1
|
Li J, Li X, Wang Y, Zhu J, Chen Y. DNA Tetrahedron Mass-Tagged Probe Set for the Programmed Detection of Protein Trimers by Point-to-Point Recognition and Induced Self-Assembly in Living Cells. Anal Chem 2025. [PMID: 39985435 DOI: 10.1021/acs.analchem.4c05947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2025]
Abstract
Multimeric proteins normally perform different biological functions from their monomer components. Thus, precise recognition and quantitative detection of multimeric proteins can benefit a better understanding of complex biological processes and their roles in disease diagnosis and treatment. The challenge herein is to distinguish the multimeric proteins containing identical monomer components and recognize all the monomers in a multimeric protein on spatial scales. This situation is likely to become more significant for homomultimeric proteins. In this study, a DNA polyhedron mass-tagged probe set strategy was developed for the programmed detection of multimeric proteins in living cells. The probe set comprised recognition and displacement probes, a DNA polyhedron probe, and a mass-tagged probe. After point-to-point recognition of each monomer in the target protein complex by recognition and displacement probes, the DNA polyhedron probe could integrate the information on all the protein monomers by carrying out induced self-assembly via a cascaded toehold-mediated strand-displacement (TMSD) reaction. Afterward, the mass-tagged probe collected the integrated information, and the mass tag in the probe was released by ultraviolet (UV) irradiation and detected by mass spectrometry (MS). Using the tmTNF-α homotrimer as an example, its expression levels in different breast cancer cell lines were ultimately determined using this probe set containing a DNA tetrahedron probe. This study is among the first to quantitatively detect multimeric proteins in living cells. Using a similar strategy, more DNA polyhedron mass-tagged probe sets can be developed for the detection of higher-order multimeric proteins.
Collapse
Affiliation(s)
- Jiapu Li
- School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Xiaoxu Li
- School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Yunjing Wang
- School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Jianhua Zhu
- School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
- The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou 225300, China
- Innovation Center of Suzhou, Nanjing Medical University, Suzhou 215000, China
- National Center of Technology Innovation for Biopharmaceuticals, Suzhou 215000, China
| | - Yun Chen
- School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
- Innovation Center of Suzhou, Nanjing Medical University, Suzhou 215000, China
- National Center of Technology Innovation for Biopharmaceuticals, Suzhou 215000, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing 211166, China
- Key Laboratory of Cardiovascular & Cerebrovascular Medicine, Nanjing 211166, China
| |
Collapse
|
2
|
Xie X, Zhang J, Sun L, Xu S, Ma SS, Wang H, Li X, Xiang Q, Cui L, Liang X. Ultrasound-triggered topical oxygen delivery enhances synergistic sonodynamic and antibody therapies against hypoxic gastric cancer. J Control Release 2025; 380:736-750. [PMID: 39947405 DOI: 10.1016/j.jconrel.2025.02.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 02/07/2025] [Accepted: 02/08/2025] [Indexed: 02/21/2025]
Abstract
Hypoxia is a common feature of malignant tumors, which can accelerate tumor growth and reduce the sensitivity of chemotherapy and sonodynamic therapy by activating the hypoxia-inducible factor (HIF) signaling pathway. In HER2-positive gastric cancer, HER2 overexpression enhances HIF-1α synthesis, exacerbating hypoxia and impairing sonodynamic therapy. It also reduces trastuzumab-mediated antibody-dependent cytotoxicity, significantly compromising therapeutic outcomes. Herein, pyropheophorbide-conjugated lipid (pyropheophorbide-lipid, PL) and trastuzumab were fabricated into targeted nanoparticles (TP NPs) for loading perfluorobromooctane (PFOB) carrying oxygen (TPPO NPs), thus enabling oxygen self-supplied sonodynamic and antibody therapies. In vitro experiments showed that antibody targeting significantly increased the cellular uptake of sonosensitizers, and the controlled release of oxygen was dependent on ultrasound parameters, greatly enhancing the killing effects of SDT and antibody therapy. In vivo animal experiments showed that TPPO NPs-mediated enhanced permeation and retention (EPR) effects, along with antibody targeting, improved the enrichment of sonosensitizers in tumors. Notably, ultrasound-triggered topical delivery of oxygen significantly alleviated tumor hypoxia and further improved the efficacy of SDT and antibody therapy. Given the good biosafety profile of TPPO NPs, this system holds great promise for future clinical applications in gastric cancer.
Collapse
Affiliation(s)
- Xinxin Xie
- State Key Laboratory of Vascular Homeostasis and Remodeling, Department of Ultrasound, Peking University Third Hospital, Beijing 100191, China; Beijing Key Laboratory of Interdisciplinary Research in Gastrointestinal Oncology (BLGO), Peking University Third Hospital, Beijing 100191, China
| | - Jinxia Zhang
- State Key Laboratory of Vascular Homeostasis and Remodeling, Department of Ultrasound, Peking University Third Hospital, Beijing 100191, China
| | - Lihong Sun
- State Key Laboratory of Vascular Homeostasis and Remodeling, Department of Ultrasound, Peking University Third Hospital, Beijing 100191, China
| | - Shuyu Xu
- State Key Laboratory of Vascular Homeostasis and Remodeling, Department of Ultrasound, Peking University Third Hospital, Beijing 100191, China
| | - Shiti Sha Ma
- State Key Laboratory of Vascular Homeostasis and Remodeling, Department of Ultrasound, Peking University Third Hospital, Beijing 100191, China
| | - Haonan Wang
- State Key Laboratory of Vascular Homeostasis and Remodeling, Department of Ultrasound, Peking University Third Hospital, Beijing 100191, China
| | - Xiaoda Li
- Peking University Health Science Center, Beijing 100191, China
| | - Qiong Xiang
- Institute of Medicine, Medical Research Center, Jishou University, Jishou, Hunan, China
| | - Ligang Cui
- State Key Laboratory of Vascular Homeostasis and Remodeling, Department of Ultrasound, Peking University Third Hospital, Beijing 100191, China.
| | - Xiaolong Liang
- State Key Laboratory of Vascular Homeostasis and Remodeling, Department of Ultrasound, Peking University Third Hospital, Beijing 100191, China; Beijing Key Laboratory of Interdisciplinary Research in Gastrointestinal Oncology (BLGO), Peking University Third Hospital, Beijing 100191, China.
| |
Collapse
|
3
|
Wang B, Liu W, Song B, Li Y, Wang Y, Tan B. Targeting LINC00665/miR-199b-5p/SERPINE1 axis to inhibit trastuzumab resistance and tumorigenesis of gastric cancer via PI3K/AKt pathway. Noncoding RNA Res 2025; 10:153-162. [PMID: 39399377 PMCID: PMC11467570 DOI: 10.1016/j.ncrna.2024.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 07/23/2024] [Accepted: 07/24/2024] [Indexed: 10/15/2024] Open
Abstract
Long noncoding RNAs (lncRNAs) serve as critical mediators of tumor progression and drug resistance in cancer. Herein, we identified a lncRNA, LINC00665, associated with trastuzumab resistance and development in gastric cancer (GC). LINC00665 was highly expressed in GC tissues and high expression of LINC00665 was correlated with poor prognosis. LINC00665 knockdown was verified to suppress migration, invasion, and resistance to trastuzumab in GC. Furthermore, we found that LINC00665 participates in the infiltration of naive B cells, mast cells, and T follicular helper (Tfh) cells. Mechanistically, LINC00665 was confirmed to regulate tumorigenesis and trastuzumab resistance by activating PI3K/AKt pathway. LINC00665 sponged miR-199b-5p to interact with SERPINE1 expression, resulting in the increase of phosphorylation of AKt, thus participating in the PI3K/AKt pathway. To summarize, LINC00665 facilitated the tumorigenesis and trastuzumab resistance of GC by sponging miR-199b-5p and promoting SERPINE1 expression, which further activated PI3K/AKt signaling; this finding reveals a new mechanism by which LINC00665 modulates tumor development and drug resistance in GC.
Collapse
Affiliation(s)
- Bingyu Wang
- The Third Department of Surgery, The Fourth Hospital of Hebei Medical University, 050017, Shijiazhuang, China
| | - Wenbo Liu
- The Third Department of Surgery, The Fourth Hospital of Hebei Medical University, 050017, Shijiazhuang, China
| | - Buyun Song
- The Third Department of Surgery, The Fourth Hospital of Hebei Medical University, 050017, Shijiazhuang, China
| | - Yong Li
- The Third Department of Surgery, The Fourth Hospital of Hebei Medical University, 050017, Shijiazhuang, China
| | - Yingying Wang
- The Third Department of Surgery, The Fourth Hospital of Hebei Medical University, 050017, Shijiazhuang, China
| | - Bibo Tan
- The Third Department of Surgery, The Fourth Hospital of Hebei Medical University, 050017, Shijiazhuang, China
| |
Collapse
|
4
|
Ji P, Chen T, Li C, Zhang J, Li X, Zhu H. Comprehensive review of signaling pathways and therapeutic targets in gastrointestinal cancers. Crit Rev Oncol Hematol 2025; 206:104586. [PMID: 39653094 DOI: 10.1016/j.critrevonc.2024.104586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 11/27/2024] [Accepted: 12/04/2024] [Indexed: 12/13/2024] Open
Abstract
Targeted therapy, the milestone in the development of human medicine, originated in 2004 when the FDA approved the first targeted agent bevacizumab for colorectal cancer treatment. This new development has resulted from drug developers moving beyond traditional chemotherapy, and several trials have popped up in the last two decades with an unprecedented speed. Specifically, EGF/EGFR, VEGF/VEGFR, HGF/c-MET, and Claudin 18.2 therapeutic targets have been developed in recent years. Some targets previously thought to be undruggable are now being newly explored, such as the RAS site. However, the efficacy of targeted therapy is extremely variable, especially with the emergence of new drugs and the innovative use of traditional targets for other tumors in recent years. Accordingly, this review provides an overview of the major signaling pathway mechanisms and recent advances in targeted therapy for gastrointestinal cancers, as well as future perspectives.
Collapse
Affiliation(s)
- Pengfei Ji
- Department of Thoracic Surgery, West China Hospital, Sichuan University, No. 37 GuoXue Xiang, Chengdu, Sichuan 610041, China
| | - Tingting Chen
- The Second Clinical Medical College, Lanzhou University, No. 199 DongGang West Road, Lanzhou, Gansu 730000, China
| | - Chao Li
- The Second Clinical Medical College, Lanzhou University, No. 199 DongGang West Road, Lanzhou, Gansu 730000, China
| | - Jinyuan Zhang
- The Second Clinical Medical College, Lanzhou University, No. 199 DongGang West Road, Lanzhou, Gansu 730000, China
| | - Xiao Li
- The Second Clinical Medical College, Lanzhou University, No. 199 DongGang West Road, Lanzhou, Gansu 730000, China
| | - Hong Zhu
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, No. 37 GuoXue Xiang, Chengdu, Sichuan 610041, China.
| |
Collapse
|
5
|
Qureshi Z, Jamil A, Fatima E, Altaf F, Siddique R, Shah S. Pembrolizumab in combination with trastuzumab for treatment of HER2-positive advanced gastric or gastro-esophageal junction cancer. Ann Med Surg (Lond) 2024; 86:4647-4656. [PMID: 39118760 PMCID: PMC11305801 DOI: 10.1097/ms9.0000000000002305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 06/14/2024] [Indexed: 08/10/2024] Open
Abstract
Introduction Gastric cancer remains a challenging malignancy with a high global mortality rate. Recent advances in targeted therapy and immunotherapy have shown promise in improving patient outcomes. This paper reviews the impact of incorporating targeted agents such as trastuzumab and immunotherapeutic agents like pembrolizumab into standard chemotherapy regimens for gastric cancer treatment. Methods A comprehensive analysis was conducted on pivotal clinical trials, including KEYNOTE-590, KEYNOTE-811, and ToGA, focusing on their methodologies, patient populations, treatment regimens, and outcome measures. The review also explored emerging research avenues in precision medicine, particularly genomic sequencing and biomarker identification. Aim To assess the efficacy and survival benefits of adding trastuzumab and pembrolizumab to standard chemotherapy in the treatment of gastric cancer and to outline future directions in gastric cancer research. Results Including trastuzumab and pembrolizumab in treatment regimens for human epidermal growth factor receptor 2 (HER2)-positive and PD-L1-expressing gastric cancers significantly improved progression-free and overall survival rates compared to chemotherapy alone. These findings highlight the potential of personalized therapy in enhancing treatment outcomes. Furthermore, ongoing research into the gastric cancer microenvironment and the role of the microbiome suggests novel targets for future therapeutic interventions. Conclusion The integration of targeted and immunotherapeutic agents with traditional chemotherapy represents a pivotal shift in gastric cancer treatment, moving towards more personalized and effective regimens.
Collapse
Affiliation(s)
- Zaheer Qureshi
- The Frank H. Netter M.D. School of Medicine at Quinnipiac University, Bridgeport, CT
| | - Abdur Jamil
- Department of Medicine, Samaritan Medical Centre, Watertown, NY
| | - Eeshal Fatima
- Department of Medicine, Services Institute of Medical Sciences, Lahore, Pakistan
| | - Faryal Altaf
- Department of Internal Medicine, Icahn School of Medicine at Mount Sinai/BronxCare Health System, New York, NY, USA
| | | | - Shivendra Shah
- Department of Medicine, Nepalgunj Medical College, Chisapani, Nepal
| |
Collapse
|
6
|
Moradi L, Tajik F, Saeednejad Zanjani L, Panahi M, Gheytanchi E, Biabanaki ZS, Kazemi-Sefat GE, Hashemi F, Dehghan Manshadi M, Madjd Z. Clinical significance of CD166 and HER-2 in different types of gastric cancer. Clin Transl Oncol 2024; 26:664-681. [PMID: 37537510 DOI: 10.1007/s12094-023-03297-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 07/24/2023] [Indexed: 08/05/2023]
Abstract
INTRODUCTION Cluster of differentiation 166 (CD166), a cancer stem cell (CSC) marker, and human epidermal growth factor receptor 2 (HER-2) are expressed in a diversity of malignancies and is associated with tumor progression. Although studies regarding the importance of CSC markers and HER-2 in gastric cancer (GC) have rapidly developed, their clinicopathological, prognosis, and diagnosis value still remain unsatisfying in GC. Therefore, the present study aims to investigate the clinical, prognostic, and diagnostic significance of CD166 and HER-2 in different histological types of GC. MATERIALS AND METHODS Bioinformatic analysis was applied to determine the clinical importance of CD166 and HER-2 expression based on their tissue localization in primary GC tumors and the normal adjacent samples. The expression patterns, clinical significance, prognosis, and diagnosis value of CD166 and HER-2 proteins in tissue microarrays (TMAs) of 206 GC samples, including Signet Ring Cell (SRC) and intestinal types and also 28 adjacent normal tissues were evaluated using immunohistochemistry (IHC). RESULTS The results indicated that the expression of CD166 (membranous and cytoplasmic) and HER-2 were significantly up-regulated in tumor cells compared to adjacent normal tissues (P = 0.010, P < 0.001, and P = 0.011, respectively). A statistically significant association was detected between a high level of membranous expression of CD166 and lymphovascular invasion (P = 0.006); We also observed a statistically significant association between high cytoplasmic expression of CD166 protein and more invasion of the subserosa (P = 0.040) in the SRC type. In contrast, there was no correlation between the expression of HER-2 and clinicopathologic characteristics. Both CD166 and HER-2 showed reasonable accuracy and high specificity as diagnostic markers. CONCLUSION Our results confirmed that increased membranous and cytoplasmic expression of CD166 showed clinical significance in the SRC type and is associated with the progression of the disease and more aggressive tumor behaviors. These findings can be used to assist in designating subgroups of patients that require different follow-up strategies, and also, they might be utilized as the prognostic or diagnostic biomarkers in these types of GC for prospective clinical application.
