1
|
Mitsuhashi A, Nishioka Y. Fibrocytes in tumor microenvironment: Identification of their fraction and novel therapeutic strategy. Cancer Sci 2024. [PMID: 39492802 DOI: 10.1111/cas.16385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 10/06/2024] [Accepted: 10/17/2024] [Indexed: 11/05/2024] Open
Abstract
Fibrocytes were identified as bone marrow-derived myeloid cells that also have fibroblast-like phenotypes, such as ECM production and differentiation to myofibroblasts. Although fibrocytes are known to contribute to various types of tissue fibrosis, their functions in the tumor microenvironment are unclear. We focused on fibrocytes as pivotal regulators of tumor progression. Our previous studies have indicated that fibrocytes induce angiogenesis and cancer stem cell-like phenotypes by secreting various growth factors. In contrast, immune checkpoint inhibitor (ICI)-treated fibrocytes demonstrated antigen-presenting capacity and enhanced antitumor T cell proliferation. Taken together, these findings indicate that fibrocytes have multiple effects on tumor progression. However, the detailed phenotypes of fibrocytes have not been fully elucidated because the isolation of distinct fibrocyte clusters has not been achieved without culturing in ECM-coated conditions or intracellular staining of ECM. The development of single-cell analyses partially resolves these problems. Single-cell RNA sequences in CD45+ immune cells from tumor tissue identified ECM-expressing myeloid-like cells as distinct fibrocyte clusters. In addition, these findings enabled the isolation of tumor-infiltrating fibrocytes as CD45+CD34+ cells. These tumor-infiltrating fibrocytes demonstrated both antigen-presenting ability and differentiation into myofibroblast-like cancer-associated fibroblasts. Considering these functions of fibrocytes in tumor progression, molecular-targeting agents for the migration, activity, and differentiation of fibrocytes are promising therapeutic strategies. Furthermore, identification of specific cell surface markers and master regulators of fibrocytes will advance novel fibrocyte-targeting therapies. In this review, we discuss the multiple roles of tumor-infiltrating fibrocytes and novel cancer therapeutic strategies.
Collapse
Affiliation(s)
- Atsushi Mitsuhashi
- Department of Respiratory Medicine and Rheumatology, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Yasuhiko Nishioka
- Department of Respiratory Medicine and Rheumatology, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
- Department of Community Medicine for Rheumatology, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| |
Collapse
|
2
|
Lu C, Liu Y, Ren F, Zhang H, Hou Y, Zhang H, Chen Z, Du X. HO-1: An emerging target in fibrosis. J Cell Physiol 2024:e31465. [PMID: 39420552 DOI: 10.1002/jcp.31465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 09/08/2024] [Accepted: 09/30/2024] [Indexed: 10/19/2024]
Abstract
Fibrosis, an aberrant reparative response to tissue injury, involves a disruption in the equilibrium between the synthesis and degradation of the extracellular matrix, leading to its excessive accumulation within normal tissues, and culminating in organ dysfunction. Manifesting in the terminal stages of nearly all chronic ailments, fibrosis carries a high mortality rate and poses a significant threat to human health. Heme oxygenase-1 (HO-1) emerges as an endogenous protective agent, mitigating tissue damage through its antioxidant, anti-inflammatory, and antiapoptotic properties. Numerous studies have corroborated HO-1's potential as a therapeutic target in anti-fibrosis treatment. This review delves into the structural and functional attributes, and the upstream and downstream pathways of HO-1. Additionally, the regulatory networks and mechanisms of HO-1 in cells associated with fibrosis are elucidated. The role of HO-1 in various fibrosis-related diseases is also explored. Collectively, this comprehensive information serves as a foundation for future research and augments the viability of HO-1 as a therapeutic target for fibrosis.
Collapse
Affiliation(s)
- Chenxi Lu
- Institute of Traditional Chinese Medicine, Shaanxi Academy of Traditional Chinese Medicine, Xi'an, China
| | - Yuan Liu
- Institute of Traditional Chinese Medicine, Shaanxi Academy of Traditional Chinese Medicine, Xi'an, China
| | - Feifei Ren
- Institute of Traditional Chinese Medicine, Shaanxi Academy of Traditional Chinese Medicine, Xi'an, China
| | - Haoran Zhang
- Institute of Traditional Chinese Medicine, Shaanxi Academy of Traditional Chinese Medicine, Xi'an, China
| | - Yafang Hou
- Institute of Traditional Chinese Medicine, Shaanxi Academy of Traditional Chinese Medicine, Xi'an, China
| | - Hong Zhang
- Institute of Traditional Chinese Medicine, Shaanxi Academy of Traditional Chinese Medicine, Xi'an, China
| | - Zhiyong Chen
- Institute of Traditional Chinese Medicine, Shaanxi Academy of Traditional Chinese Medicine, Xi'an, China
| | - Xia Du
- Institute of Traditional Chinese Medicine, Shaanxi Academy of Traditional Chinese Medicine, Xi'an, China
| |
Collapse
|
3
|
Zhu YF, Wan MC, Gao P, Shen MJ, Zhu YN, Hao JX, Lu WC, Wang CY, Tay F, Ehrlich H, Niu LN, Jiao K. Fibrocyte: A missing piece in the pathogenesis of fibrous epulis. Oral Dis 2024; 30:4376-4389. [PMID: 38148479 DOI: 10.1111/odi.14847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 11/18/2023] [Accepted: 12/10/2023] [Indexed: 12/28/2023]
Abstract
OBJECTIVES To explore the role of fibrocytes in the recurrence and calcification of fibrous epulides. METHODS Different subtypes of fibrous epulides and normal gingival tissue specimens were first collected for histological and immunofluorescence analyses to see if fibrocytes were present and whether they differentiated into myofibroblasts and osteoblasts upon stimulated by transforming growth factor-β1 (TGF-β1). Electron microscopy and elemental analysis were used to characterize the extracellular microenvironment in different subtypes of fibrous epulides. Human peripheral blood mononuclear cells (PBMCs) were subsequently isolated from in vitro models to mimic the microenvironment in fibrous epulides to identify whether TGF-β1 as well as the calcium and phosphorus ion concentration in the extracellular matrix (ECM) of a fibrous epulis trigger fibrocyte differentiation. RESULTS Fibrous epulides contain fibrocytes that accumulate in the local inflammatory environment and have the ability to differentiate into myofibroblasts or osteoblasts. TGF-β1 promotes fibrocytes differentiation into myofibroblasts in a concentration-dependent manner, while TGF-β1 stimulates the fibrocytes to differentiate into osteoblasts when combined with a high calcium and phosphorus environment. CONCLUSIONS Our study revealed fibrocytes play an important role in the fibrogenesis and osteogenesis in fibrous epulis, and might serve as a therapeutic target for the inhibition of recurrence of fibrous epulides.
Collapse
Affiliation(s)
- Yi-Fei Zhu
- The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
- Department of Prosthodontics, State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Mei-Chen Wan
- Department of Prosthodontics, State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Peng Gao
- The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Min-Juan Shen
- Department of Prosthodontics, State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Yi-Na Zhu
- Department of Prosthodontics, State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Jia-Xin Hao
- Department of Prosthodontics, State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, Xi'an, China
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, China
| | - Wei-Cheng Lu
- Department of Prosthodontics, State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Chen-Yu Wang
- Department of Prosthodontics, State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Franklin Tay
- The Dental College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Hermann Ehrlich
- Institute of Electronic and Sensor Materials, Freiberg, Germany
| | - Li-Na Niu
- The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
- Department of Prosthodontics, State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Kai Jiao
- Department of Stomatology, Tangdu Hospital; State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| |
Collapse
|
4
|
Jankowski K, Lemay SE, Lozano-Ojalvo D, Perez Rodriguez L, Sauvaget M, Breuils-Bonnet S, Formoso K, Jagana V, Zhang S, Milara J, Cortijo J, Turnbull IC, Provencher S, Bonnet S, Orchando J, Lezoualc'h F, Bisserier M, Hadri L. Pharmacological Inhibition of Epac1 Protects against Pulmonary Fibrosis by Blocking FoxO3a Neddylation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.13.612935. [PMID: 39345579 PMCID: PMC11429716 DOI: 10.1101/2024.09.13.612935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Background Idiopathic Pulmonary fibrosis (IPF) is characterized by progressive scarring and fibrosis within the lungs. There is currently no cure for IPF; therefore, there is an urgent need to identify novel therapeutic targets that can prevent the progression of IPF. Compelling evidence indicates that the second messenger, cyclic adenosine monophosphate (cAMP), inhibits lung fibroblast proliferation and differentiation through the classical PKA pathway. However, the contribution of the e xchange p rotein directly a ctivated by c AMP 1 (Epac1) to IPF pathophysiological processes is yet to be investigated. Objective To determine the role of the cAMP-binding protein Epac1 in the progression of IPF. Methods We used lung samples from IPF patients or healthy controls, mouse lung samples, or lung fibroblast isolated from a preclinical mouse model of PF induced by bleomycin intratracheal injection. The effect of bleomycin (BLM) treatment was determined in Epac1 knock-out mice or wild-type littermates. Epac1 expression was modulated in vitro by using lentiviral vectors or adenoviruses. The therapeutic potential of the Epac1-selective pharmacological inhibitor, AM-001, was tested in vivo and in vitro, using a bleomycin mouse model of PF and an ex vivo precision-cut lung slices (PCLs) model of human lung fibrosis. Results Epac1 expression was increased in the lung tissue of IPF patients, in IPF-diseased fibroblasts and in BLM-challenged mice. Furthermore, Epac1 genetic or pharmacological inhibition with AM-001 decreased normal and IPF fibroblast proliferation and the expression of profibrotic markers, αSMA, TGF-β/SMAD2/3, and interleukin-6 (IL-6)/STAT3 signaling pathways. Consistently, blocking Epac1 protected against BLM-induced lung injury and fibrosis, suggesting a therapeutic effect of Epac1 inhibition on PF pathogenesis and progression. Global gene expression profiling revealed a decrease in the key components of the profibrotic gene signature and neddylation pathway in Epac1-deficient lung fibroblasts and IPF human-derived PLCs. Mechanistically, the protective effect of Epac1 inhibition against PF development involves the inhibition of FoxO3a neddylation and its subsequent degradation by NEDD8, and in part, by limiting the proliferative capacity of lung-infiltrating monocytes. Conclusions We demonstrated that Epac1 is an important regulator of the pathological state of fibroblasts in PF and that small molecules targeting Epac1 can serve as novel therapeutic drugs against PF.
Collapse
|
5
|
Milara J, Roger I, Montero P, Artigues E, Escrivá J, Del Río R, Cortijo J. Targeting IL-11 to reduce fibrocyte circulation and lung accumulation in animal models of pulmonary hypertension-associated lung fibrosis. Br J Pharmacol 2024; 181:2991-3009. [PMID: 38679415 DOI: 10.1111/bph.16393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 02/08/2024] [Accepted: 03/18/2024] [Indexed: 05/01/2024] Open
Abstract
BACKGROUND AND PURPOSE IL-11 is a member of the IL-6 family of cytokine initially considered as haematopoietic and cytoprotective factor. Recent evidence indicates that IL-11 promotes lung fibrosis and pulmonary hypertension in animal models and is elevated in lung tissue of patients with pulmonary fibrosis and pulmonary hypertension. Fibrocytes are bone marrow-derived circulating cells that participate in lung fibrosis and pulmonary hypertension, but the role of IL-11 on fibrocytes is unknown. We investigated the role of IL-11 system on fibrocyte activation in different in vitro and in vivo models of lung fibrosis associated with pulmonary hypertension. EXPERIMENTAL APPROACH Human fibrocytes were isolated from peripheral blood of six healthy donors. Recombinant human (rh)-IL-11 and soluble rh-IL-11 receptor, α subunit (IL-11Rα) were used to stimulated fibrocytes in vitro to measure:- cell migration in a chemotactic migration chamber, fibrocyte to endothelial cell adhesion in a microscope-flow chamber and fibrocyte to myofibroblast transition. Mouse lung fibrosis and pulmonary hypertension was induced using either IL-11 (s.c.) or bleomycin (intra-tracheal), while in the rat monocrotaline (intra-tracheal) was used. In vivo siRNA-IL-11 was administered to suppress IL-11 in vivo. KEY RESULTS RhIL-11 and soluble rhIL-11Rα promote fibrocyte migration, endothelial cell adhesion and myofibroblast transition. Subcutaneous (s.c.) IL-11 infusion elevates blood, bronchoalveolar and lung tissue fibrocytes. SiRNA-IL-11 transfection in bleomycin and monocrotaline animal models reduces blood and lung tissue fibrocytes and reduces serum CXCL12 and CXCL12/CXCR4 lung expression. CONCLUSION AND IMPLICATIONS Targeting IL-11 reduces fibrocyte circulation and lung accumulation in animal models of pulmonary hypertension-associated lung fibrosis.
Collapse
Affiliation(s)
- Javier Milara
- CIBER de Enfermedades Respiratorias, Health Institute Carlos III, Valencia, Spain
- Department of Pharmacology, Faculty of Medicine, University of Valencia, Valencia, Spain
- Pharmacy Unit, University General Hospital Consortium of Valencia, Valencia, Spain
| | - Inés Roger
- CIBER de Enfermedades Respiratorias, Health Institute Carlos III, Valencia, Spain
- Department of Pharmacology, Faculty of Medicine, University of Valencia, Valencia, Spain
- Faculty of Health Sciences, Universidad Europea de Valencia, Valencia, Spain
| | - Paula Montero
- Department of Pharmacology, Faculty of Medicine, University of Valencia, Valencia, Spain
- Faculty of Health Sciences, Universidad Europea de Valencia, Valencia, Spain
| | - Enrique Artigues
- Surgery Unit, University General Hospital Consortium, Valencia, Spain
| | - Juan Escrivá
- Thoracic Surgery Unit, University and Polytechnic Hospital La Fe, Valencia, Spain
| | - Raquel Del Río
- Pharmacy Unit, University General Hospital Consortium of Valencia, Valencia, Spain
| | - Julio Cortijo
- CIBER de Enfermedades Respiratorias, Health Institute Carlos III, Valencia, Spain
- Department of Pharmacology, Faculty of Medicine, University of Valencia, Valencia, Spain
- Research and teaching Unit, University General Hospital Consortium, Valencia, Spain
| |
Collapse
|
6
|
Ruoss S, Nasamran CA, Ball ST, Chen JL, Halter KN, Bruno KA, Whisenant TC, Parekh JN, Dorn SN, Esparza MC, Bremner SN, Fisch KM, Engler AJ, Ward SR. Comparative single-cell transcriptional and proteomic atlas of clinical-grade injectable mesenchymal source tissues. SCIENCE ADVANCES 2024; 10:eadn2831. [PMID: 38996032 PMCID: PMC11244553 DOI: 10.1126/sciadv.adn2831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 06/06/2024] [Indexed: 07/14/2024]
Abstract
Bone marrow aspirate concentrate (BMAC) and adipose-derived stromal vascular fraction (ADSVF) are the most marketed stem cell therapies to treat a variety of conditions in the general population and elite athletes. Both tissues have been used interchangeably clinically even though their detailed composition, heterogeneity, and mechanisms of action have neither been rigorously inventoried nor compared. This lack of information has prevented investigations into ideal dosages and has facilitated anecdata and misinformation. Here, we analyzed single-cell transcriptomes, proteomes, and flow cytometry profiles from paired clinical-grade BMAC and ADSVF. This comparative transcriptional atlas challenges the prevalent notion that there is one therapeutic cell type present in both tissues. We also provide data of surface markers that may enable isolation and investigation of cell (sub)populations. Furthermore, the proteome atlas highlights intertissue and interpatient heterogeneity of injected proteins with potentially regenerative or immunomodulatory capacities. An interactive webtool is available online.
