1
|
Hu SH, Gao B, Li ZJ, Yuan YC. Whole‑exome sequencing insights into synchronous bilateral breast cancer with discordant molecular subtypes. Oncol Lett 2024; 28:595. [PMID: 39430730 PMCID: PMC11487496 DOI: 10.3892/ol.2024.14728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 09/05/2024] [Indexed: 10/22/2024] Open
Abstract
The incidence of synchronous bilateral breast cancer (SBBC) is very low, and SBBC with discordant molecular subtypes is even more uncommon. As such, little is known about the pathogenesis of SBBC with discordant molecular subtypes, and reports about this entity are scarce. In the present study, the case of a 72-year-old female patient who presented with SBBC with discordant molecular subtypes is reported, with a stage IA hormone receptor negative {human epidermal growth factor receptor-2 [HER2(+)]} tumor in the left breast and a stage IIIA hormone sensitive tumor [HER2(-)] in the right breast. Whole-exome sequencing was performed to identify the differential genetic variations in the BBC tissues. A total of 8 key mutated cancer susceptibility genes (ALK, BRCA1, FAT1, HNF1A, KDR, PTCH1, SDHA and SETBP1) were screened, and mutations were found in 10 vital cancer driver genes, including BRCA1, EBF1, MET, NF2, NUMA1 RALGAPA1, ROBO2, SMYD4, UBR5 and ZNF844. The high-frequency mutated genes mainly contained missense mutations, among which single nucleotide variants were the most common mutations, with C > T and C > A as the main forms. The pathways associated with the high frequency mutated genes were further elucidated by functional category and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses. Heterogeneity in the hormone receptor and HER2 status of SBBC poses unique therapeutic challenges. Future studies should aim to identify the optimal management strategy for this disease.
Collapse
Affiliation(s)
- Shi-Han Hu
- Department of Pathology and Pathophysiology, College of Medicine, Dali University, Dali, Yunnan 671000, P.R. China
| | - Bo Gao
- Department of Pathology and Pathophysiology, College of Medicine, Dali University, Dali, Yunnan 671000, P.R. China
- Department of Pathology, The First Affiliated Hospital of Dali University, Dali, Yunnan 671000, P.R. China
| | - Zheng-Jin Li
- Department of Pathology, The First Affiliated Hospital of Dali University, Dali, Yunnan 671000, P.R. China
| | - Ya-Chen Yuan
- Department of Pathology, The First Affiliated Hospital of Dali University, Dali, Yunnan 671000, P.R. China
| |
Collapse
|
2
|
Suo S, Liu R, Yu X, Wang J, Wang M, Zhang Y, Liu Y. Incidence and risk factors of pain following breast cancer surgery: a retrospective national inpatient sample database study. BMC Womens Health 2024; 24:583. [PMID: 39472876 PMCID: PMC11520449 DOI: 10.1186/s12905-024-03430-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 10/24/2024] [Indexed: 11/02/2024] Open
Abstract
BACKGROUND Postoperative pain (PP) is a dynamic process that reflects the complex interplay between symptoms, treatment, and patient experiences, and its intensity is reportedly primarily related to the severity of surgical trauma. However, no large-scale national database-based study has hitherto been conducted to assess the occurrence and features related to PP following breast cancer (BC) surgery. METHODS In this retrospective analysis, we screened BC surgery cases between 2015 and 2019 within the National Inpatient Sample (NIS) Database, utilizing the International Classification of Diseases (ICD) 10th edition clinical modification codes. The researchers identified patients who developed PP and compared them to those who did not. Factors associated with PP were then screened: patient demographics (age and race), hospital characteristics (type of insurance, bed size, teaching status, type of admission, location, and hospital area), length of stay (LOS), total cost during hospitalization, inpatient mortality, comorbidities, and perioperative complications. Data were analyzed using descriptive statistics. Multivariate logistic regression analysis was used to determine the independent risk factors for postoperative pain in BC surgery. RESULTS 39,870 BC surgery cases were identified over a five-year period from 2015 to 2019. The overall occurrence of PP following breast cancer surgery was 6.15% (2,387 cases), with a slight upward trend every year. Significant racial disparities were observed, Whites associated with a higher incidence of PP (P < 0.001). In addition, the incidence of elective admission was 11.96% lower (67.491% vs. 79.451%) than that of patients without PP following breast cancer surgery (P < 0.001). Besides, PP was related to prolonged hospitalization duration (3 vs. 2 days; P < 0.001), and higher total cost ($68,283 vs. $60,036; P < 0.001). Multivariate logistic regression identified breast cancer surgery-independent risk factors for PP, including younger age, non-elective hospital admission, rural hospitals, depression, drug abuse, metastatic cancer, psychoses, weight loss, and chronic pulmonary disease. In addition, postoperative pain for BC was associated with urinary retention, gastrointestinal complications, continuous invasive ventilation, deep vein thrombosis, urinary tract infection, blood transfusion, arrhythmia, and chest pain. CONCLUSION Despite the low incidence of postoperative pain in BC surgery cases, it is essential to investigate factors predisposing to PP to allow optimal care management and improve the outcomes of this patient population.
