1
|
Shi L, Zhou X, Qi P. Resin Acid Copper Salt, an Interesting Chemical Pesticide, Controls Rice Bacterial Leaf Blight by Regulating Bacterial Biofilm, Motility, and Extracellular Enzymes. Molecules 2024; 29:4297. [PMID: 39339292 PMCID: PMC11434517 DOI: 10.3390/molecules29184297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/04/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024] Open
Abstract
Bacterial virulence plays an important role in infection. Antibacterial virulence factors are effective for preventing crop bacterial diseases. Resin acid copper salt as an effective inhibitor exhibited excellent anti-Xanthomonas oryzae pv. oryzae (Xoo) activity with an EC50 of 50.0 μg mL-1. Resin acid copper salt (RACS) can reduce extracellular polysaccharides' (EPS's) biosynthesis by down-regulating gumB relative expression. RACS can also effectively inhibit the bio-mass of Xoo biofilm. It can reduce the activity of Xoo extracellular amylase at a concentration of 100 μg mL-1. Meanwhile, the results of virtual computing suggested that RACS is an enzyme inhibitor. RACS displayed good curative activity with a control effect of 38.5%. Furthermore, the result of the phytotoxicity assessment revealed that RACS exhibited slight toxicity compared with the control at a concentration of 200 μg mL-1. The curative effect was increased to 45.0% using an additional antimicrobial agent like orange peel essential oil. RACS markedly inhibited bacterial pathogenicity at a concentration of 100 μg mL-1 in vivo.
Collapse
Affiliation(s)
- Lihong Shi
- Guizhou Province Engineering Research Center of Medical Resourceful Healthcare Products, College of Pharmacy, Guiyang Healthcare Vocational University, Guiyang 550081, China;
| | - Xiang Zhou
- National Key Laboratory of Green Pesticide, Center for R&D of Fine Chemicals, Guizhou University, Guiyang 550025, China
| | - Puying Qi
- National Key Laboratory of Green Pesticide, Center for R&D of Fine Chemicals, Guizhou University, Guiyang 550025, China
| |
Collapse
|
2
|
Chen S, Tao Z, Shen Y, Yang R, Yan S, Chen Z, Sun B, Yang X. Magnaporthe oryzae infection triggers rice resistance to brown planthopper through the influence of jasmonic acid on the flavonoid biosynthesis pathway. INSECT SCIENCE 2024. [DOI: 10.1111/1744-7917.13378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 04/17/2024] [Indexed: 12/10/2024]
Abstract
AbstractIn agroecosystems, plants are constantly exposed to attack from diverse herbivorous insects and microbes, and infestation with one species may change the plant defense response to other species. In our investigation of the relationships among rice plants, the brown planthopper Nilaparvata lugens (Stål) and the rice blast fungus Magnaporthe oryzae, we observed a significant increase in the resistance of rice treated with rice blast to N. lugens, as evidenced by improved plant survival rates in a small population resistance study. Subsequent transcriptome data analysis revealed that the rice blast fungus can induce the expression of genes in the jasmonic acid (JA) and flavonoid pathways. Similar to the flavonoid pathway, the JA pathway also contains 2 types of genes that exhibit similar and opposite trends in response to N. lugens and rice blast. Among these genes, the osjaz1 mutant and the osmyc2 mutant were phenotypically confirmed to positively and negatively regulate rice resistance to N. lugens and rice blast, respectively. Subsequent mass spectrometry and quantification experiments showed that the exogenous application of methyl jasmonate (MeJA) can induce the accumulation of eriodictyol, naringenin and quercetin, as well as the expression of OsF3H, Os4CL5 and OsCHI in the flavonoid pathway. This suggests a close connection between the JA pathway and the flavonoid pathway. However, OsF3'H, which negatively regulates rice resistance to N. lugens and rice blast, did not show increased expression. Phenotypic and molecular experiments confirmed that OsMYC2 can bind to and inhibit the expression of OsF3'H, thus revealing the mechanism of rice resistance to N. lugens after treatment with rice blast. These findings will deepen our understanding of the interactions among rice, N. lugens and rice blast.
Collapse
Affiliation(s)
- Su Chen
- Precision Medicine Laboratory for Chronic Non‐communicable Diseases of Shandong Province, Institute of Precision Medicine Jining Medical University Jining Shandong Province China
| | - Zhihuan Tao
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences Institute of Plant Physiology and Ecology, Chinese Academy of Sciences Shanghai China
| | - Yanjie Shen
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences Institute of Plant Physiology and Ecology, Chinese Academy of Sciences Shanghai China
| | - Rui Yang
- Precision Medicine Laboratory for Chronic Non‐communicable Diseases of Shandong Province, Institute of Precision Medicine Jining Medical University Jining Shandong Province China
| | - Siyuan Yan
- Precision Medicine Laboratory for Chronic Non‐communicable Diseases of Shandong Province, Institute of Precision Medicine Jining Medical University Jining Shandong Province China
| | - Zixu Chen
- College of Medical Engineering & The Key Laboratory for Medical Functional Nanomaterials Jining Medical University Jining Shandong Province China
| | - Bo Sun
- Institute of Bioengineering, College of Chemical and Biological Engineering Zhejiang University Hangzhou China
| | - Xiaofang Yang
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences Institute of Plant Physiology and Ecology, Chinese Academy of Sciences Shanghai China
| |
Collapse
|
3
|
Wang T, Wang G, Zhang J, Xuan J. E3 Ubiquitin Ligase PUB23 in Kiwifruit Interacts with Trihelix Transcription Factor GT1 and Negatively Regulates Immune Responses against Pseudomonas syringae pv. actinidiae. Int J Mol Sci 2024; 25:1930. [PMID: 38339209 PMCID: PMC10856358 DOI: 10.3390/ijms25031930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/01/2024] [Accepted: 02/02/2024] [Indexed: 02/12/2024] Open
Abstract
Kiwifruit bacterial canker caused by Pseudomonas syringae pv. actinidiae (Psa) is the most serious disease threatening kiwifruit production. Our previous study found genes encoding the U-box containing proteins were significantly regulated by Psa infection. Here, we report a U-box type E3 ubiquitin ligase PUB23 in kiwifruit which acts as a negative regulator of immune responses against Psa. PUB23 was found to physically interact with GT1, a trihelix transcription factor, in vitro and in vivo. The expression of GT1 was up-regulated in PUB23-silenced plants, indicating that interacting with PUB23 may directly or indirectly suppress GT1 expression. The silencing of PUB23 led to enhanced immune responses of PAMP-triggered immunity (PTI), including a higher expression level of defense marker genes PR1 and RIN4, and increased accumulation of hydrogen peroxide and superoxide anion. Our results reveal a negative role PUB23 plays in kiwifruit immune responses against Psa and may regulate gene expression by interacting with GT1.
Collapse
Affiliation(s)
| | | | | | - Jiping Xuan
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China; (T.W.); (G.W.); (J.Z.)
| |
Collapse
|
4
|
Johnson JMB, Kunkel BN. AefR, a TetR Family Transcriptional Repressor, Regulates Several Auxin Responses in Pseudomonas syringae Strain PtoDC3000. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2024; 37:155-165. [PMID: 38079389 DOI: 10.1094/mpmi-10-23-0170-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
The plant hormone indole-3-acetic acid (IAA), also known as auxin, plays important roles in plant growth and development, as well as in several plant-microbe interactions. IAA also acts as a microbial signal and in many bacteria regulates metabolism, stress responses, and virulence. In the bacterial plant pathogen Pseudomonas syringae pv. tomato strain DC3000 (PtoDC3000), exposure to IAA results in large-scale transcriptional reprogramming, including the differential expression of several known virulence genes. However, how PtoDC3000 senses and responds to IAA and what aspects of its biology are regulated by IAA is not understood. To investigate the mechanisms involved in perceiving and responding to IAA, we carried out a genetic screen for mutants with altered responses to IAA. One group of mutants of particular interest carried disruptions in the aefR gene encoding a TetR family transcriptional regulator. Gene expression analysis confirmed that the aefR mutants have altered responses to IAA. Thus, AefR is the first demonstrated auxin response regulator in PtoDC3000. We also investigated several aspects of PtoDC3000 biology that are regulated by both AefR and IAA, including antibiotic resistance, motility, and virulence. The observation that the aefR mutant has altered virulence on Arabidopsis, suggests that the sector of the IAA response regulated by aefR is important during pathogenesis. Our findings also provide evidence that AefR plays a role in coordinating changes in gene expression during the transition from early to late stages of infection. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Joshua M B Johnson
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, U.S.A
| | - Barbara N Kunkel
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, U.S.A
| |
Collapse
|
5
|
Chen X, Zou K, Li X, Chen F, Cheng Y, Li S, Tian L, Shang S. Transcriptomic Analysis of the Response of Susceptible and Resistant Bitter Melon ( Momordica charantia L.) to Powdery Mildew Infection Revealing Complex Resistance via Multiple Signaling Pathways. Int J Mol Sci 2023; 24:14262. [PMID: 37762563 PMCID: PMC10532008 DOI: 10.3390/ijms241814262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/07/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023] Open
Abstract
The challenge of mitigating the decline in both yield and fruit quality due to the intrusion of powdery mildew (PM) fungus looms as a pivotal concern in the domain of bitter melon cultivation. Yet, the intricate mechanisms that underlie resistance against this pathogen remain inscrutable for the vast majority of bitter melon variants. In this inquiry, we delve deeply into the intricate spectrum of physiological variations and transcriptomic fluctuations intrinsic to the PM-resistant strain identified as '04-17-4' (R), drawing a sharp contrast with the PM-susceptible counterpart, designated as '25-15' (S), throughout the encounter with the pathogenic agent Podosphaera xanthii. In the face of the challenge presented by P. xanthii, the robust cultivar displays an extraordinary capacity to prolong the initiation of the pathogen's primary growth stage. The comprehensive exploration culminates in the discernment of 6635 and 6954 differentially expressed genes (DEGs) in R and S strains, respectively. Clarification through the lens of enrichment analyses reveals a prevalence of enriched DEGs in pathways interconnected with phenylpropanoid biosynthesis, the interaction of plants with pathogens, and the signaling of plant hormones. Significantly, in the scope of the R variant, DEGs implicated in the pathways of plant-pathogen interaction phenylpropanoid biosynthesis, encompassing components such as calcium-binding proteins, calmodulin, and phenylalanine ammonia-lyase, conspicuously exhibit an escalated tendency upon the encounter with P. xanthii infection. Simultaneously, the genes governing the synthesis and transduction of SA undergo a marked surge in activation, while their counterparts in the JA signaling pathway experience inhibition following infection. These observations underscore the pivotal role played by SA/JA signaling cascades in choreographing the mechanism of resistance against P. xanthii in the R variant. Moreover, the recognition of 40 P. xanthii-inducible genes, encompassing elements such as pathogenesis-related proteins, calmodulin, WRKY transcription factors, and Downy mildew resistant 6, assumes pronounced significance as they emerge as pivotal contenders in the domain of disease control. The zenith of this study harmonizes multiple analytical paradigms, thus capturing latent molecular participants and yielding seminal resources crucial for the advancement of PM-resistant bitter melon cultivars.
Collapse
Affiliation(s)
- Xuanyu Chen
- Sanya Institute of Breeding and Multiplication, Hainan University, Sanya 572025, China
- The Key Laboratory of Tropical Horticultural Crops Quality Regulation of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Kaixi Zou
- Sanya Institute of Breeding and Multiplication, Hainan University, Sanya 572025, China
- The Key Laboratory of Tropical Horticultural Crops Quality Regulation of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Xuzhen Li
- Sanya Institute of Breeding and Multiplication, Hainan University, Sanya 572025, China
- The Key Laboratory of Tropical Horticultural Crops Quality Regulation of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Feifan Chen
- Sanya Institute of Breeding and Multiplication, Hainan University, Sanya 572025, China
- The Key Laboratory of Tropical Horticultural Crops Quality Regulation of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Yuyu Cheng
- Sanya Institute of Breeding and Multiplication, Hainan University, Sanya 572025, China
- The Key Laboratory of Tropical Horticultural Crops Quality Regulation of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Shanming Li
- Sanya Institute of Breeding and Multiplication, Hainan University, Sanya 572025, China
- School of Life Sciences, Hainan University, Haikou 570228, China
| | - Libo Tian
- Sanya Institute of Breeding and Multiplication, Hainan University, Sanya 572025, China
- The Key Laboratory of Tropical Horticultural Crops Quality Regulation of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Sang Shang
- Sanya Institute of Breeding and Multiplication, Hainan University, Sanya 572025, China
- School of Life Sciences, Hainan University, Haikou 570228, China
| |
Collapse
|
6
|
Anderson JC. Ill Communication: Host Metabolites as Virulence-Regulating Signals for Plant-Pathogenic Bacteria. ANNUAL REVIEW OF PHYTOPATHOLOGY 2023; 61:49-71. [PMID: 37253693 DOI: 10.1146/annurev-phyto-021621-114026] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Plant bacterial pathogens rely on host-derived signals to coordinate the deployment of virulence factors required for infection. In this review, I describe how diverse plant-pathogenic bacteria detect and respond to plant-derived metabolic signals for the purpose of virulence gene regulation. I highlight examples of how pathogens perceive host metabolites through membrane-localized receptors as well as intracellular response mechanisms. Furthermore, I describe how individual strains may coordinate their virulence using multiple distinct host metabolic signals, and how plant signals may positively or negatively regulate virulence responses. I also describe how plant defenses may interfere with the perception of host metabolites as a means to dampen pathogen virulence. The emerging picture is that recognition of host metabolic signals for the purpose of virulence gene regulation represents an important primary layer of interaction between pathogenic bacteria and host plants that shapes infection outcomes.
