1
|
Wang H, Gu Y, Ju C, Li Y, Chen X, Zhou G, Zhang X, Liu C, Chen J, Han Y, Zhang J, Shao Z, Zhang M. Genetic characteristics and potential pathogenic agents in Campylobacter upsaliensis based on genomic analysis. Emerg Microbes Infect 2024; 13:2294857. [PMID: 38085548 PMCID: PMC10810667 DOI: 10.1080/22221751.2023.2294857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 12/11/2023] [Indexed: 01/26/2024]
Abstract
Campylobacter upsaliensis was the most common Campylobacter species in pets' gastrointestinal tracts and has been isolated from patients with bacteremia, hemolytic-uremic syndrome, spontaneous abortion, and Guillain-Barré syndrome. However, the genetic characteristics and the full extent of its significance as a human pathogen remain to be fully understood. This study involved an investigation for genomic analysis of 154 strains from different sources and additional antimicrobial resistance profiles of 26 strains for this species. The genomes contained 1,558-1,971 CDS and the genome sizes were estimated to vary from 1.53 Mb to 1.86 Mb, with an average GC content of 34.71%. The entire analyzed genomes could be divided into three clades (A, B, and C) based on ANI and phylogenomic analysis. Significantly, nearly all strains in Clade B were isolated from patient samples, and the virulence-related sequences FlgD, GmhA, and CdtC might serve as determining factors for the classification of Clade B. Half of the tested isolates had MIC values over 64 μg mL-1 for nalidixic acid, gentamicin, and streptomycin. Isolates from pets in China carried more resistant elements in the genomes. This study both provided a comprehensive profile of C. upsaliensis for its genomic features and suggested some pathogenic agents for human infection with this species.
Collapse
Affiliation(s)
- Hairui Wang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China
| | - Yixin Gu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China
| | - Changyan Ju
- Nanshan Center for Disease Control and Prevention, Shenzhen, People’s Republic of China
| | - Ying Li
- Shunyi District Center for Disease Control and Prevention, Beijing, People’s Republic of China
| | - Xiaoli Chen
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China
| | - Guilan Zhou
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China
| | - Xin Zhang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China
| | - Chang Liu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China
| | - Jing Chen
- Meilianzhonghe Veterinary Hospital Companion Branch, Beijing, People’s Republic of China
| | - Yue Han
- Meilianzhonghe Veterinary Hospital Jingxi Branch, Beijing, People’s Republic of China
| | - Jianzhong Zhang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China
| | - Zhujun Shao
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China
| | - Maojun Zhang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China
| |
Collapse
|
2
|
Gomes CN, Felice AG, Pereira GDN, Ceballos VAS, Soares SDC, Tonani L, Barião PHG, Kress MRVZ, Duque SDS, Balkey M, Allard MW, Falcão JP. Comparative genomics and virulence potential of Campylobacter coli strains isolated from different sources over 25 years in Brazil. BMC Microbiol 2024; 24:512. [PMID: 39614143 DOI: 10.1186/s12866-024-03642-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 11/07/2024] [Indexed: 12/01/2024] Open
Abstract
BACKGROUND Campylobacter spp. have been reported as a common cause of gastroenteritis in humans in many countries. However, in Brazil there is insufficient data to estimate the impact of Campylobacter in public health. In light of the importance of this foodborne pathogen, the aim of this study was to perform comparative analyses on 80 Brazilian Campylobacter coli genomes isolated from human feces, animals, the environment, and food. Methods include Average Nucleotide Identity (ANI), Gegenees, genomic plasticity, presence of pathogenicity, resistance, and metabolic islands. In addition, virulence analysis in Galleria mellonella were also performed for 18 selected C. coli strains. RESULTS The ANI values confirmed that all strains belonged to the C. coli species. Phylogenetic analyses demonstrated the evolutionary relationships among the studied strains, highlighting the genetic diversity among them. The differences in shared and deleted regions of the studied genomes were demonstrated, with 16 genomic islands identified, including 4 metabolic islands, 4 resistance islands, and 8 pathogenicity islands. We detected genes associated with chemotaxis, exotoxin production, antimicrobial resistance, stress response, defense mechanisms, and intracellular survival among these islands, highlighting the pathogenic potential of these strains. Two strains isolated from human and one from animal showed high virulence, killing 100% of Galleria mellonella larvae. Two strains isolated from the environment and two isolated from food killed 70-90% of the larvae and were classified as virulent. Three strains isolated from animal, two from human, two from the environment and one from food killed 30% to 60% of the larvae and were considered of intermediate virulence. Campylobacter jejuni ATCC 33291, one strain isolated from human and one from food killed 10 to 20% of the larvae and were considered of low virulence. One strain isolated from food did not kill any larvae and was considered avirulent. CONCLUSIONS The results obtained highlighted the genetic diversity, pathogenic and virulence potential of many of the C. coli strains studied, contributing for a more complete characterization of this important pathogen recognized as a cause of human gastroenteritis.
Collapse
Affiliation(s)
- Carolina Nogueira Gomes
- Departamento de Análises Clínicas, Toxicológicas E Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto- Universidade de São Paulo, Ribeirão Preto/São Paulo, Brazil
| | - Andrei Giacchetto Felice
- Departamento de Microbiologia, Imunologia E Parasitologia, Instituto de Ciências Biológicas E Naturais, Universidade Federal Do Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| | - Giovana do Nascimento Pereira
- Departamento de Análises Clínicas, Toxicológicas E Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto- Universidade de São Paulo, Ribeirão Preto/São Paulo, Brazil
| | - Victor Augusto Sallum Ceballos
- Departamento de Microbiologia, Imunologia E Parasitologia, Instituto de Ciências Biológicas E Naturais, Universidade Federal Do Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| | - Siomar de Castro Soares
- Departamento de Microbiologia, Imunologia E Parasitologia, Instituto de Ciências Biológicas E Naturais, Universidade Federal Do Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| | - Ludmilla Tonani
- Departamento de Análises Clínicas, Toxicológicas E Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto- Universidade de São Paulo, Ribeirão Preto/São Paulo, Brazil
| | - Patrícia Helena Grizante Barião
- Departamento de Análises Clínicas, Toxicológicas E Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto- Universidade de São Paulo, Ribeirão Preto/São Paulo, Brazil
| | - Márcia Regina von Zeska Kress
- Departamento de Análises Clínicas, Toxicológicas E Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto- Universidade de São Paulo, Ribeirão Preto/São Paulo, Brazil
| | | | - Maria Balkey
- Division of Microbiology, Office of Regulatory Science, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, MD, USA
| | - Marc William Allard
- Division of Microbiology, Office of Regulatory Science, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, MD, USA
| | - Juliana Pfrimer Falcão
- Departamento de Análises Clínicas, Toxicológicas E Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto- Universidade de São Paulo, Ribeirão Preto/São Paulo, Brazil.
| |
Collapse
|
3
|
Adesola RO, Hossain D, Ogundijo OA, Idris I, Hamzat A, Gulumbe BH, Bakre AA, Banwo OG, Lucero-Prisno DE. Challenges, Health Risks and Recommendations on Meat Handling Practices in Africa: A Comprehensive Review. ENVIRONMENTAL HEALTH INSIGHTS 2024; 18:11786302241301991. [PMID: 39575135 PMCID: PMC11580086 DOI: 10.1177/11786302241301991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 11/06/2024] [Indexed: 11/24/2024]
Abstract
Meat handling is a crucial aspect of public health as it forms complex interactions among humans, animals, and the environment. African meat handlers continue to face various challenges in slaughterhouses that significantly impact their lives and the general public during meat processing. This paper reviews the challenges meat handlers encounter and the associated risks of improper meat handling in various African slaughterhouses. A comprehensive literature search was performed on Science Direct, Web of Science, PubMed, Scopus and Google Scholar. Articles published to investigate the challenges and health risks of meat handling practices in Africa from 1961 to 2022 were included in this review. African meat handlers face socio-economic difficulties, including inadequate returns, unpredictable working environment, market, security, and limited healthcare access. Many meat handlers work informally in unregistered facilities and are not trained by experts on proper meat handling. This results in improper meat handling, raising the possibility of meat contamination by foodborne pathogens like Salmonella sp. and E. coli on slaughter and contact surfaces, hence posing a threat to meat safety and public health. We recommended that governmental, institutional and community-level actions should be used to address the health challenges associated with improper meat handling in Africa. Government and institutional bodies play an important role in supporting and upholding the laws that guide proper meat handling and processing. Meat handlers must be educated on meat safety, handling and storage to ensure meat is safe for consumption.
Collapse
Affiliation(s)
- Ridwan Olamilekan Adesola
- Department of Veterinary Medicine, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Delower Hossain
- Department of Medicine and Public Health, Faculty of Animal Science and Veterinary Medicine, Sher-e-Bangla Agricultural University (SAU), Dhaka, Bangladesh
- Department of Veterinary Medicine and Animal Sciences (DIVAS), Università degli Studi di Milano, Lodi, Italy
| | - Oluwaseun Adeolu Ogundijo
- Department of Veterinary Public Health and Preventive Medicine, University of Ibadan, Ibadan, Nigeria
| | - Ibrahim Idris
- Department of Veterinary Medicine, Faculty of Veterinary Medicine, Usmanu Danfodiyo University, Sokoto, Nigeria
| | - Abdulafees Hamzat
- Department of Veterinary Medicine, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Bashar Haruna Gulumbe
- Department of Microbiology, Faculty of Science, Federal University Birnin-Kebbi, Kebbi State, Nigeria
| | - Adetolase Azizat Bakre
- Department of Veterinary Medicine, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Olamilekan Gabriel Banwo
- Department of Veterinary Medicine, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Don Eliseo Lucero-Prisno
- Department of Global Health and Development, London School of Hygiene and Tropical Medicine, London, UK
- Faculty of Management and Development Studies, University of the Philippines Open University, Los Baños, Laguna, Philippines
- Faculty of Public Health, Mahidol University, Bangkok, Thailand
| |
Collapse
|
4
|
Ed-Dra A, Abdallah EM, Sulieman AME, Anarghou H. Harnessing medicinal plant compounds for the control of Campylobacter in foods: a comprehensive review. Vet Res Commun 2024; 48:2877-2900. [PMID: 38954256 DOI: 10.1007/s11259-024-10455-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 06/25/2024] [Indexed: 07/04/2024]
Abstract
Campylobacter is a major foodborne and zoonotic pathogen, causing severe human infections and imposing a substantial economic burden on global public health. The ongoing spread and emergence of multidrug-resistant (MDR) strains across various fields exacerbate therapeutic challenges, raising the incidence of diseases and fatalities. Medicinal plants, renowned for their abundance in secondary metabolites, exhibit proven efficacy in inhibiting various foodborne and zoonotic pathogens, presenting sustainable alternatives to ensure food safety. This review aims to synthesize recent insights from peer-reviewed journals on the epidemiology and antimicrobial resistance of Campylobacter species, elucidate the in vitro antibacterial activity of medicinal plant compounds against Campylobacter by delineating underlying mechanisms, and explore the application of these compounds in controlling Campylobacter in food. Additionally, we discuss recent advancements and future prospects of employing medicinal plant compounds in food products to mitigate foodborne pathogens, particularly Campylobacter. In conclusion, we argue that medicinal plant compounds can be used as effective and sustainable sources for developing new antimicrobial alternatives to counteract the dissemination of MDR Campylobacter strains.
Collapse
Affiliation(s)
- Abdelaziz Ed-Dra
- Laboratory of Engineering and Applied Technologies, Higher School of Technology, M'ghila Campus, Sultan Moulay Slimane University, Beni Mellal, 23000, Morocco.
- Team of Microbiology and Health, Laboratory of Chemistry-Biology Applied to the Environment, Faculty of Science, Moulay Ismail University, Zitoune, Meknes, 50000, Morocco.
| | - Emad M Abdallah
- Department of Biology, College of Science, Qassim University, Qassim, 51452, Saudi Arabia
- Faculty of Health and Life Sciences, INTI International University, Persiaran Perdana BBN, Putra Nilai, Nilai, Negeri Sembilan, 71800, Malaysia
| | | | - Hammou Anarghou
- Biological Engineering Laboratory, Faculty of Sciences and Techniques, Sultan Moulay Slimane University, Beni Mellal, 23000, Morocco
- High Institute of Nursing Professions and Health Techniques Dakhla Annex, Dakhla, Morocco
| |
Collapse
|
5
|
Miller WG, Chapman MH, Williams TG, Wood DF, Bono JL, Kelly DJ. Campylobacter californiensis sp. nov., isolated from cattle and feral swine. Int J Syst Evol Microbiol 2024; 74:006524. [PMID: 39374062 PMCID: PMC11457942 DOI: 10.1099/ijsem.0.006524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 09/03/2024] [Indexed: 10/08/2024] Open
Abstract
Nine Campylobacter strains were isolated from cattle and feral swine faeces: three were recovered during a 2007 Campylobacter-associated outbreak linked to a dairy, and the other six were isolated during a 2009-2010 survey of farms and ranches in Central California. The species identification of these strains could not be determined by 16S rRNA gene sequencing but were most similar to Campylobacter concisus and Campylobacter mucosalis. Additional atpA typing indicated that the nine strains composed a discrete novel clade related to C. concisus and C. mucosalis. A polyphasic study was undertaken here to clarify their taxonomic position. Phylogenetic analyses were performed based on 16S rRNA gene sequences and the concatenated sequences of 330 core genes. The core gene analysis placed the nine strains into a clade well separated from the other Campylobacter taxa, indicating that these strains represent a novel Campylobacter species. Pairwise digital DNA-DNA hybridization and average nucleotide identity values between these strains and other campylobacters are lower than 16 and 73%, respectively, further supporting their placement into a novel taxon. Standard phenotypic testing was performed. All strains are microaerobic or anaerobic, motile, Gram-negative, slightly-curved rods that are oxidase positive but catalase negative. Strains can be distinguished from the other catalase-negative Campylobacter species using phenotypic markers such as motility, oxidase activity, cephalothin resistance, hippuricase activity, growth at 30 °C, and α-haemolysis. The data presented here show that these strains represent a novel species within Campylobacter, for which the name Campylobacter californiensis sp. nov. (type strain RM6914T=LMG 32304T=CCUG 75329T) is proposed.
Collapse
Affiliation(s)
- William G. Miller
- Produce Safety and Microbiology Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Albany, CA, USA
| | - Mary H. Chapman
- Produce Safety and Microbiology Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Albany, CA, USA
| | - Tina G. Williams
- Bioproducts Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Albany, CA, USA
| | - Delilah F. Wood
- Bioproducts Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Albany, CA, USA
| | - James L. Bono
- Meat Safety and Quality Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Clay Center, NE, USA
| | - David J. Kelly
- School of Biosciences, The University of Sheffield, Sheffield, UK
| |
Collapse
|
6
|
Lu Q, Zhu R, Zhou L, Zhang R, Li Z, Xu P, Wang Z, Wu G, Ren J, Jiao D, Song Y, Li J, Wang W, Liang R, Ma X, Sun Y. Gut dysbiosis contributes to the development of Budd-Chiari syndrome through immune imbalance. mSystems 2024; 9:e0079424. [PMID: 39166878 PMCID: PMC11406926 DOI: 10.1128/msystems.00794-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 07/17/2024] [Indexed: 08/23/2024] Open
Abstract
Budd-Chiari syndrome (B-CS) is a rare and lethal condition characterized by hepatic venous outflow tract blockage. Gut microbiota has been linked to numerous hepatic disorders, but its significance in B-CS pathogenesis is uncertain. First, we performed a case-control study (Ncase = 140, Ncontrol = 63) to compare the fecal microbiota of B-CS and healthy individuals by metagenomics sequencing. B-CS patients' gut microbial composition and activity changed significantly, with a different metagenomic makeup, increased potentially pathogenic bacteria, including Prevotella, and disease-linked microbial function. Imbalanced cytokines in patients were demonstrated to be associated with gut dysbiosis, which led us to suspect that B-CS is associated with gut microbiota and immune dysregulation. Next, 16S ribosomal DNA sequencing on fecal microbiota transplantation (FMT) mice models examined the link between gut dysbiosis and B-CS. FMT models showed damaged liver tissues, posterior inferior vena cava, and increased Prevotella in the disturbed gut microbiota of FMT mice. Notably, B-CS-FMT impaired the morphological structure of colonic tissues and increased intestinal permeability. Furthermore, a significant increase of the same cytokines (IL-5, IL-6, IL-9, IL-10, IL-17A, IL-17F, and IL-13) and endotoxin levels in B-CS-FMT mice were observed. Our study suggested that gut microbial dysbiosis may cause B-CS through immunological dysregulation. IMPORTANCE This study revealed that gut microbial dysbiosis may cause Budd-Chiari syndrome (B-CS). Gut dysbiosis enhanced intestinal permeability, and toxic metabolites and imbalanced cytokines activated the immune system. Consequently, the escalation of causative factors led to their concentration in the portal vein, thereby compromising both the liver parenchyma and outflow tract. Therefore, we proposed that gut microbial dysbiosis induced immune imbalance by chronic systemic inflammation, which contributed to the B-CS development. Furthermore, Prevotella may mediate inflammation development and immune imbalance, showing potential in B-CS pathogenesis.