Collapse
Affiliation(s)
- Leila Moradi
- Department of Pathology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Tajik
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Leili Saeednejad Zanjani
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Pathology and Genomic Medicine, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Mahshid Panahi
- Department of Pathology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Elmira Gheytanchi
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Sadat Biabanaki
- Faculty of Biological Sciences, Department of Genetics, Tarbiat Modares University, Tehran, Iran
| | - Golnaz Ensieh Kazemi-Sefat
- Faculty of Advanced Technologies in Medicine, Department of Molecular Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Farideh Hashemi
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
- Faculty of Advanced Technologies in Medicine, Department of Molecular Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Masoumeh Dehghan Manshadi
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
- Faculty of Advanced Technologies in Medicine, Department of Molecular Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Madjd
- Department of Pathology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran.
- Faculty of Advanced Technologies in Medicine, Department of Molecular Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
7
|
Lei ZN, Teng QX, Tian Q, Chen W, Xie Y, Wu K, Zeng Q, Zeng L, Pan Y, Chen ZS, He Y. Signaling pathways and therapeutic interventions in gastric cancer. Signal Transduct Target Ther 2022; 7:358. [PMID: 36209270 PMCID: PMC9547882 DOI: 10.1038/s41392-022-01190-w] [Citation(s) in RCA: 107] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 08/14/2022] [Accepted: 09/07/2022] [Indexed: 11/23/2022] Open
Abstract
Gastric cancer (GC) ranks fifth in global cancer diagnosis and fourth in cancer-related death. Despite tremendous progress in diagnosis and therapeutic strategies and significant improvements in patient survival, the low malignancy stage is relatively asymptomatic and many GC cases are diagnosed at advanced stages, which leads to unsatisfactory prognosis and high recurrence rates. With the recent advances in genome analysis, biomarkers have been identified that have clinical importance for GC diagnosis, treatment, and prognosis. Modern molecular classifications have uncovered the vital roles that signaling pathways, including EGFR/HER2, p53, PI3K, immune checkpoint pathways, and cell adhesion signaling molecules, play in GC tumorigenesis, progression, metastasis, and therapeutic responsiveness. These biomarkers and molecular classifications open the way for more precise diagnoses and treatments for GC patients. Nevertheless, the relative significance, temporal activation, interaction with GC risk factors, and crosstalk between these signaling pathways in GC are not well understood. Here, we review the regulatory roles of signaling pathways in GC potential biomarkers, and therapeutic targets with an emphasis on recent discoveries. Current therapies, including signaling-based and immunotherapies exploited in the past decade, and the development of treatment for GC, particularly the challenges in developing precision medications, are discussed. These advances provide a direction for the integration of clinical, molecular, and genomic profiles to improve GC diagnosis and treatments.
Collapse
Affiliation(s)
- Zi-Ning Lei
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Digestive Diseases Center, Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, 518107, Shenzhen, Guangdong, China
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA
| | - Qiu-Xu Teng
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA
| | - Qin Tian
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Digestive Diseases Center, Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, 518107, Shenzhen, Guangdong, China
| | - Wei Chen
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Digestive Diseases Center, Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, 518107, Shenzhen, Guangdong, China
| | - Yuhao Xie
- Institute for Biotechnology, St. John's University, Queens, NY, 11439, USA
| | - Kaiming Wu
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Digestive Diseases Center, Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, 518107, Shenzhen, Guangdong, China
| | - Qianlin Zeng
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Digestive Diseases Center, Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, 518107, Shenzhen, Guangdong, China
| | - Leli Zeng
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Digestive Diseases Center, Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, 518107, Shenzhen, Guangdong, China.
| | - Yihang Pan
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Digestive Diseases Center, Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, 518107, Shenzhen, Guangdong, China.
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA.
- Institute for Biotechnology, St. John's University, Queens, NY, 11439, USA.
| | - Yulong He
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Digestive Diseases Center, Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, 518107, Shenzhen, Guangdong, China.
| |
Collapse
|
8
|
Li Y, Xu C, Wang B, Xu F, Ma F, Qu Y, Jiang D, Li K, Feng J, Tian S, Wu X, Wang Y, Liu Y, Qin Z, Liu Y, Qin J, Song Q, Zhang X, Sujie A, Huang J, Liu T, Shen K, Zhao JY, Hou Y, Ding C. Proteomic characterization of gastric cancer response to chemotherapy and targeted therapy reveals new therapeutic strategies. Nat Commun 2022; 13:5723. [PMID: 36175412 PMCID: PMC9522856 DOI: 10.1038/s41467-022-33282-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 09/12/2022] [Indexed: 11/09/2022] Open
Abstract
Chemotherapy and targeted therapy are the major treatments for gastric cancer (GC), but drug resistance limits its effectiveness. Here, we profile the proteome of 206 tumor tissues from patients with GC undergoing either chemotherapy or anti-HER2-based therapy. Proteome-based classification reveals four subtypes (G-I-G-IV) related to different clinical and molecular features. MSI-sig high GC patients benefit from docetaxel combination treatment, accompanied by anticancer immune response. Further study reveals patients with high T cell receptor signaling respond to anti-HER2-based therapy; while activation of extracellular matrix/PI3K-AKT pathway impair anti-tumor effect of trastuzumab. We observe CTSE functions as a cell intrinsic enhancer of chemosensitivity of docetaxel, whereas TKTL1 functions as an attenuator. Finally, we develop prognostic models with high accuracy to predict therapeutic response, further validated in an independent validation cohort. This study provides a rich resource for investigating the mechanisms and indicators of chemotherapy and targeted therapy in GC.
Collapse
Affiliation(s)
- Yan Li
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institute of Biomedical Sciences, Human Phenome Institute, Zhongshan Hospital, Fudan University, Shanghai, 200433, China
| | - Chen Xu
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Bing Wang
- State Key Laboratory of Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan center for outstanding overseas scientists of pulmonary fibrosis, College of Life Science, Institute of Biomedical Science, Henan Normal University, Xinxiang, 453007, China
| | - Fujiang Xu
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institute of Biomedical Sciences, Human Phenome Institute, Zhongshan Hospital, Fudan University, Shanghai, 200433, China.,Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Fahan Ma
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institute of Biomedical Sciences, Human Phenome Institute, Zhongshan Hospital, Fudan University, Shanghai, 200433, China
| | - Yuanyuan Qu
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Shanghai, 200032, China.,Shanghai Genitourinary Cancer Institute, Shanghai, 200032, China
| | - Dongxian Jiang
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Kai Li
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institute of Biomedical Sciences, Human Phenome Institute, Zhongshan Hospital, Fudan University, Shanghai, 200433, China
| | - Jinwen Feng
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institute of Biomedical Sciences, Human Phenome Institute, Zhongshan Hospital, Fudan University, Shanghai, 200433, China
| | - Sha Tian
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institute of Biomedical Sciences, Human Phenome Institute, Zhongshan Hospital, Fudan University, Shanghai, 200433, China
| | - Xiaohui Wu
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institute of Biomedical Sciences, Human Phenome Institute, Zhongshan Hospital, Fudan University, Shanghai, 200433, China
| | - Yunzhi Wang
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institute of Biomedical Sciences, Human Phenome Institute, Zhongshan Hospital, Fudan University, Shanghai, 200433, China
| | - Yang Liu
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institute of Biomedical Sciences, Human Phenome Institute, Zhongshan Hospital, Fudan University, Shanghai, 200433, China
| | - Zhaoyu Qin
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institute of Biomedical Sciences, Human Phenome Institute, Zhongshan Hospital, Fudan University, Shanghai, 200433, China
| | - Yalan Liu
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Jing Qin
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Qi Song
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institute of Biomedical Sciences, Human Phenome Institute, Zhongshan Hospital, Fudan University, Shanghai, 200433, China
| | - Xiaolei Zhang
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Akesu Sujie
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Jie Huang
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Tianshu Liu
- Department of Oncology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| | - Kuntang Shen
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| | - Jian-Yuan Zhao
- Institute for Developmental and Regenerative Cardiovascular Medicine, MOE-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China. .,Department of Anatomy and Neuroscience Research Institute, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China.
| | - Yingyong Hou
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| | - Chen Ding
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institute of Biomedical Sciences, Human Phenome Institute, Zhongshan Hospital, Fudan University, Shanghai, 200433, China.
| |
Collapse
|
9
|
Gámez-Chiachio M, Molina-Crespo Á, Ramos-Nebot C, Martinez-Val J, Martinez L, Gassner K, Llobet FJ, Soriano M, Hernandez A, Cordani M, Bernadó-Morales C, Diaz E, Rojo-Sebastian A, Triviño JC, Sanchez L, Rodríguez-Barrueco R, Arribas J, Llobet-Navás D, Sarrió D, Moreno-Bueno G. Gasdermin B over-expression modulates HER2-targeted therapy resistance by inducing protective autophagy through Rab7 activation. J Exp Clin Cancer Res 2022; 41:285. [PMID: 36163066 PMCID: PMC9511784 DOI: 10.1186/s13046-022-02497-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 09/19/2022] [Indexed: 11/10/2022] Open
Abstract
Background Gasdermin B (GSDMB) over-expression promotes poor prognosis and aggressive behavior in HER2 breast cancer by increasing resistance to therapy. Decoding the molecular mechanism of GSDMB-mediated drug resistance is crucial to identify novel effective targeted treatments for HER2/GSDMB aggressive tumors. Methods Different in vitro approaches (immunoblot, qRT-PCR, flow cytometry, proteomic analysis, immunoprecipitation, and confocal/electron microscopy) were performed in HER2 breast and gastroesophageal carcinoma cell models. Results were then validated using in vivo preclinical animal models and analyzing human breast and gastric cancer samples. Results GSDMB up-regulation renders HER2 cancer cells more resistant to anti-HER2 agents by promoting protective autophagy. Accordingly, the combination of lapatinib with the autophagy inhibitor chloroquine increases the therapeutic response of GSDMB-positive cancers in vitro and in zebrafish and mice tumor xenograft in vivo models. Mechanistically, GSDMB N-terminal domain interacts with the key components of the autophagy machinery LC3B and Rab7, facilitating the Rab7 activation during pro-survival autophagy in response to anti-HER2 therapies. Finally, we validated these results in clinical samples where GSDMB/Rab7/LC3B co-expression associates significantly with relapse in HER2 breast and gastric cancers. Conclusion Our findings uncover for the first time a functional link between GSDMB over-expression and protective autophagy in response to HER2-targeted therapies. GSDMB behaves like an autophagy adaptor and plays a pivotal role in modulating autophagosome maturation through Rab7 activation. Finally, our results provide a new and accessible therapeutic approach for HER2/GSDMB + cancers with adverse clinical outcome. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-022-02497-w.
Collapse
|
10
|
Li X, Sun B, Zhu J, Qian M, Chen Y. Construction of a Mass-Tagged Oligo Probe Set for Revealing Protein Ratiometric Relationship Associated with EGFR-HER2 Heterodimerization in Living Cells. Anal Chem 2022; 94:8838-8846. [PMID: 35709389 DOI: 10.1021/acs.analchem.1c04989] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Protein dimerization, as the most common form of protein-protein interaction, can manifest more significant roles in cellular signaling than individual monomers. For example, excessive formation of EGFR-HER2 dimer has been implicated in cancer development and therapeutic resistance in addition to the overexpression of EGFR and HER2 proteins. Thus, quantitative evaluation of these heterodimers in living cells and revelation of their ratiometric relationship with protein monomers in dimerization may provide insights into clinical cancer management. To achieve this goal, the prerequisite is protein heterodimer quantification. Given the current lack of quantitative methods, we constructed a mass-tagged oligo nanoprobe set for quantification of EGFR-HER2 dimer in living cells. The mass-tagged oligo nanoprobe set contained two targeting probes (nucleic acid aptamers), a connector probe, a hairpin probe, and a photocleavable mass-tagged probe. Two distinct aptamers can recognize target protein monomers and initiate the subsequent hybridization cascade involving binding to the connector probe, formation of an initiator strand, opening of a hairpin probe, and ensuing hybridization with a photocleavable mass-tagged probe. Ultimately, the mass tag was released under ultraviolet light and then subjected to mass spectrometric analysis. In this way, the information regarding the interaction between two protein monomers was successfully converted to the quantitative signal of the mass tag. Using the assay, the expression level of EGFR-HER2 dimer and its relationship with individual protein monomers were determined in four breast cancer cell lines. We are among the first to obtain the absolute level of protein heterodimer, and this quantitative information may be vital in understanding the molecular basis of cancer.
Collapse
Affiliation(s)
- Xiaoxu Li
- School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Bo Sun
- School of Pharmacy, Nanjing Medical University, Nanjing 211166, China.,Department of Pharmacy, The First People's Hospital of Lianyungang, Lianyungang 222002, China
| | - Jianhua Zhu
- School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Moting Qian
- School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Yun Chen
- School of Pharmacy, Nanjing Medical University, Nanjing 211166, China.,State Key Laboratory of Reproductive Medicine, Nanjing 210029, China.,Key Laboratory of Cardiovascular & Cerebrovascular Medicine, Nanjing 211166, China
| |
Collapse
|
11
|
Choi S, Park S, Kim H, Kang SY, Ahn S, Kim KM. Gastric Cancer: Mechanisms, Biomarkers, and Therapeutic Approaches. Biomedicines 2022; 10:543. [PMID: 35327345 PMCID: PMC8945014 DOI: 10.3390/biomedicines10030543] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/22/2022] [Accepted: 02/22/2022] [Indexed: 12/13/2022] Open
Abstract
Gastric cancer (GC) remains one of the most common deadly malignancies worldwide. Recently, several targeted therapeutics for treating unresectable or metastatic GC have been developed. Comprehensive characterization of the molecular profile and of the tumor immune microenvironment of GC has allowed researchers to explore promising biomarkers for GC treatment and has enabled a new paradigm in precision-targeted immunotherapy. In this article, we review established and promising new biomarkers relevant in GC, with a focus on their clinical implications, diagnostic methods, and the efficacy of targeted agents.
Collapse
Affiliation(s)
- Sangjoon Choi
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea; (S.C.); (S.P.); (H.K.); (S.Y.K.); (S.A.)
| | - Sujin Park
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea; (S.C.); (S.P.); (H.K.); (S.Y.K.); (S.A.)
| | - Hyunjin Kim
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea; (S.C.); (S.P.); (H.K.); (S.Y.K.); (S.A.)
- Center of Companion Diagnostics, Samsung Medical Center, Seoul 06351, Korea
| | - So Young Kang
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea; (S.C.); (S.P.); (H.K.); (S.Y.K.); (S.A.)
| | - Soomin Ahn
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea; (S.C.); (S.P.); (H.K.); (S.Y.K.); (S.A.)
- Center of Companion Diagnostics, Samsung Medical Center, Seoul 06351, Korea
| | - Kyoung-Mee Kim
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea; (S.C.); (S.P.); (H.K.); (S.Y.K.); (S.A.)