Collapse
Affiliation(s)
- Jeffrey C Anderson
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, USA;
| |
Collapse
|
7
|
Dermastia M, Tomaž Š, Strah R, Lukan T, Coll A, Dušak B, Anžič B, Čepin T, Wienkoop S, Kladnik A, Zagorščak M, Riedle-Bauer M, Schönhuber C, Weckwerth W, Gruden K, Roitsch T, Pompe Novak M, Brader G. Candidate pathogenicity factor/effector proteins of ' Candidatus Phytoplasma solani' modulate plant carbohydrate metabolism, accelerate the ascorbate-glutathione cycle, and induce autophagosomes. FRONTIERS IN PLANT SCIENCE 2023; 14:1232367. [PMID: 37662165 PMCID: PMC10471893 DOI: 10.3389/fpls.2023.1232367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 07/31/2023] [Indexed: 09/05/2023]
Abstract
The pathogenicity of intracellular plant pathogenic bacteria is associated with the action of pathogenicity factors/effectors, but their physiological roles for most phytoplasma species, including 'Candidiatus Phytoplasma solani' are unknown. Six putative pathogenicity factors/effectors from six different strains of 'Ca. P. solani' were selected by bioinformatic analysis. The way in which they manipulate the host cellular machinery was elucidated by analyzing Nicotiana benthamiana leaves after Agrobacterium-mediated transient transformation with the pathogenicity factor/effector constructs using confocal microscopy, pull-down, and co-immunoprecipitation, and enzyme assays. Candidate pathogenicity factors/effectors were shown to modulate plant carbohydrate metabolism and the ascorbate-glutathione cycle and to induce autophagosomes. PoStoSP06, PoStoSP13, and PoStoSP28 were localized in the nucleus and cytosol. The most active effector in the processes studied was PoStoSP06. PoStoSP18 was associated with an increase in phosphoglucomutase activity, whereas PoStoSP28, previously annotated as an antigenic membrane protein StAMP, specifically interacted with phosphoglucomutase. PoStoSP04 induced only the ascorbate-glutathione cycle along with other pathogenicity factors/effectors. Candidate pathogenicity factors/effectors were involved in reprogramming host carbohydrate metabolism in favor of phytoplasma own growth and infection. They were specifically associated with three distinct metabolic pathways leading to fructose-6-phosphate as an input substrate for glycolysis. The possible significance of autophagosome induction by PoStoSP28 is discussed.
Collapse
Affiliation(s)
- Marina Dermastia
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Špela Tomaž
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
- Jožef Stefan International Postgraduate School, Ljubljana, Slovenia
| | - Rebeka Strah
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
- Jožef Stefan International Postgraduate School, Ljubljana, Slovenia
| | - Tjaša Lukan
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Anna Coll
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Barbara Dušak
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
- Department of Plant and Environmental Sciences, University of Copenhagen, Taastrup, Denmark
| | - Barbara Anžič
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Timotej Čepin
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Stefanie Wienkoop
- Department of Functional and Evolutionary Ecology, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | - Aleš Kladnik
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Maja Zagorščak
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Monika Riedle-Bauer
- Federal College and Research Institute for Viticulture and Pomology Klosterneuburg, Klosterneuburg, Austria
| | - Christina Schönhuber
- Bioresources Unit, Health & Environment Department, Austrian Institute of Technology, Tulln, Austria
| | - Wolfram Weckwerth
- Department of Functional and Evolutionary Ecology, Faculty of Life Sciences, University of Vienna, Vienna, Austria
- Vienna Metabolomics Center (VIME), University of Vienna, Vienna, Austria
| | - Kristina Gruden
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Thomas Roitsch
- Department of Plant and Environmental Sciences, University of Copenhagen, Taastrup, Denmark
| | - Maruša Pompe Novak
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
- Faculty of Viticulture and Enology, University of Nova Gorica, Vipava, Slovenia
| | - Günter Brader
- Bioresources Unit, Health & Environment Department, Austrian Institute of Technology, Tulln, Austria
| |
Collapse
|
8
|
Shi H, Yang Z, Huang J, Wu H, Fu S, Li W, Zou X, Zhou C, Wang X. An effector of 'Candidatus Liberibacter asiaticus' manipulates autophagy to promote bacterial infection. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:4670-4684. [PMID: 37166404 DOI: 10.1093/jxb/erad176] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 05/10/2023] [Indexed: 05/12/2023]
Abstract
Autophagy functions in plant host immunity responses to pathogen infection. The molecular mechanisms and functions used by the citrus Huanglongbing (HLB)-associated intracellular bacterium 'Candidatus Liberibacter asiaticus' (CLas) to manipulate autophagy are unknown. We identified a CLas effector, SDE4405 (CLIBASIA_04405), which contributes to HLB progression. 'Wanjincheng' orange (Citrus sinensis) transgenic plants expressing SDE4405 promotes CLas proliferation and symptom expression via suppressing host immunity responses. SDE4405 interacts with the ATG8-family of proteins (ATG8s), and their interactions activate autophagy in Nicotiana benthamiana. The occurrence of autophagy is also significantly enhanced in SDE4405-transgenic citrus plants. Interrupting NbATG8s-SDE4405 interaction by silencing of NbATG8c reduces Pseudomonas syringae pv. tomato strain DC3000ΔhopQ1-1 (Pst DC3000ΔhopQ1-1) proliferation in N. benthamiana, and transient overexpression of CsATG8c and SDE4405 in citrus promotes Xanthomonas citri subsp. citri (Xcc) multiplication, suggesting that SDE4405-ATG8s interaction negatively regulates plant defense. These results demonstrate the role of the CLas effector protein in manipulating autophagy, and provide new molecular insights into the interaction between CLas and citrus hosts.
Collapse
Affiliation(s)
- Hongwei Shi
- National Citrus Engineering Research Center, Citrus Research Institute, Southwest University, Chongqing 400712, China
| | - Zuhui Yang
- National Citrus Engineering Research Center, Citrus Research Institute, Southwest University, Chongqing 400712, China
| | - Jie Huang
- National Citrus Engineering Research Center, Citrus Research Institute, Southwest University, Chongqing 400712, China
| | - Haodi Wu
- National Citrus Engineering Research Center, Citrus Research Institute, Southwest University, Chongqing 400712, China
| | - Shimin Fu
- National Citrus Engineering Research Center, Citrus Research Institute, Southwest University, Chongqing 400712, China
| | - Weimin Li
- Key Laboratory for Northern Urban Agriculture of Ministry of Agriculture and Rural Affairs, Beijing University of Agriculture, Beijing 102206, China
| | - Xiuping Zou
- National Citrus Engineering Research Center, Citrus Research Institute, Southwest University, Chongqing 400712, China
| | - Changyong Zhou
- National Citrus Engineering Research Center, Citrus Research Institute, Southwest University, Chongqing 400712, China
| | - Xuefeng Wang
- National Citrus Engineering Research Center, Citrus Research Institute, Southwest University, Chongqing 400712, China
| |
Collapse
|
9
|
Kumari M, Kapoor R, Devanna BN, Varshney S, Kamboj R, Rai AK, Sharma TR. iTRAQ based proteomic analysis of rice lines having single or stacked blast resistance genes: Pi54/ Pi54rh during incompatible interaction with Magnaporthe oryzae. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2023; 29:871-887. [PMID: 37520805 PMCID: PMC10382468 DOI: 10.1007/s12298-023-01327-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 05/12/2023] [Accepted: 06/08/2023] [Indexed: 08/01/2023]
Abstract
Deployment of single or multiple blast resistance (R) genes in rice plant is considered to be the most promising approach to enhance resistance against blast disease caused by fungus Magnaporthe oryzae. At the proteome level, relatively little information about R gene mediated defence mechanisms for single and stacking resistance characteristics is available. The overall objective of this study is to look at the proteomics of rice plants that have R genes; Pi54, Pi54rh and stacked Pi54 + Pi54rh in response to rice blast infection. In this study 'isobaric tag for relative and absolute quantification' (iTRAQ)-based proteomics analysis was performed in rice plants at 72-h post inoculation with Magnaporthe oryzae and various differentially expressed proteins were identified in these three transgenic lines in comparison to wild type during resistance response to blast pathogen. Through STRING analysis, the observed proteins were further examined to anticipate their linked partners, and it was shown that several defense-related proteins were co-expressed. These proteins can be employed as targets in future rice resistance breeding against Magnaporthe oryzae. The current study is the first to report a proteomics investigation of rice lines that express single blast R gene Pi54, Pi54rh and stacked (Pi54 + Pi54rh) during incompatible interaction with Magnaporthe oryzae. The differentially expressed proteins indicated that secondary metabolites, reactive oxygen species-related proteins, phenylpropanoid, phytohormones and pathogenesis-related proteins have a substantial relationship with the defense response against Magnaporthe oryzae. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-023-01327-3.
Collapse
Affiliation(s)
- Mandeep Kumari
- ICAR-National Institute for Plant Biotechnology, New Delhi, India
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Vanasthali, Rajasthan India
| | - Ritu Kapoor
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab India
| | - B. N. Devanna
- ICAR-National Rice Research Institute, Cuttack, Odisha India
| | - Swati Varshney
- CSIR-Institute of Genomics and Integrative Biology, New Delhi, Delhi India
| | - Richa Kamboj
- ICAR-National Institute for Plant Biotechnology, New Delhi, India
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Vanasthali, Rajasthan India
| | - Amit Kumar Rai
- ICAR-National Institute for Plant Biotechnology, New Delhi, India
| | - T. R. Sharma
- ICAR-National Institute for Plant Biotechnology, New Delhi, India
- Division of Crop Science, Indian Council of Agricultural Research, Krishi Bhavan, New Delhi, India
| |
Collapse
|
10
|
Zhou R, Dong Y, Wang C, Liu J, Liang Q, Meng X, Lang X, Xu S, Liu W, Zhang S, Wang N, Yang KQ, Fang H. LncRNA109897-JrCCR4-JrTLP1b forms a positive feedback loop to regulate walnut resistance against anthracnose caused by Colletotrichum gloeosporioides. HORTICULTURE RESEARCH 2023; 10:uhad086. [PMID: 37786525 PMCID: PMC10541558 DOI: 10.1093/hr/uhad086] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 04/20/2023] [Indexed: 10/04/2023]
Abstract
Walnut anthracnose induced by Colletotrichum gloeosporioides is a disastrous disease that severely restricts the development of the walnut industry in China. Long non-coding RNAs (lncRNAs) are involved in adaptive responses to disease, but their roles in the regulation of walnut anthracnose resistance response are not well defined. In this study, transcriptome analysis demonstrated that a C. gloeosporioides-induced lncRNA, lncRNA109897, located upstream from the target gene JrCCR4, upregulated the expression of JrCCR4. JrCCR4 interacted with JrTLP1b and promoted its transcriptional activity. In turn, JrTLP1b induced the transcription of lncRNA109897 to promote its expression. Meanwhile, transient expression in walnut leaves and stable transformation of Arabidopsis thaliana further proved that lncRNA, JrCCR4, and JrTLP1b improve the resistance of C. gloeosporioides. Collectively, these findings provide insights into the mechanism by which the lncRNA109897-JrCCR4-JrTLP1b transcriptional cascade regulates the resistance of walnut to anthracnose.
Collapse
Affiliation(s)
- Rui Zhou
- State Forestry and Grassland Administration Key Laboratory of Silviculture in the Downstream Areas of the Yellow River, Shandong Taishan Forest Ecosystem Research Station, College of Forestry, Shandong Agricultural University, Tai’an, Shandong, China, 271018
| | - Yuhui Dong
- State Forestry and Grassland Administration Key Laboratory of Silviculture in the Downstream Areas of the Yellow River, Shandong Taishan Forest Ecosystem Research Station, College of Forestry, Shandong Agricultural University, Tai’an, Shandong, China, 271018
| | - Changxi Wang
- State Forestry and Grassland Administration Key Laboratory of Silviculture in the Downstream Areas of the Yellow River, Shandong Taishan Forest Ecosystem Research Station, College of Forestry, Shandong Agricultural University, Tai’an, Shandong, China, 271018
| | - Jianning Liu
- State Forestry and Grassland Administration Key Laboratory of Silviculture in the Downstream Areas of the Yellow River, Shandong Taishan Forest Ecosystem Research Station, College of Forestry, Shandong Agricultural University, Tai’an, Shandong, China, 271018
| | - Qiang Liang
- State Forestry and Grassland Administration Key Laboratory of Silviculture in the Downstream Areas of the Yellow River, Shandong Taishan Forest Ecosystem Research Station, College of Forestry, Shandong Agricultural University, Tai’an, Shandong, China, 271018
| | - Xiaoye Meng
- Department of Natural Resources Of Shandong Province, Forestry Protection and Development Service Center, Jinan, Shandong, China, 250000
| | - Xinya Lang
- State Forestry and Grassland Administration Key Laboratory of Silviculture in the Downstream Areas of the Yellow River, Shandong Taishan Forest Ecosystem Research Station, College of Forestry, Shandong Agricultural University, Tai’an, Shandong, China, 271018
| | - Shengyi Xu
- State Forestry and Grassland Administration Key Laboratory of Silviculture in the Downstream Areas of the Yellow River, Shandong Taishan Forest Ecosystem Research Station, College of Forestry, Shandong Agricultural University, Tai’an, Shandong, China, 271018
| | - Wenjun Liu
- State Key Laboratory of Crop Biology, College of Horticulture Sciences and Engineering, Shandong Agricultural University, Tai’an, Shandong, China, 271018
| | - Shuhui Zhang
- State Key Laboratory of Crop Biology, College of Horticulture Sciences and Engineering, Shandong Agricultural University, Tai’an, Shandong, China, 271018
| | - Nan Wang
- State Key Laboratory of Crop Biology, College of Horticulture Sciences and Engineering, Shandong Agricultural University, Tai’an, Shandong, China, 271018
| | - Ke Qiang Yang
- State Forestry and Grassland Administration Key Laboratory of Silviculture in the Downstream Areas of the Yellow River, Shandong Taishan Forest Ecosystem Research Station, College of Forestry, Shandong Agricultural University, Tai’an, Shandong, China, 271018
| | - Hongcheng Fang
- State Forestry and Grassland Administration Key Laboratory of Silviculture in the Downstream Areas of the Yellow River, Shandong Taishan Forest Ecosystem Research Station, College of Forestry, Shandong Agricultural University, Tai’an, Shandong, China, 271018
| |
Collapse
|
11
|
Fang Y, Zhou B, Guo Y, Jiang J, Li X, Xie X. Comparative transcriptome analysis reveals the core molecular network in pattern-triggered immunity in Sorghum bicolor. Int J Biol Macromol 2023:124834. [PMID: 37207754 DOI: 10.1016/j.ijbiomac.2023.124834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 05/07/2023] [Accepted: 05/08/2023] [Indexed: 05/21/2023]
Abstract
Pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI) is the first line of defense in plant disease resistance. However, the molecular mechanisms of plant PTI vary across species, making it challenging to identify a core set of trait-associated genes. This study aimed to investigate key factors that influence PTI and identify the core molecular network in Sorghum bicolor, a C4 plant. We performed comprehensive weighted gene co-expression network analysis and temporal expression analysis of large-scale transcriptome data from various sorghum cultivars under different PAMP treatments. Our results revealed that the type of PAMP had a stronger influence on the PTI network than did the sorghum cultivar. Following PAMP treatment, 30 genes with stable downregulated expression and 158 genes with stable upregulated expression were identified, including genes encoding potential pattern recognition receptors whose expression was upregulated within 1 h of treatment. PAMP treatment altered the expression of resistance-related, signaling, salt-sensitive, heavy metal-related, and transporter genes. These findings provide novel insights into the core genes involved in plant PTI and are expected to facilitate the identification and application of resistance genes in plant breeding studies.
