1
|
MacMillen Z, Hatzakis K, Simpson A, Shears MJ, Watson F, Erasmus JH, Khandhar AP, Wilder B, Murphy SC, Reed SG, Davie JW, Avril M. Accelerated prime-and-trap vaccine regimen in mice using repRNA-based CSP malaria vaccine. NPJ Vaccines 2024; 9:12. [PMID: 38200025 PMCID: PMC10781674 DOI: 10.1038/s41541-023-00799-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 12/12/2023] [Indexed: 01/12/2024] Open
Abstract
Malaria, caused by Plasmodium parasites, remains one of the most devastating infectious diseases worldwide, despite control efforts to lower morbidity and mortality. Both advanced candidate vaccines, RTS,S and R21, are subunit (SU) vaccines that target a single Plasmodium falciparum (Pf) pre-erythrocytic (PE) sporozoite (spz) surface protein known as circumsporozoite (CS). These vaccines induce humoral immunity but fail to elicit CD8 + T-cell responses sufficient for long-term protection. In contrast, whole-organism (WO) vaccines, such as Radiation Attenuated Sporozoites (RAS), achieved sterile protection but require a series of intravenous doses administered in multiple clinic visits. Moreover, these WO vaccines must be produced in mosquitos, a burdensome process that severely limits their availability. To reduce reliance on WO while maintaining protection via both antibodies and Trm responses, we have developed an accelerated vaccination regimen that combines two distinct agents in a prime-and-trap strategy. The priming dose is a single dose of self-replicating RNA encoding the full-length P. yoelii CS protein, delivered via an advanced cationic nanocarrier (LIONTM). The trapping dose consists of one dose of WO RAS. Our vaccine induces a strong immune response when administered in an accelerated regimen, i.e., either 5-day or same-day immunization. Additionally, mice after same-day immunization showed a 2-day delay of blood patency with 90% sterile protection against a 3-week spz challenge. The same-day regimen also induced durable 70% sterile protection against a 2-month spz challenge. Our approach presents a clear path to late-stage preclinical and clinical testing of dose-sparing, same-day regimens that can confer sterilizing protection against malaria.
Collapse
Affiliation(s)
- Zachary MacMillen
- MalarVx, Inc 1551 Eastlake Ave E, Suite 100, Seattle, WA, 98102, USA
| | - Kiara Hatzakis
- MalarVx, Inc 1551 Eastlake Ave E, Suite 100, Seattle, WA, 98102, USA
| | - Adrian Simpson
- HDT Bio, 1150 Eastlake Ave E, Suite 200A, Seattle, WA, 98109, USA
| | - Melanie J Shears
- University of Washington, Department of Laboratory Medicine and Pathology, 750 Republican St., F870, Seattle, WA, 98109, USA
| | - Felicia Watson
- University of Washington, Department of Laboratory Medicine and Pathology, 750 Republican St., F870, Seattle, WA, 98109, USA
| | - Jesse H Erasmus
- HDT Bio, 1150 Eastlake Ave E, Suite 200A, Seattle, WA, 98109, USA
| | - Amit P Khandhar
- HDT Bio, 1150 Eastlake Ave E, Suite 200A, Seattle, WA, 98109, USA
| | - Brandon Wilder
- Vaccine & Gene Therapy Institute, Oregon Health & Science University, Building 1, Room 2220, 505 NW 185th Ave, Beaverton, OR, 97006, USA
| | - Sean C Murphy
- University of Washington, Department of Laboratory Medicine and Pathology, 750 Republican St., F870, Seattle, WA, 98109, USA
| | - Steven G Reed
- HDT Bio, 1150 Eastlake Ave E, Suite 200A, Seattle, WA, 98109, USA
| | - James W Davie
- MalarVx, Inc 1551 Eastlake Ave E, Suite 100, Seattle, WA, 98102, USA
| | - Marion Avril
- MalarVx, Inc 1551 Eastlake Ave E, Suite 100, Seattle, WA, 98102, USA.
| |
Collapse
|
2
|
Kibwana E, Kapulu M. Controlled Human Malaria Infection Studies in Africa-Past, Present, and Future. Curr Top Microbiol Immunol 2024; 445:337-365. [PMID: 35704094 PMCID: PMC7616462 DOI: 10.1007/82_2022_256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Controlled human infection studies have contributed significantly to the understanding of pathogeneses and treatment of infectious diseases. In malaria, deliberately infecting humans with malaria parasites was used as a treatment for neurosyphilis in the early 1920s. More recently, controlled human malaria infection (CHMI) has become a valuable, cost-effective tool to fast-track the development and evaluation of new anti-malarial drugs and/or vaccines. CHMI studies have also been used to define host/parasite interactions and immunological correlates of protection. CHMI involves infecting a small number of healthy volunteers with malaria parasites, monitoring their parasitemia and providing anti-malarial treatment when a set threshold is reached. In this review we discuss the introduction, development, and challenges of modern-day Plasmodium falciparum CHMI studies conducted in Africa, and the impact of naturally acquired immunity on infectivity and vaccine efficacy. CHMIs have shown to be an invaluable tool particularly in accelerating malaria vaccine research. Although there are limitations of CHMI studies for estimating public health impacts and for regulatory purposes, their strength lies in proof-of-concept efficacy data at an early stage of development, providing a faster way to select vaccines for further development and providing valuable insights in understanding the mechanisms of immunity to malarial infection.
Collapse
Affiliation(s)
- Elizabeth Kibwana
- Bioscience Department, KEMRI-Wellcome Trust Research Program, Kilifi, Kenya
| | - Melissa Kapulu
- Bioscience Department, KEMRI-Wellcome Trust Research Program, Kilifi, Kenya
| |
Collapse
|
3
|
Borkens Y. Malaria & mRNA Vaccines: A Possible Salvation from One of the Most Relevant Infectious Diseases of the Global South. Acta Parasitol 2023; 68:916-928. [PMID: 37828249 PMCID: PMC10665248 DOI: 10.1007/s11686-023-00712-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 08/01/2023] [Indexed: 10/14/2023]
Abstract
Malaria is one of the most dangerous infectious diseases in the world. It occurs in tropical and subtropical regions and affects about 40% of the world´s population. In endemic regions, an estimated 200 million people contract malaria each year. Three-quarters of all global deaths (about 600 per year) are children under 5 years of age. Thus, malaria is one of the most relevant tropical and also childhood diseases in the world. Thanks to various public health measures such as vector control through mosquito nets or the targeted use of insecticides as well as the use of antimalarial prophylaxis drugs, the incidence has already been successfully reduced in recent years. However, to reduce the risk of malaria and to protect children effectively, further measures are necessary. An important part of these measures is an effective vaccination against malaria. However, the history of research shows that the development of an effective malaria vaccine is not an easy undertaking and is associated with some complications. Research into possible vaccines began as early as the 1960s. However, the results achieved were rather sobering and the various vaccines fell short of their expectations. It was not until 2015 that the vaccine RTS,S/AS01 received a positive evaluation from the European Medicines Agency. Since then, the vaccine has been tested in Africa. However, with the COVID-19 pandemic, there are new developments in vaccine research that could also benefit malaria research. These include, among others, the so-called mRNA vaccines. Already in the early 1990s, an immune response triggered by an mRNA vaccine was described for the first time. Since then, mRNA vaccines have been researched and discussed for possible prophylaxis. However, it was not until the COVID-19 pandemic that these vaccines experienced a veritable progress. mRNA vaccines against SARS-CoV-2 were rapidly developed and achieved high efficacy in studies. Based on this success, it is not surprising that companies are also focusing on other diseases and pathogens. Besides viral diseases, such as influenza or AIDS, malaria is high on this list. Many pharmaceutical companies (including the German companies BioNTech and CureVac) have already confirmed that they are researching mRNA vaccines against malaria. However, this is not an easy task. The aim of this article is to describe and discuss possible antigens that could be considered for mRNA vaccination. However, this topic is currently still very speculative.
Collapse
Affiliation(s)
- Yannick Borkens
- Charité, Charitéplatz 1, 10117, Berlin, Germany.
- Humboldt-Universität zu Berlin, Unter den Linden 6, 10117, Berlin, Germany.
| |
Collapse
|
4
|
Shi F, Tang S, Chen D, Mo F, Li J, Fang C, Wei H, Xing J, Liu L, Gong Y, Tan Z, Zhang Z, Pan X, Zhao S, Huang J. Immunological characteristics of CD103 +CD8 + Tc cells in the liver of C57BL/6 mouse infected with plasmodium NSM. Parasitol Res 2023; 122:2513-2524. [PMID: 37707607 DOI: 10.1007/s00436-023-07950-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 08/18/2023] [Indexed: 09/15/2023]
Abstract
CD103 is an important marker of tissue-resident memory T cells (TRM) which play important roles in fighting against infection. However, the immunological characteristics of CD103+ T cells are not thoroughly elucidated in the liver of mouse infected with Plasmodium. Six- to eight-week-old C57BL/6 mice were infected with Plasmodium yoelii nigeriensis NSM. Mice were sacrificed on 12-16 days after infection and the livers were picked out. Sections of the livers were stained, and serum aspartate aminotransferase (AST) and alanine transaminase (ALT) levels were measured. Moreover, lymphocytes in the liver were isolated, and the expression of CD103 was determined by using qPCR. The percentage of CD103 on different immune cell populations was dynamically observed by using flow cytometry (FCM). In addition, the phenotype and cytokine production characteristics of CD103+CD8+ Tc cell were analyzed by using flow cytometry, respectively. Erythrocyte stage plasmodium infection could result in severe hepatic damage, a widespread inflammatory response and the decrease of CD103 expression on hepatic immune cells. Only CD8+ Tc and γδT cells expressed higher levels of CD103 in the uninfected state.CD103 expression in CD8+ Tc cells significantly decreased after infection. Compared to that of CD103- CD8+ Tc cells, CD103+ CD8+ Tc cells from the infected mice expressed lower level of CD69, higher level of CD62L, and secreted more IL-4, IL-10, IL-17, and secreted less IFN-γ. CD103+CD8+ Tc cells might mediate the hepatic immune response by secreting IL-4, IL-10, and IL-17 except IFN-γ in the mice infected with the erythrocytic phase plasmodium, which could be involved in the pathogenesis of severe liver damage resulted from the erythrocytic phase plasmodium yoelii nigeriensis NSM infection.
Collapse
Affiliation(s)
- Feihu Shi
- Department of Infectious Diseases, the Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- China Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou, China
| | - Shanni Tang
- Department of Infectious Diseases, the Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- China Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou, China
| | - Dianhui Chen
- Department of Infectious Diseases, the Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- China Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou, China
| | - Feng Mo
- Department of Infectious Diseases, the Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- China Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou, China
| | - Jiajie Li
- China Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou, China
| | - Chao Fang
- China Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou, China
| | - Haixia Wei
- China Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou, China
| | - Junmin Xing
- China Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou, China
| | - Lin Liu
- China Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou, China
| | - Yumei Gong
- China Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou, China
| | - Zhengrong Tan
- China Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou, China
| | - Ziqi Zhang
- China Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou, China
| | - Xingfei Pan
- Department of Infectious Diseases, the Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| | - Shan Zhao
- China Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou, China.
| | - Jun Huang
- China Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
5
|
MacMillen Z, Hatzakis K, Simpson A, Shears M, Watson F, Erasmus J, Khandhar A, Wilder B, Murphy S, Reed S, Davie J, Avril M. Accelerated prime-and-trap vaccine regimen in mice using repRNA-based CSP malaria vaccine. RESEARCH SQUARE 2023:rs.3.rs-3045076. [PMID: 37461621 PMCID: PMC10350175 DOI: 10.21203/rs.3.rs-3045076/v1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/23/2023]
Abstract
Malaria, caused by Plasmodium parasites, remains one of the most devastating infectious diseases worldwide, despite control efforts that have lowered morbidity and mortality. The only P. falciparum vaccine candidates to show field efficacy are those targeting the asymptomatic pre-erythrocytic (PE) stages of infection. The subunit (SU) RTS,S/AS01 vaccine, the only licensed malaria vaccine to date, is only modestly effective against clinical malaria. Both RTS,S/AS01 and the SU R21 vaccine candidate target the PE sporozoite (spz) circumsporozoite (CS) protein. These candidates elicit high-titer antibodies that provide short-term protection from disease, but do not induce the liver-resident memory CD8+ T cells (Trm) that confer strong PE immunity and long-term protection. In contrast, whole-organism (WO) vaccines, employing for example radiation-attenuated spz (RAS), elicit both high antibody titers and Trm, and have achieved high levels of sterilizing protection. However, they require multiple intravenous (IV) doses, which must be administered at intervals of several weeks, complicating mass administration in the field. Moreover, the quantities of spz required present production difficulties. To reduce reliance on WO while maintaining protection via both antibodies and Trm responses, we have developed an accelerated vaccination regimen that combines two distinct agents in a prime-and-trap strategy. While the priming dose is a self-replicating RNA encoding P. yoelii CS protein, delivered via an advanced cationic nanocarrier (LION™), the trapping dose consists of WO RAS. This accelerated regime confers sterile protection in the P. yoelii mouse model of malaria. Our approach presents a clear path to late-stage preclinical and clinical testing of dose-sparing, same-day regimens that can confer sterilizing protection against malaria.
