University, College of Dentistry, Seoul, Korea
| | - Doo Young Lee
- Department of Oral Pathology, Oral Cancer Research Institute, Brain Korea 21 Plus Project, Yonsei University, College of Dentistry, Seoul, Korea
| | - Eun-Sang Oh
- New Drug Targets Laboratory, School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, 500-712, Korea
| | - Da-Woon Jung
- New Drug Targets Laboratory, School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, 500-712, Korea
| | - Darren R Williams
- New Drug Targets Laboratory, School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, 500-712, Korea
| | - Jin Kim
- Department of Oral Pathology, Oral Cancer Research Institute, Brain Korea 21 Plus Project, Yonsei University, College of Dentistry, Seoul, Korea
| |
Collapse
|
33
|
Koun S, Kim JD, Rhee M, Kim MJ, Huh TL. Spatiotemporal expression pattern of the zebrafish aquaporin 8 family during early developmental stages. Gene Expr Patterns 2016; 21:1-6. [PMID: 27264560 DOI: 10.1016/j.gep.2016.06.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 05/31/2016] [Accepted: 06/01/2016] [Indexed: 12/15/2022]
Abstract
Aquaporin 8 (Aqp8) is a transmembrane protein that is selectively permeated by water and some small solutes, and physiologically contributes to acid-base equilibrium in the gastrointestinal tract. Here, we described the characterization and spatiotemporal expression pattern of zebrafish aqp8 (zaqp8) gene family, including zaqp8a.1, zaqp8a.2, and zaqp8b, during the early developmental stages. The expression of zaqp8a.1 started first in the lateral plate mesoderm at the 12-somite stage (ss) and then expanded sequentially to the dorsal aorta, intersegmental blood vessels and then to the dorsal longitudinal anastomotic vessel at 24 h post fertilization (hpf). At 28 hpf, expression of zaqp8a.1 was also detected in the embryonic heart tube. Four days post fertilization (dpf), strong zaqp8a.1 expression was detected in the gastrointestinal tract and liver. By 72 hpf, the expression of zaqp8a.2 was first detected in the primitive gut region but not detected in the liver. The expression of zaqp8b was first detected in the intermediate mesoderm at 10 ss. From 24 hpf to 6 dpf, the proximal convoluted segment of the embryonic kidney was marked by zaqp8b expression Overall, these differential expression patterns of aqp8a.1, aqp8a.2, and aqp8b suggest that they possibly play distinct roles throughout the embryonic development by controlling or maintaining organ-specific cellular water homeostasis. Our study provides new evidence that organogenesis requires differential roles of Aqp8 proteins in zebrafish.
Collapse
Affiliation(s)
- Soonil Koun
- School of Life Sciences and Biotechnology, (BK21 Plus KNU) Creative BioResearch Group, Kyungpook National University, Daegu, 702-701, Republic of Korea; Korea National Research Resource Center of Zebrafish Resource Bank, Kyungpook National University, Daegu, 702-701, Republic of Korea
| | - Jun-Dae Kim
- School of Life Sciences and Biotechnology, (BK21 Plus KNU) Creative BioResearch Group, Kyungpook National University, Daegu, 702-701, Republic of Korea
| | - Myungchull Rhee
- Department of Biological Sciences, College of Bioscience and Biotechnology, Chungnam National University, Daejeon, 305-764, Republic of Korea
| | - Myoung-Jin Kim
- School of Life Sciences and Biotechnology, (BK21 Plus KNU) Creative BioResearch Group, Kyungpook National University, Daegu, 702-701, Republic of Korea
| | - Tae-Lin Huh
- School of Life Sciences and Biotechnology, (BK21 Plus KNU) Creative BioResearch Group, Kyungpook National University, Daegu, 702-701, Republic of Korea; Korea National Research Resource Center of Zebrafish Resource Bank, Kyungpook National University, Daegu, 702-701, Republic of Korea.
