1
|
Sankaran DG, Zhu H, Maymi VI, Forlastro IM, Jiang Y, Laniewski N, Scheible KM, Rudd BD, Grimson AW. Gene Regulatory Programs that Specify Age-Related Differences during Thymocyte Development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.14.599011. [PMID: 38948840 PMCID: PMC11212896 DOI: 10.1101/2024.06.14.599011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
T cell development is fundamental to immune system establishment, yet how this development changes with age remains poorly understood. Here, we construct a transcriptional and epigenetic atlas of T cell developmental programs in neonatal and adult mice, revealing the ontogeny of divergent gene regulatory programs and their link to age-related differences in phenotype and function. Specifically, we identify a gene module that diverges with age from the earliest stages of genesis and includes programs that govern effector response and cell cycle regulation. Moreover, we reveal that neonates possess more accessible chromatin during early thymocyte development, likely establishing poised gene expression programs that manifest later in thymocyte development. Finally, we leverage this atlas, employing a CRISPR-based perturbation approach coupled with single-cell RNA sequencing as a readout to uncover a conserved transcriptional regulator, Zbtb20, that contributes to age-dependent differences in T cell development. Altogether, our study defines transcriptional and epigenetic programs that regulate age-specific differences in T cell development.
Collapse
|
2
|
Yu H, Yang W, Cao M, Lei Q, Yuan R, Xu H, Cui Y, Chen X, Su X, Zhuo H, Lin L. Mechanism study of ubiquitination in T cell development and autoimmune disease. Front Immunol 2024; 15:1359933. [PMID: 38562929 PMCID: PMC10982411 DOI: 10.3389/fimmu.2024.1359933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 02/19/2024] [Indexed: 04/04/2024] Open
Abstract
T cells play critical role in multiple immune processes including antigen response, tumor immunity, inflammation, self-tolerance maintenance and autoimmune diseases et. Fetal liver or bone marrow-derived thymus-seeding progenitors (TSPs) settle in thymus and undergo T cell-lineage commitment, proliferation, T cell receptor (TCR) rearrangement, and thymic selections driven by microenvironment composed of thymic epithelial cells (TEC), dendritic cells (DC), macrophage and B cells, thus generating T cells with diverse TCR repertoire immunocompetent but not self-reactive. Additionally, some self-reactive thymocytes give rise to Treg with the help of TEC and DC, serving for immune tolerance. The sequential proliferation, cell fate decision, and selection during T cell development and self-tolerance establishment are tightly regulated to ensure the proper immune response without autoimmune reaction. There are remarkable progresses in understanding of the regulatory mechanisms regarding ubiquitination in T cell development and the establishment of self-tolerance in the past few years, which holds great potential for further therapeutic interventions in immune-related diseases.
Collapse
Affiliation(s)
- Hui Yu
- Department of Urology, Medical Research Center, Department of Neurosurgery, The Third People’s Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, The Second Chengdu Hospital Affiliated to Chongqing Medical University, Chengdu, China
| | - Wenyong Yang
- Department of Urology, Medical Research Center, Department of Neurosurgery, The Third People’s Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, The Second Chengdu Hospital Affiliated to Chongqing Medical University, Chengdu, China
| | - Min Cao
- Department of Urology, Medical Research Center, Department of Neurosurgery, The Third People’s Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, The Second Chengdu Hospital Affiliated to Chongqing Medical University, Chengdu, China
| | - Qingqiang Lei
- Department of Urology, Medical Research Center, Department of Neurosurgery, The Third People’s Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, The Second Chengdu Hospital Affiliated to Chongqing Medical University, Chengdu, China
| | - Renbin Yuan
- Department of Urology, Medical Research Center, Department of Neurosurgery, The Third People’s Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, The Second Chengdu Hospital Affiliated to Chongqing Medical University, Chengdu, China
| | - He Xu
- Department of Urology, Medical Research Center, Department of Neurosurgery, The Third People’s Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, The Second Chengdu Hospital Affiliated to Chongqing Medical University, Chengdu, China
| | - Yuqian Cui
- Department of Urology, Medical Research Center, Department of Neurosurgery, The Third People’s Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, The Second Chengdu Hospital Affiliated to Chongqing Medical University, Chengdu, China
| | - Xuerui Chen
- Department of Urology, Medical Research Center, Department of Neurosurgery, The Third People’s Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, The Second Chengdu Hospital Affiliated to Chongqing Medical University, Chengdu, China
| | - Xu Su
- Department of Urology, Medical Research Center, Department of Neurosurgery, The Third People’s Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, The Second Chengdu Hospital Affiliated to Chongqing Medical University, Chengdu, China
- College of Medicine, Southwest Jiaotong University, Chengdu, China
| | - Hui Zhuo
- Department of Urology, Medical Research Center, Department of Neurosurgery, The Third People’s Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, The Second Chengdu Hospital Affiliated to Chongqing Medical University, Chengdu, China
| | - Liangbin Lin
- Department of Urology, Medical Research Center, Department of Neurosurgery, The Third People’s Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, The Second Chengdu Hospital Affiliated to Chongqing Medical University, Chengdu, China
| |
Collapse
|
3
|
Owens E, Harris L, Harris A, Yoshimoto J, Burnett R, Avery A. The gene expression profile and cell of origin of canine peripheral T-cell lymphoma. BMC Cancer 2024; 24:18. [PMID: 38166662 PMCID: PMC10762913 DOI: 10.1186/s12885-023-11762-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 12/14/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Peripheral T-cell lymphoma (PTCL) refers to a heterogenous group of T-cell neoplasms with poor treatment responses and survival times. Canine PTCL clinically and immunophenotypically resembles the most common human subtype, PTCL-not otherwise specified (PTCL-NOS), leading to interest in this canine disease as a naturally occurring model for human PTCL. Gene expression profiling in human PTCL-NOS has helped characterize this ambiguous diagnosis into distinct subtypes, but similar gene expression profiling in canine PTCL is lacking. METHODS Bulk RNA-sequencing was performed on tumor samples from 33 dogs with either CD4+ (26/33), CD8+ (4/33), or CD4-CD8- (3/33) PTCL as diagnosed by flow cytometry, and sorted CD4+ and CD8+ lymphocytes from healthy control dogs. Following normalization of RNA-seq data, we performed differential gene expression and unsupervised clustering methods. Gene set enrichment analysis was performed to determine the enrichment of canine CD4+ PTCL for human PTCL-NOS, oncogenic pathways, and various stages of T-cell development gene signatures. We utilized gene set variation analysis to evaluate individual canine CD4+ PTCLs for various human and murine T-cell and thymocyte gene signatures. Cultured canine PTCL cells were treated with a pan-PI3K inhibitor, and cell survival and proliferation were compared to DMSO-treated controls. Expression of GATA3 and phosphorylated AKT was validated by immunohistochemistry. RESULTS While the canine CD4+ PTCL phenotype exhibited a consistent gene expression profile, the expression profiles of CD8+ and CD4-CD8- canine PTCLs were more heterogeneous. Canine CD4+ PTCL had increased expression of GATA3, upregulation of its target genes, enrichment for PI3K/AKT/mTOR signaling, and downregulation of PTEN, features consistent with the more aggressive GATA3-PTCL subtype of human PTCL-NOS. In vitro assays validated the reliance of canine CD4+ PTCL cells on PI3K/AKT/mTOR signaling for survival and proliferation. Canine CD4+ PTCL was enriched for thymic precursor gene signatures, exhibited increased expression of markers of immaturity (CD34, KIT, DNTT, and CCR9), and downregulated genes associated with the T-cell receptor, MHC class II associated genes (DLA-DQA1, DLA-DRA, HLA-DQB1, and HLA-DQB2), and CD25. CONCLUSIONS Canine CD4+ PTCL most closely resembled the GATA3-PTCL subtype of PTCL-NOS and may originate from an earlier stage of T-cell development than the more conventionally posited mature T-helper cell origin.
Collapse
Affiliation(s)
- Eileen Owens
- Department of Microbiology, Immunology & Pathology; College of Veterinary Medicine and Biomedical Sciences, Colorado State University (EO, LH, AH, JY, RB, AA), 300 W Lake St, Fort Collins, CO, 80521, USA.
| | - Lauren Harris
- Department of Microbiology, Immunology & Pathology; College of Veterinary Medicine and Biomedical Sciences, Colorado State University (EO, LH, AH, JY, RB, AA), 300 W Lake St, Fort Collins, CO, 80521, USA
| | - Adam Harris
- Department of Microbiology, Immunology & Pathology; College of Veterinary Medicine and Biomedical Sciences, Colorado State University (EO, LH, AH, JY, RB, AA), 300 W Lake St, Fort Collins, CO, 80521, USA
| | - Janna Yoshimoto
- Department of Microbiology, Immunology & Pathology; College of Veterinary Medicine and Biomedical Sciences, Colorado State University (EO, LH, AH, JY, RB, AA), 300 W Lake St, Fort Collins, CO, 80521, USA
| | - Robert Burnett
- Department of Microbiology, Immunology & Pathology; College of Veterinary Medicine and Biomedical Sciences, Colorado State University (EO, LH, AH, JY, RB, AA), 300 W Lake St, Fort Collins, CO, 80521, USA
| | - Anne Avery
- Department of Microbiology, Immunology & Pathology; College of Veterinary Medicine and Biomedical Sciences, Colorado State University (EO, LH, AH, JY, RB, AA), 300 W Lake St, Fort Collins, CO, 80521, USA
| |
Collapse
|
4
|
Bastone AL, Dziadek V, John-Neek P, Mansel F, Fleischauer J, Agyeman-Duah E, Schaudien D, Dittrich-Breiholz O, Schwarzer A, Schambach A, Rothe M. Development of an in vitro genotoxicity assay to detect retroviral vector-induced lymphoid insertional mutants. Mol Ther Methods Clin Dev 2023; 30:515-533. [PMID: 37693949 PMCID: PMC10491817 DOI: 10.1016/j.omtm.2023.08.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 08/18/2023] [Indexed: 09/12/2023]
Abstract
Safety assessment in retroviral vector-mediated gene therapy remains challenging. In clinical trials for different blood and immune disorders, insertional mutagenesis led to myeloid and lymphoid leukemia. We previously developed the In Vitro Immortalization Assay (IVIM) and Surrogate Assay for Genotoxicity Assessment (SAGA) for pre-clinical genotoxicity prediction of integrating vectors. Murine hematopoietic stem and progenitor cells (mHSPCs) transduced with mutagenic vectors acquire a proliferation advantage under limiting dilution (IVIM) and activate stem cell- and cancer-related transcriptional programs (SAGA). However, both assays present an intrinsic myeloid bias due to culture conditions. To detect lymphoid mutants, we differentiated mHSPCs to mature T cells and analyzed their phenotype, insertion site pattern, and gene expression changes after transduction with retroviral vectors. Mutagenic vectors induced a block in differentiation at an early progenitor stage (double-negative 2) compared to fully differentiated untransduced mock cultures. Arrested samples harbored high-risk insertions close to Lmo2, frequently observed in clinical trials with severe adverse events. Lymphoid insertional mutants displayed a unique gene expression signature identified by SAGA. The gene expression-based highly sensitive molecular readout will broaden our understanding of vector-induced oncogenicity and help in pre-clinical prediction of retroviral genotoxicity.
Collapse
Affiliation(s)
- Antonella L. Bastone
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
- REBIRTH – Research Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany
| | - Violetta Dziadek
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
- REBIRTH – Research Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany
| | - Philipp John-Neek
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
- REBIRTH – Research Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany
| | - Friederike Mansel
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
- REBIRTH – Research Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany
| | - Jenni Fleischauer
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
- REBIRTH – Research Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany
| | - Eric Agyeman-Duah
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - Dirk Schaudien
- Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Hannover, Germany
| | | | - Adrian Schwarzer
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
- REBIRTH – Research Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - Axel Schambach
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
- REBIRTH – Research Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany
- Division of Hematology/Oncology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Michael Rothe
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
- REBIRTH – Research Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany
| |
Collapse
|
5
|
Chen S, Wang Q, Wang H, Xia S. Endoplasmic reticulum stress in T cell-mediated diseases. Scand J Immunol 2023; 98:e13307. [PMID: 38441291 DOI: 10.1111/sji.13307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 05/23/2023] [Accepted: 06/18/2023] [Indexed: 03/07/2024]
Abstract
T cells synthesize a large number of proteins during their development, activation, and differentiation. The build-up of misfolded and unfolded proteins in the endoplasmic reticulum, however, causes endoplasmic reticulum (ER) stress. Thus, T cells can maintain ER homeostasis via endoplasmic reticulum-associated degradation, unfolded protein response, and autophagy. In T cell-mediated diseases, such as rheumatoid arthritis, systemic lupus erythematosus, Sjogren's syndrome, type 1 diabetes and vitiligo, ER stress caused by changes in the internal microenvironment can cause disease progression by affecting T cell homeostasis. This review discusses ER stress in T cell formation, activation, differentiation, and T cell-mediated illnesses, and may offer new perspectives on the involvement of T cells in autoimmune disorders and cancer.