Collapse
Affiliation(s)
- Yuanpeng Fang
- Key Laboratory of Agricultural Microbiology, College of Agriculture, Guizhou University, Guiyang 550025, PR China
| | - Bingqian Zhou
- Key Laboratory of Agricultural Microbiology, College of Agriculture, Guizhou University, Guiyang 550025, PR China
| | - Yushan Guo
- Key Laboratory of Agricultural Microbiology, College of Agriculture, Guizhou University, Guiyang 550025, PR China
| | - Junmei Jiang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, PR China
| | - Xiangyang Li
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, PR China
| | - Xin Xie
- Key Laboratory of Agricultural Microbiology, College of Agriculture, Guizhou University, Guiyang 550025, PR China.
| |
Collapse
|
12
|
Zhuo X, Yu Q, Russo R, Zhang Y, Wei X, Wang YZ, Holden PM, Gmitter FG. Role of long non-coding RNA in regulatory network response to Candidatus Liberibacter asiaticus in citrus. FRONTIERS IN PLANT SCIENCE 2023; 14:1090711. [PMID: 36890903 PMCID: PMC9986497 DOI: 10.3389/fpls.2023.1090711] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 01/16/2023] [Indexed: 06/18/2023]
Abstract
Long non-coding RNAs (lncRNAs) serve as crucial regulators in plant response to various diseases, while none have been systematically identified and characterized in response to citrus Huanglongbing (HLB) caused by Candidatus Liberibacter asiaticus (CLas) bacteria. Here, we comprehensively investigated the transcriptional and regulatory dynamics of the lncRNAs in response to CLas. Samples were collected from leaf midribs of CLas- and mock-inoculated HLB-tolerant rough lemon (Citrus jambhiri) and HLB-sensitive sweet orange (C. sinensis) at week 0, 7, 17, and 34 following inoculation using CLas+ budwood of three biological replicates in the greenhouse. A total of 8,742 lncRNAs, including 2,529 novel lncRNAs, were identified from RNA-seq data with rRNA-removed from strand-specific libraries. Genomic variation analyses of conserved lncRNAs from 38 citrus accessions showed that 26 single nucleotide polymorphisms (SNPs) were significantly correlated with HLB. In addition, lncRNA-mRNA weighted gene co-expression network analysis (WGCNA) showed a significant module correlated with CLas-inoculation in rough lemon. Notably, the most significant LNC_28805 and multiple co-expressed genes related to plant defense in the module were targeted by miRNA5021, suggesting that LNC28805 might compete with endogenous miR5021 to maintain the homeostasis of immune gene expression levels. Candidate WRKY33 and SYP121 genes targeted by miRNA5021 were identified as two key hub genes interacting with bacteria pathogen response genes based on the prediction of protein-protein interaction (PPI) network. These two genes were also found within HLB-associated QTL in linkage group 6. Overall, our findings provide a reference for a better understanding of the role of lncRNAs involved in citrus HLB regulation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Fred G. Gmitter
- Citrus Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL, United States
| |
Collapse
|
13
|
Zeng D, Liu SS, Shao WB, Zhang TH, Qi PY, Liu HW, Zhou X, Liu LW, Zhang H, Yang S. New Inspiration of 1,3,4-Oxadiazole Agrochemical Candidates: Manipulation of a Type III Secretion System-Induced Bacterial Starvation Mechanism to Prevent Plant Bacterial Diseases. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:2804-2816. [PMID: 36744848 DOI: 10.1021/acs.jafc.2c07486] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Discovering new anti-virulent agents to control plant bacterial diseases by preventing bacterial pathogenesis/pathogenicity rather than affecting bacterial growth is a sensible strategy. However, the effects of compound-manipulated bacterial virulence factors on host response are still not clear. In this work, 35 new 1,3,4-oxadiazole derivatives were synthesized and systematically evaluated for their anti-phytopathogenic activities. Bioassay results revealed that compound C7 possessed outstanding antibacterial activity in vitro (half-maximal effective concentration: 0.80 μg/mL) against Xanthomonas oryzae pv. oryzae (Xoo) and acceptable bioactivity in vivo toward rice bacterial leaf blight. Furthermore, virulence factor-related biochemical assays showed that C7 was a promising anti-virulent agent. Interestingly, C7 could indirectly reduce the inducible expression of host SWEET genes and thereby alleviate nutrient supply in the infection process of phytopathogenic bacteria. Our results highlight the potential of 1,3,4-oxadiazole-based agrochemicals for manipulating type III secretion system-induced phytopathogenic bacteria starvation mechanisms to prevent plant bacterial diseases.
Collapse
Affiliation(s)
- Dan Zeng
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Shuai-Shuai Liu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Wu-Bin Shao
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Tai-Hong Zhang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Pu-Ying Qi
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Hong-Wu Liu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Xiang Zhou
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Li-Wei Liu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Heng Zhang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Song Yang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| |
Collapse
|
14
|
Wood SJ, Kuzel TM, Shafikhani SH. Pseudomonas aeruginosa: Infections, Animal Modeling, and Therapeutics. Cells 2023; 12:199. [PMID: 36611992 PMCID: PMC9818774 DOI: 10.3390/cells12010199] [Citation(s) in RCA: 67] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 01/05/2023] Open
Abstract
Pseudomonas aeruginosa is an important Gram-negative opportunistic pathogen which causes many severe acute and chronic infections with high morbidity, and mortality rates as high as 40%. What makes P. aeruginosa a particularly challenging pathogen is its high intrinsic and acquired resistance to many of the available antibiotics. In this review, we review the important acute and chronic infections caused by this pathogen. We next discuss various animal models which have been developed to evaluate P. aeruginosa pathogenesis and assess therapeutics against this pathogen. Next, we review current treatments (antibiotics and vaccines) and provide an overview of their efficacies and their limitations. Finally, we highlight exciting literature on novel antibiotic-free strategies to control P. aeruginosa infections.
Collapse
Affiliation(s)
- Stephen J. Wood
- Department of Medicine, Division of Hematology, Oncology, & Cell Therapy, Rush University Medical Center, Chicago, IL 60612, USA
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, IL 60612, USA
| | - Timothy M. Kuzel
- Department of Medicine, Division of Hematology, Oncology, & Cell Therapy, Rush University Medical Center, Chicago, IL 60612, USA
- Cancer Center, Rush University Medical Center, Chicago, IL 60612, USA
| | - Sasha H. Shafikhani
- Department of Medicine, Division of Hematology, Oncology, & Cell Therapy, Rush University Medical Center, Chicago, IL 60612, USA
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, IL 60612, USA
- Cancer Center, Rush University Medical Center, Chicago, IL 60612, USA
| |
Collapse
|
15
|
Xu L, Wang J, Xiao Y, Han Z, Chai J. Structural insight into chitin perception by chitin elicitor receptor kinase 1 of Oryza sativa. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:235-248. [PMID: 35568972 DOI: 10.1111/jipb.13279] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 05/12/2022] [Indexed: 06/15/2023]
Abstract
Plants have developed innate immune systems to fight against pathogenic fungi by monitoring pathogenic signals known as pathogen-associated molecular patterns (PAMP) and have established endo symbiosis with arbuscular mycorrhizal (AM) fungi through recognition of mycorrhizal (Myc) factors. Chitin elicitor receptor kinase 1 of Oryza sativa subsp. Japonica (OsCERK1) plays a bifunctional role in mediating both chitin-triggered immunity and symbiotic relationships with AM fungi. However, it remains unclear whether OsCERK1 can directly recognize chitin molecules. In this study, we show that OsCERK1 binds to the chitin hexamer ((NAG)6 ) and tetramer ((NAG)4 ) directly and determine the crystal structure of the OsCERK1-(NAG)6 complex at 2 Å. The structure shows that one OsCERK1 is associated with one (NAG)6 . Upon recognition, chitin hexamer binds OsCERK1 by interacting with the shallow groove on the surface of LysM2. These structural findings, complemented by mutational analyses, demonstrate that LysM2 is crucial for recognition of both (NAG)6 and (NAG)4 . Altogether, these findings provide structural insights into the ability of OsCERK1 in chitin perception, which will lead to a better understanding of the role of OsCERK1 in mediating both immunity and symbiosis in rice.
Collapse
Affiliation(s)
- Li Xu
- Tsinghua-Peking Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, Centre for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Jizong Wang
- Tsinghua-Peking Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, Centre for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Yu Xiao
- Tsinghua-Peking Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, Centre for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Zhifu Han
- Tsinghua-Peking Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, Centre for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Jijie Chai
- Tsinghua-Peking Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, Centre for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Max Planck Institute for Plant Breeding Research, Cologne, 50829, Germany
- Institute of Biochemistry, University of Cologne, Cologne, 50674, Germany
- Cluster of Excellence in Plant Sciences (CEPLAS), Düsseldorf, 40225, Germany
| |
Collapse
|
16
|
Patra GK, Gupta D, Rout GR, Panda SK. Role of long non coding RNA in plants under abiotic and biotic stresses. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 194:96-110. [PMID: 36399914 DOI: 10.1016/j.plaphy.2022.10.030] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 10/28/2022] [Accepted: 10/31/2022] [Indexed: 06/16/2023]
Abstract
Evolutionary processes have evolved plants to cope with several different natural stresses. Basic physiological activities of crop plants are significantly harmed by these stresses, reducing productivity and eventually leading to death. The recent advancements in high-throughput sequencing of transcriptome and expression profiling with NGS techniques lead to the innovation of various RNAs which do not code for proteins, more specifically long non-coding RNAs (lncRNAs), undergirding regulate growth, development, and the plant defence mechanism transcriptionally under stress situations. LncRNAs are a diverse set of RNAs that play key roles in various biological processes at the level of transcription, post-transcription, and epigenetics. These are thought to serve crucial functions in plant immunity and response to changes in the environment. In plants, however, just a few lncRNAs have been functionally identified. In this review, we will address recent advancements in comprehending lncRNA regulatory functions, focusing on the expanding involvement of lncRNAs in modulating environmental stress responsiveness in plants.
Collapse
Affiliation(s)
- Gyanendra K Patra
- Department of Agriculture Biotechnology, Orissa University of Agriculture and Technology, Bhubaneswar, 751 003, Odisha, India
| | - Divya Gupta
- School of Life Sciences, Central University of Rajasthan, NH 8, Bandarsindri, Ajmer, 305817, Rajasthan, India
| | - Gyana Ranjan Rout
- Department of Agriculture Biotechnology, Orissa University of Agriculture and Technology, Bhubaneswar, 751 003, Odisha, India
| | - Sanjib Kumar Panda
- School of Life Sciences, Central University of Rajasthan, NH 8, Bandarsindri, Ajmer, 305817, Rajasthan, India.
| |
Collapse
|
17
|
Kharat KR, Pottathil R. Chemically defined elicitors activate priming in tomato seedlings. PLANT SIGNALING & BEHAVIOR 2022; 17:2095143. [PMID: 35770510 PMCID: PMC9746373 DOI: 10.1080/15592324.2022.2095143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 06/15/2023]
Abstract
Tomato (Solanum lycopersicum L.) is an important crop that possesses about 35,000 genes. The treatment of plants with elicitors or pathogen attacks causes a cascade of defense reactions. We investigated tomato responses to the BamFXTM solution containing Zn and Cu elicitors and report the results of comparative transcriptome analysis of tomato seeds treated with Zn and Cu elicitors. The seeds were treated with optimum concentrations of Bam-FX solutions and subjected to cold methanolic extraction methods to obtain the secondary metabolites produced within them at different time intervals post-Bam-FX treatment. The metabolite mixture was analyzed using gas chromatography-mass spectrometry (GCMS). In transcriptome sequencing, GO and KEGG analyses revealed that the majority of the DEGs in BamFx-treated tomato was associated with primary and secondary metabolism, plant hormone signal transduction, TF regulation, transport, and responses to stimuli.The secondary metabolites found in the BamFX treated tomato seedlings - Esters of Fumaric acid, Succinic acid etc. The transcript levels of most auxin transporter-encoding genes changed significantly in the BamFX-treated seedlings (e.g., Solyc01g007010.3, a RING-type E3 ubiquitin transferase). The gene Solyc07g061720.3 for Gibberellin 2-oxidase and the Phorbol-ester/DAG-type domain-containing protein (Solyc02g068680.1) associated with the intracellular signaling genes were found upregulated in the BamFx-treated seeds. The time-dependent effect of the BamFX (1:500 for 60 min) was found to be regulating Abscisic acid signaling pathway genes (Solyc09g015380.1). This study identified many candidate genes for future functional analyses and laid a theoretical foundation for an improved understanding of the molecular mechanisms involved in the BamFx treatment of tomatoes to improve stress resistance.
Collapse
Affiliation(s)
- Kiran R. Kharat
- Department of Research and Development, Zero Gravity Solutions, Inc., Boca Raton, FL, USA
| | - Raveendran Pottathil
- Department of Research and Development, Zero Gravity Solutions, Inc., Boca Raton, FL, USA
| |
Collapse
|
18
|
Styczynski M, Rogowska A, Nyabayo C, Decewicz P, Romaniuk F, Pączkowski C, Szakiel A, Suessmuth R, Dziewit L. Heterologous production and characterization of a pyomelanin of Antarctic Pseudomonas sp. ANT_H4: a metabolite protecting against UV and free radicals, interacting with iron from minerals and exhibiting priming properties toward plant hairy roots. Microb Cell Fact 2022; 21:261. [PMID: 36527127 PMCID: PMC9756463 DOI: 10.1186/s12934-022-01990-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 12/10/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Antarctica has one of the most extreme environments in the world. This region is inhabited by specifically adapted microorganisms that produce various unique secondary metabolites (e.g. pigments) enabling their survival under the harsh environmental conditions. It was already shown that these natural, biologically active molecules may find application in various fields of biotechnology. RESULTS In this study, a cold-active brown-pigment-producing Pseudomonas sp. ANT_H4 strain was characterized. In-depth genomic analysis combined with the application of a fosmid expression system revealed two different pathways of melanin-like compounds biosynthesis by the ANT_H4 strain. The chromatographic behavior and Fourier-transform infrared spectroscopic analyses allowed for the identification of the extracted melanin-like compound as a pyomelanin. Furthermore, optimization of the production and thorough functional analyses of the pyomelanin were performed to test its usability in biotechnology. It was confirmed that ANT_H4-derived pyomelanin increases the sun protection factor, enables scavenging of free radicals, and interacts with the iron from minerals. Moreover, it was shown for the first time that pyomelanin exhibits priming properties toward Calendula officinalis hairy roots in in vitro cultures. CONCLUSIONS Results of the study indicate the significant biotechnological potential of ANT_H4-derived pyomelanin and open opportunities for future applications. Taking into account protective features of analyzed pyomelanin it may be potentially used in medical biotechnology and cosmetology. Especially interesting was showing that pyomelanin exhibits priming properties toward hairy roots, which creates a perspective for its usage for the development of novel and sustainable agrotechnical solutions.