Collapse
Affiliation(s)
- Qinwei Lu
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Institute of Hepatobiliary and Pancreatic Diseases, Zhengzhou University, Zhengzhou, China
- Key Lab of Hepatobiliary and Pancreatic Diseases, Zhengzhou, China
| | - Rongtao Zhu
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Institute of Hepatobiliary and Pancreatic Diseases, Zhengzhou University, Zhengzhou, China
- Key Lab of Hepatobiliary and Pancreatic Diseases, Zhengzhou, China
| | - Lin Zhou
- Institute of Hepatobiliary and Pancreatic Diseases, Zhengzhou University, Zhengzhou, China
- Key Lab of Hepatobiliary and Pancreatic Diseases, Zhengzhou, China
- Department of Gastroenterology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ruifang Zhang
- Department of Ultrasound Diagnosis, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhen Li
- Department of Endovascular Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Peng Xu
- Department of Interventional Radiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhiwei Wang
- Department of Interventional Radiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Gang Wu
- Department of Vascular Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jianzhuang Ren
- Department of Vascular Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Dechao Jiao
- Department of Vascular Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yan Song
- Department of Vascular Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jian Li
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Institute of Hepatobiliary and Pancreatic Diseases, Zhengzhou University, Zhengzhou, China
- Key Lab of Hepatobiliary and Pancreatic Diseases, Zhengzhou, China
| | - Weijie Wang
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Institute of Hepatobiliary and Pancreatic Diseases, Zhengzhou University, Zhengzhou, China
- Key Lab of Hepatobiliary and Pancreatic Diseases, Zhengzhou, China
| | - Ruopeng Liang
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Institute of Hepatobiliary and Pancreatic Diseases, Zhengzhou University, Zhengzhou, China
- Key Lab of Hepatobiliary and Pancreatic Diseases, Zhengzhou, China
| | - Xiuxian Ma
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Institute of Hepatobiliary and Pancreatic Diseases, Zhengzhou University, Zhengzhou, China
- Key Lab of Hepatobiliary and Pancreatic Diseases, Zhengzhou, China
| | - Yuling Sun
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Institute of Hepatobiliary and Pancreatic Diseases, Zhengzhou University, Zhengzhou, China
- Key Lab of Hepatobiliary and Pancreatic Diseases, Zhengzhou, China
| |
Collapse
|
7
|
Arbour CA, Vuksanovic N, Allen KN, Imperiali B. Dual Glycosyltransferases from Campylobacter concisus Diverge from the Canonical Campylobacter N-Linked Glycan Assembly Pathway. Biochemistry 2024; 63:2369-2379. [PMID: 39192839 DOI: 10.1021/acs.biochem.4c00351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
Species within the Campylobacter genus are recognized as emerging human pathogens. Common to all known members of the genus is the presence of an asparagine-linked glycosylation pathway encoded by the pgl operon. Campylobacter species are divided into two major groups, Group I and Group II. To date, most biochemical studies have focused on the Group I species including Campylobacter jejuni. We recently reported that the Group II Campylobacter concisus pathway deviates from that of Group I by the inclusion of a C-6″-oxidized GalNAc (GalNAcA) at the third position installed by PglJ. Herein, we investigate the diversification of the PglH enzymes that act subsequent to installation of GalNAcA. The majority of pgl operons from Group II species, including C. concisus, encode two GT-B fold glycosyltransferases (GTs), PglH1 and PglH2. As the functions of these GTs were not clear by simple comparison of their sequences to that of C. jejuni PglH, further analyses were required. We show that subsequent to the action of PglJ, PglH2 installs the next HexNAc followed by PglH1 adding a single sugar. These steps diverge from the C. jejuni pathway not only in the identity of the sugar donors (UDP-GlcNAc) but also in installing single sugars rather than acting processively. These biochemical studies were extended via bioinformatics to identify sequence signatures that provide predictive capabilities for unraveling the prokaryotic glycan landscape. Phylogenetic analysis showed early divergence between the C. jejuni PglH orthologs and C. concisus PglH1/PglH2 orthologs, leading to diversification of the final glycan.
Collapse
Affiliation(s)
- Christine A Arbour
- Department of Biology, Massachusetts Institute of Technology, 31 Ames St, Cambridge, Massachusetts 02139, United States
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, Massachusetts 02139, United States
| | - Nemanja Vuksanovic
- Department of Chemistry, Boston University, 590 Commonwealth Ave, Boston, Massachusetts 02215, United States
| | - Karen N Allen
- Department of Chemistry, Boston University, 590 Commonwealth Ave, Boston, Massachusetts 02215, United States
| | - Barbara Imperiali
- Department of Biology, Massachusetts Institute of Technology, 31 Ames St, Cambridge, Massachusetts 02139, United States
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
8
|
Abay M, Abay S, Müştak HK, Diker KS, Gümüşsoy KS, Satıcıoğlu İB, Aydın F. Investigation of Aliarcobacter spp. and Campylobacter spp. in uterine contents of cows: Antibacterial susceptibility and phylogenetic analysis of the isolates. Microb Pathog 2024; 194:106810. [PMID: 39029598 DOI: 10.1016/j.micpath.2024.106810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 06/09/2024] [Accepted: 07/17/2024] [Indexed: 07/21/2024]
Abstract
The study aimed to isolate and identify Aliarcobacter spp. and Campylobacter spp. from the uterine contents of cows and to determine the susceptibilities of the isolates to various antibiotics. For this purpose, a total of 63 cows (with repeat breeder, metritis, and healthy) uterine contents were collected from a slaughterhouse. Pre-enrichment and membrane filtration methods were used to isolate Aliarcobacter and Campylobacter spp., and phenotypic and molecular methods were used to identify the isolates. Antibacterial susceptibilities of the isolates were determined by the disc diffusion method. A total of 11 (17.46 %, 11/63) samples were found positive for both genera, and 12 isolates were obtained from these samples. Out of 9 Campylobacter isolates, 5, 3, and 1 were identified as C. jejuni, C. sputorum, and C. hyointestinalis, respectively. Also, two and one of Aliarcobacter spp. isolates were identified as Aliarcobacter sp. and A. butzleri, respectively. All isolates of both genera were found to be sensitive to amoxicillin-clavulanic acid, ampicillin, erythromycin, and enrofloxacin and resistant to trimethoprim + sulfamethoxazole. This is the first study that reported on the isolation of C. hyointestinalis from cattle uterine contents. It was concluded that Campylobacter and Aliarcobacter species should be considered among the most important etiological agents in uterine infections that cause infertility in cows. The isolation of Aliarcobacter and Campylobacter spp. from healthy cow uteri within the scope of this study suggests the possibility that these agents could colonize the uterus, similar to the colonization observed in the intestine and gallbladder.
Collapse
Affiliation(s)
- Murat Abay
- Erciyes University, Faculty of Veterinary Medicine, Department of Obstetrics and Gynecology, TR-38280, Kayseri, Turkey
| | - Seçil Abay
- Erciyes University, Faculty of Veterinary Medicine, Department of Microbiology, TR-38280, Kayseri, Turkey.
| | - Hamit Kaan Müştak
- Ankara University, Faculty of Veterinary Medicine, Department of Microbiology, TR-06070, Ankara, Turkey
| | - Kadir Serdar Diker
- Aydın Adnan Menderes University, Faculty of Veterinary Medicine, Department of Microbiology, TR-09020, Aydın, Turkey
| | - Kadir Semih Gümüşsoy
- Erciyes University, Faculty of Veterinary Medicine, Department of Microbiology, TR-38280, Kayseri, Turkey; Erciyes Technopark Co., Sistem Veterinary Laboratory Services Ltd., TR-38039, Kayseri, Turkey
| | - İzzet Burçin Satıcıoğlu
- Uludağ University, Faculty of Veterinary Medicine, Department of Aquatic Animal Diseases, TR-16059, Bursa, Turkey
| | - Fuat Aydın
- Erciyes University, Faculty of Veterinary Medicine, Department of Microbiology, TR-38280, Kayseri, Turkey
| |
Collapse
|
9
|
Abu-Halaweh M, Al-Bsoul E. Quadruplex qPCR for detection and discrimination of C. Coli,C. fetus, and C. Jejuni from other Campylobacter species in chicken and sheep meat. Braz J Microbiol 2024; 55:2547-2556. [PMID: 38977544 PMCID: PMC11405656 DOI: 10.1007/s42770-024-01437-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 06/24/2024] [Indexed: 07/10/2024] Open
Abstract
Campylobacter is gram-negative bacteria considered the predominant genera isolated from poultry samples and associated with gastroenteritis. Due to the problems in conventional cultural methods of time-consuming and technically demanding requirements, a rapid and feasible method for their identification and discrimination of the closely related spp. Including Campylobacter coli, Campylobacter fetus, and Campylobacter jejuni is needed. This study analyzes the chicken and sheep meats samples (n = 125) using culture and pre-enrichment-based Quadraplex real-time PCR by targeting OrfA, CstA, HipO, and 16 S rRNA genes of C. coli, C. fetus, C. jejuni and Campylobacter spp. Respectively. The analysis of 125 chicken and sheep meat samples by culture and real-time PCR showed high concordance between the results of the two methods. The present study show high prevalence of Campylobacter species (35% and 32% from chicken and meat respectively) of which C. jejuni were the most abundant. Reaction efficiencies were between 90 and 110%, and detect as low as 8.9 fg in C. jejuni. The need for quick detection and discrimination methods in sheep and chicken meat can be met using the described Quadraplex real-time PCR methodology.
Collapse
Affiliation(s)
- Marwan Abu-Halaweh
- Department of Biotechnology and Genetic Engineering, Philadelphia University, Amman, Jordan.
| | - Eman Al-Bsoul
- Department of Biotechnology and Genetic Engineering, Philadelphia University, Amman, Jordan
| |
Collapse
|
10
|
Wei HL, Liao YS, Chen BH, Teng RH, Wang YW, Chang JH, Chiou CS. Antimicrobial resistance and genetic relatedness among Campylobacter coli and Campylobacter jejuni from humans and retail chicken meat in Taiwan. J Glob Antimicrob Resist 2024; 38:27-34. [PMID: 38821444 DOI: 10.1016/j.jgar.2024.05.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 04/19/2024] [Accepted: 05/17/2024] [Indexed: 06/02/2024] Open
Abstract
OBJECTIVES Campylobacter is a significant zoonotic pathogen primarily transmitted through poultry. Our study aimed to assess antimicrobial resistance and genetic relationships among Campylobacter isolates from retail chicken meat and humans in Taiwan. METHODS Campylobacter isolates were analysed using whole-genome sequencing to investigate their antimicrobial resistance, genetic determinants of resistance, and genotypes. RESULTS Campylobacter coli and Campylobacter jejuni accounted for 44.9% and 55.1% of chicken meat isolates, and 11.4% and 88.6% of human isolates, respectively. C. coli displayed significantly higher resistance levels. Furthermore, isolates from chicken meat exhibited higher levels of resistance to most tested antimicrobials compared to isolates from humans. Multidrug resistance was observed in 96.3% of C. coli and 43.3% of C. jejuni isolates from chicken meat and 80.6% of C. coli and 15.8% of C. jejuni isolates from humans. Macrolide resistance was observed in 85.5% of C. coli isolates, primarily attributed to the erm(B) rather than the A2075G mutation in 23S rRNA. Among the 511 genomes, we identified 133 conventional MLST sequence types, indicating significant diversity among Campylobacter strains. Notably, hierarchical Core-genome multilocus sequence typing clustering, including HC0, HC5, and HC10, revealed a significant proportion of closely related isolates from chicken meat and humans. CONCLUSIONS Our research highlights significant associations in antimicrobial resistance and genetic relatedness between Campylobacter isolates from chicken meat and humans in Taiwan. The genetic analysis data suggest that campylobacteriosis outbreaks may occur more frequently in Taiwan than previously assumed. Our study emphasizes the need for strategies to control multidrug-resistant strains and enhance outbreak prevention.
Collapse
Affiliation(s)
- Hsiao-Lun Wei
- Center for Diagnostics and Vaccine Development, Centers for Disease Control, Taipei, Taiwan
| | - Ying-Shu Liao
- Center for Diagnostics and Vaccine Development, Centers for Disease Control, Taipei, Taiwan
| | - Bo-Han Chen
- Center for Diagnostics and Vaccine Development, Centers for Disease Control, Taipei, Taiwan
| | - Ru-Hsiou Teng
- Center for Diagnostics and Vaccine Development, Centers for Disease Control, Taipei, Taiwan
| | - You-Wun Wang
- Center for Diagnostics and Vaccine Development, Centers for Disease Control, Taipei, Taiwan
| | - Jui-Hsien Chang
- Center for Diagnostics and Vaccine Development, Centers for Disease Control, Taipei, Taiwan
| | - Chien-Shun Chiou
- Center for Diagnostics and Vaccine Development, Centers for Disease Control, Taipei, Taiwan.
| |
Collapse
|
11
|
Alvarado-Melendez EI, de Jong H, Hartman JEM, Ong JY, Wösten MMSM, Wennekes T. Glycoengineering with neuraminic acid analogs to label lipooligosaccharides and detect native sialyltransferase activity in gram-negative bacteria. Glycobiology 2024; 34:cwae071. [PMID: 39244665 DOI: 10.1093/glycob/cwae071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/27/2024] [Accepted: 09/06/2024] [Indexed: 09/10/2024] Open
Abstract
Lipooligosaccharides are the most abundant cell surface glycoconjugates on the outer membrane of Gram-negative bacteria. They play important roles in host-microbe interactions. Certain Gram-negative pathogenic bacteria cap their lipooligosaccharides with the sialic acid, N-acetylneuraminic acid (Neu5Ac), to mimic host glycans that among others protects these bacteria from recognition by the hosts immune system. This process of molecular mimicry is not fully understood and remains under investigated. To explore the functional role of sialic acid-capped lipooligosaccharides at the molecular level, it is important to have tools readily available for the detection and manipulation of both Neu5Ac on glycoconjugates and the involved sialyltransferases, preferably in live bacteria. We and others have shown that the native sialyltransferases of some Gram-negative bacteria can incorporate extracellular unnatural sialic acid nucleotides onto their lipooligosaccharides. We here report on the expanded use of native bacterial sialyltransferases to incorporate neuraminic acids analogs with a reporter group into the lipooligosaccharides of a variety of Gram-negative bacteria. We show that this approach offers a quick strategy to screen bacteria for the expression of functional sialyltransferases and the ability to use exogenous CMP-Neu5Ac to decorate their glycoconjugates. For selected bacteria we also show this strategy complements two other glycoengineering techniques, Metabolic Oligosaccharide Engineering and Selective Exo-Enzymatic Labeling, and that together they provide tools to modify, label, detect and visualize sialylation of bacterial lipooligosaccharides.
Collapse
Affiliation(s)
- Erianna I Alvarado-Melendez
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomedical Research, Utrecht University, Universiteitsweg 99, 3584CG, Utrecht, The Netherlands
| | - Hanna de Jong
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomedical Research, Utrecht University, Universiteitsweg 99, 3584CG, Utrecht, The Netherlands
| | - Jet E M Hartman
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomedical Research, Utrecht University, Universiteitsweg 99, 3584CG, Utrecht, The Netherlands
| | - Jun Yang Ong
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomedical Research, Utrecht University, Universiteitsweg 99, 3584CG, Utrecht, The Netherlands
| | - Marc M S M Wösten
- Department of Biomolecular Health Sciences, Division Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584CL, Utrecht, The Netherlands
| | - Tom Wennekes
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomedical Research, Utrecht University, Universiteitsweg 99, 3584CG, Utrecht, The Netherlands
| |
Collapse
|
12
|
Parzygnat JL, Dunn RR, Koci MD, Crespo R, Harden L, Thakur S. Fluoroquinolone-resistant Campylobacter in backyard and commercial broiler production systems in the United States. JAC Antimicrob Resist 2024; 6:dlae102. [PMID: 38974944 PMCID: PMC11227224 DOI: 10.1093/jacamr/dlae102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 06/13/2024] [Indexed: 07/09/2024] Open
Abstract
Objectives Campylobacter spp. are one of the leading foodborne pathogens in the world, and chickens are a known reservoir. This is significant considering broiler chicken is the top consumed meat worldwide. In the USA, backyard poultry production is increasing, but little research has been done to investigate prevalence and antimicrobial resistance associated with Campylobacter in these environments. Methods Our study encompasses a farm-to-genome approach to identify Campylobacter and investigate its antimicrobial resistance phenotypically and genotypically. We travelled to 10 backyard and 10 integrated commercial broiler farms to follow a flock throughout production. We sampled at days 10, 31 and 52 for backyard and 10, 24 and 38 for commercial farms. Bird faecal (n = 10) and various environmental samples (soil n = 5, litter/compost n = 5, and feeder and waterer swabs n = 6) were collected at each visit and processed for Campylobacter. Results Our results show a higher prevalence of Campylobacter in samples from backyard farms (21.9%) compared to commercial (12.2%). Most of our isolates were identified as C. jejuni (70.8%) and the remainder as C. coli (29.2%). Antimicrobial susceptibility testing reveals phenotypic resistance to ciprofloxacin (40.2%), an important treatment drug for Campylobacter infection, and tetracycline (46.6%). A higher proportion of resistance was found in C. jejuni isolates and commercial farms. Whole-genome sequencing revealed resistance genes, such as tet(O) and gyrA_T86I point mutation, that may confer resistance. Conclusion Overall, our research emphasizes the need for interventions to curb prevalence of resistant Campylobacter spp. on broiler production systems.