- Center of Companion Diagnostics, Samsung Medical Center, Seoul 06351, Korea
| |
Collapse
|
12
|
Immunotoxin IHP25-BT with low immunogenicity and off-target toxicity inhibits the growth and metastasis of trastuzumab-resistant tumor cells. Int J Pharm 2021; 608:121081. [PMID: 34506924 DOI: 10.1016/j.ijpharm.2021.121081] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/22/2021] [Accepted: 09/04/2021] [Indexed: 12/30/2022]
Abstract
Human epidermal growth factor receptor 2 (HER2) is overexpressed in some breast and gastric cancer patients. As the first HER2-targeteed therpeutic antibody, trastuzumab could significantly improve the prognosis of HER2-positive cancer patients. However, even responding patients inevitably get worse due to acquired resistance to trastuzumab after a period of treatment. Many HER2-targeted antibody drugs used wild-type tumor cells to conduct their corresponding preclinical experiments in vitro and in vivo. However, it is impossible to determine whether these newly developed drugs have antitumor effective to trastuzumab-resistant tumor cells. In the study, two trastuzumab-resistant HER2-positive tumor cell populations NCI-N87-TR and BT474-TR were generated. Then, we examined the anti-tumor effects of newly constructed immunotoxins with low immunogenicity and off-target toxicity based on the trastuzumab-resistant tumor cells both in vitro and in vivo. Results demonstrated that the immunotoxin IHP25-BT could not only effectively inhibit tumor growth but also inhibit liver metastasis of tumor cells in a mouse xenograft model. Furthermore, tumor tissue transcriptome sequencing was performed to clarify the potential mechanisms of inhibiting tumor cell distant metastasis by immunotoxin. In conclusion, this work describes a series of attractive therapeutic immunotoxins, the low immunogenicity and off-target toxicity making them promising for trastuzumab-resistant cancer therapy.
Collapse
|
13
|
Guarini C, Grassi T, Pezzicoli G, Porta C. Beyond RAS and BRAF: HER2, a New Actionable Oncotarget in Advanced Colorectal Cancer. Int J Mol Sci 2021; 22:6813. [PMID: 34202896 PMCID: PMC8268006 DOI: 10.3390/ijms22136813] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/21/2021] [Accepted: 06/22/2021] [Indexed: 12/31/2022] Open
Abstract
The human epidermal growth factor receptor 2 (HER2) is a well-established oncogenic driver and a successful therapeutic target in several malignancies, such as breast and gastric cancers. HER2 alterations, including amplification and somatic mutations, have also been detected in a small but not negligible subset of patients affected by advanced colorectal cancer (aCRC). However, to date, there are no available oncotargets in this malignancy beyond RAS and BRAF that are available. Here we present an overview on the present predictive and prognostic role of HER2 expression in aCRC, as well as on its consequent potential therapeutic implications from preclinical investigations towards ongoing trials testing anti-HER2 agents in aCRC. While HER2's role as a molecular predictive biomarker for anti-EGFR therapies in CRC is recognized, HER2 prognostic value remains controversial. Moreover, thanks to the impressive and growing body of clinical evidence, HER2 is strongly emerging as a new potential actionable oncotarget in aCRC. In conclusion, in the foreseeable future, HER2-targeted therapeutic strategies may integrate the algorithm of aCRC treatment towards an increasingly tailored therapeutic approach to this disease.
Collapse
Affiliation(s)
- Chiara Guarini
- Post-Graduate School of Specialization in Medical Oncology, University of Bari ‘Aldo Moro’, 70124 Bari, Italy;
- Division of Medical Oncology, A.O.U. Consorziale Policlinico di Bari, 70124 Bari, Italy; (T.G.); (C.P.)
| | - Teresa Grassi
- Division of Medical Oncology, A.O.U. Consorziale Policlinico di Bari, 70124 Bari, Italy; (T.G.); (C.P.)
| | - Gaetano Pezzicoli
- Post-Graduate School of Specialization in Medical Oncology, University of Bari ‘Aldo Moro’, 70124 Bari, Italy;
- Division of Medical Oncology, A.O.U. Consorziale Policlinico di Bari, 70124 Bari, Italy; (T.G.); (C.P.)
| | - Camillo Porta
- Division of Medical Oncology, A.O.U. Consorziale Policlinico di Bari, 70124 Bari, Italy; (T.G.); (C.P.)
- Chair of Oncology, Department of Biomedical Sciences and Human Oncology, University of Bari ‘A. Moro’, 70124 Bari, Italy
| |
Collapse
|
14
|
Shi W, Zhang G, Ma Z, Li L, Liu M, Qin L, Yu Z, Zhao L, Liu Y, Zhang X, Qin J, Ye H, Jiang X, Zhou H, Sun H, Jiao Z. Hyperactivation of HER2-SHCBP1-PLK1 axis promotes tumor cell mitosis and impairs trastuzumab sensitivity to gastric cancer. Nat Commun 2021; 12:2812. [PMID: 33990570 PMCID: PMC8121856 DOI: 10.1038/s41467-021-23053-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 04/13/2021] [Indexed: 02/04/2023] Open
Abstract
Trastuzumab is the backbone of HER2-directed gastric cancer therapy, but poor patient response due to insufficient cell sensitivity and drug resistance remains a clinical challenge. Here, we report that HER2 is involved in cell mitotic promotion for tumorigenesis by hyperactivating a crucial HER2-SHCBP1-PLK1 axis that drives trastuzumab sensitivity and is targeted therapeutically. SHCBP1 is an Shc1-binding protein but is detached from scaffold protein Shc1 following HER2 activation. Released SHCBP1 responds to HER2 cascade by translocating into the nucleus following Ser273 phosphorylation, and then contributing to cell mitosis regulation through binding with PLK1 to promote the phosphorylation of the mitotic interactor MISP. Meanwhile, Shc1 is recruited to HER2 for MAPK or PI3K pathways activation. Also, clinical evidence shows that increased SHCBP1 prognosticates a poor response of patients to trastuzumab therapy. Theaflavine-3, 3'-digallate (TFBG) is identified as an inhibitor of the SHCBP1-PLK1 interaction, which is a potential trastuzumab sensitizing agent and, in combination with trastuzumab, is highly efficacious in suppressing HER2-positive gastric cancer growth. These findings suggest an aberrant mitotic HER2-SHCBP1-PLK1 axis underlies trastuzumab sensitivity and offer a new strategy to combat gastric cancer.
Collapse
Affiliation(s)
- Wengui Shi
- Cuiying Biomedical Research Center, Lanzhou University Second Hospital, Lanzhou, People's Republic of China
- Biobank of Tumors from Plateau of Gansu Province, Lanzhou University Second Hospital, Lanzhou, People's Republic of China
| | - Gengyuan Zhang
- The Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, People's Republic of China
| | - Zhijian Ma
- The Second Clinical Medical College, Lanzhou University, Lanzhou, People's Republic of China
| | - Lianshun Li
- The Second Clinical Medical College, Lanzhou University, Lanzhou, People's Republic of China
| | - Miaomiao Liu
- The Second Clinical Medical College, Lanzhou University, Lanzhou, People's Republic of China
| | - Long Qin
- Cuiying Biomedical Research Center, Lanzhou University Second Hospital, Lanzhou, People's Republic of China
- Biobank of Tumors from Plateau of Gansu Province, Lanzhou University Second Hospital, Lanzhou, People's Republic of China
| | - Zeyuan Yu
- The Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, People's Republic of China
| | - Lei Zhao
- Cuiying Biomedical Research Center, Lanzhou University Second Hospital, Lanzhou, People's Republic of China
- Biobank of Tumors from Plateau of Gansu Province, Lanzhou University Second Hospital, Lanzhou, People's Republic of China
| | - Yang Liu
- Cuiying Biomedical Research Center, Lanzhou University Second Hospital, Lanzhou, People's Republic of China
- Biobank of Tumors from Plateau of Gansu Province, Lanzhou University Second Hospital, Lanzhou, People's Republic of China
| | - Xue Zhang
- The Second Clinical Medical College, Lanzhou University, Lanzhou, People's Republic of China
| | - Junjie Qin
- Cuiying Biomedical Research Center, Lanzhou University Second Hospital, Lanzhou, People's Republic of China
- Biobank of Tumors from Plateau of Gansu Province, Lanzhou University Second Hospital, Lanzhou, People's Republic of China
| | - Huili Ye
- Cuiying Biomedical Research Center, Lanzhou University Second Hospital, Lanzhou, People's Republic of China
- Biobank of Tumors from Plateau of Gansu Province, Lanzhou University Second Hospital, Lanzhou, People's Republic of China
| | - Xiangyan Jiang
- The Second Clinical Medical College, Lanzhou University, Lanzhou, People's Republic of China
| | - Huinian Zhou
- The Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, People's Republic of China
| | - Hui Sun
- Cuiying Biomedical Research Center, Lanzhou University Second Hospital, Lanzhou, People's Republic of China.
- Biobank of Tumors from Plateau of Gansu Province, Lanzhou University Second Hospital, Lanzhou, People's Republic of China.
| | - Zuoyi Jiao
- Cuiying Biomedical Research Center, Lanzhou University Second Hospital, Lanzhou, People's Republic of China.
- Biobank of Tumors from Plateau of Gansu Province, Lanzhou University Second Hospital, Lanzhou, People's Republic of China.
- The Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, People's Republic of China.
- The Second Clinical Medical College, Lanzhou University, Lanzhou, People's Republic of China.
| |
Collapse
|
15
|
Zhu Y, Zhu X, Wei X, Tang C, Zhang W. HER2-targeted therapies in gastric cancer. Biochim Biophys Acta Rev Cancer 2021; 1876:188549. [PMID: 33894300 DOI: 10.1016/j.bbcan.2021.188549] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/27/2021] [Accepted: 04/14/2021] [Indexed: 02/07/2023]
Abstract
Molecular targeted therapy of cancer has always been the focus of clinicians. Among those therapeutic targets, the human epidermal growth factor receptor-2 (HER-2) signaling pathway is one of the most popular targets for translational research in cancer. However, unlike prospect in breast cancer, HER-2 inhibitor trastuzumab is the only molecular targeted drug approved by US Food and Drug Administration (FDA) for the first-line treatment of HER-2 positive advanced gastric cancer. On this basis, a variety of novel HER2- targeted drugs for gastric cancer are under development, and related clinical researches are in full swing, including small molecular kinase inhibitors (e.g., afatinib, neratinib, pyrotinib), antibody-drug conjugates (e.g., DS-8201a, RC48-ADC) and other novel therapies (e.g., ZW25, CAR-T, BVAC-B). In this study, we will summarize the recent advances in anti-HER-2 agents, potential mechanisms of resistance to HER2-targeted therapy in HER2-positive gastric cancer. We will also discuss the future prospects of potential strategies to overcome anti-HER-2 resistance and development of novel anti-HER-2 approaches for the treatment of HER2-positive gastric cancer patients.
Collapse
Affiliation(s)
- Yinxing Zhu
- Department of Oncology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Xuedan Zhu
- Department of Oncology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Xiaowei Wei
- Department of Oncology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Cuiju Tang
- Department of Oncology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China.
| | - Wenwen Zhang
- Department of Oncology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China.
| |
Collapse
|
16
|
Lago NM, Villar MV, Ponte RV, Nallib IA, Alvarez JJC, López JRA, López RL, Iruegas MEP. Impact of HER2 status in resected gastric or gastroesophageal junction adenocarcinoma in a Western population. Ecancermedicalscience 2020; 14:1020. [PMID: 32256703 PMCID: PMC7105341 DOI: 10.3332/ecancer.2020.1020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND HER2 status is a predictive biomarker of response to trastuzumab in advanced gastric or gastroesophageal junction (GEJ) adenocarcinoma. However, there is relatively little known about the role of HER2 in resected gastric or GEJ adenocarcinoma in the Western population. METHODS Retrospective, observational, single centre study of patients with gastric or GEJ adenocarcinoma undergoing surgery with curative intent between January 2007 and June 2014 in the University Hospital Complex of Santiago de Compostela. The expression of HER2 was determined by immunohistochemistry (IHC) using DAKO-HercepTest™ and gene amplification with DuoCISH using a DAKO-DuoCISH kit. The study of HER2 expression and amplification was carried out in all the patients and it was correlated with classic clinicopathological parameters, survival and recurrence pattern. RESULTS 106 patients were included. HER2 expression was as follows: 71.7% HER2 negative, 21.7% HER2 equivocal and 6.6% HER2 positive, or with HER2 overexpression. 13.2% of patients (14/106) had HER2 amplification by DuoCISH. A significant association was seen between overexpression and amplification of HER2 (p < 0.001).HER2 positivity was associated with the intestinal subtype (p = 0.010) and a low grade of differentiation (p = 0.018). Likewise, HER2 was significantly associated with a worse prognosis: overall survival (OS) 32.3 months HER2 positive versus 93.9 months HER2 negative (HR 0.42; confidence interval 95% 0.18-0.93; p = 0.028); and the presence of distant metastasis without accompanying locoregional recurrence (p = 0.048). CONCLUSION HER2 status defines a subgroup with differentiated clinicopathological characteristics, worse prognosis and distant dissemination, without accompanying locoregional recurrence, in patients with resected gastric or GEJ adenocarcinoma operated on in a Western population.
Collapse
Affiliation(s)
- Nieves Martínez Lago
- Medical Oncology Department, University Hospital A Coruña, 15006 A Coruña, Spain
| | - María Vieito Villar
- GU, Sarcoma and Neuro-oncology Unit, Vall d’Hebron University Hospital, 08035 Barcelona, Spain
| | - Rafael Varela Ponte
- Radiology Department, University Hospital Complex of Santiago de Compostela, 15706 Santiago de Compostela, Spain
| | - Ihab Abdulkader Nallib
- Pathology Department, University Hospital Complex of Santiago de Compostela, 15706 Santiago de Compostela, Spain
| | - Juan José Carrera Alvarez
- Pathology Department, University Hospital Complex of Santiago de Compostela, 15706 Santiago de Compostela, Spain
| | - José Ramón Antúnez López
- Pathology Department, University Hospital Complex of Santiago de Compostela, 15706 Santiago de Compostela, Spain
| | - Rafael López López
- Medical Oncology Department, University Hospital Complex of Santiago de Compostela, 15706 Santiago de Compostela, Spain
| | - María Elena Padin Iruegas
- Human Anatomy and Embryology Area, Faculty of Physiotherapy, Department of Functional Biology and Health Sciences, Vigo University, 36310 Vigo, Pontevedra, Spain
| |
Collapse
|
17
|
Kim B, Nam SK, Seo SH, Park KU, Ahn SH, Park DJ, Kim HH, Kim WH, Lee HS. Comparative analysis of HER2 copy number between plasma and tissue samples in gastric cancer using droplet digital PCR. Sci Rep 2020; 10:4177. [PMID: 32144300 PMCID: PMC7060190 DOI: 10.1038/s41598-020-60897-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 02/17/2020] [Indexed: 01/18/2023] Open
Abstract
In this study, we measured the human epidermal growth factor receptor 2 (HER2) copy number in both tissue and plasma samples of gastric cancer patients by using droplet digital polymerase chain reaction (ddPCR) method. Eighty gastric cancer patients were enrolled and both formalin-fixed and paraffin-embedded tissue and preoperative plasma samples were collected. HER2 status was determined by HER2 immunohistochemistry (IHC)/silver in situ hybridization (SISH) in tissue samples and ddPCR of the target gene HER2 and the reference gene eukaryotic translation initiation factor 2C, 1 in both tissue and plasma. The concordance rate of tissue HER2 status determined by IHC/SISH and HER2 ddPCR was 90.0% (72/80), and the sensitivity and specificity of tissue ddPCR were 85.0% and 95.0%, respectively. The concordance rate of plasma ddPCR and IHC/SISH was 63.8% (51/80). The sensitivity, specificity, positive predictive value, and negative predictive value of plasma HER2 ddPCR were 37.5%, 90.0%, 79.0%, and 59.0%, respectively. As HER2 measurement by tissue ddPCR showed a high concordance rate with HER2 status by IHC/SISH, it could replace tissue IHC/SISH testing in gastric cancer. These findings may contribute to the development of tissue and plasma HER2 testing that would be useful in daily practice.