Collapse
Affiliation(s)
- Shaodan Chen
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Qiulei Wang
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Hui Wang
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Sheng Xia
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, China
| |
Collapse
|
6
|
Xiong Y, Taleb M, Misawa K, Hou Z, Banerjee S, Amador-Molina A, Jones DR, Chintala NK, Adusumilli PS. c-Kit signaling potentiates CAR T cell efficacy in solid tumors by CD28- and IL-2-independent co-stimulation. NATURE CANCER 2023; 4:1001-1015. [PMID: 37336986 PMCID: PMC10765546 DOI: 10.1038/s43018-023-00573-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 05/08/2023] [Indexed: 06/21/2023]
Abstract
The limited efficacy of chimeric antigen receptor (CAR) T cell therapy for solid tumors necessitates engineering strategies that promote functional persistence in an immunosuppressive environment. Herein, we use c-Kit signaling, a physiological pathway associated with stemness in hematopoietic progenitor cells (T cells lose expression of c-Kit during differentiation). CAR T cells with intracellular expression, but no cell-surface receptor expression, of the c-Kit D816V mutation (KITv) have upregulated STAT phosphorylation, antigen activation-dependent proliferation and CD28- and interleukin-2-independent and interferon-γ-mediated co-stimulation, augmenting the cytotoxicity of first-generation CAR T cells. This translates to enhanced survival, including in transforming growth factor-β-rich and low-antigen-expressing solid tumor models. KITv CAR T cells have equivalent or better in vivo efficacy than second-generation CAR T cells and are susceptible to tyrosine kinase inhibitors (safety switch). When combined with CD28 co-stimulation, KITv co-stimulation functions as a third signal, enhancing efficacy and providing a potent approach to treat solid tumors.
Collapse
Affiliation(s)
- Yuquan Xiong
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Meriem Taleb
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Kyohei Misawa
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Zhaohua Hou
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Srijita Banerjee
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Alfredo Amador-Molina
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - David R Jones
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Navin K Chintala
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Prasad S Adusumilli
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
7
|
Alrumaihi F. The Multi-Functional Roles of CCR7 in Human Immunology and as a Promising Therapeutic Target for Cancer Therapeutics. Front Mol Biosci 2022; 9:834149. [PMID: 35874608 PMCID: PMC9298655 DOI: 10.3389/fmolb.2022.834149] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 05/26/2022] [Indexed: 11/13/2022] Open
Abstract
An important hallmark of the human immune system is to provide adaptive immunity against pathogens but tolerance toward self-antigens. The CC-chemokine receptor 7 (CCR7) provides a significant contribution in guiding cells to and within lymphoid organs and is important for acquiring immunity and tolerance. The CCR7 holds great importance in establishing thymic architecture and function and naïve and regulatory T-cell homing in the lymph nodes. Similarly, the receptor is a key regulator in cancer cell migration and the movement of dendritic cells. This makes the CCR7 an important receptor as a drug and prognostic marker. In this review, we discussed several biological roles of the CCR7 and its importance as a drug and prognostic marker.
Collapse
Affiliation(s)
- Faris Alrumaihi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| |
Collapse
|
8
|
Luby A, Alves-Guerra MC. Targeting Metabolism to Control Immune Responses in Cancer and Improve Checkpoint Blockade Immunotherapy. Cancers (Basel) 2021; 13:5912. [PMID: 34885023 PMCID: PMC8656934 DOI: 10.3390/cancers13235912] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/17/2021] [Accepted: 11/19/2021] [Indexed: 12/18/2022] Open
Abstract
Over the past decade, advances in cancer immunotherapy through PD1-PDL1 and CTLA4 immune checkpoint blockade have revolutionized the management of cancer treatment. However, these treatments are inefficient for many cancers, and unfortunately, few patients respond to these treatments. Indeed, altered metabolic pathways in the tumor play a pivotal role in tumor growth and immune response. Thus, the immunosuppressive tumor microenvironment (TME) reprograms the behavior of immune cells by altering their cellular machinery and nutrient availability to limit antitumor functions. Today, thanks to a better understanding of cancer metabolism, immunometabolism and immune checkpoint evasion, the development of new therapeutic approaches targeting the energy metabolism of cancer or immune cells greatly improve the efficacy of immunotherapy in different cancer models. Herein, we highlight the changes in metabolic pathways that regulate the differentiation of pro- and antitumor immune cells and how TME-induced metabolic stress impedes their antitumor activity. Finally, we propose some drug strategies to target these pathways in the context of cancer immunotherapy.
Collapse
|
9
|
Almotiri A, Alzahrani H, Menendez-Gonzalez JB, Abdelfattah A, Alotaibi B, Saleh L, Greene A, Georgiou M, Gibbs A, Alsayari A, Taha S, Thomas LA, Shah D, Edkins S, Giles P, Stemmler MP, Brabletz S, Brabletz T, Boyd AS, Siebzehnrubl FA, Rodrigues NP. Zeb1 modulates hematopoietic stem cell fates required for suppressing acute myeloid leukemia. J Clin Invest 2021; 131:129115. [PMID: 33108352 PMCID: PMC7773410 DOI: 10.1172/jci129115] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 10/14/2020] [Indexed: 12/12/2022] Open
Abstract
Zeb1, a zinc finger E-box binding homeobox epithelial-mesenchymal transition (EMT) transcription factor, confers properties of "stemness," such as self-renewal, in cancer. Yet little is known about the function of Zeb1 in adult stem cells. Here, we used the hematopoietic system as a well-established paradigm of stem cell biology to evaluate Zeb1-mediated regulation of adult stem cells. We employed a conditional genetic approach using the Mx1-Cre system to specifically knock out (KO) Zeb1 in adult hematopoietic stem cells (HSCs) and their downstream progeny. Acute genetic deletion of Zeb1 led to rapid-onset thymic atrophy and apoptosis-driven loss of thymocytes and T cells. A profound cell-autonomous self-renewal defect and multilineage differentiation block were observed in Zeb1-KO HSCs. Loss of Zeb1 in HSCs activated transcriptional programs of deregulated HSC maintenance and multilineage differentiation genes and of cell polarity consisting of cytoskeleton-, lipid metabolism/lipid membrane-, and cell adhesion-related genes. Notably, epithelial cell adhesion molecule (EpCAM) expression was prodigiously upregulated in Zeb1-KO HSCs, which correlated with enhanced cell survival, diminished mitochondrial metabolism, ribosome biogenesis, and differentiation capacity and an activated transcriptomic signature associated with acute myeloid leukemia (AML) signaling. ZEB1 expression was downregulated in AML patients, and Zeb1 KO in the malignant counterparts of HSCs - leukemic stem cells (LSCs) - accelerated MLL-AF9- and Meis1a/Hoxa9-driven AML progression, implicating Zeb1 as a tumor suppressor in AML LSCs. Thus, Zeb1 acts as a transcriptional regulator in hematopoiesis, critically coordinating HSC self-renewal, apoptotic, and multilineage differentiation fates required to suppress leukemic potential in AML.
Collapse
Affiliation(s)
- Alhomidi Almotiri
- European Cancer Stem Cell Research Institute, Cardiff University, School of Biosciences, Cardiff, United Kingdom.,College of Applied Medical Sciences-Dawadmi, Shaqra University, Dawadmi, Saudi Arabia
| | - Hamed Alzahrani
- European Cancer Stem Cell Research Institute, Cardiff University, School of Biosciences, Cardiff, United Kingdom
| | | | - Ali Abdelfattah
- European Cancer Stem Cell Research Institute, Cardiff University, School of Biosciences, Cardiff, United Kingdom
| | - Badi Alotaibi
- European Cancer Stem Cell Research Institute, Cardiff University, School of Biosciences, Cardiff, United Kingdom
| | - Lubaid Saleh
- European Cancer Stem Cell Research Institute, Cardiff University, School of Biosciences, Cardiff, United Kingdom
| | - Adelle Greene
- European Cancer Stem Cell Research Institute, Cardiff University, School of Biosciences, Cardiff, United Kingdom
| | - Mia Georgiou
- European Cancer Stem Cell Research Institute, Cardiff University, School of Biosciences, Cardiff, United Kingdom
| | - Alex Gibbs
- European Cancer Stem Cell Research Institute, Cardiff University, School of Biosciences, Cardiff, United Kingdom
| | - Amani Alsayari
- European Cancer Stem Cell Research Institute, Cardiff University, School of Biosciences, Cardiff, United Kingdom
| | - Sarab Taha
- European Cancer Stem Cell Research Institute, Cardiff University, School of Biosciences, Cardiff, United Kingdom
| | - Leigh-Anne Thomas
- European Cancer Stem Cell Research Institute, Cardiff University, School of Biosciences, Cardiff, United Kingdom
| | - Dhruv Shah
- European Cancer Stem Cell Research Institute, Cardiff University, School of Biosciences, Cardiff, United Kingdom
| | - Sarah Edkins
- Wales Gene Park and Wales Cancer Research Centre, Division of Cancer and Genetics, Cardiff University, School of Medicine, Cardiff, United Kingdom
| | - Peter Giles
- Wales Gene Park and Wales Cancer Research Centre, Division of Cancer and Genetics, Cardiff University, School of Medicine, Cardiff, United Kingdom
| | - Marc P Stemmler
- Department of Experimental Medicine 1, Nikolaus-Fiebiger-Center for Molecular Medicine, FAU University Erlangen-Nürnberg, Erlangen, Germany
| | - Simone Brabletz
- Department of Experimental Medicine 1, Nikolaus-Fiebiger-Center for Molecular Medicine, FAU University Erlangen-Nürnberg, Erlangen, Germany
| | - Thomas Brabletz
- Department of Experimental Medicine 1, Nikolaus-Fiebiger-Center for Molecular Medicine, FAU University Erlangen-Nürnberg, Erlangen, Germany
| | - Ashleigh S Boyd
- Department of Surgical Biotechnology, Division of Surgery and Interventional Science, Royal Free Hospital, and.,Institute of Immunity and Transplantation, University College London, London, United Kingdom
| | - Florian A Siebzehnrubl
- European Cancer Stem Cell Research Institute, Cardiff University, School of Biosciences, Cardiff, United Kingdom
| | - Neil P Rodrigues
- European Cancer Stem Cell Research Institute, Cardiff University, School of Biosciences, Cardiff, United Kingdom
| |
Collapse
|
10
|
Martinikova AS, Burocziova M, Stoyanov M, Macurek L. Truncated PPM1D Prevents Apoptosis in the Murine Thymus and Promotes Ionizing Radiation-Induced Lymphoma. Cells 2020; 9:cells9092068. [PMID: 32927737 PMCID: PMC7565556 DOI: 10.3390/cells9092068] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 09/04/2020] [Accepted: 09/06/2020] [Indexed: 12/20/2022] Open
Abstract
Genome integrity is protected by the cell-cycle checkpoints that prevent cell proliferation in the presence of DNA damage and allow time for DNA repair. The transient checkpoint arrest together with cellular senescence represent an intrinsic barrier to tumorigenesis. Tumor suppressor p53 is an integral part of the checkpoints and its inactivating mutations promote cancer growth. Protein phosphatase magnesium-dependent 1 (PPM1D) is a negative regulator of p53. Although its loss impairs recovery from the G2 checkpoint and promotes induction of senescence, amplification of the PPM1D locus or gain-of-function truncating mutations of PPM1D occur in various cancers. Here we used a transgenic mouse model carrying a truncating mutation in exon 6 of PPM1D (Ppm1dT). As with human cell lines, we found that the truncated PPM1D was present at high levels in the mouse thymus. Truncated PPM1D did not affect differentiation of T-cells in the thymus but it impaired their response to ionizing radiation (IR). Thymocytes in Ppm1dT/+ mice did not arrest in the checkpoint and continued to proliferate despite the presence of DNA damage. In addition, we observed a decreased level of apoptosis in the thymi of Ppm1dT/+ mice. Moreover, the frequency of the IR-induced T-cell lymphomas increased in Ppm1dT/+Trp53+/- mice resulting in decreased survival. We conclude that truncated PPM1D partially suppresses the p53 pathway in the mouse thymus and potentiates tumor formation under the condition of a partial loss of p53 function.
Collapse
Affiliation(s)
- Andra S. Martinikova
- Laboratory of Cancer Cell Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, CZ14220 Prague, Czech Republic; (A.S.M.); (M.B.); (M.S.)
- Department of Developmental and Cell Biology, Faculty of Science, Charles University, Albertov 6, CZ12800 Prague, Czech Republic
| | - Monika Burocziova
- Laboratory of Cancer Cell Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, CZ14220 Prague, Czech Republic; (A.S.M.); (M.B.); (M.S.)
| | - Miroslav Stoyanov
- Laboratory of Cancer Cell Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, CZ14220 Prague, Czech Republic; (A.S.M.); (M.B.); (M.S.)
| | - Libor Macurek
- Laboratory of Cancer Cell Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, CZ14220 Prague, Czech Republic; (A.S.M.); (M.B.); (M.S.)