Collapse
|
6
|
MacMillen Z, Hatzakis K, Simpson A, Shears MJ, Watson F, Erasmus JH, Khandhar AP, Wilder B, Murphy SC, Reed SG, Davie JW, Avril M. Accelerated prime-and-trap vaccine regimen in mice using repRNA-based CSP malaria vaccine. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.23.541932. [PMID: 37292739 PMCID: PMC10245832 DOI: 10.1101/2023.05.23.541932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Malaria, caused by Plasmodium parasites, remains one of the most devastating infectious diseases worldwide, despite control efforts that have lowered morbidity and mortality. The only P. falciparum vaccine candidates to show field efficacy are those targeting the asymptomatic pre-erythrocytic (PE) stages of infection. The subunit (SU) RTS,S/AS01 vaccine, the only licensed malaria vaccine to date, is only modestly effective against clinical malaria. Both RTS,S/AS01 and the SU R21 vaccine candidate target the PE sporozoite (spz) circumsporozoite (CS) protein. These candidates elicit high-titer antibodies that provide short-term protection from disease, but do not induce the liver-resident memory CD8+ T cells (Trm) that confer strong PE immunity and long-term protection. In contrast, whole-organism (WO) vaccines, employing for example radiation-attenuated spz (RAS), elicit both high antibody titers and Trm, and have achieved high levels of sterilizing protection. However, they require multiple intravenous (IV) doses, which must be administered at intervals of several weeks, complicating mass administration in the field. Moreover, the quantities of spz required present production difficulties. To reduce reliance on WO while maintaining protection via both antibodies and Trm responses, we have developed an accelerated vaccination regimen that combines two distinct agents in a prime-and-trap strategy. While the priming dose is a self-replicating RNA encoding P. yoelii CS protein, delivered via an advanced cationic nanocarrier (LION™), the trapping dose consists of WO RAS. This accelerated regime confers sterile protection in the P. yoelii mouse model of malaria. Our approach presents a clear path to late-stage preclinical and clinical testing of dose-sparing, same-day regimens that can confer sterilizing protection against malaria.
Collapse
Affiliation(s)
| | - Kiara Hatzakis
- MalarVx, Inc 1551 Eastlake Ave E, Suite 100, Seattle WA 98102
| | - Adrian Simpson
- HDT Bio, 1616 Eastlake Ave E, Suite 280, Seattle WA 98102
| | - Melanie J. Shears
- University of Washington, Department of Laboratory Medicine and Pathology, 750 Republican St., F870, Seattle, WA 98109
| | - Felicia Watson
- University of Washington, Department of Laboratory Medicine and Pathology, 750 Republican St., F870, Seattle, WA 98109
| | | | | | - Brandon Wilder
- Vaccine & Gene Therapy Institute, Oregon Health & Science University, Building 1, Room 2220, 505 NW 185th Ave, Beaverton, OR 97006
| | - Sean C. Murphy
- University of Washington, Department of Laboratory Medicine and Pathology, 750 Republican St., F870, Seattle, WA 98109
| | - Steven G. Reed
- HDT Bio, 1616 Eastlake Ave E, Suite 280, Seattle WA 98102
| | - James W. Davie
- MalarVx, Inc 1551 Eastlake Ave E, Suite 100, Seattle WA 98102
| | - Marion Avril
- MalarVx, Inc 1551 Eastlake Ave E, Suite 100, Seattle WA 98102
| |
Collapse
|
7
|
Waghela IN, Mallory KL, Taylor JA, Schneider CG, Savransky T, Janse CJ, Lin PJC, Tam YK, Weissman D, Angov E. Exploring in vitro expression and immune potency in mice using mRNA encoding the Plasmodium falciparum malaria antigen, CelTOS. Front Immunol 2022; 13:1026052. [PMID: 36591298 PMCID: PMC9798330 DOI: 10.3389/fimmu.2022.1026052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 11/18/2022] [Indexed: 12/23/2022] Open
Abstract
The secreted malarial protein, Cell-Traversal protein for Ookinetes and Sporozoites (CelTOS), is highly conserved among Plasmodium species, and plays a role in the invasion of mosquito midgut cells and hepatocytes in the vertebrate host. CelTOS was identified as a potential protective antigen based on a proteomic analysis, which showed that CelTOS stimulated significant effector T cells producing IFN-γ in peripheral blood mononuclear cells (PBMCs) from radiation attenuated sporozoite-immunized, malaria-naïve human subjects. In a rodent malaria model, recombinant full-length CelTOS protein/adjuvant combinations induced sterile protection, and in several studies, functional antibodies were produced that had hepatocyte invasion inhibition and transmission-blocking activities. Despite some encouraging results, vaccine approaches using CelTOS will require improvement before it can be considered as an effective vaccine candidate. Here, we report on the use of mRNA vaccine technology to induce humoral and cell-mediated immune responses using this antigen. Several pfceltos encoding mRNA transcripts were assessed for the impact on protein translation levels in vitro. Protein coding sequences included those to evaluate the effects of signal sequence, N-glycosylation on translation, and of nucleoside substitutions. Using in vitro transfection experiments as a pre-screen, we assessed the quality of the expressed CelTOS target relative to the homogeneity, cellular localization, and durability of expression levels. Optimized mRNA transcripts, which demonstrated highest protein expression levels in vitro were selected for encapsulation in lipid nanoparticles (LNP) and used to immunize mice to assess for both humoral and cellular cytokine responses. Our findings indicate that mRNA transcripts encoding pfceltos while potent for inducing antigen-specific cellular cytokine responses in mice, were less able to mount PfCelTOS-specific antibody responses using a two-dose regimen. An additional booster dose was needed to overcome low seroconversion rates in mice. With respect to antibody fine specificities, N-glycosylation site mutated immunogens yielded lower immune responses, particularly to the N-terminus of the molecule. While it remains unclear the impact on CelTOS antigen as immunogen, this study highlights the need to optimize antigen design for vaccine development.
Collapse
Affiliation(s)
- Ishita N. Waghela
- Malaria Biologics Branch, Walter Reed Army Institute of Research, Silver Spring, MD, United States,Parsons Corporation, Centreville, VA, United States
| | - Katherine L. Mallory
- Malaria Biologics Branch, Walter Reed Army Institute of Research, Silver Spring, MD, United States,Parsons Corporation, Centreville, VA, United States
| | - Justin A. Taylor
- Malaria Biologics Branch, Walter Reed Army Institute of Research, Silver Spring, MD, United States,The Geneva Foundation, Tacoma, WA, United States
| | - Cosette G. Schneider
- Malaria Biologics Branch, Walter Reed Army Institute of Research, Silver Spring, MD, United States,Oak Ridge Institute for Science and Education, Oak Ridge, TN, United States
| | - Tatyana Savransky
- Entomology Branch, Walter Reed Army Institute of Research, Silver Spring, MD, United States,General Dynamics Information Technology, Falls Church, VA, United States
| | - Chris J. Janse
- Parasitology, Center of Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands
| | | | - Ying K. Tam
- Acuitas Therapeutics Inc., Vancouver, BC, Canada
| | - Drew Weissman
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Evelina Angov
- Malaria Biologics Branch, Walter Reed Army Institute of Research, Silver Spring, MD, United States,*Correspondence: Evelina Angov,
| |
Collapse
|
8
|
Cryopreservation of Plasmodium Sporozoites. Pathogens 2022; 11:pathogens11121487. [PMID: 36558821 PMCID: PMC9784981 DOI: 10.3390/pathogens11121487] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/28/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022] Open
Abstract
Malaria is a deadly disease caused by the parasite, Plasmodium, and impacts the lives of millions of people around the world. Following inoculation into mammalian hosts by infected mosquitoes, the sporozoite stage of Plasmodium undergoes obligate development in the liver before infecting erythrocytes and causing clinical malaria. The most promising vaccine candidates for malaria rely on the use of attenuated live sporozoites to induce protective immune responses. The scope of widespread testing or clinical use of such vaccines is limited by the absence of efficient, reliable, or transparent strategies for the long-term preservation of live sporozoites. Here we outline a method to cryopreserve the sporozoites of various human and murine Plasmodium species. We found that the structural integrity, viability, and in vivo or in vitro infectiousness were conserved in the recovered cryopreserved sporozoites. Cryopreservation using our approach also retained the transgenic properties of sporozoites and immunization with cryopreserved radiation attenuated sporozoites (RAS) elicited strong immune responses. Our work offers a reliable protocol for the long-term storage and recovery of human and murine Plasmodium sporozoites and lays the groundwork for the widespread use of live sporozoites for research and clinical applications.
Collapse
|
9
|
Mukhopadhyay E, Brod F, Angell‐Manning P, Green N, Tarrant RD, Detmers FJ, Bolam EJ, Baleanu IN, Hobson M, Whale G, Morris SJ, Ashfield R, Gilbert SC, Jin J, Draper SJ, Moyle SP, Berrie EL, Hill AVS. Production of a high purity, C-tagged hepatitis B surface antigen fusion protein VLP vaccine for malaria expressed in Pichia pastoris under cGMP conditions. Biotechnol Bioeng 2022; 119:2784-2793. [PMID: 35822551 PMCID: PMC9546177 DOI: 10.1002/bit.28181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 06/09/2022] [Accepted: 07/10/2022] [Indexed: 11/21/2022]
Abstract
Virus-like particles (VLPs) induce strong humoral and cellular responses and have formed the basis of some currently licensed vaccines. Here, we present the method used for the production of R21, a VLP-based anti-sporozoite malaria vaccine, under current Clinical Good Manufacturing Practice regulations (cGMP). Previous preclinical studies in BALB/c mice showed that R21 produced almost complete protection against sporozoite challenge with transgenic Plasmodium berghei parasites. Here, we have modified the preclinical production process to enable the production of sufficient quantities of highly pure, clinical-grade material for use in human clinical trials. The R21 construct was re-engineered to include a C-tag to allow affinity-based separation from the major contaminant alcohol oxidase 1 (AOX 1, ~74 kDa). To our knowledge, this is the first use of C-tag technology to purify a VLP vaccine candidate for use in human clinical trials. The R21 vaccine has shown high-level efficacy in an African Phase IIb trial, and multiple clinical trials are underway to assess the safety and efficacy of the vaccine. Our findings support the future use of C-tag platform technologies to enable cGMP-compliant biomanufacturing of high purity yeast-expressed VLP-based vaccines for early phase clinical trials when clinical grade material is required in smaller quantities in a quick time frame.