Collapse
Affiliation(s)
- Shanlian Suo
- Department of Anesthesiology, The Second Hospital of Lanzhou University, Lanzhou, Gansu, 730030, China
| | - Rui Liu
- Department of Anesthesiology, The Second Hospital of Lanzhou University, Lanzhou, Gansu, 730030, China
| | - Xuegao Yu
- Department of Laboratory Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510000, China
| | - Jian Wang
- Division of Orthopaedic Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Min Wang
- Department of Anesthesiology, The Second Hospital of Lanzhou University, Lanzhou, Gansu, 730030, China.
| | - Yan Zhang
- Department of Anesthesiology, The Second Hospital of Lanzhou University, Lanzhou, Gansu, 730030, China.
| | - Yuqian Liu
- Department of Anesthesiology, The Second Hospital of Lanzhou University, Lanzhou, Gansu, 730030, China.
| |
Collapse
|
3
|
Weymouth L, Smith AR, Lunnon K. DNA Methylation in Alzheimer's Disease. Curr Top Behav Neurosci 2024. [PMID: 39455499 DOI: 10.1007/7854_2024_530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2024]
Abstract
To date, DNA methylation is the best characterized epigenetic modification in Alzheimer's disease. Involving the addition of a methyl group to the fifth carbon of the cytosine pyrimidine base, DNA methylation is generally thought to be associated with the silencing of gene expression. It has been hypothesized that epigenetics may mediate the interaction between genes and the environment in the manifestation of Alzheimer's disease, and therefore studies investigating DNA methylation could elucidate novel disease mechanisms. This chapter comprehensively reviews epigenomic studies, undertaken in human brain tissue and purified brain cell types, focusing on global methylation levels, candidate genes, epigenome wide approaches, and recent meta-analyses. We discuss key differentially methylated genes and pathways that have been highlighted to date, with a discussion on how new technologies and the integration of multiomic data may further advance the field.
Collapse
Affiliation(s)
- Luke Weymouth
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| | - Adam R Smith
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| | - Katie Lunnon
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK.
| |
Collapse
|
4
|
Chiang HC, Qi L, Mitra P, Huang Y, Hu Y, Li R. R-loop functions in Brca1-associated mammary tumorigenesis. Proc Natl Acad Sci U S A 2024; 121:e2403600121. [PMID: 39116124 PMCID: PMC11331088 DOI: 10.1073/pnas.2403600121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 07/11/2024] [Indexed: 08/10/2024] Open
Abstract
Deleterious accumulation of R-loops, a DNA-RNA hybrid structure, contributes to genome instability. They are associated with BRCA1 mutation-related breast cancer, an estrogen receptor α negative (ERα-) tumor type originating from luminal progenitor cells. However, a presumed causality of R-loops in tumorigenesis has not been established in vivo. Here, we overexpress mouse Rnaseh1 (Rh1-OE) in vivo to remove accumulated R-loops in Brca1-deficient mouse mammary epithelium (BKO). R-loop removal exacerbates DNA replication stress in proliferating BKO mammary epithelial cells, with little effect on homology-directed repair of double-strand breaks following ionizing radiation. Compared to their BKO counterparts, BKO-Rh1-OE mammary glands contain fewer luminal progenitor cells but more mature luminal cells. Despite a similar incidence of spontaneous mammary tumors in BKO and BKO-Rh1-OE mice, a significant percentage of BKO-Rh1-OE tumors express ERα and progesterone receptor. Our results suggest that rather than directly elevating the overall tumor incidence, R-loops influence the mammary tumor subtype by shaping the cell of origin for Brca1 tumors.