Collapse
Affiliation(s)
- Severin Ruoss
- Department of Orthopaedic Surgery, UC San Diego, La Jolla, CA, USA
| | - Chanond A. Nasamran
- Center for Computational Biology and Bioinformatics, UC San Diego, La Jolla, CA, USA
| | - Scott T. Ball
- Department of Orthopaedic Surgery, UC San Diego, La Jolla, CA, USA
| | - Jeffrey L. Chen
- Department of Anesthesiology, Center for Pain, UC San Diego, La Jolla, CA, USA
| | - Kenneth N. Halter
- Department of Anesthesiology, Center for Pain, UC San Diego, La Jolla, CA, USA
| | - Kelly A. Bruno
- Department of Anesthesiology, Center for Pain, UC San Diego, La Jolla, CA, USA
| | - Thomas C. Whisenant
- Center for Computational Biology and Bioinformatics, UC San Diego, La Jolla, CA, USA
| | - Jesal N. Parekh
- Department of Orthopaedic Surgery, UC San Diego, La Jolla, CA, USA
| | - Shanelle N. Dorn
- Department of Orthopaedic Surgery, UC San Diego, La Jolla, CA, USA
| | - Mary C. Esparza
- Department of Orthopaedic Surgery, UC San Diego, La Jolla, CA, USA
| | | | - Kathleen M. Fisch
- Center for Computational Biology and Bioinformatics, UC San Diego, La Jolla, CA, USA
- Department of Obstetrics, Gynecology & Reproductive Sciences, UC San Diego, La Jolla, CA, USA
| | - Adam J. Engler
- Chien-Lay Department of Bioengineering, UC San Diego, La Jolla, CA, USA
- Sanford Consortium for Regenerative Medicine, La Jolla, CA, USA
| | - Samuel R. Ward
- Department of Orthopaedic Surgery, UC San Diego, La Jolla, CA, USA
- Chien-Lay Department of Bioengineering, UC San Diego, La Jolla, CA, USA
- Department of Radiology, UC San Diego, La Jolla, CA, USA
| |
Collapse
|
7
|
Salminen A, Kaarniranta K, Kauppinen A. Tissue fibroblasts are versatile immune regulators: An evaluation of their impact on the aging process. Ageing Res Rev 2024; 97:102296. [PMID: 38588867 DOI: 10.1016/j.arr.2024.102296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/26/2024] [Accepted: 04/03/2024] [Indexed: 04/10/2024]
Abstract
Fibroblasts are abundant stromal cells which not only control the integrity of extracellular matrix (ECM) but also act as immune regulators. It is known that the structural cells within tissues can establish an organ-specific immunity expressing many immune-related genes and closely interact with immune cells. In fact, fibroblasts can modify their immune properties to display both pro-inflammatory and immunosuppressive activities in a context-dependent manner. After acute insults, fibroblasts promote tissue inflammation although they concurrently recruit immunosuppressive cells to enhance the resolution of inflammation. In chronic pathological states, tissue fibroblasts, especially senescent fibroblasts, can display many pro-inflammatory and immunosuppressive properties and stimulate the activities of different immunosuppressive cells. In return, immunosuppressive cells, such as M2 macrophages and myeloid-derived suppressor cells (MDSC), evoke an excessive conversion of fibroblasts into myofibroblasts, thus aggravating the severity of tissue fibrosis. Single-cell transcriptome studies on fibroblasts isolated from aged tissues have confirmed that tissue fibroblasts express many genes coding for cytokines, chemokines, and complement factors, whereas they lose some fibrogenic properties. The versatile immune properties of fibroblasts and their close cooperation with immune cells indicate that tissue fibroblasts have a crucial role in the aging process and age-related diseases.
Collapse
Affiliation(s)
- Antero Salminen
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, Kuopio FI-70211, Finland.
| | - Kai Kaarniranta
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, Kuopio FI-70211, Finland; Department of Ophthalmology, Kuopio University Hospital, P.O. Box 100, KYS FI-70029, Finland
| | - Anu Kauppinen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, Kuopio FI-70211, Finland
| |
Collapse
|
8
|
Goldmann WH. Durotaxis: A cause of organ fibrosis and metastatic cancer? Cell Biol Int 2024; 48:553-555. [PMID: 38501430 DOI: 10.1002/cbin.12156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/08/2024] [Accepted: 03/02/2024] [Indexed: 03/20/2024]
Affiliation(s)
- Wolfgang H Goldmann
- Department of Biophysics, Friedrich-Alexander-University, Erlangen-Nuremberg, Erlangen, Germany
| |
Collapse
|
9
|
Ulrich ND, Vargo A, Ma Q, Shen YC, Hannum DF, Gurczynski SJ, Moore BB, Schon S, Lieberman R, Shikanov A, Marsh EE, Fazleabas A, Li JZ, Hammoud SS. Cellular heterogeneity and dynamics of the human uterus in healthy premenopausal women. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.07.583985. [PMID: 38559249 PMCID: PMC10979868 DOI: 10.1101/2024.03.07.583985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The human uterus is a complex and dynamic organ whose lining grows, remodels, and regenerates in every menstrual cycle or upon tissue damage. Here we applied single-cell RNA sequencing to profile more the 50,000 uterine cells from both the endometrium and myometrium of 5 healthy premenopausal individuals, and jointly analyzed the data with a previously published dataset from 15 subjects. The resulting normal uterus cell atlas contains more than 167K cells representing the lymphatic endothelium, blood endothelium, stromal, ciliated epithelium, unciliated epithelium, and immune cell populations. Focused analyses within each major cell type and comparisons with subtype labels from prior studies allowed us to document supporting evidence, resolve naming conflicts, and to propose a consensus annotation system of 39 subtypes. We release their gene expression centroids, differentially expressed genes, and mRNA patterns of literature-based markers as a shared community resource. We find many subtypes show dynamic changes over different phases of the cycle and identify multiple potential progenitor cells: compartment-wide progenitors for each major cell type, transitional cells that are upstream of other subtypes, and potential cross-lineage multipotent stromal progenitors that may be capable of replenishing the epithelial, stromal, and endothelial compartments. When compared to the healthy premenopausal samples, a postpartum and a postmenopausal uterus sample revealed substantially altered tissue composition, involving the rise or fall of stromal, endothelial, and immune cells. The cell taxonomy and molecular markers we report here are expected to inform studies of both basic biology of uterine function and its disorders. SIGNIFICANCE We present single-cell RNA sequencing data from seven individuals (five healthy pre-menopausal women, one post-menopausal woman, and one postpartum) and perform an integrated analysis of this data alongside 15 previously published scRNA-seq datasets. We identified 39 distinct cell subtypes across four major cell types in the uterus. By using RNA velocity analysis and centroid-centroid comparisons we identify multiple computationally predicted progenitor populations for each of the major cell compartments, as well as potential cross-compartment, multi-potent progenitors. While the function and interactions of these cell populations remain to be validated through future experiments, the markers and their "dual characteristics" that we describe will serve as a rich resource to the scientific community. Importantly, we address a significant challenge in the field: reconciling multiple uterine cell taxonomies being proposed. To achieve this, we focused on integrating historical and contemporary knowledge across multiple studies. By providing detailed evidence used for cell classification we lay the groundwork for establishing a stable, consensus cell atlas of the human uterus.
Collapse
|
10
|
Conrad C, Magnen M, Tsui J, Wismer H, Naser M, Venkataramani U, Samad B, Cleary SJ, Qiu L, Tian JJ, De Giovanni M, Mende N, Passegue E, Laurenti E, Combes AJ, Looney MR. Decoding functional hematopoietic progenitor cells in the adult human lung. RESEARCH SQUARE 2024:rs.3.rs-3576483. [PMID: 38077002 PMCID: PMC10705601 DOI: 10.21203/rs.3.rs-3576483/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
The bone marrow is the main site of blood cell production in adults, however, rare pools of hematopoietic stem and progenitor cells with self-renewal and differentiation potential have been found in extramedullary organs. The lung is primarily known for its role in gas exchange but has recently been described as a site of blood production in mice. Here, we show that functional hematopoietic precursors reside in the extravascular spaces of the human lung, at a frequency similar to the bone marrow, and are capable of proliferation and engraftment. The organ-specific gene signature of pulmonary and medullary CD34+ hematopoietic progenitors indicates greater baseline activation of immune, megakaryocyte/platelet and erythroid-related pathways in lung progenitors. Spatial transcriptomics mapped blood progenitors in the lung to a vascular-rich alveolar interstitium niche. These results identify the lung as a pool for uniquely programmed blood stem and progenitor cells with the potential to support hematopoiesis in humans.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Nicole Mende
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | | | | | | | | |
Collapse
|
11
|
Chen Y, Li Z, Ji G, Wang S, Mo C, Ding B. Lung regeneration: diverse cell types and the therapeutic potential. MedComm (Beijing) 2024; 5:e494. [PMID: 38405059 PMCID: PMC10885188 DOI: 10.1002/mco2.494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 01/26/2024] [Accepted: 01/29/2024] [Indexed: 02/27/2024] Open
Abstract
Lung tissue has a certain regenerative ability and triggers repair procedures after injury. Under controllable conditions, lung tissue can restore normal structure and function. Disruptions in this process can lead to respiratory system failure and even death, causing substantial medical burden. The main types of respiratory diseases are chronic obstructive pulmonary disease (COPD), idiopathic pulmonary fibrosis (IPF), and acute respiratory distress syndrome (ARDS). Multiple cells, such as lung epithelial cells, endothelial cells, fibroblasts, and immune cells, are involved in regulating the repair process after lung injury. Although the mechanism that regulates the process of lung repair has not been fully elucidated, clinical trials targeting different cells and signaling pathways have achieved some therapeutic effects in different respiratory diseases. In this review, we provide an overview of the cell type involved in the process of lung regeneration and repair, research models, and summarize molecular mechanisms involved in the regulation of lung regeneration and fibrosis. Moreover, we discuss the current clinical trials of stem cell therapy and pharmacological strategies for COPD, IPF, and ARDS treatment. This review provides a reference for further research on the molecular and cellular mechanisms of lung regeneration, drug development, and clinical trials.
Collapse
Affiliation(s)
- Yutian Chen
- The Department of Endovascular SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan UniversityChengduChina
| | - Zhen Li
- The Department of Endovascular SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Gaili Ji
- Department of GynecologyThe Third Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Shaochi Wang
- Department of Translational MedicineThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Chunheng Mo
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan UniversityChengduChina
| | - Bi‐Sen Ding
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan UniversityChengduChina
| |
Collapse
|
12
|
Rao GK, Santagostino SF, Wong L, Inoue A, Arjomandi A, Yadav R, Halpern WG. Repeat-dose and embryo-fetal developmental toxicity of zinpentraxin alfa. Reprod Toxicol 2024; 123:108526. [PMID: 38141866 DOI: 10.1016/j.reprotox.2023.108526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/13/2023] [Accepted: 12/16/2023] [Indexed: 12/25/2023]
Abstract
Zinpentraxin alfa is a recombinant human pentraxin-2 (PTX-2) developed for the treatment of various fibrotic diseases with the hypothesis that supplementing endogenous PTX-2 levels through intravenous administration should increase its regulatory capacity in circulation and at the site of disease, thereby promoting healing and reducing fibrosis. Zinpentraxin alfa has been studied in various clinical trials, particularly in patients with idiopathic pulmonary fibrosis, where it has demonstrated efficacy in slowing decline in lung function in a phase 2 study. In the present investigation, we summarize findings from 14-day repeat-dose toxicity studies in rats and cynomolgus monkeys supporting early clinical development of zinpentraxin alfa. In addition, we also describe the findings from the embryo-fetal developmental (EFD) studies conducted in rats and rabbits, since the intended fibrosis patient population may include patients of childbearing potential. Zinpentraxin alfa was well tolerated by rats and monkeys in general toxicity studies with no treatment-related adverse effects, as well as by pregnant rats over the same dose range in a definitive EFD study. In contrast, substantial toxicity was observed in a rabbit dose-range-finder EFD study. Zinpentraxin alfa was poorly tolerated by pregnant rabbits and effects on the dams correlated with post-implantation fetal losses. The disparate effects of zinpentraxin alfa on embryo-fetal development between the two species suggests a potential unknown biological function of PTX-2 in pregnancy in the rabbit, which may be relevant to humans. Our findings warrant the consideration for highly effective contraceptive measures to avoid pregnancy in patients enrolled in clinical studies with zinpentraxin alfa.