- Correspondence: ; Tel.: +42-(0)2-4106-3210
| |
Collapse
|
11
|
Ceredig R. George Gabriel Stokes as a biologist. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2020; 378:20200105. [PMID: 32762439 DOI: 10.1098/rsta.2020.0105] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/03/2020] [Indexed: 06/11/2023]
Abstract
It is universally acknowledged that George Gabriel Stokes (1819-1903) was a polymath who made major contributions to the fields of mathematics, chemistry, physics, fluidics and optics. However, his contributions to biology have received far less attention and this brief communication examines two of Stokes' major biological contributions, namely his description of the phenomenon of fluorescence and his studies on the changes in the colour of blood following oxidation and reduction. The paper on fluorescence is discussed because in it, Stokes demonstrates his wide-ranging biological knowledge and because the use of fluorescence is an invaluable experimental tool in biology. It was by developing the experimental approaches and equipment used to investigate fluorescence that Stokes then applied these to other investigations, including that of blood. From what we now know, what Stokes was describing in his paper on blood were the changes in the configuration of the haemoglobin molecule upon the acquisition and release of oxygen. This article is part of the theme issue 'Stokes at 200 (part 2)'.
Collapse
Affiliation(s)
- Rhodri Ceredig
- Formerly Stokes Professor of Immunology, Discipline of Physiology, College of Medicine, Nursing and Health Sciences, National University of Ireland Galway, University Road, Galway, H91 TK33 Ireland
| |
Collapse
|
12
|
Rao TN, Kumar S, Pulikkottil AJ, Oliveri F, Hendriks RW, Beckel F, Fehling HJ. Novel, Non-Gene-Destructive Knock-In Reporter Mice Refute the Concept of Monoallelic Gata3 Expression. THE JOURNAL OF IMMUNOLOGY 2020; 204:2600-2611. [PMID: 32213568 DOI: 10.4049/jimmunol.2000025] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 02/26/2020] [Indexed: 02/04/2023]
Abstract
Accurately tuned expression levels of the transcription factor GATA-3 are crucial at several stages of T cell and innate lymphoid cell development and differentiation. Moreover, several lines of evidence suggest that Gata3 expression might provide a reliable molecular marker for the identification of elusive progenitor cell subsets at the earliest stages of T lineage commitment. To be able to faithfully monitor Gata3 expression noninvasively at the single-cell level, we have generated a novel strain of knock-in reporter mice, termed GATIR, by inserting an expression cassette encoding a bright fluorescent marker into the 3'-untranslated region of the endogenous Gata3 locus. Importantly, in contrast to three previously published strains of Gata3 reporter mice, GATIR mice preserve physiological Gata3 expression on the targeted allele. In this study, we show that GATIR mice faithfully reflect endogenous Gata3 expression without disturbing the development of GATA-3-dependent lymphoid cell populations. We further show that GATIR mice provide an ideal tool for noninvasive monitoring of Th2 polarization and straightforward identification of innate lymphoid cell 2 progenitor populations. Finally, as our reporter is non-gene-destructive, GATIR mice can be bred to homozygosity, not feasible with previously published strains of Gata3 reporter mice harboring disrupted alleles. The availability of hetero- and homozygous Gata3 reporter mice with an exceptionally bright fluorescent marker, allowed us to visualize allelic Gata3 expression in individual cells simply by flow cytometry. The unambiguous results obtained provide compelling evidence against previously postulated monoallelic Gata3 expression in early T lineage and hematopoietic stem cell subsets.
Collapse
Affiliation(s)
| | - Suresh Kumar
- Institute of Immunology, University Hospital, D-89081 Ulm, Germany; and
| | | | - Franziska Oliveri
- Institute of Immunology, University Hospital, D-89081 Ulm, Germany; and
| | - Rudi W Hendriks
- Department of Pulmonary Medicine, Erasmus Medical Center, NL-3000 CA Rotterdam, the Netherlands
| | - Franziska Beckel
- Institute of Immunology, University Hospital, D-89081 Ulm, Germany; and
| | | |
Collapse
|
13
|
Salz A, Gurniak C, Jönsson F, Witke W. Cofilin1-driven actin dynamics controls migration of thymocytes and is essential for positive selection in the thymus. J Cell Sci 2020; 133:jcs238048. [PMID: 31974112 DOI: 10.1242/jcs.238048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 01/14/2020] [Indexed: 11/20/2022] Open
Abstract
Actin dynamics is essential for T-cell development. We show here that cofilin1 is the key molecule for controlling actin filament turnover in this process. Mice with specific depletion of cofilin1 in thymocytes showed increased steady-state levels of actin filaments, and associated alterations in the pattern of thymocyte migration and adhesion. Our data suggest that cofilin1 is controlling oscillatory F-actin changes, a parameter that influences the migration pattern in a 3-D environment. In a collagen matrix, cofilin1 controls the speed and resting intervals of migrating thymocytes. Cofilin1 was not involved in thymocyte proliferation, cell survival, apoptosis or surface receptor trafficking. However, in cofilin1 mutant mice, impaired adhesion and migration resulted in a specific block of thymocyte differentiation from CD4/CD8 double-positive thymocytes towards CD4 and CD8 single-positive cells. Our data suggest that tuning of the dwelling time of thymocytes in the thymic niches is tightly controlled by cofilin1 and essential for positive selection during T-cell differentiation. We describe a novel role of cofilin1 in the physiological context of migration-dependent cell differentiation.
Collapse
Affiliation(s)
- Andree Salz
- Institute of Genetics, University of Bonn, Karlrobert-Kreiten Strasse 13, 53115 Bonn, Germany
| | - Christine Gurniak
- Institute of Genetics, University of Bonn, Karlrobert-Kreiten Strasse 13, 53115 Bonn, Germany
| | - Friederike Jönsson
- Unit of Antibodies in Therapy and Pathology, Institut Pasteur, UMR 1222 INSERM, 75015 Paris, France
| | - Walter Witke
- Institute of Genetics, University of Bonn, Karlrobert-Kreiten Strasse 13, 53115 Bonn, Germany
| |
Collapse
|
14
|
Kaneko KB, Tateishi R, Miyao T, Takakura Y, Akiyama N, Yokota R, Akiyama T, Kobayashi TJ. Quantitative analysis reveals reciprocal regulations underlying recovery dynamics of thymocytes and thymic environment in mice. Commun Biol 2019; 2:444. [PMID: 31815199 PMCID: PMC6884561 DOI: 10.1038/s42003-019-0688-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 11/10/2019] [Indexed: 01/17/2023] Open
Abstract
Thymic crosstalk, a set of reciprocal regulations between thymocytes and the thymic environment, is relevant for orchestrating appropriate thymocyte development as well as thymic recovery from various exogenous insults. In this work, interactions shaping thymic crosstalk and the resultant dynamics of thymocytes and thymic epithelial cells are inferred based on quantitative analysis and modeling of the recovery dynamics induced by irradiation. The analysis identifies regulatory interactions consistent with known molecular evidence and reveals their dynamic roles in the recovery process. Moreover, the analysis also predicts, and a subsequent experiment verifies, a previously unrecognized regulation of CD4+CD8+ double positive thymocytes which temporarily increases their proliferation rate upon the decrease in their population size. Our model establishes a pivotal step towards the dynamic understanding of thymic crosstalk as a regulatory network system.
Collapse
Affiliation(s)
- Kazumasa B. Kaneko
- Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku Tokyo, 113-8656 Japan
| | - Ryosuke Tateishi
- RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045 Japan
| | - Takahisa Miyao
- RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045 Japan
| | - Yuki Takakura
- RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045 Japan
| | - Nobuko Akiyama
- RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045 Japan
| | - Ryo Yokota
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku Tokyo, 153-8505 Japan
| | - Taishin Akiyama
- RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045 Japan
| | - Tetsuya J. Kobayashi
- Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku Tokyo, 113-8656 Japan
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku Tokyo, 153-8505 Japan
- PREST, Japan Science and Technology Agency (JST), 4-1-8 Honcho Kawaguchi, Saitama, 332-0012 Japan
| |
Collapse
|
15
|
Chong HX, Yusoff NAA, Hor YY, Lew LC, Jaafar MH, Choi SB, Yusoff MSB, Wahid N, Abdullah MFIL, Zakaria N, Ong KL, Park YH, Liong MT. Lactobacillus plantarum DR7 improved upper respiratory tract infections via enhancing immune and inflammatory parameters: A randomized, double-blind, placebo-controlled study. J Dairy Sci 2019; 102:4783-4797. [PMID: 30954261 DOI: 10.3168/jds.2018-16103] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 02/12/2019] [Indexed: 12/20/2022]
Abstract
The aims of this study were to investigate the effects of Lactobacillus plantarum DR7 isolated from bovine milk against upper respiratory tract infections (URTI) and elucidate the possible mechanisms underlying immunomodulatory properties. The DR7 strain (9 log cfu/d) was administered for 12 wk in a randomized, double-blind, and placebo-controlled human study involving 109 adults (DR7, n = 56; placebo, n = 53). Subjects were assessed for health conditions monthly via questionnaires, and blood samples were evaluated for cytokine concentrations, peroxidation and oxidative stress, and gene expression in T cells and natural killer (NK) cells. The administration of DR7 reduced the duration of nasal symptoms (mean difference 5.09 d; 95% CI: 0.42-9.75) and the frequency of URTI (mean difference 0.32; 95% CI: 0.01-0.63) after 12 and 4 wk, respectively, compared with the placebo. The DR7 treatment suppressed plasma proinflammatory cytokines (IFN-γ, TNF-α) in middle-aged adults (30 to 60 yr old), while enhancing anti-inflammatory cytokines (IL-4, IL-10) in young adults (<30 yr old), accompanied by reduced plasma peroxidation and oxidative stress levels compared with the placebo. Young adults who received DR7 showed higher expression of plasma CD44 and CD117 by 4.50- and 2.22-fold, respectively, compared with the placebo. Meanwhile, middle-aged adults showed lower expression of plasma CD4 and CD8 by 11.26- and 1.80-fold, respectively, compared with the placebo, indicating less T-cell activation. In contrast, both young and middle-aged adults who received DR7 showed enhanced presence of nonresting and mature NK cells compared with those who received the placebo. We postulate that DR7 alleviated the symptoms of URTI by improving inflammatory parameters and enhancing immunomodulatory properties.
Collapse
Affiliation(s)
- Hui-Xian Chong
- School of Industrial Technology, Universiti Sains Malaysia, 11800 Penang, Malaysia
| | - Nur Asmaa' A Yusoff
- School of Medical Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Malaysia
| | - Yan-Yan Hor
- School of Industrial Technology, Universiti Sains Malaysia, 11800 Penang, Malaysia
| | - Lee-Ching Lew
- School of Industrial Technology, Universiti Sains Malaysia, 11800 Penang, Malaysia
| | - Mohamad Hafis Jaafar
- School of Industrial Technology, Universiti Sains Malaysia, 11800 Penang, Malaysia
| | - Sy-Bing Choi
- School of Data Sciences, Perdana University, 43400 Serdang, Malaysia
| | - Muhamad S B Yusoff
- School of Medical Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Malaysia
| | - Normala Wahid
- Community Health Center, Universiti Sains Malaysia, 11800 Penang, Malaysia
| | | | - Norzila Zakaria
- School of Medical Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Malaysia
| | - Kee-Leong Ong
- Clinical Nutrition Intl (M) Sdn Bhd, 43200 Selangor, Malaysia
| | - Yong-Ha Park
- Department of Biotechnology, Yeungnam University, 712-749 Gyeongsan, Korea.
| | - Min-Tze Liong
- School of Industrial Technology, Universiti Sains Malaysia, 11800 Penang, Malaysia.
| |
Collapse
|
16
|
Klein F, Mitrovic M, Roux J, Engdahl C, von Muenchow L, Alberti-Servera L, Fehling HJ, Pelczar P, Rolink A, Tsapogas P. The transcription factor Duxbl mediates elimination of pre-T cells that fail β-selection. J Exp Med 2019; 216:638-655. [PMID: 30765463 PMCID: PMC6400535 DOI: 10.1084/jem.20181444] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 12/13/2018] [Accepted: 01/22/2019] [Indexed: 12/13/2022] Open
Abstract
During β-selection, T cells without productive TCRβ rearrangements are eliminated. Klein et al. show that the transcription factor Duxbl regulates this process by inducing apoptosis through activation of the Oas/RNaseL pathway. Successful TCRβ rearrangement rescues cells by pre-TCR–mediated Duxbl suppression. T cell development is critically dependent on successful rearrangement of antigen-receptor chains. At the β-selection checkpoint, only cells with a functional rearrangement continue in development. However, how nonselected T cells proceed in their dead-end fate is not clear. We identified low CD27 expression to mark pre-T cells that have failed to rearrange their β-chain. Expression profiling and single-cell transcriptome clustering identified a developmental trajectory through β-selection and revealed specific expression of the transcription factor Duxbl at a stage of high recombination activity before β-selection. Conditional transgenic expression of Duxbl resulted in a developmental block at the DN3-to-DN4 transition due to reduced proliferation and enhanced apoptosis, whereas RNA silencing of Duxbl led to a decrease in apoptosis. Transcriptome analysis linked Duxbl to elevated expression of the apoptosis-inducing Oas/RNaseL pathway. RNaseL deficiency or sustained Bcl2 expression led to a partial rescue of cells in Duxbl transgenic mice. These findings identify Duxbl as a regulator of β-selection by inducing apoptosis in cells with a nonfunctional rearrangement.