Collapse
Affiliation(s)
- Huai-Chin Chiang
- Department of Biochemistry and Molecular Medicine, School of Medicine & Health Sciences, The George Washington University, Washington, DC20037
| | - Leilei Qi
- Department of Anatomy and Cell Biology, School of Medicine & Health Sciences, The George Washington University, Washington, DC20037
| | - Payal Mitra
- Department of Biochemistry and Molecular Medicine, School of Medicine & Health Sciences, The George Washington University, Washington, DC20037
| | - Yimeng Huang
- Department of Biochemistry and Molecular Medicine, School of Medicine & Health Sciences, The George Washington University, Washington, DC20037
| | - Yanfen Hu
- Department of Anatomy and Cell Biology, School of Medicine & Health Sciences, The George Washington University, Washington, DC20037
| | - Rong Li
- Department of Biochemistry and Molecular Medicine, School of Medicine & Health Sciences, The George Washington University, Washington, DC20037
| |
Collapse
|
5
|
Wei B, Yang F, Yu L, Qiu C. Crosstalk between SUMOylation and other post-translational modifications in breast cancer. Cell Mol Biol Lett 2024; 29:107. [PMID: 39127633 DOI: 10.1186/s11658-024-00624-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 07/30/2024] [Indexed: 08/12/2024] Open
Abstract
Breast cancer represents the most prevalent tumor type and a foremost cause of mortality among women globally. The complex pathophysiological processes of breast cancer tumorigenesis and progression are regulated by protein post-translational modifications (PTMs), which are triggered by different carcinogenic factors and signaling pathways, with small ubiquitin-like modifier (SUMOylation) emerging as a particularly pivotal player in this context. Recent studies have demonstrated that SUMOylation does not act alone, but interacts with other PTMs, such as phosphorylation, ubiquitination, acetylation, and methylation, thereby leading to the regulation of various pathological activities in breast cancer. This review explores novel and existing mechanisms of crosstalk between SUMOylation and other PTMs. Typically, SUMOylation is regulated by phosphorylation to exert feedback control, while also modulates subsequent ubiquitination, acetylation, or methylation. The crosstalk pairs in promoting or inhibiting breast cancer are protein-specific and site-specific. In mechanism, alterations in amino acid side chain charges, protein conformations, or the occupation of specific sites at specific domains or sites underlie the complex crosstalk. In summary, this review centers on elucidating the crosstalk between SUMOylation and other PTMs in breast cancer oncogenesis and progression and discuss the molecular mechanisms contributing to these interactions, offering insights into their potential applications in facilitating novel treatments for breast cancer.
Collapse
Affiliation(s)
- Bajin Wei
- The Department of Breast Surgery, Key Laboratory of Organ Transplantation, Key Laboratory of Combined Multi-Organ Transplantation, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Fan Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Luyang Yu
- MOE Laboratory of Biosystems Homeostasis & Protection, College of Life Sciences, Zijingang Campus, Zhejiang University, No. 866 Yuhangtang Road, Hangzhou, 310058, Zhejiang, China.
- Cancer Center, Zhejiang University, Hangzhou, China.
| | - Cong Qiu
- MOE Laboratory of Biosystems Homeostasis & Protection, College of Life Sciences, Zijingang Campus, Zhejiang University, No. 866 Yuhangtang Road, Hangzhou, 310058, Zhejiang, China.