Collapse
Affiliation(s)
- Gautham K Rao
- Department of Safety Assessment, Genentech Inc., South San Francisco, CA 94080, USA.
| | - Sara F Santagostino
- Department of Safety Assessment, Genentech Inc., South San Francisco, CA 94080, USA
| | - Lisa Wong
- Department of Safety Assessment, Genentech Inc., South San Francisco, CA 94080, USA
| | - Ayumi Inoue
- SNBL, Ltd., Drug Safety Research Laboratories, Kagoshima 891-1394, Japan
| | - Audrey Arjomandi
- Department of Bioanalytical Sciences, Genentech Inc., South San Francisco, CA 94080, USA
| | - Rajbharan Yadav
- Department of Preclinical and Translational Pharmacokinetics and Pharmacodynamics, Genentech Inc., South San Francisco, CA 94080, USA
| | - Wendy G Halpern
- Department of Safety Assessment, Genentech Inc., South San Francisco, CA 94080, USA
| |
Collapse
|
13
|
Nikolaev VV, Kistenev YV, Kröger M, Zuhayri H, Darvin ME. Review of optical methods for noninvasive imaging of skin fibroblasts-From in vitro to ex vivo and in vivo visualization. JOURNAL OF BIOPHOTONICS 2024; 17:e202300223. [PMID: 38018868 DOI: 10.1002/jbio.202300223] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 10/21/2023] [Accepted: 10/25/2023] [Indexed: 11/30/2023]
Abstract
Fibroblasts are among the most common cell types in the stroma responsible for creating and maintaining the structural organization of the extracellular matrix in the dermis, skin regeneration, and a range of immune responses. Until now, the processes of fibroblast adaptation and functioning in a varying environment have not been fully understood. Modern laser microscopes are capable of studying fibroblasts in vitro and ex vivo. One-photon- and two-photon-excited fluorescence microscopy, Raman spectroscopy/microspectroscopy are well-suited noninvasive optical methods for fibroblast imaging in vitro and ex vivo. In vivo staining-free fibroblast imaging is not still implemented. The exception is fibroblast imaging in tattooed skin. Although in vivo noninvasive staining-free imaging of fibroblasts in the skin has not yet been implemented, it is expected in the future. This review summarizes the state-of-the-art in fibroblast visualization using optical methods and discusses the advantages, limitations, and prospects for future noninvasive imaging.
Collapse
Affiliation(s)
- Viktor V Nikolaev
- Tomsk State University, Laboratory of Molecular Imaging and Machine Learning, Tomsk, Russia
| | - Yury V Kistenev
- Tomsk State University, Laboratory of Molecular Imaging and Machine Learning, Tomsk, Russia
| | - Marius Kröger
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Dermatology, Venerology and Allergology, Center of Experimental and Applied Cutaneous Physiology, Berlin, Germany
| | - Hala Zuhayri
- Tomsk State University, Laboratory of Molecular Imaging and Machine Learning, Tomsk, Russia
| | - Maxim E Darvin
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Dermatology, Venerology and Allergology, Center of Experimental and Applied Cutaneous Physiology, Berlin, Germany
| |
Collapse
|
14
|
Tomioka H, Miyazaki Y, Inoue Y, Egashira R, Kawamura T, Sano H, Johkoh T, Takemura T, Hisada T, Fukuoka J. Japanese clinical practice guide 2022 for hypersensitivity pneumonitis. Respir Investig 2024; 62:16-43. [PMID: 37931427 DOI: 10.1016/j.resinv.2023.07.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/23/2023] [Accepted: 07/17/2023] [Indexed: 11/08/2023]
Abstract
Considering recently published two guidelines for the diagnosis of hypersensitivity pneumonitis (HP), the Japanese Respiratory Society (JRS) has now published its own Japanese clinical practice guide for HP. Major types of HP in Japan include summer-type, home-related, bird-related, farmer's lung, painter's lung, humidifier lung, and mushroom grower's lung. Identifying causative antigens is critical for increasing diagnostic confidence, as well as improving prognosis through appropriate antigen avoidance. This guide proposes a comprehensive antigen questionnaire including the outbreak sources reported in Japan. Drawing on the 2021 CHEST guideline, this guide highlights the antigen identification confidence level and adaptations for environmental surveys. The detection of specific antibodies against causative antigens is an important diagnostic predictor of HP. In Japan, the assessments of bird-specific IgG (pigeons, budgerigars) and the Trichosporon asahii antibody are covered by medical insurance. Although this guide adopts the 2020 ATS/JRS/ALAT guideline diagnostic criteria based on the combination of imaging findings, exposure assessment, bronchoalveolar lavage lymphocytosis, and histopathological findings, it added some annotations to facilitate the interpretation of the content and correlate the medical situation in Japan. It recommends checking biomarkers; seasonal changes in the KL-6 concentration (increase in winter for bird-related HP/humidifier lung and in summer for summer-type HP) and high KL-6 concentrations providing a basis for the suspicion of HP. Antigen avoidance is critical for disease management of HP. This guide also addresses the pharmacological management of HP, highlighting the treatment strategy for fibrotic HP including combination therapies with anti-inflammatory/immunosuppressive and antifibrotic drugs.
Collapse
Affiliation(s)
- Hiromi Tomioka
- Department of Respiratory Medicine, Kobe City Medical Center West Hospital, Kobe, Japan.
| | - Yasunari Miyazaki
- Department of Respiratory Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yoshikazu Inoue
- Clinical Research Center, National Hospital Organization Kinki-Chuo Chest Medical Center, Osaka, Japan
| | - Ryoko Egashira
- Department of Radiology, Faculty of Medicine, Saga University, Saga, Japan
| | - Tetsuji Kawamura
- National Hospital Organization Himeji Medical Center, Himeji, Japan
| | - Hiroyuki Sano
- Department of Respiratory Medicine and Allergology, Kindai University Faculty of Medicine, Osaka, Japan
| | - Takeshi Johkoh
- Department of Radiology, Kansai Rosai Hospital, Amagasaki, Japan
| | - Tamiko Takemura
- Department of Pathology, Kanagawa Cardiovascular and Respiratory Center, Yokohama, Japan
| | - Takeshi Hisada
- Gunma University Graduate School of Health Sciences, Maebashi, Japan
| | - Junya Fukuoka
- Department of Pathology Informatics, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| |
Collapse
|
15
|
Kuziel G, Moore BN, Haugstad GP, Xiong Y, Williams AE, Arendt LM. Alterations in the mammary gland and tumor microenvironment of formerly obese mice. BMC Cancer 2023; 23:1183. [PMID: 38041006 PMCID: PMC10693119 DOI: 10.1186/s12885-023-11688-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 11/28/2023] [Indexed: 12/03/2023] Open
Abstract
BACKGROUND Obesity is a risk factor for breast cancer, and women with obesity that develop breast cancer have a worsened prognosis. Within the mammary gland, obesity causes chronic, macrophage-driven inflammation and adipose tissue fibrosis. Weight loss is a recommended intervention to resolve obesity, but the impact of weight loss on the mammary gland microenvironment and in tumors has not been well identified. METHODS To examine the effects of weight loss following obesity, mice were fed a high-fat diet for 16 weeks to induce obesity, then switched to a low-fat diet for 6 weeks. We examined changes in immune cells, including fibrocytes, which are myeloid lineage cells that have attributes of both macrophages and myofibroblasts, and collagen deposition within the mammary glands of non-tumor-bearing mice and within the tumors of mice that were transplanted with estrogen receptor alpha positive TC2 tumor cells. RESULTS In formerly obese mice, we observed reduced numbers of crown-like structures and fibrocytes in mammary glands, while collagen deposition was not resolved with weight loss. Following transplant of TC2 tumor cells into the mammary glands of lean, obese, and formerly obese mice, diminished collagen deposition and cancer-associated fibroblasts were observed in tumors from formerly obese mice compared to obese mice. Within tumors of obese mice, increased myeloid-derived suppressor cells and diminished CD8+ T cells were identified, while the microenvironment of tumors of formerly obese mice were more similar to tumors from lean mice. When TC2 tumor cells were mixed with CD11b+CD34+ myeloid progenitor cells, which are the cells of origin for fibrocytes, and transplanted into mammary glands of lean and obese mice, collagen deposition within the tumors of both lean and obese was significantly greater than when tumor cells were mixed with CD11b+CD34- monocytes or total CD45+ immune cells. CONCLUSIONS Overall, these studies demonstrate that weight loss resolved some of the microenvironmental conditions within the mammary gland that may contribute to tumor progression. Additionally, fibrocytes may contribute to early collagen deposition in mammary tumors of obese mice leading to the growth of desmoplastic tumors.
Collapse
Affiliation(s)
- Genevra Kuziel
- Cancer Biology Program, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Brittney N Moore
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Grace P Haugstad
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Yue Xiong
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Abbey E Williams
- Comparative Biomedical Sciences Program, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Lisa M Arendt
- Cancer Biology Program, University of Wisconsin-Madison, Madison, WI, 53705, USA.
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI, 53706, USA.
- Comparative Biomedical Sciences Program, University of Wisconsin-Madison, Madison, WI, 53706, USA.
- School of Veterinary Medicine, 2015 Linden Drive Rm 4354A, Madison, WI, 53706, USA.
| |
Collapse
|
16
|
Li R, Feng D, Han S, Zhai X, Yu X, Fu Y, Jin F. Macrophages and fibroblasts in foreign body reactions: How mechanical cues drive cell functions? Mater Today Bio 2023; 22:100783. [PMID: 37701130 PMCID: PMC10494263 DOI: 10.1016/j.mtbio.2023.100783] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 08/23/2023] [Accepted: 08/28/2023] [Indexed: 09/14/2023] Open
Abstract
Biomaterials, when implanted in the human body, can induce a series of cell- and cytokine-related reactions termed foreign body reactions (FBRs). In the progression of FBRs, macrophages regulate inflammation and healing by polarizing to either a pro-inflammatory or pro-healing phenotype and recruit fibroblasts by secreting cytokines. Stimulated by the biomaterials, fibrotic capsule is formed eventually. The implant, along with its newly formed capsule, introduces various mechanical cues that influence cellular functions. Mechanosensing proteins, such as integrins or ion channels, transduce extracellular mechanical signals into cytoplasm biochemical signals in response to mechanical stimuli. Consequently, the morphology, migration mode, function, and polarization state of the cells are affected. Modulated by different intracellular signaling pathways and their crosstalk, the expression of fibrotic genes increases with fibroblast activation and fibroblast to myofibroblast transition under stiff or force stimuli. However, summarized in most current studies, the outcomes of macrophage polarization in the effect of different mechanical cues are inconsistent. The underlying mechanisms should be investigated with more advanced technology and considering more interfering aspects. Further research is needed to determine how to modulate the progression of fibrotic capsule formation in FBR artificially.
Collapse
Affiliation(s)
- Rihan Li
- Department of Breast Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, 110000, China
- Department of Breast and Reconstructive Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, 110000, China
| | - Dongdong Feng
- Department of Breast Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, 110000, China
- Department of Breast and Reconstructive Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, 110000, China
| | - Siyuan Han
- Department of Breast Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, 110000, China
- Department of Breast and Reconstructive Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, 110000, China
| | - Xiaoyue Zhai
- Department of Histology and Embryology, Basic Medical College, China Medical University, Shenyang, Liaoning, 110000, China
| | - Xinmiao Yu
- Department of Breast Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, 110000, China
- Department of Breast and Reconstructive Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, 110000, China
| | - Yuanyuan Fu
- Department of Histology and Embryology, Basic Medical College, China Medical University, Shenyang, Liaoning, 110000, China
| | - Feng Jin
- Department of Breast Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, 110000, China
| |
Collapse
|
17
|
Li W, Gurdziel K, Pitchaikannu A, Gupta N, Hazlett LD, Xu S. The miR-183/96/182 cluster is a checkpoint for resident immune cells and shapes the cellular landscape of the cornea. Ocul Surf 2023; 30:17-41. [PMID: 37536656 PMCID: PMC10834862 DOI: 10.1016/j.jtos.2023.07.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 07/28/2023] [Accepted: 07/31/2023] [Indexed: 08/05/2023]
Abstract
PURPOSE The conserved miR-183/96/182 cluster (miR-183C) regulates both corneal sensory innervation and corneal resident immune cells (CRICs). This study is to uncover its role in CRICs and in shaping the corneal cellular landscape at a single-cell (sc) level. METHODS Corneas of naïve, young adult [2 and 6 months old (mo)], female miR-183C knockout (KO) mice and wild-type (WT) littermates were harvested and dissociated into single cells. Dead cells were removed using a Dead Cell Removal kit. CD45+ CRICs were enriched by Magnetic Activated Cell Sorting (MACS). scRNA libraries were constructed and sequenced followed by comprehensive bioinformatic analyses. RESULTS The composition of major cell types of the cornea stays relatively stable in WT mice from 2 to 6 mo, however the compositions of subtypes of corneal cells shift with age. Inactivation of miR-183C disrupts the stability of the major cell-type composition and age-related transcriptomic shifts of subtypes of corneal cells. The diversity of CRICs is enhanced with age. Naïve mouse cornea contains previously-unrecognized resident fibrocytes and neutrophils. Resident macrophages (ResMφ) adopt cornea-specific function by expressing abundant extracellular matrix (ECM) and ECM organization-related genes. Naïve cornea is endowed with partially-differentiated proliferative ResMφ and contains microglia-like Mφ. Resident lymphocytes, including innate lymphoid cells (ILCs), NKT and γδT cells, are the major source of innate IL-17a. miR-183C limits the diversity and polarity of ResMφ. CONCLUSION miR-183C serves as a checkpoint for CRICs and imposes a global regulation of the cellular landscape of the cornea.
Collapse
Affiliation(s)
- Weifeng Li
- Predoctoral Training Program in Human Genetics, McKusick-Nathans Institute of Genetic Medicine, Department of Genetic Medicine, USA; Wilmer Eye Institute, School of Medicine, The Johns Hopkins University, Baltimore, MD, USA
| | | | - Ahalya Pitchaikannu
- Department of Ophthalmology, Visual and Anatomical Sciences, School of Medicine, Wayne State University, Detroit, MI, USA
| | - Naman Gupta
- Department of Ophthalmology, Visual and Anatomical Sciences, School of Medicine, Wayne State University, Detroit, MI, USA
| | - Linda D Hazlett
- Department of Ophthalmology, Visual and Anatomical Sciences, School of Medicine, Wayne State University, Detroit, MI, USA
| | - Shunbin Xu
- Department of Ophthalmology, Visual and Anatomical Sciences, School of Medicine, Wayne State University, Detroit, MI, USA.
| |
Collapse
|
18
|
Yang M, Ong J, Meng F, Zhang F, Shen H, Kitt K, Liu T, Tao W, Du P. Spatiotemporal insight into early pregnancy governed by immune-featured stromal cells. Cell 2023; 186:4271-4288.e24. [PMID: 37699390 DOI: 10.1016/j.cell.2023.08.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 06/04/2023] [Accepted: 08/17/2023] [Indexed: 09/14/2023]
Abstract
Endometrial decidualization connecting embryo implantation and placentation is transient but essential for successful pregnancy, which, however, is not systematically investigated. Here, we use a scStereo-seq technology to spatially visualize and define the dynamic functional decidual hubs assembled by distinct immune, endothelial, trophoblast, and decidual stromal cells (DSCs) in early pregnant mice. We unravel the DSC transdifferentiation trajectory and surprisingly discover a dual-featured type of immune-featured DSCs (iDSCs). We find that immature DSCs attract immune cells and induce decidual angiogenesis at the mesenchymal-epithelial transition hub during decidualization initiation. iDSCs enable immune cell recruitment and suppression, govern vascularization, and promote cytolysis at immune cell assembling and vascular hubs, respectively, to establish decidual homeostasis at a later stage. Interestingly, dysfunctional and spatially disordered iDSCs cause abnormal accumulation of immune cells in the vascular hub, which disrupts decidual hub specification and eventually leads to pregnancy complications in DBA/2-mated CBA/J mice.