Collapse
Affiliation(s)
- Fabian Klein
- Developmental and Molecular Immunology, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Mladen Mitrovic
- Immune Regulation, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Julien Roux
- Bioinformatics Core Facility, Department of Biomedicine, University of Basel, Basel, Switzerland.,Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Corinne Engdahl
- Developmental and Molecular Immunology, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Lilly von Muenchow
- Developmental and Molecular Immunology, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Llucia Alberti-Servera
- Developmental and Molecular Immunology, Department of Biomedicine, University of Basel, Basel, Switzerland
| | | | - Pawel Pelczar
- Center for Transgenic Models, University of Basel, Basel, Switzerland
| | - Antonius Rolink
- Developmental and Molecular Immunology, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Panagiotis Tsapogas
- Developmental and Molecular Immunology, Department of Biomedicine, University of Basel, Basel, Switzerland
| |
Collapse
|
17
|
Selman WH, Esfandiari E, Filtz TM. Alteration of Bcl11b upon stimulation of both the MAP kinase- and Gsk3-dependent signaling pathways in double-negative thymocytes. Biochem Cell Biol 2018; 97:201-213. [PMID: 30352171 DOI: 10.1139/bcb-2018-0132] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
B-cell lymphoma/leukemia 11B (Bcl11b) is a transcription factor critical for thymocyte development. We have previously characterized the kinetic post-translational modifications (PTMs) of Bcl11b in double-positive (DP) thymocytes during stimulation of the T cell receptor-activated MAP kinase pathway. However, the PTMs of Bcl11b in thymocytes from other developmental stages in the thymus, primarily double-negative (DN) cells, have not been previously identified. We found that kinetic modifications of Bcl11b in DN cells are somewhat different than the patterns observed in DP cells. Distinct from DP thymocytes, phosphorylation and sumoylation of Bcl11b in DN cells were not oppositely regulated in response to activation of MAP kinase, even though hyper-phosphorylation of Bcl11b coincided with near complete desumoylation. Additionally, prolonged stimulation of the MAP kinase pathway in DN cells, unlike DP thymocytes, did not alter Bcl11b levels of sumoylation or ubiquitinylation, or stability. On the other hand, activation of Wnt-Gsk3-dependent signaling in DN cells resulted in composite dephosphorylation and sumoylation of Bcl11b. Moreover, stimulation of MAP kinase and (or) Wnt signaling pathways differentially affects gene expression of some Bcl11b target and maturation-associated genes. Defining the signaling pathways and regulation of sequence-specific transcription factors by PTMs at various stages of thymopoiesis may improve our understanding of leukemogenesis.
Collapse
Affiliation(s)
- Wisam Hussein Selman
- a Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon, USA.,b College of Veterinary Medicine, University of Al-Qadisiyah, Al Diwaniyah, Iraq
| | - Elahe Esfandiari
- a Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon, USA
| | - Theresa M Filtz
- a Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon, USA
| |
Collapse
|
18
|
Watanabe H, Sahara H, Nomura S, Tanabe T, Ekanayake-Alper DK, Boyd LK, Louras NJ, Asfour A, Danton MA, Ho SH, Arn JS, Hawley RJ, Shimizu A, Nagayasu T, Ayares D, Lorber MI, Sykes M, Sachs DH, Yamada K. GalT-KO pig lungs are highly susceptible to acute vascular rejection in baboons, which may be mitigated by transgenic expression of hCD47 on porcine blood vessels. Xenotransplantation 2018; 25:e12391. [PMID: 29527745 PMCID: PMC6135720 DOI: 10.1111/xen.12391] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 01/12/2018] [Accepted: 02/08/2018] [Indexed: 12/20/2022]
Abstract
BACKGROUND Despite recent progress in survival times of xenografts in non-human primates, there are no reports of survival beyond 5 days of histologically well-aerated porcine lung grafts in baboons. Here, we report our initial results of pig-to-baboon xeno-lung transplantation (XLTx). METHODS Eleven baboons received genetically modified porcine left lungs from either GalT-KO alone (n = 3), GalT-KO/humanCD47(hCD47)/hCD55 (n = 3), GalT-KO/hD47/hCD46 (n = 4), or GalT-KO/hCD39/hCD46/hCD55/TBM/EPCR (n = 1) swine. The first 2 XLTx procedures were performed under a non-survival protocol that allowed a 72-hour follow-up of the recipients with general anesthesia, while the remaining 9 underwent a survival protocol with the intention of weaning from ventilation. RESULTS Lung graft survivals in the 2 non-survival animals were 48 and >72 hours, while survivals in the other 9 were 25 and 28 hours, at 5, 5, 6, 7, >7, 9, and 10 days. One baboon with graft survival >7 days, whose entire lung graft remained well aerated, was euthanized on POD 7 due to malfunction of femoral catheters. hCD47 expression of donor lungs was detected in both alveoli and vessels only in the 3 grafts surviving >7, 9, and 10 days. All other grafts lacked hCD47 expression in endothelial cells and were completely rejected with diffuse hemorrhagic changes and antibody/complement deposition detected in association with early graft loss. CONCLUSIONS To our knowledge, this is the first evidence of histologically viable porcine lung grafts beyond 7 days in baboons. Our results indicate that GalT-KO pig lungs are highly susceptible to acute humoral rejection and that this may be mitigated by transgenic expression of hCD47.
Collapse
Affiliation(s)
- Hironosuke Watanabe
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY
| | - Hisashi Sahara
- Division of Organ Replacement and Xenotransplantation Surgery, Center for Advanced Biomedical Science and Swine Research, Kagoshima University, Kagoshima, Japan
| | - Shunichiro Nomura
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY
| | - Tatsu Tanabe
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY
| | | | - Lennan K. Boyd
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY
| | - Nathan J. Louras
- Transplantation Biology Research Laboratories, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Arsenoi Asfour
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY
| | - Makenzie A. Danton
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY
| | - Siu-Hong Ho
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY
| | - J. Scott Arn
- Transplantation Biology Research Laboratories, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Robert J. Hawley
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY
| | - Akira Shimizu
- Department of Analytic Human Pathology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Takeshi Nagayasu
- Department of Surgical Oncology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | | | | | - Megan Sykes
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY
| | - David H. Sachs
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY
- Transplantation Biology Research Laboratories, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Kazuhiko Yamada
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY
| |
Collapse
|
19
|
Calvo-Asensio I, Sugrue T, Bosco N, Rolink A, Ceredig R. DN2 Thymocytes Activate a Specific Robust DNA Damage Response to Ionizing Radiation-Induced DNA Double-Strand Breaks. Front Immunol 2018; 9:1312. [PMID: 29942310 PMCID: PMC6004388 DOI: 10.3389/fimmu.2018.01312] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 05/28/2018] [Indexed: 12/29/2022] Open
Abstract
For successful bone marrow transplantation (BMT), a preconditioning regime involving chemo and radiotherapy is used that results in DNA damage to both hematopoietic and stromal elements. Following radiation exposure, it is well recognized that a single wave of host-derived thymocytes reconstitutes the irradiated thymus, with donor-derived thymocytes appearing about 7 days post BMT. Our previous studies have demonstrated that, in the presence of donor hematopoietic cells lacking T lineage potential, these host-derived thymocytes are able to generate a polyclonal cohort of functionally mature peripheral T cells numerically comprising ~25% of the peripheral T cell pool of euthymic mice. Importantly, we demonstrated that radioresistant CD44+ CD25+ CD117+ DN2 progenitors were responsible for this thymic auto-reconstitution. Until recently, the mechanisms underlying the radioresistance of DN2 progenitors were unknown. Herein, we have used the in vitro “Plastic Thymus” culture system to perform a detailed investigation of the mechanisms responsible for the high radioresistance of DN2 cells compared with radiosensitive hematopoietic stem cells. Our results indicate that several aspects of DN2 biology, such as (i) rapid DNA damage response (DDR) activation in response to ionizing radiation-induced DNA damage, (ii) efficient repair of DNA double-strand breaks, and (iii) induction of a protective G1/S checkpoint contribute to promoting DN2 cell survival post-irradiation. We have previously shown that hypoxia increases the radioresistance of bone marrow stromal cells in vitro, at least in part by enhancing their DNA double-strand break (DNA DSB) repair capacity. Since the thymus is also a hypoxic environment, we investigated the potential effects of hypoxia on the DDR of DN2 thymocytes. Finally, we demonstrate for the first time that de novo DN2 thymocytes are able to rapidly repair DNA DSBs following thymic irradiation in vivo.
Collapse
Affiliation(s)
| | - Tara Sugrue
- National University of Ireland, Galway, Ireland
| | - Nabil Bosco
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Antonius Rolink
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | | |
Collapse
|
20
|
Muñoz JJ, García-Ceca J, Montero-Herradón S, Sánchez del Collado B, Alfaro D, Zapata A. Can a Proper T-Cell Development Occur in an Altered Thymic Epithelium? Lessons From EphB-Deficient Thymi. Front Endocrinol (Lausanne) 2018; 9:135. [PMID: 29666605 PMCID: PMC5891583 DOI: 10.3389/fendo.2018.00135] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 03/15/2018] [Indexed: 01/24/2023] Open
Abstract
For a long time, the effects of distinct Eph tyrosine kinase receptors and their ligands, ephrins on the structure, immunophenotype, and development of thymus and their main cell components, thymocytes (T) and thymic epithelial cells (TECs), have been studied. In recent years, the thymic phenotype of mutant mice deficient in several Ephs and ephrins B has been determined. Remarkably, thymic stroma in these animals exhibits important defects that appear early in ontogeny but little alterations in the proportions of distinct lymphoid cell populations. In the present manuscript, we summarize and extend these results discussing possible mechanisms governing phenotypical and functional thymocyte maturation in an absence of the critical T-TEC interactions, concluding that some signaling mediated by key molecules, such as MHCII, CD80, β5t, Aire, etc. could be sufficient to enable a proper maturation of thymocytes, independently of morphological alterations affecting thymic epithelium.
Collapse
Affiliation(s)
- Juan José Muñoz
- Center for Cytometry and Fluorescence Microscopy, Complutense University of Madrid, Madrid, Spain
| | - Javier García-Ceca
- Department of Cell Biology, Faculty of Biology, Complutense University of Madrid, Madrid, Spain
| | - Sara Montero-Herradón
- Department of Cell Biology, Faculty of Biology, Complutense University of Madrid, Madrid, Spain
| | | | - David Alfaro
- Department of Cell Biology, Faculty of Biology, Complutense University of Madrid, Madrid, Spain
| | - Agustín Zapata
- Center for Cytometry and Fluorescence Microscopy, Complutense University of Madrid, Madrid, Spain
- Department of Cell Biology, Faculty of Biology, Complutense University of Madrid, Madrid, Spain
| |
Collapse
|
21
|
Kugyelka R, Kohl Z, Olasz K, Prenek L, Berki T, Balogh P, Boldizsár F. Correction of T cell deficiency in ZAP-70 knock-out mice by simple intraperitoneal adoptive transfer of thymocytes. Clin Exp Immunol 2018; 192:302-314. [PMID: 29431868 DOI: 10.1111/cei.13114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/06/2018] [Indexed: 12/01/2022] Open
Abstract
The tyrosine kinase zeta chain-associated protein of 70 kDa (ZAP-70) plays a key role in T cell development and signalling. In the absence of ZAP-70, T cell development is arrested in the CD4+ CD8+ double-positive stage, thus ZAP-70 homozygous knockout (ZAP-70-/- ) mice have no mature T cells in their peripheral lymphoid organs and blood, causing severe immunodeficiency. We investigated the early kinetics and long-term effects of wild-type thymocyte transfer on T cell repopulation in ZAP-70-/- mice. We used a single intraperitoneal (i.p.) injection to deliver donor thymocytes to the recipients. Here, we show that after i.p. injection donor thymocytes leave the peritoneum through milky spots in the omentum and home to the thymus, where donor-originated CD4- CD8- double-negative thymocytes most probably restore T cell development and the disrupted thymic architecture. Subsequently, newly developed, donor-originated, single-positive αβ T cells appear in peripheral lymphoid organs, where they form organized T cell zones. The established chimerism was found to be stable, as donor-originated cells were present in transferred ZAP-70-/- mice as late as 8 months after i.p. injection. We demonstrate that a simple i.p. injection of ZAP-70+/+ thymocytes is a feasible method for the long-term reconstitution of T cell development in ZAP-70-deficient mice.