- Cancer Center, Zhejiang University, Hangzhou, China.
| |
Collapse
|
6
|
Toraason E, Salagean A, Almanzar DE, Brown JE, Richter CM, Kurhanewicz NA, Rog O, Libuda DE. BRCA1/BRC-1 and SMC-5/6 regulate DNA repair pathway engagement during Caenorhabditis elegans meiosis. eLife 2024; 13:e80687. [PMID: 39115289 PMCID: PMC11368404 DOI: 10.7554/elife.80687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 08/07/2024] [Indexed: 09/03/2024] Open
Abstract
The preservation of genome integrity during sperm and egg development is vital for reproductive success. During meiosis, the tumor suppressor BRCA1/BRC-1 and structural maintenance of chromosomes 5/6 (SMC-5/6) complex genetically interact to promote high fidelity DNA double strand break (DSB) repair, but the specific DSB repair outcomes these proteins regulate remain unknown. Using genetic and cytological methods to monitor resolution of DSBs with different repair partners in Caenorhabditis elegans, we demonstrate that both BRC-1 and SMC-5 repress intersister crossover recombination events. Sequencing analysis of conversion tracts from homolog-independent DSB repair events further indicates that BRC-1 regulates intersister/intrachromatid noncrossover conversion tract length. Moreover, we find that BRC-1 specifically inhibits error prone repair of DSBs induced at mid-pachytene. Finally, we reveal functional interactions of BRC-1 and SMC-5/6 in regulating repair pathway engagement: BRC-1 is required for localization of recombinase proteins to DSBs in smc-5 mutants and enhances DSB repair defects in smc-5 mutants by repressing theta-mediated end joining (TMEJ). These results are consistent with a model in which some functions of BRC-1 act upstream of SMC-5/6 to promote recombination and inhibit error-prone DSB repair, while SMC-5/6 acts downstream of BRC-1 to regulate the formation or resolution of recombination intermediates. Taken together, our study illuminates the coordinated interplay of BRC-1 and SMC-5/6 to regulate DSB repair outcomes in the germline.
Collapse
Affiliation(s)
- Erik Toraason
- Institute of Molecular Biology, Department of Biology, University of OregonEugeneUnited States
| | - Alina Salagean
- Institute of Molecular Biology, Department of Biology, University of OregonEugeneUnited States
| | - David E Almanzar
- School of Biological Sciences and Center for Cell and Genome Sciences, University of UtahSalt Lake CityUnited States
| | - Jordan E Brown
- Institute of Molecular Biology, Department of Biology, University of OregonEugeneUnited States
| | - Colette M Richter
- Institute of Molecular Biology, Department of Biology, University of OregonEugeneUnited States
| | - Nicole A Kurhanewicz
- Institute of Molecular Biology, Department of Biology, University of OregonEugeneUnited States
| | - Ofer Rog
- School of Biological Sciences and Center for Cell and Genome Sciences, University of UtahSalt Lake CityUnited States
| | - Diana E Libuda
- Institute of Molecular Biology, Department of Biology, University of OregonEugeneUnited States
| |
Collapse
|
7
|
Lei G, Mao C, Horbath AD, Yan Y, Cai S, Yao J, Jiang Y, Sun M, Liu X, Cheng J, Xu Z, Lee H, Li Q, Lu Z, Zhuang L, Chen MK, Alapati A, Yap TA, Hung MC, You MJ, Piwnica-Worms H, Gan B. BRCA1-Mediated Dual Regulation of Ferroptosis Exposes a Vulnerability to GPX4 and PARP Co-Inhibition in BRCA1-Deficient Cancers. Cancer Discov 2024; 14:1476-1495. [PMID: 38552003 PMCID: PMC11296921 DOI: 10.1158/2159-8290.cd-23-1220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 02/07/2024] [Accepted: 03/26/2024] [Indexed: 04/06/2024]
Abstract
Resistance to poly (ADP-ribose) polymerase inhibitors (PARPi) limits the therapeutic efficacy of PARP inhibition in treating breast cancer susceptibility gene 1 (BRCA1)-deficient cancers. Here we reveal that BRCA1 has a dual role in regulating ferroptosis. BRCA1 promotes the transcription of voltage-dependent anion channel 3 (VDAC3) and glutathione peroxidase 4 (GPX4); consequently, BRCA1 deficiency promotes cellular resistance to erastin-induced ferroptosis but sensitizes cancer cells to ferroptosis induced by GPX4 inhibitors (GPX4i). In addition, nuclear receptor coactivator 4 (NCOA4)-mediated ferritinophagy and defective GPX4 induction unleash potent ferroptosis in BRCA1-deficient cancer cells upon PARPi and GPX4i co-treatment. Finally, we show that xenograft tumors derived from patients with BRCA1-mutant breast cancer with PARPi resistance exhibit decreased GPX4 expression and high sensitivity to PARP and GPX4 co-inhibition. Our results show that BRCA1 deficiency induces a ferroptosis vulnerability to PARP and GPX4 co-inhibition and inform a therapeutic strategy for overcoming PARPi resistance in BRCA1-deficient cancers. Significance: BRCA1 deficiency promotes resistance to erastin-induced ferroptosis via blocking VDAC3 yet renders cancer cells vulnerable to GPX4i-induced ferroptosis via inhibiting GPX4. NCOA4 induction and defective GPX4 further synergizes GPX4i with PARPi to induce ferroptosis in BRCA1-deficient cancers and targeting GPX4 mitigates PARPi resistance in those cancers. See related commentary by Alborzinia and Friedmann Angeli, p. 1372.