Collapse
Affiliation(s)
- Boram Kim
- Department of Laboratory Medicine, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea.,Department of Laboratory Medicine, Seoul National University Hospital, Seoul, 03080, Republic of Korea
| | - Soo Kyung Nam
- Department of Pathology, Seoul National University Bundang Hospital, Seongnam, 13620, Republic of Korea
| | - Soo Hyun Seo
- Department of Laboratory Medicine, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea.,Department of Laboratory Medicine, Seoul National University Bundang Hospital, Seongnam, 13620, Republic of Korea
| | - Kyoung Un Park
- Department of Laboratory Medicine, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea.,Department of Laboratory Medicine, Seoul National University Bundang Hospital, Seongnam, 13620, Republic of Korea
| | - Sang-Hoon Ahn
- Department of Surgery, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea.,Department of Surgery, Seoul National University Bundang Hospital, Seongnam, 13620, Republic of Korea
| | - Do Joong Park
- Department of Surgery, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Hyung-Ho Kim
- Department of Surgery, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea.,Department of Surgery, Seoul National University Bundang Hospital, Seongnam, 13620, Republic of Korea
| | - Woo Ho Kim
- Department of Pathology, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Hye Seung Lee
- Department of Pathology, Seoul National University Bundang Hospital, Seongnam, 13620, Republic of Korea. .,Department of Pathology, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea.
| |
Collapse
|
18
|
Cordero-García E, Baéz-Astúa A, Roa-Martínez Y, Ramírez-Mayorga V, Alpízar-Alpízar W. Evaluation of the expression of the oncogen C-ERBB-2/HER2 in advanced gastric cancer cases from Costa Rica. Ecancermedicalscience 2019; 13:962. [PMID: 31645889 PMCID: PMC6786827 DOI: 10.3332/ecancer.2019.962] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Indexed: 01/14/2023] Open
Abstract
Justification The prevalence of gastric cancer (GC) with increased expression of the HER2 oncoprotein shows important variations worldwide. Incidence and mortality rates of GC in Costa Rica are among the highest in Latin America and the world; however, the prevalence of HER2-positive cases in this country is unknown. Evaluation of this parameter is important to decide the therapeutic approach for GC patients. The aim of this study was to provide an estimation of the prevalence of GC patients overexpressing the HER2 oncogene in Costa Rica. Methods The investigation was carried out in two phases. The first one consisted of a retrospective review of 331 clinical records of patients diagnosed with advanced or metastatic GC from January 2010 to January 2012 in four hospitals in Costa Rica. In the second phase, immunohistochemistry (IHC) and fluorescent in situ hybridisation (FISH) analyses were performed in formalin-fixed and paraffin-embedded (FFPE) surgical samples from 50 patients diagnosed with GC between 2012 and 2015. Results Of the 331 clinical files reviewed, the assessment of HER2 status was carried out in 62 patients (18.7%), of which only five (8%) were HER2-positive. In the 50 surgical specimens in which IHC and FISH analyses were performed, two of them (4%) presented overexpression and amplification of the HER2 oncogene. Conclusion This study suggests that the prevalence of GC cases overexpressing the HER2 oncogene in Costa Rica is less than 8%. This is the first attempt ever undertaken to estimate the prevalence of HER2-positivity in GC in Costa Rica.
Collapse
Affiliation(s)
- Eugenia Cordero-García
- Toxicology and Drug Dependence, Department of Pharmacology, School of Pharmacy, University of Costa Rica, 11501-2060 San José, Costa Rica.,Institute of Pharmaceutical Research (INIFAR), University of Costa Rica, 11501-2060 San José, Costa Rica
| | - Andrés Baéz-Astúa
- Molecular Oncology Laboratory, Calderón Guardia Hospital, Caja Costarricense del Seguro Social (CCSS), San José, 10101 Carmen, Aranjuez, Costa Rica
| | - Yolanda Roa-Martínez
- Pathology Service, Calderón Guardia Hospital, Caja Costarricense del Seguro Social (CCSS), San José, 10101 Carmen, Aranjuez, Costa Rica
| | - Vanessa Ramírez-Mayorga
- Cancer Epidemiology Program, Institute for Health Research (INISA), University of Costa Rica, 11501-2060 San José, Costa Rica.,Public Nutrition Section, School of Nutrition, University of Costa Rica, 11501-2060 San José, Costa Rica
| | - Warner Alpízar-Alpízar
- Center for Research in Microscopic Structures (CIEMIC), University of Costa Rica, 11501-2060 San José, Costa Rica.,Department of Biochemistry, School of Medicine, University of Costa Rica, 11501-2060 San José, Costa Rica
| |
Collapse
|
19
|
Zhang J, Zhao T, Han F, Hu Y, Li Y. Photothermal and gene therapy combined with immunotherapy to gastric cancer by the gold nanoshell-based system. J Nanobiotechnology 2019; 17:80. [PMID: 31277667 PMCID: PMC6612092 DOI: 10.1186/s12951-019-0515-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 07/02/2019] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND The gastric cancer is the second most malignant tumor in the world. HER-2 is one of the key targets for the gastric cancer therapy. Anti-HER-2 antibodies like trastuzumab, exhibits the satisfactory therapeutic effect in clinical. However, the drug resistance problem limits its application. METHOD In this study, we develop a gold nanoshell (Gold Nanoshell) drug carrier for delivery and selective photo-thermal release of genes which target HER-2 and immunologic adjuvant CPG sequence in gastric tumor cells. The drug delivery system generated a multidimensional treatment strategy which includes gene-, immune- and photothermal-therapy. RESULTS The whole gold nanoshell drug delivery system exhibits the well gene transduction ability and combined treatment effect. Both in vitro and in vivo results demonstrate the multiple therapeutic effects of the drug delivery system is better than the monotherapy. CONCLUSIONS This study indicates the multiple combined therapy based on the gold nanoshell system would be a promising translational treatment for gastric cancer.
Collapse
Affiliation(s)
- Jiayu Zhang
- Department of Gastrointestinal Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, No. 126 XianTai Street, Changchun, 130033, Jilin, China
| | - Tiancheng Zhao
- Department of Endoscopic Center, China-Japan Union Hospital of Jilin University, No. 126 XianTai Street, Changchun, 130033, Jilin, China
| | - Fanglei Han
- Department of Anesthesiology, China-Japan Union Hospital of Jilin University, No. 126 XianTai Street, Changchun, 130033, Jilin, China
| | - Yu Hu
- Pathology Department, China-Japan Union Hospital of Jilin University, No. 126 XianTai Street, Changchun, 130033, Jilin, China.
| | - Yezhou Li
- Department of Vascular Surgery, China-Japan Union Hospital of Jilin University, No. 126 XianTai Street, Changchun, 130033, Jilin, China.
| |
Collapse
|
20
|
Sun WG, Song RP, Wang Y, Zhang YH, Wang HX, Ge S, Liu JR, Liu LX. γ-Tocotrienol-Inhibited Cell Proliferation of Human Gastric Cancer by Regulation of Nuclear Factor-κB Activity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 67:441-451. [PMID: 30562020 DOI: 10.1021/acs.jafc.8b05832] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
γ-Tocotrienol (γ-T3) exhibits the activity of anticancer via regulating cell signaling pathways. Nuclear factor-κB (NF-κB), one of the crucial pro-inflammatory factors, is involved in the regulation of cell proliferation, apoptosis, invasion, and migration of tumor. In the present study, NF-κB activity inhibited by γ-T3 was investigated in gastric cancer cells. Cell proliferation, NF-κB activity, active protein phosphatase type 2A (PP2A), and ataxia-telangiectasia mutated (ATM) protein were explored using 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide (MTT), methylene blue, enzyme-linked immunosorbent assay (ELISA), malachite green, luciferase, and Western blotting assays. The effects of γ-T3 on tumor growth and the expression of NF-κB and PP2A proteins were also further examined by implanting human gastric cancer cells in a BALB/c nude mouse model. The results showed that γ-T3 significantly inhibited the cell proliferation and attenuated the NF-κB activity in vitro and in vivo. γ-T3 dramatically increased PP2A activity and protein expression, which suppressed ATM phosphorylation and its translocation to the cytoplasm in gastric cancer cells. Thus, our findings may provide mechanistic insight into effects of γ-T3 on the regulation of NF-κB activity by a PP2A-dependent mechanism and suggest that PP2A may serve as a molecular target for a potential chemopreventive agent.
Collapse
Affiliation(s)
- Wen-Guang Sun
- International Peace Maternity and Child Health Hospital, School of Medicine , Shanghai JiaoTong University , 910 Hengshan Road , Shanghai 200030 , P. R. China
| | - Rui-Peng Song
- Department of General Surgery , The First Affiliated Hospital of University of Science and Technology , 17 LuJiang Road , LuYang District, HeFei 230031 , P. R. China
| | - Yong Wang
- Harbin Center for Disease Control and Prevention , 30 WeiXing Road , DaoWai District, Harbin 150056 , P. R. China
| | - Ya-Hui Zhang
- International Peace Maternity and Child Health Hospital, School of Medicine , Shanghai JiaoTong University , 910 Hengshan Road , Shanghai 200030 , P. R. China
| | - Hai-Xia Wang
- International Peace Maternity and Child Health Hospital, School of Medicine , Shanghai JiaoTong University , 910 Hengshan Road , Shanghai 200030 , P. R. China
| | - Sheng Ge
- International Peace Maternity and Child Health Hospital, School of Medicine , Shanghai JiaoTong University , 910 Hengshan Road , Shanghai 200030 , P. R. China
| | - Jia-Ren Liu
- Department of Clinical Laboratory , The Fourth Affiliated Hospital of Harbin Medical University , 37 YiYuan Street , NanGang District, Harbin 150001 , P. R. China
| | - Lian-Xin Liu
- Department of General Surgery , The First Affiliated Hospital of University of Science and Technology , 17 LuJiang Road , LuYang District, HeFei 230031 , P. R. China
| |
Collapse
|
21
|
Guan SS, Wu CT, Chiu CY, Luo TY, Wu JY, Liao TZ, Liu SH. Polyethylene glycol-conjugated HER2-targeted peptides as a nuclear imaging probe for HER2-overexpressed gastric cancer detection in vivo. J Transl Med 2018; 16:168. [PMID: 29921305 PMCID: PMC6009821 DOI: 10.1186/s12967-018-1550-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 06/15/2018] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND The human epidermal growth factor receptor 2 (HER2) involved proliferation, angiogenesis, and reduced apoptosis in gastric cancer (GC), which is a common target for tumor therapy. HER2 is usually overexpressed in more than 15% GC patients, developing a reliable diagnostic tool for tumor HER2 detection is important. In this study, we attend to use polyethylene glycol (PEG) linked anti-HER2/neu peptide (AHNP-PEG) as a nuclear imaging agent probe for HER2 detection in GC xenograft animal model. METHODS The HER2 expression of human sera and tissues were detected in GC patients and normal subjects. GC cell lines NCI-N87 (high HER2 levels) and MKN45 (low HER2 levels) were treated with AHNP-PEG to assess the cell viability and HER2 binding ability. The NCI-N87 was treated with AHNP-PEG to observe the level and phosphorylation of HER2. The MKN45 and NCI-N87-induced xenograft mice were intravenous injection with fluorescence labeled AHNP-PEG for detecting in vivo fluorescence imaging properties and biodistribution. The AHNP-PEG was conjugated with diethylenetriaminopentaacetic acid (DTPA) for indium-111 labeling (111In-DTPA-AHNP-PEG). The stability of was assessed in vitro. The imaging properties and biodistribution of 111In-DTPA-AHNP-PEG were observed in NCI-N87-induced xenograft mice. RESULTS The serum HER2 (sHER2) levels in GC patients were significantly higher than the normal subjects. The sHER2 levels were correlated with the tumor HER2 levels in different stages of GC patients. The AHNP-PEG inhibited the cell growth and down-regulated HER2 phosphorylation in HER2-overexpressed human GC cells (NCI-N87) via specific HER2 interaction of cell surface. In addition, the GC tumor tissues from HER2-postive xenograft mice presented higher HER2 fluorescence imaging as compared to HER2-negative group. The HER2 levels in the tumor tissues were also higher than other organs in NCI-N87-induced xenograft mice. Finally, we further observed that the 111In-DTPA-AHNP-PEG was significantly enhanced in tumor tissues of NCI-N87-induced xenograft mice compared to control. CONCLUSIONS These findings suggest that the sHER2 measurement may be as a potential tool for detecting HER2 expressions in GC patients. The radioisotope-labeled AHNP-PEG may be useful to apply in GC patients for HER2 nuclear medicine imaging.
Collapse
Affiliation(s)
- Siao-Syun Guan
- Institute of Nuclear Energy Research, Atomic Energy Council, Taoyuan, Taiwan
| | - Cheng-Tien Wu
- Institute of Toxicology, College of Medicine, National Taiwan University, No. 1, Section 1, Jen-Ai Road, Taipei, 10051, Taiwan
| | - Chen-Yuan Chiu
- Institute of Food Safety and Health, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Tsai-Yueh Luo
- Institute of Nuclear Energy Research, Atomic Energy Council, Taoyuan, Taiwan
| | - Jeng-Yih Wu
- Department of Internal Medicine, Kaohsiung Municipal Hsiao-Kang Hospital, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Tse-Zung Liao
- Institute of Nuclear Energy Research, Atomic Energy Council, Taoyuan, Taiwan
| | - Shing-Hwa Liu
- Institute of Toxicology, College of Medicine, National Taiwan University, No. 1, Section 1, Jen-Ai Road, Taipei, 10051, Taiwan. .,Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan. .,Department of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan.
| |
Collapse
|
22
|
Wang L, Zhang H, Zheng J, Wei X, Du J, Lu H, Sun Q, Zhou W, Zhang R, Han Y. Dual silencing of EGFR and HER2 enhances the sensitivity of gastric cancer cells to gefitinib. Mol Carcinog 2018; 57:1008-1016. [PMID: 29637613 DOI: 10.1002/mc.22821] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 03/16/2018] [Accepted: 04/04/2018] [Indexed: 01/06/2023]
Affiliation(s)
- Liying Wang
- Department of Oncology; Chaoyang Central Hospital; Chaoyang Liaoning Province China
| | - Hongfeng Zhang
- Department of Gastric Surgery; Harbin Medical University Cancer Hospital; Harbin Heilongjiang Province China
| | - Jiaxin Zheng
- Department of Nephrology; Heilongjiang Academy of Traditional Chinese Medicine; Harbin Heilongjiang Province China
| | - Xiaoli Wei
- Department of Gastrointestinal Oncology; Harbin Medical University Cancer Hospital; Harbin Heilongjiang Province China
| | - Jingwen Du
- Department of Gastrointestinal Oncology; Harbin Medical University Cancer Hospital; Harbin Heilongjiang Province China
| | - Haibo Lu
- Department of Gastrointestinal Oncology; Harbin Medical University Cancer Hospital; Harbin Heilongjiang Province China
| | - Qiuying Sun
- Department of Gastrointestinal Oncology; Harbin Medical University Cancer Hospital; Harbin Heilongjiang Province China
| | - Weiyu Zhou
- Department of Gastrointestinal Oncology; Harbin Medical University Cancer Hospital; Harbin Heilongjiang Province China
| | - Rui Zhang
- Department of Colorectal Surgery; Cancer Hospital of China Medical University; Liaoning Cancer Hospital and Institute; Shenyang Liaoning Province China
| | - Yu Han
- Department of Gastrointestinal Oncology; Harbin Medical University Cancer Hospital; Harbin Heilongjiang Province China
| |
Collapse
|
23
|
Liu D, Li X, Chen C, Li C, Zhou C, Zhang W, Zhao J, Fan J, Cheng K, Chen L. Target-specific delivery of oxaliplatin to HER2-positive gastric cancer cells in vivo using oxaliplatin-au-fe3o4-herceptin nanoparticles. Oncol Lett 2018; 15:8079-8087. [PMID: 29731915 DOI: 10.3892/ol.2018.8323] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 12/14/2017] [Indexed: 01/14/2023] Open
Abstract
Gastric cancer is the fourth most common malignancy globally. In order to decrease the dosage and side effects of conventional chemotherapy, and achieve improved benefits from molecular targeted therapy, novel drug delivery systems were developed in the present study. Oxaliplatin-Au-Fe3O4-Herceptin® acts as a dual-functional nanoparticles (NPs) conjugate and possesses the capability of human epithelial growth factor receptor 2 (HER2) targeting and oxaliplatin delivery. The 8-20 nm Au-Fe3O4 were synthesized by decomposing iron pentacarbonyl on the surfaces of Au NPs in the presence of oleic acid and oleylamine. Following being coated with polyethylene glycol, the NPs possessed a ζ-potential of 13.8±1.6 mV and were demonstrated to exhibit no cytotoxicity when Fe concentration is <100 µg/ml via an MTS assay. Mass spectrometry analysis detected a peak at m/z 148,000, and Nuclear Magnetic Resonance indicated peaks at δ 3.51 (8.00H, s, 3-H), 2.97-3.02 (3.80H, t, 2-H) and 2.72-2.76 (3.72H, t, 1-H) following successful loading with Herceptin and oxaliplatin probes. A drug release assay via dialysis cassettes demonstrated that 25% of the oxaliplatin was released at pH 8.0, however >58% was released at pH 6.0 following 4 h incubation, indicating its pH-dependent release characteristic. The active targeting feature of oxaliplatin-Au-Fe3O4-Herceptin was verified in a subcutaneous xenograft mouse model containing SGC-7901 cells via detecting aggregated low intensity in T2-weighted magnetic resonance imaging, which was further confirmed by immunohistochemistry. Therefore, oxaliplatin-Au-Fe3O4-Herceptin is a promising multifunctional platform for simultaneous magnetic traceable and HER2 targeted chemotherapy for gastric cancer.