Collapse
Affiliation(s)
- Ekta Mukhopadhyay
- Clinical BioManufacturing Facility, The Jenner Institute, Nuffield Department of MedicineUniversity of OxfordOxfordUK
| | - Florian Brod
- The Jenner Institute, Nuffield Department of MedicineUniversity of OxfordOxfordUK
| | - Philip Angell‐Manning
- Clinical BioManufacturing Facility, The Jenner Institute, Nuffield Department of MedicineUniversity of OxfordOxfordUK
| | - Nicola Green
- Clinical BioManufacturing Facility, The Jenner Institute, Nuffield Department of MedicineUniversity of OxfordOxfordUK
| | - Richard D. Tarrant
- Clinical BioManufacturing Facility, The Jenner Institute, Nuffield Department of MedicineUniversity of OxfordOxfordUK
| | | | - Emma J. Bolam
- Clinical BioManufacturing Facility, The Jenner Institute, Nuffield Department of MedicineUniversity of OxfordOxfordUK
| | - Ioana N. Baleanu
- Clinical BioManufacturing Facility, The Jenner Institute, Nuffield Department of MedicineUniversity of OxfordOxfordUK
| | - Mark Hobson
- Clinical BioManufacturing Facility, The Jenner Institute, Nuffield Department of MedicineUniversity of OxfordOxfordUK
| | - Gary Whale
- Clinical BioManufacturing Facility, The Jenner Institute, Nuffield Department of MedicineUniversity of OxfordOxfordUK
| | - Susan J. Morris
- The Jenner Institute, Nuffield Department of MedicineUniversity of OxfordOxfordUK
| | - Rebecca Ashfield
- The Jenner Institute, Nuffield Department of MedicineUniversity of OxfordOxfordUK
| | - Sarah C. Gilbert
- The Jenner Institute, Nuffield Department of MedicineUniversity of OxfordOxfordUK
| | - Jing Jin
- The Jenner Institute, Nuffield Department of MedicineUniversity of OxfordOxfordUK
| | - Simon J. Draper
- The Jenner Institute, Nuffield Department of MedicineUniversity of OxfordOxfordUK
| | - Sarah P. Moyle
- Clinical BioManufacturing Facility, The Jenner Institute, Nuffield Department of MedicineUniversity of OxfordOxfordUK
| | - Eleanor L. Berrie
- Clinical BioManufacturing Facility, The Jenner Institute, Nuffield Department of MedicineUniversity of OxfordOxfordUK
| | - Adrian V. S. Hill
- The Jenner Institute, Nuffield Department of MedicineUniversity of OxfordOxfordUK
| |
Collapse
|
10
|
Dulal P, Gharaei R, Berg A, Walters AA, Hawkins N, Claridge TDW, Kowal K, Neill S, Ritchie AJ, Ashfield R, Hill AVS, Tronci G, Russell SJ, Douglas AD. Characterisation of factors contributing to the performance of nonwoven fibrous matrices as substrates for adenovirus vectored vaccine stabilisation. Sci Rep 2021; 11:20877. [PMID: 34686689 PMCID: PMC8536692 DOI: 10.1038/s41598-021-00065-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 09/23/2021] [Indexed: 11/09/2022] Open
Abstract
Adenovirus vectors offer a platform technology for vaccine development. The value of the platform has been proven during the COVID-19 pandemic. Although good stability at 2-8 °C is an advantage of the platform, non-cold-chain distribution would have substantial advantages, in particular in low-income countries. We have previously reported a novel, potentially less expensive thermostabilisation approach using a combination of simple sugars and glass micro-fibrous matrix, achieving excellent recovery of adenovirus-vectored vaccines after storage at temperatures as high as 45 °C. This matrix is, however, prone to fragmentation and so not suitable for clinical translation. Here, we report an investigation of alternative fibrous matrices which might be suitable for clinical use. A number of commercially-available matrices permitted good protein recovery, quality of sugar glass and moisture content of the dried product but did not achieve the thermostabilisation performance of the original glass fibre matrix. We therefore further investigated physical and chemical characteristics of the glass fibre matrix and its components, finding that the polyvinyl alcohol present in the glass fibre matrix assists vaccine stability. This finding enabled us to identify a potentially biocompatible matrix with encouraging performance. We discuss remaining challenges for transfer of the technology into clinical use, including reliability of process performance.
Collapse
Affiliation(s)
- Pawan Dulal
- Jenner Institute, University of Oxford, Wellcome Trust Centre for Human Genetics, Roosevelt Drive, Oxford, OX3 7BN, UK.
| | - Robabeh Gharaei
- grid.9909.90000 0004 1936 8403Clothworkers’ Centre for Textile Materials Innovation for Healthcare, University of Leeds, Leeds, LS2 9JT UK
| | - Adam Berg
- grid.270683.80000 0004 0641 4511Jenner Institute, University of Oxford, Wellcome Trust Centre for Human Genetics, Roosevelt Drive, Oxford, OX3 7BN UK
| | - Adam A. Walters
- grid.270683.80000 0004 0641 4511Jenner Institute, University of Oxford, Wellcome Trust Centre for Human Genetics, Roosevelt Drive, Oxford, OX3 7BN UK
| | - Nicholas Hawkins
- grid.4991.50000 0004 1936 8948Oxford Silk Group, ABRG, Department of Zoology, University of Oxford, Oxford, OX2 3RE UK
| | - Tim D. W. Claridge
- grid.4991.50000 0004 1936 8948Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford, OX1 3TA UK
| | - Katarzyna Kowal
- grid.436666.7Nonwovens Innovation and Research Institute Ltd, 169 Meanwood Road, Leeds, LS7 1SR UK
| | - Steven Neill
- grid.436666.7Nonwovens Innovation and Research Institute Ltd, 169 Meanwood Road, Leeds, LS7 1SR UK
| | - Adam J. Ritchie
- grid.270683.80000 0004 0641 4511Jenner Institute, University of Oxford, Wellcome Trust Centre for Human Genetics, Roosevelt Drive, Oxford, OX3 7BN UK
| | - Rebecca Ashfield
- grid.270683.80000 0004 0641 4511Jenner Institute, University of Oxford, Wellcome Trust Centre for Human Genetics, Roosevelt Drive, Oxford, OX3 7BN UK
| | - Adrian V. S. Hill
- grid.270683.80000 0004 0641 4511Jenner Institute, University of Oxford, Wellcome Trust Centre for Human Genetics, Roosevelt Drive, Oxford, OX3 7BN UK
| | - Giuseppe Tronci
- grid.9909.90000 0004 1936 8403Clothworkers’ Centre for Textile Materials Innovation for Healthcare, University of Leeds, Leeds, LS2 9JT UK
| | - Stephen J. Russell
- grid.9909.90000 0004 1936 8403Clothworkers’ Centre for Textile Materials Innovation for Healthcare, University of Leeds, Leeds, LS2 9JT UK ,grid.436666.7Nonwovens Innovation and Research Institute Ltd, 169 Meanwood Road, Leeds, LS7 1SR UK
| | - Alexander D. Douglas
- grid.270683.80000 0004 0641 4511Jenner Institute, University of Oxford, Wellcome Trust Centre for Human Genetics, Roosevelt Drive, Oxford, OX3 7BN UK
| |
Collapse
|
11
|
Marin-Mogollon C, van Pul FJA, Miyazaki S, Imai T, Ramesar J, Salman AM, Winkel BMF, Othman AS, Kroeze H, Chevalley-Maurel S, Reyes-Sandoval A, Roestenberg M, Franke-Fayard B, Janse CJ, Khan SM. Chimeric Plasmodium falciparum parasites expressing Plasmodium vivax circumsporozoite protein fail to produce salivary gland sporozoites. Malar J 2018; 17:288. [PMID: 30092798 PMCID: PMC6085629 DOI: 10.1186/s12936-018-2431-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Accepted: 07/28/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Rodent malaria parasites where the gene encoding circumsporozoite protein (CSP) has been replaced with csp genes from the human malaria parasites, Plasmodium falciparum or Plasmodium vivax, are used as pre-clinical tools to evaluate CSP vaccines in vivo. These chimeric rodent parasites produce sporozoites in Anopheles stephensi mosquitoes that are capable of infecting rodent and human hepatocytes. The availability of chimeric P. falciparum parasites where the pfcsp gene has been replaced by the pvcsp would open up possibilities to test P. vivax CSP vaccines in small scale clinical trials using controlled human malaria infection studies. METHODS Using CRISPR/Cas9 gene editing two chimeric P. falciparum parasites, were generated, where the pfcsp gene has been replaced by either one of the two major pvcsp alleles, VK210 or VK247. In addition, a P. falciparum parasite line that lacks CSP expression was also generated. These parasite lines have been analysed for sporozoite production in An. stephensi mosquitoes. RESULTS The two chimeric Pf-PvCSP lines exhibit normal asexual and sexual blood stage development in vitro and produce sporozoite-containing oocysts in An. stephensi mosquitoes. Expression of the corresponding PvCSP was confirmed in oocyst-derived Pf-PvCSP sporozoites. However, most oocysts degenerate before sporozoite formation and sporozoites were not found in either the mosquito haemocoel or salivary glands. Unlike the chimeric Pf-PvCSP parasites, oocysts of P. falciparum parasites lacking CSP expression do not produce sporozoites. CONCLUSIONS Chimeric P. falciparum parasites expressing P. vivax circumsporozoite protein fail to produce salivary gland sporozoites. Combined, these studies show that while PvCSP can partially complement the function of PfCSP, species-specific features of CSP govern full sporozoite maturation and development in the two human malaria parasites.
Collapse
Affiliation(s)
- Catherin Marin-Mogollon
- Department of Parasitology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Fiona J A van Pul
- Department of Parasitology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Shinya Miyazaki
- Department of Parasitology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Takashi Imai
- Department of Parasitology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
- Department of Infectious Diseases and Host Defense, Gunma University Graduate School of Medicine, Maebashi, Gunma, 371-8510, Japan
| | - Jai Ramesar
- Department of Parasitology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Ahmed M Salman
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, The Henry Welcome Building for Molecular Physiology, Roosevelt Drive, Oxford, OX3 7BN, UK
| | - Beatrice M F Winkel
- Department of Parasitology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Ahmad Syibli Othman
- Department of Parasitology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
- Faculty of Health Sciences, Universiti Sultan Zainal Abidin, Terengganu, Malaysia
| | - Hans Kroeze
- Department of Parasitology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Severine Chevalley-Maurel
- Department of Parasitology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Arturo Reyes-Sandoval
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, The Henry Welcome Building for Molecular Physiology, Roosevelt Drive, Oxford, OX3 7BN, UK
| | - Meta Roestenberg
- Department of Parasitology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Blandine Franke-Fayard
- Department of Parasitology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Chris J Janse
- Department of Parasitology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Shahid M Khan
- Department of Parasitology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands.
| |
Collapse
|
12
|
Modeling the effect of boost timing in murine irradiated sporozoite prime-boost vaccines. PLoS One 2018; 13:e0190940. [PMID: 29329308 PMCID: PMC5766151 DOI: 10.1371/journal.pone.0190940] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 12/22/2017] [Indexed: 11/29/2022] Open
Abstract
Vaccination with radiation-attenuated sporozoites has been shown to induce CD8+ T cell-mediated protection against pre-erythrocytic stages of malaria. Empirical evidence suggests that successive inoculations often improve the efficacy of this type of vaccines. An initial dose (prime) triggers a specific cellular response, and subsequent inoculations (boost) amplify this response to create a robust CD8+ T cell memory. In this work we propose a model to analyze the effect of T cell dynamics on the performance of prime-boost vaccines. This model suggests that boost doses and timings should be selected according to the T cell response elicited by priming. Specifically, boosting during late stages of clonal contraction would maximize T cell memory production for vaccines using lower doses of irradiated sporozoites. In contrast, single-dose inoculations would be indicated for higher vaccine doses. Experimental data have been obtained that support theoretical predictions of the model.