Collapse
Affiliation(s)
- Jessica L Parzygnat
- Department of Population Health and Pathobiology, North Carolina State University, College of Veterinary Medicine, Raleigh, NC, USA
| | - Robert R Dunn
- Department of Applied Ecology, North Carolina State University, Raleigh, NC, USA
| | - Matthew D Koci
- Prestage Department of Poultry Science, North Carolina State University, Raleigh, NC, USA
| | - Rocio Crespo
- Department of Population Health and Pathobiology, North Carolina State University, College of Veterinary Medicine, Raleigh, NC, USA
| | - Lyndy Harden
- Department of Population Health and Pathobiology, North Carolina State University, College of Veterinary Medicine, Raleigh, NC, USA
| | - Siddhartha Thakur
- Department of Population Health and Pathobiology, North Carolina State University, College of Veterinary Medicine, Raleigh, NC, USA
| |
Collapse
|
13
|
Zhang L, Shao Y, Li Y, Li S, Lou H, Hu Y, Shao P, Liu X, Wu Y, Zhang Y, Song T, Fang L. Epidemiological and molecular investigations of sequential outbreaks of Campylobacter jejuni infecting adults and schoolchildren in southeastern China, 2021-2022. Int J Infect Dis 2024; 144:107055. [PMID: 38723889 DOI: 10.1016/j.ijid.2024.107055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 04/06/2024] [Accepted: 04/10/2024] [Indexed: 05/25/2024] Open
Abstract
OBJECTIVES To investigate cases of five Campylobacter jejuni outbreaks and describe laboratory characteristics of these infections. METHODS Whole-genome sequencing and conventional methods were combined to thoroughly investigate the outbreaks, and data of contemporaneous sporadic cases was included for comparison. RESULTS Seven sequence types (STs) of C. jejuni caused 83 cases, including ST9079 which recurred across 2 years. Trace-back investigation could not identify any food items of infection but detected identical campylobacters from food contacts. Phylogenetic analysis unveiled genetic closeness between outbreak strains and some concurrent sporadic strains, indicating local campylobacteriosis may not be wholly sporadic but rather a series of linked cases. Virulence genes disclosed species/case-specific signatures to differentiate outbreaks from truly non-outbreak strains. Resistance to fluoroquinolones and/or macrolides was prevalent (90.8%, 108/119), with a noteworthy portion exhibiting multidrug resistance (31.1%, 37/119). Five types of plasmids were harbored among outbreak isolates, of which one plasmid harboring anti-stress and resistant genes was rarely found in C. jejuni. CONCLUSIONS This is the first reported sequential outbreak of C. jejuni in China. Our observations help to define the genomic landscape and antimicrobial resistance patterns of Campylobacter, emphasizing the need for a broader 'One Health' perspective to combat the threats posed by campylobacteriosis.
Collapse
Affiliation(s)
- Leyi Zhang
- Wenzhou Center for Disease Control and Prevention, Wenzhou, China
| | - Yongqiang Shao
- Wenzhou Center for Disease Control and Prevention, Wenzhou, China
| | - Yi Li
- Wenzhou Center for Disease Control and Prevention, Wenzhou, China
| | - Shengkai Li
- MOE Key Laboratory of Geriatric Diseases and Immunology, Pasteurien College, Suzhou Medical College, Soochow University, Suzhou, China
| | - Huihuang Lou
- Wenzhou Center for Disease Control and Prevention, Wenzhou, China
| | - Yuqin Hu
- Wenzhou Center for Disease Control and Prevention, Wenzhou, China
| | - Panchi Shao
- Wenzhou Center for Disease Control and Prevention, Wenzhou, China
| | - Xuewei Liu
- Wenzhou Center for Disease Control and Prevention, Wenzhou, China
| | - Yuejin Wu
- Wenzhou Center for Disease Control and Prevention, Wenzhou, China
| | - Yuwen Zhang
- School of Public Health, Hangzhou Medical College, Hangzhou, China
| | - Tiejun Song
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, Zhejiang University College of Medicine, Hangzhou, China
| | - Lei Fang
- Department of Critical Care Medicine, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China.
| |
Collapse
|
14
|
Gharbi M, Tiss R, Chaouch M, Hamrouni S, Maaroufi A. Emergence of Plasmid-Mediated Quinolone Resistance (PMQR) Genes in Campylobacter coli in Tunisia and Detection of New Sequence Type ST13450. Antibiotics (Basel) 2024; 13:527. [PMID: 38927193 PMCID: PMC11200561 DOI: 10.3390/antibiotics13060527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 05/24/2024] [Accepted: 05/31/2024] [Indexed: 06/28/2024] Open
Abstract
The aim of this study is to investigate the occurrence of plasmid mediated quinolone resistance (PMQR) determinants in Campylobacter coli isolates collected from broilers, laying hens and poultry farm environments. One hundred and thirty-nine C. coli isolates were isolated from broilers (n = 41), laying hens (n = 53), eggs (n = 4) and the environment (n = 41) of 23 poultry farms located in northeastern of Tunisia. Antimicrobial susceptibility testing was performed on all isolates according to the recommendation of the European Committee on Antimicrobial Susceptibility Testing guidelines. The detection of PMQR genes: qnrA, qnrB, qnrC, qnrD, qnrS, qepA, and aac(6)-Ib gene was performed using polymerase chain reaction (PCR) and specific primers. aac(6')-Ib amplicons were further analyzed by digestion with BtsCI to identify the aac(6')-Ib-cr variant. Mutations in GyrA and the occurrence of RE-CmeABC efflux pump were determined by mismatch amplification mutation assay (MAMA) PCR and PCR, respectively. In addition, eleven isolates were selected to determine their clonal lineage by MLST. The 139 C. coli isolates were resistant to ciprofloxacin, and 86 (61.8%) were resistant to nalidixic acid. High rates of resistance were also observed toward erythromycin (100%), azithromycin (96.4%), tetracycline (100%), chloramphenicol (98.56%), ampicillin (66.1%), amoxicillin-clavulanic acid (55.39%), and kanamycin (57.55%). However, moderate resistance rates were observed for gentamicin (9.35%) and streptomycin (22.3%). All quinolone-resistant isolates harbored the Thr-86-Ile amino acid substitution in GyrA, and the RE-CmeABC efflux pump was detected in 40.28% of isolates. Interestingly, the qnrB, qnrS, qepA, and aac(6')-Ib-cr were detected in 57.7%, 61.15%, 21.58%, and 10% of isolates, respectively. The eleven isolates studied by MLST belonged to a new sequence type ST13450. This study described for the first time the occurrence of PMQR genes in C. coli isolates in Tunisia and globally.
Collapse
Affiliation(s)
- Manel Gharbi
- Group of Bacteriology and Biotechnology Development, Laboratory of Epidemiology and Veterinary Microbiology, Institut Pasteur de Tunis, University of Tunis El Manar (UTM), Tunis 1002, Tunisia; (R.T.); (S.H.); (A.M.)
| | - Rihab Tiss
- Group of Bacteriology and Biotechnology Development, Laboratory of Epidemiology and Veterinary Microbiology, Institut Pasteur de Tunis, University of Tunis El Manar (UTM), Tunis 1002, Tunisia; (R.T.); (S.H.); (A.M.)
| | - Melek Chaouch
- Laboratory of Medical Parasitology, Biotechnology and Biomolecules (LR16IPT06), Pasteur Institute of Tunis, Tunis 1002, Tunisia;
- Laboratory of BioInformatics, BioMathematics and BioStatistics (LR16IPT09), Pasteur Institute of Tunis, Tunis 1002, Tunisia
| | - Safa Hamrouni
- Group of Bacteriology and Biotechnology Development, Laboratory of Epidemiology and Veterinary Microbiology, Institut Pasteur de Tunis, University of Tunis El Manar (UTM), Tunis 1002, Tunisia; (R.T.); (S.H.); (A.M.)
| | - Abderrazak Maaroufi
- Group of Bacteriology and Biotechnology Development, Laboratory of Epidemiology and Veterinary Microbiology, Institut Pasteur de Tunis, University of Tunis El Manar (UTM), Tunis 1002, Tunisia; (R.T.); (S.H.); (A.M.)
| |
Collapse
|
15
|
Giraudon E, Miendje Deyi VY, Martiny D. Assessing the Prevalence and Dynamics of Emerging Campylobacterales in Human Stool Samples in Brussels by Filtration Culture. Pathogens 2024; 13:475. [PMID: 38921773 PMCID: PMC11206970 DOI: 10.3390/pathogens13060475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 05/24/2024] [Accepted: 05/28/2024] [Indexed: 06/27/2024] Open
Abstract
Thermophilic C. jejuni/coli is reported to be the first bacterial cause of gastroenteritis worldwide and the most common zoonosis in Europe. Although non-jejuni/coli Campylobacter sp. are increasingly suspected to be responsible for diarrhoea or to be involved in inflammatory bowel disease, they remain poorly isolated due to their fastidious and non-thermophilic nature. Additionally, they are not targeted by commercial syndromic PCR assays. In this study, we present routine diagnostic results over 6 years (2017-2019 and 2021-2023) of Campylobacter sp. and related species, obtained by optimised culture from 51,065 stools by both 0.65 µm pore filtration on antibiotic-free agar, incubated in an H2-enriched atmosphere at 37 °C (also known as the Cape Town protocol), and the use of selective inhibitory Butzler medium incubated at 42 °C. This allowed the isolation of 16 Campylobacter species, 2 Aliarcobacter species, and 2 Helicobacter species, providing a completely different view of the epidemiology of Campylobacterales, in which C. jejuni/coli represents only 30.0% of all isolates, while C. concisus represents 44.4%. C. ureolyticus, representing only 5.5% of all Campylobacterales pre-COVID-19, represented 20.6% of all strains post-COVID-19 (218% increase; p < 0.05). At the same time, the proportions of C. jejuni, C. coli, and C. concisus decreased by 37, 53, and 28%, respectively (p < 0.05).
Collapse
Affiliation(s)
- Emmanuelle Giraudon
- Department of Microbiology, Laboratoire Hospitalier Universitaire de Bruxelles-Brussel Universitair Laboratorium (LHUB-ULB), Université Libre de Bruxelles (ULB), 1000 Brussels, Belgium (D.M.)
- Belgium National Reference Center for Campylobacter (LHUB-ULB), 1000 Brussels, Belgium
| | - V. Y. Miendje Deyi
- Department of Microbiology, Laboratoire Hospitalier Universitaire de Bruxelles-Brussel Universitair Laboratorium (LHUB-ULB), Université Libre de Bruxelles (ULB), 1000 Brussels, Belgium (D.M.)
- Belgium National Reference Center for Campylobacter (LHUB-ULB), 1000 Brussels, Belgium
| | - Delphine Martiny
- Department of Microbiology, Laboratoire Hospitalier Universitaire de Bruxelles-Brussel Universitair Laboratorium (LHUB-ULB), Université Libre de Bruxelles (ULB), 1000 Brussels, Belgium (D.M.)
- Belgium National Reference Center for Campylobacter (LHUB-ULB), 1000 Brussels, Belgium
- Faculty of Medicine and Pharmacy, University of Mons (UMONS), 7000 Mons, Belgium
| |
Collapse
|
16
|
Mascaretti F, Haider S, Amoroso C, Caprioli F, Ramai D, Ghidini M. Role of the Microbiome in the Diagnosis and Management of Gastroesophageal Cancers. J Gastrointest Cancer 2024; 55:662-678. [PMID: 38411876 DOI: 10.1007/s12029-024-01021-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/16/2024] [Indexed: 02/28/2024]
Abstract
PURPOSE Stomach and esophageal cancers are among the highest mortality from cancers worldwide. Microbiota has an interplaying role within the human gastrointestinal (GI) tract. Dysbiosis occurs when a disruption of the balance between the microbiota and the host happens. With this narrative review, we discuss the main alterations in the microbiome of gastroesophageal cancer, revealing its potential role in the pathogenesis, early detection, and treatment. RESULTS Helicobacter pylori plays a major role the development of a cascade of preneoplastic conditions ranging from atrophic gastritis to metaplasia and dysplasia, ultimately culminating in gastric cancer, while other pathogenic agents are Fusobacterium nucleatum, Bacteroides fragilis, Escherichia coli, and Lactobacillus. Campylobacter species (spp.)'s role in the progression of esophageal adenocarcinoma may parallel that of Helicobacter pylori in the context of gastric cancer, with other esophageal carcinogenic agents being Escherichia coli, Bacteroides fragilis, and Fusobacterium nucleatum. Moreover, gut microbiome could significantly alter the outcomes of chemotherapy and immunotherapy. The gut microbiome can be modulated through interventions such as antibiotics, probiotics, or prebiotics intake. Fecal microbiota transplantation has emerged as a therapeutic strategy as well. CONCLUSIONS Nowadays, it is widely accepted that changes in the normal gut microbiome causing dysbiosis and immune dysregulation play a role gastroesophageal cancer. Different interventions, including probiotics and prebiotics intake are being developed to improve therapeutic outcomes and mitigate toxicities associated with anticancer treatment. Further studies are required in order to introduce the microbiome among the available tools of precision medicine in the field of anticancer treatment.
Collapse
Affiliation(s)
- Federica Mascaretti
- Gastroenterology and Endoscopy Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Salman Haider
- Department of Internal Medicine, Brooklyn Hospital Center, Brooklyn, New York, NY, USA
| | - Chiara Amoroso
- Gastroenterology and Endoscopy Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Flavio Caprioli
- Gastroenterology and Endoscopy Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Daryl Ramai
- Division of Gastroenterology and Hepatology, University of Utah Health, Salt Lake City, UT, USA
| | - Michele Ghidini
- Medical Oncology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20122, Via Sforza 28, Milan, Italy.
| |
Collapse
|
17
|
Wang X, Jing M, Ma Q, Lin Y, Zheng T, Yan J, Yun L, Wang C, Li Y. Oral microbiome sequencing revealed the enrichment of Fusobacterium sp., Porphyromonas sp., Campylobacter sp., and Neisseria sp. on the oral malignant fibroma surface of giant panda. Front Cell Infect Microbiol 2024; 14:1356907. [PMID: 38863832 PMCID: PMC11165184 DOI: 10.3389/fcimb.2024.1356907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 03/12/2024] [Indexed: 06/13/2024] Open
Abstract
Introduction Microbial community composition is closely associated with host disease onset and progression, underscoring the importance of understanding host-microbiota dynamics in various health contexts. Methods In this study, we utilized full-length 16S rRNA gene sequencing to conduct species-level identification of the microorganisms in the oral cavity of a giant panda (Ailuropoda melanoleuca) with oral malignant fibroma. Results We observed a significant difference between the microbial community of the tumor side and non-tumor side of the oral cavity of the giant panda, with the latter exhibiting higher microbial diversity. The tumor side was dominated by specific microorganisms, such as Fusobacterium simiae, Porphyromonas sp. feline oral taxon 110, Campylobacter sp. feline oral taxon 100, and Neisseria sp. feline oral taxon 078, that have been reported to be associated with tumorigenic processes and periodontal diseases in other organisms. According to the linear discriminant analysis effect size analysis, more than 9 distinct biomarkers were obtained between the tumor side and non-tumor side samples. Furthermore, the Kyoto Encyclopedia of Genes and Genomes analysis revealed that the oral microbiota of the giant panda was significantly associated with genetic information processing and metabolism, particularly cofactor and vitamin, amino acid, and carbohydrate metabolism. Furthermore, a significant bacterial invasion of epithelial cells was predicted in the tumor side. Discussion This study provides crucial insights into the association between oral microbiota and oral tumors in giant pandas and offers potential biomarkers that may guide future health assessments and preventive strategies for captive and aging giant pandas.
Collapse
Affiliation(s)
- Xiaowan Wang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Meiling Jing
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Qizhao Ma
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Yongwang Lin
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Ting Zheng
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Jiangchuan Yan
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Libing Yun
- Department of Forensic Pathology, West China School of Basic Medical Sciences and Forensic Science, Sichuan University, Chengdu, Sichuan, China
| | - Chengdong Wang
- China Conservation and Research Centre for the Giant Panda, Key Laboratory of SFGA on The Giant Panda, Chengdu, Sichuan, China
| | - Yuqing Li
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
18
|
Ohno Y, Rahman MM, Maruyama H, Inoshima Y, Okada A. Exploration of genes associated with induction of the viable but non-culturable state of Campylobacter jejuni. Arch Microbiol 2024; 206:260. [PMID: 38744718 PMCID: PMC11093796 DOI: 10.1007/s00203-024-03980-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/15/2024] [Accepted: 04/25/2024] [Indexed: 05/16/2024]
Abstract
Campylobacter jejuni is known to enter a viable but non-culturable (VBNC) state when exposed to environmental stresses. Microarray and quantitative real-time polymerase chain reaction (qPCR) analyses were performed to elucidate the genes related to the induction of the VBNC state. The C. jejuni NCTC11168 strain was cultured under low-temperature or high-osmotic stress conditions to induce the VBNC state. mRNA expression in the VBNC state was investigated using microarray analysis, and the gene encoding peptidoglycan-associated lipoprotein, Pal, was selected as the internal control gene using qPCR analysis and software. The three genes showing particularly large increases in mRNA expression, cj1500, cj1254, and cj1040, were involved in respiration, DNA repair, and transporters, respectively. However, formate dehydrogenase encoded by cj1500 showed decreased activity in the VBNC state. Taken together, C. jejuni actively changed its mRNA expression during induction of the VBNC state, and protein activities did not always match the mRNA expression levels.