Collapse
Affiliation(s)
- Min Yang
- MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing 100871, China
| | - Jennie Ong
- MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Fanju Meng
- MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing 100871, China
| | - Feixiang Zhang
- MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing 100871, China
| | - Hui Shen
- MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing 100871, China
| | - Kerstin Kitt
- Department of Cancer Immunology and Immune Modulation, Boehringer Ingelheim Pharma Co KG, Biberach an der Riss 88400, Germany
| | - Tengfei Liu
- Department of Research Beyond Borders, Boehringer Ingelheim (China) Investment Co., Ltd., Beijing 100027, China
| | - Wei Tao
- MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing 100871, China
| | - Peng Du
- MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China.
| |
Collapse
|
19
|
Yao X, Chen Q, Wang X, Liu X, Zhang L. IL-25 induces airway remodeling in asthma by orchestrating the phenotypic changes of epithelial cell and fibrocyte. Respir Res 2023; 24:212. [PMID: 37635231 PMCID: PMC10463650 DOI: 10.1186/s12931-023-02509-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 08/11/2023] [Indexed: 08/29/2023] Open
Abstract
BACKGROUND Previous studies have shown that IL-25 levels are increased in patients with asthma with fixed airflow limitation (FAL). However, the mechanism by which IL-25 contributes to airway remodeling and FAL remains unclear. Here, we hypothesized that IL-25 facilitates pro-fibrotic phenotypic changes in bronchial epithelial cells (BECs) and circulating fibrocytes (CFs), orchestrates pathological crosstalk from BECs to CFs, and thereby contributes to airway remodeling and FAL. METHODS Fibrocytes from asthmatic patients with FAL and chronic asthma murine models were detected using flow cytometry, multiplex staining and multispectral imaging analysis. The effect of IL-25 on BECs and CFs and on the crosstalk between BECs and CFs was determined using cell culture and co-culture systems. RESULTS We found that asthmatic patients with FAL had higher numbers of IL-25 receptor (i.e., IL-17RB)+-CFs, which were negatively correlated with forced expiratory volume in 1 s/forced vital capacity (FEV1/FVC). The number of airway IL-17RB+-fibrocytes was significantly increased in ovalbumin (OVA)- and IL-25-induced asthmatic mice versus the control subjects. BECs stimulated with IL-25 exhibited an epithelial-mesenchymal transition (EMT)-like phenotypic changes. CFs stimulated with IL-25 produced high levels of extracellular matrix (ECM) proteins and connective tissue growth factors (CTGF). These profibrotic effects of IL-25 were partially blocked by the PI3K-AKT inhibitor LY294002. In the cell co-culture system, OVA-challenged BECs facilitated the migration and expression of ECM proteins and CTGF in CFs, which were markedly blocked using an anti-IL-17RB antibody. CONCLUSION These results suggest that IL-25 may serve as a potential therapeutic target for asthmatic patients with FAL.
Collapse
Affiliation(s)
- Xiujuan Yao
- Department of Respiratory and Critical Care Medicine, Beijing Tongren Hospital, Capital Medical University, No.2, Xinanhuan Road, Yizhuang District, Beijing, 100176, China
| | - Qinglin Chen
- Department of Respiratory and Critical Care Medicine, Beijing Tongren Hospital, Capital Medical University, No.2, Xinanhuan Road, Yizhuang District, Beijing, 100176, China
| | - Xiangdong Wang
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
- Key Laboratory of Otolaryngology Head and Neck Surgery of Ministry of Education of China, Beijing Institute of Otolaryngology, No. 17, Hougou Hutong, Dongcheng District, Beijing, 100005, China
| | - Xiaofang Liu
- Department of Respiratory and Critical Care Medicine, Beijing Tongren Hospital, Capital Medical University, No.2, Xinanhuan Road, Yizhuang District, Beijing, 100176, China.
| | - Luo Zhang
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China.
- Key Laboratory of Otolaryngology Head and Neck Surgery of Ministry of Education of China, Beijing Institute of Otolaryngology, No. 17, Hougou Hutong, Dongcheng District, Beijing, 100005, China.
| |
Collapse
|
20
|
Dwivedi NV, Datta S, El-Kersh K, Sadikot RT, Ganti AK, Batra SK, Jain M. GPCRs and fibroblast heterogeneity in fibroblast-associated diseases. FASEB J 2023; 37:e23101. [PMID: 37486603 PMCID: PMC10916681 DOI: 10.1096/fj.202301091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 07/06/2023] [Indexed: 07/25/2023]
Abstract
G protein-coupled receptors (GPCRs) are the largest and most diverse class of signaling receptors. GPCRs regulate many functions in the human body and have earned the title of "most targeted receptors". About one-third of the commercially available drugs for various diseases target the GPCRs. Fibroblasts lay the architectural skeleton of the body, and play a key role in supporting the growth, maintenance, and repair of almost all tissues by responding to the cellular cues via diverse and intricate GPCR signaling pathways. This review discusses the dynamic architecture of the GPCRs and their intertwined signaling in pathological conditions such as idiopathic pulmonary fibrosis, cardiac fibrosis, pancreatic fibrosis, hepatic fibrosis, and cancer as opposed to the GPCR signaling of fibroblasts in physiological conditions. Understanding the dynamics of GPCR signaling in fibroblasts with disease progression can help in the recognition of the complex interplay of different GPCR subtypes in fibroblast-mediated diseases. This review highlights the importance of designing and adaptation of next-generation strategies such as GPCR-omics, focused target identification, polypharmacology, and effective personalized medicine approaches to achieve better therapeutic outcomes for fibrosis and fibrosis associated malignancies.
Collapse
Affiliation(s)
- Nidhi V Dwivedi
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Souvik Datta
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Karim El-Kersh
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Ruxana T Sadikot
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Nebraska Medical Center, Omaha, Nebraska, USA
- VA Nebraska Western Iowa Health Care System
| | - Apar K. Ganti
- VA Nebraska Western Iowa Health Care System
- Division of Oncology and Hematology, University of Nebraska Medical Center, Omaha, Nebraska, USA
- Fred and Pamela Buffett Cancer Center, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, USA
- Fred and Pamela Buffett Cancer Center, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Maneesh Jain
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, USA
- Fred and Pamela Buffett Cancer Center, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, USA
| |
Collapse
|
21
|
Lurje I, Gaisa NT, Weiskirchen R, Tacke F. Mechanisms of organ fibrosis: Emerging concepts and implications for novel treatment strategies. Mol Aspects Med 2023; 92:101191. [PMID: 37236017 DOI: 10.1016/j.mam.2023.101191] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023]
Abstract
Fibrosis, or tissue scarring, develops as a pathological deviation from the physiological wound healing response and can occur in various organs such as the heart, lung, liver, kidney, skin, and bone marrow. Organ fibrosis significantly contributes to global morbidity and mortality. A broad spectrum of etiologies can cause fibrosis, including acute and chronic ischemia, hypertension, chronic viral infection (e.g., viral hepatitis), environmental exposure (e.g., pneumoconiosis, alcohol, nutrition, smoking) and genetic diseases (e.g., cystic fibrosis, alpha-1-antitrypsin deficiency). Common mechanisms across organs and disease etiologies involve a sustained injury to parenchymal cells that triggers a wound healing response, which becomes deregulated in the disease process. A transformation of resting fibroblasts into myofibroblasts with excessive extracellular matrix production constitutes the hallmark of disease, however, multiple other cell types such as immune cells, predominantly monocytes/macrophages, endothelial cells, and parenchymal cells form a complex network of profibrotic cellular crosstalk. Across organs, leading mediators include growth factors like transforming growth factor-β and platelet-derived growth factor, cytokines like interleukin-10, interleukin-13, interleukin-17, and danger-associated molecular patterns. More recently, insights into fibrosis regression and resolution of chronic conditions have deepened our understanding of beneficial, protective effects of immune cells, soluble mediators and intracellular signaling. Further in-depth insights into the mechanisms of fibrogenesis can provide the rationale for therapeutic interventions and the development of targeted antifibrotic agents. This review gives insight into shared responses and cellular mechanisms across organs and etiologies, aiming to paint a comprehensive picture of fibrotic diseases in both experimental settings and in human pathology.
Collapse
Affiliation(s)
- Isabella Lurje
- Department of Hepatology and Gastroenterology, Campus Charité Mitte and Campus Virchow-Klinikum, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Nadine T Gaisa
- Institute of Pathology, University Hospital RWTH Aachen, Aachen, Germany
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH Aachen University Hospital, Aachen, Germany
| | - Frank Tacke
- Department of Hepatology and Gastroenterology, Campus Charité Mitte and Campus Virchow-Klinikum, Charité-Universitätsmedizin Berlin, Berlin, Germany.
| |
Collapse
|
22
|
Kuziel G, Moore BN, Haugstad GP, Arendt LM. Fibrocytes enhance mammary gland fibrosis in obesity. FASEB J 2023; 37:e23049. [PMID: 37342915 PMCID: PMC10316715 DOI: 10.1096/fj.202300399rr] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 06/06/2023] [Accepted: 06/08/2023] [Indexed: 06/23/2023]
Abstract
Obesity rates continue to rise, and obese individuals are at higher risk for multiple types of cancer, including breast cancer. Obese mammary fat is a site of chronic, macrophage-driven inflammation, which enhances fibrosis within adipose tissue. Elevated fibrosis within the mammary gland may contribute to risk for obesity-associated breast cancer. To understand how inflammation due to obesity enhanced fibrosis within mammary tissue, we utilized a high-fat diet model of obesity and elimination of CCR2 signaling in mice to identify changes in immune cell populations and their impact on fibrosis. We observed that obesity increased a population of CD11b+ cells with the ability to form myofibroblast-like colonies in vitro. This population of CD11b+ cells is consistent with fibrocytes, which have been identified in wound healing and chronic inflammatory diseases but have not been examined in obesity. In CCR2-null mice, which have limited ability to recruit myeloid lineage cells into obese adipose tissue, we observed reduced mammary fibrosis and diminished fibrocyte colony formation in vitro. Transplantation of myeloid progenitor cells, which are the cells of origin for fibrocytes, into the mammary glands of obese CCR2-null mice resulted in significantly increased myofibroblast formation. Gene expression analyses of the myeloid progenitor cell population from obese mice demonstrated enrichment for genes associated with collagen biosynthesis and extracellular matrix remodeling. Together these results show that obesity enhances recruitment of fibrocytes to promote obesity-induced fibrosis in the mammary gland.
Collapse
Affiliation(s)
- Genevra Kuziel
- Cancer Biology Program, University of Wisconsin-Madison,
Madison WI 53706, U.S.A
| | - Brittney N. Moore
- Department of Comparative Biosciences, University of
Wisconsin-Madison, Madison WI 53706, U.S.A
| | - Grace P. Haugstad
- Department of Comparative Biosciences, University of
Wisconsin-Madison, Madison WI 53706, U.S.A
| | - Lisa M. Arendt
- Cancer Biology Program, University of Wisconsin-Madison,
Madison WI 53706, U.S.A
- Department of Comparative Biosciences, University of
Wisconsin-Madison, Madison WI 53706, U.S.A
| |
Collapse
|
23
|
Kuziel G, Moore BN, Haugstad GP, Xiong Y, Williams AE, Arendt LM. Alterations in the Mammary Gland and Tumor Microenvironment of Formerly Obese Mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.14.545000. [PMID: 37398468 PMCID: PMC10312750 DOI: 10.1101/2023.06.14.545000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Obesity is a risk factor for breast cancer, and women with obesity that develop breast cancer have a worsened prognosis. Within the mammary gland, obesity causes chronic, macrophage-driven inflammation and adipose tissue fibrosis. To examine the impact of weight loss on the mammary microenvironment, mice were fed high-fat diet to induce obesity, then switched to a low-fat diet. In formerly obese mice, we observed reduced numbers of crown-like structures and fibrocytes in mammary glands, while collagen deposition was not resolved with weight loss. Following transplant of TC2 tumor cells into the mammary glands of lean, obese, and formerly obese mice, diminished collagen deposition and cancer-associated fibroblasts were observed in tumors from formerly obese mice compared to obese mice. When TC2 tumor cells were mixed with CD11b+CD34+ myeloid progenitor cells, collagen deposition within the tumors was significantly greater compared to when tumor cells were mixed with CD11b+CD34- monocytes, suggesting that fibrocytes contribute to early collagen deposition in mammary tumors of obese mice. Overall, these studies show that weight loss resolved some of the microenvironmental conditions within the mammary gland that may contribute to tumor progression.
Collapse
Affiliation(s)
- Genevra Kuziel
- Cancer Biology Program, University of Wisconsin-Madison, Madison WI 53705, U.S.A
| | - Brittney N. Moore
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison WI 53706, U.S.A
| | - Grace P. Haugstad
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison WI 53706, U.S.A
| | - Yue Xiong
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison WI 53706, U.S.A
| | - Abbey E. Williams
- Comparative Biomedical Sciences Program, University of Wisconsin-Madison, Madison WI 53706, U.S.A
| | - Lisa M. Arendt
- Cancer Biology Program, University of Wisconsin-Madison, Madison WI 53705, U.S.A
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison WI 53706, U.S.A
- Comparative Biomedical Sciences Program, University of Wisconsin-Madison, Madison WI 53706, U.S.A
| |
Collapse
|
24
|
Kuziel G, Moore BN, Arendt LM. Obesity and Fibrosis: Setting the Stage for Breast Cancer. Cancers (Basel) 2023; 15:cancers15112929. [PMID: 37296891 DOI: 10.3390/cancers15112929] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/22/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
Obesity is a rising health concern and is linked to a worsened breast cancer prognosis. Tumor desmoplasia, which is characterized by elevated numbers of cancer-associated fibroblasts and the deposition of fibrillar collagens within the stroma, may contribute to the aggressive clinical behavior of breast cancer in obesity. A major component of the breast is adipose tissue, and fibrotic changes in adipose tissue due to obesity may contribute to breast cancer development and the biology of the resulting tumors. Adipose tissue fibrosis is a consequence of obesity that has multiple sources. Adipocytes and adipose-derived stromal cells secrete extracellular matrix composed of collagen family members and matricellular proteins that are altered by obesity. Adipose tissue also becomes a site of chronic, macrophage-driven inflammation. Macrophages exist as a diverse population within obese adipose tissue and mediate the development of fibrosis through the secretion of growth factors and matricellular proteins and interactions with other stromal cells. While weight loss is recommended to resolve obesity, the long-term effects of weight loss on adipose tissue fibrosis and inflammation within breast tissue are less clear. Increased fibrosis within breast tissue may increase the risk for tumor development as well as promote characteristics associated with tumor aggressiveness.