Collapse
|
13
|
Shamriz S, Ofoghi H. Engineering the chloroplast of Chlamydomonas reinhardtii to express the recombinant PfCelTOS-Il2 antigen-adjuvant fusion protein. J Biotechnol 2018; 266:111-117. [DOI: 10.1016/j.jbiotec.2017.12.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 11/25/2017] [Accepted: 12/17/2017] [Indexed: 12/23/2022]
|
14
|
Molecular identification and characterization of aminopeptidase N1 from Anopheles stephensi : A candidate for transmission blocking vaccines. GENE REPORTS 2016. [DOI: 10.1016/j.genrep.2016.10.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
15
|
Van Braeckel-Budimir N, Kurup SP, Harty JT. Regulatory issues in immunity to liver and blood-stage malaria. Curr Opin Immunol 2016; 42:91-97. [PMID: 27351448 DOI: 10.1016/j.coi.2016.06.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 06/10/2016] [Accepted: 06/15/2016] [Indexed: 02/01/2023]
Abstract
T cells play a major role in control of both blood and liver stage of plasmodium infection. While immunization with certain attenuated whole-parasite vaccines that are attenuated at the liver stage of the infection induces protective T cell responses, even multiple exposures to natural infection in endemic areas do not lead to stable T cell memory or humoral immunity and sterilizing protection. One of the key differences between vaccination and natural exposure is the absence of blood stage during vaccination. Here we will discuss possible immunoregulatory strategies employed by blood stage of malaria leading to generation of severely compromised T cell and humoral immune responses and subsequent lack of sterilizing immunity.
Collapse
Affiliation(s)
| | - Samarchith P Kurup
- Department of Microbiology, University of Iowa, Iowa City, IA 52242, USA
| | - John T Harty
- Department of Microbiology, University of Iowa, Iowa City, IA 52242, USA; Department of Pathology, University of Iowa, Iowa City, IA 52242, USA; Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
16
|
Mentzer AJ, O'Connor D, Pollard AJ, Hill AVS. Searching for the human genetic factors standing in the way of universally effective vaccines. Philos Trans R Soc Lond B Biol Sci 2016; 370:rstb.2014.0341. [PMID: 25964463 DOI: 10.1098/rstb.2014.0341] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Vaccines have revolutionized modern public health. The effectiveness of some vaccines is limited by the variation in response observed between individuals and across populations. There is compelling evidence that a significant proportion of this variability can be attributed to human genetic variation, especially for those vaccines administered in early life. Identifying and understanding the determinants of this variation could have a far-reaching influence upon future methods of vaccine design and deployment. In this review, we summarize the genetic studies that have been undertaken attempting to identify the genetic determinants of response heterogeneity for the vaccines against hepatitis B, measles and rubella. We offer a critical appraisal of these studies and make a series of suggestions about how modern genetic techniques, including genome-wide association studies, could be used to characterize the genetic architecture of vaccine response heterogeneity. We conclude by suggesting how the findings from such studies could be translated to improve vaccine effectiveness and target vaccination in a more cost-effective manner.
Collapse
Affiliation(s)
- Alexander J Mentzer
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Daniel O'Connor
- Department of Paediatrics, University of Oxford, Oxford OX3 9DU, UK Oxford Biomedical Research Centre, Oxford OX3 7LE, UK
| | - Andrew J Pollard
- Department of Paediatrics, University of Oxford, Oxford OX3 9DU, UK Oxford Biomedical Research Centre, Oxford OX3 7LE, UK
| | - Adrian V S Hill
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK Department of Paediatrics, University of Oxford, Oxford OX3 9DU, UK Oxford Biomedical Research Centre, Oxford OX3 7LE, UK
| |
Collapse
|
17
|
Immunogenicity of the RTS,S/AS01 malaria vaccine and implications for duration of vaccine efficacy: secondary analysis of data from a phase 3 randomised controlled trial. THE LANCET. INFECTIOUS DISEASES 2015; 15:1450-8. [PMID: 26342424 PMCID: PMC4655306 DOI: 10.1016/s1473-3099(15)00239-x] [Citation(s) in RCA: 221] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 07/16/2015] [Accepted: 07/22/2015] [Indexed: 02/02/2023]
Abstract
BACKGROUND The RTS,S/AS01 malaria vaccine targets the circumsporozoite protein, inducing antibodies associated with the prevention of Plasmodium falciparum infection. We assessed the association between anti-circumsporozoite antibody titres and the magnitude and duration of vaccine efficacy using data from a phase 3 trial done between 2009 and 2014. METHODS Using data from 8922 African children aged 5-17 months and 6537 African infants aged 6-12 weeks at first vaccination, we analysed the determinants of immunogenicity after RTS,S/AS01 vaccination with or without a booster dose. We assessed the association between the incidence of clinical malaria and anti-circumsporozoite antibody titres using a model of anti-circumsporozoite antibody dynamics and the natural acquisition of protective immunity over time. FINDINGS RTS,S/AS01-induced anti-circumsporozoite antibody titres were greater in children aged 5-17 months than in those aged 6-12 weeks. Pre-vaccination anti-circumsporozoite titres were associated with lower immunogenicity in children aged 6-12 weeks and higher immunogenicity in those aged 5-17 months. The immunogenicity of the booster dose was strongly associated with immunogenicity after primary vaccination. Anti-circumsporozoite titres wane according to a biphasic exponential distribution. In participants aged 5-17 months, the half-life of the short-lived component of the antibody response was 45 days (95% credible interval 42-48) and that of the long-lived component was 591 days (557-632). After primary vaccination 12% (11-13) of the response was estimated to be long-lived, rising to 30% (28-32%) after a booster dose. An anti-circumsporozoite antibody titre of 121 EU/mL (98-153) was estimated to prevent 50% of infections. Waning anti-circumsporozoite antibody titres predict the duration of efficacy against clinical malaria across different age categories and transmission intensities, and efficacy wanes more rapidly at higher transmission intensity. INTERPRETATION Anti-circumsporozoite antibody titres are a surrogate of protection for the magnitude and duration of RTS,S/AS01 efficacy, with or without a booster dose, providing a valuable surrogate of effectiveness for new RTS,S formulations in the age groups considered. FUNDING UK Medical Research Council.
Collapse
|
18
|
Walker AS, Lourenço J, Hill AVS, Gupta S. Modeling Combinations of Pre-erythrocytic Plasmodium falciparum Malaria Vaccines. Am J Trop Med Hyg 2015; 93:1254-1259. [PMID: 26503278 PMCID: PMC4674243 DOI: 10.4269/ajtmh.14-0767] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 08/06/2015] [Indexed: 01/18/2023] Open
Abstract
Despite substantial progress in the control of Plasmodium falciparum infection due to the widespread deployment of insecticide-treated bed nets and artemisinin combination therapies, malaria remains a prolific killer, with over half a million deaths estimated to have occurred in 2013 alone. Recent evidence of the development of resistance to treatments in both parasites and their mosquito vectors has underscored the need for a vaccine. Here, we use a mathematical model of the within-host dynamics of P. falciparum infection, fit to data from controlled human malaria infection clinical trials, to predict the efficacy of co-administering the two most promising subunit vaccines, RTS,S/AS01 and ChAd63-MVA ME-TRAP. We conclude that currently available technologies could be combined to induce very high levels of sterile efficacy, even in immune-naive individuals.
Collapse
Affiliation(s)
- Andrew S. Walker
- *Address correspondence to Andrew S. Walker, Department of Zoology, University of Oxford, South Parks Road, Oxford, OX1 3PS, United Kingdom. E-mail:
| | | | | | | |
Collapse
|
19
|
Crossey E, Frietze K, Narum DL, Peabody DS, Chackerian B. Identification of an Immunogenic Mimic of a Conserved Epitope on the Plasmodium falciparum Blood Stage Antigen AMA1 Using Virus-Like Particle (VLP) Peptide Display. PLoS One 2015; 10:e0132560. [PMID: 26147502 PMCID: PMC4493041 DOI: 10.1371/journal.pone.0132560] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 06/16/2015] [Indexed: 12/22/2022] Open
Abstract
We have developed a peptide display platform based on VLPs of the RNA bacteriophage MS2 that combines the high immunogenicity of VLP display with affinity selection capabilities. Random peptides can be displayed on the VLP surface by genetically inserting sequences into a surface-exposed loop of the viral coat protein. VLP-displayed peptides can then be isolated by selection using antibodies, and the VLP selectants can then be used directly as immunogens. Here, we investigated the ability of this platform to identify mimotopes of a highly conserved conformational epitope present on the Plasmodium falciparum blood-stage protein AMA1. Using 4G2, a monoclonal antibody that binds to this epitope and is a potent inhibitor of erythrocyte invasion, we screened three different VLP-peptide libraries and identified specific VLPs that bound strongly to the selecting mAb. We then tested the ability of a handful of selected VLPs to elicit anti-AMA1 antibody responses in mice. Most of the selected VLPs failed to reliably elicit AMA1 specific antibodies. However, one VLP consistently induced antibodies that cross-reacted with AMA1. Surprisingly, this VLP bound to 4G2 more weakly than the other selectants we identified. Taken together, these data demonstrate that VLP-peptide display can identify immunogenic mimics of a complex conformational epitope and illustrate the promise and challenges of this approach.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Antibodies, Monoclonal/immunology
- Antibodies, Protozoan/immunology
- Antibody Affinity
- Antigen-Antibody Reactions
- Antigens, Protozoan/chemistry
- Antigens, Protozoan/immunology
- Antigens, Surface/chemistry
- Antigens, Surface/immunology
- Chromatography, Gel
- Cross Reactions
- Dimerization
- Enzyme-Linked Immunosorbent Assay
- Epitopes/chemistry
- Epitopes/immunology
- Levivirus
- Malaria Vaccines/immunology
- Membrane Proteins/chemistry
- Membrane Proteins/immunology
- Mice
- Mice, Inbred BALB C
- Models, Molecular
- Molecular Sequence Data
- Mutagenesis, Site-Directed
- Peptide Library
- Peptides/chemistry
- Peptides/immunology
- Plasmodium falciparum/immunology
- Protein Conformation
- Protozoan Proteins/chemistry
- Protozoan Proteins/immunology
- Sequence Analysis, Protein
- Vaccines, Virus-Like Particle/immunology
Collapse
Affiliation(s)
- Erin Crossey
- Department of Molecular Genetics and Microbiology, University of New Mexico, Albuquerque, NM 87131, United States of America
| | - Kathryn Frietze
- Department of Molecular Genetics and Microbiology, University of New Mexico, Albuquerque, NM 87131, United States of America
| | - David L. Narum
- Laboratory of Malaria Immunology and Vaccinology, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, United States of America
| | - David S. Peabody
- Department of Molecular Genetics and Microbiology, University of New Mexico, Albuquerque, NM 87131, United States of America
| | - Bryce Chackerian
- Department of Molecular Genetics and Microbiology, University of New Mexico, Albuquerque, NM 87131, United States of America
- * E-mail:
| |
Collapse
|
20
|
Beiss V, Spiegel H, Boes A, Kapelski S, Scheuermayer M, Edgue G, Sack M, Fendel R, Reimann A, Schillberg S, Pradel G, Fischer R. Heat-precipitation allows the efficient purification of a functional plant-derived malaria transmission-blocking vaccine candidate fusion protein. Biotechnol Bioeng 2015; 112:1297-305. [PMID: 25615702 DOI: 10.1002/bit.25548] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 01/06/2015] [Accepted: 01/15/2015] [Indexed: 12/22/2022]
Abstract
Malaria is a vector-borne disease affecting more than two million people and accounting for more than 600,000 deaths each year, especially in developing countries. The most serious form of malaria is caused by Plasmodium falciparum. The complex life cycle of this parasite, involving pre-erythrocytic, asexual and sexual stages, makes vaccine development cumbersome but also offers a broad spectrum of vaccine candidates targeting exactly those stages. Vaccines targeting the sexual stage of P. falciparum are called transmission-blocking vaccines (TBVs). They do not confer protection for the vaccinated individual but aim to reduce or prevent the transmission of the parasite within a population and are therefore regarded as an essential tool in the fight against the disease. Malaria predominantly affects large populations in developing countries, so TBVs need to be produced in large quantities at low cost. Combining the advantages of eukaryotic expression with a virtually unlimited upscaling potential and a good product safety profile, plant-based expression systems represent a suitable alternative for the production of TBVs. We report here the high level (300 μg/g fresh leaf weight (FLW)) transient expression in Nicotiana benthamiana leaves of an effective TBV candidate based on a fusion protein F0 comprising Pfs25 and the C0-domain of Pfs230, and the implementation of a simple and cost-effective heat treatment step for purification that yields intact recombinant protein at >90% purity with a recovery rate of >70%. The immunization of mice clearly showed that antibodies raised against plant-derived F0 completely blocked the formation of oocysts in a malaria transmission-blocking assay (TBA) making F0 an interesting TBV candidate or a component of a multi-stage malaria vaccine cocktail.