| |
Collapse
|
34
|
A Point Mutation in p190A RhoGAP Affects Ciliogenesis and Leads to Glomerulocystic Kidney Defects. PLoS Genet 2016; 12:e1005785. [PMID: 26859289 PMCID: PMC4747337 DOI: 10.1371/journal.pgen.1005785] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 12/12/2015] [Indexed: 01/09/2023] Open
Abstract
Rho family GTPases act as molecular switches regulating actin cytoskeleton dynamics. Attenuation of their signaling capacity is provided by GTPase-activating proteins (GAPs), including p190A, that promote the intrinsic GTPase activity of Rho proteins. In the current study we have performed a small-scale ENU mutagenesis screen and identified a novel loss of function allele of the p190A gene Arhgap35, which introduces a Leu1396 to Gln substitution in the GAP domain. This results in decreased GAP activity for the prototypical Rho-family members, RhoA and Rac1, likely due to disrupted ordering of the Rho binding surface. Consequently, Arhgap35-deficient animals exhibit hypoplastic and glomerulocystic kidneys. Investigation into the cystic phenotype shows that p190A is required for appropriate primary cilium formation in renal nephrons. P190A specifically localizes to the base of the cilia to permit axoneme elongation, which requires a functional GAP domain. Pharmacological manipulations further reveal that inhibition of either Rho kinase (ROCK) or F-actin polymerization is able to rescue the ciliogenesis defects observed upon loss of p190A activity. We propose a model in which p190A acts as a modulator of Rho GTPases in a localized area around the cilia to permit the dynamic actin rearrangement required for cilia elongation. Together, our results establish an unexpected link between Rho GTPase regulation, ciliogenesis and glomerulocystic kidney disease.
Collapse
|
35
|
Quah S, Holland PWH. The Hox cluster microRNA miR-615: a case study of intronic microRNA evolution. EvoDevo 2015; 6:31. [PMID: 26451238 PMCID: PMC4597612 DOI: 10.1186/s13227-015-0027-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 09/25/2015] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Introns represent a potentially rich source of existing transcription for the evolution of novel microRNAs (miRNAs). Within the Hox gene clusters, a miRNA gene, miR-615, is located within the intron of the Hoxc5 gene. This miRNA has a restricted phylogenetic distribution, providing an opportunity to examine the origin and evolution of a new miRNA within the intron of a developmentally-important homeobox gene. RESULTS Alignment and structural analyses show that the sequence is highly conserved across eutherian mammals and absent in non-mammalian tetrapods. Marsupials possess a similar sequence which we predict will not be efficiently processed as a miRNA. Our analyses suggest that transcription of HOXC5 in humans is accompanied by expression of miR-615 in all cases, but that the miRNA can also be transcribed independently of its host gene through the use of an intragenic promoter. We present scenarios for the evolution of miR-615 through intronic exaptation, and speculate on the acquisition of independent transcriptional regulation. Target prediction and transcriptomic analyses suggest that the dominant product of miR-615 is involved in the regulation of growth and a range of developmental processes. CONCLUSIONS The miR-615 gene evolved within the intron of Hoxc5 in the ancestor of placental mammals. Using miR-615 as a case study, we propose a model by which a functional miRNA can emerge within an intron gradually, by selection on secondary structure followed by evolution of an independent miRNA promoter. The location within a Hox gene intron is of particular interest as the miRNA is specific to placental mammals, is co-expressed with its host gene and may share complementary functions.
Collapse
Affiliation(s)
- Shan Quah
- Department of Zoology, University of Oxford, South Parks Road, Oxford, OX1 3PS UK
| | - Peter W. H. Holland
- Department of Zoology, University of Oxford, South Parks Road, Oxford, OX1 3PS UK
| |
Collapse
|
36
|
Westland R, Verbitsky M, Vukojevic K, Perry BJ, Fasel DA, Zwijnenburg PJG, Bökenkamp A, Gille JJP, Saraga-Babic M, Ghiggeri GM, D'Agati VD, Schreuder MF, Gharavi AG, van Wijk JAE, Sanna-Cherchi S. Copy number variation analysis identifies novel CAKUT candidate genes in children with a solitary functioning kidney. Kidney Int 2015; 88:1402-1410. [PMID: 26352300 PMCID: PMC4834924 DOI: 10.1038/ki.2015.239] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Revised: 05/28/2015] [Accepted: 06/12/2015] [Indexed: 12/29/2022]
Abstract
Copy number variations associate with different developmental phenotypes and represent a major cause of congenital anomalies of the kidney and urinary tract (CAKUT). Because rare pathogenic copy number variations are often large and contain multiple genes, identification of the underlying genetic drivers has proven to be difficult. Here we studied the role of rare copy number variations in 80 patients from the KIMONO-study cohort for which pathogenic mutations in three genes commonly implicated in CAKUT were excluded. In total, 13 known or novel genomic imbalances in 11 of 80 patients were absent or extremely rare in 23,362 population controls. To identify the most likely genetic drivers for the CAKUT phenotype underlying these rare copy number variations, we used a systematic in silico approach based on frequency in a large dataset of controls, annotation with publicly available databases for developmental diseases, tolerance and haploinsufficiency scores, and gene expression profile in the developing kidney and urinary tract. Five novel candidate genes for CAKUT were identified that showed specific expression in the human and mouse developing urinary tract. Among these genes, DLG1 and KIF12 are likely novel susceptibility genes for CAKUT in humans. Thus, there is a significant role of genomic imbalance in the determination of kidney developmental phenotypes. Additionally, we defined a systematic strategy to identify genetic drivers underlying rare copy number variations.