Collapse
Affiliation(s)
- Guang Lei
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Chao Mao
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Amber D Horbath
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yuelong Yan
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Shirong Cai
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jun Yao
- Department of Molecular and Cellular Oncology, Division of Basic Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yan Jiang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Mingchuang Sun
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Xiaoguang Liu
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jun Cheng
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Zhihao Xu
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Hyemin Lee
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Qidong Li
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Zhengze Lu
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Li Zhuang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Mei-Kuang Chen
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Department of Molecular and Cellular Oncology, Division of Basic Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Anagha Alapati
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Timothy A Yap
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Mien-Chie Hung
- Department of Molecular and Cellular Oncology, Division of Basic Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Current address: Graduate Institute of Biomedical Sciences, Institute of Biochemistry and Molecular Biology, Research Center for Cancer Biology, Cancer Biology and Precision Therapeutics Center, and Center for Molecular Medicine, China Medical University, Taichung 406, Taiwan
| | - M James You
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - Helen Piwnica-Worms
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - Boyi Gan
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Department of Molecular and Cellular Oncology, Division of Basic Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA
- Lead contact
| |
Collapse
|
8
|
Li S, Tang M, Xiong Y, Feng X, Wang C, Nie L, Huang M, Zhang H, Yin L, Zhu D, Yang C, Ma T, Chen J. Systematic investigation of BRCA1-A, -B, and -C complexes and their functions in DNA damage response and DNA repair. Oncogene 2024; 43:2621-2634. [PMID: 39068216 DOI: 10.1038/s41388-024-03108-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/14/2024] [Accepted: 07/16/2024] [Indexed: 07/30/2024]
Abstract
BRCA1, a breast cancer susceptibility gene, has emerged as a central mediator that brings together multiple signaling complexes in response to DNA damage. The A, B, and C complexes of BRCA1, which are formed based on their phosphorylation-dependent interactions with the BRCA1-C-terminal domains, contribute to the roles of BRCA1 in DNA repair and cell cycle checkpoint control. However, their functions in DNA damage response remain to be fully appreciated. Specifically, there has been no systematic investigation of the roles of BRCA1-A, -B, and -C complexes in the regulation of BRCA1 localization and functions, in part because of cellular lethality associated with loss of CtIP protein, which is an essential component in BRCA1-C complex. To systematically investigate the functions of these complexes in DNA damage response, we depleted a key component in each of these complexes. We used the degradation tag system to inducibly deplete endogenous CtIP and obtained a series of RAP80/FANCJ/CtIP single-, double-, and triple-knockout cells. We showed that loss of BRCA1-B/FANCJ and BRCA1-C/CtIP, but not BRCA1-A/RAP80, resulted in reduced cell proliferation and increased sensitivity to DNA damage. BRCA1-C/CtIP and BRCA1-A/RAP80 were involved in BRCA1 recruitment to sites of DNA damage. However, BRCA1-A/RAP80 was not essential for damage-induced BRCA1 localization. Instead, RAP80/H2AX and CtIP have redundant roles in BRCA1 recruitment. Altogether, our systematic analysis uncovers functional differences between BRCA1-A, -B, and -C complexes and provides new insights into the roles of these BRCA1-associated protein complexes in DNA damage response and DNA repair.