Collapse
Affiliation(s)
- Veronique Beiss
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Forckenbeckstrasse 6, 52074, Aachen, Germany
| | - Holger Spiegel
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Forckenbeckstrasse 6, 52074, Aachen, Germany
| | - Alexander Boes
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Forckenbeckstrasse 6, 52074, Aachen, Germany.
| | - Stephanie Kapelski
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Forckenbeckstrasse 6, 52074, Aachen, Germany
| | - Matthias Scheuermayer
- Research Center for Infectious Diseases, University of Wuerzburg, Josef Schneider Str. 2/Bau D15, 97080, Wuerzburg, Germany
| | - Gueven Edgue
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Forckenbeckstrasse 6, 52074, Aachen, Germany
| | - Markus Sack
- Institute for Molecular Biotechnology, RWTH Aachen University, Worringer Weg 1, 52074, Aachen, Germany
| | - Rolf Fendel
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Forckenbeckstrasse 6, 52074, Aachen, Germany
| | - Andreas Reimann
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Forckenbeckstrasse 6, 52074, Aachen, Germany
| | - Stefan Schillberg
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Forckenbeckstrasse 6, 52074, Aachen, Germany
| | - Gabriele Pradel
- Research Center for Infectious Diseases, University of Wuerzburg, Josef Schneider Str. 2/Bau D15, 97080, Wuerzburg, Germany
- Institute for Molecular Biotechnology, RWTH Aachen University, Worringer Weg 1, 52074, Aachen, Germany
| | - Rainer Fischer
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Forckenbeckstrasse 6, 52074, Aachen, Germany
- Institute for Molecular Biotechnology, RWTH Aachen University, Worringer Weg 1, 52074, Aachen, Germany
| |
Collapse
|
21
|
Abstract
The development of a highly effective malaria vaccine remains a key goal to aid in the control and eventual eradication of this devastating parasitic disease. The field has made huge strides in recent years, with the first-generation vaccine RTS,S showing modest efficacy in a Phase III clinical trial. The updated 2030 Malaria Vaccine Technology Roadmap calls for a second generation vaccine to achieve 75% efficacy over two years for both Plasmodium falciparum and Plasmodium vivax, and for a vaccine that can prevent malaria transmission. Whole-parasite immunisation approaches and combinations of pre-erythrocytic subunit vaccines are now reporting high-level efficacy, whilst exciting new approaches to the development of blood-stage and transmission-blocking vaccine subunit components are entering clinical development. The development of a highly effective multi-component multi-stage subunit vaccine now appears to be a realistic ambition. This review will cover these recent developments in malaria vaccinology.
Collapse
|
22
|
Jagannathan P, Nankya F, Stoyanov C, Eccles-James I, Sikyomu E, Naluwu K, Wamala S, Nalubega M, Briggs J, Bowen K, Bigira V, Kapisi J, Kamya MR, Dorsey G, Feeney ME. IFNγ Responses to Pre-erythrocytic and Blood-stage Malaria Antigens Exhibit Differential Associations With Past Exposure and Subsequent Protection. J Infect Dis 2014; 211:1987-96. [PMID: 25520427 DOI: 10.1093/infdis/jiu814] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Accepted: 12/10/2014] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND The malaria-specific T-cell response is believed to be important for protective immunity. Antimalarial chemoprevention may affect this response by altering exposure to malaria antigens. METHODS We performed interferon γ (IFNγ) ELISpot assays to assess the cellular immune response to blood-stage and pre-erythrocytic antigens longitudinally from 1 to 3 years of age in 196 children enrolled in a randomized trial of antimalarial chemoprevention in Tororo, Uganda, an area of high transmission intensity. RESULTS IFNγ responses to blood-stage antigens, particularly MSP1, were frequently detected, strongly associated with recent malaria exposure, and lower in those adherent to chemoprevention compared to nonadherent children and those randomized to no chemoprevention. IFNγ responses to pre-erythrocytic antigens were infrequent and similar between children randomized to chemoprevention or no chemoprevention. Responses to blood-stage antigens were not associated with subsequent protection from malaria (aHR 0.96, P = .83), but responses to pre-erythrocytic antigens were associated with protection after adjusting for prior malaria exposure (aHR 0.52, P = .009). CONCLUSIONS In this high transmission setting, IFNγ responses to blood-stage antigens were common and associated with recent exposure to malaria but not protection from subsequent malaria. Responses to pre-erythrocytic antigens were uncommon, not associated with exposure but were associated with protection from subsequent malaria.
Collapse
Affiliation(s)
- Prasanna Jagannathan
- Department of Medicine, San Francisco General Hospital, University of California
| | | | - Cristina Stoyanov
- Department of Medicine, San Francisco General Hospital, University of California
| | - Ijeoma Eccles-James
- Department of Medicine, San Francisco General Hospital, University of California
| | | | | | | | | | - Jessica Briggs
- Department of Medicine, San Francisco General Hospital, University of California
| | - Katherine Bowen
- Department of Medicine, San Francisco General Hospital, University of California
| | | | | | - Moses R Kamya
- Department of Medicine, Makerere University College of Health Sciences, Kampala, Uganda
| | - Grant Dorsey
- Department of Medicine, San Francisco General Hospital, University of California
| | - Margaret E Feeney
- Department of Medicine, San Francisco General Hospital, University of California Department of Pediatrics, University of California, San Francisco
| |
Collapse
|
23
|
Spencer AJ, Furze J, Honeycutt JD, Calvert A, Saurya S, Colloca S, Wyllie DH, Gilbert SC, Bregu M, Cottingham MG, Hill AVS. 4-1BBL enhances CD8+ T cell responses induced by vectored vaccines in mice but fails to improve immunogenicity in rhesus macaques. PLoS One 2014; 9:e105520. [PMID: 25140889 PMCID: PMC4139357 DOI: 10.1371/journal.pone.0105520] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 07/21/2014] [Indexed: 01/28/2023] Open
Abstract
T cells play a central role in the immune response to many of the world's major infectious diseases. In this study we investigated the tumour necrosis factor receptor superfamily costimulatory molecule, 4-1BBL (CD137L, TNFSF9), for its ability to increase T cell immunogenicity induced by a variety of recombinant vectored vaccines. To efficiently test this hypothesis, we assessed a number of promoters and developed a stable bi-cistronic vector expressing both the antigen and adjuvant. Co-expression of 4-1BBL, together with our model antigen TIP, was shown to increase the frequency of murine antigen-specific IFN-γ secreting CD8(+) T cells in three vector platforms examined. Enhancement of the response was not limited by co-expression with the antigen, as an increase in CD8(+) immunogenicity was also observed by co-administration of two vectors each expressing only the antigen or adjuvant. However, when this regimen was tested in non-human primates using a clinical malaria vaccine candidate, no adjuvant effect of 4-1BBL was observed limiting its potential use as a single adjuvant for translation into a clinical vaccine.
Collapse
Affiliation(s)
| | - Julie Furze
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | | | - Alice Calvert
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Saroj Saurya
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | | | - David H. Wyllie
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Sarah C. Gilbert
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Migena Bregu
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | | | | |
Collapse
|
24
|
Spencer AJ, Cottingham MG, Jenks JA, Longley RJ, Capone S, Colloca S, Folgori A, Cortese R, Nicosia A, Bregu M, Hill AVS. Enhanced vaccine-induced CD8+ T cell responses to malaria antigen ME-TRAP by fusion to MHC class ii invariant chain. PLoS One 2014; 9:e100538. [PMID: 24945248 PMCID: PMC4063960 DOI: 10.1371/journal.pone.0100538] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Accepted: 05/26/2014] [Indexed: 11/19/2022] Open
Abstract
The orthodox role of the invariant chain (CD74; Ii) is in antigen presentation to CD4+ T cells, but enhanced CD8+ T cells responses have been reported after vaccination with vectored viral vaccines encoding a fusion of Ii to the antigen of interest. In this study we assessed whether fusion of the malarial antigen, ME-TRAP, to Ii could increase the vaccine-induced CD8+ T cell response. Following single or heterologous prime-boost vaccination of mice with a recombinant chimpanzee adenovirus vector, ChAd63, or recombinant modified vaccinia virus Ankara (MVA), higher frequencies of antigen-specific CD4+ and CD8+ T cells were observed, with the largest increases observed following a ChAd63-MVA heterologous prime-boost regimen. Studies in non-human primates confirmed the ability of Ii-fusion to augment the T cell response, where a 4-fold increase was maintained up to 11 weeks after the MVA boost. Of the numerous different approaches explored to increase vectored vaccine induced immunogenicity over the years, fusion to the invariant chain showed a consistent enhancement in CD8+ T cell responses across different animal species and may therefore find application in the development of vaccines against human malaria and other diseases where high levels of cell-mediated immunity are required.
Collapse
Affiliation(s)
| | | | | | - Rhea J. Longley
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | | | | | | | - Riccardo Cortese
- Okairos, Rome, Italy
- Okairos AG, c/o OBC Suisse AG, Basel, Switzerland
| | - Alfredo Nicosia
- Okairos, Rome, Italy
- CEINGE, Naples, Italy
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Migena Bregu
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | | |
Collapse
|
25
|
Moore AC, Hutchings CL. Combination vaccines: synergistic simultaneous induction of antibody and T-cell immunity. Expert Rev Vaccines 2014; 6:111-21. [PMID: 17280483 DOI: 10.1586/14760584.6.1.111] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Vaccines have traditionally been designed to induce antibody responses and have been licensed on their capacity to induce high titers of circulating antibody to the pathogen. With our increased knowledge of host-pathogen interactions, it became apparent that induction of the cellular arm of the immune response is crucial to the efficacy of vaccines against intracellular pathogens and for providing appropriate help for antibody induction. Diverging strategies emerged that concentrate on developing candidate vaccines that solely induce either cellular or humoral responses. As most microbes reside at some point in the infectious cycle in the extracellular as well as intracellular space, and there is interplay between antibody and T cells, it is now apparent that both arms of immunity are essential to effectively control and eliminate the infection. It is, therefore, necessary to develop vaccines that can effectively induce a broad adaptive immune response. For vaccines targeted at diseases of the developing world, such as HIV, tuberculosis and malaria, it is imperative that these vaccines are simple to deliver and cost effective, that is,that optimum T-cell and antibody immunity is achieved with the minimum number of vaccinations. Combination vaccines, where an antibody-inducing subunit protein vaccine is coadministered with a T-cell-inducing poxvirus-based vaccine fulfill these requirements and induce sterile immunity to pathogen challenge.
Collapse
Affiliation(s)
- Anne C Moore
- Wellcome Trust Centre for Human Genetics, Oxford University, Roosevelt Drive, Oxford OX2 7BN, UK.
| | | |
Collapse
|
26
|
Abstract
Malaria prevention and treatment is becoming increasingly difficult as drug-resistant strains of parasites spread globally and affordable antimalarial drugs become ineffective. Therefore, there is a need for a safe and effective vaccine. In recent years, significant technological advances and an increase in funding for malaria vaccine research, including better public-private collaboration, have increased optimism that highly effective vaccines can be developed. RTS,S/AS02A is a novel pre-erythrocytic vaccine based on the Plasmodium falciparum circumsporozoite surface protein. Among all candidate vaccines developed thus far, only the RTS,S/AS02A vaccine has consistently been demonstrated to be well tolerated and provide significant protective efficacy in challenge studies and clinical trials in malaria-endemic countries.