Collapse
Affiliation(s)
- Rik Westland
- Division of Nephrology, Columbia University, New York, New York, USA.,Department of Pediatric Nephrology, VU University Medical Center, Amsterdam, The Netherlands
| | - Miguel Verbitsky
- Division of Nephrology, Columbia University, New York, New York, USA
| | - Katarina Vukojevic
- Division of Nephrology, Columbia University, New York, New York, USA.,Department of Anatomy, Histology, and Embryology, School of Medicine, University of Split, Split, Croatia
| | - Brittany J Perry
- Division of Nephrology, Columbia University, New York, New York, USA
| | - David A Fasel
- Division of Nephrology, Columbia University, New York, New York, USA
| | - Petra J G Zwijnenburg
- Department of Clinical Genetics, VU University Medical Center, Amsterdam, The Netherlands
| | - Arend Bökenkamp
- Department of Pediatric Nephrology, VU University Medical Center, Amsterdam, The Netherlands
| | - Johan J P Gille
- Department of Clinical Genetics, VU University Medical Center, Amsterdam, The Netherlands
| | - Mirna Saraga-Babic
- Department of Anatomy, Histology, and Embryology, School of Medicine, University of Split, Split, Croatia
| | - Gian Marco Ghiggeri
- Division of Nephrology, Dialysis, Transplantation, and Laboratory on Pathophysiology of Uremia, Istituto G. Gaslini, Genoa, Italy
| | - Vivette D D'Agati
- Department of Pathology, Columbia University, New York, New York, USA
| | - Michiel F Schreuder
- Department of Pediatric Nephrology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Ali G Gharavi
- Division of Nephrology, Columbia University, New York, New York, USA
| | - Joanna A E van Wijk
- Department of Pediatric Nephrology, VU University Medical Center, Amsterdam, The Netherlands
| | | |
Collapse
|
37
|
Prediction of drug-induced nephrotoxicity and injury mechanisms with human induced pluripotent stem cell-derived cells and machine learning methods. Sci Rep 2015. [PMID: 26212763 PMCID: PMC4515747 DOI: 10.1038/srep12337] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The renal proximal tubule is a main target for drug-induced toxicity. The prediction of proximal tubular toxicity during drug development remains difficult. Any in vitro methods based on induced pluripotent stem cell-derived renal cells had not been developed, so far. Here, we developed a rapid 1-step protocol for the differentiation of human induced pluripotent stem cells (hiPSC) into proximal tubular-like cells. These proximal tubular-like cells had a purity of >90% after 8 days of differentiation and could be directly applied for compound screening. The nephrotoxicity prediction performance of the cells was determined by evaluating their responses to 30 compounds. The results were automatically determined using a machine learning algorithm called random forest. In this way, proximal tubular toxicity in humans could be predicted with 99.8% training accuracy and 87.0% test accuracy. Further, we studied the underlying mechanisms of injury and drug-induced cellular pathways in these hiPSC-derived renal cells, and the results were in agreement with human and animal data. Our methods will enable the development of personalized or disease-specific hiPSC-based renal in vitro models for compound screening and nephrotoxicity prediction.