Collapse
Affiliation(s)
- Michal Styczynski
- grid.12847.380000 0004 1937 1290Department of Environmental Microbiology and Biotechnology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Agata Rogowska
- grid.12847.380000 0004 1937 1290Department of Plant Biochemistry, Institute of Biochemistry, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Christine Nyabayo
- grid.6734.60000 0001 2292 8254Institute of Chemistry, Technical University of Berlin, Berlin, Germany
| | - Przemyslaw Decewicz
- grid.12847.380000 0004 1937 1290Department of Environmental Microbiology and Biotechnology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Filip Romaniuk
- grid.12847.380000 0004 1937 1290Department of Environmental Microbiology and Biotechnology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Cezary Pączkowski
- grid.12847.380000 0004 1937 1290Department of Plant Biochemistry, Institute of Biochemistry, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Anna Szakiel
- grid.12847.380000 0004 1937 1290Department of Plant Biochemistry, Institute of Biochemistry, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Roderich Suessmuth
- grid.6734.60000 0001 2292 8254Institute of Chemistry, Technical University of Berlin, Berlin, Germany
| | - Lukasz Dziewit
- grid.12847.380000 0004 1937 1290Department of Environmental Microbiology and Biotechnology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| |
Collapse
|
19
|
Qiao P, Zhao M, Guan W, Walcott R, Ye Y, Yang Y, Zhao T. A putative multi-sensor hybrid histidine kinase, BarA Ac , inhibits the expression of the type III secretion system regulator HrpG in Acidovorax citrulli. Front Microbiol 2022; 13:1064577. [PMID: 36532489 PMCID: PMC9748350 DOI: 10.3389/fmicb.2022.1064577] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 11/14/2022] [Indexed: 07/30/2023] Open
Abstract
Bacterial fruit blotch (BFB), caused by Acidovorax citrulli, severely damages watermelon, melon, and other cucurbit crops worldwide. Although many virulence determinants have been identified in A. citrulli, including swimming motility, twitching motility, biofilm formation, and the type III secretion system (T3SS), research on their regulation is lacking. To study virulence regulation mechanisms, we found a putative histidine kinase BarA Ac that may be related to the T3SS regulator HrpG in A. citrulli. We deleted and characterized barAAc (Aave_2063) in A. citrulli Aac5 strain. Compared to the wild-type Aac5, virulence and early proliferation of barAAc mutant in host watermelon cotyledons were significantly increased, and induction of hypersensitive response in non-host tobacco was accelerated, while biofilm formation and swimming motility were significantly reduced. In addition, the transcriptomic analysis revealed that the expression of many T3SS-related genes was upregulated in the ΔbarAAc deletion mutant when cultured in KB medium. Meanwhile, the ΔbarAAc deletion mutant showed increased accumulation of the T3SS regulator HrpG in KB medium, which may account for the increased deployment of T3SS. This suggests that the putative histidine kinase BarA Ac is able to repress the T3SS expression by inhibiting HrpG in the KB medium, which appears to be important for rational energy allocation. In summary, our research provides further understanding of the regulatory network of A. citrulli virulence.
Collapse
Affiliation(s)
- Pei Qiao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Mei Zhao
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, China
- Department of Plant Pathology, University of Georgia, Athens, GA, United States
| | - Wei Guan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ron Walcott
- Department of Plant Pathology, University of Georgia, Athens, GA, United States
| | - Yunfeng Ye
- Horticultural Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Yuwen Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Tingchang Zhao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
20
|
Effector-Dependent and -Independent Molecular Mechanisms of Soybean-Microbe Interaction. Int J Mol Sci 2022; 23:ijms232214184. [PMID: 36430663 PMCID: PMC9695568 DOI: 10.3390/ijms232214184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/09/2022] [Accepted: 11/11/2022] [Indexed: 11/18/2022] Open
Abstract
Soybean is a pivotal staple crop worldwide, supplying the main food and feed plant proteins in some countries. In addition to interacting with mutualistic microbes, soybean also needs to protect itself against pathogens. However, to grow inside plant tissues, plant defense mechanisms ranging from passive barriers to induced defense reactions have to be overcome. Pathogenic but also symbiotic micro-organisms effectors can be delivered into the host cell by secretion systems and can interfere with the immunity system and disrupt cellular processes. This review summarizes the latest advances in our understanding of the interaction between secreted effectors and soybean feedback mechanism and uncovers the conserved and special signaling pathway induced by pathogenic soybean cyst nematode, Pseudomonas, Xanthomonas as well as by symbiotic rhizobium.
Collapse
|
21
|
Yi SY, Lee M, Park SK, Lu L, Lee G, Kim SG, Kang SY, Lim YP. Jasmonate regulates plant resistance to Pectobacterium brasiliense by inducing indole glucosinolate biosynthesis. FRONTIERS IN PLANT SCIENCE 2022; 13:964092. [PMID: 36247644 PMCID: PMC9559233 DOI: 10.3389/fpls.2022.964092] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 09/08/2022] [Indexed: 05/31/2023]
Abstract
Pectobacterium brasiliense (P. brasiliense) is a necrotrophic bacterium that causes the soft rot disease in Brassica rapa. However, the mechanisms underlying plant immune responses against necrotrophic bacterial pathogens with a broad host range are still not well understood. Using a flg22-triggered seedling growth inhibition (SGI) assay with 455 Brassica rapa inbred lines, we selected six B. rapa flagellin-insensitive lines (Brfin2-7) and three B. rapa flagellin-sensitive lines (Brfs1-3). Brfin lines showed compromised flg22-induced immune responses (oxidative burst, mitogen-activated protein kinase (MAPK) activation, and seedling growth inhibition) compared to the control line R-o-18; nevertheless, they were resistant to P. brasiliense. To explain this, we analyzed the phytohormone content and found that most Brfin lines had higher P. brasiliense-induced jasmonic acid (JA) than Brfs lines. Moreover, MeJA pretreatment enhanced the resistance of B. rapa to P. brasiliense. To explain the correlation between the resistance of Brfin lines to P. brasiliense and activated JA signaling, we analyzed pathogen-induced glucosinolate (GS) content in B. rapa. Notably, in Brfin7, the neoglucobrassicin (NGBS) content among indole glucosinolates (IGS) was significantly higher than that in Brfs2 following P. brasiliense inoculation, and genes involved in IGSs biosynthesis were also highly expressed. Furthermore, almost all Brfin lines with high JA levels and resistance to P. brasiliense had higher P. brasiliense-induced NGBS levels than Brfs lines. Thus, our results show that activated JA-mediated signaling attenuates flg22-triggered immunity but enhances resistance to P. brasiliense by inducing indole glucosinolate biosynthesis in Brassica rapa. This study provides novel insights into the role of JA-mediated defense against necrotrophic bacterial pathogens within a broad host range.
Collapse
Affiliation(s)
- So Young Yi
- Institute of Agricultural Science, Chungnam National University, Daejeon, South Korea
- Research Center of Crop Breeding for Omics and Artificial Intelligence, Kongju National University, Yesan, South Korea
| | - Myungjin Lee
- Institute of Agricultural Science, Chungnam National University, Daejeon, South Korea
| | - Sun Kyu Park
- Molecular Genetics and Genomics Laboratory, Department of Horticulture, Chungnam National University, Daejeon, South Korea
| | - Lu Lu
- Molecular Genetics and Genomics Laboratory, Department of Horticulture, Chungnam National University, Daejeon, South Korea
| | - Gisuk Lee
- Department of Biological Sciences, Korea Advanced Institute for Science and Technology, Daejeon, South Korea
| | - Sang-Gyu Kim
- Department of Biological Sciences, Korea Advanced Institute for Science and Technology, Daejeon, South Korea
| | - Si-Yong Kang
- Department of Horticulture, College of Industrial Sciences, Kongju National University, Yesan, South Korea
- Research Center of Crop Breeding for Omics and Artificial Intelligence, Kongju National University, Yesan, South Korea
| | - Yong Pyo Lim
- Molecular Genetics and Genomics Laboratory, Department of Horticulture, Chungnam National University, Daejeon, South Korea
| |
Collapse
|
22
|
Zhang N, Hecht C, Sun X, Fei Z, Martin GB. Loss of function of the bHLH transcription factor Nrd1 in tomato enhances resistance to Pseudomonas syringae. PLANT PHYSIOLOGY 2022; 190:1334-1348. [PMID: 35751605 PMCID: PMC9516780 DOI: 10.1093/plphys/kiac312] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 06/10/2022] [Indexed: 05/02/2023]
Abstract
Basic helix-loop-helix (bHLH) transcription factors constitute a superfamily in eukaryotes, but their roles in plant immunity remain largely uncharacterized. We found that the transcript abundance in tomato (Solanum lycopersicum) leaves of one bHLH transcription factor-encoding gene, negative regulator of resistance to DC3000 1 (Nrd1), increased significantly after treatment with the immunity-inducing flgII-28 peptide. Plants carrying a loss-of-function mutation in Nrd1 (Δnrd1) showed enhanced resistance to Pseudomonas syringae pv. tomato (Pst) DC3000 although early pattern-triggered immunity responses, such as generation of reactive oxygen species and activation of mitogen-activated protein kinases after treatment with flagellin-derived flg22 and flgII-28 peptides, were unaltered compared to wild-type plants. RNA-sequencing (RNA-seq) analysis identified a gene, Arabinogalactan protein 1 (Agp1), whose expression is strongly suppressed in an Nrd1-dependent manner. Agp1 encodes an arabinogalactan protein, and overexpression of the Agp1 gene in Nicotiana benthamiana led to ∼10-fold less Pst growth compared to the control. These results suggest that the Nrd1 protein promotes tomato susceptibility to Pst by suppressing the defense gene Agp1. RNA-seq also revealed that the loss of Nrd1 function has no effect on the transcript abundance of immunity-associated genes, including AvrPtoB tomato-interacting 9 (Bti9), Cold-shock protein receptor (Core), Flagellin sensing 2 (Fls2), Flagellin sensing (Fls3), and Wall-associated kinase 1 (Wak1) upon Pst inoculation, suggesting that the enhanced immunity observed in the Δnrd1 mutants is due to the activation of key PRR signaling components as well as the loss of Nrd1-regulated suppression of Agp1.
Collapse
Affiliation(s)
- Ning Zhang
- Boyce Thompson Institute for Plant Research, Ithaca, New York 14853, USA
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, New York 14853, USA
| | - Chloe Hecht
- Boyce Thompson Institute for Plant Research, Ithaca, New York 14853, USA
| | - Xuepeng Sun
- Boyce Thompson Institute for Plant Research, Ithaca, New York 14853, USA
| | - Zhangjun Fei
- Boyce Thompson Institute for Plant Research, Ithaca, New York 14853, USA
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, New York 14853, USA
- USDA-ARS Robert W. Holley Center for Agriculture and Health, Ithaca, New York 14853, USA
| | | |
Collapse
|
23
|
Wang P, Lopes LD, Lopez-Guerrero MG, van Dijk K, Alvarez S, Riethoven JJ, Schachtman DP. Natural variation in root exudation of GABA and DIMBOA impacts the maize root endosphere and rhizosphere microbiomes. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:5052-5066. [PMID: 35552399 DOI: 10.1093/jxb/erac202] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 05/05/2022] [Indexed: 06/15/2023]
Abstract
Root exudates are important for shaping root-associated microbiomes. However, studies on a wider range of metabolites in exudates are required for a comprehensive understanding about their influence on microbial communities. We identified maize inbred lines that differ in exudate concentrations of 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one (DIMBOA) and γ-aminobutyric acid (GABA) using a semi-hydroponic system. These lines were grown in the field to determine the changes in microbial diversity and gene expression due to varying concentrations of DIMBOA and GABA in exudates using 16S rRNA amplicon sequencing and metatranscriptomics. Results showed individual and interaction effects of DIMBOA and GABA on the rhizosphere and root endosphere β-diversity, most strongly at the V10 growth stage. The main bacterial families affected by both compounds were Ktedonobacteraceae and Xanthomonadaceae. Higher concentrations of DIMBOA in exudates affected the rhizosphere metatranscriptome, enriching for metabolic pathways associated with plant disease. This study validated the use of natural variation within plant species as a powerful approach for understanding the role of root exudates on microbiome selection. We also showed that a semi-hydroponic system can be used to identify maize genotypes that differ in GABA and DIMBOA exudate concentrations under field conditions. The impact of GABA exudation on root-associated microbiomes is shown for the first time.
Collapse
Affiliation(s)
- Peng Wang
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE, USA and Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE, USA
- Nebraska Center for Biotechnology, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Lucas Dantas Lopes
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE, USA and Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE, USA
- Nebraska Center for Biotechnology, University of Nebraska-Lincoln, Lincoln, NE, USA
| | | | - Karin van Dijk
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Sophie Alvarez
- Nebraska Center for Biotechnology, University of Nebraska-Lincoln, Lincoln, NE, USA
- Proteomics and Metabolomics Facility, Nebraska Center for Biotechnology, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Jean-Jack Riethoven
- Nebraska Center for Biotechnology, University of Nebraska-Lincoln, Lincoln, NE, USA
- Bioinformatics Core Facility, Nebraska Center for Biotechnology, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Daniel P Schachtman
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE, USA and Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE, USA
- Nebraska Center for Biotechnology, University of Nebraska-Lincoln, Lincoln, NE, USA
| |
Collapse
|
24
|
Zheng S, Chen R, Wang L, Pan S, Liu W, Zhu X, Gao X, Luo J, Cui J. Effect of Metabolic Changes in Aphis gossypii-Damaged Cotton Plants on Oviposition Preference and Larval Development of Subsequent Helicoverpa armigera. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:9584-9595. [PMID: 35861328 DOI: 10.1021/acs.jafc.2c02876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Aphis gossypii and Helicoverpa armigera are two important agricultural pests in cotton plants. However, whether early colonization of A. gossypii affects subsequent H. armigera is unknown. We implemented ecological experiments to reveal that A. gossypii-damaged cotton plants [Bacillus thuringiensis (Bt) and non-Bt] had a significant avoidance effect on the oviposition preference of H. armigera adults. However, A. gossypii-damaged cotton plants (non-Bt) increased the weight and pupation rate and reduced the mortality of H. armigera larvae. Transcriptomic and metabolomic analyses showed that 13 and 9 genes were significantly upregulated to be involved in salicylic acid (SA) and indole acetic acid (IAA) biosynthesis, and SA and IAA contents were significantly increased, respectively. However, 15 genes involved in jasmonic acid (JA) biosynthesis were significantly downregulated as a result of the antagonism of SA and JA. Moreover, there was significant upregulation in multiple genes involved in the biosynthesis of l-histidine, fructose, maltotetraose, melezitose, lecithin, stearidonic acid, and mannitol, in which metabolites were confirmed to promote the growth and development of H. armigera. Our study is a reference for investigating the evolutionary relationships and provides insights into implementing effective insect biocontrol between H. armigera and A. gossypii.