Collapse
Affiliation(s)
- Yurina Ohno
- Laboratory of Food and Environmental Hygiene, Joint Department of Veterinary Medicine, Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Md Matiur Rahman
- Laboratory of Food and Environmental Hygiene, Joint Department of Veterinary Medicine, Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
- Department of Medicine, Faculty of Veterinary, Animal and Biomedical Sciences, Sylhet Agricultural University, Sylhet, Bangladesh
| | | | - Yasuo Inoshima
- Laboratory of Food and Environmental Hygiene, Joint Department of Veterinary Medicine, Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
- Education and Research Center for Food Animal Health, Gifu University (GeFAH), Gifu, Japan
- Joint Graduate School of Veterinary Sciences, Gifu University, Gifu, Japan
| | - Ayaka Okada
- Laboratory of Food and Environmental Hygiene, Joint Department of Veterinary Medicine, Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan.
- Education and Research Center for Food Animal Health, Gifu University (GeFAH), Gifu, Japan.
| |
Collapse
|
19
|
El Tekle G, Andreeva N, Garrett WS. The Role of the Microbiome in the Etiopathogenesis of Colon Cancer. Annu Rev Physiol 2024; 86:453-478. [PMID: 38345904 DOI: 10.1146/annurev-physiol-042022-025619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2024]
Abstract
Studies in preclinical models support that the gut microbiota play a critical role in the development and progression of colorectal cancer (CRC). Specific microbial species and their corresponding virulence factors or associated small molecules can contribute to CRC development and progression either via direct effects on the neoplastic transformation of epithelial cells or through interactions with the host immune system. Induction of DNA damage, activation of Wnt/β-catenin and NF-κB proinflammatory pathways, and alteration of the nutrient's availability and the metabolic activity of cancer cells are the main mechanisms by which the microbiota contribute to CRC. Within the tumor microenvironment, the gut microbiota alter the recruitment, activation, and function of various immune cells, such as T cells, macrophages, and dendritic cells. Additionally, the microbiota shape the function and composition of cancer-associated fibroblasts and extracellular matrix components, fashioning an immunosuppressive and pro-tumorigenic niche for CRC. Understanding the complex interplay between gut microbiota and tumorigenesis can provide therapeutic opportunities for the prevention and treatment of CRC.
Collapse
Affiliation(s)
- Geniver El Tekle
- Department of Immunology and Infectious Diseases and Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA;
- The Harvard Chan Microbiome in Public Health Center, Boston, Massachusetts, USA
- Broad Institute of MIT and Harvard, Boston, Massachusetts, USA
| | - Natalia Andreeva
- Department of Immunology and Infectious Diseases and Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA;
- The Harvard Chan Microbiome in Public Health Center, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
- David H. Koch Institute for Integrative Cancer Research at MIT, Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Wendy S Garrett
- Department of Immunology and Infectious Diseases and Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA;
- The Harvard Chan Microbiome in Public Health Center, Boston, Massachusetts, USA
- Broad Institute of MIT and Harvard, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| |
Collapse
|
20
|
Tsafrir O, Rohana H, Bousani L, Orsan K, Abozaid S, Azrad M, Peretz A. Clinical isolate characteristics and demographics of patients with C.jejuni and C.coli infections in Northern Israel, 2015-2021. Epidemiol Infect 2024; 152:e19. [PMID: 38314639 PMCID: PMC10894900 DOI: 10.1017/s0950268823002005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 09/29/2023] [Accepted: 11/10/2023] [Indexed: 02/06/2024] Open
Abstract
C.coli is a significant cause of foodborne gastroenteritis worldwide, with the majority of cases attributed to C.jejuni. Although most clinical laboratories do not typically conduct antimicrobial susceptibility testing for C.coli, the rise in resistant strains has underscored the necessity for such testing and epidemiological surveillance. The current study presents clinical isolate characteristics and demographics of 221 patients with C.coli (coli and jejuni) infections in Northern Israel, between 2015 and 2021. Clinical and demographic data were collected from patient medical records. Susceptibility to erythromycin, tetracycline, ciprofloxacin, and gentamicin was assessed using the standard E-test. No significant correlations were found between bacterial species and patient ethnicity, patient gender, or duration of hospitalization. In contrast, significant differences were found between infecting species and patient age and age subgroup (P < 0.001). Furthermore, erythromycin resistance was observed in only 0.5% of the study population, while resistance to ciprofloxacin, tetracycline, and gentamicin was observed in 95%, 93%, and 2.3% of the population, respectively. The presented study underscores the need for routine surveillance of C.coli antibiotic resistance.
Collapse
Affiliation(s)
- Ofri Tsafrir
- Azrieli Faculty of Medicine, Bar Ilan University, Safed, Israel
| | - Hanan Rohana
- Azrieli Faculty of Medicine, Bar Ilan University, Safed, Israel
- Clinical Microbiology Laboratory, Tzafon Medical Center, Poriya, Israel
| | - Lior Bousani
- Azrieli Faculty of Medicine, Bar Ilan University, Safed, Israel
- Clinical Microbiology Laboratory, Tzafon Medical Center, Poriya, Israel
| | - Khatib Orsan
- Azrieli Faculty of Medicine, Bar Ilan University, Safed, Israel
| | - Said Abozaid
- Azrieli Faculty of Medicine, Bar Ilan University, Safed, Israel
- The Department of Pediatrics, Tzafon Medical Center, Poriya, Israel
| | - Maya Azrad
- Azrieli Faculty of Medicine, Bar Ilan University, Safed, Israel
- Clinical Microbiology Laboratory, Tzafon Medical Center, Poriya, Israel
| | - Avi Peretz
- Azrieli Faculty of Medicine, Bar Ilan University, Safed, Israel
- Clinical Microbiology Laboratory, Tzafon Medical Center, Poriya, Israel
| |
Collapse
|
21
|
Parker CT, Villafuerte DA, Miller WG, Huynh S, Chapman MH, Hanafy Z, Jackson JH, Miller MA, Kathariou S. Genomic Analysis Points to Multiple Genetic Mechanisms for Non-Transformable Campylobacter jejuni ST-50. Microorganisms 2024; 12:327. [PMID: 38399730 PMCID: PMC10893306 DOI: 10.3390/microorganisms12020327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 01/27/2024] [Accepted: 01/30/2024] [Indexed: 02/25/2024] Open
Abstract
Campylobacter jejuni and Campylobacter coli are well known for their natural competence, i.e., their capacity for the uptake of naked DNA with subsequent transformation. This study identifies non-transformable C. jejuni and C. coli strains from domestic animals and employs genomic analysis to investigate the strain genotypes and their associated genetic mechanisms. The results reveal genetic associations leading to a non-transformable state, including functional DNase genes from bacteriophages and mutations within the cts-encoded DNA-uptake system, which impact the initial steps of the DNA uptake during natural transformation. Interestingly, all 38 tested C. jejuni ST-50 strains from the United States exhibit a high prevalence of non-transformability, and the strains harbor a variety of these genetic markers. This research emphasizes the role of these genetic markers in hindering the transfer of antimicrobial resistance (AMR) determinants, providing valuable insights into the genetic diversity of Campylobacter. As ST-50 is a major clone of C. jejuni globally, we additionally determined the prevalence of the genetic markers for non-transformability among C. jejuni ST-50 from different regions of the world, revealing distinct patterns of evolution and a strong selective pressure on the loss of competence in ST-50 strains, particularly in the agricultural environment in the United States. Our findings contribute to a comprehensive understanding of genetic exchange mechanisms within Campylobacter strains, and their implications for antimicrobial resistance dissemination and evolutionary pathways within specific lineages.
Collapse
Affiliation(s)
- Craig T. Parker
- Produce Safety and Microbiology Research Unit, Agricultural Research Service, United States Department of Agriculture, Albany, CA 94710, USA; (W.G.M.)
| | - David A. Villafuerte
- Department of Food, Nutrition and Bioprocessing Sciences, North Carolina State University, Raleigh, NC 27695, USA; (D.A.V.); (Z.H.); (J.H.J.III); (M.A.M.)
| | - William G. Miller
- Produce Safety and Microbiology Research Unit, Agricultural Research Service, United States Department of Agriculture, Albany, CA 94710, USA; (W.G.M.)
| | - Steven Huynh
- Produce Safety and Microbiology Research Unit, Agricultural Research Service, United States Department of Agriculture, Albany, CA 94710, USA; (W.G.M.)
| | - Mary H. Chapman
- Produce Safety and Microbiology Research Unit, Agricultural Research Service, United States Department of Agriculture, Albany, CA 94710, USA; (W.G.M.)
| | - Zahra Hanafy
- Department of Food, Nutrition and Bioprocessing Sciences, North Carolina State University, Raleigh, NC 27695, USA; (D.A.V.); (Z.H.); (J.H.J.III); (M.A.M.)
| | - James H. Jackson
- Department of Food, Nutrition and Bioprocessing Sciences, North Carolina State University, Raleigh, NC 27695, USA; (D.A.V.); (Z.H.); (J.H.J.III); (M.A.M.)
| | - Morgan A. Miller
- Department of Food, Nutrition and Bioprocessing Sciences, North Carolina State University, Raleigh, NC 27695, USA; (D.A.V.); (Z.H.); (J.H.J.III); (M.A.M.)
| | - Sophia Kathariou
- Department of Food, Nutrition and Bioprocessing Sciences, North Carolina State University, Raleigh, NC 27695, USA; (D.A.V.); (Z.H.); (J.H.J.III); (M.A.M.)
| |
Collapse
|
22
|
Arbour CA, Vuksanovic N, Bernstein HM, Allen KN, Imperiali B. Characterization of PglJ, a Glycosyltransferase in the Campylobacter concisus N-Linked Protein Glycosylation Pathway that Expands Glycan Diversity. Biochemistry 2024; 63:141-151. [PMID: 38110367 PMCID: PMC10873021 DOI: 10.1021/acs.biochem.3c00564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
The Campylobacter genus of Gram-negative bacteria is characterized by the expression of N-linked protein glycosylation (pgl) pathways. As Campylobacter concisus is an emerging human pathogen, a better understanding of the variation of the biosynthetic pathways across the genus is necessary to identify the relationships between protein glycosylation and disease. The pgl pathways of C. concisus strains have been reported to diverge from other Campylobacter in steps after the biosynthesis of N-acetylgalactosamine-α1,3-N,N'-diacetylbacillosamine-α-1-diphosphate undecaprenyl (GalNAc-diNAcBac-PP-Und), which is catalyzed by PglC and PglA, a phosphoglycosyltransferase (PGT) and a glycosyltransferase (GT), respectively. Here we characterize the PglJ GTs from two strains of C. concisus. Chemical synthesis was employed to access the stereochemically defined glycan donor substrates, uridine diphosphate N-acetyl-d-galactosaminuronic acid (UDP-GalNAcA) and uridine diphosphate N-acetyl-d-glucosaminuronic acid (UDP-GlcNAcA), to allow biochemical investigation of PglJ. Evidence for the PglJ substrate specificity structural determinants for the C6″ carboxylate-containing sugar was obtained through variant-based biochemical assays. Additionally, characterization of a UDP-sugar dehydrogenase encoded in the pgl operon, which is similar to the Pseudomonas aeruginosa WbpO responsible for the oxidization of a UDP-HexNAc to UDP-HexNAcA, supports the availability of a UDP-HexNAcA substrate for a GT that incorporates the modified sugar and provides evidence for the presence of a HexNAcA in the N-linked glycan. Utilizing sequence similarity network (SSN) analysis, we identified conserved sequence motifs among PglJ glycosyltransferases, shedding light on substrate preferences and offering predictive insights into enzyme functions across the Campylobacter genus. These studies now allow detailed characterization of the later steps in the pgl pathway in C. concisus strains and provide insights into enzyme substrate specificity determinants for glycan assembly enzymes.
Collapse
Affiliation(s)
- Christine A Arbour
- Department of Biology, Massachusetts Institute of Technology, 31 Ames St, Cambridge, Massachusetts 02139, United States
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, Massachusetts 02139, United States
| | - Nemanja Vuksanovic
- Department of Chemistry, Boston University, 590 Commonwealth Ave, Boston, Massachusetts 02215, United States
| | - Hannah M Bernstein
- Department of Biology, Massachusetts Institute of Technology, 31 Ames St, Cambridge, Massachusetts 02139, United States
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, Massachusetts 02139, United States
| | - Karen N Allen
- Department of Chemistry, Boston University, 590 Commonwealth Ave, Boston, Massachusetts 02215, United States
| | - Barbara Imperiali
- Department of Biology, Massachusetts Institute of Technology, 31 Ames St, Cambridge, Massachusetts 02139, United States
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
23
|
Bakhshi B, Shams S, Rezaie N, Ameri Shah Reza M. Design of dot-blot hybridization assay for simultaneous detection of Campylobacter jejuni and Campylobacter coli: a preliminary study. Ann Med Surg (Lond) 2024; 86:219-224. [PMID: 38222678 PMCID: PMC10783310 DOI: 10.1097/ms9.0000000000001558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 11/18/2023] [Indexed: 01/16/2024] Open
Abstract
Objectives Campylobacters are a major cause of gastroenteritis worldwide. These are fastidious in culture and false negative results are seen in many clinical laboratories. Among molecular methods, the dot-blot technique is widely used for a variety of purposes, especially diagnostics. So, the authors aimed to detect C. jejuni and C. coli simultaneously using a dot-blot assay. Methods After evaluating the bioinformatics studies, a cadF-conserved fragment was selected for the design of primers and probe. DNAs from standard strains and a recombinant plasmid, prepared in this study, were used to assess the technique. The specificity of the method was also surveyed using DNAs from other enteric bacteria. The limit of detection was evaluated by recombinant plasmid and different concentrations of the designed probe. Results A 95-bp fragment of cadF was selected, and in silico analysis studies showed that it is conserved between both species. Also, the non-specific annealing of the primers and probe with other bacteria was not seen theoretically. The technique with recombinant plasmid as well as DNAs of standard strains created black spots on the membrane, confirming that the probe was correctly synthesized. No non-specific reactions with other bacterial species were observed (specificity=100%). The limit of detection of the test was determined to be 50 µg/ml. Conclusions This is the first study to simultaneously detect two important pathogens in the Campylobacter genus and was able to detect C. jejuni and C. coli with acceptable sensitivity and specificity.
Collapse
Affiliation(s)
- Bita Bakhshi
- Department of Bacteriology, Faculty of Medical Sciences, Tarbiat Modares University
| | - Saeed Shams
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
| | - Niloofar Rezaie
- Department of Microbiology, Pasteur Institute of Iran, Tehran
| | | |
Collapse
|
24
|
Meadows SNA, Hung CC, Chen JW, Soukup S, Sander SJ. CAMPYLOBACTER HYOINTESTINALIS ISOLATION FROM HOWLER ( ALOUATTA CARAYA) AND SPIDER MONKEYS ( ATELES FUSCICEPS ROBUSTUS) AT A ZOOLOGIC FACILITY IN CENTRAL ILLINOIS. J Zoo Wildl Med 2024; 54:810-816. [PMID: 38252006 DOI: 10.1638/2022-0166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/01/2023] [Indexed: 01/23/2024] Open
Abstract
Campylobacter hyointestinalis was initially isolated from an asymptomatic black howler monkey (Alouatta caraya) in a routine fecal culture examination. Fecal cultures from other individuals in this group and an adjacently housed black-headed spider monkey (Ateles fusciceps robustus) group recovered C. hyointestinalis from all but one of the individuals sampled (1.1 spider monkeys and 2.1 howler monkeys). Concurrently, one spider monkey presented with acute onset severe rectal prolapse and diarrhea. Whole-genome sequencing results of C. hyointestinalis isolates from all individuals were homologous and closely related to Campylobacter hyointestinalis subsp. hyointestinalis TTU_618, a strain typically associated with environmental samples. In addition, two cytolethal distending toxin (CDT) expressing gene clusters, cdt-I and cdt-II, were identified in all isolates. These results suggest C. hyointestinalis is transmissible to both howler monkeys and spider monkeys, though the origin of infection and whether it is transmissible between these species is undetermined.
Collapse
Affiliation(s)
- Siobhan N A Meadows
- College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL, 61802, USA
| | - Chien-Che Hung
- College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL, 61802, USA
| | - Jenn-Wei Chen
- Department of Microbiology and Immunology, National Cheng Kung University, Tainan City, 701, Taiwan
| | - Samantha Soukup
- College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL, 61802, USA
| | - Samantha J Sander
- College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL, 61802, USA,
| |
Collapse
|
25
|
Tikunov AY, Fedorets VA, Shrainer EV, Morozov VV, Bystrova VI, Tikunova NV. Intestinal Microbiome Changes and Clinical Outcomes of Patients with Ulcerative Colitis after Fecal Microbiota Transplantation. J Clin Med 2023; 12:7702. [PMID: 38137770 PMCID: PMC10743744 DOI: 10.3390/jcm12247702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/06/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
BACKGROUND AND AIMS Ulcerative colitis (UC) is a chronic inflammatory disease that affects many people. One of the possible ways to treat UC is fecal microbiota transplantation (FMT). In this study, changes in the intestinal microbiome and clinical outcomes of 20 patients with UC after FMT were estimated. METHODS FMT enemas were administrated ten times, once a day, and fecal microbiota from three donors was used for each enema. The clinical outcomes were assessed after eight weeks and then via a patient survey. The 16S rRNA profiles of the gut microbiota were compared between three samplings: samples from 20 patients with UC before and after FMT and samples from 18 healthy volunteers. RESULTS Clinical remission was achieved in 19 (95%) patients at week 8. Adverse events occurred in five patients, including one non-responder. A significant increase in average biodiversity was shown in samples after FMT compared to samples before FMT, as well as a decrease in the proportion of some potentially pathogenic bacteria. CONCLUSION The efficacy of FMT for UC treatment was confirmed; however, the duration of remission varied substantially, possibly due to different characteristics of the initial microbiota of patients. Targeted analysis of a patient's microbiome before FMT could increase the treatment efficacy.