Collapse
Affiliation(s)
- R Kugyelka
- Department of Immunology and Biotechnology, Medical School, University of Pecs, Pecs, Hungary
| | - Z Kohl
- Department of Immunology and Biotechnology, Medical School, University of Pecs, Pecs, Hungary
| | - K Olasz
- Department of Immunology and Biotechnology, Medical School, University of Pecs, Pecs, Hungary
| | - L Prenek
- Department of Immunology and Biotechnology, Medical School, University of Pecs, Pecs, Hungary
| | - T Berki
- Department of Immunology and Biotechnology, Medical School, University of Pecs, Pecs, Hungary
| | - P Balogh
- Department of Immunology and Biotechnology, Medical School, University of Pecs, Pecs, Hungary
| | - F Boldizsár
- Department of Immunology and Biotechnology, Medical School, University of Pecs, Pecs, Hungary
| |
Collapse
|
22
|
Tan Q, Brunetti L, Rousseaux MWC, Lu HC, Wan YW, Revelli JP, Liu Z, Goodell MA, Zoghbi HY. Loss of Capicua alters early T cell development and predisposes mice to T cell lymphoblastic leukemia/lymphoma. Proc Natl Acad Sci U S A 2018; 115:E1511-E1519. [PMID: 29382756 PMCID: PMC5816173 DOI: 10.1073/pnas.1716452115] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Capicua (CIC) regulates a transcriptional network downstream of the RAS/MAPK signaling cascade. In Drosophila, CIC is important for many developmental processes, including embryonic patterning and specification of wing veins. In humans, CIC has been implicated in neurological diseases, including spinocerebellar ataxia type 1 (SCA1) and a neurodevelopmental syndrome. Additionally, we and others have reported mutations in CIC in several cancers. However, whether CIC is a tumor suppressor remains to be formally tested. In this study, we found that deletion of Cic in adult mice causes T cell acute lymphoblastic leukemia/lymphoma (T-ALL). Using hematopoietic-specific deletion and bone marrow transplantation studies, we show that loss of Cic from hematopoietic cells is sufficient to drive T-ALL. Cic-null tumors show up-regulation of the KRAS pathway as well as activation of the NOTCH1 and MYC transcriptional programs. In sum, we demonstrate that loss of CIC causes T-ALL, establishing it as a tumor suppressor for lymphoid malignancies. Moreover, we show that mouse models lacking CIC in the hematopoietic system are robust models for studying the role of RAS signaling as well as NOTCH1 and MYC transcriptional programs in T-ALL.
Collapse
Affiliation(s)
- Qiumin Tan
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX 77030;
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030
| | - Lorenzo Brunetti
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX 77030
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX 77030
- Centro di Ricerca Emato-Oncologica, University of Perugia, 06156 Perugia, Italy
| | - Maxime W C Rousseaux
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX 77030
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030
| | - Hsiang-Chih Lu
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX 77030
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030
| | - Ying-Wooi Wan
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX 77030
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030
| | - Jean-Pierre Revelli
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX 77030
| | - Zhandong Liu
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX 77030
- Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030
| | - Margaret A Goodell
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX 77030
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX 77030
- Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030
- Texas Children's Hospital and Houston Methodist Hospital, Houston, TX 77030
| | - Huda Y Zoghbi
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX 77030;
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030
- Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030
- Howard Hughes Medical Institute, Baylor College of Medicine, Houston, TX 77030
| |
Collapse
|
23
|
Wu M, Li X, Tang F, Zhu P, Ding T, Yuan Y, Chen T. Aleukemic extramedullary T lymphoid/myeloid bilineage hematopoietic and lymphoid malignancy with progression to bilineage leukemia at relapse: A case report. Oncol Lett 2018; 14:7723-7732. [PMID: 29344217 PMCID: PMC5755038 DOI: 10.3892/ol.2017.7212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Accepted: 07/27/2017] [Indexed: 11/21/2022] Open
Abstract
Bilineage T lymphoid and myeloid (T/My) neoplasms are rare entities among the hematopoietic and lymphoid malignancies. The majority of patients present with leukemic symptoms in which blasts are observed in the peripheral blood (PB) or bone marrow (BM) at a percentage of >20% of nucleated cells. Only a minimal number of cases of T/My bilineage hematopoietic and lymphoid malignancy have been reported with extramedullary infiltration as the initial symptom. The origin of the neoplastic cells in T/My bilineage malignancy has been documented as the hematopoietic stem cells. The present study reports the case of a 31-year-old man with a T/My bilineage malignancy, which initially showed cervical lymph node enlargement beyond the diagnostic criteria of leukemia in the PB and in the BM. Two distinct malignant populations were detected in the cervical lymph node and pleural effusion, one of which was positive for MPO-staining, while the other was positive for cytoplasmic cluster of differentiation 3. Mutations in platelet-derived growth factor receptor α, platelet-derived growth factor receptor β, fibroblast growth factor receptor 1 and other chromosome abnormalities were excluded. The patient obtained complete remission after conventional chemotherapy, but relapsed with bilineage leukemia within a short period of time. Lymphoid and myeloid lineages have been reported to be differentiated from multipotent progenitors asymmetrically. However, the cellular mutation stage in T/My bilineage malignancy remains unclear. The present study also reviews the origin, development and therapeutic strategies for extramedullary T/My bilineage malignancy.
Collapse
Affiliation(s)
- Mengyao Wu
- Department of Hematology, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Xiaoqiu Li
- Department of Pathology, Shanghai Cancer Center, Fudan University, Shanghai 200032, P.R. China
| | - Feng Tang
- Department of Pathology, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Ping Zhu
- Department of Hematology, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Tianling Ding
- Department of Hematology, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Yan Yuan
- Department of Hematology, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Tong Chen
- Department of Hematology, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| |
Collapse
|
24
|
Carbajosa S, Gea S, Chillón-Marinas C, Poveda C, Del Carmen Maza M, Fresno M, Gironès N. Altered bone marrow lymphopoiesis and interleukin-6-dependent inhibition of thymocyte differentiation contribute to thymic atrophy during Trypanosoma cruzi infection. Oncotarget 2017; 8:17551-17561. [PMID: 28147332 PMCID: PMC5392268 DOI: 10.18632/oncotarget.14886] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 01/17/2017] [Indexed: 11/25/2022] Open
Abstract
Thymic atrophy occurs during infection being associated with apoptosis of double positive (DP) and premature exit of DP and double negative (DN) thymocytes. We observed for the first time that a significant bone marrow aplasia and a decrease in common lymphoid progenitors (CLPs) preceded thymic alterations in mice infected with Trypanosoma cruzi. In addition, depletion of the DN2 stage was previous to the DN1, indicating an alteration in the differentiation from DN1 to DN2 thymocytes. Interestingly, infected mice deficient in IL-6 expression showed higher numbers of DP and CD4+ thymocytes than wild type infected mice, while presenting similar percentages of DN1 thymocytes. Moreover, the drop in late differentiation stages of DN thymocytes was partially abrogated in comparison with wild type littermates. Thus, our results suggest that thymic atrophy involves a drop in CLPs production in bone marrow and IL-6-dependent and independent mechanisms that inhibits the differentiation of DN thymocytes.
Collapse
Affiliation(s)
- Sofía Carbajosa
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Cantoblanco, Madrid, Spain
| | - Susana Gea
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Cantoblanco, Madrid, Spain
| | - Carlos Chillón-Marinas
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Cantoblanco, Madrid, Spain
| | - Cristina Poveda
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Cantoblanco, Madrid, Spain
| | - María Del Carmen Maza
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Cantoblanco, Madrid, Spain.,Instituto Sanitario de Investigación Princesa, Madrid, Spain
| | - Manuel Fresno
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Cantoblanco, Madrid, Spain.,Instituto Sanitario de Investigación Princesa, Madrid, Spain
| | - Núria Gironès
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Cantoblanco, Madrid, Spain.,Instituto Sanitario de Investigación Princesa, Madrid, Spain
| |
Collapse
|
25
|
Wei Y, Hu Z, Gu W, Liu G, Shi B, Liu E, Liu T. CD117 +CD44 + Stem T Cells Develop in the Thymus and Potently Suppress T-cell Proliferation by Modulating the CTLA-4 Pathway. Stem Cell Res Ther 2017; 8:56. [PMID: 28279199 PMCID: PMC5345162 DOI: 10.1186/s13287-017-0495-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 12/10/2016] [Accepted: 02/09/2017] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND CD117 is expressed on double-negative (DN; CD4-CD8-) cells (Nat Rev Immunol 14:529-545; 2014), but whether it is expressed in other stages and its subsequent functions are unclear. We used an improved method of flow cytometry to analyze different populations of thymocytes (Sci Rep 4:5781; 2014). The expression of CD117 and CTLA-4 were directly assayed in the early stage of thymocytes. METHODS Flow cytometry was used to analyze different populations of thymocytes, and T-cell proliferation assays, RT-PCR, and real-time RT-PCR were used to characterize the stem cells and examine the function of CD44+CD117+ cells. RESULTS In DN cells, CD117 expression was greatest on CD44+CD25+ cells (DN2), followed by CD44+CD25- (DN1), CD44-CD25+ (DN3), and CD44-CD25- (DN4) cells. In thymocytes, CD117 expression was highest in DN cells, followed by single-positive (SP; CD4 or CD8) and double-positive (DP; CD4+CD8+) cells. Especially, CD117 expression was positively associated with CD44 and CTLA-4 expression. CTLA-4 expression was highest in DN cells, followed by SP and DP cells. CTLA-4 expression was positively associated with CD25, CD44, and Foxp3 expression. CD44+CD117+ T cells expressed more CTLA-4, which suppressed T-cell proliferation and blocked CTLA-4 to cause antibody-induced T-cell proliferation. CONCLUSION These results suggest that CD44+CD117+ T cells are stem cells and a specific T-cell phenotype that initially develops in the thymus, but they do not progress through DN3 and DN4 stages, lack a DP stage, and potently suppress T-cell proliferation and modulate the CTLA-4 pathway.
Collapse
Affiliation(s)
- Yang Wei
- Immunology and Tumor Research Instituted, the First Affiliate Hospital, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, People's Republic of China.,Core Research Laboratory, the Second Affiliated Hospital, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710049, China
| | - Zhansheng Hu
- Immunology and Tumor Research Instituted, the First Affiliate Hospital, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, People's Republic of China.,The First Affiliated Hospital, Jinzhou Medical University, Liaoning, 121004, People's Republic of China
| | - Wen Gu
- Immunology and Tumor Research Instituted, the First Affiliate Hospital, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Gang Liu
- Clinical Research Center, Guangdong Medical Collage, Zhanjiang, Guangdong, 524001, China
| | - Bingyin Shi
- Immunology and Tumor Research Instituted, the First Affiliate Hospital, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Enqi Liu
- The School of Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China
| | - Tie Liu
- Immunology and Tumor Research Instituted, the First Affiliate Hospital, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, People's Republic of China.
| |
Collapse
|
26
|
Application of Immunohistochemistry in Toxicologic Pathology of the Hematolymphoid System. IMMUNOPATHOLOGY IN TOXICOLOGY AND DRUG DEVELOPMENT 2017. [DOI: 10.1007/978-3-319-47377-2_10] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
27
|
Petrov P, Syrjänen R, Uchida T, Vainio O. Leucocyte protein Trojan, a possible regulator of apoptosis. APMIS 2016; 125:106-113. [PMID: 28028869 DOI: 10.1111/apm.12641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 10/27/2016] [Indexed: 11/28/2022]
Abstract
Trojan is a leucocyte-specific protein, cloned from chicken embryonic thymocyte cDNA library. The molecule is a type I transmembrane protein with an extracellular CCP domain, followed by two FN3 domains. Its cytoplasmic tail is predicted to possess a MAPK docking and a PKA phosphorylation sites. Trojan has been proposed to have an anti-apoptotic role based on its differential expression on developing thymocyte subpopulations. Using a chicken cell line, our in vitro studies showed that upon apoptosis induction, Trojan expression rises dramatically on the surface of surviving cells and gradually decreases towards its normal levels as cells recover. When sorted based on their expression levels of Trojan, cells with high expression appeared less susceptible to apoptotic induction than those bearing no or low levels of Trojan on their surface. The mechanism by which the molecule exerts its function is yet to be discovered. We found that cells overexpressing Trojan from a cDNA plasmid show elevated steady-state levels of intracellular calcium, suggesting the molecule is able to transmit cytoplasmic signals. The mechanistic nature of Trojan-induced signalling is a target of future investigation. In this article, we conducted a series of experiments that suggest Trojan as an anti-apoptotic regulator.