Collapse
Affiliation(s)
- Kalifa A Bojang
- MRC Laboratories, PO Box 273, Banjul, The Gambia, West Africa.
| |
Collapse
|
27
|
White MT, Smith DL. Synergism from combinations of infection-blocking malaria vaccines. Malar J 2013; 12:280. [PMID: 23927630 PMCID: PMC3765110 DOI: 10.1186/1475-2875-12-280] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Accepted: 07/30/2013] [Indexed: 11/16/2022] Open
Abstract
Plasmodium falciparum infections present novel challenges for vaccine development, including parasite replication dynamics not previously encountered for viral pathogens, and enormous diversity in target antigens. These challenges are illustrated by using a mathematical model to describe the association between the proportion of pre-erythrocytic or blood-stage parasites eliminated by vaccine-induced immune responses and the proportion of infections prevented. It is hypothesized that due to the requirement for all sporozoites to be eliminated to prevent infection, combining infection-blocking vaccines that confer protection through different biological mechanisms could lead to synergistic combinations of efficacy. Vaccines targeting blood-stage parasites may also combine synergistically if they combine to reduce the parasite multiplication rate to below the threshold of 1.
Collapse
Affiliation(s)
- Michael T White
- Department of Infectious Disease Epidemiology, MRC Centre for Outbreak Analysis and Modelling, Imperial College, London, UK.
| | | |
Collapse
|
28
|
White MT, Bejon P, Olotu A, Griffin JT, Riley EM, Kester KE, Ockenhouse CF, Ghani AC. The relationship between RTS,S vaccine-induced antibodies, CD4⁺ T cell responses and protection against Plasmodium falciparum infection. PLoS One 2013; 8:e61395. [PMID: 23613845 PMCID: PMC3628884 DOI: 10.1371/journal.pone.0061395] [Citation(s) in RCA: 135] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Accepted: 03/08/2013] [Indexed: 01/09/2023] Open
Abstract
Vaccination with the pre-erythrocytic malaria vaccine RTS,S induces high levels of antibodies and CD4+ T cells specific for the circumsporozoite protein (CSP). Using a biologically-motivated mathematical model of sporozoite infection fitted to data from malaria-naive adults vaccinated with RTS,S and subjected to experimental P. falciparum challenge, we characterised the relationship between antibodies, CD4+ T cell responses and protection from infection. Both anti-CSP antibody titres and CSP-specific CD4+ T cells were identified as immunological surrogates of protection, with RTS,S induced anti-CSP antibodies estimated to prevent 32% (95% confidence interval (CI) 24%–41%) of infections. The addition of RTS,S-induced CSP-specific CD4+ T cells was estimated to increase vaccine efficacy against infection to 40% (95% CI, 34%–48%). This protective efficacy is estimated to result from a 96.1% (95% CI, 93.4%–97.8%) reduction in the liver-to-blood parasite inoculum, indicating that in volunteers who developed P. falciparum infection, a small number of parasites (often the progeny of a single surviving sporozoite) are responsible for breakthrough blood-stage infections.
Collapse
Affiliation(s)
- Michael T White
- MRC Centre for Outbreak Analysis and Modelling, Department of Infectious Disease Epidemiology, Imperial College London, London, United Kingdom.
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Mwangoka G, Ogutu B, Msambichaka B, Mzee T, Salim N, Kafuruki S, Mpina M, Shekalaghe S, Tanner M, Abdulla S. Experience and challenges from clinical trials with malaria vaccines in Africa. Malar J 2013; 12:86. [PMID: 23496910 PMCID: PMC3599886 DOI: 10.1186/1475-2875-12-86] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Accepted: 02/28/2013] [Indexed: 11/10/2022] Open
Abstract
Malaria vaccines are considered amongst the most important modalities for potential elimination of malaria disease and transmission. Research and development in this field has been an area of intense effort by many groups over the last few decades. Despite this, there is currently no licensed malaria vaccine. Researchers, clinical trialists and vaccine developers have been working on many approached to make malaria vaccine available.African research institutions have developed and demonstrated a great capacity to undertake clinical trials in accordance to the International Conference on Harmonization-Good Clinical Practice (ICH-GCP) standards in the last decade; particularly in the field of malaria vaccines and anti-malarial drugs. This capacity is a result of networking among African scientists in collaboration with other partners; this has traversed both clinical trials and malaria control programmes as part of the Global Malaria Action Plan (GMAP). GMAP outlined and support global strategies toward the elimination and eradication of malaria in many areas, translating in reduction in public health burden, especially for African children. In the sub-Saharan region the capacity to undertake more clinical trials remains small in comparison to the actual need.However, sustainability of the already developed capacity is essential and crucial for the evaluation of different interventions and diagnostic tools/strategies for other diseases like TB, HIV, neglected tropical diseases and non-communicable diseases. There is urgent need for innovative mechanisms for the sustainability and expansion of the capacity in clinical trials in sub-Saharan Africa as the catalyst for health improvement and maintained.
Collapse
Affiliation(s)
| | - Bernhards Ogutu
- Malaria Clinical Trials Alliance (MCTA), INDEPTH Network, Accra, Ghana
| | | | - Tutu Mzee
- Ifakara Health Institute, Ifakara, Tanzania
| | | | | | | | | | - Marcel Tanner
- Swiss Tropical and Public Health Institute, Basel, Switzerland
| | | |
Collapse
|
30
|
Kumar S, Zheng H, Sangweme DT, Mahajan B, Kozakai Y, Pham PT, Morin MJ, Locke E, Kumar N. A chemiluminescent-western blot assay for quantitative detection of Plasmodium falciparum circumsporozoite protein. J Immunol Methods 2013; 390:99-105. [PMID: 23399449 DOI: 10.1016/j.jim.2013.02.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Revised: 01/31/2013] [Accepted: 02/01/2013] [Indexed: 11/19/2022]
Abstract
Highly sensitive and reliable assays based on the quantitation of immunologically relevant component(s) in recombinant or whole parasite-based vaccines would facilitate pre-clinical and clinical phases and the monitoring of malaria vaccine deployment. Here we report a laboratory-grade Western Blot assay for quantitative detection of Plasmodium falciparum circumsporozoite protein (PfCSP) in P. falciparum sporozoite (PfSPZ) and in recombinant (rPfCSP) product. This assay is based on the immuno-reactivity of an anti-P. falciparum CSP monoclonal antibody (mAb 2A10) with the NANP-repeat units on PfCSP. The antigen-antibody complex is detected by reaction with a commercially obtained chemiluminescence-linked Immunodetection system. The linear range for detecting the recombinant P. falciparum CSP (rPfCSP) in this assay is 3-12pg (R(2)=0.9399). The range for detecting the day 15 salivary-gland PfSPZ is between 0.0625 and 1 parasite (R(2)=0.9448) and approximately 10.0pg of PfCSP was detected on each sporozoite. The assay was highly reproducible in measuring the PfCSP on PfSPZ. The inter-assay Coefficient of Variation (CV%) was 10.31% while the intra-assay CV% on three different days was 6.05%, 2.03% and 1.42% respectively. These results suggest that this ECL-WB assay is highly sensitive and robust with a low degree of inter-assay and intra-assay variations. To our knowledge, this is the most sensitive immunoassay for the detection of a recombinant or native malarial protein and may have a wider range of applications including the quantification of immunological component(s) in a vaccine formulation, determination of the antigenic integrity in adjuvanted-vaccine and in stability studies. In addition, this assay can be applied to measure the mosquito infectivity in malaria transmission areas and to determine the effects of intervention measures on malaria transmission.
Collapse
Affiliation(s)
- Sanjai Kumar
- Laboratory of Emerging Pathogens, Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, Food and Drug Administration, Rockville, MD 20852, United States.
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Matuschewski K. Murine infection models for vaccine development: the malaria example. Hum Vaccin Immunother 2012; 9:450-6. [PMID: 23249712 DOI: 10.4161/hv.23218] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Vaccines are developed and eventually licensed following consecutive human clinical trials. Malaria is a potential fatal vector-borne infectious disease caused by blood infection of the single-cell eukaryote Plasmodium. Pathogen stage conversion is a hallmark of parasites in general and permits unprecedented vaccine strategies. In the case of malaria, experimental human challenge infections with Plasmodium falciparum sporozoites can be performed under rigorous clinical supervision. This rare opportunity in vaccinology has permitted many small-scale phase II anti-malaria vaccine studies using experimental homologous challenge infections. Demonstration of safety and lasting sterile protection are central endpoints to advance a candidate malaria vaccine approach to phase II field trials. A growing list of antigens as targets for subunit development makes pre-selection and prioritization of vaccine candidates in murine infection models increasingly important. Preclinical assessment in challenge studies with murine Plasmodium species also led to the development of whole organism vaccine approaches. They include live attenuated, metabolically active parasites that educate effector memory T cells to recognize and inactivate developing parasites inside host cells. Here, opportunities from integrating challenge experiments with murine Plasmodium parasites into malaria vaccine development will be discussed.
Collapse
Affiliation(s)
- Kai Matuschewski
- Parasitology Unit; Max Planck Institute for Infection Biology; Berlin, Germany; Institute of Biology; Humboldt University; Berlin, Germany
| |
Collapse
|
32
|
Tyagi RK, Garg NK, Sahu T. Vaccination Strategies against Malaria: novel carrier(s) more than a tour de force. J Control Release 2012; 162:242-54. [PMID: 22564369 DOI: 10.1016/j.jconrel.2012.04.037] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Revised: 04/20/2012] [Accepted: 04/23/2012] [Indexed: 02/07/2023]
Abstract
The introduction of vaccine technology has facilitated an unprecedented multi-antigen approach to develop an effective vaccine against complex systemic inflammatory pathogens such as Plasmodium spp. that cause severe malaria. The capacity of multi subunit DNA vaccine encoding different stage Plasmodium antigens to induce CD8(+) cytotoxic T lymphocytes and interferon-γ responses in mice, monkeys and humans has been observed. Moreover, genetic vaccination may be capable of eliciting both cell mediated and humoral immune responses. The cytotoxic T cell responses are categorically needed against intracellular hepatic stage and humoral response with antibodies targeted against antigens from all stages of malaria parasite life cycle. Therefore, the key to success for any DNA based vaccine is to design a vector able to serve as a safe and efficient delivery system. This has encouraged the development of non-viral DNA-mediated gene transfer techniques such as liposome, virosomes, microsphere and nanoparticles. Efficient and relatively safe DNA transfection using lipoplexes makes them an appealing alternative to be explored for gene delivery. Also, liposome-entrapped DNA has been shown to enhance the potency of DNA vaccines, possibly by facilitating uptake of the plasmid by antigen-presenting cells (APC). Another recent technology using cationic lipids has been deployed and has generated substantial interest in this approach to gene transfer. In this review we discussed various aspects that could be decisive in the formulation of efficient and stable carrier system(s) for the development of malaria vaccine.
Collapse
Affiliation(s)
- Rajeev K Tyagi
- Global Health Infectious Disease Research Program, Department of Global Health, College of Public Health, University of South Florida, 3720 Spectrum Blvd, Tampa, FL 33612-9415, USA.
| | | | | |
Collapse
|
33
|
Offeddu V, Thathy V, Marsh K, Matuschewski K. Naturally acquired immune responses against Plasmodium falciparum sporozoites and liver infection. Int J Parasitol 2012; 42:535-48. [DOI: 10.1016/j.ijpara.2012.03.011] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Revised: 03/18/2012] [Accepted: 03/24/2012] [Indexed: 10/28/2022]
|
34
|
Fusion of the Mycobacterium tuberculosis antigen 85A to an oligomerization domain enhances its immunogenicity in both mice and non-human primates. PLoS One 2012; 7:e33555. [PMID: 22470455 PMCID: PMC3314664 DOI: 10.1371/journal.pone.0033555] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Accepted: 02/12/2012] [Indexed: 12/04/2022] Open
Abstract
To prevent important infectious diseases such as tuberculosis, malaria and HIV, vaccines inducing greater T cell responses are required. In this study, we investigated whether fusion of the M. tuberculosis antigen 85A to recently described adjuvant IMX313, a hybrid avian C4bp oligomerization domain, could increase T cell responses in pre-clinical vaccine model species. In mice, the fused antigen 85A showed consistent increases in CD4+ and CD8+ T cell responses after DNA and MVA vaccination. In rhesus macaques, higher IFN-γ responses were observed in animals vaccinated with MVA-Ag85A IMX313 after both primary and secondary immunizations. In both animal models, fusion to IMX313 induced a quantitative enhancement in the response without altering its quality: multifunctional cytokines were uniformly increased and differentiation into effector and memory T cell subsets was augmented rather than skewed. An extensive in vivo characterization suggests that IMX313 improves the initiation of immune responses as an increase in antigen 85A specific cells was observed as early as day 3 after vaccination. This report demonstrates that antigen multimerization using IMX313 is a simple and effective cross-species method to improve vaccine immunogenicity with potentially broad applicability.