Collapse
Affiliation(s)
- Daren Liu
- Department of General Surgery, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| | - Xiaowen Li
- Department of General Surgery, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| | - Changlei Chen
- Key Laboratory of Applied Chemistry of Zhejiang, Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| | - Chao Li
- Department of General Surgery, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| | - Chuanbiao Zhou
- Department of General Surgery, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| | - Weidong Zhang
- Department of General Surgery, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| | - Jiangang Zhao
- Department of General Surgery, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| | - Jie Fan
- Key Laboratory of Applied Chemistry of Zhejiang, Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| | - Kai Cheng
- Molecular Imaging Program, Canary Center for Cancer Early Detection, Department of Radiology and Bio-X Program, Stanford University, Stanford, CA 94305, USA
| | - Li Chen
- Department of General Surgery, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| |
Collapse
|
24
|
Richard S, Selle F, Lotz JP, Khalil A, Gligorov J, Soares DG. Pertuzumab and trastuzumab: the rationale way to synergy. AN ACAD BRAS CIENC 2018; 88 Suppl 1:565-77. [PMID: 27275646 DOI: 10.1590/0001-3765201620150178] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 05/05/2015] [Indexed: 02/03/2023] Open
Abstract
It has now been 15 years since the HER2-targeted monoclonal antibody trastuzumab was introduced in clinical and revolutionized the treatment of HER2-positive breast cancer patients. Despite this achievement, most patients with HER2-positive metastatic breast cancer still show progression of their disease, highlighting the need for new therapies. The continuous interest in novel targeted agents led to the development of pertuzumab, the first in a new class of agents, the HER dimerization inhibitors. Pertuzumab is a novel recombinant humanized antibody directed against extracellular domain II of HER2 protein that is required for the heterodimerization of HER2 with other HER receptors, leading to the activation of downstream signalling pathways. Pertuzumab combined with trastuzumab plus docetaxel was approved for the first-line treatment of patients with HER2-positive metastatic breast cancer and is currently used as a standard of care in this indication. In the neoadjuvant setting, the drug was granted FDA-accelerated approval in 2013. Pertuzumab is also being evaluated in the adjuvant setting. The potential of pertuzumab relies in the dual complete blockade of the HER2/3 axis when administered with trastuzumab. This paper synthetises preclinical and clinical data on pertuzumab and highlights the mechanisms underlying the synergistic activity of the combination pertuzumab-trastuzumab which are essentially due to their complementary mode of action.
Collapse
Affiliation(s)
- Sandrine Richard
- Medical Oncology Department, APREC (Alliance Pour la Recherche En Cancérologie), Tenon Hospital (Hôpitaux Universitaires de l'Est-Parisien, AP-HP), rue de la Chine, 75020 Paris, France, Medical Oncology Department, Tenon Hospital, Paris , France
| | - Frédéric Selle
- Medical Oncology Department, APREC (Alliance Pour la Recherche En Cancérologie), Tenon Hospital (Hôpitaux Universitaires de l'Est-Parisien, AP-HP), rue de la Chine, 75020 Paris, France, Medical Oncology Department, Tenon Hospital, Paris , France
| | - Jean-Pierre Lotz
- Medical Oncology Department, APREC (Alliance Pour la Recherche En Cancérologie), Tenon Hospital (Hôpitaux Universitaires de l'Est-Parisien, AP-HP), rue de la Chine, 75020 Paris, France, Medical Oncology Department, Tenon Hospital, Paris , France.,Institut Universitaire de Cancérologie Université Pierre et Marie Curie (IUC-UPMC Univ Paris 06), Sorbonne Universités, 4 place Jussieu, 75005 Paris, France, Université Curie Paris 6, Institut Universitaire de Cancérologie, Université Pierre et Marie Curie, Paris , France
| | - Ahmed Khalil
- Medical Oncology Department, APREC (Alliance Pour la Recherche En Cancérologie), Tenon Hospital (Hôpitaux Universitaires de l'Est-Parisien, AP-HP), rue de la Chine, 75020 Paris, France, Medical Oncology Department, Tenon Hospital, Paris , France
| | - Joseph Gligorov
- Medical Oncology Department, APREC (Alliance Pour la Recherche En Cancérologie), Tenon Hospital (Hôpitaux Universitaires de l'Est-Parisien, AP-HP), rue de la Chine, 75020 Paris, France, Medical Oncology Department, Tenon Hospital, Paris , France.,Institut Universitaire de Cancérologie Université Pierre et Marie Curie (IUC-UPMC Univ Paris 06), Sorbonne Universités, 4 place Jussieu, 75005 Paris, France, Université Curie Paris 6, Institut Universitaire de Cancérologie, Université Pierre et Marie Curie, Paris , France
| | - Daniele G Soares
- Medical Oncology Department, APREC (Alliance Pour la Recherche En Cancérologie), Tenon Hospital (Hôpitaux Universitaires de l'Est-Parisien, AP-HP), rue de la Chine, 75020 Paris, France, Medical Oncology Department, Tenon Hospital, Paris , France
| |
Collapse
|
25
|
Jabs V, Edlund K, König H, Grinberg M, Madjar K, Rahnenführer J, Ekman S, Bergkvist M, Holmberg L, Ickstadt K, Botling J, Hengstler JG, Micke P. Integrative analysis of genome-wide gene copy number changes and gene expression in non-small cell lung cancer. PLoS One 2017; 12:e0187246. [PMID: 29112949 PMCID: PMC5675410 DOI: 10.1371/journal.pone.0187246] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2017] [Accepted: 10/17/2017] [Indexed: 12/27/2022] Open
Abstract
Non-small cell lung cancer (NSCLC) represents a genomically unstable cancer type with extensive copy number aberrations. The relationship of gene copy number alterations and subsequent mRNA levels has only fragmentarily been described. The aim of this study was to conduct a genome-wide analysis of gene copy number gains and corresponding gene expression levels in a clinically well annotated NSCLC patient cohort (n = 190) and their association with survival. While more than half of all analyzed gene copy number-gene expression pairs showed statistically significant correlations (10,296 of 18,756 genes), high correlations, with a correlation coefficient >0.7, were obtained only in a subset of 301 genes (1.6%), including KRAS, EGFR and MDM2. Higher correlation coefficients were associated with higher copy number and expression levels. Strong correlations were frequently based on few tumors with high copy number gains and correspondingly increased mRNA expression. Among the highly correlating genes, GO groups associated with posttranslational protein modifications were particularly frequent, including ubiquitination and neddylation. In a meta-analysis including 1,779 patients we found that survival associated genes were overrepresented among highly correlating genes (61 of the 301 highly correlating genes, FDR adjusted p<0.05). Among them are the chaperone CCT2, the core complex protein NUP107 and the ubiquitination and neddylation associated protein CAND1. In conclusion, in a comprehensive analysis we described a distinct set of highly correlating genes. These genes were found to be overrepresented among survival-associated genes based on gene expression in a large collection of publicly available datasets.
Collapse
Affiliation(s)
- Verena Jabs
- Faculty of Statistics, TU Dortmund University, Dortmund, Germany
| | - Karolina Edlund
- Leibniz Research Centre for Working Environment and Human Factors (IfADo) at Dortmund University, Dortmund, Germany
| | - Helena König
- Faculty of Statistics, TU Dortmund University, Dortmund, Germany
| | | | - Katrin Madjar
- Faculty of Statistics, TU Dortmund University, Dortmund, Germany
| | | | - Simon Ekman
- Department of Oncology, Karolinska University Hospital, Stockholm, Sweden
| | | | - Lars Holmberg
- Regional Cancer Center Uppsala-Örebro, Uppsala, Sweden
- King’s College London, Faculty of Life Sciences and Medicine, Division of Cancer Studies, London, United Kingdom
| | - Katja Ickstadt
- Faculty of Statistics, TU Dortmund University, Dortmund, Germany
| | - Johan Botling
- Dept. of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Jan G. Hengstler
- Leibniz Research Centre for Working Environment and Human Factors (IfADo) at Dortmund University, Dortmund, Germany
| | - Patrick Micke
- Dept. of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
- * E-mail:
| |
Collapse
|
26
|
Halder S, Mallick D, Mondal P, Roy DS, Halder A, Chakrabarti S. Detection and Significance of Human Epidermal Growth Factor Receptor 2 Expression in Gastric Adenocarcinoma. INDIAN JOURNAL OF MEDICAL AND PAEDIATRIC ONCOLOGY : OFFICIAL JOURNAL OF INDIAN SOCIETY OF MEDICAL & PAEDIATRIC ONCOLOGY 2017; 38:153-157. [PMID: 28900323 PMCID: PMC5582552 DOI: 10.4103/ijmpo.ijmpo_159_16] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Background: Human epidermal growth factor receptor 2 (HER2) is involved in the pathogenesis of several types of cancer, including gastric cancer. Overexpression of HER2 is noted in 10%–22.8% of gastric adenocarcinoma and its identification is of immense importance for management by targeted drugs. Detection of HER2 expression in gastric malignancies has not been undertaken previously in the local population. Objective: To ascertain HER2 immunohistochemical expression in gastric adenocarcinoma and its relationship with the anatomic location and histomorphology. Materials and Methods: A total of 47 cases of gastric adenocarcinoma diagnosed over 2 years constituted the study group. Clinical history, type of operation, gross morphology, and hematoxylin and eosin (H and E) stained sections were reviewed. Two paraffin blocks were selected, immunostain was performed using rabbit monoclonal HER2 antibody and Hoffmann scoring system was applied. Results: Most of gastric carcinomas occurred in male (42 cases), having a mean age of 53.6 years. A total of eight cases (17.1%) had expressed a score of 3+ HER2 positivity. All positivity was noted in intestinal type according to Lauren classification (25%) and none in diffuse type. All HER2 score of 3+ was noted in histological grade of well and moderately differentiated adenocarcinoma. Score 2+ was noted in seven cases, among them, only two were poorly differentiated gastric adenocarcinoma. Conclusion: HER2 overexpression was noticeably associated with an intestinal subtype, and well and moderately differentiated adenocarcinomas. Such cases of gastric adenocarcinoma are considered for targeted therapy with trastuzumab in the local population.
Collapse
Affiliation(s)
- Sutapa Halder
- Department of Pathology, ESI PGIMSR, Manicktala, West Bengal, India
| | - Debjani Mallick
- Department of Pathology, ESI PGIMSR and ESIC Medical College, Joka, West Bengal, India
| | - Priyanka Mondal
- Department of Pathology, ESI PGIMSR, Manicktala, West Bengal, India
| | | | - Aniket Halder
- Department of Pathology, School of Digestive and Liver Diseases, IPGME and R-SSKM Hospitals, Kolkata, West Bengal, India
| | | |
Collapse
|
27
|
Jørgensen JT, Nielsen KB, Kjærsgaard G, Jepsen A, Mollerup J. Gene Signal Distribution and HER2 Amplification in Gastroesophageal Cancer. J Cancer 2017; 8:1517-1524. [PMID: 28775770 PMCID: PMC5535706 DOI: 10.7150/jca.17878] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 03/31/2017] [Indexed: 12/22/2022] Open
Abstract
Background: HER2 serves as an important therapeutic target in gastroesophageal cancer. Differences in HER2 gene signal distribution patterns can be observed at the tissue level, but how it influences the HER2 amplification status has not been studied so far. Here, we investigated the link between HER2 amplification and the different types of gene signal distribution. Methods: Tumor samples from 140 patients with gastroesophageal adenocarcinoma where analyzed using the HER2 IQFISH pharmDx™ assay. Specimens covered non-amplified and amplified cases with a preselected high proportion of HER2 amplified cases. Based on the HER2/CEN-17 ratio, specimens were categorized into amplified or non-amplified. The signal distribution patterns were divided into homogeneous, heterogeneous focal or heterogeneous mosaic. The study was conducted based on anonymized specimens with limited access to clinicopathological data. Results: Among the 140 analyzed specimens 83 had a heterogeneous HER2 signal distribution, with 62 being focal and 21 of the mosaic type. The remaining 57 specimens had a homogeneous signal distribution. HER2 amplification was observed in 63 of the 140 specimens, and nearly all (93.7%) were found among specimens with a heterogeneous focal signal distribution (p<0.0001). The mean HER2/CEN-17 ratio for the focal heterogeneous group was 8.75 (CI95%: 6.87 - 10.63), compared to 1.53 (CI95%: 1.45 - 1.61) and 1.70 (CI95%: 1.22 - 2.18) for the heterogeneous mosaic and homogeneous groups, respectively, (p<0.0001). Conclusions: A clear relationship between HER2 amplification and the focal heterogeneous signal distribution was demonstrated in tumor specimens from patients with gastroesophageal cancer. Furthermore, we raise the hypothesis that the signal distribution patterns observed with FISH might be related to different subpopulations of HER2 positive tumor cells.
Collapse
Affiliation(s)
| | | | - Gitte Kjærsgaard
- Agilent Technologies, Produktionsvej 42, DK-2600 Glostrup, Denmark
| | - Anna Jepsen
- Agilent Technologies, Produktionsvej 42, DK-2600 Glostrup, Denmark
| | - Jens Mollerup
- Agilent Technologies, Produktionsvej 42, DK-2600 Glostrup, Denmark
| |
Collapse
|
28
|
Qi L, Zhou L, Lu M, Yuan K, Li Z, Wu G, Huang X, Shen Y, Zhao M, Fu W, Chu B, Wang G, Ren F, Ma D, Chen J. Development of a highly specific HER2 monoclonal antibody for immunohistochemistry using protein microarray chips. Biochem Biophys Res Commun 2017; 484:248-254. [PMID: 28111342 DOI: 10.1016/j.bbrc.2017.01.086] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 01/18/2017] [Indexed: 01/13/2023]
Abstract
HER2 is an orphan receptor tyrosine kinase of the EGFR families and is considered to be a key tumor driver gene [1]. Breast cancer and gastric cancer with HER2 amplification can be effectively treated by its neutralizing antibody, Herceptin. In clinic, Immunohistochemistry (IHC) was used as the primary screening method to diagnose HER2 amplification [2]. However, recent evidence suggested that the frequently used rabbit HER2 antibody 4B5 cross reacted with another family member HER4 [3]. IHC staining with 4B5 also indicated that there was strong non-specific cytoplasmic and nuclear signals in normal gastric mucosal cells and some gastric cancer samples. Using a protein lysate array which covers 85% of the human proteome, we have confirmed that the 4B5 bound to HER4 and a nuclear protein ZSCAN18 besides HER2. The non-specific binding accounts for the unexpected cytoplasmic and nuclear staining of 4B5 of normal gastric epithelium. Finally, we have developed a novel mouse HER2 monoclonal antibody UMAB36 with similar sensitivity to 4B5 but only reacted to HER2 across the 17,000 proteins on the protein chip. In 129 breast cancer and 158 gastric cancer samples, UMAB36 showed 100% sensitivity and specificity comparing to the HER2 FISH reference results with no unspecific staining in the gastric mucosa layer. Therefore, UMAB36 could provide as an alternative highly specific IHC reagent for testing HER2 amplification in gastric cancer populations.