Collapse
|
38
|
Xu J, Xu PX. Eya-six are necessary for survival of nephrogenic cord progenitors and inducing nephric duct development before ureteric bud formation. Dev Dyn 2015; 244:866-73. [PMID: 25903664 DOI: 10.1002/dvdy.24282] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 04/09/2015] [Accepted: 04/10/2015] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Specification of the metanephric mesenchyme is a central step of kidney development as this mesenchyme promotes nephric duct induction to form a ureteric bud near its caudal end. Before ureteric bud formation, the caudal nephric duct swells to form a pseudostratified epithelial domain that later emerges as the tip of the bud. However, the signals that promote the formation of the transient epithelial domain remain unclear. Here, we investigated the early roles of the mesenchymal factor Six family and its cofactor Eya on the initial induction of nephric duct development. RESULTS The nephrogenic progenitor population is initially present but significantly reduced in mice lacking both Six1 and Six4 and undertakes an abnormal cell death pathway to be completely eliminated by ∼E10.5-E11.0, similar to that observed in Eya1(-/-) embryos. Consequently, the nephric duct fails to be induced to undergo normal proliferation to pseudostratify and form the ureteric bud in Six1(-/-) ;Six4(-/-) or Eya1(-/-) embryos. CONCLUSIONS Our data support a model where Eya-Six may form a complex to regulate nephron progenitor cell development before metanephric specification and are critical mesenchymal factors for inducing nephric duct development.
Collapse
Affiliation(s)
- Jinshu Xu
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Pin-Xian Xu
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York.,Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
39
|
Cui J, Li X, Duan Z, Xue W, Wang Z, Lu S, Lin R, Liu M, Zhu G, Huang JD. Analysis of Kif5b expression during mouse kidney development. PLoS One 2015; 10:e0126002. [PMID: 25885434 PMCID: PMC4401754 DOI: 10.1371/journal.pone.0126002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Accepted: 03/27/2015] [Indexed: 01/05/2023] Open
Abstract
Recent studies showed that kidney-specific inactivation of Kif3a produces kidney cysts and renal failure, suggesting that kinesin-mediated intracellular transportation is important for the establishement and maintenance of renal epithelial cell polarity and normal nephron functions. Kif5b, one of the most conserved kinesin heavy chain, is the mouse homologue of the human ubiquitous Kinesin Heavy Chain (uKHC). In order to elucidate the role of Kif5b in kidney development and function, it is essential to establish its expression profile within the organ. Therefore, in this study, we examined the expression pattern of Kif5b in mouse kidney. Kidneys from embryonic (E) 12.5-, 16.5-dpc (days post coitus) mouse fetuses, from postnatal (P) day 0, 10, 20 pups and from adult mice were collected. The distribution of Kif5b was analyzed by immunostaining. The possible involvement of Kif5b in kidney development was investigated in conditional mutant mice by using a Cre-LoxP strategy. This study showed that the distribution of Kif5b displayed spatiotemporal changes during postnatal kidney development. In kidneys of new born mice, Kif5b was strongly expressed in all developing tubules and in the ureteric bud, but not in the glomerulus or in other early-developing structures, such as the cap mesenchyme, the comma-shaped body, and the S-shaped body. In kidneys of postnatal day 20 or of older mice, however, Kif5b was localized selectively in the basolateral domain of epithelial cells of the thick ascending loop of Henle, as well as of the distal convoluted tubule, with little expression being observed in the proximal tubule or in the collecting duct. Conditional knock-down of Kif5b in mouse kidney did not result in detectable morphological defects, but it did lead to a decrease in cell proliferation rate and also to a mislocalization of Na+/K+/-ATPase, indicating that although Kif5b is non-essential for kidney morphogenesis, it is important for nephron maturation.
Collapse
Affiliation(s)
- Ju Cui
- The Key Laboratory of Geriatrics, Beijing Hospital & Beijing Institute of Geriatrics, Ministry of Health, Beijing, China
- Department of Biochemistry, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- * E-mail: (JC); (JDH)
| | - Xiuling Li
- Department of Biochemistry, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Zhigang Duan
- Department of Anatomy, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Wenqian Xue
- Department of Biochemistry, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Zai Wang
- Department of Biochemistry, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China
| | - Song Lu
- Department of Biochemistry, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Raozhou Lin
- Department of Biochemistry, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Mengfei Liu
- Department of Biochemistry, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Guixia Zhu
- Department of Biochemistry, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Jian-Dong Huang
- Department of Biochemistry, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- The Centre for Synthetic Biology Engineering Research, Shenzhen Institutes of Advanced Technology, Shenzhen, PR China
- * E-mail: (JC); (JDH)
| |
Collapse
|
40
|
Signaling during Kidney Development. Cells 2015; 4:112-32. [PMID: 25867084 PMCID: PMC4493451 DOI: 10.3390/cells4020112] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Revised: 03/24/2015] [Accepted: 03/30/2015] [Indexed: 12/17/2022] Open
Abstract
The kidney plays an essential role during excretion of metabolic waste products, maintenance of key homeostasis components such as ion concentrations and hormone levels. It influences the blood pressure, composition and volume. The kidney tubule system is composed of two distinct cell populations: the nephrons forming the filtering units and the collecting duct system derived from the ureteric bud. Nephrons are composed of glomeruli that filter the blood to the Bowman’s capsule and tubular structures that reabsorb and concentrate primary urine. The collecting duct is a Wolffian duct-derived epithelial tube that concentrates and collects urine and transfers it via the renal pelvis into the bladder. The mammalian kidney function depends on the coordinated development of specific cell types within a precise architectural framework. Due to the availability of modern analysis techniques, the kidney has become a model organ defining the paradigm to study organogenesis. As kidney diseases are a problem worldwide, the understanding of mammalian kidney cells is of crucial importance to develop diagnostic tools and novel therapies. This review focuses on how the pattern of renal development is generated, how the inductive signals are regulated and what are their effects on proliferation, differentiation and morphogenesis.