Collapse
Affiliation(s)
- Artem Y. Tikunov
- Federal State Public Scientific Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (A.Y.T.); (V.A.F.); (E.V.S.); (V.V.M.); (V.I.B.)
| | - Valeria A. Fedorets
- Federal State Public Scientific Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (A.Y.T.); (V.A.F.); (E.V.S.); (V.V.M.); (V.I.B.)
| | - Evgenia V. Shrainer
- Federal State Public Scientific Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (A.Y.T.); (V.A.F.); (E.V.S.); (V.V.M.); (V.I.B.)
- Department of Obstetrics and Gynecology, V. Zelman Institute for Medicine and Psychology, Novosibirsk National Research State University, 630090 Novosibirsk, Russia
| | - Vitaliy V. Morozov
- Federal State Public Scientific Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (A.Y.T.); (V.A.F.); (E.V.S.); (V.V.M.); (V.I.B.)
| | - Valeria I. Bystrova
- Federal State Public Scientific Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (A.Y.T.); (V.A.F.); (E.V.S.); (V.V.M.); (V.I.B.)
- Department of Obstetrics and Gynecology, V. Zelman Institute for Medicine and Psychology, Novosibirsk National Research State University, 630090 Novosibirsk, Russia
| | - Nina V. Tikunova
- Federal State Public Scientific Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (A.Y.T.); (V.A.F.); (E.V.S.); (V.V.M.); (V.I.B.)
| |
Collapse
|
26
|
Guo YT, Hsiung CA, Wu FT, Chi H, Huang YC, Liu CC, Huang YC, Lin HC, Shih SM, Huang CY, Chang LY, Ho YH, Lu CY, Huang LM. Clinical manifestations and risk factors of campylobacter gastroenteritis in children in Taiwan. Biomed J 2023; 46:100590. [PMID: 37001586 PMCID: PMC10711181 DOI: 10.1016/j.bj.2023.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 03/14/2023] [Accepted: 03/15/2023] [Indexed: 03/31/2023] Open
Abstract
BACKGROUND Campylobacteriosis is a common cause of bacterial gastroenteritis worldwide. This study aimed to investigate the potential risk factors, clinical and laboratory manifestations of children with campylobacteriosis under five years old in Taiwan. METHODS This retrospective case-control study was conducted in ten major hospitals in Taiwan from 2014 to 2017. Laboratory tests and stool specimen were collected and analyzed together with questionnaire survey. Multivariate stepwise logistic regression model was used for identification of risk factors. RESULTS A total of 64 campylobacteriosis cases were included with a median age of 25 months. We observed a less prolonged vomiting (p = 0.047), more bloody (p < 0.001) and mucoid (p = 0.005) stools, and lower AST levels (p = 0.020) in patients with campylobacteriosis. Lower parental educational attainment (p < 0.001), direct contact with acute gastroenteritis patients (p < 0.001), as well as diarrhea in the mutually cared children (p = 0.007) were linked to campylobacteriosis. Consumption of municipal water (p < 0.001), milk (OR 0.34, 95% CI 0.118-0.979), and soft beverages (OR 0.41, 95% CI 0.192-0.888) were identified as protective factors, while consuming takeout food (p = 0.032) and seafood (p = 0.019) increased risk of campylobacteriosis. CONCLUSIONS Shorter vomiting duration, bloody and mucoid stool, and less elevated AST levels are manifestations suggestive of campylobacteriosis. Risk factors of campylobacteriosis were low parental educational attainment, direct contact with acute gastroenteritis patients, diarrhea in mutually cared children, takeout food and seafood intake. Potential protective factors include municipal water, milk, and soft beverage intake.
Collapse
Affiliation(s)
- Yen-Ting Guo
- Department of Medical Education, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Chao A Hsiung
- Institute of Population Health Sciences, National Health Research Institutes, Miaoli, Taiwan
| | - Fang-Tzy Wu
- Center for Research, Diagnostics and Vaccine Development, Centers for Disease Control, Taipei, Taiwan
| | - Hsin Chi
- Department of Pediatrics, Mackay Children's Hospital, Mackay Medical College, Taipei, Taiwan
| | - Yhu-Chering Huang
- Department of Pediatrics, Chang Gung Children's Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Ching-Chuan Liu
- Department of Pediatrics, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yi-Chuan Huang
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Hsiao-Chuan Lin
- Department of Pediatrics, China Medical University Hospital, Taichung, Taiwan
| | - Shu-Man Shih
- Institute of Population Health Sciences, National Health Research Institutes, Miaoli, Taiwan
| | - Ching-Yi Huang
- Institute of Population Health Sciences, National Health Research Institutes, Miaoli, Taiwan
| | - Luan-Yin Chang
- Department of Pediatrics, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Yu-Huai Ho
- Division of Infectious Disease, Department of Internal Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Buddhist Tzu Chi University, Hualien, Taiwan
| | - Chun-Yi Lu
- Department of Pediatrics, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Li-Min Huang
- Department of Pediatrics, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan; Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei, Taiwan.
| |
Collapse
|
27
|
Roa-Bautista A, Brown LAK, Tadros S, Burns SO, Godbole G, Lowe DM. Clinical Features, Immunological Characteristics, and Treatment Outcomes of Campylobacter spp. Infections in Patients With Common Variable Immunodeficiency. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2023; 11:3493-3501.e4. [PMID: 37406804 DOI: 10.1016/j.jaip.2023.06.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 06/20/2023] [Accepted: 06/22/2023] [Indexed: 07/07/2023]
Abstract
BACKGROUND Campylobacter infection usually causes a self-limited clinical illness lasting 5 to 7 days, resolving without antimicrobial treatment in immunocompetent subjects. However, an inadequate immune response can lead to a prolonged and severe disease requiring antibiotics and more aggressive therapeutic approaches. OBJECTIVE To comprehensively describe Campylobacter spp. infections in patients with common variable immunodeficiency (CVID). METHODS A retrospective cohort of 14 CVID patients with Campylobacter infection and 95 CVID controls attending the immunology clinic at a large tertiary hospital was assessed. Immunological, clinical, and microbiological parameters were measured with median follow-up over 20 years in both cohorts. Patients were treated according to a novel algorithm for Campylobacter in antibody-deficient patients. RESULTS Campylobacter patients had a higher proportion of CD21lowCD38low and transitional B cells (median 38.0% vs 14.2% and 5.4% vs 3.2%) and lower long-term average CD19+ B cells (median 0.06 vs 0.18 × 109/L) and CD4+ T cells (0.41 vs 0.62 × 109/L) in comparison with the controls. Similarly, Campylobacter patients showed a decline in B cells (median 0.02 vs 0.14 × 109/L), CD4+ T cells (0.33 vs 0.59 × 109/L), CD8+ T cells (0.26 vs 0.62 × 109/L), and natural killer cells (0.08 vs 0.18 × 109/L) over time. Antimicrobial resistance, especially to macrolides and fluoroquinolones, was common. Bacterial clearance with associated clinical improvement was obtained after a median of 20 and 113 days for acute Campylobacter (resolution within 3 mo of onset) and chronic Campylobacter (>3 mo) infections, respectively. Seven received first-line treatment (azithromycin or chloramphenicol), 4 second-line (neomycin), and 3 third-line (combination of tigecycline, chloramphenicol, and ertapenem; 1 received gentamicin owing to resistance to carbapenems). CONCLUSIONS Our study highlights immunological and clinical characteristics of recurrent Campylobacter infections in patients with CVID. Our treatment algorithm was successful and should be evaluated in a larger cohort.
Collapse
Affiliation(s)
- Adriel Roa-Bautista
- Department of Immunology, Marques de Valdecilla University Hospital, Santander, Spain; Department of Clinical Immunology, Royal Free London NHS Foundation Trust, London, UK
| | - Li-An K Brown
- Institute of Immunity and Transplantation, University College London, London, UK
| | - Susan Tadros
- Department of Clinical Immunology, Royal Free London NHS Foundation Trust, London, UK
| | - Siobhan O Burns
- Department of Clinical Immunology, Royal Free London NHS Foundation Trust, London, UK; Institute of Immunity and Transplantation, University College London, London, UK
| | - Gauri Godbole
- Department of Infectious and Tropical Diseases, University College London Hospitals NHS Foundation Trust, London, UK; Gastrointestinal Bacteria Reference Unit, UK Health Security Agency, London, UK
| | - David M Lowe
- Department of Clinical Immunology, Royal Free London NHS Foundation Trust, London, UK; Institute of Immunity and Transplantation, University College London, London, UK.
| |
Collapse
|
28
|
Wang H, Gu Y, He L, Sun L, Zhou G, Chen X, Zhang X, Shao Z, Zhang J, Zhang M. Phenotypic and Genomic Characteristics of Campylobacter gastrosuis sp. nov. Isolated from the Stomachs of Pigs in Beijing. Microorganisms 2023; 11:2278. [PMID: 37764121 PMCID: PMC10534318 DOI: 10.3390/microorganisms11092278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/01/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
Campylobacter is among the four main causes of gastroenteritis worldwide. Most reported Campylobacter infections are caused by C. jejuni and C. coli. However, other emerging Campylobacter pathogens have been recognized as important pathogens in humans and animals. A novel bacterial strain, PS10T, was isolated from the gastric mucous of pigs in 2022 in Beijing, China. The cell was Gram-negative, microaerobic, motile, and negative for catalase, oxidase, and urease. Phylogenetic and phylogenomic analyses based on the 16S rRNA gene and core genome indicated that this isolate belongs to the genus Campylobacter. There were low dDDH relatedness and ANI values shared within this strain and its closest species C. mucosalis below the cut-off values generally recognized for isolates of the same species. The draft genome size of PS10T is 2,240,910 bp in length with a percentage of DNA G+C contents of 37.72%. Comparing the phenotypic and phylogenetic features among this isolate and its related organisms, strain PS10T represents a novel species within the genus Campylobacter, for which the name Campylobacter gastrosuis sp. nov. (Type strain PS10T = GDMCC 1.3686T = JCM 35849T) is proposed.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Maojun Zhang
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| |
Collapse
|
29
|
Abstract
Cancer cells originate from a series of acquired genetic mutations that can drive their uncontrolled cell proliferation and immune evasion. Environmental factors, including the microorganisms that colonize the human body, can shift the metabolism, growth pattern and function of neoplastic cells and shape the tumour microenvironment. Dysbiosis of the gut microbiome is now recognized as a hallmark of cancer by the scientific community. However, only a few microorganisms have been identified that directly initiate tumorigenesis or skew the immune system to generate a tumour-permissive milieu. Over the past two decades, research on the human microbiome and its functionalities within and across individuals has revealed microbiota-focused strategies for health and disease. Here, we review the evolving understanding of the mechanisms by which the microbiota acts in cancer initiation, promotion and progression. We explore the roles of bacteria in gastrointestinal tract malignancies and cancers of the lung, breast and prostate. Finally, we discuss the promises and limitations of targeting or harnessing bacteria in personalized cancer prevention, diagnostics and treatment.
Collapse
Affiliation(s)
- Geniver El Tekle
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA
- The Harvard T. H. Chan Microbiome in Public Health Center, Boston, MA, USA
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Wendy S Garrett
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA.
- The Harvard T. H. Chan Microbiome in Public Health Center, Boston, MA, USA.
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Department of Medicine, Harvard Medical School, Boston, MA, USA.
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
| |
Collapse
|
30
|
Xue X, Li R, Chen Z, Li G, Liu B, Guo S, Yue Q, Yang S, Xie L, Zhang Y, Zhao J, Tan R. The role of the symbiotic microecosystem in cancer: gut microbiota, metabolome, and host immunome. Front Immunol 2023; 14:1235827. [PMID: 37691931 PMCID: PMC10484231 DOI: 10.3389/fimmu.2023.1235827] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 07/12/2023] [Indexed: 09/12/2023] Open
Abstract
The gut microbiota is not just a simple nutritional symbiosis that parasitizes the host; it is a complex and dynamic ecosystem that coevolves actively with the host and is involved in a variety of biological activities such as circadian rhythm regulation, energy metabolism, and immune response. The development of the immune system and immunological functions are significantly influenced by the interaction between the host and the microbiota. The interactions between gut microbiota and cancer are of a complex nature. The critical role that the gut microbiota plays in tumor occurrence, progression, and treatment is not clear despite the already done research. The development of precision medicine and cancer immunotherapy further emphasizes the importance and significance of the question of how the microbiota takes part in cancer development, progression, and treatment. This review summarizes recent literature on the relationship between the gut microbiome and cancer immunology. The findings suggest the existence of a "symbiotic microecosystem" formed by gut microbiota, metabolome, and host immunome that is fundamental for the pathogenesis analysis and the development of therapeutic strategies for cancer.
Collapse
Affiliation(s)
- Xiaoyu Xue
- School of Pharmacy, Southwest Medical University, Luzhou, China
- Sichuan Institute for Translational Chinese Medicine, Sichuan Academy of Chinese Medical Sciences, State Key Laboratory of Quality Evaluation of Traditional Chinese Medicine, Sichuan Engineering Technology Research Center of Genuine Regional Drug, Sichuan Provincial Engineering Research Center of Formation Principle and Quality Evaluation of Genuine Medicinal Materials, Translational Chinese Medicine Key Laboratory of Sichuan Province, Chengdu, China
| | - Rui Li
- Department of Radiation Oncology, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Zhenni Chen
- Sichuan Institute for Translational Chinese Medicine, Sichuan Academy of Chinese Medical Sciences, State Key Laboratory of Quality Evaluation of Traditional Chinese Medicine, Sichuan Engineering Technology Research Center of Genuine Regional Drug, Sichuan Provincial Engineering Research Center of Formation Principle and Quality Evaluation of Genuine Medicinal Materials, Translational Chinese Medicine Key Laboratory of Sichuan Province, Chengdu, China
- College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Guiyu Li
- Sichuan Institute for Translational Chinese Medicine, Sichuan Academy of Chinese Medical Sciences, State Key Laboratory of Quality Evaluation of Traditional Chinese Medicine, Sichuan Engineering Technology Research Center of Genuine Regional Drug, Sichuan Provincial Engineering Research Center of Formation Principle and Quality Evaluation of Genuine Medicinal Materials, Translational Chinese Medicine Key Laboratory of Sichuan Province, Chengdu, China
| | - Bisheng Liu
- Department of Radiation Oncology, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Shanshan Guo
- Sichuan Institute for Translational Chinese Medicine, Sichuan Academy of Chinese Medical Sciences, State Key Laboratory of Quality Evaluation of Traditional Chinese Medicine, Sichuan Engineering Technology Research Center of Genuine Regional Drug, Sichuan Provincial Engineering Research Center of Formation Principle and Quality Evaluation of Genuine Medicinal Materials, Translational Chinese Medicine Key Laboratory of Sichuan Province, Chengdu, China
| | - Qianhua Yue
- Sichuan Institute for Translational Chinese Medicine, Sichuan Academy of Chinese Medical Sciences, State Key Laboratory of Quality Evaluation of Traditional Chinese Medicine, Sichuan Engineering Technology Research Center of Genuine Regional Drug, Sichuan Provincial Engineering Research Center of Formation Principle and Quality Evaluation of Genuine Medicinal Materials, Translational Chinese Medicine Key Laboratory of Sichuan Province, Chengdu, China
| | - Siye Yang
- Sichuan Institute for Translational Chinese Medicine, Sichuan Academy of Chinese Medical Sciences, State Key Laboratory of Quality Evaluation of Traditional Chinese Medicine, Sichuan Engineering Technology Research Center of Genuine Regional Drug, Sichuan Provincial Engineering Research Center of Formation Principle and Quality Evaluation of Genuine Medicinal Materials, Translational Chinese Medicine Key Laboratory of Sichuan Province, Chengdu, China
| | - Linlin Xie
- Traditional Chinese Medicine Hospital Affiliated to Southwest Medical University, Classical Chinese Medicine Diagnosis and Treatment Center, Luzhou, China
| | - Yiguan Zhang
- School of Pharmacy, Southwest Medical University, Luzhou, China
- Sichuan Institute for Translational Chinese Medicine, Sichuan Academy of Chinese Medical Sciences, State Key Laboratory of Quality Evaluation of Traditional Chinese Medicine, Sichuan Engineering Technology Research Center of Genuine Regional Drug, Sichuan Provincial Engineering Research Center of Formation Principle and Quality Evaluation of Genuine Medicinal Materials, Translational Chinese Medicine Key Laboratory of Sichuan Province, Chengdu, China
| | - Junning Zhao
- Sichuan Institute for Translational Chinese Medicine, Sichuan Academy of Chinese Medical Sciences, State Key Laboratory of Quality Evaluation of Traditional Chinese Medicine, Sichuan Engineering Technology Research Center of Genuine Regional Drug, Sichuan Provincial Engineering Research Center of Formation Principle and Quality Evaluation of Genuine Medicinal Materials, Translational Chinese Medicine Key Laboratory of Sichuan Province, Chengdu, China
| | - Ruirong Tan
- Sichuan Institute for Translational Chinese Medicine, Sichuan Academy of Chinese Medical Sciences, State Key Laboratory of Quality Evaluation of Traditional Chinese Medicine, Sichuan Engineering Technology Research Center of Genuine Regional Drug, Sichuan Provincial Engineering Research Center of Formation Principle and Quality Evaluation of Genuine Medicinal Materials, Translational Chinese Medicine Key Laboratory of Sichuan Province, Chengdu, China
| |
Collapse
|
31
|
Nunes A, Oleastro M, Alves F, Liassine N, Lowe DM, Benejat L, Ducounau A, Jehanne Q, Borges V, Gomes JP, Godbole G, Philippe L. Recurrent Campylobacter jejuni Infections with In Vivo Selection of Resistance to Macrolides and Carbapenems: Molecular Characterization of Resistance Determinants. Microbiol Spectr 2023; 11:e0107023. [PMID: 37358443 PMCID: PMC10434052 DOI: 10.1128/spectrum.01070-23] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 05/24/2023] [Indexed: 06/27/2023] Open
Abstract
We present two independent cases of recurrent multidrug-resistant Campylobacter jejuni infection in immunocompromised hosts and the clinical challenges encountered due to the development of high-level carbapenem resistance. The mechanisms associated with this unusual resistance for Campylobacters were characterized. Initial macrolide and carbapenem-susceptible strains acquired resistance to erythromycin (MIC > 256mg/L), ertapenem (MIC > 32mg/L), and meropenem (MIC > 32mg/L) during treatment. Carbapenem-resistant isolates developed an in-frame insertion resulting in an extra Asp residue in the major outer membrane protein PorA, within the extracellular loop L3 that connects β-strands 5 and 6 and forms a constriction zone involved in Ca2+ binding. The isolates presenting the highest MIC to ertapenem exhibited an extra nonsynonymous mutation (G167A|Gly56Asp) at PorA's extracellular loop L1. IMPORTANCE Carbapenem susceptibility patterns suggest drug impermeability, related to either insertion and/or single nucleotide polymorphism (SNP) within porA. Similar molecular events occurring in two independent cases support the association of these mechanisms with carbapenem resistance in Campylobacter spp.