Collapse
Affiliation(s)
- Shuaichao Zheng
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, People's Republic of China
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China
| | - Ruifang Chen
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, People's Republic of China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, Henan 450001, People's Republic of China
| | - Lisha Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, People's Republic of China
| | - Shaodong Pan
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, People's Republic of China
| | - Weijiao Liu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, People's Republic of China
| | - Xiangzhen Zhu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, People's Republic of China
| | - Xueke Gao
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, People's Republic of China
| | - Junyu Luo
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, People's Republic of China
| | - Jinjie Cui
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, People's Republic of China
| |
Collapse
|
25
|
Wang H, Wu C, Zhang H, Xiao M, Ge T, Zhou Z, Liu Y, Peng S, Peng P, Chen J. Characterization of the belowground microbial community and co-occurrence networks of tobacco plants infected with bacterial wilt disease. World J Microbiol Biotechnol 2022; 38:155. [PMID: 35796795 DOI: 10.1007/s11274-022-03347-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 06/23/2022] [Indexed: 11/25/2022]
Abstract
Characterizing the microbial communities associated with soil-borne disease incidence is a key approach in understanding the potential role of microbes in protecting crops from pathogens. In this study, we compared the soil properties and microbial composition of the rhizosphere soil and roots of healthy and bacterial wilt-infected tobacco plants to assess their potential influence on plant health. Our results revealed that the relative abundance of pathogens was higher in diseased plants than in healthy plants. Moreover, compared with healthy plants, there was a significantly higher microbial alpha diversity in the roots and rhizosphere soil of diseased plants. In addition, we detected a lower abundance of certain plant microbiota, including species in the genera Penicillium, Trichoderma, and Burkholderia in the rhizosphere of diseased plants, which were found to be significantly negatively associated with the relative abundance of Ralstonia. Indeed, compared with healthy plants, the co-occurrence networks of diseased plants included a larger number of associations linked to plant health. Furthermore, structural equation modeling revealed that these specific microbes were correlated with disease suppression, thereby implying that they may play important roles in maintaining plant health. In conclusion, our findings provide important insights into the relationships between soil-borne disease incidence and changes in the belowground microbial community. These findings will serve as a basis for further research investigating the use of specific plant-associated genera to inhibit soil-borne diseases.
Collapse
Affiliation(s)
- Haiting Wang
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, 498 South Shaoshan Road, Changsha, 410004, Hunan, China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, 818 Fenghua Road, Ningbo, 315211, Zhejiang, China
| | - Chuanfa Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, 818 Fenghua Road, Ningbo, 315211, Zhejiang, China
| | - Haoqing Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, 818 Fenghua Road, Ningbo, 315211, Zhejiang, China
| | - Mouliang Xiao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, 818 Fenghua Road, Ningbo, 315211, Zhejiang, China
| | - Tida Ge
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, 498 South Shaoshan Road, Changsha, 410004, Hunan, China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, 818 Fenghua Road, Ningbo, 315211, Zhejiang, China
| | - Zhicheng Zhou
- Tobacco Research Institute of Hunan Province, Changsha, 410004, China
| | - Yongjun Liu
- Tobacco Research Institute of Hunan Province, Changsha, 410004, China
| | - Shuguang Peng
- Tobacco Research Institute of Hunan Province, Changsha, 410004, China
| | - Peiqin Peng
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, 498 South Shaoshan Road, Changsha, 410004, Hunan, China.
| | - Jianping Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, 818 Fenghua Road, Ningbo, 315211, Zhejiang, China.
| |
Collapse
|
26
|
Du J, Wang Q, Zeng C, Zhou C, Wang X. A prophage-encoded nonclassical secretory protein of "Candidatus Liberibacter asiaticus" induces a strong immune response in Nicotiana benthamiana and citrus. MOLECULAR PLANT PATHOLOGY 2022; 23:1022-1034. [PMID: 35279937 PMCID: PMC9190977 DOI: 10.1111/mpp.13206] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/14/2022] [Accepted: 02/23/2022] [Indexed: 05/04/2023]
Abstract
Huanglongbing (HLB), associated with "Candidatus Liberibacter asiaticus" (CLas), is a globally devastating plant disease. The highly reduced genome of CLas encodes a number of secretory proteins. The conserved prophage-encoded protein AGH17470 is herein identified as a nonclassical secretory protein. We confirmed that the N-terminal and C-terminal sequences jointly determine the secretion of AGH17470. The transient expression of AGH17470 protein in Nicotiana benthamiana caused hypersensitive response (HR) cell death in infiltrated leaves and systemically infected leaves as well as the dwarfing of the entire plant, suggesting that AGH17470 is involved in the plant immune response, growth, and development. Overexpression of AGH17470 in N. benthamiana and citrus plants up-regulated the transcription of pathogenesis-related and salicylic acid (SA)-signalling pathway genes and promoted SA accumulation. Furthermore, transient expression of AGH17470 enhanced the resistance of sweet orange to Xanthomonas citri subsp. citri. To our knowledge, AGH17470 is the first prophage-encoded secretory protein demonstrated to elicit an HR and induce a strong plant immune response. The findings have increased our understanding of prophage-encoded secretory protein genes, and the results provide clues as to the plant defence response against CLas.
Collapse
Affiliation(s)
- Jiao Du
- National Citrus Engineering Research CenterCitrus Research InstituteSouthwest UniversityChongqingChina
| | - Qiying Wang
- National Citrus Engineering Research CenterCitrus Research InstituteSouthwest UniversityChongqingChina
| | - Chunhua Zeng
- National Citrus Engineering Research CenterCitrus Research InstituteSouthwest UniversityChongqingChina
| | - Changyong Zhou
- National Citrus Engineering Research CenterCitrus Research InstituteSouthwest UniversityChongqingChina
| | - Xuefeng Wang
- National Citrus Engineering Research CenterCitrus Research InstituteSouthwest UniversityChongqingChina
| |
Collapse
|
27
|
Zhao L, Su P, Hou B, Wu H, Fan Y, Li W, Zhao J, Ge W, Xu S, Wu S, Ma X, Li A, Bai G, Wang H, Kong L. The Black Necrotic Lesion Enhanced Fusarium graminearum Resistance in Wheat. FRONTIERS IN PLANT SCIENCE 2022; 13:926621. [PMID: 35845685 PMCID: PMC9280303 DOI: 10.3389/fpls.2022.926621] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 06/03/2022] [Indexed: 06/15/2023]
Abstract
Fusarium head blight, mainly incited by Fusarium graminearum, is a devastating wheat disease worldwide. Diverse Fusarium head blight (FHB) resistant sources have been reported, but the resistance mechanisms of these sources remain to be investigated. FHB-resistant wheat germplasm often shows black necrotic lesions (BNLs) around the infection sites. To determine the relationship between BNL and FHB resistance, leaf tissue of a resistant wheat cultivar Sumai 3 was inoculated with four different F. graminearum isolates. Integrated metabolomic and transcriptomic analyses of the inoculated samples suggested that the phytohormone signaling, phenolamine, and flavonoid metabolic pathways played important roles in BNL formation that restricted F. graminearum extension. Exogenous application of flavonoid metabolites on wheat detached leaves revealed the possible contribution of flavonoids to BNL formation. Exogenous treatment of either salicylic acid (SA) or methyl jasmonate (MeJA) on wheat spikes significantly reduced the FHB severity. However, exogenous MeJA treatment prevented the BNL formation on the detached leaves of FHB-resistant wheat Sumai 3. SA signaling pathway influenced reactive oxygen species (ROS) burst to enhance BNL formation to reduce FHB severity. Three key genes in SA biosynthesis and signal transduction pathway, TaICS1, TaNPR1, and TaNPR3, positively regulated FHB resistance in wheat. A complex temporal interaction that contributed to wheat FHB resistance was detected between the SA and JA signaling pathways. Knowledge of BNLs extends our understanding of the molecular mechanisms of FHB resistance in wheat and will benefit the genetic improvement of wheat FHB resistance.
Collapse
Affiliation(s)
- Lanfei Zhao
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an, China
- Department of Agronomy, Kansas State University, Manhattan, KS, United States
| | - Peisen Su
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an, China
- College of Agronomy, Liaocheng University, Liaocheng, China
| | - Bingqian Hou
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an, China
| | - Hongyan Wu
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an, China
| | - Yanhui Fan
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an, China
| | - Wen Li
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an, China
| | - Jinxiao Zhao
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an, China
| | - Wenyang Ge
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an, China
| | - Shoushen Xu
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an, China
| | - Shiwen Wu
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an, China
| | - Xin Ma
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an, China
| | - Anfei Li
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an, China
| | - Guihua Bai
- Department of Agronomy, Kansas State University, Manhattan, KS, United States
- Hard Winter Wheat Genetics Research Unit, USDA, Manhattan, KS, United States
| | - Hongwei Wang
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an, China
| | - Lingrang Kong
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an, China
| |
Collapse
|
28
|
Sosa-Zuniga V, Vidal Valenzuela Á, Barba P, Espinoza Cancino C, Romero-Romero JL, Arce-Johnson P. Powdery Mildew Resistance Genes in Vines: An Opportunity to Achieve a More Sustainable Viticulture. Pathogens 2022; 11:703. [PMID: 35745557 PMCID: PMC9230758 DOI: 10.3390/pathogens11060703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/11/2022] [Accepted: 06/13/2022] [Indexed: 12/10/2022] Open
Abstract
Grapevine (Vitis vinifera) is one of the main fruit crops worldwide. In 2020, the total surface area planted with vines was estimated at 7.3 million hectares. Diverse pathogens affect grapevine yield, fruit, and wine quality of which powdery mildew is the most important disease prior to harvest. Its causal agent is the biotrophic fungus Erysiphe necator, which generates a decrease in cluster weight, delays fruit ripening, and reduces photosynthetic and transpiration rates. In addition, powdery mildew induces metabolic reprogramming in its host, affecting primary metabolism. Most commercial grapevine cultivars are highly susceptible to powdery mildew; consequently, large quantities of fungicide are applied during the productive season. However, pesticides are associated with health problems, negative environmental impacts, and high costs for farmers. In paralleled, consumers are demanding more sustainable practices during food production. Therefore, new grapevine cultivars with genetic resistance to powdery mildew are needed for sustainable viticulture, while maintaining yield, fruit, and wine quality. Two main gene families confer resistance to powdery mildew in the Vitaceae, Run (Resistance to Uncinula necator) and Ren (Resistance to Erysiphe necator). This article reviews the powdery mildew resistance genes and loci and their use in grapevine breeding programs.
Collapse
Affiliation(s)
- Viviana Sosa-Zuniga
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Avenida Libertador Bernardo O’Higgins 340, Santiago 8331150, Chile;
- Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4560, Santiago 7820436, Chile
| | - Álvaro Vidal Valenzuela
- Foundazione Edmund Mach, Via Edmund Mach 1, San Michele all’Adige (TN), 38010 Trento, Italy;
| | - Paola Barba
- Instituto de Investigaciones Agropecuarias, Avenida Santa Rosa 11610, Santiago 8831314, Chile;
| | - Carmen Espinoza Cancino
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Avenida El Llano Subercaseaux 2801, Santiago 8900000, Chile;
| | - Jesus L. Romero-Romero
- Departamento de Biotecnología Agrícola, Instituto Politécnico Nacional, Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional, Unidad Sinaloa, Bvd. Juan de Dios Bátiz Paredes 250, Culiacan Rosales 81101, Mexico;
| | - Patricio Arce-Johnson
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Avenida Libertador Bernardo O’Higgins 340, Santiago 8331150, Chile;
- Agrijohnson Ltda., Parcela 16b, Miraflores, Curacavi 9630000, Chile
| |
Collapse
|
29
|
Sinha DK, Gupta A, Padmakumari AP, Bentur JS, Nair S. Infestation of Rice by Gall Midge Influences Density and Diversity of Pseudomonas and Wolbachia in the Host Plant Microbiome. Curr Genomics 2022; 23:126-136. [PMID: 36778977 PMCID: PMC9878839 DOI: 10.2174/1389202923666220401101604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 02/16/2022] [Accepted: 02/28/2022] [Indexed: 11/22/2022] Open
Abstract
Background: The virulence of phytophagous insects is predominantly determined by their ability to evade or suppress host defense for their survival. The rice gall midge (GM, Orseolia oryzae), a monophagous pest of rice, elicits a host defense similar to the one elicited upon pathogen attack. This could be due to the GM feeding behaviour, wherein the GM endosymbionts are transferred to the host plant via oral secretions, and as a result, the host mounts an appropriate defense response(s) (i.e., up-regulation of the salicylic acid pathway) against these endosymbionts. Methods: The current study aimed to analyze the microbiome present at the feeding site of GM maggots to determine the exchange of bacterial species between GM and its host and to elucidate their role in rice-GM interaction using a next-generation sequencing approach. Results: Our results revealed differential representation of the phylum Proteobacteria in the GM-infested and -uninfested rice tissues. Furthermore, analysis of the species diversity of Pseudomonas and Wolbachia supergroups at the feeding sites indicated the exchange of bacterial species between GM and its host upon infestation. Conclusion: As rice-GM microbial associations remain relatively unstudied, these findings not only add to our current understanding of microbe-assisted insect-plant interactions but also provide valuable insights into how these bacteria drive insect-plant coevolution. Moreover, to the best of our knowledge, this is the first report analyzing the microbiome of a host plant (rice) at the feeding site of its insect pest (GM).