Collapse
Affiliation(s)
- Genevra Kuziel
- Cancer Biology Graduate Program, University of Wisconsin-Madison, 1111 Highland Ave, Madison, WI 53705, USA
| | - Brittney N Moore
- Department of Comparative Biosciences, University of Wisconsin-Madison, 2015 Linden Drive, Madison, WI 53706, USA
| | - Lisa M Arendt
- Cancer Biology Graduate Program, University of Wisconsin-Madison, 1111 Highland Ave, Madison, WI 53705, USA
- Department of Comparative Biosciences, University of Wisconsin-Madison, 2015 Linden Drive, Madison, WI 53706, USA
| |
Collapse
|
25
|
De Gregorio C, Catalán E, Garrido G, Morandé P, Bennett JC, Muñoz C, Cofré G, Huang YL, Cuadra B, Murgas P, Calvo M, Altermatt F, Yubero MJ, Palisson F, South AP, Ezquer M, Fuentes I. Maintenance of chronicity signatures in fibroblasts isolated from recessive dystrophic epidermolysis bullosa chronic wound dressings under culture conditions. Biol Res 2023; 56:23. [PMID: 37161592 PMCID: PMC10170710 DOI: 10.1186/s40659-023-00437-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 04/27/2023] [Indexed: 05/11/2023] Open
Abstract
BACKGROUND Recessive Dystrophic Epidermolysis Bullosa (RDEB) is a rare inherited skin disease caused by variants in the COL7A1 gene, coding for type VII collagen (C7), an important component of anchoring fibrils in the basement membrane of the epidermis. RDEB patients suffer from skin fragility starting with blister formation and evolving into chronic wounds, inflammation and skin fibrosis, with a high risk of developing aggressive skin carcinomas. Restricted therapeutic options are limited by the lack of in vitro models of defective wound healing in RDEB patients. RESULTS In order to explore a more efficient, non-invasive in vitro model for RDEB studies, we obtained patient fibroblasts derived from discarded dressings) and examined their phenotypic features compared with fibroblasts derived from non-injured skin of RDEB and healthy-donor skin biopsies. Our results demonstrate that fibroblasts derived from RDEB chronic wounds (RDEB-CW) displayed characteristics of senescent cells, increased myofibroblast differentiation, and augmented levels of TGF-β1 signaling components compared to fibroblasts derived from RDEB acute wounds and unaffected RDEB skin as well as skin from healthy-donors. Furthermore, RDEB-CW fibroblasts exhibited an increased pattern of inflammatory cytokine secretion (IL-1β and IL-6) when compared with RDEB and control fibroblasts. Interestingly, these aberrant patterns were found specifically in RDEB-CW fibroblasts independent of the culturing method, since fibroblasts obtained from dressing of acute wounds displayed a phenotype more similar to fibroblasts obtained from RDEB normal skin biopsies. CONCLUSIONS Our results show that in vitro cultured RDEB-CW fibroblasts maintain distinctive cellular and molecular characteristics resembling the inflammatory and fibrotic microenvironment observed in RDEB patients' chronic wounds. This work describes a novel, non-invasive and painless strategy to obtain human fibroblasts chronically subjected to an inflammatory and fibrotic environment, supporting their use as an accessible model for in vitro studies of RDEB wound healing pathogenesis. As such, this approach is well suited to testing new therapeutic strategies under controlled laboratory conditions.
Collapse
Affiliation(s)
- Cristian De Gregorio
- Centro de Medicina Regenerativa, Facultad de Medicina Clínica Alemana, Universidad del Desarrollo, Santiago, 7610658, Chile
| | - Evelyng Catalán
- DEBRA Chile, Francisco de Villagra 392, Ñuñoa, Santiago, Chile
| | - Gabriel Garrido
- DEBRA Chile, Francisco de Villagra 392, Ñuñoa, Santiago, Chile
| | - Pilar Morandé
- DEBRA Chile, Francisco de Villagra 392, Ñuñoa, Santiago, Chile
| | | | - Catalina Muñoz
- DEBRA Chile, Francisco de Villagra 392, Ñuñoa, Santiago, Chile
| | - Glenda Cofré
- DEBRA Chile, Francisco de Villagra 392, Ñuñoa, Santiago, Chile
| | - Ya-Lin Huang
- Centro de Medicina Regenerativa, Facultad de Medicina Clínica Alemana, Universidad del Desarrollo, Santiago, 7610658, Chile
| | - Bárbara Cuadra
- Centro de Medicina Regenerativa, Facultad de Medicina Clínica Alemana, Universidad del Desarrollo, Santiago, 7610658, Chile
| | - Paola Murgas
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | - Margarita Calvo
- Facultad de Ciencias Biológicas y División de Anestesiología, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
- Núcleo milenio para el estudio del dolor MINUSPAIN, Santiago, Chile
| | - Fernando Altermatt
- División de Anestesiología, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - María Joao Yubero
- DEBRA Chile, Francisco de Villagra 392, Ñuñoa, Santiago, Chile
- Pediatrics and Pediatric Infectious Diseases of Clínica Alemana, Facultad de Medicina Alemana, Universidad del Desarrollo, Santiago, Chile
| | - Francis Palisson
- DEBRA Chile, Francisco de Villagra 392, Ñuñoa, Santiago, Chile
- Servicio de Dermatología, Facultad de Medicina Clínica Alemana, Universidad del Desarrollo, Santiago, Chile
| | - Andrew P South
- Department of Dermatology & Cutaneous Biology, Thomas Jefferson University, Philadelphia, USA
| | - Marcelo Ezquer
- Centro de Medicina Regenerativa, Facultad de Medicina Clínica Alemana, Universidad del Desarrollo, Santiago, 7610658, Chile.
| | - Ignacia Fuentes
- DEBRA Chile, Francisco de Villagra 392, Ñuñoa, Santiago, Chile.
- Centro de Genética y Genómica, Facultad de Medicina Clínica Alemana, Universidad del Desarrollo, Santiago, 7610658, Chile.
- Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.
| |
Collapse
|
26
|
Hung MJ, Yeh CT, Kounis NG, Koniari I, Hu P, Hung MY. Coronary Artery Spasm-Related Heart Failure Syndrome: Literature Review. Int J Mol Sci 2023; 24:ijms24087530. [PMID: 37108691 PMCID: PMC10145866 DOI: 10.3390/ijms24087530] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 04/04/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Although heart failure (HF) is a clinical syndrome that becomes worse over time, certain cases can be reversed with appropriate treatments. While coronary artery spasm (CAS) is still underappreciated and may be misdiagnosed, ischemia due to coronary artery disease and CAS is becoming the single most frequent cause of HF worldwide. CAS could lead to syncope, HF, arrhythmias, and myocardial ischemic syndromes such as asymptomatic ischemia, rest and/or effort angina, myocardial infarction, and sudden death. Albeit the clinical significance of asymptomatic CAS has been undervalued, affected individuals compared with those with classic Heberden's angina pectoris are at higher risk of syncope, life-threatening arrhythmias, and sudden death. As a result, a prompt diagnosis implements appropriate treatment strategies, which have significant life-changing consequences to prevent CAS-related complications, such as HF. Although an accurate diagnosis depends mainly on coronary angiography and provocative testing, clinical characteristics may help decision-making. Because the majority of CAS-related HF (CASHF) patients present with less severe phenotypes than overt HF, it underscores the importance of understanding risk factors correlated with CAS to prevent the future burden of HF. This narrative literature review summarises and discusses separately the epidemiology, clinical features, pathophysiology, and management of patients with CASHF.
Collapse
Affiliation(s)
- Ming-Jui Hung
- Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital Keelung, Chang Gung University College of Medicine, Keelung City 24201, Taiwan
| | - Chi-Tai Yeh
- Department of Medical Research and Education, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan
- Continuing Education Program of Food Biotechnology Applications, College of Science and Engineering, National Taitung University, Taitung 95092, Taiwan
| | - Nicholas G Kounis
- Department of Cardiology, University of Patras Medical School, 26221 Patras, Greece
| | - Ioanna Koniari
- Cardiology Department, Liverpool Heart and Chest Hospital, Liverpool L14 3PE, UK
| | - Patrick Hu
- Department of Internal Medicine, School of Medicine, University of California, Riverside, Riverside, CA 92521, USA
- Department of Cardiology, Riverside Medical Clinic, Riverside, CA 92506, USA
| | - Ming-Yow Hung
- Division of Cardiology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, No.291, Zhongzheng Rd., Zhonghe District, New Taipei City 23561, Taiwan
- Taipei Heart Institute, Taipei Medical University, Taipei City 110301, Taiwan
- Division of Cardiology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, New Taipei City 23561, Taiwan
| |
Collapse
|
27
|
Identification of fibrocyte cluster in tumors reveals the role in antitumor immunity by PD-L1 blockade. Cell Rep 2023; 42:112162. [PMID: 36870329 DOI: 10.1016/j.celrep.2023.112162] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 12/28/2022] [Accepted: 02/09/2023] [Indexed: 03/06/2023] Open
Abstract
Recent clinical trials revealed that immune checkpoint inhibitors and antiangiogenic reagent combination therapy improved the prognosis of various cancers. We investigated the roles of fibrocytes, collagen-producing monocyte-derived cells, in combination immunotherapy. Anti-VEGF (vascular endothelial growth factor) antibody increases tumor-infiltrating fibrocytes and enhances the antitumor effects of anti-PD-L1 (programmed death ligand 1) antibody in vivo. Single-cell RNA sequencing of tumor-infiltrating CD45+ cells identifies a distinct "fibrocyte cluster" from "macrophage clusters" in vivo and in lung adenocarcinoma patients. A sub-clustering analysis reveals a fibrocyte sub-cluster that highly expresses co-stimulatory molecules. CD8+ T cell-costimulatory activity of tumor-infiltrating CD45+CD34+ fibrocytes is enhanced by anti-PD-L1 antibody. Peritumoral implantation of fibrocytes enhances the antitumor effect of PD-L1 blockade in vivo; CD86-/- fibrocytes do not. Tumor-infiltrating fibrocytes acquire myofibroblast-like phenotypes through transforming growth factor β (TGF-β)/small mothers against decapentaplegic (SMAD) signaling. Thus, TGF-βR/SMAD inhibitor enhances the antitumor effects of dual VEGF and PD-L1 blockade by regulating fibrocyte differentiation. Fibrocytes are highlighted as regulators of the response to programmed death 1 (PD-1)/PD-L1 blockade.
Collapse
|
28
|
Barrera LN, Ridley PM, Bermejo-Rodriguez C, Costello E, Perez-Mancera PA. The role of microRNAs in the modulation of cancer-associated fibroblasts activity during pancreatic cancer pathogenesis. J Physiol Biochem 2023; 79:193-204. [PMID: 35767180 PMCID: PMC9905185 DOI: 10.1007/s13105-022-00899-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 05/17/2022] [Indexed: 02/08/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the deadliest of the common cancers. A major hallmark of PDAC is an abundant and dense fibrotic stroma, the result of a disproportionate deposition of extracellular matrix (ECM) proteins. Cancer-associated fibroblasts (CAFs) are the main mediators of PDAC desmoplasia. CAFs represent a heterogenous group of activated fibroblasts with different origins and activation mechanisms. microRNAs (miRNAs) are small non-coding RNAs with critical activity during tumour development and resistance to chemotherapy. Increasing evidence has revealed that miRNAs play a relevant role in the differentiation of normal fibroblasts into CAFs in PDAC. In this review, we discuss recent findings on the role of miRNAs in the activation of CAFs during the progression of PDAC and its response to therapy, as well as the potential role that PDAC-derived exosomal miRNAs may play in the activation of hepatic stellate cells (HSCs) and formation of liver metastasis. Since targeting of CAF activation may be a viable strategy for PDAC therapy, and miRNAs have emerged as potential therapeutic targets, understanding the biology underpinning miRNA-mediated tumour cell-CAF interactions is an important component in guiding rational approaches to treating this deadly disease.
Collapse
Affiliation(s)
- Lawrence N Barrera
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, UK
- Department of Molecular Cell Biology, School of Medicine, Faculty of Clinical and Biomedical Sciences, University of Central Lancashire, Preston, PR1 1JQ, UK
| | - P Matthew Ridley
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, UK
| | | | - Eithne Costello
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, UK.
| | - Pedro A Perez-Mancera
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, UK.
| |
Collapse
|
29
|
Kim J, Go H, Lim JS, Oh JS, Ahn SM, Kim YG, Lee CK, Yoo B, Hong S. Circulating and renal fibrocytes are associated with interstitial fibrosis in lupus nephritis. Rheumatology (Oxford) 2023; 62:914-923. [PMID: 35703942 DOI: 10.1093/rheumatology/keac345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 06/06/2022] [Accepted: 06/06/2022] [Indexed: 02/04/2023] Open
Abstract
OBJECTIVES Fibrocytes, the extracellular matrix-producing cells derived from bone marrow progenitors, contribute to organ fibrosis. We investigated the presence and characteristics of fibrocytes in the peripheral blood and kidney of patients with lupus nephritis (LN), and the association of the abundance of fibrocytes with renal tubular epithelial cells (RTECs) in LN fibrogenesis. METHODS Fibrocytes were identified with type I collagen (colI), α-smooth muscle actin (α-SMA), CD34 and CD45 using flow cytometry and confocal imaging. The associations between the levels of fibrocytes and pathological features of patients with LN were analysed. The contribution of RTECs to fibrocyte generation was determined using LN sera-treated HK-2 cells. RESULTS Spindle-shaped fibrocytes (colI+α-SMA+CD34+CD45+ cells) were present in the peripheral blood and their abundance was especially high in LN patients with interstitial fibrosis compared with healthy control. Renal fibrocytes (colI+α-SMA+CD45+ cells) were found in the tubulointerstitium in patients with LN, and their numbers were significantly associated with the degrees of chronicity indices including interstitial fibrosis and renal dysfunction. Stimulation of peripheral blood mononuclear cells with supernatants from LN serum-treated HK-2 cells led to a significant generation of fibrocytes, which was abrogated by the addition of IL-6 neutralizing antibody. CONCLUSION Fibrocytes were significantly increased in the blood and kidney tissue of patients with LN, especially those with interstitial fibrosis. Fibrocytes could be differentiated from blood cells, with an active contribution from RTECs. Our results show a possible link between fibrocytes and tubulointerstitial fibrosis, which may serve as a novel therapeutic target for LN fibrogenesis.