Collapse
Affiliation(s)
- Lili Qi
- OriGene Technologies, 9620 Medical Center Dr., Suite 200, Rockville, MD, 20850, USA
| | - Lixin Zhou
- Department of Pathology, Beijing Cancer Hospital, No. 52 Fu-Cheng Road, Haidian District, Beijing, 100142, PR China
| | - Mingmin Lu
- Institute of Functional Nano and Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215123, PR China
| | - Kehu Yuan
- OriGene Technologies, 9620 Medical Center Dr., Suite 200, Rockville, MD, 20850, USA
| | - Zhongwu Li
- Department of Pathology, Beijing Cancer Hospital, No. 52 Fu-Cheng Road, Haidian District, Beijing, 100142, PR China
| | - Guiyin Wu
- OriGene Technologies, 9620 Medical Center Dr., Suite 200, Rockville, MD, 20850, USA
| | - Xiaozheng Huang
- Department of Pathology, Beijing Cancer Hospital, No. 52 Fu-Cheng Road, Haidian District, Beijing, 100142, PR China
| | - Yi Shen
- OriGene Technologies, 9620 Medical Center Dr., Suite 200, Rockville, MD, 20850, USA
| | - Min Zhao
- Department of Pathology, Beijing Cancer Hospital, No. 52 Fu-Cheng Road, Haidian District, Beijing, 100142, PR China
| | - Wei Fu
- OriGene Technologies, 9620 Medical Center Dr., Suite 200, Rockville, MD, 20850, USA
| | - Boyang Chu
- OriGene Technologies, 9620 Medical Center Dr., Suite 200, Rockville, MD, 20850, USA
| | - Guangli Wang
- OriGene Technologies, 9620 Medical Center Dr., Suite 200, Rockville, MD, 20850, USA
| | - Fangfang Ren
- Department of Biochemistry and Molecular Biology, Medical College of Soochow University, Suzhou, 215123, PR China.
| | - Donghui Ma
- OriGene Technologies, 9620 Medical Center Dr., Suite 200, Rockville, MD, 20850, USA.
| | - Jian Chen
- Institute of Functional Nano and Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215123, PR China.
| |
Collapse
|
29
|
Shawky Holah N, Abd El-Halim Kandil M, Abdel Razek E. A study of the prognostic and predictive role of HER-2 expression in bladder urothelial carcinoma. EGYPTIAN JOURNAL OF PATHOLOGY 2016; 36:241-250. [DOI: 10.1097/01.xej.0000508560.88111.51] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
30
|
Li R, Liu B, Gao J. The application of nanoparticles in diagnosis and theranostics of gastric cancer. Cancer Lett 2016; 386:123-130. [PMID: 27845158 DOI: 10.1016/j.canlet.2016.10.032] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 10/12/2016] [Accepted: 10/22/2016] [Indexed: 02/07/2023]
Abstract
Gastric cancer is the fourth most common cancer and the second leading cause of cancer related death worldwide. For the diagnosis of gastric cancer, apart from regular systemic imaging, the locoregional imaging is also of great importance. Moreover, there are still other ways for the detecting of gastric cancer, including the early detection of gastric cancer by endoscopy, the detection of gastric-cancer related biomarkers and the detection of circulating tumor cells (CTCs) of gastric cancer. However, conventional diagnostic methods are usually lack of specificity and sensitivity. Nanoparticles provide many benefits in the diagnosis of gastric cancer. Besides, nanoparticles are capable of integrating the functions of diagnosis and treatment together (theranostics). In this paper, we reviewed the applications of nanoparticles in diagnosis and theranostics of gastric cancer in the above mentioned aspects.
Collapse
Affiliation(s)
- Rutian Li
- The Comprehensive Cancer Center of Drum-Tower Hospital, Medical School of Nanjing University & Clinical Cancer Institute of Nanjing University, Nanjing, PR China; Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, PR China
| | - Baorui Liu
- The Comprehensive Cancer Center of Drum-Tower Hospital, Medical School of Nanjing University & Clinical Cancer Institute of Nanjing University, Nanjing, PR China.
| | - Jiahui Gao
- The Comprehensive Cancer Center of Drum-Tower Hospital, Medical School of Nanjing University & Clinical Cancer Institute of Nanjing University, Nanjing, PR China; Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, PR China
| |
Collapse
|
31
|
Wan JF, Yang LF, Shen YZ, Jia HX, Zhu J, Li GC, Zhang Z. Sex, Race, and Age Disparities in the Improvement of Survival for Gastrointestinal Cancer over Time. Sci Rep 2016; 6:29655. [PMID: 27406065 PMCID: PMC4942771 DOI: 10.1038/srep29655] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 06/21/2016] [Indexed: 01/13/2023] Open
Abstract
There have been notable improvements in survival over the past 2 decades for gastrointestinal (GI) cancer. However, the degree of improvement by age, race, and sex remains unclear. We analyzed data from 9 population-based cancer registries included in the SEER program of the National Cancer Institute (SEER 9) in 1990 to 2009 (n = 288,337). The degree of survival improvement over time by age, race, and sex was longitudinally measured. From 1990 to 2009, improvements in survival were greater for younger age groups. For patients aged 20 to 49 years and diagnosed from 2005 to 2009, adjusted HRs (95% CIs) were 0.74 (95% CI, 0.66-0.83), 0.49 (95% CI, 0.37-0.64), 0.69 (95% CI, 0.65-0.76), 0.62 (95% CI, 0.54-0.69), and 0.56 (95% CI, 0.42-0.76), for cancer of the stomach, small intestine, colon, rectum and anus, respectively, compared with the same age groups of patients diagnosed during 1990 to 1994. Compared with African Americans, whites experienced greater improvement in small intestinal and anal cancer survival. Female anal cancer and regional anal cancer patients experienced no improvement. Our data suggest that different improvement in survival in age, sex and race exists.
Collapse
Affiliation(s)
- Jue-feng Wan
- Department of Radiation Oncology, Fudan University Shanghai Cancer, Center, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Li-feng Yang
- Department of Radiation Oncology, Fudan University Shanghai Cancer, Center, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yun-zhu Shen
- School of Medicine, Nanjing University, Nanjing, jiangsu, 210093, China
- Department of Oncology, Nanjing First Hospital, Nanjing Medical University, Nanjing, jiangsu, 210006, China
| | - Hui-xun Jia
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Department of Clinical Statistical Center, Fudan University Shanghai Cancer, Center, China
| | - Ji Zhu
- Department of Radiation Oncology, Fudan University Shanghai Cancer, Center, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Gui-chao Li
- Department of Radiation Oncology, Fudan University Shanghai Cancer, Center, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhen Zhang
- Department of Radiation Oncology, Fudan University Shanghai Cancer, Center, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
32
|
Joshi BP, Zhou J, Pant A, Duan X, Zhou Q, Kuick R, Owens SR, Appelman H, Wang TD. Design and Synthesis of Near-Infrared Peptide for in Vivo Molecular Imaging of HER2. Bioconjug Chem 2015; 27:481-94. [PMID: 26709709 DOI: 10.1021/acs.bioconjchem.5b00565] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
We report the development, characterization, and validation of a peptide specific for the extracellular domain of HER2. This probe chemistry was developed for molecular imaging by using a structural model to select an optimal combination of amino acids that maximize the likelihood for unique hydrophobic and hydrophilic interactions with HER2 domain 3. The sequence KSPNPRF was identified and conjugated with either FITC or Cy5.5 via a GGGSK linker using Fmoc-mediated solid-phase synthesis to demonstrate flexibility for this chemical structure to be labeled with different fluorophores. A scrambled sequence was developed for control by altering the conformationally rigid spacer and moving both hydrophobic and hydrophilic amino acids on the C-terminus. We validated peptide specificity for HER2 in knockdown and competition experiments using human colorectal cancer cells in vitro, and measured a binding affinity of kd = 21 nM and time constant of k = 0.14 min(-1) (7.14 min). We used this peptide with either topical or intravenous administration in a preclinical model of colorectal cancer to demonstrate specific uptake in spontaneous adenomas and to show feasibility for real time in vivo imaging with near-infrared fluorescence. We used this peptide in immunofluorescence studies of human proximal colon specimens to evaluate specificity for sessile serrated and sporadic adenomas. Improved visualization can be used endoscopically to guide tissue biopsy and detect premalignant lesions that would otherwise be missed. Our peptide design for specificity to HER2 is promising for clinical translation in molecular imaging methods for early cancer detection.
Collapse
Affiliation(s)
- Bishnu P Joshi
- Department of Medicine, Division of Gastroenterology, ‡Department of Biomedical Engineering, §Department of Biostatistics, ∥Department of Pathology, and ⊥Department of Mechanical Engineering, University of Michigan , Ann Arbor, Michigan 48109, United States
| | - Juan Zhou
- Department of Medicine, Division of Gastroenterology, ‡Department of Biomedical Engineering, §Department of Biostatistics, ∥Department of Pathology, and ⊥Department of Mechanical Engineering, University of Michigan , Ann Arbor, Michigan 48109, United States
| | - Asha Pant
- Department of Medicine, Division of Gastroenterology, ‡Department of Biomedical Engineering, §Department of Biostatistics, ∥Department of Pathology, and ⊥Department of Mechanical Engineering, University of Michigan , Ann Arbor, Michigan 48109, United States
| | - Xiyu Duan
- Department of Medicine, Division of Gastroenterology, ‡Department of Biomedical Engineering, §Department of Biostatistics, ∥Department of Pathology, and ⊥Department of Mechanical Engineering, University of Michigan , Ann Arbor, Michigan 48109, United States
| | - Quan Zhou
- Department of Medicine, Division of Gastroenterology, ‡Department of Biomedical Engineering, §Department of Biostatistics, ∥Department of Pathology, and ⊥Department of Mechanical Engineering, University of Michigan , Ann Arbor, Michigan 48109, United States
| | - Rork Kuick
- Department of Medicine, Division of Gastroenterology, ‡Department of Biomedical Engineering, §Department of Biostatistics, ∥Department of Pathology, and ⊥Department of Mechanical Engineering, University of Michigan , Ann Arbor, Michigan 48109, United States
| | - Scott R Owens
- Department of Medicine, Division of Gastroenterology, ‡Department of Biomedical Engineering, §Department of Biostatistics, ∥Department of Pathology, and ⊥Department of Mechanical Engineering, University of Michigan , Ann Arbor, Michigan 48109, United States
| | - Henry Appelman
- Department of Medicine, Division of Gastroenterology, ‡Department of Biomedical Engineering, §Department of Biostatistics, ∥Department of Pathology, and ⊥Department of Mechanical Engineering, University of Michigan , Ann Arbor, Michigan 48109, United States
| | - Thomas D Wang
- Department of Medicine, Division of Gastroenterology, ‡Department of Biomedical Engineering, §Department of Biostatistics, ∥Department of Pathology, and ⊥Department of Mechanical Engineering, University of Michigan , Ann Arbor, Michigan 48109, United States
| |
Collapse
|
33
|
Renal toxicity of anticancer agents targeting HER2 and EGFR. J Nephrol 2015; 28:647-57. [DOI: 10.1007/s40620-015-0226-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 08/08/2015] [Indexed: 01/29/2023]
|
34
|
Serum HER2 Is a Potential Surrogate for Tissue HER2 Status in Gastric Cancer: A Systematic Review and Meta-Analysis. PLoS One 2015; 10:e0136322. [PMID: 26292093 PMCID: PMC4546384 DOI: 10.1371/journal.pone.0136322] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 08/02/2015] [Indexed: 02/07/2023] Open
Abstract
Determining the expression level of human epidermal growth factor receptor 2 (HER2) in tumor tissue is of great importance for personalized therapy in gastric cancer. Although several studies have investigated whether serum HER2 can serve as a surrogate for tissue HER2 status, results have been inconsistent. We therefore performed a meta-analysis of published clinical studies in an attempt to address this problem. PubMed, Embase, Web of Science, the Cochrane Library and Science Direct were queried for eligible studies that could provide sufficient data to construct 2 × 2 contingency tables. The quality of the studies included in the meta-analysis was assessed in accordance with the revised Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2) criteria. The pooled sensitivity, specificity and diagnostic odds ratio (DOR) were calculated for the eligible studies. The summary receiver operating characteristic (SROC) curve was constructed and the area under the SROC (AUSROC) was used to evaluate overall diagnostic performance. Eight studies comprising a total of 1170 participants were included in our meta-analysis. The pooled sensitivity, specificity and DOR were 0.39 (95% CI: 0.21–0.61), 0.98 (95% CI: 0.87–1.00), and 27 (95% CI: 9–81), respectively. The AUSROC was 0.77 (95% CI: 0.73–0.80) and Deeks funnel plot suggested the absence of publication bias (p = 0.91). Meta-regression analysis indicated that threshold effect was the main source of heterogeneity. Assays for evaluating serum HER2 levels are highly specific and demonstrate moderate diagnostic performance for HER2 tissue status in gastric cancer.
Collapse
|
35
|
c-Met targeting in advanced gastric cancer: An open challenge. Cancer Lett 2015; 365:30-6. [PMID: 26049023 DOI: 10.1016/j.canlet.2015.05.028] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2015] [Revised: 05/21/2015] [Accepted: 05/23/2015] [Indexed: 12/14/2022]
Abstract
Despite significant improvements in systemic chemotherapy over the last two decades, the prognosis of patients with advanced gastric and gastroesophageal junction adenocarcinoma (GC) remains poor. Because of molecular heterogeneity, it is essential to classify tumors based on the underlying oncogenic pathways and to develop targeted therapies acting on individual tumors. High-quality research and advances in technology have contributed to the elucidation of molecular pathways underlying disease progression and have stimulated many clinical studies testing target therapies in an advanced disease setting. In particular, strong preclinical evidence for the aberrant activation of the HGF/c-Met signaling pathways in GC cancers exists. This review will cover the c-Met pathway, the mechanisms of c-Met activation and the different strategies of its inhibition. Next, we will focus on the current state of the art in the clinical evaluation of c-Met-targeted therapies and the description of ongoing randomized trials with the idea that in this disease, high quality translational research to identify and validate biomarkers is a priority task.
Collapse
|
36
|
Vincenzi B, Imperatori M, Silletta M, Marrucci E, Santini D, Tonini G. Emerging kinase inhibitors of the treatment of gastric cancer. Expert Opin Emerg Drugs 2015; 20:479-93. [PMID: 26021342 DOI: 10.1517/14728214.2015.1051467] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
INTRODUCTION Gastric cancer (GC) is the fifth most common malignancy in the world. In the last years, for the first time in literature, the addition of a targeted therapy to standard chemotherapy has proved to prolong median overall survival. In this scenario, kinase inhibitors (KIs), smaller intracellular agents, could be an interesting and novel type of targeted treatment of metastatic GC both in first and further lines of therapy. AREAS COVERED Several KI have been evaluated in the preclinical setting. This review will underline the most relevant targeted pathways involved in GC tumorigenesis and disease progression including EGFR, VEGFR, c-MET, mTOR, fibroblast growth factor receptor, Src and Aurora kinases. EXPERT OPINION Despite the good results of TOGA, RAINBOW and REGARD trials about the addition of monoclonal antibodies to standard of care in GC, the addition of KI seems not to achieve comparable interesting results in management of GC. However, an improved patient selection before and during treatment according to molecular characteristics, as well as combination studies evaluating the synergistic effect of combination schedules of different KIs and standard chemotherapy, or KI plus KI or KI plus antibodies-based therapy may reveal interesting results and lead to understand mechanisms of multi-drug resistance.