Collapse
|
35
|
Kolbaum J, Tartz S, Hartmann W, Helm S, Nagel A, Heussler V, Sebo P, Fleischer B, Jacobs T, Breloer M. Nematode-induced interference with the anti-Plasmodium CD8+ T-cell response can be overcome by optimizing antigen administration. Eur J Immunol 2012; 42:890-900. [PMID: 22161305 DOI: 10.1002/eji.201141955] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2011] [Revised: 11/16/2011] [Accepted: 12/02/2011] [Indexed: 12/29/2022]
Abstract
Malaria is still responsible for up to 1 million deaths per year worldwide, highlighting the need for protective malaria vaccines. Helminth infections that are prevalent in malaria endemic areas can modulate immune responses of the host. Here we show that Strongy-Ioides ratti, a gut-dwelling nematode that causes transient infections, did not change the efficacy of vaccination against Plasmodium berghei. An ongoing infection with Litomosoides sigmodontis, a tissue-dwelling filaria that induces chronic infections in BALB/c mice, significantly interfered with vaccination efficacy. The induction of P. berghei circumspor-ozoite protein (CSP)-specific CD8(+) T cells, achieved by a single immunization with a CSP fusion protein, was diminished in L. sigmodontis-infected mice. This modulation was reflected by reduced frequencies of CSP-specific CD8(+) T cells, reduced CSP-specific IFN-y and TNF-a production, reduced CSP-specific cytotoxicity, and reduced protection against P. berghei challenge infection. Implementation of a more potent vaccine regime, by first priming with CSP-expressing recombinant live Salmonella prior to CSP fusion protein immunization, restored induction of CSP-specific CD8(+) T cells and conferred almost sterile immunity to P. berghei challenge infection also in L. sigmodontis-infected mice. In summary, we show that appropriate vaccination regimes can overcome helminth-induced interference with vaccination efficacy.
Collapse
Affiliation(s)
- Julia Kolbaum
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Rodrigues T, Prudêncio M, Moreira R, Mota MM, Lopes F. Targeting the liver stage of malaria parasites: a yet unmet goal. J Med Chem 2011; 55:995-1012. [PMID: 22122518 DOI: 10.1021/jm201095h] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Tiago Rodrigues
- Research Institute for Medicines and Pharmaceutical Sciences (iMed.UL), Faculty of Pharmacy, University of Lisbon, Av. Prof. Gama Pinto, 1649-019 Lisbon, Portugal
| | | | | | | | | |
Collapse
|
37
|
Borrmann S, Matuschewski K. Targeting Plasmodium liver stages: better late than never. Trends Mol Med 2011; 17:527-36. [DOI: 10.1016/j.molmed.2011.05.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2011] [Revised: 05/08/2011] [Accepted: 05/20/2011] [Indexed: 10/18/2022]
|
38
|
Reyes-Sandoval A, Wyllie DH, Bauza K, Milicic A, Forbes EK, Rollier CS, Hill AVS. CD8+ T effector memory cells protect against liver-stage malaria. THE JOURNAL OF IMMUNOLOGY 2011; 187:1347-57. [PMID: 21715686 DOI: 10.4049/jimmunol.1100302] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Identification of correlates of protection for infectious diseases including malaria is a major challenge and has become one of the main obstacles in developing effective vaccines. We investigated protection against liver-stage malaria conferred by vaccination with adenoviral (Ad) and modified vaccinia Ankara (MVA) vectors expressing pre-erythrocytic malaria Ags. By classifying CD8(+) T cells into effector, effector memory (T(EM)), and central memory subsets using CD62L and CD127 markers, we found striking differences in T cell memory generation. Although MVA induced accelerated central memory T cell generation, which could be efficiently boosted by subsequent Ad administration, it failed to protect against malaria. In contrast, Ad vectors, which permit persistent Ag delivery, elicit a prolonged effector T cell and T(EM) response that requires long intervals for an efficient boost. A preferential T(EM) phenotype was maintained in liver, blood, and spleen after Ad/MVA prime-boost regimens, and animals were protected against malaria sporozoite challenge. Blood CD8(+) T(EM) cells correlated with protection against malaria liver-stage infection, assessed by estimation of number of parasites emerging from the liver into the blood. The protective ability of Ag-specific T(EM) cells was confirmed by transfer experiments into naive recipient mice. Thus, we identify persistent CD8 T(EM) populations as essential for vaccine-induced pre-erythrocytic protection against malaria, a finding that has important implications for vaccine design.
Collapse
|
39
|
Schmidt NW, Harty JT. Cutting edge: attrition of Plasmodium-specific memory CD8 T cells results in decreased protection that is rescued by booster immunization. THE JOURNAL OF IMMUNOLOGY 2011; 186:3836-40. [PMID: 21357257 DOI: 10.4049/jimmunol.1003949] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Sterile protection against infection with Plasmodium sporozoites requires high numbers of memory CD8 T cells. However, infections with unrelated pathogens, as may occur in areas endemic to malaria, can dramatically decrease pre-existing memory CD8 T cells. It remains unknown whether unrelated infections will compromise numbers of Plasmodium-specific memory CD8 T cells and thus limit the duration of antimalarial immunity generated by subunit vaccination. We show that P. berghei circumsporozoite-specific memory CD8 T cells underwent significant attrition in numbers in mice subjected to unrelated infections. Attrition was associated with preferential loss of effector memory CD8 T cells and reduced immunity to P. berghei sporozoite challenge. However, and of relevance to deployment of Plasmodium vaccines in areas endemic to malaria, attrition of memory CD8 T cells was reversed by booster immunization, which restored protection. These data suggest that regular booster immunizations may be required to sustain protective vaccine-induced Plasmodium-specific memory CD8 T cells in the face of attrition caused by unrelated infections.
Collapse
Affiliation(s)
- Nathan W Schmidt
- Department of Microbiology, University of Iowa, Iowa City, IA 52242, USA
| | | |
Collapse
|
40
|
Cavenaugh JS, Awi D, Mendy M, Hill AVS, Whittle H, McConkey SJ. Partially randomized, non-blinded trial of DNA and MVA therapeutic vaccines based on hepatitis B virus surface protein for chronic HBV infection. PLoS One 2011; 6:e14626. [PMID: 21347224 PMCID: PMC3039644 DOI: 10.1371/journal.pone.0014626] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2008] [Accepted: 11/25/2010] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Chronic HBV infects 350 million people causing cancer and liver failure. We aimed to assess the safety and efficacy of plasmid DNA (pSG2.HBs) vaccine, followed by recombinant modified vaccinia virus Ankara (MVA.HBs), encoding the surface antigen of HBV as therapy for chronic HBV. A secondary goal was to characterize the immune responses. METHODS Firstly 32 HBV e antigen negative (eAg(-)) participants were randomly assigned to one of four groups: to receive vaccines alone, lamivudine (3TC) alone, both, or neither. Later 16 eAg(+) volunteers in two groups received either 3TC alone or both 3TC and vaccines. Finally, 12 eAg(-) and 12 eAg(+) subjects were enrolled into higher-dose treatment groups. Healthy but chronically HBV-infected males between the ages of 15-25 who lived in the western part of The Gambia were eligible. Participants in some groups received 1 mg or 2 mg of pSG2.HBs intramuscularly twice followed by 5×10(7) pfu or 1.5×10(8) pfu of MVA.HBs intradermally at 3-weekly intervals with or without concomitant 3TC for 11-14 weeks. Intradermal rabies vaccine was administered to a negative control group. Safety was assessed clinically and biochemically. The primary measure of efficacy was a quantitative PCR assay of plasma HBV. Immunity was assessed by IFN-γ ELISpot and intracellular cytokine staining. RESULTS Mild local and systemic adverse events were observed following the vaccines. A small shiny scar was observed in some cases after MVA.HBs. There were no significant changes in AST or ALT. HBeAg was lost in one participant in the higher-dose group. As expected, the 3TC therapy reduced viraemia levels during therapy, but the prime-boost vaccine regimen did not reduce the viraemia. The immune responses were variable. The majority of IFN-γ was made by antigen non-specific CD16(+) cells (both CD3(+) and CD3(-)). CONCLUSIONS The vaccines were well tolerated but did not control HBV infection. TRIAL REGISTRATION ISRCTN ISRCTN67270384.
Collapse
Affiliation(s)
- James S. Cavenaugh
- Medical Research Council Laboratories, Banjul,
The Gambia
- Centre for Clinical Vaccinology and Tropical
Medicine, University of Oxford, Oxford, United Kingdom
- David H. Smith Center for Vaccine Biology and
Immunology, School of Medicine and Dentistry, University of Rochester,
Rochester, New York, United States of America
| | - Dorka Awi
- Medical Research Council Laboratories, Banjul,
The Gambia
- Institute of Maternal and Child Health,
University of Port Harcourt, Post Harcourt, Nigeria
| | - Maimuna Mendy
- Medical Research Council Laboratories, Banjul,
The Gambia
- International Agency for Research on Cancer,
Lyon, France
| | - Adrian V. S. Hill
- Centre for Clinical Vaccinology and Tropical
Medicine, University of Oxford, Oxford, United Kingdom
- The Wellcome Trust Centre for Human Genetics,
Oxford, United Kingdom
| | - Hilton Whittle
- Medical Research Council Laboratories, Banjul,
The Gambia
| | - Samuel J. McConkey
- Medical Research Council Laboratories, Banjul,
The Gambia
- Centre for Clinical Vaccinology and Tropical
Medicine, University of Oxford, Oxford, United Kingdom
- Department of International Health and
Tropical Medicine, Royal College of Surgeons in Ireland, Dublin,
Ireland
| |
Collapse
|
41
|
Perlaza BL, Sauzet JP, Brahimi K, BenMohamed L, Druilhe P. Interferon-γ, a valuable surrogate marker of Plasmodium falciparum pre-erythrocytic stages protective immunity. Malar J 2011; 10:27. [PMID: 21303495 PMCID: PMC3046914 DOI: 10.1186/1475-2875-10-27] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2010] [Accepted: 02/08/2011] [Indexed: 01/22/2023] Open
Abstract
Immunity against the pre-erythrocytic stages of malaria is the most promising, as it is strong and fully sterilizing. Yet, the underlying immune effectors against the human Plasmodium falciparum pre-erythrocytic stages remain surprisingly poorly known and have been little explored, which in turn prevents any rational vaccine progress. Evidence that has been gathered in vitro and in vivo, in higher primates and in humans, is reviewed here, emphasizing the significant role of IFN-γ, either as a critical immune mediator or at least as a valuable surrogate marker of protection. One may hope that these results will trigger investigations in volunteers immunized either by optimally irradiated or over-irradiated sporozoites, to quickly delineate better surrogates of protection, which are essential for the development of a successful malaria vaccine.
Collapse
Affiliation(s)
- Blanca-Liliana Perlaza
- Malaria Vaccine Development Laboratory, Pasteur Institute, 25-28 Rue du Dr, Roux, 75724 Paris, Cedex 15, France
| | | | | | | | | |
Collapse
|
42
|
Abstract
Vaccines work by eliciting an immune response and consequent immunological memory that mediates protection from infection or disease. Recently, new methods have been developed to dissect the immune response in experimental animals and humans, which have led to increased understanding of the molecular mechanisms that control differentiation and maintenance of memory T and B cells. In this review we will provide an overview of the cellular organization of immune memory and underline some of the outstanding questions on immunological memory and how they pertain to vaccination strategies. Finally we will discuss how we can learn about antigen design from the interrogation of our memory T and B cells-a journey from vaccines to memory and back.