Collapse
Affiliation(s)
- Jihye Kim
- Division of Rheumatology, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine.,Asan Institute for Life Sciences, Asan Medical Center
| | | | - Joon Seo Lim
- Clinical Research Center, Asan Medical Center, University of Ulsan College of Medicine
| | - Ji Seon Oh
- Department of Information Medicine, Asan Medical Center, Seoul, Republic of Korea
| | - Soo Min Ahn
- Division of Rheumatology, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine
| | - Yong-Gil Kim
- Division of Rheumatology, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine
| | - Chang-Keun Lee
- Division of Rheumatology, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine
| | - Bin Yoo
- Division of Rheumatology, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine
| | - Seokchan Hong
- Division of Rheumatology, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine
| |
Collapse
|
30
|
Ma C, Li H, Lu S, Li X, Wang S, Wang W. Tryptase and Exogenous Trypsin: Mechanisms and Ophthalmic Applications. J Inflamm Res 2023; 16:927-939. [PMID: 36891173 PMCID: PMC9987324 DOI: 10.2147/jir.s402900] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 02/24/2023] [Indexed: 03/06/2023] Open
Abstract
Ocular injuries caused by inflammation, surgery or accidents are subject to a physiological healing process that ultimately restores the structure and function of the damaged tissue. Tryptase and trypsin are essential component of this process and they play a role in promoting and reducing the inflammatory response of tissues, respectively. Following injury, tryptase is endogenously produced by mast cells and can exacerbate the inflammatory response both by stimulating neutrophil secretion, and through its agonist action on proteinase-activated receptor 2 (PAR2). In contrast, exogenously introduced trypsin promotes wound healing by attenuating inflammatory responses, reducing oedema and protecting against infection. Thus, trypsin may help resolve ocular inflammatory symptoms and promote faster recovery from acute tissue injury associated with ophthalmic diseases. This article describes the roles of tryptase and exogenous trypsin in affected tissues after onset of ocular injury, and the clinical applications of trypsin injection.
Collapse
Affiliation(s)
- Chao Ma
- Department of Ophthalmology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Haoyu Li
- Department of Ophthalmology, the Second Xiangya Hospital of Central South University, Changsha, Hunan, People's Republic of China.,Hunan Clinical Research Centre of Ophthalmic Disease, Changsha, Hunan, People's Republic of China
| | - Shuwen Lu
- Department of Ophthalmology, the First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan, People's Republic of China
| | - Xian Li
- Manchester Royal Eye Hospital, Manchester University NHS Foundation Trust, Manchester, UK.,Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, the University of Manchester, Manchester, UK
| | - Shuai Wang
- Department of Ophthalmology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Wenzhan Wang
- Department of Ophthalmology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| |
Collapse
|
31
|
Gu L, Liao P, Liu H. Cancer-associated fibroblasts in acute leukemia. Front Oncol 2022; 12:1022979. [PMID: 36601484 PMCID: PMC9806275 DOI: 10.3389/fonc.2022.1022979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 12/01/2022] [Indexed: 12/23/2022] Open
Abstract
Although the prognosis for acute leukemia has greatly improved, treatment of relapsed/refractory acute leukemia (R/R AL) remains challenging. Recently, increasing evidence indicates that the bone marrow microenvironment (BMM) plays a crucial role in leukemogenesis and therapeutic resistance; therefore, BMM-targeted strategies should be a potent protocol for treating R/R AL. The targeting of cancer-associated fibroblasts (CAFs) in solid tumors has received much attention and has achieved some progress, as CAFs might act as an organizer in the tumor microenvironment. Additionally, over the last 10 years, attention has been drawn to the role of CAFs in the BMM. In spite of certain successes in preclinical and clinical studies, the heterogeneity and plasticity of CAFs mean targeting them is a big challenge. Herein, we review the heterogeneity and roles of CAFs in the BMM and highlight the challenges and opportunities associated with acute leukemia therapies that involve the targeting of CAFs.
Collapse
Affiliation(s)
- Ling Gu
- Department of Pediatrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China,The Joint Laboratory for Lung Development and Related Diseases of West China Second University Hospital, Sichuan University and School of Life Sciences of Fudan University, West China Institute of Women and Children’s Health, West China Second University Hospital, Sichuan University, Chengdu, China,NHC Key Laboratory of Chronobiology, Sichuan University, Chengdu, China,*Correspondence: Ling Gu, ; Ping Liao, ; Hanmin Liu,
| | - Ping Liao
- Calcium Signalling Laboratory, National Neuroscience Institute, Singapore, Singapore,Academic & Clinical Development, Duke-NUS Medical School, Singapore, Singapore,Health and Social Sciences, Singapore Institute of Technology, Singapore, Singapore,*Correspondence: Ling Gu, ; Ping Liao, ; Hanmin Liu,
| | - Hanmin Liu
- Department of Pediatrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China,The Joint Laboratory for Lung Development and Related Diseases of West China Second University Hospital, Sichuan University and School of Life Sciences of Fudan University, West China Institute of Women and Children’s Health, West China Second University Hospital, Sichuan University, Chengdu, China,NHC Key Laboratory of Chronobiology, Sichuan University, Chengdu, China,Sichuan Birth Defects Clinical Research Center, West China Second University Hospital, Sichuan University, Chengdu, China,*Correspondence: Ling Gu, ; Ping Liao, ; Hanmin Liu,
| |
Collapse
|
32
|
Peng W, Kepsch A, Kracht TO, Hasan H, Wijayarathna R, Wahle E, Pleuger C, Bhushan S, Günther S, Kauerhof AC, Planinić A, Fietz D, Schuppe HC, Wygrecka M, Loveland KL, Ježek D, Meinhardt A, Hedger MP, Fijak M. Activin A and CCR2 regulate macrophage function in testicular fibrosis caused by experimental autoimmune orchitis. Cell Mol Life Sci 2022; 79:602. [PMID: 36434305 PMCID: PMC9700630 DOI: 10.1007/s00018-022-04632-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/21/2022] [Accepted: 11/13/2022] [Indexed: 11/27/2022]
Abstract
Experimental autoimmune-orchitis (EAO), a rodent model of chronic testicular inflammation and fibrosis, replicates pathogenic changes seen in some cases of human spermatogenic disturbances. During EAO, increased levels of pro-inflammatory and pro-fibrotic mediators such as TNF, CCL2, and activin A are accompanied by infiltration of leukocytes into the testicular parenchyma. Activin A levels correlate with EAO severity, while elevated CCL2 acting through its receptor CCR2 mediates leukocyte trafficking and recruits macrophages. CCR2 + CXCR4 + macrophages producing extracellular matrix proteins contribute widely to fibrogenesis. Furthermore, testicular macrophages (TMs) play a critical role in organ homeostasis. Therefore, we aimed to investigate the role of the activin A/CCL2-CCR2/macrophage axis in the development of testicular fibrosis. Following EAO induction, we observed lower levels of organ damage, collagen deposition, and leukocyte infiltration (including fibronectin+, collagen I+ and CXCR4+ TMs) in Ccr2-/- mice than in WT mice. Furthermore, levels of Il-10, Ccl2, and the activin A subunit Inhba mRNAs were lower in Ccr2-/- EAO testes. Notably, fibronectin+ TMs were also present in biopsies from patients with impaired spermatogenesis and fibrotic alterations. Overexpression of the activin A antagonist follistatin reduced tissue damage and collagen I+ TM accumulation in WT EAO testes, while treating macrophages with activin A in vitro increased the expression of Ccr2, Fn1, Cxcr4, and Mmp2 and enhanced migration along a CCL2 gradient; these effects were abolished by follistatin. Taken together, our data indicate that CCR2 and activin A promote fibrosis during testicular inflammation by regulating macrophage function. Inhibition of CCR2 or activin A protects against damage progression, offering a promising avenue for therapeutic intervention.
Collapse
Affiliation(s)
- Wei Peng
- Department of Anatomy and Cell Biology, Justus Liebig University of Giessen, Aulweg 123, 35392, Giessen, Germany
| | - Artem Kepsch
- Department of Anatomy and Cell Biology, Justus Liebig University of Giessen, Aulweg 123, 35392, Giessen, Germany
| | - Till O Kracht
- Department of Anatomy and Cell Biology, Justus Liebig University of Giessen, Aulweg 123, 35392, Giessen, Germany
| | - Hiba Hasan
- Department of Anatomy and Cell Biology, Justus Liebig University of Giessen, Aulweg 123, 35392, Giessen, Germany
| | - Rukmali Wijayarathna
- Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Molecular and Translational Sciences, Monash University, Clayton, VIC, Australia
| | - Eva Wahle
- Department of Anatomy and Cell Biology, Justus Liebig University of Giessen, Aulweg 123, 35392, Giessen, Germany
| | - Christiane Pleuger
- Department of Anatomy and Cell Biology, Justus Liebig University of Giessen, Aulweg 123, 35392, Giessen, Germany
| | - Sudhanshu Bhushan
- Department of Anatomy and Cell Biology, Justus Liebig University of Giessen, Aulweg 123, 35392, Giessen, Germany
| | - Stefan Günther
- ECCPS Bioinformatics and Deep Sequencing Platform, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - A Christine Kauerhof
- Department of Anatomy and Cell Biology, Justus Liebig University of Giessen, Aulweg 123, 35392, Giessen, Germany
- Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, VIC, Australia
| | - Ana Planinić
- Department of Histology and Embryology, School of Medicine, University of Zagreb, Zagreb, Croatia
- Centre of Excellence for Reproductive and Regenerative Medicine, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Daniela Fietz
- Department of Veterinary Anatomy, Histology and Embryology, Justus Liebig University of Giessen, Giessen, Germany
| | - Hans-Christian Schuppe
- Department of Urology, Paediatric Urology and Andrology, Justus Liebig University of Giessen, Giessen, Germany
| | - Małgorzata Wygrecka
- Center for Infection and Genomics of the Lung, German Center for Lung Research, University of Giessen and Marburg Lung Center, Giessen, Germany
| | - Kate L Loveland
- Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Molecular and Translational Sciences, Monash University, Clayton, VIC, Australia
| | - Davor Ježek
- Department of Histology and Embryology, School of Medicine, University of Zagreb, Zagreb, Croatia
- Centre of Excellence for Reproductive and Regenerative Medicine, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Andreas Meinhardt
- Department of Anatomy and Cell Biology, Justus Liebig University of Giessen, Aulweg 123, 35392, Giessen, Germany
- Department of Molecular and Translational Sciences, Monash University, Clayton, VIC, Australia
| | - Mark P Hedger
- Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Molecular and Translational Sciences, Monash University, Clayton, VIC, Australia
| | - Monika Fijak
- Department of Anatomy and Cell Biology, Justus Liebig University of Giessen, Aulweg 123, 35392, Giessen, Germany.
| |
Collapse
|
33
|
Ackerman JE, Best KT, Muscat SN, Pritchett EM, Nichols AE, Wu CL, Loiselle AE. Defining the spatial-molecular map of fibrotic tendon healing and the drivers of Scleraxis-lineage cell fate and function. Cell Rep 2022; 41:111706. [PMID: 36417854 PMCID: PMC9741867 DOI: 10.1016/j.celrep.2022.111706] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 09/16/2022] [Accepted: 11/01/2022] [Indexed: 11/23/2022] Open
Abstract
Tendon injuries heal via a scar-mediated response, and there are no biological approaches to promote more regenerative healing. Mouse flexor tendons heal through the formation of spatially distinct tissue areas: a highly aligned tissue bridge between the native tendon stubs that is enriched for adult Scleraxis-lineage cells and a disorganized outer shell associated with peri-tendinous scar formation. However, the specific molecular programs that underpin these spatially distinct tissue profiles are poorly defined. In the present study, we combine lineage tracing of adult Scleraxis-lineage cells with spatial transcriptomic profiling to define the overarching molecular programs that govern tendon healing and cell-fate decisions. Pseudotime analysis identified three fibroblast trajectories (synthetic, fibrotic, and reactive) and key transcription factors regulating these fate-switching decisions, including the progression of adult Scleraxis-lineage cells through the reactive trajectory. Collectively, this resource defines the molecular mechanisms that coordinate the temporo-spatial healing phenotype, which can be leveraged to inform therapeutic candidate selection.
Collapse
Affiliation(s)
- Jessica E. Ackerman
- Center for Musculoskeletal Research, Department of Orthopedics and Rehabilitation, University of Rochester Medical Center, Rochester, NY 14642, USA,Department of Pathology, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, USA
| | - Katherine T. Best
- Center for Musculoskeletal Research, Department of Orthopedics and Rehabilitation, University of Rochester Medical Center, Rochester, NY 14642, USA,Department of Pathology, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, USA
| | - Samantha N. Muscat
- Center for Musculoskeletal Research, Department of Orthopedics and Rehabilitation, University of Rochester Medical Center, Rochester, NY 14642, USA,Department of Pathology, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, USA
| | - Elizabeth M. Pritchett
- Genomics Research Center, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, USA
| | - Anne E.C. Nichols
- Center for Musculoskeletal Research, Department of Orthopedics and Rehabilitation, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Chia-Lung Wu
- Center for Musculoskeletal Research, Department of Orthopedics and Rehabilitation, University of Rochester Medical Center, Rochester, NY 14642, USA,Senior author
| | - Alayna E. Loiselle
- Center for Musculoskeletal Research, Department of Orthopedics and Rehabilitation, University of Rochester Medical Center, Rochester, NY 14642, USA,Department of Pathology, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, USA,Senior author,Lead contact,Correspondence:
| |
Collapse
|
34
|
Fibrocytes boost tumor-supportive phenotypic switches in the lung cancer niche via the endothelin system. Nat Commun 2022; 13:6078. [PMID: 36241617 PMCID: PMC9568595 DOI: 10.1038/s41467-022-33458-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 09/15/2022] [Indexed: 12/24/2022] Open
Abstract
Fibrocytes are bone marrow-derived monocytic cells implicated in wound healing. Here, we identify their role in lung cancer progression/ metastasis. Selective manipulation of fibrocytes in mouse lung tumor models documents the central role of fibrocytes in boosting niche features and enhancing metastasis. Importantly, lung cancer patients show increased number of circulating fibrocytes and marked fibrocyte accumulation in the cancer niche. Using double and triple co-culture systems with human lung cancer cells, fibrocytes, macrophages and endothelial cells, we substantiate the central features of cancer-supporting niche: enhanced cancer cell proliferation and migration, macrophage activation, augmented endothelial cell sprouting and fibrocyte maturation. Upregulation of endothelin and its receptors are noted, and dual endothelin receptor blockade suppresses all cancer-supportive phenotypic alterations via acting on fibrocyte interaction with the cancer niche. We thus provide evidence for a crucial role of fibrocytes in lung cancer progression and metastasis, suggesting targets for treatment strategies.