Collapse
Affiliation(s)
| | - Ayushi Gupta
- These authors contributed equally in this manuscript.
| | | | | | - Suresh Nair
- Address correspondence to this author at the Plant-Insect Interaction Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110 067, India; Tel: 91-11-26741242; Fax: 91-11-26742316; E-mail:
| |
Collapse
|
30
|
Rahman FU, Zhang Y, Khan IA, Liu R, Sun L, Wu Y, Jiang J, Fan X, Liu C. The Promoter Analysis of VvPR1 Gene: A Candidate Gene Identified through Transcriptional Profiling of Methyl Jasmonate Treated Grapevine (Vitis vinifera L.). PLANTS 2022; 11:plants11121540. [PMID: 35736691 PMCID: PMC9227488 DOI: 10.3390/plants11121540] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 05/26/2022] [Accepted: 05/27/2022] [Indexed: 11/16/2022]
Abstract
Methyl jasmonate (MeJA) plays a vital role in plant disease resistance and also induces the expression of disease resistance genes in plants. In this study, a transcriptome analysis was performed on grapevine leaves after 12, 24 and 48 h of MeJA-100 μM treatment. A total of 1242 differentially expressed genes (DEGs) were identified from the transcriptome data, and the analysis of the DEGs showed that genes related to phytohormone signal transduction, jasmonic acid-mediated defense, Mitogen-activated protein kinase (MAPK), and flavonoid biosynthetic pathways were upregulated. As Pathogenesis-related gene 1 (PR1) is an important marker gene in plant defense also upregulated by MeJA treatment in RNA-seq data, the VvPR1 gene was selected for a promoter analysis with β-glucuronidase (GUS) through transient expression in tobacco leaves against abiotic stress. The results showed that the region from −1837 bp to −558 bp of the VvPR1 promoter is the key region in response to hormone and wound stress. In this study, we extended the available knowledge about induced defense by MeJA in a grapevine species that is susceptible to different diseases and identified the molecular mechanisms by which this defense might be mediated.
Collapse
|
31
|
Chen S, Sun B, Shi Z, Miao X, Li H. Identification of the rice genes and metabolites involved in dual resistance against brown planthopper and rice blast fungus. PLANT, CELL & ENVIRONMENT 2022; 45:1914-1929. [PMID: 35343596 DOI: 10.1111/pce.14321] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 01/02/2022] [Indexed: 06/14/2023]
Abstract
Brown planthopper (BPH) and blast disease jointly or individually cause big yield losses every year. To identify genes and metabolites with potential contributions to the dual resistance against both biotic-stress factors, we carried out a transcriptome and metabolome analysis for susceptible and resistant rice varieties after BPH and rice blast infestations. Coexpression network analysis identified a modular pattern that had the highest correlation coefficients (0.81) after the BPH and rice blast (-0.81) treatments. In total, 134 phenylpropanoid biosynthesis pathway-related genes were detected in this group. We found that the flavanone 3-hydroxylase gene (OsF3H) had opposite expression trends in response to BPH and rice blast infestations whereas the OsF3'H had similar expression patterns. Genetics analysis confirmed that the OsF3H gene knockdown lines demonstrated the opposite resistance phenotypes against BPH and rice blast, whereas the OsF3'H knockout lines enhanced rice resistance against both pests. Consistently, our metabolomics analysis identified the metabolite eriodictyol, one putative essential product of these two genes, that was more highly accumulated in the resistant rice variety of RHT than in the susceptible variety MDJ. This study highlights a useful strategy for identifying more genes and metabolites that have potential synergistic effects on rice against to multiple biotic stresses.
Collapse
Affiliation(s)
- Su Chen
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Bo Sun
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhenying Shi
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xuexia Miao
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Haichao Li
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
32
|
Mahmud F, Roy R, Mohamed MF, Aboonabi A, Moric M, Ghoreishi K, Bayat M, Kuzel TM, Reiser J, Shafikhani SH. Therapeutic evaluation of immunomodulators in reducing surgical wound infection. FASEB J 2022; 36:e22090. [PMID: 34907595 PMCID: PMC9058973 DOI: 10.1096/fj.202101019r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 11/10/2021] [Accepted: 11/23/2021] [Indexed: 01/03/2023]
Abstract
Despite many advances in infection control practices, including prophylactic antibiotics, surgical site infections (SSIs) remain a significant cause of morbidity, prolonged hospitalization, and death worldwide. Our innate immune system possesses a multitude of powerful antimicrobial strategies which make it highly effective in combating bacterial, fungal, and viral infections. However, pathogens use various stealth mechanisms to avoid the innate immune system, which in turn buy them time to colonize wounds and damage tissues at surgical sites. We hypothesized that immunomodulators that can jumpstart and activate innate immune responses at surgical sites, would likely reduce infection at surgical sites. We used three immunomodulators; fMLP (formyl-Methionine-Lysine-Proline), CCL3 (MIP-1α), and LPS (Lipopolysaccharide), based on their documented ability to elicit strong inflammatory responses; in a surgical wound infection model with Pseudomonas aeruginosa to evaluate our hypothesis. Our data indicate that one-time topical treatment with these immunomodulators at low doses significantly increased proinflammatory responses in infected and uninfected surgical wounds and were as effective, (or even better), than a potent prophylactic antibiotic (Tobramycin) in reducing P. aeruginosa infection in wounds. Our data further show that immunomodulators did not have adverse effects on tissue repair and wound healing processes. Rather, they enhanced healing in both infected and uninfected wounds. Collectively, our data demonstrate that harnessing the power of the innate immune system by immunomodulators can significantly boost infection control and potentially stimulate healing. We propose that topical treatment with these immunomodulators at the time of surgery may have therapeutic potential in combating SSI, alone or in combination with prophylactic antibiotics.
Collapse
Affiliation(s)
- Foyez Mahmud
- Department of Medicine, Rush University Medical Center, Chicago, IL, USA,Division of Hematology/Oncology/Cell Therapy, Rush University Medical Center, Chicago, IL, USA
| | - Ruchi Roy
- Department of Medicine, Rush University Medical Center, Chicago, IL, USA,Division of Hematology/Oncology/Cell Therapy, Rush University Medical Center, Chicago, IL, USA
| | - Mohamed F. Mohamed
- Department of Medicine, Rush University Medical Center, Chicago, IL, USA,Division of Hematology/Oncology/Cell Therapy, Rush University Medical Center, Chicago, IL, USA
| | - Anahita Aboonabi
- Department of Medicine, Rush University Medical Center, Chicago, IL, USA,Division of Hematology/Oncology/Cell Therapy, Rush University Medical Center, Chicago, IL, USA
| | - Mario Moric
- Department of Anesthesiology, Rush University Medical Center, Chicago, IL, USA
| | | | - Mohammad Bayat
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Science, Tehran, Iran,Price Institute of Surgical Research, University of Louisville and Noveratech LLC. of Louisville, Louisville, KY, USA
| | - Timothy M. Kuzel
- Department of Medicine, Rush University Medical Center, Chicago, IL, USA,Division of Hematology/Oncology/Cell Therapy, Rush University Medical Center, Chicago, IL, USA
| | - Jochen Reiser
- Department of Medicine, Rush University Medical Center, Chicago, IL, USA
| | - Sasha H. Shafikhani
- Department of Medicine, Rush University Medical Center, Chicago, IL, USA,Division of Hematology/Oncology/Cell Therapy, Rush University Medical Center, Chicago, IL, USA,Cancer Center, Rush University Medical Center, Chicago, IL, USA,To whom correspondence should be addressed:
| |
Collapse
|
33
|
Pirhanov GG. Sinorhizobium meliloti AS A PERSPECTIVE OBJECT FOR MODERN BIOTECHNOLOGY. BIOTECHNOLOGIA ACTA 2021. [DOI: 10.15407/biotech14.06.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Sinorhizobium meliloti is a Gram-negative soil nitrogen-fixing bacterium that increases the yield of legumes. There is information in the literature about the complete genome sequence of this bacterium, in addition, the polysaccharide composition of the biofilm, which is actively involved in nitrogen fixation, has been studied. The well-known nucleotide sequence, as well as the genetic and biochemical features of S. meliloti make this organism an ideal model for biotechnological research. The purpose of this work was to analyze the current data provided in the literature on the symbiotic interaction of Sinorhizobium meliloti with the host plant, and to characterize the main directions of the use of this bacterium in agriculture, bioremediation and medicine.
Collapse
|
34
|
Samal B, Chatterjee S. Bacterial quorum sensing facilitates Xanthomonas campesteris pv. campestris invasion of host tissue to maximize disease symptoms. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:6524-6543. [PMID: 33993246 DOI: 10.1093/jxb/erab211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 05/12/2021] [Indexed: 06/12/2023]
Abstract
Quorum sensing (QS) helps the Xanthomonas group of phytopathogens to infect several crop plants. The vascular phytopathogen Xanthomonas campestris pv. campestris (Xcc) is the causal agent of black rot disease on Brassicaceae leaves, where a typical v-shaped lesion spans both vascular and mesophyll regions with progressive leaf chlorosis. Recently, the role of QS has been elucidated during Xcc early infection stages. However, a detailed insight into the possible role of QS-regulated bacterial invasion in host chlorophagy during late infection stages remains elusive. In this study, using QS-responsive whole-cell bioreporters of Xcc, we present a detailed chronology of QS-facilitated Xcc colonization in the mesophyll region of cabbage (Brassica oleracea) leaves. We report that QS-enabled localization of Xcc to parenchymal chloroplasts triggers leaf chlorosis and promotion of systemic infection. Our results indicate that the QS response in the Xanthomonas group of vascular phytopathogens maximizes their population fitness across host tissues to trigger stage-specific host chlorophagy and establish a systemic infection.
Collapse
Affiliation(s)
- Biswajit Samal
- Lab of Plant-Microbe Interactions, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, Telangana, India
- Graduate Studies, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Subhadeep Chatterjee
- Lab of Plant-Microbe Interactions, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, Telangana, India
| |
Collapse
|
35
|
Kostecka LG, Pienta KJ, Amend SR. Lipid droplet evolution gives insight into polyaneuploid cancer cell lipid droplet functions. Med Oncol 2021; 38:133. [PMID: 34581907 PMCID: PMC8478749 DOI: 10.1007/s12032-021-01584-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 09/12/2021] [Indexed: 12/16/2022]
Abstract
Lipid droplets (LDs) are found throughout all phyla across the tree of life. Originating as pure energy stores in the most basic organisms, LDs have evolved to fill various roles as regulators of lipid metabolism, signaling, and trafficking. LDs have been noted in cancer cells and have shown to increase tumor aggressiveness and chemotherapy resistance. A certain transitory state of cancer cell, the polyaneuploid cancer cell (PACC), appears to have higher LD levels than the cancer cell from which they are derived. PACCs are postulated to be the mediators of metastasis and resistance in many different cancers. Utilizing the evolutionarily conserved roles of LDs to protect from cellular lipotoxicity allows PACCs to survive otherwise lethal stressors. By better understanding how LDs have evolved throughout different phyla we will identify opportunities to target LDs in PACCs to increase therapeutic efficiency in cancer cells.
Collapse
Affiliation(s)
- Laurie G Kostecka
- The Brady Urological Institute, Johns Hopkins School of Medicine, 600 N. Wolfe St., Marburg Building Room 113, Baltimore, MD, 21287, USA. .,Cellular and Molecular Medicine Program, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA.
| | - Kenneth J Pienta
- The Brady Urological Institute, Johns Hopkins School of Medicine, 600 N. Wolfe St., Marburg Building Room 113, Baltimore, MD, 21287, USA.,Cellular and Molecular Medicine Program, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| | - Sarah R Amend
- The Brady Urological Institute, Johns Hopkins School of Medicine, 600 N. Wolfe St., Marburg Building Room 113, Baltimore, MD, 21287, USA.,Cellular and Molecular Medicine Program, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| |
Collapse
|
36
|
Zeiss DR, Steenkamp PA, Piater LA, Dubery IA. Altered metabolomic states elicited by Flg22 and FlgII-28 in Solanum lycopersicum: intracellular perturbations and metabolite defenses. BMC PLANT BIOLOGY 2021; 21:429. [PMID: 34548030 PMCID: PMC8456652 DOI: 10.1186/s12870-021-03200-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 08/31/2021] [Indexed: 05/13/2023]
Abstract
BACKGROUND Surveillance of potential pathogens is a key feature of plant innate immunity. For non-self-recognition plants rely on the perception of pathogen-derived molecules. Early post-perception events activate signaling cascades, leading to the synthesis of defense-related proteins and specialized metabolites, thereby providing a broad-spectrum antimicrobial coverage. This study was concerned with tracking changes in the tomato plant metabolome following perception of the flagellum-derived elicitors (Flg22 and FlgII-28). RESULTS Following an untargeted metabolomics workflow, the metabolic profiles of a Solanum lycopersicum cultivar were monitored over a time range of 16-32 h post-treatment. Liquid chromatography was used to resolve the complex mixture of metabolites and mass spectrometry for the detection of differences associated with the elicitor treatments. Stringent data processing and multivariate statistical tools were applied to the complex dataset to extract relevant metabolite features associated with the elicitor treatments. Following perception of Flg22 and FlgII-28, both elicitors triggered an oxidative burst, albeit with different kinetic responses. Signatory biomarkers were annotated from diverse metabolite classes which included amino acid derivatives, lipid species, steroidal glycoalkaloids, hydroxybenzoic acids, hydroxycinnamic acids and derivatives, as well as flavonoids. CONCLUSIONS An untargeted metabolomics approach adequately captured the subtle and nuanced perturbations associated with elicitor-linked plant defense responses. The shared and unique features characterizing the metabolite profiles suggest a divergence of signal transduction events following perception of Flg22 vs. FlgII-28, leading to a differential reorganization of downstream metabolic pathways.
Collapse
Affiliation(s)
- Dylan R Zeiss
- Research Centre for Plant Metabolomics, Department of Biochemistry, University of Johannesburg, P.O. Box 524, Auckland Park, 2006, Johannesburg, South Africa
| | - Paul A Steenkamp
- Research Centre for Plant Metabolomics, Department of Biochemistry, University of Johannesburg, P.O. Box 524, Auckland Park, 2006, Johannesburg, South Africa
| | - Lizelle A Piater
- Research Centre for Plant Metabolomics, Department of Biochemistry, University of Johannesburg, P.O. Box 524, Auckland Park, 2006, Johannesburg, South Africa
| | - Ian A Dubery
- Research Centre for Plant Metabolomics, Department of Biochemistry, University of Johannesburg, P.O. Box 524, Auckland Park, 2006, Johannesburg, South Africa.
| |
Collapse
|
37
|
Zarkani AA, Schikora A. Mechanisms adopted by Salmonella to colonize plant hosts. Food Microbiol 2021; 99:103833. [PMID: 34119117 DOI: 10.1016/j.fm.2021.103833] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/11/2021] [Accepted: 05/12/2021] [Indexed: 11/16/2022]
Abstract
Fruits and vegetables consumed fresh or as minimally-processed produce, have multiple benefits for our diet. Unfortunately, they bring a risk of food-borne diseases, for example salmonellosis. Interactions between Salmonella and crop plants are indeed a raising concern for the global health. Salmonella uses multiple strategies to manipulate the host defense system, including plant's defense responses. The main focus of this review are strategies used by this bacterium during the interaction with crop plants. Emphasis was put on how Salmonella avoids the plant defense responses and successfully colonizes plants. In addition, several factors were reviewed assessing their impact on Salmonella persistence and physiological adaptation to plants and plant-related environment. The understanding of those mechanisms, their regulation and use by the pathogen, while in contact with plants, has significant implication on the growth, harvest and processing steps in plant production system. Consequently, it requires both the authorities and science to advance and definite methods aiming at prevention of crop plants contamination. Thus, minimizing and/or eliminating the potential of human diseases.