Collapse
|
41
|
van de Hoek G, Nicolaou N, Giles RH, Knoers NVAM, Renkema KY, Bongers EMHF. Functional models for congenital anomalies of the kidney and urinary tract. Nephron Clin Pract 2014; 129:62-7. [PMID: 25531169 DOI: 10.1159/000369313] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 10/24/2014] [Indexed: 11/19/2022] Open
Abstract
Congenital anomalies of the kidney and urinary tract (CAKUT) constitute one of the most common developmental diseases in humans; however, the cause for most patients remains unknown. Efforts to identify novel genetic causes for CAKUT through next-generation sequencing techniques have led to the discovery of new genes and risk factors. Concomitantly, these same efforts have generated large gene candidate lists requiring individual functional characterization. Appropriate model systems are needed to assess the functionality of genes and pathogenicity of genetic variants discovered in CAKUT patients. In this review, we discuss how cellular, animal, and personal (human) models are being used to study CAKUT candidate genes and what their major advantages and disadvantages are with respect to relevance and throughput.
Collapse
|
42
|
Junttila S, Saarela U, Halt K, Manninen A, Pärssinen H, Lecca MR, Brändli AW, Sims-Lucas S, Skovorodkin I, Vainio SJ. Functional genetic targeting of embryonic kidney progenitor cells ex vivo. J Am Soc Nephrol 2014; 26:1126-37. [PMID: 25201883 DOI: 10.1681/asn.2013060584] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Accepted: 07/23/2014] [Indexed: 01/11/2023] Open
Abstract
The embryonic mammalian metanephric mesenchyme (MM) is a unique tissue because it is competent to generate the nephrons in response to Wnt signaling. An ex vivo culture in which the MM is separated from the ureteric bud (UB), the natural inducer, can be used as a classic tubule induction model for studying nephrogenesis. However, technological restrictions currently prevent using this model to study the molecular genetic details before or during tubule induction. Using nephron segment-specific markers, we now show that tubule induction in the MM ex vivo also leads to the assembly of highly segmented nephrons. This induction capacity was reconstituted when MM tissue was dissociated into a cell suspension and then reaggregated (drMM) in the presence of human recombinant bone morphogenetic protein 7/human recombinant fibroblast growth factor 2 for 24 hours before induction. Growth factor-treated drMM also recovered the capacity for organogenesis when recombined with the UB. Cell tracking and time-lapse imaging of chimeric drMM cultures indicated that the nephron is not derived from a single progenitor cell. Furthermore, viral vector-mediated transduction of green fluorescent protein was much more efficient in dissociated MM cells than in intact mesenchyme, and the nephrogenic competence of transduced drMM progenitor cells was preserved. Moreover, drMM cells transduced with viral vectors mediating Lhx1 knockdown were excluded from the nephric tubules, whereas cells transduced with control vectors were incorporated. In summary, these techniques allow reproducible cellular and molecular examinations of the mechanisms behind nephrogenesis and kidney organogenesis in an ex vivo organ culture/organoid setting.