Collapse
Affiliation(s)
- Petar Petrov
- Research Unit of Biomedicine, Department of Medical Microbiology and Immunology, University of Oulu, Oulu, Finland.,Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland.,Nordlab Oulu, Oulu, Finland
| | - Riikka Syrjänen
- Research Unit of Biomedicine, Department of Medical Microbiology and Immunology, University of Oulu, Oulu, Finland.,Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland.,Nordlab Oulu, Oulu, Finland
| | - Tatsuya Uchida
- Research Unit of Biomedicine, Department of Medical Microbiology and Immunology, University of Oulu, Oulu, Finland
| | - Olli Vainio
- Research Unit of Biomedicine, Department of Medical Microbiology and Immunology, University of Oulu, Oulu, Finland.,Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland.,Nordlab Oulu, Oulu, Finland
| |
Collapse
|
28
|
Azghadi SMR, Suciu M, Gruia AT, Barbu-Tudoran L, Cristea MI, Mic AA, Muntean D, Nica DV, Mic FA. Mesenchymal stromal cells support the viability and differentiation of thymocytes through direct contact in autologous co-cultures. Histochem Cell Biol 2016; 146:153-65. [PMID: 27085705 DOI: 10.1007/s00418-016-1430-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/26/2016] [Indexed: 12/22/2022]
Abstract
The development of thymocytes and generation of mature T cells is a complex process that requires spatio-temporal interactions of thymocytes with the other cells of the thymus microenvironment. Recently, mesenchymal stromal cells were isolated from the neonatal human thymus and differentiated into chondrogenic, osteogenic, and adipogenic lineages, just like their bone marrow counterparts. However, their function in thymocyte homeostasis is unknown. In our autologous co-cultures of rat mesenchymal stromal cells and thymocytes, the stromal cells preserve the viability of cultured thymocytes and stimulate the development of CD4-CD8- double-negative and the maturation of mainly CD4+ single-positive thymocytes. Thymocytes also influence the stemness of bone marrow mesenchymal stromal cells, as their expression of CD44, a marker associated with cellular proliferation and migration, is reduced in co-cultures. Mesenchymal stromal cells' influence on thymocyte development requires direct physical contact between the two cells and is not mediated by a soluble factor. When the two types of cells were physically separated, the stimulative effects of mesenchymal stromal cells on thymocytes did not occur. Electron microscopy confirmed the close contact between the membranes of thymocytes and mesenchymal stromal cells. Our experiments suggest that membrane exchanges could occur between mesenchymal stromal cells and thymocytes, such as the transfer of CD44 from mesenchymal stromal cells to the thymocytes, but its functional significance for thymocytes development remains to be established. These results suggest that mesenchymal stromal cells could normally be a part of the in vivo thymic microenvironment and form a niche that could sustain and guide the development of thymocytes.
Collapse
Affiliation(s)
- Seyed Mohammad Reza Azghadi
- Department of Functional Sciences, University of Medicine and Pharmacy "Victor Babes" Timisoara, Timisoara, Romania
| | - Maria Suciu
- Electron Microscopy Integrated Laboratory, National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donath St., 400293, Cluj-Napoca, Romania
- Molecular Biology and Biotechnology Department, Faculty of Biology and Geology, Babeş-Bolyai University, 5-7 Clinicilor St., 400006, Cluj-Napoca, Romania
| | - Alexandra Teodora Gruia
- Regional Center of Immunology of Transplantation, Emergency Clinical County Hospital Timisoara, Timisoara, Romania.
| | - Lucian Barbu-Tudoran
- Center of Electron Microscopy, Faculty of Biology and Geology, Babes-Bolyai University, Cluj-Napoca, Romania
| | - Mirabela Iustina Cristea
- Regional Center of Immunology of Transplantation, Emergency Clinical County Hospital Timisoara, Timisoara, Romania
| | - Ani Aurora Mic
- Department of Functional Sciences, University of Medicine and Pharmacy "Victor Babes" Timisoara, Timisoara, Romania
- INCD "Victor Babes", Bucharest, Romania
| | - Danina Muntean
- Department of Pathophysiology, Center for Translational Research and Systems Medicine, "Victor Babes" University of Medicine and Pharmacy, Timisoara, Romania
| | - Dragos Vasile Nica
- Regional Center of Immunology of Transplantation, Emergency Clinical County Hospital Timisoara, Timisoara, Romania
- Faculty of Animal Sciences and Biotechnologies, Banat's University of Agricultural Sciences and Veterinary Medicine, Timisoara, Romania
| | - Felix Aurel Mic
- Department of Functional Sciences, University of Medicine and Pharmacy "Victor Babes" Timisoara, Timisoara, Romania
| |
Collapse
|
29
|
Li CS, Tang F, Zhang P, Jiang T, Saunders TL, Zheng P, Liu Y. Trap1a is an X-linked and cell-intrinsic regulator of thymocyte development. Cell Mol Immunol 2016; 14:685-692. [PMID: 27063468 DOI: 10.1038/cmi.2015.108] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 11/25/2015] [Accepted: 11/25/2015] [Indexed: 11/09/2022] Open
Abstract
The X-linked Trap1a gene encodes the tumor rejection antigen P1A, which is expressed in fetal tissues and multiple lineages of tumor cells. The function of this gene remains unknown. Using chimeric mice with wild-type (WT) and Trap1a-/y bone marrow, we show that Trap1a-/y donor cells are capable of generating most lineages of hematopoietic cells, with the notable exception of T cells. Deletion of Trap1a selectively arrests T-cell development at double-negative stage 1 (DN1, with a CD4-CD8-CD25-CD44+ phenotype). Because Trap1a is expressed in Lin-Sca-1+c-Kit+ and common lymphoid progenitors but not in immature thymocytes (DN1-DN4), Trap1a mutations affect the differentiation potential of progenitor cells without directly acting on T cells. Despite a similarity in the blockade of DN1 to DN2 transition, the Trap1a-/y DN1 cells have normal expression of c-Kit, in contrast to what was reported in the Notch1-/- DN1. Complementary DNA profiling of Trap1a-/y and WT embryonic stem cells shows that Trap1a does not regulate the Notch pathway. Our data reveal that Trap1a is an X-linked regulator that affects the differentiation potential of progenitor cells into T cells through a Notch-independent mechanism and identify an important function for the Trap1a gene.
Collapse
Affiliation(s)
- Chi-Shan Li
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan, China
| | - Fei Tang
- Center for Cancer and Immunology Research, Children's National Medical Center, Washington, DC, USA
| | - Peng Zhang
- Institute of Biophysics, Chinese Academy of Science, Beijing, China
| | - Taijiao Jiang
- Institute of Biophysics, Chinese Academy of Science, Beijing, China
| | - Thomas L Saunders
- Department of Internal Medicine, School of Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Pan Zheng
- Center for Cancer and Immunology Research, Children's National Medical Center, Washington, DC, USA
| | - Yang Liu
- Center for Cancer and Immunology Research, Children's National Medical Center, Washington, DC, USA
| |
Collapse
|
30
|
Rampoldi F, Bonrouhi M, Boehm ME, Lehmann WD, Popovic ZV, Kaden S, Federico G, Brunk F, Gröne HJ, Porubsky S. Immunosuppression and Aberrant T Cell Development in the Absence of N-Myristoylation. THE JOURNAL OF IMMUNOLOGY 2015; 195:4228-43. [DOI: 10.4049/jimmunol.1500622] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 09/01/2015] [Indexed: 01/01/2023]
|
31
|
López-Rodríguez C, Aramburu J, Berga-Bolaños R. Transcription factors and target genes of pre-TCR signaling. Cell Mol Life Sci 2015; 72:2305-21. [PMID: 25702312 PMCID: PMC11113633 DOI: 10.1007/s00018-015-1864-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Revised: 01/22/2015] [Accepted: 02/16/2015] [Indexed: 11/27/2022]
Abstract
Almost 30 years ago pioneering work by the laboratories of Harald von Boehmer and Susumo Tonegawa provided the first indications that developing thymocytes could assemble a functional TCRβ chain-containing receptor complex, the pre-TCR, before TCRα expression. The discovery and study of the pre-TCR complex revealed paradigms of signaling pathways in control of cell survival and proliferation, and culminated in the recognition of the multifunctional nature of this receptor. As a receptor integrated in a dynamic developmental process, the pre-TCR must be viewed not only in the light of the biological outcomes it promotes, but also in context with those molecular processes that drive its expression in thymocytes. This review article focuses on transcription factors and target genes activated by the pre-TCR to drive its different outcomes.
Collapse
Affiliation(s)
- Cristina López-Rodríguez
- Immunology Unit, Department of Experimental and Health Sciences and Barcelona Biomedical Research Park, Universitat Pompeu Fabra, C/Doctor Aiguader Nº88, 08003, Barcelona, Barcelona, Spain,
| | | | | |
Collapse
|
32
|
Inhibins tune the thymocyte selection process by regulating thymic stromal cell differentiation. J Immunol Res 2015; 2015:837859. [PMID: 25973437 PMCID: PMC4418002 DOI: 10.1155/2015/837859] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Revised: 01/15/2015] [Accepted: 01/20/2015] [Indexed: 01/01/2023] Open
Abstract
Inhibins and Activins are members of the TGF-β superfamily that regulate the differentiation of several cell types. These ligands were initially identified as hormones that regulate the hypothalamus-pituitary-gonadal axis; however, increasing evidence has demonstrated that they are key regulators in the immune system. We have previously demonstrated that Inhibins are the main Activin ligands expressed in the murine thymus and that they regulate thymocyte differentiation, promoting the DN3-DN4 transition and the selection of SP thymocytes. As Inhibins are mainly produced by thymic stromal cells, which also express Activin receptors and Smad proteins, we hypothesized that Inhibins might play a role in stromal cell differentiation and function. Here, we demonstrate that, in the absence of Inhibins, thymic conventional dendritic cells display reduced levels of MHC Class II (MHCII) and CD86. In addition, the ratio between cTECs and mTECs was affected, indicating that mTEC differentiation was favoured and cTEC diminished in the absence of Inhibins. These changes appeared to impact thymocyte selection leading to a decreased selection of CD4SP thymocytes and increased generation of natural regulatory T cells. These findings demonstrate that Inhibins tune the T cell selection process by regulating both thymocyte and stromal cell differentiation.
Collapse
|
33
|
Interplay of H2A deubiquitinase 2A-DUB/Mysm1 and the p19(ARF)/p53 axis in hematopoiesis, early T-cell development and tissue differentiation. Cell Death Differ 2015; 22:1451-62. [PMID: 25613381 PMCID: PMC4532772 DOI: 10.1038/cdd.2014.231] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 12/02/2014] [Accepted: 12/05/2014] [Indexed: 02/06/2023] Open
Abstract
Monoubiquitination of core histone 2A (H2A-K119u) has a critical role in gene regulation in hematopoietic differentiation and other developmental processes. To explore the interplay of histone H2A deubiquitinase Myb-like SWIRM and MPN domain containing1 (2A-DUB/Mysm1) with the p53 axis in the sequential differentiation of mature lymphocytes from progenitors, we systematically analyzed hematopoiesis and early T-cell development using Mysm1(-/-) and p53(-/-)Mysm1(-/-) mice. Mysm1(-/-) thymi were severely hypoplastic with <10% of wild-type cell numbers as a result of a reduction of early thymocyte progenitors in context with defective hematopoietic stem cells, a partial block at the double-negative (DN)1-DN2 transition and increased apoptosis of double-positive thymocytes. Increased rates of apoptosis were also detected in other tissues affected by Mysm1 deficiency, including the developing brain and the skin. By quantitative PCR and chromatin immunoprecipitation analyses, we identified p19(ARF), an important regulator of p53 tumor suppressor protein levels, as a potential Mysm1 target gene. In newly generated p53(-/-)Mysm1(-/-) double-deficient mice, anomalies of Mysm1(-/-) mice including reduction of lymphoid-primed multipotent progenitors, reduced thymocyte numbers and viability, and interestingly defective B-cell development, growth retardation, neurological defects, skin atrophy, and tail malformation were almost completely restored as well, substantiating the involvement of the p53 pathway in the alterations caused by Mysm1 deficiency. In conclusion, this investigation uncovers a novel link between H2A deubiquitinase 2A-DUB/Mysm1 and suppression of p53-mediated apoptotic programs during early lymphoid development and other developmental processes.
Collapse
|
34
|
Xiong J, Parker BL, Yankee TM. The combined loss of Gads and CD127 reveals a novel function of Gads prior to TCRβ expression. Immunol Res 2014; 60:77-84. [PMID: 25037454 DOI: 10.1007/s12026-014-8556-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The Gads adaptor protein is an essential component of the T cell signaling complex critical for T cell receptor-mediated calcium mobilization. After expression of TCRβ in T cell precursors, Gads is required for optimal Bcl-2 expression and cell survival. Similarly, the IL-7 receptor chain CD127 is also necessary for optimal Bcl-2 expression and cell survival in TCRβ-expressing thymocytes. Based on these observations, we tested whether Gads and CD127 might regulate convergent or linear signaling pathways by crossing Gads(-/-) mice with CD127(-/-) mice. Thymi from Gads(-/-)CD127(-/-) mice were barely detectable and many of the thymocytes were within the DN1 population. By contrast, B cell development in the Gads(-/-)CD127(-/-) mice was comparable to that of CD127(-/-) mice, indicating that the combined loss of Gads and CD127 did not lead to a global deficit in hematopoiesis. Analysis of Lin(-)Sca-1(+)c-kit(+) bone marrow cells and bone marrow chimera experiments indicated that Gads(-/-)CD127(-/-) T cell precursors either failed to migrate into the thymus or survive in the thymus. These data demonstrate that Gads functions at a stage of T cell development that had not been previously described.