Collapse
Affiliation(s)
- Bruno Vincenzi
- a University Campus Biomedico - Medical Oncology , Via Alvaro del Portillo, 200, Rome 00128, Italy
| | | | | | | | | | | |
Collapse
|
37
|
Park JY, Dunbar KB, Vemulapalli R, Wang DH, Zhang PJ. Human epidermal growth factor receptor 2 testing in gastric and gastroesophageal junction adenocarcinomas: role of the gastroenterologist. Gastrointest Endosc 2015; 81:977-82. [PMID: 25805465 DOI: 10.1016/j.gie.2014.12.040] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 12/17/2014] [Indexed: 01/22/2023]
Abstract
Endoscopic biopsy sampling of a gastric or GEJ mass is no longer just for histologic diagnosis. The biopsy material may be used for ancillary IHC and/or DNA testing. When possible, multiple biopsy specimens for sampling different areas of the tumor should be obtained to provide the best opportunity to identify overexpression of HER2 and abnormalities in other genes/proteins that may be expressed in different areas of the tumor. Thorough sampling at the time of initial diagnosis may prevent the need for future endoscopic procedures for the sole purpose of obtaining additional tissue for biomarker studies. Communication and coordination with oncologists and pathologists is essential to ensure an appropriate HER2 evaluation is performed. In the coming age of targeted therapeutics, endoscopy may not only be used to obtain tissue for histology and biomarker evaluation but may also be used for the direct in vivo evaluation of biomarkers that guide therapy.
Collapse
Affiliation(s)
- Jason Y Park
- Department of Pathology, Eugene McDermott Center for Human Growth and Development, Children's Medical Center, and University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Kerry B Dunbar
- Medical Service, Dallas Veterans Affairs Medical Center, Dallas, Texas, USA; Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Roopa Vemulapalli
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - David H Wang
- Medical Service, Dallas Veterans Affairs Medical Center, Dallas, Texas, USA; Division of Hematology-Oncology, Department of Internal Medicine and Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Paul J Zhang
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Medical Center, Philadelphia, Pennsylvania, USA
| |
Collapse
|
38
|
Matsuoka T, Yashiro M. Recent advances in the HER2 targeted therapy of gastric cancer. World J Clin Cases 2015; 3:42-51. [PMID: 25610849 PMCID: PMC4295218 DOI: 10.12998/wjcc.v3.i1.42] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 10/09/2014] [Accepted: 11/19/2014] [Indexed: 02/05/2023] Open
Abstract
Recent advances in molecular targeted therapies, including targeting human epidermal growth factor receptor 2 (HER2), had a major forward step in the therapy for gastric cancer patients. Application of HER2-targeted therapies, in particular trastuzumab in combination with chemotherapy in metastatic HER2-positive gastric cancers, resulted in improvements in response rates, time to progression and overall survival. Nevertheless, as with breast cancer, many patients with gastric cancer develop resistance to trastuzumab. Several promising therapies are currently being developed in combination with chemotherapy to increase the efficacy and overcome the cancer-resistance. Here we review the current overview of clinical application of agents targeting HER2 in gastric cancer. We also discuss the ongoing trials supporting the use of HER2-targeted agents combined with cytotoxic agents or other monoclonal antibodies.
Collapse
|
39
|
Chmielecki J, Ross JS, Wang K, Frampton GM, Palmer GA, Ali SM, Palma N, Morosini D, Miller VA, Yelensky R, Lipson D, Stephens PJ. Oncogenic alterations in ERBB2/HER2 represent potential therapeutic targets across tumors from diverse anatomic sites of origin. Oncologist 2014; 20:7-12. [PMID: 25480824 DOI: 10.1634/theoncologist.2014-0234] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Targeted ERBB2/HER2 inhibitors are approved by the U.S. Food and Drug Administration for the treatment of breast, gastric, and esophageal cancers that overexpress or amplify HER2/ERBB2, as measured by immunohistochemistry (IHC) and fluorescence in situ hybridization (FISH), respectively. Activating mutations in ERBB2 have also been reported and are predicted to confer sensitivity to these targeted agents. Testing for these mutations is not performed routinely, and FISH and IHC are not applied outside of these approved indications. MATERIALS AND METHODS We explored the spectrum of activating ERBB2 alterations across a collection of ∼ 7,300 solid tumor specimens that underwent comprehensive genomic profiling using next-generation sequencing. Results were analyzed for base substitutions, insertions and deletions, select rearrangements, and copy number changes. RESULTS Known oncogenic ERBB2 alterations were identified in tumors derived from 27 tissues, and ERBB2 amplification in breast, gastric, and gastroesophageal cancers accounted for only 30% of these alterations. Activating mutations in ERBB2 were identified in 131 samples (32.5%); amplification was observed in 246 samples (61%). Two samples (0.5%) harbored an ERBB2 rearrangement. Ten samples (2.5%) harbored multiple ERBB2 mutations, yet mutations and amplifications were mutually exclusive in 91% of mutated cases. CONCLUSION Standard slide-based tests for overexpression or amplification of ERBB2 would fail to detect the majority of activating mutations that occur overwhelmingly in the absence of copy number changes. Compared with current clinical standards, comprehensive genomic profiling of a more diverse set of tumor types may identify ∼ 3.5 times the number of patients who may benefit from ERBB2-targeted therapy.
Collapse
Affiliation(s)
- Juliann Chmielecki
- Foundation Medicine, Cambridge, Massachusetts, USA; Department of Pathology, Albany Medical College, Albany, New York, USA
| | - Jeffrey S Ross
- Foundation Medicine, Cambridge, Massachusetts, USA; Department of Pathology, Albany Medical College, Albany, New York, USA
| | - Kai Wang
- Foundation Medicine, Cambridge, Massachusetts, USA; Department of Pathology, Albany Medical College, Albany, New York, USA
| | - Garrett M Frampton
- Foundation Medicine, Cambridge, Massachusetts, USA; Department of Pathology, Albany Medical College, Albany, New York, USA
| | - Gary A Palmer
- Foundation Medicine, Cambridge, Massachusetts, USA; Department of Pathology, Albany Medical College, Albany, New York, USA
| | - Siraj M Ali
- Foundation Medicine, Cambridge, Massachusetts, USA; Department of Pathology, Albany Medical College, Albany, New York, USA
| | - Norma Palma
- Foundation Medicine, Cambridge, Massachusetts, USA; Department of Pathology, Albany Medical College, Albany, New York, USA
| | - Deborah Morosini
- Foundation Medicine, Cambridge, Massachusetts, USA; Department of Pathology, Albany Medical College, Albany, New York, USA
| | - Vincent A Miller
- Foundation Medicine, Cambridge, Massachusetts, USA; Department of Pathology, Albany Medical College, Albany, New York, USA
| | - Roman Yelensky
- Foundation Medicine, Cambridge, Massachusetts, USA; Department of Pathology, Albany Medical College, Albany, New York, USA
| | - Doron Lipson
- Foundation Medicine, Cambridge, Massachusetts, USA; Department of Pathology, Albany Medical College, Albany, New York, USA
| | - Philip J Stephens
- Foundation Medicine, Cambridge, Massachusetts, USA; Department of Pathology, Albany Medical College, Albany, New York, USA
| |
Collapse
|
40
|
Chmielecki J, Ross JS, Wang K, Frampton GM, Palmer GA, Ali SM, Palma N, Morosini D, Miller VA, Yelensky R, Lipson D, Stephens PJ. Oncogenic alterations in ERBB2/HER2 represent potential therapeutic targets across tumors from diverse anatomic sites of origin. Oncologist 2014. [PMID: 25480824 DOI: 10.1634./theoncologist.2014-0234] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Targeted ERBB2/HER2 inhibitors are approved by the U.S. Food and Drug Administration for the treatment of breast, gastric, and esophageal cancers that overexpress or amplify HER2/ERBB2, as measured by immunohistochemistry (IHC) and fluorescence in situ hybridization (FISH), respectively. Activating mutations in ERBB2 have also been reported and are predicted to confer sensitivity to these targeted agents. Testing for these mutations is not performed routinely, and FISH and IHC are not applied outside of these approved indications. MATERIALS AND METHODS We explored the spectrum of activating ERBB2 alterations across a collection of ∼ 7,300 solid tumor specimens that underwent comprehensive genomic profiling using next-generation sequencing. Results were analyzed for base substitutions, insertions and deletions, select rearrangements, and copy number changes. RESULTS Known oncogenic ERBB2 alterations were identified in tumors derived from 27 tissues, and ERBB2 amplification in breast, gastric, and gastroesophageal cancers accounted for only 30% of these alterations. Activating mutations in ERBB2 were identified in 131 samples (32.5%); amplification was observed in 246 samples (61%). Two samples (0.5%) harbored an ERBB2 rearrangement. Ten samples (2.5%) harbored multiple ERBB2 mutations, yet mutations and amplifications were mutually exclusive in 91% of mutated cases. CONCLUSION Standard slide-based tests for overexpression or amplification of ERBB2 would fail to detect the majority of activating mutations that occur overwhelmingly in the absence of copy number changes. Compared with current clinical standards, comprehensive genomic profiling of a more diverse set of tumor types may identify ∼ 3.5 times the number of patients who may benefit from ERBB2-targeted therapy.
Collapse
Affiliation(s)
- Juliann Chmielecki
- Foundation Medicine, Cambridge, Massachusetts, USA; Department of Pathology, Albany Medical College, Albany, New York, USA
| | - Jeffrey S Ross
- Foundation Medicine, Cambridge, Massachusetts, USA; Department of Pathology, Albany Medical College, Albany, New York, USA
| | - Kai Wang
- Foundation Medicine, Cambridge, Massachusetts, USA; Department of Pathology, Albany Medical College, Albany, New York, USA
| | - Garrett M Frampton
- Foundation Medicine, Cambridge, Massachusetts, USA; Department of Pathology, Albany Medical College, Albany, New York, USA
| | - Gary A Palmer
- Foundation Medicine, Cambridge, Massachusetts, USA; Department of Pathology, Albany Medical College, Albany, New York, USA
| | - Siraj M Ali
- Foundation Medicine, Cambridge, Massachusetts, USA; Department of Pathology, Albany Medical College, Albany, New York, USA
| | - Norma Palma
- Foundation Medicine, Cambridge, Massachusetts, USA; Department of Pathology, Albany Medical College, Albany, New York, USA
| | - Deborah Morosini
- Foundation Medicine, Cambridge, Massachusetts, USA; Department of Pathology, Albany Medical College, Albany, New York, USA
| | - Vincent A Miller
- Foundation Medicine, Cambridge, Massachusetts, USA; Department of Pathology, Albany Medical College, Albany, New York, USA
| | - Roman Yelensky
- Foundation Medicine, Cambridge, Massachusetts, USA; Department of Pathology, Albany Medical College, Albany, New York, USA
| | - Doron Lipson
- Foundation Medicine, Cambridge, Massachusetts, USA; Department of Pathology, Albany Medical College, Albany, New York, USA
| | - Philip J Stephens
- Foundation Medicine, Cambridge, Massachusetts, USA; Department of Pathology, Albany Medical College, Albany, New York, USA
| |
Collapse
|
41
|
Aichler M, Luber B, Lordick F, Walch A. Proteomic and metabolic prediction of response to therapy in gastric cancer. World J Gastroenterol 2014; 20:13648-13657. [PMID: 25320503 PMCID: PMC4194549 DOI: 10.3748/wjg.v20.i38.13648] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Accepted: 06/13/2014] [Indexed: 02/06/2023] Open
Abstract
Several new treatment options for gastric cancer have been introduced but the prognosis of patients diagnosed with gastric cancer is still poor. Disease prognosis could be improved for high-risk individuals by implementing earlier screenings. Because many patients are asymptomatic during the early stages of gastric cancer, the diagnosis is often delayed and patients present with unresectable locally advanced or metastatic disease. Cytotoxic treatment has been shown to prolong survival in general, but not all patients are responders. The application of targeted therapies and multimodal treatment has improved prognosis for those with advanced disease. However, these new therapeutic strategies do not uniformly benefit all patients. Predicting whether patients will respond to specific therapies would be of particular value and would allow for stratifying patients for personalized treatment strategies. Metabolic imaging by positron emission tomography was the first technique with the potential to predict the response of esophago-gastric cancer to neoadjuvant therapy. Exploring and validating tissue-based biomarkers are ongoing processes. In this review, we discuss the status of several targeted therapies for gastric cancer, as well as proteomic and metabolic methods for investigating biomarkers for therapy response prediction in gastric cancer.
Collapse
|
42
|
Iqbal N, Iqbal N. Human Epidermal Growth Factor Receptor 2 (HER2) in Cancers: Overexpression and Therapeutic Implications. Mol Biol Int 2014; 2014:852748. [PMID: 25276427 PMCID: PMC4170925 DOI: 10.1155/2014/852748] [Citation(s) in RCA: 763] [Impact Index Per Article: 69.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Revised: 08/18/2014] [Accepted: 08/19/2014] [Indexed: 02/07/2023] Open
Abstract
Human epidermal growth factor receptor 2 (HER2) is a member of the epidermal growth factor receptor family having tyrosine kinase activity. Dimerization of the receptor results in the autophosphorylation of tyrosine residues within the cytoplasmic domain of the receptors and initiates a variety of signaling pathways leading to cell proliferation and tumorigenesis. Amplification or overexpression of HER2 occurs in approximately 15-30% of breast cancers and 10-30% of gastric/gastroesophageal cancers and serves as a prognostic and predictive biomarker. HER2 overexpression has also been seen in other cancers like ovary, endometrium, bladder, lung, colon, and head and neck. The introduction of HER2 directed therapies has dramatically influenced the outcome of patients with HER2 positive breast and gastric/gastroesophageal cancers; however, the results have been proved disappointing in other HER2 overexpressing cancers. This review discusses the role of HER2 in various cancers and therapeutic modalities available targeting HER2.
Collapse
Affiliation(s)
- Nida Iqbal
- Department of Medical Oncology, Dr. B. R. A. Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Naveed Iqbal
- Department of Anaesthesia and Intensive Care Unit, Indraprastha Apollo Hospital, New Delhi 110076, India
| |
Collapse
|
43
|
From conventional chemotherapy to targeted therapy: use of monoclonal antibodies (moAbs) in gastrointestinal (GI) tumors. Tumour Biol 2014; 35:8471-82. [PMID: 25062724 DOI: 10.1007/s13277-014-2367-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Accepted: 07/15/2014] [Indexed: 01/05/2023] Open
Abstract
In recent years, significant progress has been made in the diagnosis and treatment of gastrointestinal cancers. Researches and clinicians however are still faced with challenges, not the least is the detection and management of tumors with varied gene mutation status. Clarification of the molecular pathology of gastrointestinal cancers may improve treatment options as well as quality of life and the long-term survival of this patient class. Therefore, molecular-targeted therapies have emerged as clinically useful drugs for gastrointestinal cancers cure, and predictive biomarkers have been heralded as the way to develop the right drug for the right patient. Moving from such appealing molecular background, we wrote an overview of the main targeted therapies, with particular interest to monoclonal antibodies that have already been approved in clinical practice or are being tested in gastrointestinal cancers treatment.