Collapse
Affiliation(s)
- Sanna Junttila
- Biocenter Oulu, Infotech Oulu, Center for Cell Matrix Research, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Ulla Saarela
- Biocenter Oulu, Infotech Oulu, Center for Cell Matrix Research, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Kimmo Halt
- Biocenter Oulu, Infotech Oulu, Center for Cell Matrix Research, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Aki Manninen
- Biocenter Oulu, Infotech Oulu, Center for Cell Matrix Research, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Heikki Pärssinen
- Biocenter Oulu, Infotech Oulu, Center for Cell Matrix Research, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - M Rita Lecca
- Functional Genomics Center Zurich, University of Zurich/ETH Zurich, Zurich, Switzerland
| | - André W Brändli
- Walter-Brendel-Centre of Experimental Medicine, Ludwig-Maximilians-University of Munich, Munich, Germany; and
| | - Sunder Sims-Lucas
- Rangos Research Center, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Ilya Skovorodkin
- Biocenter Oulu, Infotech Oulu, Center for Cell Matrix Research, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Seppo J Vainio
- Biocenter Oulu, Infotech Oulu, Center for Cell Matrix Research, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland;
| |
Collapse
|
43
|
Urrego Díaz JA, Romero Rueda JD, Landinez Millán G, Lozano Triana CJ, Moreno Gómez LA. Primer caso reportado en Colombia de hipoplasia renal congénita bilateral en dos hermanos. REVISTA DE LA FACULTAD DE MEDICINA 2014. [DOI: 10.15446/revfacmed.v62n2.45419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
44
|
Glomerular development--shaping the multi-cellular filtration unit. Semin Cell Dev Biol 2014; 36:39-49. [PMID: 25153928 DOI: 10.1016/j.semcdb.2014.07.016] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 07/29/2014] [Accepted: 07/31/2014] [Indexed: 01/09/2023]
Abstract
The glomerulus represents a highly structured filtration unit, composed of glomerular endothelial cells, mesangial cells, podocytes and parietal epithelial cells. During glomerulogenesis an intricate network of signaling pathways involving transcription factors, secreted factors and cell-cell communication is required to guarantee accurate evolvement of a functional, complex 3-dimensional glomerular architecture. Here, we want to provide an overview on the critical steps and relevant signaling cascades of glomerular development.
Collapse
|
45
|
Vivante A, Kohl S, Hwang DY, Dworschak GC, Hildebrandt F. Single-gene causes of congenital anomalies of the kidney and urinary tract (CAKUT) in humans. Pediatr Nephrol 2014; 29:695-704. [PMID: 24398540 PMCID: PMC4676405 DOI: 10.1007/s00467-013-2684-4] [Citation(s) in RCA: 138] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Revised: 09/23/2013] [Accepted: 10/25/2013] [Indexed: 12/24/2022]
Abstract
Congenital anomalies of the kidney and urinary tract (CAKUT) cover a wide range of structural malformations that result from defects in the morphogenesis of the kidney and/or urinary tract. These anomalies account for about 40-50 % of children with chronic kidney disease worldwide. Knowledge from genetically modified mouse models suggests that single gene mutations in renal developmental genes may lead to CAKUT in humans. However, until recently, only a handful of CAKUT-causing genes were reported, most of them in familial syndromic cases. Recent findings suggest that CAKUT may arise from mutations in a multitude of different single gene causes. We focus here on single-gene causes of CAKUT and their developmental origin. Currently, more than 20 monogenic CAKUT-causing genes have been identified. High-throughput sequencing techniques make it likely that additional CAKUT-causing genes will be identified in the near future.
Collapse
Affiliation(s)
- Asaf Vivante
- Department of Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
- Talpiot Medical Leadership Program, Sheba Medical Center, Tel-Hashomer, Israel
| | - Stefan Kohl
- Department of Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Daw-Yang Hwang
- Department of Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Gabriel C. Dworschak
- Department of Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Friedhelm Hildebrandt
- Department of Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| |
Collapse
|
46
|
Afrouzian M, Sonstein J, Dadfarnia T, Sreshta JN, Hawkins HK. Four miniature kidneys: supernumerary kidney and multiple organ system anomalies. Hum Pathol 2014; 45:1100-4. [PMID: 24593866 DOI: 10.1016/j.humpath.2013.11.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Revised: 09/24/2013] [Accepted: 11/13/2013] [Indexed: 11/29/2022]
Abstract
More than 350 years after Martius's first reported case in 1656, supernumerary kidney (SNK) continues to fascinate the world of medicine, generating new ideas in the domain of embryogenesis. Association of a normal kidney with a second or third ipsilateral smaller kidney is an extremely rare anomaly with only a total of 81 cases reported until today. We are reporting a case of SNK, clinically diagnosed as right hydronephrosis, associated with an ipsilateral ectopic ureter, a contralateral partially duplicated ureter, and a multiseptate gallbladder. Pathologic examination of the nephrectomy revealed 4 miniature kidneys, joining a dilated ureter through 4 separate conduits. Our patient is the first reported case of SNK with absent ipsilateral normal kidney, presence of more than 3 kidneys on 1 side, and associated anomaly in the gallbladder. This case represents a unique combination of rarities, suggesting insights in the domain of molecular embryology.