Collapse
Affiliation(s)
- Azhar A Zarkani
- Julius Kühn Institute (JKI) - Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics, Messeweg 11/12, 38104, Braunschweig, Germany; University of Baghdad, Department of Biotechnology, 10071, Baghdad, Iraq.
| | - Adam Schikora
- Julius Kühn Institute (JKI) - Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics, Messeweg 11/12, 38104, Braunschweig, Germany.
| |
Collapse
|
38
|
Marian M, Fujikawa T, Shimizu M. Genome analysis provides insights into the biocontrol ability of Mitsuaria sp. strain TWR114. Arch Microbiol 2021; 203:3373-3388. [PMID: 33880605 DOI: 10.1007/s00203-021-02327-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 04/07/2021] [Accepted: 04/09/2021] [Indexed: 12/31/2022]
Abstract
Mitsuaria sp. TWR114 is a biocontrol agent against tomato bacterial wilt (TBW). We aimed to gain genomic insights relevant to the biocontrol mechanisms and colonization ability of this strain. The draft genome size was found to be 5,632,523 bp, with a GC content of 69.5%, assembled into 1144 scaffolds. Genome annotation predicted a total of 4675 protein coding sequences (CDSs), 914 pseudogenes, 49 transfer RNAs, 3 noncoding RNAs, and 2 ribosomal RNAs. Genome analysis identified multiple CDSs associated with various pathways for the metabolism and transport of amino acids and carbohydrates, motility and chemotactic capacities, protection against stresses (oxidative, antibiotic, and phage), production of secondary metabolites, peptidases, quorum-quenching enzymes, and indole-3-acetic acid, as well as protein secretion systems and their related appendages. The genome resource will extend our understanding of the genomic features related to TWR114's biocontrol and colonization abilities and facilitate its development as a new biopesticide against TBW.
Collapse
Affiliation(s)
- Malek Marian
- Faculty of Applied Biological Sciences, Gifu University, Gifu, 501-1193, Japan.,College of Agriculture, Ibaraki University, Ami, Inashiki, Ibaraki, 300-0393, Japan
| | - Takashi Fujikawa
- Institute of Fruit Tree and Tea Science, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, 305-8605, Japan
| | - Masafumi Shimizu
- Faculty of Applied Biological Sciences, Gifu University, Gifu, 501-1193, Japan.
| |
Collapse
|
39
|
Arora K, Rai AK, Devanna BN, Dubey H, Narula A, Sharma TR. Deciphering the role of microRNAs during Pi54 gene mediated Magnaporthe oryzae resistance response in rice. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2021; 27:633-647. [PMID: 33854289 PMCID: PMC7981355 DOI: 10.1007/s12298-021-00960-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/14/2021] [Accepted: 02/15/2021] [Indexed: 05/08/2023]
Abstract
The broad-spectrum resistance gene Pi54 confers resistance to multiple isolates of Magnaporthe oryzae in rice. In order to decipher the molecular mechanism underlying the Pi54 mediated resistance in rice line Taipei309 Pi54 (carrying Pi54), miRNAome study was performed at 24 h post-inoculation (hpi) with M. oryzae. A total of 222 known miRNAs representing 101 miRNA families were found in this study. Of these, 29 and 24 miRNAs were respectively up- and down-regulated in the resistant Taipei309 Pi54 . Defence response (DR) genes, like, NBSGO35, and OsWAK129b, and genes related to transcription factors were up-regulated in Taipei309 Pi54 line. The vast array of miRNA candidates identified here are miR159c, miR167c, miR2100, miR2118o, miR2118l, miR319a, miR393, miR395l, miR397a, miR397b, miR398, miR439g, miR531b, miR812f, and miR815c, and they manifest their role in balancing the interplay between various DR genes during Pi54 mediated resistance. We also validated miRNA/target gene pairs involved in hormone signalling, and cross-talk among hormone pathways regulating the rice immunity. This study suggests that the Pi54 gene mediated blast resistance is influenced by several microRNAs through PTI and ETI components in the rice line Taipei309 Pi54 , leading to incompatible host-pathogen interaction.
Collapse
Affiliation(s)
- Kirti Arora
- ICAR-National Institute for Plant Biotechnology, Pusa Campus, New Delhi, 110012 India
- Department of Biotechnology, Jamia Hamdard, New Delhi, 110062 India
| | - Amit Kumar Rai
- ICAR-National Institute for Plant Biotechnology, Pusa Campus, New Delhi, 110012 India
| | - B. N. Devanna
- ICAR-National Institute for Plant Biotechnology, Pusa Campus, New Delhi, 110012 India
- ICAR-National Rice Research Institute, Cuttack, 753006 India
| | - Himanshu Dubey
- ICAR-National Institute for Plant Biotechnology, Pusa Campus, New Delhi, 110012 India
| | - Alka Narula
- Department of Biotechnology, Jamia Hamdard, New Delhi, 110062 India
| | - Tilak Raj Sharma
- ICAR-National Institute for Plant Biotechnology, Pusa Campus, New Delhi, 110012 India
- Division of Crop Science, Indian Council of Agricultural Research, Krishi Bhavan, New Delhi, 110 001 India
| |
Collapse
|
40
|
Han Z, Xiong D, Xu Z, Liu T, Tian C. The Cytospora chrysosperma Virulence Effector CcCAP1 Mainly Localizes to the Plant Nucleus To Suppress Plant Immune Responses. mSphere 2021; 6:e00883-20. [PMID: 33627507 PMCID: PMC8544888 DOI: 10.1128/msphere.00883-20] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 02/01/2021] [Indexed: 01/07/2023] Open
Abstract
Canker disease is caused by the fungus Cytospora chrysosperma and damages a wide range of woody plants, causing major losses to crops and native plants. Plant pathogens secrete virulence-related effectors into host cells during infection to regulate plant immunity and promote colonization. However, the functions of C. chrysosperma effectors remain largely unknown. In this study, we used Agrobacterium tumefaciens-mediated transient expression system in Nicotiana benthamiana and confocal microscopy to investigate the immunoregulation roles and subcellular localization of CcCAP1, a virulence-related effector identified in C. chrysosperma CcCAP1 was significantly induced in the early stages of infection and contains cysteine-rich secretory proteins, antigen 5, and pathogenesis-related 1 proteins (CAP) superfamily domain with four cysteines. CcCAP1 suppressed the programmed cell death triggered by Bcl-2-associated X protein (BAX) and the elicitin infestin1 (INF1) in transient expression assays with Nicotiana benthamiana The CAP superfamily domain was sufficient for its cell death-inhibiting activity and three of the four cysteines in the CAP superfamily domain were indispensable for its activity. Pathogen challenge assays in N. benthamiana demonstrated that transient expression of CcCAP1 promoted Botrytis cinerea infection and restricted reactive oxygen species accumulation, callose deposition, and defense-related gene expression. In addition, expression of green fluorescent protein-labeled CcCAP1 in N. benthamiana showed that it localized to both the plant nucleus and the cytoplasm, but the nuclear localization was essential for its full immune inhibiting activity. These results suggest that this virulence-related effector of C. chrysosperma modulates plant immunity and functions mainly via its nuclear localization and the CAP domain.IMPORTANCE The data presented in this study provide a key resource for understanding the biology and molecular basis of necrotrophic pathogen responses to Nicotiana benthamiana resistance utilizing effector proteins, and CcCAP1 may be used in future studies to understand effector-triggered susceptibility processes in the Cytospora chrysosperma-poplar interaction system.
Collapse
Affiliation(s)
- Zhu Han
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing, China
| | - Dianguang Xiong
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing, China
| | - Zhiye Xu
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing, China
| | - Tingli Liu
- Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Chengming Tian
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing, China
| |
Collapse
|
41
|
Fadiji AE, Ayangbenro AS, Babalola OO. Unveiling the putative functional genes present in root-associated endophytic microbiome from maize plant using the shotgun approach. J Appl Genet 2021; 62:339-351. [PMID: 33486715 DOI: 10.1007/s13353-021-00611-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 12/24/2020] [Accepted: 01/11/2021] [Indexed: 01/23/2023]
Abstract
To ensure food security for the ever-increasing world's population, it is important to explore other alternatives for enhancing plant productivity. This study is aimed at identifying the putative plant growth-promoting (PGP) and endophytic gene clusters in root-associated endophytic microbes from maize root and to also verify if their abundance is affected by different farming practices. To achieve this, we characterize endophytic microbiome genes involved in PGP and endophytic lifestyle inside maize root using the shotgun metagenomic approach. Our results revealed the presence of genes involved in PGP activities such as nitrogen fixation, HCN biosynthesis, siderophore, 4-hydroxybenzoate, ACC deaminase, phenazine, phosphate solubilization, butanediol, methanol utilization, acetoin, nitrogen metabolism, and IAA biosynthesis. We also identify genes involved in stress resistance such as glutathione, catalase, and peroxidase. Our results further revealed the presence of putative genes involved in endophytic behaviors such as aerotaxis, regulator proteins, motility mechanisms, flagellum biosynthesis, nitrogen regulation, regulation of carbon storage, formation of biofilm, reduction of nitric oxide, regulation of beta-lactamase resistance, type III secretion, type IV conjugal DNA, type I pilus assembly, phosphotransferase system (PTS), and ATP-binding cassette (ABC). Our study suggests a high possibility in the utilization of endophytic microbial community for plant growth promotion, biocontrol activities, and stress mitigation. Further studies in ascertaining this claim through culturing of the beneficial isolates as well as pot and field experiments are necessary.
Collapse
Affiliation(s)
- Ayomide Emmanuel Fadiji
- Food Security and Safety Niche, Faculty of Natural and Agricultural Sciences, North-West University, Private Mail Bag X2046, Mmabatho, South Africa
| | - Ayansina Segun Ayangbenro
- Food Security and Safety Niche, Faculty of Natural and Agricultural Sciences, North-West University, Private Mail Bag X2046, Mmabatho, South Africa
| | - Olubukola Oluranti Babalola
- Food Security and Safety Niche, Faculty of Natural and Agricultural Sciences, North-West University, Private Mail Bag X2046, Mmabatho, South Africa.
| |
Collapse
|
42
|
Shah NR, Voisin TB, Parsons ES, Boyd CM, Hoogenboom BW, Bubeck D. Structural basis for tuning activity and membrane specificity of bacterial cytolysins. Nat Commun 2020; 11:5818. [PMID: 33199689 PMCID: PMC7669874 DOI: 10.1038/s41467-020-19482-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 10/14/2020] [Indexed: 11/25/2022] Open
Abstract
Cholesterol-dependent cytolysins (CDCs) are pore-forming proteins that serve as major virulence factors for pathogenic bacteria. They target eukaryotic cells using different mechanisms, but all require the presence of cholesterol to pierce lipid bilayers. How CDCs use cholesterol to selectively lyse cells is essential for understanding virulence strategies of several pathogenic bacteria, and for repurposing CDCs to kill new cellular targets. Here we address that question by trapping an early state of pore formation for the CDC intermedilysin, bound to the human immune receptor CD59 in a nanodisc model membrane. Our cryo electron microscopy map reveals structural transitions required for oligomerization, which include the lateral movement of a key amphipathic helix. We demonstrate that the charge of this helix is crucial for tuning lytic activity of CDCs. Furthermore, we discover modifications that overcome the requirement of cholesterol for membrane rupture, which may facilitate engineering the target-cell specificity of pore-forming proteins.
Collapse
Affiliation(s)
- Nita R Shah
- Department of Life Sciences, Sir Ernst Chain Building, Imperial College London, London, SW7 2AZ, UK
| | - Tomas B Voisin
- Department of Life Sciences, Sir Ernst Chain Building, Imperial College London, London, SW7 2AZ, UK
| | - Edward S Parsons
- London Centre for Nanotechnology, University College London, London, WC1H 0AH, UK
| | - Courtney M Boyd
- Department of Life Sciences, Sir Ernst Chain Building, Imperial College London, London, SW7 2AZ, UK
| | - Bart W Hoogenboom
- London Centre for Nanotechnology, University College London, London, WC1H 0AH, UK
- Department of Physics and Astronomy, University College London, Gower Street, London, WC1E 6BT, UK
| | - Doryen Bubeck
- Department of Life Sciences, Sir Ernst Chain Building, Imperial College London, London, SW7 2AZ, UK.
| |
Collapse
|
43
|
Neik TX, Amas J, Barbetti M, Edwards D, Batley J. Understanding Host-Pathogen Interactions in Brassica napus in the Omics Era. PLANTS (BASEL, SWITZERLAND) 2020; 9:E1336. [PMID: 33050509 PMCID: PMC7599536 DOI: 10.3390/plants9101336] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/02/2020] [Accepted: 10/06/2020] [Indexed: 12/12/2022]
Abstract
Brassica napus (canola/oilseed rape/rapeseed) is an economically important crop, mostly found in temperate and sub-tropical regions, that is cultivated widely for its edible oil. Major diseases of Brassica crops such as Blackleg, Clubroot, Sclerotinia Stem Rot, Downy Mildew, Alternaria Leaf Spot and White Rust have caused significant yield and economic losses in rapeseed-producing countries worldwide, exacerbated by global climate change, and, if not remedied effectively, will threaten global food security. To gain further insights into the host-pathogen interactions in relation to Brassica diseases, it is critical that we review current knowledge in this area and discuss how omics technologies can offer promising results and help to push boundaries in our understanding of the resistance mechanisms. Omics technologies, such as genomics, proteomics, transcriptomics and metabolomics approaches, allow us to understand the host and pathogen, as well as the interaction between the two species at a deeper level. With these integrated data in multi-omics and systems biology, we are able to breed high-quality disease-resistant Brassica crops in a more holistic, targeted and accurate way.