Collapse
|
35
|
Chen K, Henn D, Sivaraj D, Bonham CA, Griffin M, Kussie HC, Padmanabhan J, Trotsyuk AA, Wan DC, Januszyk M, Longaker MT, Gurtner GC. Mechanical Strain Drives Myeloid Cell Differentiation Toward Proinflammatory Subpopulations. Adv Wound Care (New Rochelle) 2022; 11:466-478. [PMID: 34278820 PMCID: PMC9805866 DOI: 10.1089/wound.2021.0036] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 06/27/2021] [Indexed: 01/13/2023] Open
Abstract
Objective: After injury, humans and other mammals heal by forming fibrotic scar tissue with diminished function, and this healing process involves the dynamic interplay between resident cells within the skin and cells recruited from the circulation. Recent studies have provided mounting evidence that external mechanical forces stimulate intracellular signaling pathways to drive fibrotic processes. Innovation: While most studies have focused on studying mechanotransduction in fibroblasts, recent data suggest that mechanical stimulation may also shape the behavior of immune cells, referred to as "mechano-immunomodulation." However, the effect of mechanical strain on myeloid cell recruitment and differentiation remains poorly understood and has never been investigated at the single-cell level. Approach: In this study, we utilized a three-dimensional (3D) in vitro culture system that permits the precise manipulation of mechanical strain applied to cells. We cultured myeloid cells and used single-cell RNA-sequencing to interrogate the effects of strain on myeloid differentiation and transcriptional programming. Results: Our data indicate that myeloid cells are indeed mechanoresponsive, with mechanical stress influencing myeloid differentiation. Mechanical strain also upregulated a cascade of inflammatory chemokines, most notably from the Ccl family. Conclusion: Further understanding of how mechanical stress affects myeloid cells in conjunction with other cell types in the complicated, multicellular milieu of wound healing may lead to novel insights and therapies for the treatment of fibrosis.
Collapse
Affiliation(s)
- Kellen Chen
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Dominic Henn
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Dharshan Sivaraj
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Clark A. Bonham
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Michelle Griffin
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Hudson C. Kussie
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Jagannath Padmanabhan
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Artem A. Trotsyuk
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Derrick C. Wan
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Michael Januszyk
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Michael T. Longaker
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Palo Alto, California, USA
| | - Geoffrey C. Gurtner
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
36
|
Lee YC, Lam HM, Rosser C, Theodorescu D, Parks WC, Chan KS. The dynamic roles of the bladder tumour microenvironment. Nat Rev Urol 2022; 19:515-533. [PMID: 35764795 PMCID: PMC10112172 DOI: 10.1038/s41585-022-00608-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/05/2022] [Indexed: 02/07/2023]
Abstract
Bladder cancer is a prevalent but currently understudied cancer type and patient outcomes are poor when it progresses to the muscle-invasive stage. Current research in bladder cancer focuses on the genetic and epigenetic alterations occurring within the urothelial cell compartment; however, the stromal compartment receives less attention. Dynamic changes and intercellular communications occur in the tumour microenvironment (TME) of the bladder - a new concept and niche that we designate as the bladder TME (bTME) - during tumour evolution, metastatic progression and in the context of therapeutic response. Collagens and their cognate receptors, the discoidin domain receptors, have a role in various steps of the metastatic cascade and in immune checkpoint resistance. Furthermore, the presence of another TME niche, the metastatic TME (met-TME), is a novel concept that could support divergent progression of metastatic colonization in different organs, resulting in distant metastases with distinct characteristics and genetics from the primary tumour. The stroma has divergent roles in mediating therapeutic response to BCG immunotherapy and immune checkpoint inhibitors, as well as conventional chemotherapy or trimodality therapy (that is, maximal transurethral resection of bladder tumour, chemotherapy and radiotherapy). The local bTME and distant met-TME are currently conceptually and therapeutically unexploited niches that should be actively investigated. New biological insights from these TMEs will enable rational design of strategies that co-target the tumour and stroma, which are expected to improve the outcomes of patients with advanced bladder cancer.
Collapse
Affiliation(s)
- Yu-Cheng Lee
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Hung-Ming Lam
- Department of Urology, University of Washington, Seattle, WA, USA
| | - Charles Rosser
- Samuel Oschin Cancer Center, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Dan Theodorescu
- Samuel Oschin Cancer Center, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - William C Parks
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Keith Syson Chan
- Samuel Oschin Cancer Center, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
- Department of Academic Pathology, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| |
Collapse
|
37
|
Qiu H, Zhang X, Qi J, Zhang J, Tong Y, Li L, Fu L, Qin YR, Guan X, Zhang L. Identification and characterization of FGFR2+ hematopoietic stem cell-derived fibrocytes as precursors of cancer-associated fibroblasts induced by esophageal squamous cell carcinoma. J Exp Clin Cancer Res 2022; 41:240. [PMID: 35941662 PMCID: PMC9358838 DOI: 10.1186/s13046-022-02435-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 07/06/2022] [Indexed: 11/28/2022] Open
Abstract
Background Cancer-associated fibroblast (CAF) is an ideal target for cancer treatment. Recent studies have focused on eliminating CAFs and their effects by targeting their markers or blocking individual CAF-secreted factors. However, these strategies have been limited by their specificity for targeting CAFs and effectiveness in blocking widespread influence of CAFs. To optimize CAF-targeted therapeutic strategies, we tried to explore the molecular mechanisms of CAF generation in this study. Methods Using FGFR2 as a tracing marker, we identified a novel origin of CAFs in esophageal squamous cell carcinoma (ESCC). Furthermore, we successfully isolated CAF precursors from peripheral blood of ESCC patients and explored the mechanisms underlying their expansion, recruitment, and differentiation via RNA-sequencing and bioinformatics analysis. The mechanisms were further verified by using different models both in vitro and in vivo. Results We found that FGFR2+ hematopoietic stem cell (HSC)-derived fibrocytes could be induced by ESCC cells, recruited into tumor xenografts, and differentiated into functional CAFs. They were mobilized by cancer-secreted FGF2 and recruited into tumor sites via the CXCL12/CXCR4 axis. Moreover, they differentiated into CAFs through the activation of YAP-TEAD complex, which is triggered by directly contracting with tumor cells. FGF2 and CXCR4 neutralizing antibodies could effectively block the mobilization and recruitment process of FGFR2+ CAFs. The YAP-TEAD complex-based mechanism hold promise for locally activation of genetically encoded therapeutic payloads at tumor sites. Conclusions We identified a novel CAF origin and systematically studied the process of mobilization, recruitment, and maturation of CAFs in ESCC under the guidance of tumor cells. These findings give rise to new approaches that target CAFs before their incorporation into tumor stroma and use CAF-precursors as cellular vehicles to target tumor cells. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-022-02435-w.
Collapse
|
38
|
Antmen E, Muller CB, Calligaro C, Dupret-Bories A, Barthes J, Lavalle P, Vrana NE. In vitro two-step granuloma formation model for testing innate immune response to implants and coatings. BIOMATERIALS ADVANCES 2022; 138:212872. [PMID: 35913252 DOI: 10.1016/j.bioadv.2022.212872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 02/20/2022] [Accepted: 05/16/2022] [Indexed: 06/15/2023]
Abstract
The extensive innate immune response to implanted biomaterials contributes significantly to their sub-par performance and failure. Granuloma formation is one of such reactions which results in multi-cell type clusters in line with the immune reaction to implanted materials. However, currently no in vitro model of granuloma formation exists that takes into account the arrival of multiple cell types (immune cells and connective tissue cells) to the implant insertion site. In this study, we developed a two-step model based on stimulated macrophage seeding followed by fibroblast introduction after a physiologically relevant time period for mimicking initial steps of immune reaction to biomaterials and inducing granuloma like behavior. Both LPS and TNF-α induction resulted in granuloma like formations which persisted longer than the control conditions. Introduction of human fibroblasts resulted in the colonization of the surfaces where the cell numbers and the collagen secretion were dependent on the microenvironment. In order to demonstrate the capacity of our model system to monitor the reaction to a given coating, a validated antimicrobial coating (Polyarginine (PAR)/Hyaluronic acid (HA)) was used as a testing bed. The coating prevented the adhesion of macrophages while allowing the adhesion of the fibroblast at the time of their arrival. Similar to its antimicrobial activity, macrophage metabolic activity and M2 differentiation in the presence of PAR was dependent to its chain length. The incorporation of fibroblasts resulted in decreased TNF-α and increased IL-1RA secretion especially in stimulation conditions. The pro- and anti-inflammatory cytokine secretions were low for PAR/HA coatings in line with the decreased number of macrophage presence. In the presence of complex PBMC population, the coating resulted in slightly less cellular attachment, without any significant cytokine secretion; the absence of inflammatory reaction was also demonstrated in vivo in a mouse model. The described in vitro granuloma testing system can control the macrophage reaction as a function of stimulation. It can also be used for testing new biomaterials for the potential innate immune responses and also for validation of implant coatings beyond their primary function from the immune response point of view.
Collapse
Affiliation(s)
- Ezgi Antmen
- BIOMATEN, Middle East Technical University, Center of Excellence in Biomaterials and Tissue Engineering, Ankara, Turkey
| | - Celine B Muller
- SPARTHA Medical, 14B Rue de la Canardiere, Strasbourg Cedex 67100, France; INSERM Unité 1121 Biomaterials and Bioengineering, CRBS, 1 Rue Eugène Boeckel, Strasbourg Cedex 67000, France
| | - Cynthia Calligaro
- SPARTHA Medical, 14B Rue de la Canardiere, Strasbourg Cedex 67100, France; INSERM Unité 1121 Biomaterials and Bioengineering, CRBS, 1 Rue Eugène Boeckel, Strasbourg Cedex 67000, France
| | - Agnes Dupret-Bories
- Surgery Department, Institut Claudius Regaud, Institut Universitaire du Cancer de Toulouse Oncopole, 1 avenue Irène Joliot Curie, Toulouse 31052, France
| | - Julien Barthes
- INSERM Unité 1121 Biomaterials and Bioengineering, CRBS, 1 Rue Eugène Boeckel, Strasbourg Cedex 67000, France
| | - Philippe Lavalle
- SPARTHA Medical, 14B Rue de la Canardiere, Strasbourg Cedex 67100, France; INSERM Unité 1121 Biomaterials and Bioengineering, CRBS, 1 Rue Eugène Boeckel, Strasbourg Cedex 67000, France
| | - Nihal Engin Vrana
- SPARTHA Medical, 14B Rue de la Canardiere, Strasbourg Cedex 67100, France; INSERM Unité 1121 Biomaterials and Bioengineering, CRBS, 1 Rue Eugène Boeckel, Strasbourg Cedex 67000, France.
| |
Collapse
|
39
|
Cao Q, Mertens RT, Sivanathan KN, Cai X, Xiao P. Macrophage orchestration of epithelial and stromal cell homeostasis in the intestine. J Leukoc Biol 2022; 112:313-331. [PMID: 35593111 PMCID: PMC9543232 DOI: 10.1002/jlb.3ru0322-176r] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/29/2022] [Accepted: 05/02/2022] [Indexed: 11/06/2022] Open
Abstract
The intestinal tract is a complex ecosystem where numerous cell types of epithelial, immune, neuronal, and endothelial origin coexist in an intertwined, highly organized manner. The functional equilibrium of the intestine relies heavily on the proper crosstalk and cooperation among each cell population. Furthermore, macrophages are versatile, innate immune cells that participate widely in the modulation of inflammation and tissue remodeling. Emerging evidence suggest that macrophages are central in orchestrating tissue homeostasis. Herein, we describe how macrophages interact with epithelial cells, neurons, and other types of mesenchymal cells under the context of intestinal inflammation, followed by the therapeutic implications of cellular crosstalk pertaining to the treatment of inflammatory bowel disease.
Collapse
Affiliation(s)
- Qian Cao
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Inflammatory Bowel Disease Center, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Randall Tyler Mertens
- Department of Immunology, Harvard Medical School, Boston, Massachusetts, USA.,Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Kisha Nandini Sivanathan
- Department of Immunology, Harvard Medical School, Boston, Massachusetts, USA.,Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Xuechun Cai
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Inflammatory Bowel Disease Center, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Peng Xiao
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Inflammatory Bowel Disease Center, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Department of Immunology, Harvard Medical School, Boston, Massachusetts, USA.,Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, Massachusetts, USA.,The Key Laboratory for Immunity and Inflammatory Diseases of Zhejiang Province, Hangzhou, China.,Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
40
|
Manshouri T, Veletic I, Li P, Yin CC, Post SM, Verstovsek S, Estrov Z. GLI1 activates pro-fibrotic pathways in myelofibrosis fibrocytes. Cell Death Dis 2022; 13:481. [PMID: 35595725 PMCID: PMC9122946 DOI: 10.1038/s41419-022-04932-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 05/05/2022] [Accepted: 05/09/2022] [Indexed: 12/14/2022]
Abstract
Bone marrow (BM) fibrosis was thought to be induced exclusively by mesenchymal stromal cells (MSCs). However, we and others found that neoplastic fibrocytes induce BM fibrosis in myelofibrosis (MF). Because glioma-associated oncogene-1 (GLI1), an effector of the Hedgehog pathway, plays a role in the induction of BM fibrosis, we wondered whether GLI1 affects fibrocyte-induced BM fibrosis in MF. Multiplexed fluorescence immunohistochemistry analysis of MF patients' BM detected high levels of GLI1 in MF fibrocytes compared to MSCs or normal fibrocytes. Immunostaining, RNA in situ hybridization, gene expression analysis, and western immunoblotting detected high levels of GLI1 and GLI1-induced matrix metalloproteases (MMP) 2 and 9 in MF patients BM-derived cultured fibrocytes. Similarly, MF patients' BM-derived GLI1+ fibrocytes were found in BMs and spleens of MF xenograft mice. GLI1 silencing reduced the levels of MMP2/9, phosphorylated SMAD2/3, and procollagen-I, and knockdown or inhibition of GLI1 decreased fibrocyte formation and induced apoptosis of both fibrocytes and fibrocyte progenitors. Because Janus kinase (JAK)2-induced STAT3 is constitutively activated in MF and because STAT3 induces GLI1 expression, we sought to determine whether STAT3 activates GLI1 in MF fibrocytes. Imaging analysis detected phosphotyrosine STAT3 in MF patients' BM fibrocytes, and transfection of fibrocytes with STAT3-siRNA or treatment with a JAK1/2 inhibitor ruxolitinib reduced GLI1 and MMP2/9 levels. Chromatin immunoprecipitation and a luciferase assay revealed that STAT3 induced the expression of the GLI1 gene in both MF BM fibrocytes and fibrocyte progenitors. Together, our data suggest that STAT3-activated GLI1 contributes to the induction of BM fibrosis in MF.