Collapse
Affiliation(s)
- Marjan Afrouzian
- Department of Pathology, Division of Surgical Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA.
| | - Joseph Sonstein
- Department of Surgery, Division of Urology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Tahereh Dadfarnia
- Department of Pathology, Division of Surgical Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - J Nicholas Sreshta
- Department of Surgery, Division of Urology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Hal K Hawkins
- Department of Pathology, Division of Surgical Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
| |
Collapse
|
47
|
Xu J, Liu H, Park JS, Lan Y, Jiang R. Osr1 acts downstream of and interacts synergistically with Six2 to maintain nephron progenitor cells during kidney organogenesis. Development 2014; 141:1442-52. [PMID: 24598167 DOI: 10.1242/dev.103283] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Mammalian kidney organogenesis involves reciprocal epithelial-mesenchymal interactions that drive iterative cycles of nephron formation. Recent studies have demonstrated that the Six2 transcription factor acts cell autonomously to maintain nephron progenitor cells, whereas canonical Wnt signaling induces nephron differentiation. How Six2 maintains the nephron progenitor cells against Wnt-directed commitment is not well understood, however. We report here that Six2 is required to maintain expression of Osr1, a homolog of the Drosophila odd-skipped zinc-finger transcription factor, in the undifferentiated cap mesenchyme. Tissue-specific inactivation of Osr1 in the cap mesenchyme caused premature depletion of nephron progenitor cells and severe renal hypoplasia. We show that Osr1 and Six2 act synergistically to prevent premature differentiation of the cap mesenchyme. Furthermore, although both Six2 and Osr1 could form protein interaction complexes with TCF proteins, Osr1, but not Six2, enhances TCF interaction with the Groucho family transcriptional co-repressors. Moreover, we demonstrate that loss of Osr1 results in β-catenin/TCF-mediated ectopic activation of Wnt4 enhancer-driven reporter gene expression in the undifferentiated nephron progenitor cells in vivo. Together, these data indicate that Osr1 plays crucial roles in Six2-dependent maintenance of nephron progenitors during mammalian nephrogenesis by stabilizing TCF-Groucho transcriptional repressor complexes to antagonize Wnt-directed nephrogenic differentiation.
Collapse
Affiliation(s)
- Jingyue Xu
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | | | | | | | | |
Collapse
|
48
|
Conjugated polyelectrolyte materials for promoting progenitor cell growth without serum. Sci Rep 2014; 3:1702. [PMID: 23609105 PMCID: PMC3633151 DOI: 10.1038/srep01702] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Accepted: 04/08/2013] [Indexed: 11/10/2022] Open
Abstract
The discovery of new active biomaterials for promoting progenitor cell growth and differentiation in serum-free medium is still proving more challenging for the clinical treatments of degenerative diseases. In this work, a conjugated polyelectrolyte, polythiophene derivative (PMNT), was discovered to significantly drive the cell cycle progression from G1 to S and G2 phases and thus efficiently promote the cell growth without the need of serum. Furthermore, the fluorescent characteristic of PMNT makes it simultaneously able to trace its cellular uptake and localization by cell imaging. cDNA microarray study shows that PMNT can greatly regulate genes related to cell growth or differentiation. To the best of our knowledge, this is the first example of cell growth or differentiation promotion by polyelectrolyte material without the need of serum, thereby providing an important demonstration of degenerative biomaterial discovery through polymer design.