Collapse
Affiliation(s)
- Ting Xiang Neik
- Sunway College Kuala Lumpur, Bandar Sunway 47500, Selangor, Malaysia;
| | - Junrey Amas
- School of Biological Sciences and Institute of Agriculture, The University of Western Australia, Perth 6009, Australia; (J.A.); (D.E.)
| | - Martin Barbetti
- School of Agriculture and Environment and Institute of Agriculture, The University of Western Australia, Perth 6009, Australia;
| | - David Edwards
- School of Biological Sciences and Institute of Agriculture, The University of Western Australia, Perth 6009, Australia; (J.A.); (D.E.)
| | - Jacqueline Batley
- School of Biological Sciences and Institute of Agriculture, The University of Western Australia, Perth 6009, Australia; (J.A.); (D.E.)
| |
Collapse
|
44
|
Deng Y, Ning Y, Yang DL, Zhai K, Wang GL, He Z. Molecular Basis of Disease Resistance and Perspectives on Breeding Strategies for Resistance Improvement in Crops. MOLECULAR PLANT 2020; 13:1402-1419. [PMID: 32979566 DOI: 10.1016/j.molp.2020.09.018] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 08/31/2020] [Accepted: 09/19/2020] [Indexed: 05/24/2023]
Abstract
Crop diseases are major factors responsible for substantial yield losses worldwide, which affects global food security. The use of resistance (R) genes is an effective and sustainable approach to controlling crop diseases. Here, we review recent advances on R gene studies in the major crops and related wild species. Current understanding of the molecular mechanisms underlying R gene activation and signaling, and susceptibility (S) gene-mediated resistance in crops are summarized and discussed. Furthermore, we propose some new strategies for R gene discovery, how to balance resistance and yield, and how to generate crops with broad-spectrum disease resistance. With the rapid development of new genome-editing technologies and the availability of increasing crop genome sequences, the goal of breeding next-generation crops with durable resistance to pathogens is achievable, and will be a key step toward increasing crop production in a sustainable way.
Collapse
Affiliation(s)
- Yiwen Deng
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences/Shanghai Institute of Plant Physiology & Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yuese Ning
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Dong-Lei Yang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Keran Zhai
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences/Shanghai Institute of Plant Physiology & Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Guo-Liang Wang
- Department of Plant Pathology, Ohio State University, Columbus, OH 43210, USA.
| | - Zuhua He
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences/Shanghai Institute of Plant Physiology & Ecology, Chinese Academy of Sciences, Shanghai 200032, China.
| |
Collapse
|
45
|
Hwang IS, Oh EJ, Oh CS. Transcriptional Changes of Plant Defense-Related Genes in Response to Clavibacter Infection in Pepper and Tomato. THE PLANT PATHOLOGY JOURNAL 2020; 36:450-458. [PMID: 33082729 PMCID: PMC7542022 DOI: 10.5423/ppj.oa.07.2020.0124] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/20/2020] [Accepted: 08/24/2020] [Indexed: 06/11/2023]
Abstract
Pepper and tomato plants infected with two Clavibacter species, C. capsici and C. michiganensis have shown different patterns of disease development depending on their virulence. Here, we investigated how pepper and tomato plants respond to infection by the high-virulent or low-virulent Clavibacter strains. For this, we chose two strains of each Clavibacter species to show different virulence level in the host plants. Although low-virulent strains showed less disease symptoms, they grew almost the same level as the high-virulent strains in both plants. To further examine the response of host plants to Clavibacter infection, we analyzed the expression patterns of plant defense-related genes in the leaves inoculated with different strains of C. capsici and C. michiganensis. Pepper plants infected with high-virulent C. capsici strain highly induced the expression of CaPR1, CaDEF, CaPR4b, CaPR10, and CaLOX1 at 5 days after inoculation (dai), but their expression was much less in low-virulent Clavibacter infection. Expression of CaSAR8.2 was induced at 2 dai, regardless of virulence level. Expression of GluA, Pin2, and PR2 in tomato plants infected with high-virulent C. michiganensis were much higher at 5 dai, compared with mock or low-virulent strain. Expression of PR1a, Osmotin-like, Chitinase, and Chitinase class 2 was increased, regardless of virulence level. Expression of LoxA gene was not affected by Clavibacter inoculation. These results suggested that Clavibacter infection promotes induction of certain defense-related genes in host plants and that differential expression of those genes by low-virulent Clavibacter infection might be affected by their endophytic lifestyle in plants.
Collapse
Affiliation(s)
- In Sun Hwang
- Department of Horticultural Biotechnology, College of Life Science, Kyung Hee University, Yongin 704, Korea
| | - Eom-Ji Oh
- Graduate School of Biotechnology, Kyung Hee University, Yongin 17104, Korea
| | - Chang-Sik Oh
- Department of Horticultural Biotechnology, College of Life Science, Kyung Hee University, Yongin 704, Korea
- Graduate School of Biotechnology, Kyung Hee University, Yongin 17104, Korea
| |
Collapse
|
46
|
Cooper B, Campbell KB, Beard HS, Garrett WM, Ferreira ME. The Proteomics of Resistance to Halo Blight in Common Bean. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2020; 33:1161-1175. [PMID: 32633604 DOI: 10.1094/mpmi-05-20-0112-r] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Halo blight disease of beans is caused by a gram-negative bacterium, Pseudomonas syringae pv. phaseolicola. The disease is prevalent in South America and Africa and causes crop loss for indigent people who rely on beans as a primary source of daily nutrition. In susceptible beans, P. syringae pv. phaseolicola causes water-soaking at the site of infection and produces phaseolotoxin, an inhibitor of bean arginine biosynthesis. In resistant beans, P. syringae pv. phaseolicola triggers a hypersensitive response that limits the spread of infection. Here, we used high-throughput mass spectrometry to interrogate the responses to two different P. syringae pv. phaseolicola isolates on a single line of common bean, Phaseolus vulgaris PI G19833, with a reference genome sequence. We obtained quantitative information for 4,135 bean proteins. A subset of 160 proteins with similar accumulation changes during both susceptible and resistant reactions included salicylic acid responders EDS1 and NDR1, ethylene and jasmonic acid biosynthesis enzymes, and proteins enabling vesicle secretion. These proteins revealed the activation of a basal defense involving hormonal responses and the mobilization of extracellular proteins. A subset of 29 proteins specific to hypersensitive immunity included SOBIR1, a G-type lectin receptor-like kinase, and enzymes needed for glucoside and phytoalexin production. Virus-induced gene silencing revealed that the G-type lectin receptor-like kinase suppresses bacterial infection. Together, the results define the proteomics of disease resistance to P. syringae pv. phaseolicola in beans and support a model whereby the induction of hypersensitive immunity reinstates defenses targeted by P. syringae pv. phaseolicola.
Collapse
Affiliation(s)
- Bret Cooper
- Soybean Genomics and Improvement Laboratory, USDA-ARS, Beltsville, MD, U.S.A
| | - Kimberly B Campbell
- Soybean Genomics and Improvement Laboratory, USDA-ARS, Beltsville, MD, U.S.A
| | - Hunter S Beard
- Soybean Genomics and Improvement Laboratory, USDA-ARS, Beltsville, MD, U.S.A
| | - Wesley M Garrett
- Animal Biosciences and Biotechnology Laboratory, USDA-ARS, Beltsville, MD, U.S.A
| | - Marcio E Ferreira
- Embrapa Genetic Resources and Biotechnology, Embrapa, Brasilia, DF, Brazil
- Embrapa Labex U.S.A., USDA-ARS, Beltsville, MD, U.S.A
| |
Collapse
|
47
|
Castillo AI, Chacón-Díaz C, Rodríguez-Murillo N, Coletta-Filho HD, Almeida RPP. Impacts of local population history and ecology on the evolution of a globally dispersed pathogen. BMC Genomics 2020; 21:369. [PMID: 32434538 PMCID: PMC7238557 DOI: 10.1186/s12864-020-06778-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 05/12/2020] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Pathogens with a global distribution face diverse biotic and abiotic conditions across populations. Moreover, the ecological and evolutionary history of each population is unique. Xylella fastidiosa is a xylem-dwelling bacterium infecting multiple plant hosts, often with detrimental effects. As a group, X. fastidiosa is divided into distinct subspecies with allopatric historical distributions and patterns of multiple introductions from numerous source populations. The capacity of X. fastidiosa to successfully colonize and cause disease in naïve plant hosts varies among subspecies, and potentially, among populations. Within Central America (i.e. Costa Rica) two X. fastidiosa subspecies coexist: the native subsp. fastidiosa and the introduced subsp. pauca. Using whole genome sequences, the patterns of gene gain/loss, genomic introgression, and genetic diversity were characterized within Costa Rica and contrasted to other X. fastidiosa populations. RESULTS Within Costa Rica, accessory and core genome analyses showed a highly malleable genome with numerous intra- and inter-subspecific gain/loss events. Likewise, variable levels of inter-subspecific introgression were found within and between both coexisting subspecies; nonetheless, the direction of donor/recipient subspecies to the recombinant segments varied. Some strains appeared to recombine more frequently than others; however, no group of genes or gene functions were overrepresented within recombinant segments. Finally, the patterns of genetic diversity of subsp. fastidiosa in Costa Rica were consistent with those of other native populations (i.e. subsp. pauca in Brazil). CONCLUSIONS Overall, this study shows the importance of characterizing local evolutionary and ecological history in the context of world-wide pathogen distribution.
Collapse
Affiliation(s)
- Andreina I Castillo
- Department of Environmental Science, Policy and Management, University of California, Berkeley, CA, USA
| | - Carlos Chacón-Díaz
- Centro de Investigación en Enfermedades Tropicales, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Neysa Rodríguez-Murillo
- Centro de Investigación en Enfermedades Tropicales, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | | | - Rodrigo P P Almeida
- Department of Environmental Science, Policy and Management, University of California, Berkeley, CA, USA.
| |
Collapse
|
48
|
Isolation and Characterization of Plant Metabolite Signals that Induce Type III Secretion by the Plant Pathogen Pseudomonas syringae. Methods Mol Biol 2020; 1991:115-126. [PMID: 31041769 DOI: 10.1007/978-1-4939-9458-8_13] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2023]
Abstract
Pseudomonas syringae is a bacterium that can cause disease on a wide range of plant species including important agricultural crops. A primary virulence mechanism used by P. syringae to infect host plants is the type III secretion system (T3SS), a syringe-like structure that delivers defense-suppressing proteins directly into plant cells. Genes encoding the T3SS are not transcribed in P. syringae prior to contact with a potential host plant and must be expressed during initial stages of infection. Specific organic and amino acids exuded by plants were recently identified as signals that can induce expression of T3SS-associated genes. Here we describe a technique to produce exudates from intact Arabidopsis seedlings and evaluate the exudates for the presence of these bioactive metabolites. We provide procedures for exudate production as well as downstream assays to assess T3SS gene expression using a GFP transcriptional reporter. We also describe methods for preparing high-quality protein and RNA from exudate-treated bacteria to directly assess changes in mRNA and protein abundance. These methods could be used to investigate mechanisms regulating P. syringae perception of plant metabolites as well as the release of these substances by the plant, and more generally to investigate host signals perceived by other phytopathogens.
Collapse
|
49
|
Wang F, Nong X, Hao K, Cai N, Wang G, Liu S, Ullah H, Zhang Z. Identification of the key genes involved in the regulation of symbiotic pathways induced by Metarhizium anisopliae in peanut ( Arachis hypogaea) roots. 3 Biotech 2020; 10:124. [PMID: 32140376 DOI: 10.1007/s13205-020-2105-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 02/01/2020] [Indexed: 11/26/2022] Open
Abstract
We detected and compared the mRNA and protein expression levels of immunity-associated and symbiosis-associated genes in peanut (Arachis hypogaea) roots inoculated with entomopathogenic fungus M. anisopliae or the phytopathogenic fungus Fusarium oxysporum, by RT-qPCR and parallel reaction monitoring (PRM). The selected genes were mainly associated with plant-fungus interactions, signal transduction, regulation of cell death, nitrogen or iron metabolism, nutrient acquisition or transport, and compound synthesis based on previous transcriptome analysis. The results showed that the host basal defense responses were significantly inhibited by both M. anisopliae and F. oxysporum, which suggests that both fungi actively suppress the host immunity for successful colonization and infection. However, only F. oxysporum induced a strong host hypersensitivity, which indicates that the host is strongly resisting F. oxysporum but potentially allowing M. anisopliae. Additionally, the genes (SYMRK, CaM, CCaMK, FRI2, ABCC2, F6H1, SCT, NRT24 and LTP1) related to symbiosis and growth were distinctively observed with an up-regulated expression following M. anisopliae treatment, which implies that the host was actively initiating the establishment of symbiosis with the fungus. This study revealed a synergistic relationship between host immunosuppression and the promotion of symbiosis during interactions with M. anisopliae. It suggested that M. anisopliae benefited plant for symbiotic relationship, in addition to controlling herbivorous insects as an entomopathogen.
Collapse
Affiliation(s)
- Feng Wang
- 1The State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Xiangqun Nong
- 1The State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Kun Hao
- 1The State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Ni Cai
- 1The State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Guangjun Wang
- 1The State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Shaofang Liu
- 2Gaolan Station of Agricultural and Ecological Experiment, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000 China
| | - Hidayat Ullah
- 1The State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
- 3Department of Agriculture, The University of Swabi, Anbar, Swabi, 23561 Khyber Pakhtunkhwa Pakistan
| | - Zehua Zhang
- 1The State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| |
Collapse
|
50
|
Vieira P, Nemchinov LG. An Expansin-Like Candidate Effector Protein from Pratylenchus penetrans Modulates Immune Responses in Nicotiana benthamiana. PHYTOPATHOLOGY 2020; 110:684-693. [PMID: 31680651 DOI: 10.1094/phyto-09-19-0336-r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The root lesion nematode (RLN) Pratylenchus penetrans is a migratory species that attacks a broad range of crops. After the RLN is initially attracted to host roots by root exudates and compounds, it releases secretions that are critical for successful parasitism. Among those secretions are nematode virulence factors or effectors that facilitate the entry and migration of nematodes through the roots and modulate plant immune defenses. The recognition of the effectors by host resistance proteins leads to effector-triggered immunity and incompatible plant-nematode interactions. Although many candidate effectors of the RLN and other plant-parasitic nematodes have been identified, the detailed mechanisms of their functions and particularly, their host targets remain largely unexplored. In this study, we sequenced and annotated genes encoding expansin-like proteins, which are major candidate effectors of P. penetrans. One of the genes, Pp-EXPB1, which was the most highly expressed during nematode infection in different plant species, was further functionally characterized via transient expression in the model plant Nicotiana benthamiana and global transcriptome profiling of gene expression changes triggered by this candidate effector in plants. As a result of this investigation, the biological roles of Pp-EXPB1 in nematode parasitism were proposed, the putative cellular targets of the proteins were identified, and the molecular mechanisms of plant responses to the nematode-secreted proteins were outlined.
Collapse
Affiliation(s)
- Paulo Vieira
- Molecular Plant Pathology Laboratory, U.S. Department of Agriculture-Agricultural Research Service, Beltsville, MD 20705-2350
- School of Plant and Environmental Science, Virginia Tech, Blacksburg, VA 24061
| | - Lev G Nemchinov
- Molecular Plant Pathology Laboratory, U.S. Department of Agriculture-Agricultural Research Service, Beltsville, MD 20705-2350
| |
Collapse
|