Collapse
Affiliation(s)
- Taghi Manshouri
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Ivo Veletic
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Ping Li
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - C Cameron Yin
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Sean M Post
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Srdan Verstovsek
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Zeev Estrov
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.
| |
Collapse
|
41
|
Ocon A, Lokineni S, Korman B. Understanding and Therapeutically Targeting the Scleroderma Myofibroblast. CURRENT TREATMENT OPTIONS IN RHEUMATOLOGY 2022. [DOI: 10.1007/s40674-021-00189-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
42
|
Proteomic analysis of the umbilical cord in fetal growth restriction and preeclampsia. PLoS One 2022; 17:e0262041. [PMID: 35213550 PMCID: PMC8880394 DOI: 10.1371/journal.pone.0262041] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 12/15/2021] [Indexed: 11/19/2022] Open
Abstract
Fetal growth restriction (FGR) is associated with adverse perinatal outcomes. Pre-eclampsia (PreE) increases the associated perinatal morbidity and mortality. The structure of the umbilical cord in the setting of FGR and PreE is understudied. This study aimed to examine changes in the umbilical cord (UC) composition in pregnancies complicated by FGR and FGR with PreE. UC from gestational age-matched pregnancies with isolated FGR (n = 5), FGR+PreE (n = 5) and controls (n = 5) were collected, and a portion of the UC was processed for histologic and proteomic analysis. Manual segmentation analysis was performed to measure cross-section analysis of umbilical cord regions. Wharton’s Jelly samples were analyzed on a tims-TOF Pro. Spectral count and ion abundance data were analyzed, creating an intersection dataset from multiple mass spectrometry search and inference engines. UCs from FGR and FGR with PreE had lower cross-sectional area and Wharton’s Jelly area compared with control (p = 0.03). When comparing FGR to control, 28 proteins were significantly different in abundance analysis and 34 in spectral count analysis (p < 0.05). Differential expression analysis between PreE with FGR vs controls demonstrated that 48 proteins were significantly different in abundance and 5 in spectral count. The majority of changes occurred in proteins associated with extracellular matrix, cellular process, inflammatory, and angiogenesis pathways. The structure and composition of the UC is altered in pregnancies with FGR and FGR with PreE. Future work in validating these proteomic differences will enable identification of therapeutic targets for FGR and FGR with PreE.
Collapse
|
43
|
Bouchard G, Garcia Marques FJ, Karacosta LG, Zhang W, Bermudez A, Riley NM, Varma S, Mehl LC, Benson JA, Shrager JB, Bertozzi CR, Pitteri S, Giaccia AJ, Plevritis SK. Multiomics Analysis of Spatially Distinct Stromal Cells Reveals Tumor-Induced O-Glycosylation of the CDK4-pRB Axis in Fibroblasts at the Invasive Tumor Edge. Cancer Res 2022; 82:648-664. [PMID: 34853070 PMCID: PMC9075699 DOI: 10.1158/0008-5472.can-21-1705] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 09/02/2021] [Accepted: 11/24/2021] [Indexed: 11/16/2022]
Abstract
The invasive leading edge represents a potential gateway for tumor metastasis. The role of fibroblasts from the tumor edge in promoting cancer invasion and metastasis has not been comprehensively elucidated. We hypothesize that cross-talk between tumor and stromal cells within the tumor microenvironment results in activation of key biological pathways depending on their position in the tumor (edge vs. core). Here we highlight phenotypic differences between tumor-adjacent-fibroblasts (TAF) from the invasive edge and tumor core fibroblasts from the tumor core, established from human lung adenocarcinomas. A multiomics approach that includes genomics, proteomics, and O-glycoproteomics was used to characterize cross-talk between TAFs and cancer cells. These analyses showed that O-glycosylation, an essential posttranslational modification resulting from sugar metabolism, alters key biological pathways including the cyclin-dependent kinase 4 (CDK4) and phosphorylated retinoblastoma protein axis in the stroma and indirectly modulates proinvasive features of cancer cells. In summary, the O-glycoproteome represents a new consideration for important biological processes involved in tumor-stroma cross-talk and a potential avenue to improve the anticancer efficacy of CDK4 inhibitors. SIGNIFICANCE A multiomics analysis of spatially distinct fibroblasts establishes the importance of the stromal O-glycoproteome in tumor-stroma interactions at the leading edge and provides potential strategies to improve cancer treatment. See related commentary by De Wever, p. 537.
Collapse
Affiliation(s)
- Gina Bouchard
- Department of Biomedical Data Science, Stanford University, Stanford, CA 94305, USA
- Department of Radiology, Canary Center for Cancer Early Detection, Palo Alto CA, 94304, USA
- Department of Radiation Oncology, Stanford, CA 94305, USA
| | | | | | - Weiruo Zhang
- Department of Biomedical Data Science, Stanford University, Stanford, CA 94305, USA
| | - Abel Bermudez
- Department of Radiology, Canary Center for Cancer Early Detection, Palo Alto CA, 94304, USA
| | | | - Sushama Varma
- Department of Pathology, Stanford University, Stanford, CA 94305, USA
| | | | - Jalen Anthony Benson
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA 94305, USA
| | - Joseph B Shrager
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA 94305, USA
| | | | - Sharon Pitteri
- Department of Radiology, Canary Center for Cancer Early Detection, Palo Alto CA, 94304, USA
| | - Amato J Giaccia
- Department of Radiation Oncology, Stanford, CA 94305, USA
- Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK
| | - Sylvia Katina Plevritis
- Department of Biomedical Data Science, Stanford University, Stanford, CA 94305, USA
- Department of Radiology, Canary Center for Cancer Early Detection, Palo Alto CA, 94304, USA
| |
Collapse
|
44
|
Picchio V, Bordin A, Floris E, Cozzolino C, Dhori X, Peruzzi M, Frati G, De Falco E, Pagano F, Chimenti I. The dynamic facets of the cardiac stroma: from classical markers to omics and translational perspectives. Am J Transl Res 2022; 14:1172-1187. [PMID: 35273721 PMCID: PMC8902528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 11/29/2021] [Indexed: 06/14/2023]
Abstract
Cardiac stromal cells have been long underestimated in their functions in homeostasis and repair. Recent evidence has changed this perspective in that many more players and facets than just "cardiac fibroblasts" have entered the field. Single cell transcriptomic studies on cardiac interstitial cells have shed light on the phenotypic plasticity of the stroma, whose transcriptional profile is dynamically regulated in homeostatic conditions and in response to external stimuli. Different populations and/or functional states that appear in homeostasis and pathology have been described, particularly increasing the complexity of studying the cardiac response to injury. In this review, we outline current phenotypical and molecular markers, and the approaches developed for identifying and classifying cardiac stromal cells. Significant advances in our understanding of cardiac stromal populations will provide a deeper knowledge on myocardial functional cellular components, as well as a platform for future developments of novel therapeutic strategies to counteract cardiac fibrosis and adverse cardiac remodeling.
Collapse
Affiliation(s)
- Vittorio Picchio
- Department of Medical Surgical Sciences and Biotechnologies, Sapienza University of RomeItaly
| | - Antonella Bordin
- Department of Medical Surgical Sciences and Biotechnologies, Sapienza University of RomeItaly
| | - Erica Floris
- Department of Medical Surgical Sciences and Biotechnologies, Sapienza University of RomeItaly
| | - Claudia Cozzolino
- Department of Medical Surgical Sciences and Biotechnologies, Sapienza University of RomeItaly
| | - Xhulio Dhori
- Department of Medical Surgical Sciences and Biotechnologies, Sapienza University of RomeItaly
| | - Mariangela Peruzzi
- Mediterranea CardiocentroNapoli, Italy
- Department of Clinical, Internal Medicine, Anaesthesiology and Cardiovascular Sciences, Sapienza University of RomeItaly
| | - Giacomo Frati
- Department of Medical Surgical Sciences and Biotechnologies, Sapienza University of RomeItaly
- IRCCS NeuromedPozzilli, Italy
| | - Elena De Falco
- Department of Medical Surgical Sciences and Biotechnologies, Sapienza University of RomeItaly
- Mediterranea CardiocentroNapoli, Italy
| | - Francesca Pagano
- Biochemistry and Cellular Biology Institute, CNRMonterotondo, Italy
| | - Isotta Chimenti
- Department of Medical Surgical Sciences and Biotechnologies, Sapienza University of RomeItaly
- Mediterranea CardiocentroNapoli, Italy
| |
Collapse
|
45
|
|
46
|
Maresin-1 and Inflammatory Disease. Int J Mol Sci 2022; 23:ijms23031367. [PMID: 35163291 PMCID: PMC8835953 DOI: 10.3390/ijms23031367] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 01/24/2022] [Accepted: 01/24/2022] [Indexed: 11/17/2022] Open
Abstract
Inflammation is an essential action to protect the host human body from external, harmful antigens and microorganisms. However, an excessive inflammation reaction sometimes exceeds tissue damage and can disrupt organ functions. Therefore, anti-inflammatory action and resolution mechanisms need to be clarified. Dietary foods are an essential daily lifestyle that influences various human physiological processes and pathological conditions. Especially, omega-3 fatty acids in the diet ameliorate chronic inflammatory skin diseases. Recent studies have identified that omega-3 fatty acid derivatives, such as the resolvin series, showed strong anti-inflammatory actions in various inflammatory diseases. Maresin-1 is a derivative of one of the representative omega-3 fatty acids, i.e., docosahexaenoic acid (DHA), and has shown beneficial action in inflammatory disease models. In this review, we summarize the detailed actions of maresin-1 in immune cells and inflammatory diseases.
Collapse
|
47
|
Suess PM. Effects of Polyphosphate on Leukocyte Function. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2022; 61:131-143. [PMID: 35697939 DOI: 10.1007/978-3-031-01237-2_6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Leukocytes are immune cells derived from hematopoietic stem cells of the bone marrow which play essential roles in inflammatory and immune responses. In contrast to anucleate platelets and erythrocytes, leukocytes are differentiated from other blood cells by the presence of a nucleus, and consist of monocytes, neutrophils, lymphocytes, basophils, and eosinophils. Factors released from platelets mediate immune responses in part by recruitment and regulation of leukocyte activity. Platelet dense granules contain the highly anionic polymer polyphosphate (polyP) with monomer chain lengths of approximately 60-100 phosphates long, which are released into the microenvironment upon platelet activation. Recent studies suggest that polyP released from platelets plays roles in leukocyte migration, recruitment, accumulation, differentiation, and activation. Furthermore, bacterial-derived polyphosphate, generally consisting of phosphate monomer lengths in the hundreds to thousands, appear to play a role in pathogenic evasion of the host immune response. This review will discuss the effects of host and pathogenic-derived polyphosphate on leukocyte function.
Collapse
Affiliation(s)
- Patrick M Suess
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI, USA.
| |
Collapse
|
48
|
Systematically Assessing Natural Compounds’ Wound Healing Potential with Spheroid and Scratch Assays. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1401:227-241. [DOI: 10.1007/5584_2022_727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
49
|
Dash S, Kamath U, Pai A, Rao P. Serum Inflammatory Markers in Patients with Guillain Barre Syndrome. Neurol India 2022; 70:2082-2085. [DOI: 10.4103/0028-3886.359238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
50
|
Grech L, Ebejer JP, Mazzitelli O, Schembri K, Borg J, Seria E. Possible Role of Circulating Bone Marrow Mesenchymal Progenitors in Modulating Inflammation and Promoting Wound Repair. Int J Mol Sci 2021; 23:78. [PMID: 35008501 PMCID: PMC8744598 DOI: 10.3390/ijms23010078] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/17/2021] [Accepted: 12/17/2021] [Indexed: 12/05/2022] Open
Abstract
Circulating bone marrow mesenchymal progenitors (BMMPs) are known to be potent antigen-presenting cells that migrate to damaged tissue to secrete cytokines and growth factors. An altered or dysregulated inflammatory cascade leads to a poor healing outcome. A skin model developed in our previous study was used to observe the immuno-modulatory properties of circulating BMMP cells in inflammatory chronic wounds in a scenario of low skin perfusion. BMMPs were analysed exclusively and in conjunction with recombinant tumour necrosis factor alpha (TNFα) and recombinant hepatocyte growth factor (HGF) supplementation. We analysed the expression levels of interleukin-8 (IL-8) and ecto-5'-nucleotidase (CD73), together with protein levels for IL-8, stem cell factor (SCF), and fibroblast growth factor 1 (FGF-1). The successfully isolated BMMPs were positive for both hemopoietic and mesenchymal markers and showed the ability to differentiate into adipocytes, chondrocytes, and osteocytes. Significant differences were found in IL-8 and CD73 expressions and IL-8 and SCF concentrations, for all conditions studied over the three time points taken into consideration. Our data suggests that BMMPs may modulate the inflammatory response by regulating IL-8 and CD73 and influencing IL-8 and SCF protein secretions. In conclusion, we suggest that BMMPs play a role in wound repair and that their induced application might be suitable for scenarios with a low skin perfusion.
Collapse
Affiliation(s)
- Laura Grech
- Centre for Molecular Medicine and Biobanking, University of Malta, MSD 2080 Msida, Malta; (J.-P.E.); (O.M.)
| | - Jean-Paul Ebejer
- Centre for Molecular Medicine and Biobanking, University of Malta, MSD 2080 Msida, Malta; (J.-P.E.); (O.M.)
| | - Oriana Mazzitelli
- Centre for Molecular Medicine and Biobanking, University of Malta, MSD 2080 Msida, Malta; (J.-P.E.); (O.M.)
- Department of Applied Biomedical Science, Faculty of Health Sciences, University of Malta, MSD 2080 Msida, Malta;
| | - Kevin Schembri
- Department of Surgery, Faculty of Medicine and Surgery, University of Malta Medical School and Mater Dei Hospital, MSD 2080 Msida, Malta;
| | - Joseph Borg
- Department of Applied Biomedical Science, Faculty of Health Sciences, University of Malta, MSD 2080 Msida, Malta;
| | - Elisa Seria
- Centre for Molecular Medicine and Biobanking, University of Malta, MSD 2080 Msida, Malta; (J.-P.E.); (O.M.)
| |
Collapse
|