Collapse
Affiliation(s)
- Alexandra Nunes
- Infectious Diseases Department, National Institute of Health Dr. Ricardo Jorge (INSA), Lisbon, Portugal
- Faculty of Veterinary Medicine, Lusófona University, Lisbon, Portugal
| | - Mónica Oleastro
- Infectious Diseases Department, National Institute of Health Dr. Ricardo Jorge (INSA), Lisbon, Portugal
| | - Frederico Alves
- Infectious Diseases Department, National Institute of Health Dr. Ricardo Jorge (INSA), Lisbon, Portugal
| | | | | | - Lucie Benejat
- French National Reference Centre for Campylobacters and Helicobacters, Bordeaux Hospital University Centre, Bordeaux, France
| | - Astrid Ducounau
- French National Reference Centre for Campylobacters and Helicobacters, Bordeaux Hospital University Centre, Bordeaux, France
| | - Quentin Jehanne
- French National Reference Centre for Campylobacters and Helicobacters, Bordeaux Hospital University Centre, Bordeaux, France
| | - Vítor Borges
- Infectious Diseases Department, National Institute of Health Dr. Ricardo Jorge (INSA), Lisbon, Portugal
| | - João Paulo Gomes
- Infectious Diseases Department, National Institute of Health Dr. Ricardo Jorge (INSA), Lisbon, Portugal
- Faculty of Veterinary Medicine, Lusófona University, Lisbon, Portugal
| | | | - Lehours Philippe
- French National Reference Centre for Campylobacters and Helicobacters, Bordeaux Hospital University Centre, Bordeaux, France
- University of Bordeaux, INSERM, Bordeaux Institute of Oncology, Bordeaux, France
| |
Collapse
|
32
|
Callahan SM, Hancock TJ, Doster RS, Parker CB, Wakim ME, Gaddy JA, Johnson JG. A secreted sirtuin from Campylobacter jejuni contributes to neutrophil activation and intestinal inflammation during infection. SCIENCE ADVANCES 2023; 9:eade2693. [PMID: 37566649 PMCID: PMC10421069 DOI: 10.1126/sciadv.ade2693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 07/13/2023] [Indexed: 08/13/2023]
Abstract
Histone modifications control numerous processes in eukaryotes, including inflammation. Some bacterial pathogens alter the activity or expression of host-derived factors, including sirtuins, to modify histones and induce responses that promote infection. In this study, we identified a deacetylase encoded by Campylobacter jejuni which has sirtuin activities and contributes to activation of human neutrophils by the pathogen. This sirtuin is secreted from the bacterium into neutrophils, where it associates with and deacetylates host histones to promote neutrophil activation and extracellular trap production. Using the murine model of campylobacteriosis, we found that a mutant of this bacterial sirtuin efficiently colonized the gastrointestinal tract but was unable to induce cytokine production, gastrointestinal inflammation, and tissue pathology. In conclusion, these results suggest that secreted bacterial sirtuins represent a previously unreported class of bacterial effector and that bacterial-mediated modification of host histones is responsible for the inflammation and pathology that occurs during campylobacteriosis.
Collapse
Affiliation(s)
- Sean M. Callahan
- Department of Microbiology, University of Tennessee, Knoxville, TN 37996, USA
| | - Trevor J. Hancock
- Department of Microbiology, University of Tennessee, Knoxville, TN 37996, USA
- Department of Medicine, University of Tennessee Medical Center, Knoxville, TN 37930, USA
| | - Ryan S. Doster
- Division of Infectious Diseases, Department of Medicine Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Microbiology and Immunology, University of Louisville, Louisville, KY 40202, USA
| | - Caroline B. Parker
- Department of Microbiology, University of Tennessee, Knoxville, TN 37996, USA
| | - Mary E. Wakim
- Department of Microbiology, University of Tennessee, Knoxville, TN 37996, USA
| | - Jennifer A. Gaddy
- Division of Infectious Diseases, Department of Medicine Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Jeremiah G. Johnson
- Department of Microbiology, University of Tennessee, Knoxville, TN 37996, USA
| |
Collapse
|
33
|
Grouteau G, Mignonat C, Marchou B, Martin-Blondel G, Glass O, Roubaud-Baudron C, Lansalot-Matras P, Alik S, Balardy L, De Nadaï T, Bénéjat L, Jehanne Q, Le Coustumier A, Lehours P. Campylobacter fetus foodborne illness outbreak in the elderly. Front Microbiol 2023; 14:1194243. [PMID: 37485516 PMCID: PMC10361658 DOI: 10.3389/fmicb.2023.1194243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 06/12/2023] [Indexed: 07/25/2023] Open
Abstract
In June 2021, a cluster of seven cases of Campylobacter fetus infections occurred in a rehabilitation center and caused significant morbidity in elderly patients including five with bacteremia and two with osteoarticular medical device infections. The genetic identity identified by whole genome sequencing of the different Campylobacter fetus strains confirms a common source. This foodborne illness outbreak may have resulted from the consumption of unpasteurized dairy products, such as a cow's raw milk cheese resulting from a farm-to-fork strategy.
Collapse
Affiliation(s)
- Gaspard Grouteau
- Infectious and Tropical Diseases Department, Centre Hospitalier Tarbes-Lourdes, Lourdes, France
| | - Cédric Mignonat
- Rehabilitation Center, L'Arbizon, Bagnères de Bigorre, France
| | - Bruno Marchou
- Infectious and Tropical Diseases Department, Centre Hospitalier Tarbes-Lourdes, Lourdes, France
| | - Guillaume Martin-Blondel
- Infectious and Tropical Diseases Department, CHU de Toulouse, Toulouse, France
- Institut Toulousain des Maladies Infectieuses et Inflammatoires (Infinity) INSERM UMR1291—CNRS UMR5051—Université Toulouse III, Toulouse, France
| | - Olivier Glass
- Cellule de veille d'alerte et de gestion sanitaire, Agence Régionale de Santé Occitanie, Toulouse, France
| | - Claire Roubaud-Baudron
- Pôle de Gérontologie Clinique, CHU de Bordeaux, Bordeaux, France
- Bordeaux Institute of Oncology, BRIC U1312, INSERM, Université de Bordeaux, CHU de Bordeaux, Bordeaux, France
| | - Pauline Lansalot-Matras
- Infectious and Tropical Diseases Department, Centre Hospitalier Tarbes-Lourdes, Lourdes, France
| | - Simon Alik
- Infectious and Tropical Diseases Department, Centre Hospitalier Tarbes-Lourdes, Lourdes, France
| | | | | | - Lucie Bénéjat
- National Reference Center for Campylobacters and Helicobacters, Bacteriology Department, CHU de Bordeaux, Bordeaux, France
| | - Quentin Jehanne
- National Reference Center for Campylobacters and Helicobacters, Bacteriology Department, CHU de Bordeaux, Bordeaux, France
| | | | - Philippe Lehours
- Bordeaux Institute of Oncology, BRIC U1312, INSERM, Université de Bordeaux, CHU de Bordeaux, Bordeaux, France
- National Reference Center for Campylobacters and Helicobacters, Bacteriology Department, CHU de Bordeaux, Bordeaux, France
| |
Collapse
|
34
|
Romanescu M, Oprean C, Lombrea A, Badescu B, Teodor A, Constantin GD, Andor M, Folescu R, Muntean D, Danciu C, Dalleur O, Batrina SL, Cretu O, Buda VO. Current State of Knowledge Regarding WHO High Priority Pathogens-Resistance Mechanisms and Proposed Solutions through Candidates Such as Essential Oils: A Systematic Review. Int J Mol Sci 2023; 24:9727. [PMID: 37298678 PMCID: PMC10253476 DOI: 10.3390/ijms24119727] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/31/2023] [Accepted: 06/02/2023] [Indexed: 06/12/2023] Open
Abstract
Combating antimicrobial resistance (AMR) is among the 10 global health issues identified by the World Health Organization (WHO) in 2021. While AMR is a naturally occurring process, the inappropriate use of antibiotics in different settings and legislative gaps has led to its rapid progression. As a result, AMR has grown into a serious global menace that impacts not only humans but also animals and, ultimately, the entire environment. Thus, effective prophylactic measures, as well as more potent and non-toxic antimicrobial agents, are pressingly needed. The antimicrobial activity of essential oils (EOs) is supported by consistent research in the field. Although EOs have been used for centuries, they are newcomers when it comes to managing infections in clinical settings; it is mainly because methodological settings are largely non-overlapping and there are insufficient data regarding EOs' in vivo activity and toxicity. This review considers the concept of AMR and its main determinants, the modality by which the issue has been globally addressed and the potential of EOs as alternative or auxiliary therapy. The focus is shifted towards the pathogenesis, mechanism of resistance and activity of several EOs against the six high priority pathogens listed by WHO in 2017, for which new therapeutic solutions are pressingly required.
Collapse
Affiliation(s)
- Mirabela Romanescu
- Doctoral School, “Victor Babeş” University of Medicine and Pharmacy, 2 Eftimie Murgu Street, 300041 Timisoara, Romania; (M.R.); (A.L.); (B.B.); (A.T.); (G.D.C.)
- Faculty of Medicine, “Victor Babeş” University of Medicine and Pharmacy, 2 Eftimie Murgu Street, 300041 Timisoara, Romania; (M.A.); (R.F.); (D.M.)
| | - Camelia Oprean
- Faculty of Pharmacy, “Victor Babeş” University of Medicine and Pharmacy, 2 Eftimie Murgu Street, 300041 Timisoara, Romania
- OncoGen Centre, County Hospital ‘Pius Branzeu’, Blvd. Liviu Rebreanu 156, 300723 Timisoara, Romania
| | - Adelina Lombrea
- Doctoral School, “Victor Babeş” University of Medicine and Pharmacy, 2 Eftimie Murgu Street, 300041 Timisoara, Romania; (M.R.); (A.L.); (B.B.); (A.T.); (G.D.C.)
| | - Bianca Badescu
- Doctoral School, “Victor Babeş” University of Medicine and Pharmacy, 2 Eftimie Murgu Street, 300041 Timisoara, Romania; (M.R.); (A.L.); (B.B.); (A.T.); (G.D.C.)
| | - Ana Teodor
- Doctoral School, “Victor Babeş” University of Medicine and Pharmacy, 2 Eftimie Murgu Street, 300041 Timisoara, Romania; (M.R.); (A.L.); (B.B.); (A.T.); (G.D.C.)
| | - George D. Constantin
- Doctoral School, “Victor Babeş” University of Medicine and Pharmacy, 2 Eftimie Murgu Street, 300041 Timisoara, Romania; (M.R.); (A.L.); (B.B.); (A.T.); (G.D.C.)
| | - Minodora Andor
- Faculty of Medicine, “Victor Babeş” University of Medicine and Pharmacy, 2 Eftimie Murgu Street, 300041 Timisoara, Romania; (M.A.); (R.F.); (D.M.)
| | - Roxana Folescu
- Faculty of Medicine, “Victor Babeş” University of Medicine and Pharmacy, 2 Eftimie Murgu Street, 300041 Timisoara, Romania; (M.A.); (R.F.); (D.M.)
| | - Delia Muntean
- Faculty of Medicine, “Victor Babeş” University of Medicine and Pharmacy, 2 Eftimie Murgu Street, 300041 Timisoara, Romania; (M.A.); (R.F.); (D.M.)
- Multidisciplinary Research Center on Antimicrobial Resistance, “Victor Babes” University of Medicine and Pharmacy, 2 Eftimie Murgu Square, 300041 Timisoara, Romania
| | - Corina Danciu
- Faculty of Pharmacy, “Victor Babeş” University of Medicine and Pharmacy, 2 Eftimie Murgu Street, 300041 Timisoara, Romania
- Research Center for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy, 2 Eftimie Murgu Square, 300041 Timisoara, Romania
| | - Olivia Dalleur
- Louvain Drug Research Institute, Université Catholique de Louvain, Avenue Emmanuel Mounier 73, 1200 Brussels, Belgium
| | - Stefan Laurentiu Batrina
- Faculty of Agriculture, University of Life Sciences “King Mihai I” from Timisoara, Calea Aradului 119, 300645 Timisoara, Romania
| | - Octavian Cretu
- Faculty of Medicine, “Victor Babeş” University of Medicine and Pharmacy, 2 Eftimie Murgu Street, 300041 Timisoara, Romania; (M.A.); (R.F.); (D.M.)
| | - Valentina Oana Buda
- Faculty of Pharmacy, “Victor Babeş” University of Medicine and Pharmacy, 2 Eftimie Murgu Street, 300041 Timisoara, Romania
- Research Center for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy, 2 Eftimie Murgu Square, 300041 Timisoara, Romania
- Ineu City Hospital, 2 Republicii Street, 315300 Ineu, Romania
| |
Collapse
|
35
|
Maki JJ, Howard M, Connelly S, Pettengill MA, Hardy DJ, Cameron A. Species Delineation and Comparative Genomics within the Campylobacter ureolyticus Complex. J Clin Microbiol 2023; 61:e0004623. [PMID: 37129508 PMCID: PMC10204631 DOI: 10.1128/jcm.00046-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 04/06/2023] [Indexed: 05/03/2023] Open
Abstract
Campylobacter ureolyticus is an emerging pathogen increasingly appreciated as a common cause of gastroenteritis and extra-intestinal infections in humans. Outside the setting of gastroenteritis, little work has been done to describe the genomic content and relatedness of the species, especially regarding clinical isolates. We reviewed the epidemiology of clinical C. ureolyticus cultured by our institution over the past 10 years. Fifty-one unique C. ureolyticus isolates were identified between January 2010 and August 2022, mostly originating from abscesses and blood cultures. To clarify the taxonomic relationships between isolates and to attribute specific genes with different clinical manifestations, we sequenced 19 available isolates from a variety of clinical specimen types and conducted a pangenomic analysis with publicly available C. ureolyticus genomes. Digital DNA:DNA hybridization suggested that these C. ureolyticus comprised a species complex of 10 species clusters (SCs) and several subspecies clusters. Although some orthologous genes or gene functions were enriched in isolates found in different SCs and clinical specimens, no association was significant. Nearly a third of the isolates possessed antimicrobial resistance genes, including the ermA resistance gene, potentially conferring resistance to macrolides, the treatment of choice for severe human campylobacteriosis. This work effectively doubles the number of publicly available C. ureolyticus genomes, provides further clarification of taxonomic relationships within this bacterial complex, and identifies target SCs for future analysis.