Collapse
Affiliation(s)
- Juan Xiong
- Department of Microbiology, Molecular Genetics, and Immunology, University of Kansas Medical Center, 3901 Rainbow Blvd, 3025 WHW - MS 3029, Kansas City, KS, 66160, USA
| | | | | |
Collapse
|
35
|
Cleveland SM, Goodings C, Tripathi RM, Elliott N, Thompson MA, Guo Y, Shyr Y, Davé UP. LMO2 induces T-cell leukemia with epigenetic deregulation of CD4. Exp Hematol 2014; 42:581-93.e5. [PMID: 24792354 PMCID: PMC4241760 DOI: 10.1016/j.exphem.2014.04.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2014] [Revised: 04/18/2014] [Accepted: 04/23/2014] [Indexed: 02/05/2023]
Abstract
In this study, we present a remarkable clonal cell line, 32080, derived from a CD2-Lmo2- transgenic T-cell leukemia with differentiation arrest at the transition from the intermediate single positive to double positive stages of T-cell development. We observed that 32080 cells had a striking variegated pattern in CD4 expression. There was cell-to-cell variability, with some cells expressing no CD4 and others expressing high CD4. The two populations were isogenic and yet differed in their rates of apoptosis and sensitivity to glucocorticoid. We sorted the 32080 line for CD4-positive or CD4-negative cells and observed them in culture. After 1 week, both sorted populations showed variegated CD4 expression, like the parental line, showing that the two populations could interconvert. We determined that cell replication was necessary to transit from CD4(+) to CD4(-) and CD4(-) to CD4(+). Lmo2 knockdown decreased CD4 expression, while inhibition of intracellular NOTCH1 or histone deacetylase activity induced CD4 expression. Enforced expression of RUNX1 repressed CD4 expression. We analyzed the CD4 locus by Histone 3 chromatin immunoprecipitation and found silencing marks in the CD4(-) cells and activating marks in the CD4(+) population. The 32080 cell line is a striking model of intermediate single positive to double positive T-cell plasticity and invokes a novel mechanism for LMO2's oncogenic functions.
Collapse
Affiliation(s)
- Susan M Cleveland
- Tennessee Valley Healthcare System and the Vanderbilt University Medical Center, Departments of Medicine and Cancer Biology, Nashville, Tennessee, USA
| | - Charnise Goodings
- Tennessee Valley Healthcare System and the Vanderbilt University Medical Center, Departments of Medicine and Cancer Biology, Nashville, Tennessee, USA
| | - Rati M Tripathi
- Tennessee Valley Healthcare System and the Vanderbilt University Medical Center, Departments of Medicine and Cancer Biology, Nashville, Tennessee, USA
| | - Natalina Elliott
- Tennessee Valley Healthcare System and the Vanderbilt University Medical Center, Departments of Medicine and Cancer Biology, Nashville, Tennessee, USA
| | - Mary Ann Thompson
- Vanderbilt University Medical Center, Department of Pathology, Microbiology, and Immunology, Nashville, Tennessee, USA
| | - Yan Guo
- Center for Quantitative Sciences, Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Yu Shyr
- Center for Quantitative Sciences, Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Utpal P Davé
- Tennessee Valley Healthcare System and the Vanderbilt University Medical Center, Departments of Medicine and Cancer Biology, Nashville, Tennessee, USA.
| |
Collapse
|
36
|
Gerondakis S, Fulford TS, Messina NL, Grumont RJ. NF-κB control of T cell development. Nat Immunol 2014; 15:15-25. [PMID: 24352326 DOI: 10.1038/ni.2785] [Citation(s) in RCA: 174] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2013] [Accepted: 11/12/2013] [Indexed: 12/12/2022]
Abstract
The NF-κB signal transduction pathway is best known as a major regulator of innate and adaptive immune responses, yet there is a growing appreciation of its importance in immune cell development, particularly of T lineage cells. In this Review, we discuss how the temporal regulation of NF-κB controls the stepwise differentiation and antigen-dependent selection of conventional and specialized subsets of T cells in response to T cell receptor and costimulatory, cytokine and growth factor signals.
Collapse
Affiliation(s)
- Steve Gerondakis
- The Australian Centre for Blood Diseases and Department of Clinical Hematology, Monash University Central Clinical School, Melbourne, Victoria, Australia
| | - Thomas S Fulford
- The Australian Centre for Blood Diseases and Department of Clinical Hematology, Monash University Central Clinical School, Melbourne, Victoria, Australia
| | - Nicole L Messina
- The Australian Centre for Blood Diseases and Department of Clinical Hematology, Monash University Central Clinical School, Melbourne, Victoria, Australia
| | - Raelene J Grumont
- The Australian Centre for Blood Diseases and Department of Clinical Hematology, Monash University Central Clinical School, Melbourne, Victoria, Australia
| |
Collapse
|
37
|
Moleriu RD, Zaharie D, Moatar-Moleriu LC, Gruia AT, Mic AA, Mic FA. Insights into the mechanisms of thymus involution and regeneration by modeling the glucocorticoid-induced perturbation of thymocyte populations dynamics. J Theor Biol 2014; 348:80-99. [PMID: 24486233 DOI: 10.1016/j.jtbi.2014.01.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Revised: 11/17/2013] [Accepted: 01/17/2014] [Indexed: 01/18/2023]
Abstract
T-cells develop in the thymus and based on CD4 and CD8 expressions there are four main thymocyte populations in a normal mouse thymus. Currently, there are several mathematical models that describe the dynamics of thymocyte populations in a normal thymus, but only a few of them model the transient perturbation of their homeostasis. Our aim is to model the perturbation in the dynamics of each thymocyte population which is induced by the administration of a glucocorticoid, i.e. dexamethasone. The proposed approach relies on extending a four compartment thymus model based on differential equations by adding perturbation terms either globally (at the level of each equation) or locally (at the level of proliferation, death, and transfer rates). By fitting the perturbed model with experimental data on mice thymi collected before and after the administration of dexamethasone, it was possible to estimate the relevant parameters using a population-based stochastic search method. The fitted model is further used to conduct a quantitative analysis on the differentiated impact of dexamethasone on each T-cell population and on proliferation, death, and transfer processes. The obtained quantitative information on the perturbation could be used to explore and modify the flow of thymocytes between thymus compartments in order to elucidate the mechanisms of thymus involution and its subsequent regeneration. Since glucocorticoids are raised in many pathological situations, such a model could be useful in evaluating the impact of diseases on thymocyte dynamics in the thymus.
Collapse
Affiliation(s)
- Radu Dumitru Moleriu
- Faculty of Mathematics and Computer Science, West University of Timisoara, 4 Vasile Parvan Blvd., Timisoara, Romania
| | - Daniela Zaharie
- Faculty of Mathematics and Computer Science, West University of Timisoara, 4 Vasile Parvan Blvd., Timisoara, Romania
| | - Lavinia Cristina Moatar-Moleriu
- Faculty of Mathematics and Computer Science, West University of Timisoara, 4 Vasile Parvan Blvd., Timisoara, Romania; Department of Functional Sciences, Victor Babes University of Medicine and Pharmacy, 2 Eftimie Murgu Sq. Timisoara, Romania
| | - Alexandra Teodora Gruia
- County Clinical Emergency Hospital Timisoara, Regional Centre for Immunology and Transplant, 10 Iosif Bulbuca Blvd. Timisoara, Romania
| | - Ani Aurora Mic
- Department of Functional Sciences, Victor Babes University of Medicine and Pharmacy, 2 Eftimie Murgu Sq. Timisoara, Romania
| | - Felix Aurel Mic
- Department of Functional Sciences, Victor Babes University of Medicine and Pharmacy, 2 Eftimie Murgu Sq. Timisoara, Romania.
| |
Collapse
|
38
|
Mohtashami M, Shah DK, Kianizad K, Awong G, Zúñiga-Pflücker JC. Induction of T-cell development by Delta-like 4-expressing fibroblasts. Int Immunol 2013; 25:601-11. [PMID: 23988616 DOI: 10.1093/intimm/dxt027] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The thymus provides a unique environment for the induction of T-cell lineage commitment and differentiation, which is predicted by specific Notch ligand-receptor interactions on epithelial cells and lymphoid progenitors, respectively. Accordingly, a bone marrow-derived stromal cell line (OP9) ectopically expressing the Notch ligand Delta-like 1 (Dll1) or Dll4 (OP9-DL1 and OP9-DL4, respectively) gains the ability to recapitulate thymus-like function, supporting T-cell differentiation of both mouse and human progenitors. In this study, we extend these findings by demonstrating that, unlike the NIH3T3 cell line, mouse primary fibroblasts made to express Dll4 (mFibro-DL4) acquire the capacity to promote and support T-cell development from hematopoietic stem cells (HSCs) into TCRαβ(+), CD4(+) and CD8(+) T-lineage cells. However, mFibro-DL4 cells showed a lower efficiency of T-cell generation than OP9-DL4 cells did. Nevertheless, progenitor T-cells (CD117(+) CD44(+) CD25(+)) generated in HSC/mFibro-DL4 co-cultures, when intravenously transferred into immunodeficient (Rag2(-/-) γc(-/-)) mice, home to the thymus, undergo differentiation, and give rise to mature T-cells that go on to populate the periphery. Surprisingly, primary human fibroblast cells expressing Dll4 showed very low efficiency in supporting human T-lineage differentiation, which could not be improved by blocking myelopoiesis. Nevertheless, mFibro-DL4 cells could support human T-cell lineage differentiation. Our results provide a functional framework for the induction of T-cell development using easily accessible fibroblasts made to express Dll4. These cells, which are amenable for in vitro applications, can be further utilized in the design of individualized systems for T-cell production, with implications for the treatment of immunodeficiencies.
Collapse
Affiliation(s)
- Mahmood Mohtashami
- Department of Immunology, Sunnybrook Research Institute, University of Toronto, Toronto, Ontario, M4N 3M5 Canada
| | | | | | | | | |
Collapse
|
39
|
Abstract
T cells employ a cell surface heterodimeric molecule, the T cell receptor (TCR), to recognize specific antigens (Ags) presented by major histocompatibility complex (MHC) molecules and carry out adaptive immune responses. Most T cells possess a TCR with an α and a β chain. However, a TCR constituted by a γ and a δ chain has been described, defining a novel subset of T cells. γδ TCRs specific for a wide variety of ligands, including bacterial phosphoantigens, nonclassical MHC-I molecules and unprocessed proteins, have been found, greatly expanding the horizons of T cell immune recognition. This review aims to provide background in γδ T cell history and function in mouse and man, as well as to provide a critical view of some of the latest developments on this still enigmatic class of immune cells.
Collapse
Affiliation(s)
- Leonardo M R Ferreira
- Department of Molecular and Cellular Biology and Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
40
|
Luche H, Nageswara Rao T, Kumar S, Tasdogan A, Beckel F, Blum C, Martins VC, Rodewald HR, Fehling HJ. In vivo fate mapping identifies pre-TCRα expression as an intra- and extrathymic, but not prethymic, marker of T lymphopoiesis. ACTA ACUST UNITED AC 2013; 210:699-714. [PMID: 23509324 PMCID: PMC3620354 DOI: 10.1084/jem.20122609] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
A novel pre-TCRα (pTα) reporter mouse reveals that expression of pTα is confined to the T lineage and does not occur on prethymic progenitors. Expression of the pre–T cell receptor α (pTα) gene has been exploited in previous studies as a molecular marker to identify tiny cell populations in bone marrow (BM) and blood that were suggested to contain physiologically relevant thymus settling progenitors (TSPs). But to what extent these cells genuinely contribute to thymopoiesis has remained obscure. We have generated a novel pTαiCre knockin mouse line and performed lineage-tracing experiments to precisely quantitate the contribution of pTα-expressing progenitors to distinct differentiation pathways and to the genealogy of mature hematopoietic cells under physiological in vivo conditions. Using these mice in combination with fluorescent reporter strains, we observe highly consistent labeling patterns that identify pTα expression as a faithful molecular marker of T lineage commitment. Specifically, the fate of pTα-expressing progenitors was found to include all αβ and most γδ T cells but, in contrast to previous assumptions, to exclude B, NK, and thymic dendritic cells. Although we could detect small numbers of T cell progenitors with a history of pTα expression in BM and blood, our data clearly exclude these populations as physiologically important precursors of thymopoiesis and indicate that they instead belong to a pathway of T cell maturation previously defined as extrathymic.