Collapse
|
44
|
Guan SS, Chang J, Cheng CC, Luo TY, Ho AS, Wang CC, Wu CT, Liu SH. Afatinib and its encapsulated polymeric micelles inhibits HER2-overexpressed colorectal tumor cell growth in vitro and in vivo. Oncotarget 2014; 5:4868-80. [PMID: 24947902 PMCID: PMC4148106 DOI: 10.18632/oncotarget.2050] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 05/30/2014] [Indexed: 12/31/2022] Open
Abstract
Colorectal cancer (CRC) is known as a common malignant neoplasm worldwide. The role of EGFR/HER2 in CRC is unclear. Afatinib is an irreversible EGFR/HER2 inhibitor. There were few studies of afatinib on CRC. Here, we investigated the protein levels/expressions of HER2 in sera and tumors from CRC patients and the therapeutic effect of afatinib on HER2-overexpressed CRC in vitro and in vivo. The increased HER2 levels were detected in the collected sera and tumors of patients with CRC. The serological HER2 levels were correlated with the tumor HER2 expressions in patients. Afatinib also inhibited the HER2-positive tumor cell growth and caused apoptosis in HER2-overexpressed human colorectal cancer HCT-15 cells but not in low HER2 expressed human gastric cancer MKN45 cells. In vivo study showed that afatinib reduced tumor growth in HER2-overexpressed xenografts. Moreover, afatinib-encapsulated micelles displayed higher cytotoxic activity in HCT-15 cells and were more effective for tumor growth suppression in HCT-15-induced tumor xenografts than afatinib performance alone. Taken together, these findings suggest that higher serum HER2 levels reflect the higher HER2 contents in tumors of CRC patients, and the improved afatinib-encapsulated micelles possess high therapeutic efficacy in HER2-overexpressed CRC in vitro and in vivo.
Collapse
Affiliation(s)
- Siao-Syun Guan
- Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan
- Institute of Nuclear Energy Research, Atomic Energy Council, Taoyuan, Taiwan
| | - Jungshan Chang
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chun-Chia Cheng
- Institute of Nuclear Energy Research, Atomic Energy Council, Taoyuan, Taiwan
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Tsai-Yueh Luo
- Institute of Nuclear Energy Research, Atomic Energy Council, Taoyuan, Taiwan
| | - Ai-Sheng Ho
- Division of Gastroenterology, Cheng Hsin General Hospital, Taipei, Taiwan
| | - Chia-Chi Wang
- Division of Hepatology, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation and School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Cheng-Tien Wu
- Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Shing-Hwa Liu
- Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
- Department of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan
| |
Collapse
|
45
|
Terwisscha van Scheltinga AGT, Lub-de Hooge MN, Abiraj K, Schröder CP, Pot L, Bossenmaier B, Thomas M, Hölzlwimmer G, Friess T, Kosterink JGW, de Vries EGE. ImmunoPET and biodistribution with human epidermal growth factor receptor 3 targeting antibody ⁸⁹Zr-RG7116. MAbs 2014; 6:1051-8. [PMID: 24870719 DOI: 10.4161/mabs.29097] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The humanized monoclonal antibody with high affinity for the human epidermal growth factor receptor (HER) 3, RG7116, is a glycoengineered, IgG1 class antibody. By labeling RG7116 with zirconium-89 ((89)Zr) we aimed to visualize in vivo HER3 expression and study the biodistribution of this antibody in human tumor-bearing mice. Biodistribution of (89)Zr-RG7116 was studied in subcutaneously xenografted FaDu tumor cells (HER3-positive). Dose-dependency of (89)Zr-RG7116 organ distribution and specific tumor uptake was assessed by administering doses ranging from 0.05 to 10 mg/kg RG7116 to SCID/Beige mice. Biodistribution was analyzed at 24 and 144 h after injection. MicroPET imaging was performed at 1, 3, and 6 days after injection of 1.0 mg/kg (89)Zr-RG7116 in the FaDu, H441, QG-56 and Calu-1 xenografts with varying HER3 expression. The excised tumors were analyzed for HER3 expression. Biodistribution analyses showed a dose- and time-dependent (89)Zr-RG7116 tumor uptake in FaDu tumors. The highest tumor uptake of (89)Zr-RG7116 was observed in the 0.05 mg/kg dose group with 27.5%ID/g at 144 h after tracer injection. MicroPET imaging revealed specific tumor uptake of (89)Zr-RG7116 in FaDu and H441 models with an increase in tumor uptake over time. Biodistribution data was consistent with the microPET findings in FaDu, H441, QG56 and Calu-1 xenografts, which correlated with HER3 expression levels. In conclusion, (89)Zr-RG7116 specifically accumulates in HER3 expressing tumors. PET imaging with this tracer provides real-time non-invasive information about RG7116 distribution, tumor targeting and tumor HER3 expression levels.
Collapse
Affiliation(s)
- Anton G T Terwisscha van Scheltinga
- Department of Medical Oncology; University of Groningen; Groningen, The Netherlands; Department of Hospital and Clinical Pharmacy; University of Groningen; Groningen, The Netherlands
| | - Marjolijn N Lub-de Hooge
- Department of Hospital and Clinical Pharmacy; University of Groningen; Groningen, The Netherlands; Department of Nuclear Medicine and Molecular Imaging; University of Groningen; Groningen, The Netherlands
| | - Keelara Abiraj
- Pharma Research & Early Development (pRED); F. Hoffmann-La Roche AG; Basel, Switzerland
| | - Carolien P Schröder
- Department of Medical Oncology; University of Groningen; Groningen, The Netherlands
| | - Linda Pot
- Department of Medical Oncology; University of Groningen; Groningen, The Netherlands
| | - Birgit Bossenmaier
- Pharma Research & Early Development (pRED); Roche Diagnostics GmbH; Penzberg, Germany
| | - Marlene Thomas
- Pharma Research & Early Development (pRED); Roche Diagnostics GmbH; Penzberg, Germany
| | - Gabriele Hölzlwimmer
- Pharma Research & Early Development (pRED); Roche Diagnostics GmbH; Penzberg, Germany
| | - Thomas Friess
- Pharma Research & Early Development (pRED); Roche Diagnostics GmbH; Penzberg, Germany
| | - Jos G W Kosterink
- Department of Hospital and Clinical Pharmacy; University of Groningen; Groningen, The Netherlands
| | | |
Collapse
|
46
|
Jørgensen JT. Role of human epidermal growth factor receptor 2 in gastric cancer: biological and pharmacological aspects. World J Gastroenterol 2014; 20:4526-35. [PMID: 24782605 PMCID: PMC4000489 DOI: 10.3748/wjg.v20.i16.4526] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Revised: 11/18/2013] [Accepted: 01/02/2014] [Indexed: 02/06/2023] Open
Abstract
Amplification of the human epidermal growth factor receptor 2 (HER2) gene and overexpression of the HER2 protein is found in 15%-20% of patients with gastric and gastroesophageal junction cancer. The degree of HER2 overexpression and amplification varies with the location of the carcinoma, with higher expression in the gastroesophageal and proximal parts compared to the distal parts of the stomach. Further, HER2 overexpression and amplification also seems to be related to the Lauren histological classification, with higher levels found in the intestinal phenotype compared to the diffuse and mixed types. The prognostic properties of HER2 overexpression and amplification are still under debate, but a large number of studies seem to indicate that HER2 is a negative prognostic factor. The usefulness of HER2 targeted therapy in gastric cancer was demonstrated in the ToGA trial, where HER2-positive patients with advanced gastric and gastroesophageal junction adenocarcinoma were randomized to receive 5-FU/capecitabine and cisplatin, either alone or in combination with trastuzumab. A statically significant gain in overall survival was seen in patients who received the combined treatment of trastuzumab and chemotherapy. Patients with a strong overexpression of the HER2 protein (IHC3+) specifically benefited from the treatment, with a median overall survival of 17.9 mo. As a consequence of the positive results of the ToGA trial, patients with advanced gastric or gastroesophageal junction adenocarcinoma are now routinely tested for HER2. The ToGA trial must be characterized as a landmark in the treatment of gastric cancer and it has paved the way for a number of new HER2 targeted compounds such as pertuzumab, ado-trastuzumab emtansine, lapatinib, afatinib, and dacomitinib, which are currently undergoing phase II and III clinical testing. Overall, this review will discuss the current status of HER2 in gastric and gastroesophageal junction cancer and the future direction in relation to HER2 target therapy.
Collapse
|
47
|
Kordes S, Cats A, Meijer S, van Laarhoven H. Targeted therapy for advanced esophagogastric adenocarcinoma. Crit Rev Oncol Hematol 2014; 90:68-76. [DOI: 10.1016/j.critrevonc.2013.10.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Revised: 09/02/2013] [Accepted: 10/02/2013] [Indexed: 12/21/2022] Open
|
48
|
Hensel F, Timmermann W, von Rahden BHA, Rosenwald A, Brändlein S, Illert B. Ten-year follow-up of a prospective trial for the targeted therapy of gastric cancer with the human monoclonal antibody PAT-SC1. Oncol Rep 2014; 31:1059-66. [PMID: 24452482 PMCID: PMC3926647 DOI: 10.3892/or.2014.2987] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Accepted: 12/03/2013] [Indexed: 12/18/2022] Open
Abstract
The fully human monoclonal antibody PAT-SC1 is specific for an isoform of CD55 (decay-accelerating factor) designated CD55PAT-SC1. This antigen is expressed in the majority (80%) of gastric cancers (GCs), and the antibody induces tumour cell-specific apoptosis in vitro as well as in vivo. PAT-SC1, therefore, has been deemed promising as a therapeutic agent. Here, we describe the results of an academic clinical study performed in a neoadjuvant setting with resectable GC patients. Patients undergoing treatment for GC between 1997 and 2001 were tested for CD55PAT-SC1 expression. Fifty-one resectable patients that tested positively received a single administration of 20 mg PAT-SC1 48 h prior to surgery. They underwent standard surgery with either subtotal or total gastrectomy with bursectomy, omentectomy and a modified D2-lymphadenectomy, aimed at R0 resection. Primary endpoints of the present study were to evaluate side-effects of the PAT-SC1 antibody treatment and to evaluate histopathological effects such as tumour regression and induction of apoptosis. Long-term survival was a secondary endpoint. Administration of PAT-SC1 appeared safe with only reversible side-effects according to WHO grade I and II. Despite the low-dose of the antibody, 81.6% of the patients showed signs of increased apoptosis within the primary tumour and 60% showed signs of tumour cell regression. Comparison of the 10-year survival rates of the R0-resected CD55PAT-SC1-positive patients treated with the PAT-SC1 antibody with a historical collective of R0-resected CD55PAT-SC1-positive patients not treated with PAT-SC1 indicated a survival benefit in the treated patients. Furthermore, comparison of the patient survival of CD55PAT-SC1-positive vs. CD55PAT-SC1-negative groups suggested that CD55PAT-SC1 antigen expression is an independent predictor of poor survival in a Cox regression analysis. Antibody PAT-SC1 may be a useful additive therapeutic agent in the treatment of patients with CD55PAT-SC1-expressing GCs. In combination with radical standard surgery, PAT-SC1 given as an adjuvant or neoadjuvant immunotherapeutic agent induces apoptosis in tumour cells which may improve survival of these patients. Because of the human origin and its specific binding to the CD55PAT-SC1 antigen, PAT-SC1 was well tolerated in this trial.
Collapse
Affiliation(s)
| | | | - Burkhard H A von Rahden
- Department of General, Visceral, Vascular and Pediatric Surgery, University of Würzburg, Würzburg, Germany
| | - Andreas Rosenwald
- Institute of Pathology, University Hospital, University of Würzburg, Würzburg, Germany
| | - Stephanie Brändlein
- Institute of Pathology, University Hospital, University of Würzburg, Würzburg, Germany
| | | |
Collapse
|
49
|
Ding R, Yu YH. New advances in HER2 testing in gastric cancer. Shijie Huaren Xiaohua Zazhi 2013; 21:4098-4103. [DOI: 10.11569/wcjd.v21.i36.4098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Gastric cancer is one of the most common malignancies and represents the second leading cause of cancer death worldwide. The ToGA trial has shown that the humanized anti-HER2 (human epidermal growth factor receptor-2) monoclonal antibody Trastuzumab is effective in prolonging survival in patients with HER2-positive carcinoma of the stomach and the gastroesophageal junction (GEJ). Trastuzumab in combination with chemotherapy can be considered as a new standard option for patients with HER2-positive advanced gastric or gastro-oesophageal junction cancer. Therefore, it is crucial to accurately screen patients with HER2-positive gastric cancer. This article mainly discusses the recent advances in HER2 testing in gastric cancer.
Collapse
|
50
|
Tajiri R, Ooi A, Fujimura T, Dobashi Y, Oyama T, Nakamura R, Ikeda H. Intratumoral heterogeneous amplification of ERBB2 and subclonal genetic diversity in gastric cancers revealed by multiple ligation-dependent probe amplification and fluorescence in situ hybridization. Hum Pathol 2013; 45:725-34. [PMID: 24491355 DOI: 10.1016/j.humpath.2013.11.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Revised: 10/30/2013] [Accepted: 11/01/2013] [Indexed: 12/20/2022]
Abstract
A humanized monoclonal antibody against ERBB2 is used in neoadjuvant therapy for patients with gastric cancer. A critical factor in determining patient eligibility and predicting outcomes of this therapy is the intratumoral heterogeneity of ERBB2 amplification in gastric adenocarcinomas. The aims of this study are to assess the underlying mechanisms of intratumoral heterogeneity of ERBB2 amplification; to characterize the diversity of coamplified oncogenes such as EGFR, FGFR2, MET, MYC, CCND1, and MDM2; and to examine the usefulness of multiple ligation-dependent probe amplification (MLPA) in the semicomprehensive detection of these gene amplifications. A combined analysis of immunohistochemistry and fluorescence in situ hybridization revealed ERBB2-amplified cancer cells in 51 of 475 formalin-fixed, paraffin-embedded gastric adenocarcinomas. The fraction of amplification-positive cells in each tumor ranged from less than 10% to almost 100%. Intratumoral heterogeneity of ERBB2 amplification, defined as less than 50% of cancer cells positive for ERBB2 amplification, was found in 41% (21/51) of ERBB2-amplified tumors. The combined analysis of MLPA and fluorescence in situ hybridization revealed that ERBB2 was coamplified with EGFR in 7 tumors, FGFR2 in 1 tumor, and FGFR2 and MET in 1 tumor; however, the respective genes were amplified in mutually exclusive cells. Coamplified ERBB2 and MYC coexisted within single nuclei in 4 tumors, and one of these cases had suspected coamplification in the same amplicon of ERBB2 with MYC. In conclusion, the amplification status of ERBB2 and other genes can be obtained semicomprehensively by MLPA and could be useful to plan individualized molecularly targeted therapy against gastric cancers.
Collapse
Affiliation(s)
- Ryosuke Tajiri
- Department of Molecular and Cellular Pathology, Graduate School of Medical Science, Kanazawa University, Ishikawa 920-8641, Japan
| | - Akishi Ooi
- Department of Molecular and Cellular Pathology, Graduate School of Medical Science, Kanazawa University, Ishikawa 920-8641, Japan; Pathology Section, University Hospital, Kanazawa University, Ishikawa 920-8641, Japan.
| | - Takashi Fujimura
- Department of Surgery, Graduate School of Medical Science, Kanazawa University, Ishikawa 920-8641, Japan
| | - Yoh Dobashi
- Department of Pathology, Saitama Medical Center, Jichi Medical University, Saitama 330-8503, Japan
| | - Takeru Oyama
- Department of Molecular and Cellular Pathology, Graduate School of Medical Science, Kanazawa University, Ishikawa 920-8641, Japan
| | - Ritsuko Nakamura
- Department of Molecular and Cellular Pathology, Graduate School of Medical Science, Kanazawa University, Ishikawa 920-8641, Japan
| | - Hiroko Ikeda
- Pathology Section, University Hospital, Kanazawa University, Ishikawa 920-8641, Japan
| |
Collapse
|