Collapse
Affiliation(s)
- Joel J. Maki
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, New York, USA
| | - Mondraya Howard
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, New York, USA
| | - Sara Connelly
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, New York, USA
| | - Matthew A. Pettengill
- Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Dwight J. Hardy
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, New York, USA
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, USA
| | - Andrew Cameron
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, New York, USA
| |
Collapse
|
36
|
Gao F, Tu L, Chen M, Chen H, Zhang X, Zhuang Y, Luo J, Chen M. Erythromycin resistance of clinical Campylobacter jejuni and Campylobacter coli in Shanghai, China. Front Microbiol 2023; 14:1145581. [PMID: 37260688 PMCID: PMC10229067 DOI: 10.3389/fmicb.2023.1145581] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 03/20/2023] [Indexed: 06/02/2023] Open
Abstract
Campylobacter species are zoonotic pathogens, as well as the prevalent cause of foodborne bacterial gastroenteritis. The spread of antimicrobial-resistant strains poses a serious threat to global public health and attracts attention worldwide, but information about clinical Campylobacter is relatively limited compared to isolates from food and animals. The current study illustrated the prevalence and antimicrobial resistance profiles of Campylobacter jejuni and Campylobacter coli isolates collected from a consecutive surveillance program between 2012 and 2019 in Shanghai, China, using antimicrobial susceptibility testing and whole-genome sequencing. Among the 891 Campylobacter strains (761 C. jejuni and 130 C. coli) isolates collected, high portions above 90% of resistance to ciprofloxacin, nalidixic acid, and tetracycline were observed for both C. jejuni and C. coli. The most common MDR profiles represented by C. jejuni and C. coli were combination of ciprofloxacin, tetracycline, florfenicol and nalidixic acid (5.39%), and azithromycin, ciprofloxacin, erythromycin, gentamicin, tetracycline, clindamycin, nalidixic acid (28.46%), respectively. The erythromycin resistance of C. coli (59.23%) is higher than C. jejuni (2.50%). A total of 76 erythromycin resistant isolates (16 C. jejuni and 60 C. coli) were sequenced using Illumina platform for determining the genotypes, antimicrobial resistance patterns and phylogeny analysis. Multilocus sequence typing (MLST) analysis showed a high genetic diversity with 47 sequence types (STs), including 4 novel alleles and 12 new STs. The most abundant clonal complexes (CCs) were CC-403 (31.25%) and CC-828 (88.33%) for C. jejuni and C. coli, respectively. Among the 76 erythromycin-resistant isolates, mutation A2075G in 23S rRNA and erm(B) gene were detected in 53.95 and 39.47%, respectively. The erm(B) gene was identified exclusively in 30 C. coli isolates. All these erm(B) positive isolates were multi-drug resistant. Furthermore, comparison of the erm(B)-carrying isolates of multiple sources worldwide demonstrated the possibility of zoonotic transmission of erm(B) in Campylobacter. These findings highlight the importance of continuous surveillance of erythromycin resistance dissemination in Campylobacter which may compromise the effectiveness of antimicrobial therapy.
Collapse
Affiliation(s)
- Fen Gao
- Department of Microbiology, Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China
| | - Lihong Tu
- Department of Public Health Service and Safety Assessment, Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China
| | - Mingliang Chen
- Department of Microbiology, Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China
| | - Hongyou Chen
- Department of Microbiology, Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China
| | - Xi Zhang
- Department of Microbiology, Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China
| | - Yuan Zhuang
- Department of Microbiology, Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China
| | - Jiayuan Luo
- Department of Microbiology, Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China
| | - Min Chen
- Department of Microbiology, Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China
| |
Collapse
|
37
|
Concha-Toloza M, Lopez-Cantillo M, Molina-Mora JA, Collado L. Genomic Characterization of Antibiotic-Resistant Campylobacterales Isolated from Chilean Poultry Meat. Antibiotics (Basel) 2023; 12:917. [PMID: 37237819 PMCID: PMC10215856 DOI: 10.3390/antibiotics12050917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/11/2023] [Accepted: 05/13/2023] [Indexed: 05/28/2023] Open
Abstract
Due to the lack of knowledge about Campylobacterales in the Chilean poultry industry, the objective of this research was to know the prevalence, resistance, and genotypes of Campylobacter, Arcobacter and Helicobacter in 382 samples of chicken meat purchased in Valdivia, Chile. The samples were analyzed using three isolation protocols. Resistance to four antibiotics was evaluated by phenotypic methods. Genomic analyses were performed on selected resistant strains to detect resistance determinants and their genotypes. A total of 59.2% of the samples were positive. Arcobacter butzleri (37.4%) was the most prevalent species, followed by Campylobacter jejuni (19.6%), C. coli (11.3%), A. cryaerophilus (3.7%) and A. skirrowii (1.3%). Helicobacter pullorum (14%) was detected by PCR in a subset of samples. Campylobacter jejuni was resistant to ciprofloxacin (37.3%) and tetracycline (20%), while C. coli and A. butzleri were resistant to ciprofloxacin (55.8% and 2.8%), erythromycin (16.3% and 0.7%) and tetracycline (4.7% and 2.8%), respectively. Molecular determinants were consistent with phenotypic resistance. The genotypes of C. jejuni (CC-21, CC-48, CC-49, CC-257, CC-353, CC-443, CC-446 and CC-658) and C. coli (CC-828) coincided with genotypes of Chilean clinical strains. These findings suggest that besides C. jejuni and C. coli, chicken meat could play a role in the transmission of other pathogenic and antibiotic-resistant Campylobacterales.
Collapse
Affiliation(s)
- Macarena Concha-Toloza
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia 5110566, Chile
| | - Mónica Lopez-Cantillo
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia 5110566, Chile
| | - Jose Arturo Molina-Mora
- Centro de Investigación en Enfermedades Tropicales (CIET) & Facultad de Microbiología, Universidad de Costa Rica, San José 11501-2060, Costa Rica
| | - Luis Collado
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia 5110566, Chile
| |
Collapse
|
38
|
Lin Q, Guan SW, Yu HB. Immuno-oncology-microbiome axis of gastrointestinal malignancy. World J Gastrointest Oncol 2023; 15:757-775. [PMID: 37275452 PMCID: PMC10237027 DOI: 10.4251/wjgo.v15.i5.757] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 03/15/2023] [Accepted: 04/14/2023] [Indexed: 05/12/2023] Open
Abstract
Research on the relationship between the microbiome and cancer has been controversial for centuries. Recent works have discovered that the intratumor microbiome is an important component of the tumor microenvironment (TME). Intratumor bacteria, the most studied intratumor microbiome, are mainly localized in tumor cells and immune cells. As the largest bacterial reservoir in human body, the gut microbiome may be one of the sources of the intratumor microbiome in gastrointestinal malignancies. An increasing number of studies have shown that the gut and intratumor microbiome play an important role in regulating the immune tone of tumors. Moreover, it has been recently proposed that the gut and intratumor microbiome can influence tumor progression by modulating host metabolism and the immune and immune tone of the TME, which is defined as the immuno-oncology-microbiome (IOM) axis. The proposal of the IOM axis provides a new target for the tumor microbiome and tumor immunity. This review aims to reveal the mechanism and progress of the gut and intratumor microbiome in gastrointestinal malignancies such as esophageal cancer, gastric cancer, liver cancer, colorectal cancer and pancreatic cancer by exploring the IOM axis. Providing new insights into the research related to gastrointestinal malignancies.
Collapse
Affiliation(s)
- Quan Lin
- Department of Surgery, Wenzhou Central Hospital, The Dingli Clinical Institute of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China
| | - Shi-Wei Guan
- Department of Surgery, Wenzhou Central Hospital, The Dingli Clinical Institute of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China
| | - Hai-Bo Yu
- Department of Surgery, Wenzhou Central Hospital, The Dingli Clinical Institute of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China
| |
Collapse
|
39
|
Zhang Y, Liao G, Wang M, Zhang Z, Liu L, Song Y, Wang D, Hao T, Feng J, Xia B, Wang Y, Tang X, Chen Y. Human-associated bacteria adopt an unusual route for synthesizing 3-acetylated tetramates for environmental adaptation. MICROBIOME 2023; 11:97. [PMID: 37147735 PMCID: PMC10161427 DOI: 10.1186/s40168-023-01548-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 04/11/2023] [Indexed: 05/07/2023]
Abstract
BACKGROUND Tetramates or tetramic acid-containing compounds (TACs) are a group of bioactive natural products featuring a pyrrolidine-2,4-dione ring acknowledged being closed via Dieckmann cyclization. The cariogenic Streptococcus mutans strains bearing a muc biosynthetic gene cluster (BGC) can synthesize mutanocyclin (MUC), a 3-acetylated TAC that can inhibit both leukocyte chemotaxis and filamentous development in Candida albicans. Some strains can also accumulate reutericyclins (RTCs), the intermediates of MUC biosynthesis with antibacterial activities. However, the formation mechanism of the pyrrolidine-2,4-dione ring of MUC and the distribution of muc-like BGCs along with their ecological functions has not been explored extensively. RESULTS We demonstrated that a key intermediate of MUC biosynthesis, M-307, is installed by a hybrid nonribosomal peptide synthetase-polyketide synthase assembly line and its pyrrolidine-2,4-dione ring is closed via an unprecedented lactam bond formation style. Subsequent C-3 acetylation will convert M-307 to RTCs, which is then hydrolyzed by a deacylase, MucF, to remove the N-1 fatty acyl appendage to generate MUC. Distribution analysis showed that the muc-like BGCs distribute predominantly in human-associated bacteria. Interestingly, most of the muc-like BGCs possessing a mucF gene were isolated from human or livestock directly, indicating their involvement in alleviating the host's immune attacks by synthesizing MUC; while those BGCs lacking mucF gene distribute mainly in bacteria from fermented products, suggesting that they tend to synthesize RTCs to compete with neighboring bacteria. It is noteworthy that many bacteria in the same habitats (e.g., the oral cavity) lack the muc-like BGC, but possess functional MucF homologues to "detoxify" RTCs to MUC, including several competitive bacteria of S. mutans. We also comparably studied the distribution of TAS1, a fungal enzyme responsible for the production of phytotoxic tenuazonic acids (TeAs), a class of 3-acetylated TACs with similar structure but distinct biosynthetic mechanism to MUC, and found that it mainly exists in plants or crops. CONCLUSIONS The in vivo and in vitro experiments revealed that the pyrrolidine-2,4-dione ring of MUC is closed via lactam bond formation, which may be adopted by many TACs without 3-acyl decorations. Besides, we found that muc-like BGCs are widespread in human-associated bacteria and their shapes and main products can be influenced by the habitat environment and vice versa. By comparing with TeAs, we provided thought-provoking insights into how ecological and evolutionary forces drive bacteria and fungi to construct a common 3-acetylated pyrrolidine-2,4-dione core through different routes, and how the biosynthetic processes are delicately controlled to generate diverse 3-acetylated TACs for environmental adaptation. Video Abstract.
Collapse
Affiliation(s)
- Yuwei Zhang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ge Liao
- Institute of Chemical Biology, Shenzhen Bay Laboratory, 518132, Shenzhen, China
| | - Min Wang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, 529020, Guangdong, China
| | - Zhao Zhang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- Renal Division, Peking University First Hospital, Peking University Institute of Nephrology, Beijing, 100034, China
| | - Liwei Liu
- Department of Marine Pharmacy, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, 315211, China
| | - Yuqin Song
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Dacheng Wang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Tingting Hao
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jie Feng
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Bin Xia
- Department of Pediatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, 100081, China
| | - Yixiang Wang
- Central Laboratory Peking University School and Hospital of Stomatology, Beijing, 100081, China
| | - Xiaoyu Tang
- Institute of Chemical Biology, Shenzhen Bay Laboratory, 518132, Shenzhen, China.
| | - Yihua Chen
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
40
|
Olvera-Ramírez AM, McEwan NR, Stanley K, Nava-Diaz R, Aguilar-Tipacamú G. A Systematic Review on the Role of Wildlife as Carriers and Spreaders of Campylobacter spp. Animals (Basel) 2023; 13:1334. [PMID: 37106897 PMCID: PMC10135385 DOI: 10.3390/ani13081334] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 04/05/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
Campylobacter spp. are important zoonotic pathogens and can cause one of the main bacterial diarrheal diseases worldwide. Research in the context of infection arising from transmission from other humans and other vertebrates has been extensive. A large fraction of these investigations has focused on domestic animals; however, there are also a number of publications which either totally, or at least in part, consider the role of wild or feral animals as carriers or spreaders of Campylobacter spp. Here, we carry out a systematic review to explore the role played by wild vertebrates as sources of Campylobacter spp. with a compilation of prevalence data for more than 150 species including reptiles, mammals and birds. We found that numerous vertebrate species can act as carriers of Campylobacter species, but we also found that some host specificity may exist, reducing the risk of spread from wildlife to domestic animals or humans.
Collapse
Affiliation(s)
- Andrea Margarita Olvera-Ramírez
- Cuerpo Académico Salud Animal y Microbiología Ambiental, Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Avenida de las Ciencias S/N, Juriquilla, Delegación Santa Rosa Jáuregui, Querétaro C.P. 76230, Mexico
| | - Neil Ross McEwan
- School of Pharmacy and Life Sciences, Robert Gordon University, Aberdeen AB10 7GJ, UK
| | - Karen Stanley
- Department of Biosciences and Chemistry, Sheffield Hallam University City Campus, Howard Street, Sheffield S1 1WB, UK
| | - Remedios Nava-Diaz
- Posdoctoral CONACyT Program, Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Avenida de las Ciencias S/N, Juriquilla, Delegación Santa Rosa Jáuregui, Querétaro C.P. 76230, Mexico
| | - Gabriela Aguilar-Tipacamú
- Cuerpo Académico Salud Animal y Microbiología Ambiental, Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Avenida de las Ciencias S/N, Juriquilla, Delegación Santa Rosa Jáuregui, Querétaro C.P. 76230, Mexico
| |
Collapse
|
41
|
Wang H, Li Y, Gu Y, Zhou G, Chen X, Zhang X, Shao Z, Zhang J, Zhang M. Isolation and Genomic Characteristics of Cat-Borne Campylobacter felis sp. nov. and Sheep-Borne Campylobacter ovis sp. nov. Microorganisms 2023; 11:microorganisms11040971. [PMID: 37110394 PMCID: PMC10145079 DOI: 10.3390/microorganisms11040971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/29/2023] [Accepted: 04/04/2023] [Indexed: 04/29/2023] Open
Abstract
Nine novel bacterial strains were isolated from the feces of cats and sheep in 2019 and 2020 in Beijing, China. Cells were 1-3 μm long and ≤0.5 μm wide, Gram-stain negative, microaerobic, motile, oxidase positive, and urease negative. Phylogenetic analyses based on 16S rRNA gene sequences indicated that these nine isolates belong to the genus Campylobacter but formed two robust clades that were clearly separate from the currently recognized species and, respectively, isolated from the cat and sheep. Both these strains shared low 16S rRNA gene sequence similarity, dDDH relatedness, and ANI values with their closest species C. upsaliensis CCUG 14913T and C. lanienae NCTC 13004T, and against each other, which are below the cut-off values generally recognized for isolates of the same species. The genomic DNA G + C contents of type strains XJK22-1T and SYS25-1T were 34.99 mol% and 32.43 mol%, respectively. Electron microscopy showed that these cells were spiral shaped, with bipolar single flagella. Based on results from genotypic, phenotypic, phylogenetic, and phylogenomic analyses, these nine strains represent two novel species within the genus Campylobacter, for which the names Campylobacter felis sp. nov. (Type strain XJK22-1T = GDMCC 1.3684T = JCM 35847T) and Campylobacter ovis sp. nov. (Type strain SYS25-1T = GDMCC 1.3685T) are proposed.
Collapse
Affiliation(s)
- Hairui Wang
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Rd155, Changbailu, Changping, Beijing 102206, China
| | - Ying Li
- Shunyi District Center for Disease Control and Prevention, Beijing 101320, China
| | - Yixin Gu
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Rd155, Changbailu, Changping, Beijing 102206, China
| | - Guilan Zhou
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Rd155, Changbailu, Changping, Beijing 102206, China
| | - Xiaoli Chen
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Rd155, Changbailu, Changping, Beijing 102206, China
| | - Xin Zhang
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Rd155, Changbailu, Changping, Beijing 102206, China
| | - Zhujun Shao
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Rd155, Changbailu, Changping, Beijing 102206, China
| | - Jianzhong Zhang
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Rd155, Changbailu, Changping, Beijing 102206, China
| | - Maojun Zhang
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Rd155, Changbailu, Changping, Beijing 102206, China
| |
Collapse
|
42
|
Stoakes E, Turner K, Baker DJ, Suau Sans M, Yasir M, Kalmar L, Costigan R, Lott M, Grant AJ. Application of TraDIS to define the core essential genome of Campylobacter jejuni and Campylobacter coli. BMC Microbiol 2023; 23:97. [PMID: 37024800 PMCID: PMC10077673 DOI: 10.1186/s12866-023-02835-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 03/23/2023] [Indexed: 04/08/2023] Open
Abstract
Campylobacter species are the major cause of bacterial gastroenteritis. As there is no effective vaccine, combined with the rapid increase in antimicrobial resistant strains, there is a need to identify new targets for intervention. Essential genes are those that are necessary for growth and/or survival, making these attractive targets. In this study, comprehensive transposon mutant libraries were created in six C. jejuni strains, four C. coli strains and one C. lari and C. hyointestinalis strain, allowing for those genes that cannot tolerate a transposon insertion being called as essential. Comparison of essential gene lists using core genome analysis can highlight those genes which are common across multiple strains and/or species. Comparison of C. jejuni and C. coli, the two species that cause the most disease, identified 316 essential genes. Genes of interest highlighted members of the purine pathway being essential for C. jejuni whilst also finding that a functional potassium uptake system is essential. Protein-protein interaction networks using these essential gene lists also highlighted proteins in the purine pathway being major 'hub' proteins which have a large number of interactors across the network. When adding in two more species (C. lari and C. hyointestinalis) the essential gene list reduces to 261. Within these 261 essential genes, there are many genes that have been found to be essential in other bacteria. These include htrB and PEB4, which have previously been found as core virulence genes across Campylobacter species in other studies. There were 21 genes which have no known function with eight of these being associated with the membrane. These surface-associated essential genes may provide attractive targets. The essential gene lists presented will help to prioritise targets for the development of novel therapeutic and preventative interventions.