Collapse
Affiliation(s)
- Hervé Luche
- Institute of Immunology, University Clinics Ulm, D-89081 Ulm, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Barbu-Tudoran L, Gavriliuc OI, Paunescu V, Mic FA. Accumulation of tissue macrophages and depletion of resident macrophages in the diabetic thymus in response to hyperglycemia-induced thymocyte apoptosis. J Diabetes Complications 2013; 27:114-22. [PMID: 23153674 DOI: 10.1016/j.jdiacomp.2012.10.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2012] [Revised: 10/08/2012] [Accepted: 10/09/2012] [Indexed: 10/27/2022]
Abstract
AIMS We investigated the dynamics and morphology of thymus macrophages in response to thymus involution caused by hyperglycemia. Thymus is an organ affected early and dramatically after the onset of diabetes, losing most of the thymocyte populations but diabetes's impact on the components of the thymus stroma is largely unknown. METHODS Rats were injected with streptozotocin and thymus weight, body weight, and glycemia were measured at various time points. The dynamics and morphology of macrophages in the diabetic thymus were investigated by histology, immunohistochemistry, qPCR, electron microscopy and flow cytometry. RESULTS In hyperglycemic animals the involuting thymus is gradually infiltrated by tissue macrophages (ED1-positive) and depleted of resident macrophages (ED2-positive). While ED1 positive macrophages are scattered in both cortex and medulla the ED2 positive ones are limited to the cortex and cortico-medullary junction. CD4+CD11b+macrophages also accumulate. The TUNEL reaction that detects the degradation of the DNA from apoptotic thymocytes in the macrophages is enhanced. The thymic macrophages enlarge and accumulate lipid vacuoles and apoptotic bodies. qPCR measurements of the expression of macrophage markers showed a persistent increase in the diabetic thymus after the injection of streptozotocin. CONCLUSIONS Thymus involutes rapidly and persistently after the onset of hyperglycemia because of the elevated apoptosis in the thymocytes. Tissue macrophages accumulate in the thymus and the resident macrophages decrease. This results in an overall increase in macrophage activity in the diabetic thymus in response to the elevated apoptosis of thymocytes produced by hyperglycemia.
Collapse
|
42
|
Liu T, Huo X, Liu G, Chopra AK. WITHDRAWN: The majority of T cells, including Treg cells, are developed from CD4 -CD8 -T progenitor cells without the involvement of the CD4 +CD8 + stage in the thymus. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2013:S0145-305X(13)00003-7. [PMID: 23333732 DOI: 10.1016/j.dci.2012.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Revised: 12/16/2012] [Accepted: 12/19/2012] [Indexed: 02/05/2023]
Abstract
This article has been withdrawn at the request of the editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at http://www.elsevier.com/locate/withdrawalpolicy.
Collapse
Affiliation(s)
- Tie Liu
- The Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China; Analytical Cytology Laboratory and Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou 515041, China.
| | | | | | | |
Collapse
|
43
|
Zúñiga-Pflücker JC. When three negatives made a positive influence in defining four early steps in T cell development. THE JOURNAL OF IMMUNOLOGY 2013; 189:4201-2. [PMID: 23087424 DOI: 10.4049/jimmunol.1202553] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
44
|
Abstract
The mouse thymus supports T-cell development, but also contains non-T-cell lineages such as dendritic cells, macrophages, and granulocytes that are necessary for T-cell repertoire selection and apoptotic thymocyte clearance. Early thymic progenitors (ETPs) are not committed to the T-cell lineage, as demonstrated by both in vitro and in vivo assays. Whether ETPs realize non-T-cell lineage potentials in vivo is not well understood and indeed is controversial. In the present study, we investigated whether ETPs are the major precursors of any non-T-lineage cells in the thymus. We analyzed the development of these populations under experimental circumstances in which ETPs are nearly absent due to either abrogated thymic settling or inhibition of early thymic development by genetic ablation of IL-7 receptorα or Hes1. Results obtained using multiple in vivo approaches indicate that the majority of thymic granulocytes derive from ETPs. These data indicate that myelolymphoid progenitors settle the thymus and thus clarify the pathways by which stem cells give rise to downstream blood cell lineages.
Collapse
|
45
|
Ross EA, Coughlan RE, Flores-Langarica A, Lax S, Nicholson J, Desanti GE, Marshall JL, Bobat S, Hitchcock J, White A, Jenkinson WE, Khan M, Henderson IR, Lavery GG, Buckley CD, Anderson G, Cunningham AF. Thymic function is maintained during Salmonella-induced atrophy and recovery. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2012; 189:4266-74. [PMID: 22993205 PMCID: PMC3912538 DOI: 10.4049/jimmunol.1200070] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Thymic atrophy is a frequent consequence of infection with bacteria, viruses, and parasites and is considered a common virulence trait between pathogens. Multiple reasons have been proposed to explain this atrophy, including premature egress of immature thymocytes, increased apoptosis, or thymic shutdown to prevent tolerance to the pathogen from developing. The severe loss in thymic cell number can reflect an equally dramatic reduction in thymic output, potentially reducing peripheral T cell numbers. In this study, we examine the relationship between systemic Salmonella infection and thymic function. During infection, naive T cell numbers in peripheral lymphoid organs increase. Nevertheless, this occurs despite a pronounced thymic atrophy caused by viable bacteria, with a peak 50-fold reduction in thymocyte numbers. Thymic atrophy is not dependent upon homeostatic feedback from peripheral T cells or on regulation of endogenous glucocorticoids, as demonstrated by infection of genetically altered mice. Once bacterial numbers fall, thymocyte numbers recover, and this is associated with increases in the proportion and proliferation of early thymic progenitors. During atrophy, thymic T cell maturation is maintained, and single-joint TCR rearrangement excision circle analysis reveals there is only a modest fall in recent CD4(+) thymic emigrants in secondary lymphoid tissues. Thus, thymic atrophy does not necessarily result in a matching dysfunctional T cell output, and thymic homeostasis can constantly adjust to systemic infection to ensure that naive T cell output is maintained.
Collapse
Affiliation(s)
- Ewan A. Ross
- MRC centre for Immune Regulation, School of Immunity and Infection, Medical School, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Ruth E. Coughlan
- MRC centre for Immune Regulation, School of Immunity and Infection, Medical School, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Adriana Flores-Langarica
- MRC centre for Immune Regulation, School of Immunity and Infection, Medical School, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Sian Lax
- MRC centre for Immune Regulation, School of Immunity and Infection, Medical School, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Julia Nicholson
- MRC centre for Immune Regulation, School of Immunity and Infection, Medical School, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Guillaume E. Desanti
- MRC centre for Immune Regulation, School of Immunity and Infection, Medical School, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Jennifer L. Marshall
- MRC centre for Immune Regulation, School of Immunity and Infection, Medical School, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Saeeda Bobat
- MRC centre for Immune Regulation, School of Immunity and Infection, Medical School, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Jessica Hitchcock
- MRC centre for Immune Regulation, School of Immunity and Infection, Medical School, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Andrea White
- MRC centre for Immune Regulation, School of Immunity and Infection, Medical School, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - William E. Jenkinson
- MRC centre for Immune Regulation, School of Immunity and Infection, Medical School, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Mahmood Khan
- MRC centre for Immune Regulation, School of Immunity and Infection, Medical School, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Ian R. Henderson
- MRC centre for Immune Regulation, School of Immunity and Infection, Medical School, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Gareth G. Lavery
- Centre for Endocrinology, Diabetes and Metabolism, School of Clinical and Experimental Medicine, Institute for Biomedical Research, Medical School, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Christopher D. Buckley
- MRC centre for Immune Regulation, School of Immunity and Infection, Medical School, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Graham Anderson
- MRC centre for Immune Regulation, School of Immunity and Infection, Medical School, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Adam F. Cunningham
- MRC centre for Immune Regulation, School of Immunity and Infection, Medical School, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| |
Collapse
|
46
|
Rehg JE, Bush D, Ward JM. The utility of immunohistochemistry for the identification of hematopoietic and lymphoid cells in normal tissues and interpretation of proliferative and inflammatory lesions of mice and rats. Toxicol Pathol 2012; 40:345-74. [PMID: 22434870 DOI: 10.1177/0192623311430695] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Expression of antigens in cells and tissues can be readily studied immunohistochemically with the use of antibodies. A panel of antibodies to cell-specific markers can be used to diagnose lesions, including tumors, in the hematopoietic and lymphoid systems. This review discusses the use of readily available antibodies and procedures to identify antigens expressed in normal tissues and in proliferative and inflammatory lesions in formalin-fixed, paraffin-embedded (FFPE) murine specimens.
Collapse
Affiliation(s)
- Jerold E Rehg
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA.
| | | | | |
Collapse
|
47
|
Gerondakis S, Banerjee A, Grigoriadis G, Vasanthakumar A, Gugasyan R, Sidwell T, Grumont RJ. NF-κB subunit specificity in hemopoiesis. Immunol Rev 2012; 246:272-85. [PMID: 22435561 DOI: 10.1111/j.1600-065x.2011.01090.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Although the diverse functions served by the nuclear factor-κB (NF-κB) pathway in virtually all cell types are typically employed to deal with stress responses, NF-κB transcription factors also play key roles in the development of hemopoietic cells. This review focuses on how NF-κB transcription factors control various aspects of thymic T-cell and myeloid cell differentiation that include its roles in hemopoietic precursors, conventional αβ T cells, CD4(+) regulatory T cells, natural killer T cells, γδ T cells, macrophages, and dendritic cells.
Collapse
|
48
|
Ceredig R, Rolink AG. The key role of IL-7 in lymphopoiesis. Semin Immunol 2012; 24:159-64. [DOI: 10.1016/j.smim.2012.02.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Accepted: 02/15/2012] [Indexed: 02/03/2023]
|
49
|
Belyaev NN, Biró J, Athanasakis D, Fernandez-Reyes D, Potocnik AJ. Global transcriptional analysis of primitive thymocytes reveals accelerated dynamics of T cell specification in fetal stages. Immunogenetics 2012; 64:591-604. [PMID: 22581009 PMCID: PMC3395349 DOI: 10.1007/s00251-012-0620-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Accepted: 04/24/2012] [Indexed: 11/24/2022]
Abstract
T cell development constitutes a multistage process allowing the dissection of events resulting in cellular commitment and functional specification in a specialized microenvironment. This process is guided by the appropriate expression of regulatory genetic factors like transcriptional activators or repressors which are, in part, dependent on instructive signals of the microenvironment. To date, it remains unclear whether exactly the same genetic mechanism acts in adult compared to fetal T cell development. In order to directly compare T cell commitment during adult and fetal differentiation, we isolated subsequent stages of intrathymic subpopulations starting with early canonical T cell progenitors up to irreversibly committed T cell precursors. The genome-wide analysis revealed several distinct gene clusters with a specific pattern of gene regulation for each subset. The largest cluster contained genes upregulated after transition through the most primitive pool into the next transitory population with a consistently elevated expression of elements associated with ongoing T cell fate specification, like Gata3 and Tcf7, in fetal progenitors. Furthermore, adult and fetal T cell progenitors occupied distinct "transcriptional territories" revealing a precise land map of the progression to final T cell commitment operating in different developmental windows. The presence and/or elevated expression of elements associated with an ongoing establishment of a T cell signature in the most primitive fetal subset is highly suggestive for an extrathymic initiation of T cell specification and underlines the fundamental differences in fetal versus adult lymphopoiesis.
Collapse
Affiliation(s)
- Nikolai N Belyaev
- Division of Molecular Immunology, MRC National Institute for Medical Research, London, UK
| | | | | | | | | |
Collapse
|
50
|
Wen X, Liu H, Xiao G, Liu X. Downregulation of the transcription factor KLF4 is required for the lineage commitment of T cells. Cell Res 2011; 21:1701-10. [PMID: 22105482 DOI: 10.1038/cr.2011.183] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The roles of the reprogramming factors Oct4, Sox2, c-Myc and Klf4 in early T cell development are incompletely defined. Here, we show that Klf4 is the only reprogramming factor whose expression is downregulated when early thymic progenitors (ETPs) differentiate into T cells. Enforced expression of Klf4 in uncommitted progenitors severely impaired T cell development mainly at the DN2-to-DN3 transition when T cell lineage commitment occurs and affected the transcription of a variety of genes with crucial functions in early T cell development, including genes involved in microenvironmental signaling (IL-7Rα), Notch target genes (Deltex1), and essential T cell lineage regulatory or inhibitory genes (Bcl11a, SpiB, and Id1). The survival of thymocytes and the rearrangement at the Tcrb locus were impaired in the presence of enforced Klf4 expression. The defects in the DN1-to-DN2 and DN2-to-DN3 transitions in Klf4 transgenic mice could not be rescued by the introduction of a TCR transgene, but was partially rescued by restoring the expression of IL-7Rα. Thus, our data indicate that the downregulation of Klf4 is a prerequisite for T cell lineage commitment.
Collapse
Affiliation(s)
- Xiaomin Wen
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | | | | | | |
Collapse
|