Collapse
|
49
|
Paroly SS, Wang F, Spraggon L, Merregaert J, Batourina E, Tycko B, Schmidt-Ott KM, Grimmond S, Little M, Mendelsohn C. Stromal protein Ecm1 regulates ureteric bud patterning and branching. PLoS One 2013; 8:e84155. [PMID: 24391906 PMCID: PMC3877229 DOI: 10.1371/journal.pone.0084155] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Accepted: 11/12/2013] [Indexed: 01/28/2023] Open
Abstract
The interactions between the nephrogenic mesenchyme and the ureteric bud during kidney development are well documented. While recent studies have shed some light on the importance of the stroma during renal development, many of the signals generated in the stroma, the genetic pathways and interaction networks involving the stroma are yet to be identified. Our previous studies demonstrate that retinoids are crucial for branching of the ureteric bud and for patterning of the cortical stroma. In the present study we demonstrate that autocrine retinoic acid (RA) signaling in stromal cells is critical for their survival and patterning, and show that Extracellular matrix 1, Ecm1, a gene that in humans causes irritable bowel syndrome and lipoid proteinosis, is a novel RA-regulated target in the developing kidney, which is secreted from the cortical stromal cells surrounding the cap mesenchyme and ureteric bud. Our studies suggest that Ecm1 is required in the ureteric bud for regulating the distribution of Ret which is normally restricted to the tips, as inhibition of Ecm1 results in an expanded domain of Ret expression and reduced numbers of branches. We propose a model in which retinoid signaling in the stroma activates expression of Ecm1, which in turn down-regulates Ret expression in the ureteric bud cleft, where bifurcation normally occurs and normal branching progresses.
Collapse
Affiliation(s)
- Suneeta S. Paroly
- Department of Urology, Irving Cancer Research Center, Columbia University, New York, New York, United States of America
- * E-mail:
| | - Fengwei Wang
- Department of Urology, Irving Cancer Research Center, Columbia University, New York, New York, United States of America
| | - Lee Spraggon
- Department of Urology, Irving Cancer Research Center, Columbia University, New York, New York, United States of America
| | - Joseph Merregaert
- Laboratory of Molecular Biotechnology, Department of Biochemistry, University of Antwerp, Wilrijk, Belgium
| | - Ekatherina Batourina
- Department of Urology, Irving Cancer Research Center, Columbia University, New York, New York, United States of America
| | - Benjamin Tycko
- Institute for Cancer Genetics & Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University, New York, New York, United States of America
| | - Kai M. Schmidt-Ott
- Max-Delbrueck Center for Molecular Medicine Robert-Roessle-Str. Berlin, Germany
| | - Sean Grimmond
- Institute for Molecular Bioscience, The University of Queensland St Lucia QLD, Australia
| | - Melissa Little
- Institute for Molecular Bioscience, The University of Queensland St Lucia QLD, Australia
| | - Cathy Mendelsohn
- Department of Urology, Irving Cancer Research Center, Columbia University, New York, New York, United States of America
| |
Collapse
|
50
|
Westland R, Schreuder MF, van Goudoever JB, Sanna-Cherchi S, van Wijk JAE. Clinical implications of the solitary functioning kidney. Clin J Am Soc Nephrol 2013; 9:978-86. [PMID: 24370773 DOI: 10.2215/cjn.08900813] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Congenital anomalies of the kidney and urinary tract are the major cause of ESRD in childhood. Children with a solitary functioning kidney form an important subgroup of congenital anomalies of the kidney and urinary tract patients, and a significant fraction of these children is at risk for progression to CKD. However, challenges remain in distinguishing patients with a high risk for disease progression from those patients without a high risk of disease progression. Although it is hypothesized that glomerular hyperfiltration in the lowered number of nephrons underlies the impaired renal prognosis in the solitary functioning kidney, the high proportion of ipsilateral congenital anomalies of the kidney and urinary tract in these patients may further influence clinical outcome. Pathogenic genetic and environmental factors in renal development have increasingly been identified and may play a crucial role in establishing a correct diagnosis and prognosis for these patients. With fetal ultrasound now enabling prenatal identification of individuals with a solitary functioning kidney, an early evaluation of risk factors for renal injury would allow for differentiation between patients with and without an increased risk for CKD. This review describes the underlying causes and consequences of the solitary functioning kidney from childhood together with its clinical implications. Finally, guidelines for follow-up of solitary functioning kidney patients are recommended.
Collapse
Affiliation(s)
- Rik Westland
- Departments of Pediatric Nephrology and, §Pediatrics, VU University Medical Center, Amsterdam, The Netherlands;, †Division of Nephrology, Columbia University, New York, New York;, ‡Department of Pediatric Nephrology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands, ‖Department of Pediatrics, Emma Children's Hospital, Amsterdam Medical Center, Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|