Collapse
Affiliation(s)
- Emily Stoakes
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, UK
| | - Keith Turner
- Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | - Dave J Baker
- Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | - Maria Suau Sans
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, UK
| | - Muhammad Yasir
- Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | - Lajos Kalmar
- MRC Toxicology Unit, University of Cambridge, Tennis Court Road, Cambridge, UK
| | - Ruby Costigan
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, UK
| | - Martin Lott
- Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | - Andrew J Grant
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, UK.
| |
Collapse
|
43
|
Portes AB, Panzenhagen P, Pereira dos Santos AM, Junior CAC. Antibiotic Resistance in Campylobacter: A Systematic Review of South American Isolates. Antibiotics (Basel) 2023; 12:antibiotics12030548. [PMID: 36978415 PMCID: PMC10044704 DOI: 10.3390/antibiotics12030548] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/01/2023] [Accepted: 03/03/2023] [Indexed: 03/12/2023] Open
Abstract
In recent years, Campylobacter has become increasingly resistant to antibiotics, especially those first-choice drugs used to treat campylobacteriosis. Studies in South America have reported cases of antibiotic-resistant Campylobacter in several countries, mainly in Brazil. To understand the current frequency of antibiotic-resistant Campylobacter in humans, farm animals, and food of animal origin in South America, we systematically searched for different studies that have reported Campylobacter resistance. The most commonly reported species were C. jejuni and C. coli. Resistance to ciprofloxacin was found to be ubiquitous in the isolates. Nalidixic acid and tetracycline showed a significantly expressed resistance. Erythromycin, the antibiotic of first choice for the treatment of campylobacteriosis, showed a low rate of resistance in isolates but was detected in almost all countries. The main sources of antibiotic-resistant Campylobacter isolates were food of animal origin and farm animals. The results demonstrate that resistant Campylobacter isolates are disseminated from multiple sources linked to animal production in South America. The level of resistance that was identified may compromise the treatment of campylobacteriosis in human and animal populations. In this way, we are here showing all South American communities the need for the constant surveillance of Campylobacter resistance and the need for the strategic use of antibiotics in animal production. These actions are likely to decrease future difficulties in the treatment of human campylobacteriosis.
Collapse
Affiliation(s)
- Ana Beatriz Portes
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-598, Brazil
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, Brazil
- Graduate Program in Veterinary Hygiene and Technological Processing (PGHIGVET), Faculty of Veterinary Medicine, Fluminense Federal University (UFF), Vital Brazil Filho, Niterói 24220-000, Brazil
| | - Pedro Panzenhagen
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-598, Brazil
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, Brazil
- Analytical and Molecular Laboratorial Center (CLAn), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, Brazil
- Correspondence:
| | - Anamaria Mota Pereira dos Santos
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-598, Brazil
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, Brazil
- Graduate Program in Veterinary Hygiene and Technological Processing (PGHIGVET), Faculty of Veterinary Medicine, Fluminense Federal University (UFF), Vital Brazil Filho, Niterói 24220-000, Brazil
| | - Carlos Adam Conte Junior
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-598, Brazil
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, Brazil
- Graduate Program in Veterinary Hygiene and Technological Processing (PGHIGVET), Faculty of Veterinary Medicine, Fluminense Federal University (UFF), Vital Brazil Filho, Niterói 24220-000, Brazil
- Analytical and Molecular Laboratorial Center (CLAn), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, Brazil
- Graduate Program in Food Science (PPGCAL), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, Brazil
- Graduate Program in Sanitary Surveillance (PPGVS), National Institute of Health Quality Control (INCQS), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro 21040-900, Brazil
- Graduate Program in Chemistry (PGQu), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, Brazil
| |
Collapse
|
44
|
Soto-Beltrá N M, Lee BG, Amézquita-López BA, Quiñones B. Overview of methodologies for the culturing, recovery and detection of Campylobacter. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2023; 33:307-323. [PMID: 35168460 DOI: 10.1080/09603123.2022.2029366] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 01/11/2022] [Indexed: 06/14/2023]
Abstract
Campylobacter species are responsible for human gastroenteritis with diverse clinical spectra, ranging from acute watery or bloody diarrhea to life-threatening autoimmune disorders. Given the importance of Campylobacter in causing human illness, this article has reviewed the transmission and attribution sources as well as methodologies for the detection and virulence characterization of campylobacteria. The recovery and detection of Campylobacter from clinical, food and environmental samples has been achieved by the combinatorial use of selective enrichment and culturing methods. Biochemical, immunological, and nucleic acid-based methodologies have enabled the detection and differentiation of closely related Campylobacter isolates in foodborne outbreak investigations and have assessed the diversity and phylogenetic relationships of these bacterial pathogens. Analyses of motility, adherence, and invasiveness in host cells have assessed the pathogenic potential of campylobacteria. Further examination of determinants conferring antimicrobial resistance in Campylobacter have supported the growing need to closely monitor antimicrobials use in clinical and agricultural sectors.
Collapse
Affiliation(s)
- Marcela Soto-Beltrá N
- Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Sinaloa, Culiacán, México
| | - Bertram G Lee
- Produce Safety and Microbiology Research Unit, United States Department of Agriculture/Agricultural Research Service,Western Regional Research Center, Albany, CA, USA
| | | | - Beatriz Quiñones
- Produce Safety and Microbiology Research Unit, United States Department of Agriculture/Agricultural Research Service,Western Regional Research Center, Albany, CA, USA
| |
Collapse
|
45
|
Brooks MR, Medley S, Ponder M, Alexander KA. Campylobacter in aquatic and terrestrial mammals is driven by life traits: A systematic review and meta-analysis. Front Ecol Evol 2023. [DOI: 10.3389/fevo.2023.1070519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
IntroductionCampylobacter spp. infections are responsible for significant diarrheal disease burden across the globe, with prevalence thought to be increasing. Although wild avian species have been studied as reservoirs of Campylobacter spp., our understanding of the role of wild mammalian species in disease transmission and persistence is limited. Host factors influencing infection dynamics in wild mammals have been neglected, particularly life traits, and the role of these factors in zoonotic spillover risk is largely unknown.MethodsHere, we conducted a systematic literature review, identifying mammalian species that had been tested for Campylobacter spp. infections (molecular and culture based). We used logistic regression to evaluate the relationship between the detection of Campylobacter spp. in feces and host life traits (urban association, trophic level, and sociality).ResultsOur analysis suggest that C. jejuni transmission is associated with urban living and trophic level. The probability of carriage was highest in urban-associated species (p = 0.02793) and the most informative model included trophic level. In contrast, C. coli carriage appears to be strongly influenced by sociality (p = 0.0113) with trophic level still being important. Detection of Campylobacter organisms at the genus level, however, was only associated with trophic level (p = 0.0156), highlighting the importance of this trait in exposure dynamics across host and Campylobacter pathogen systems.DiscussionWhile many challenges remain in the detection and characterization of Camploybacter spp., these results suggest that host life traits may have important influence on pathogen exposure and transmission dynamics, providing a useful starting point for more directed surveillance approaches.
Collapse
|
46
|
Clinical characteristics of Campylobacter bacteremia: a multicenter retrospective study. Sci Rep 2023; 13:647. [PMID: 36635328 PMCID: PMC9837072 DOI: 10.1038/s41598-022-27330-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 12/30/2022] [Indexed: 01/14/2023] Open
Abstract
Campylobacter species are the pathogens of the intestinal tract, which infrequently cause bacteremia. To reveal the clinical characteristics of Campylobacter bacteremia, we performed a retrospective, multicenter study. Patients diagnosed with Campylobacter bacteremia in three general hospitals in western Japan between 2011 and 2021 were included in the study. Clinical, microbiological, and prognostic data of the patients were obtained from medical records. We stratified the cases into the gastroenteritis (GE) and fever predominant (FP) types by focusing on the presence of gastrointestinal symptoms. Thirty-nine patients (24 men and 15 women) were included, with a median age of 57 years and bimodal distribution between those in their 20 s and the elderly. The proportion of GE and FP types were 21 (53.8%) and 18 (46.2%), respectively. Comparing these two groups, there was no significant difference in patient backgrounds in terms of sex, age, and underlying diseases. Campylobacter jejuni was exclusively identified in the GE type (19 cases, 90.5%), although other species such as Campylobacter fetus and Campylobacter coli were isolated in the FP type as well. Patients with the FP type underwent intravenous antibiotic therapy more frequently (47.6% vs. 88.9%), and their treatment (median: 5 days vs. 13 days) and hospitalization (median: 7 days vs. 21 days) periods were significantly longer. None of the patients died during the hospitalization. In summary, we found that nearly half of the patients with Campylobacter bacteremia presented with fever as a predominant manifestation without gastroenteritis symptoms.
Collapse
|
47
|
McDonald JB, Scott NE, Underwood GJ, Andrews DM, Van TTH, Moore RJ. Characterisation of N-linked protein glycosylation in the bacterial pathogen Campylobacter hepaticus. Sci Rep 2023; 13:227. [PMID: 36604449 PMCID: PMC9816155 DOI: 10.1038/s41598-022-26532-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 12/15/2022] [Indexed: 01/06/2023] Open
Abstract
Campylobacter hepaticus is an important pathogen which causes Spotty Liver Disease (SLD) in layer chickens. SLD results in an increase in mortality and a significant decrease in egg production and therefore is an important economic concern of the global poultry industry. The human pathogen Campylobacter jejuni encodes an N-linked glycosylation system that plays fundamental roles in host colonization and pathogenicity. While N-linked glycosylation has been extensively studied in C. jejuni and is now known to occur in a range of Campylobacter species, little is known about C. hepaticus glycosylation. In this study glycoproteomic analysis was used to confirm the functionality of the C. hepaticus N-glycosylation system. It was shown that C. hepaticus HV10T modifies > 35 proteins with an N-linked heptasaccharide glycan. C. hepaticus shares highly conserved glycoproteins with C. jejuni that are involved in host colonisation and also possesses unique glycoproteins which may contribute to its ability to survive in challenging host environments. C. hepaticus N-glycosylation may function as an important virulence factor, providing an opportunity to investigate and develop a better understanding the system's role in poultry infection.
Collapse
Affiliation(s)
- Jamieson B McDonald
- School of Science, RMIT University, Bundoora West Campus, Bundoora, VIC, Australia
| | - Nichollas E Scott
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC, Australia
| | - Greg J Underwood
- Bioproperties Pty Ltd, RMIT University, Bundoora West Campus, Bundoora, VIC, Australia
| | - Daniel M Andrews
- Bioproperties Pty Ltd, RMIT University, Bundoora West Campus, Bundoora, VIC, Australia
| | - Thi Thu Hao Van
- School of Science, RMIT University, Bundoora West Campus, Bundoora, VIC, Australia
| | - Robert J Moore
- School of Science, RMIT University, Bundoora West Campus, Bundoora, VIC, Australia.
| |
Collapse
|
48
|
Prevalence, drug resistance spectrum and virulence gene analysis of Campylobacter jejuni in broiler farms in central Shanxi, China. Poult Sci 2022; 102:102419. [PMID: 36599220 PMCID: PMC9823222 DOI: 10.1016/j.psj.2022.102419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/04/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022] Open
Abstract
This study collected 324 chicken cloacal swabs from 6 broiler farms in 4 different areas in Shanxi Province, China (i.e., Lvliang, Taiyuan, Jinzhong, and Yangquan), and analyzed the antimicrobial resistance and virulence-associated genes of the isolates to investigate the prevalence, drug resistance, and virulence gene data of Campylobacter jejuni in broilers. The population structure of C. jejuni and genetic evolutionary relationships among isolates from broiler farms in different regions were studied by using multilocus sequence typing. A total of 35 C. jejuni isolates with an infection rate of 10.8% (35/324) were obtained. The isolates were most resistant to ampicillin (85.7%) and were most sensitive to erythromycin (14.3%). Isolates with multidrug resistance accounted for 88.6% of the total isolates. In this experiment, 15 distinct sequence types were identified and included 9 new unique sequence types. cadF was present in all isolates, and ciaB had the lowest prevalence (51.4%). C. jejuni collected from broiler farms in central Shanxi had varied infection rates, and their overall positive rate was lower than of C. jejuni collected from other regions of the country. The isolates had high resistance to quinolones and β-lactams, and multidrug resistance was prevalent. The isolates were genotypically diverse and carried 5 virulence-associated genes at high rates. Therefore, the importance of source contamination control in broiler farms is emphasized and may have considerable effects on human and animal health.
Collapse
|
49
|
Dolislager CG, Callahan SM, Donohoe DR, Johnson JG. Campylobacter jejuni induces differentiation of human neutrophils to the CD16 hi /CD62L lo subtype. J Leukoc Biol 2022; 112:1457-1470. [PMID: 35866361 DOI: 10.1002/jlb.4a0322-155rr] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 06/29/2022] [Indexed: 01/04/2023] Open
Abstract
The discovery of neutrophil subtypes has expanded what is known about neutrophil functions, yet there is still much to learn about the role of these subtypes during bacterial infection. We investigated whether Campylobacter jejuni induced differentiation of human neutrophils into the hypersegmented, CD16hi /CD62Llo subtype. In addition, we investigated whether C. jejuni-dependent differentiation of this neutrophil subtype induced cancer-promoting activities of human T cells and colonocytes, which were observed in other studies of hypersegmented, CD16hi /CD62Llo neutrophils. We found that C. jejuni causes a significant shift in human neutrophil populations to the hypersegmented, CD16hi /CD62Llo subtype and that those populations exhibit delayed apoptosis, elevated arginase-1 expression, and increased reactive oxygen species production. Furthermore, incubation of C. jejuni-infected neutrophils with human T cells resulted in decreased expression of the ζ-chain of the TCR, which was restored upon supplementation with exogenous l-arginine. In addition, incubation of C. jejuni-infected neutrophils with human colonocytes resulted in increased HIF-1α stabilization and NF-κB activation in those colonocytes, which may result in the up-regulation of protumorigenic genes.
Collapse
Affiliation(s)
| | - Sean M Callahan
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, USA
| | - Dallas R Donohoe
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, USA.,Department of Nutrition, University of Tennessee, Knoxville, Tennessee, USA
| | - Jeremiah G Johnson
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, USA
| |
Collapse
|
50
|
Lynch C, Peeters C, Walsh N, McCarthy C, Coffey A, Lucey B, Vandamme P. Campylobacter majalis sp. nov. and Campylobacter suis sp. nov., novel Campylobacter species isolated from porcine gastrointestinal mucosa. Int J Syst Evol Microbiol 2022; 72. [PMID: 36748456 DOI: 10.1099/ijsem.0.005510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Strains LMG 7974T and LMG 8286T represent single, novel Campylobacter lineages with Campylobacter pinnipediorum and Campylobacter mucosalis as nearest phylogenomic neighbours, respectively. The results of average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) analyses of LMG 7974T, LMG 8286T and type strains of species of the genus Campylobacter confirmed that these strains represent novel species of the genus Campylobacter. The 16S rRNA gene sequences of both strains showed highest identity towards C. mucosalis (97.84 and 98.74 %, respectively). Strains LMG 7974T and LMG 8286T shared 72.5 and 73.7% ANI, respectively, with their nearest phylogenomic neighbours and less than 21 % dDDH. The draft genome sizes of LMG 7974T and LMG 8286T are 1 945429 bp and 1 708214 bp in length with percentage DNA G+C contents of 33.8 and 37.2 %, respectively. Anomalous biochemical characteristics and low MALDI-TOF mass spectrometry log scores supported their designation as representing novel species of the genus Campylobacte. We therefore propose to classify strain LMG 7974T (=CCUG 20705T) as the type strain of the novel species Campylobacter majalis sp. nov. and strain LMG 8286T (=CCUG 24193T, NCTC 11879T) as the type strain of the novel species Campylobacter suis sp. nov.
Collapse
Affiliation(s)
- Caoimhe Lynch
- Department of Biological Sciences, Munster Technological University, Rossa Ave, Bishopstown Cork T12 P928, Ireland
| | - Charlotte Peeters
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Faculty of Sciences, Ghent University, K. L. Ledeganckstraat 35, 9000 Ghent, Belgium
| | - Niamh Walsh
- Department of Biological Sciences, Munster Technological University, Rossa Ave, Bishopstown Cork T12 P928, Ireland
| | - Conor McCarthy
- Department of Biological Sciences, Munster Technological University, Rossa Ave, Bishopstown Cork T12 P928, Ireland
| | - Aidan Coffey
- Department of Biological Sciences, Munster Technological University, Rossa Ave, Bishopstown Cork T12 P928, Ireland.,APC Microbiome Institute, Cork, Ireland
| | - Brigid Lucey
- Department of Biological Sciences, Munster Technological University, Rossa Ave, Bishopstown Cork T12 P928, Ireland
| | - Peter Vandamme
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Faculty of Sciences, Ghent University, K. L. Ledeganckstraat 35, 9000 Ghent, Belgium
| |
Collapse
|