Collapse
Affiliation(s)
- Federica Sallusto
- Institute for Research in Biomedicine, CH-6500 Bellinzona, Switzerland.
| | | | | | | |
Collapse
|
43
|
Goodman AL, Draper SJ. Blood-stage malaria vaccines - recent progress and future challenges. ANNALS OF TROPICAL MEDICINE AND PARASITOLOGY 2010; 104:189-211. [PMID: 20507694 DOI: 10.1179/136485910x12647085215534] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Plasmodium falciparum malaria is a major global health problem, responsible for up to 1 million deaths each year. Major efforts have been made to develop an effective vaccine against this disease, to reduce the associated morbidity and mortality. There has already been considerable progress, with the first vaccine against the pre-erythrocytic stages of P. falciparum now en route to licensure. There remains, however, a strong scientific rationale for the development of a highly effective additional vaccine component against the blood stages of the parasite, which could be deployed in conjunction with partially effective control measures against the pre-erythrocytic stages. Here, recent progress in the clinical development of blood-stage vaccines is reviewed, including methods of antigen selection, the limitations of in-vitro assays for selecting vaccines for clinical development, and the results of recently published clinical trials. This review seeks to summarize recent developments in our understanding of immunity to blood-stage parasites, as well as the relevant key advances made in vaccine technologies over the last decade. The future challenges that face this field of vaccine research are also described.
Collapse
Affiliation(s)
- A L Goodman
- The Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK.
| | | |
Collapse
|
44
|
Genton B, D'Acremont V, Lurati-Ruiz F, Verhage D, Audran R, Hermsen C, Wolters L, Reymond C, Spertini F, Sauerwein R. Randomized double-blind controlled Phase I/IIa trial to assess the efficacy of malaria vaccine PfCS102 to protect against challenge with P. falciparum. Vaccine 2010; 28:6573-80. [PMID: 20691266 DOI: 10.1016/j.vaccine.2010.07.067] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2010] [Revised: 07/17/2010] [Accepted: 07/21/2010] [Indexed: 11/25/2022]
Abstract
The aim of this Phase I/IIa double-blind controlled trial was to test the efficacy of the sporozoite-based malaria vaccine PfCS 282-383 (PfCS102) to protect against Plasmodium falciparum parasitaemia. 16 volunteers were randomized to receive twice 30 μg of PfCS102 formulated in Montanide ISA 720 or ISA 720 alone (control). Two weeks after 2nd immunization, volunteers were challenged using 5 infected mosquitoes. All vaccinees developed antibodies against PfCS102 versus none control. 8/8 vaccinees and 6/6 controls challenged developed malaria parasitaemia. The duration from infection to onset of patent parasitaemia was similar in both groups (214 h in vaccinees and 216 in controls). PfCS102 is safe and immunogenic but provides no protection against artificial challenge in its current formulation.
Collapse
Affiliation(s)
- Blaise Genton
- Department of Ambulatory Care and Community Medicine, University of Lausanne, Switzerland.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Alcock R, Cottingham MG, Rollier CS, Furze J, De Costa SD, Hanlon M, Spencer AJ, Honeycutt JD, Wyllie DH, Gilbert SC, Bregu M, Hill AVS. Long-term thermostabilization of live poxviral and adenoviral vaccine vectors at supraphysiological temperatures in carbohydrate glass. Sci Transl Med 2010; 2:19ra12. [PMID: 20371486 DOI: 10.1126/scitranslmed.3000490] [Citation(s) in RCA: 124] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Live recombinant viral vectors based on adenoviruses and poxviruses are among the most promising platforms for development of new vaccines against diseases such as malaria, tuberculosis, and HIV-AIDS. Vaccines based on live viruses must remain infectious to be effective, so therefore need continuous refrigeration to maintain stability and viability, a requirement that can be costly and difficult, especially in developing countries. The sugars sucrose and trehalose are commonly used as stabilizing agents and cryoprotectants for biological products. Here, we have exploited the ability of these sugars to vitrify on desiccation to develop a thermostabilization technique for live viral vaccine vectors. By slowly drying vaccines suspended in solutions of these disaccharide stabilizers onto a filter-like support membrane at ambient temperature, an ultrathin glass is deposited on the fibers of the inert matrix. Immobilization of two recombinant vaccine vectors-E1/E3-deleted human adenovirus type 5 and modified vaccinia virus Ankara-in this glass on the membranes enabled complete recovery of viral titer and immunogenicity after storage at up to 45 degrees C for 6 months and even longer with minimal losses. Furthermore, the membrane carrying the stabilized vaccine can be incorporated into a holder attached to a syringe for almost simultaneous reconstitution and injection at point of use. The technology may potentially be developed for the deployment of viral vector-based biopharmaceuticals in resource-poor settings.
Collapse
Affiliation(s)
- Robert Alcock
- Cambridge Biostability Ltd., Cambridge Science Park, Milton Road, Cambridge, UK
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Daubenberger CA. Gene-expression analysis for prediction of RTS,S-induced protection in humans. Expert Rev Vaccines 2010; 9:465-9. [PMID: 20450320 DOI: 10.1586/erv.10.35] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Claudia A Daubenberger
- Swiss Tropical and Public Health Institute, Department of Medical Parasitology and Infection Biology, Basel, Switzerland and University of Basel, Basel, Switzerland.
| |
Collapse
|
47
|
Diap G, Amuasi J, Boakye I, Sevcsik AM, Pecoul B. Anti-malarial market and policy surveys in sub-Saharan Africa. Malar J 2010; 9 Suppl 1:S1. [PMID: 20423536 DOI: 10.1186/1475-2875-9-s1-s1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
At a recent meeting (Sept 18, 2009) in which reasons for the limited access to artemisinin-based combination therapy (ACT) in sub-Saharan Africa were discussed, policy and market surveys on anti-malarial drug availability and accessibility in Burundi and Sierra Leone were presented in a highly interactive brainstorming session among key stakeholders across private, public, and not-for-profit sectors. The surveys, the conduct of which directly involved the national malaria control programme managers of the two countries, provides the groundwork for evidence-based policy implementation. The results of the surveys could be extrapolated to other countries with similar socio-demographic and malaria profiles. The meeting resulted in recommendations on key actions to be taken at the global, national, and community level for better ACT accessibility. At the global level, both public and private sectors have actions to take to strengthen policies that lead to the replacement of loose blister packs with fixed-dose ACT products, develop strategies to ban inappropriate anti-malarials and regulate those bans, and facilitate technology and knowledge transfer to scale up production of fixed-dose ACT products, which should be readily available and affordable to those patients who are in the greatest need of these medicines. At the national level, policies that regulate the anti-malarial medicines market should be enacted and enforced. The public sector, including funding donors, should participate in ensuring that the private sector is engaged in the ACT implementation process. Research similar to the surveys discussed is important for other countries to develop and evaluate the right incentives at a local level. At the community level, community outreach and education about appropriate preventive and treatment measures must continue and be strengthened, with service delivery systems developed within both public and private sectors, among other measures, to decrease access to ineffective and inappropriate anti-malarial medicines. What was clear during the meeting is that continuing commitment, strengthened interaction and transparency among various stakeholders, with focus on communities, national governments, and evidence-based policy and action are the only way to sustainably address the control of malaria, a disease which continues to have a significant health and socio-economic impact worldwide, particularly in sub-Saharan Africa. Details on the methodology employed in carrying out the studies discussed at this meeting, as well as more detailed results, data analysis and discussion of the studies are soon to be published.
Collapse
Affiliation(s)
- Graciela Diap
- Drugs for Neglected Diseases initiative (DNDi), Geneva 1202, Switzerland.
| | | | | | | | | |
Collapse
|
48
|
Diap G, Amuasi J, Boakye I, Sevcsik AM, Pecoul B. Anti-malarial market and policy surveys in sub-Saharan Africa. Malar J 2010; 9 Suppl 3:S1. [PMID: 20423536 PMCID: PMC3002145 DOI: 10.1186/1475-2875-9-s3-s1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
At a recent meeting (Sept 18, 2009) in which reasons for the limited access to artemisinin-based combination therapy (ACT) in sub-Saharan Africa were discussed, policy and market surveys on anti-malarial drug availability and accessibility in Burundi and Sierra Leone were presented in a highly interactive brainstorming session among key stakeholders across private, public, and not-for-profit sectors. The surveys, the conduct of which directly involved the national malaria control programme managers of the two countries, provides the groundwork for evidence-based policy implementation. The results of the surveys could be extrapolated to other countries with similar socio-demographic and malaria profiles. The meeting resulted in recommendations on key actions to be taken at the global, national, and community level for better ACT accessibility. At the global level, both public and private sectors have actions to take to strengthen policies that lead to the replacement of loose blister packs with fixed-dose ACT products, develop strategies to ban inappropriate anti-malarials and regulate those bans, and facilitate technology and knowledge transfer to scale up production of fixed-dose ACT products, which should be readily available and affordable to those patients who are in the greatest need of these medicines. At the national level, policies that regulate the anti-malarial medicines market should be enacted and enforced. The public sector, including funding donors, should participate in ensuring that the private sector is engaged in the ACT implementation process. Research similar to the surveys discussed is important for other countries to develop and evaluate the right incentives at a local level. At the community level, community outreach and education about appropriate preventive and treatment measures must continue and be strengthened, with service delivery systems developed within both public and private sectors, among other measures, to decrease access to ineffective and inappropriate anti-malarial medicines. What was clear during the meeting is that continuing commitment, strengthened interaction and transparency among various stakeholders, with focus on communities, national governments, and evidence-based policy and action are the only way to sustainably address the control of malaria, a disease which continues to have a significant health and socio-economic impact worldwide, particularly in sub-Saharan Africa. Details on the methodology employed in carrying out the studies discussed at this meeting, as well as more detailed results, data analysis and discussion of the studies are soon to be published.
Collapse
Affiliation(s)
- Graciela Diap
- Drugs for Neglected Diseases initiative (DNDi), Geneva 1202, Switzerland.
| | | | | | | | | |
Collapse
|
49
|
Moorthy VS, Kieny MP. Reducing empiricism in malaria vaccine design. THE LANCET. INFECTIOUS DISEASES 2010; 10:204-11. [PMID: 20185099 DOI: 10.1016/s1473-3099(09)70329-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Gains in the control of malaria and the promising progress of a malaria vaccine that is partly efficacious do not reduce the need for a high-efficacy vaccine in the longer term. Evidence supports the feasibility of developing a highly efficacious malaria vaccine. However, design of candidate malaria vaccines remains empirical and is necessarily based on many unproven assumptions because much of the knowledge needed to design vaccines and to predict efficacy is not available. Data to inform key questions of vaccine science might allow the design of vaccines to progress to a less empirical stage, for example through availability of assay results associated with vaccine efficacy. We discuss six strategic gaps in knowledge that contribute to empiricism in the design of vaccines. Comparative evaluation, assay and model standardisation, greater sharing of information, collaboration and coordination between groups, and rigorous evaluation of existing datasets are steps that can be taken to enable reductions in empiricism over time.
Collapse
|
50
|
Abstract
In response to infection or effective vaccination, naive antigen-specific CD8+ T cells undergo a dramatic highly orchestrated activation process. Initial encounter with an appropriately activated antigen-presenting cell leads to blastogenesis and an exponential increase in antigen-specific CD8+ T cell numbers. Simultaneously, a dynamic differentiation process occurs, resulting in formation of both primary effector and long-lived memory cells. Current findings have emphasized the heterogeneity of effector and memory cell populations with the description of multiple cellular subsets based on phenotype, function, and anatomic location. Yet, only recently have we begun to dissect the underlying factors mediating the temporal control of the development of distinct effector and memory CD8+ T cell sublineages. In this review we will focus on the requirements for mounting an effective CD8+ T cell response and highlight the elements regulating the differentiation of effector and memory subsets.
Collapse
Affiliation(s)
- Joshua J Obar
- Center for Integrated Immunology and Vaccine Research, Department of Immunology, University of Connecticut Health Center, Farmington, Connecticut 06107, USA
| | | |
Collapse
|