Collapse
Affiliation(s)
- Siting Li
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mengfan Tang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Immunology, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yun Xiong
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xu Feng
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Chao Wang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Litong Nie
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Min Huang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Huimin Zhang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ling Yin
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Dandan Zhu
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Chang Yang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Tiantian Ma
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Junjie Chen
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
9
|
Shi Y, Huang R, Zhang Y, Feng Q, Pan X, Wang L. RNA Interference Induces BRCA1 Gene Methylation and Increases the Radiosensitivity of Breast Cancer Cells. Cancer Biother Radiopharm 2024; 39:406-424. [PMID: 35180362 DOI: 10.1089/cbr.2021.0346] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Purpose: To investigate the relationship between breast cancer susceptibility gene-1 (BRCA1) gene methylation and the radiosensitivity of breast cancer. Materials and Methods: The authors studied three breast cancer cell lines: MDA-MB-435, MDA-MB-231, and MCF-7 cells. They constructed five short hairpin RNAs (shRNAs) and five small interfering RNAs to target selected promoter loci and initiate sequence-specific methylation in breast cancer cells. Pyrosequencing was used to analyze the state of DNA methylation. Quantitative real-time polymerase chain reaction was used to detect BRCA1 mRNA expression and RNA-directed DNA methylation (RdDM)-related gene expression. Western blotting was performed to analyze BRCA1 protein expression. Colony formation assays and γ-histone H2A foci formation assays were conducted to assess the surviving fraction (SF) and double-strand break (DSB) repair ability of cells after irradiation. Results: The authors constructed five strains of lentivirus vectors and five plasmid vectors targeting BRCA1 promoter region. In MDA-MB-435 cells, lentivirus-mediated RNA interference targeting Site 1 of BRCA1 increased the methylation levels of BRCA1 and reduced BRCA1 mRNA and protein expression. The SF and the ability to repair DNA DSBs were reduced in the combined LV-BRCA1RNAi-Site 1 infection and irradiation group. Conclusions: The authors' findings suggest that the shRNA suppressed the expression levels of the BRCA1 gene and reduced the SF and DNA repair ability of cells after irradiation through RdDM. In summary, the radiosensitivity of breast cancer cells may correlate with BRCA1 methylation. Advances in Knowledge: The authors first utilized a lentivirus-based shRNA-mediated specific-sequence DNA methylation of the BRCA1 gene mediated by RdDM.
Collapse
Affiliation(s)
- Yuebin Shi
- Department of Pathology, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China
| | - Rui Huang
- Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yong Zhang
- Department of Radiation Oncology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Qiang Feng
- Department of Pathology, 920th Hospital of Joint Logistics Support Force of PLA, Kunming, Yunnan, China
| | - Xinyan Pan
- Department of Pathology, 920th Hospital of Joint Logistics Support Force of PLA, Kunming, Yunnan, China
| | - Li Wang
- Department of Pathology, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China
| |
Collapse
|
10
|
Feijs-Žaja KLH, Ikenga NJ, Žaja R. Pathological and physiological roles of ADP-ribosylation: established functions and new insights. Biol Chem 2024:hsz-2024-0057. [PMID: 39066732 DOI: 10.1515/hsz-2024-0057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 07/09/2024] [Indexed: 07/30/2024]
Abstract
The posttranslational modification of proteins with poly(ADP-ribose) was discovered in the sixties. Since then, we have learned that the enzymes involved, the so-called poly(ADP-ribosyl)polymerases (PARPs), are transferases which use cofactor NAD+ to transfer ADP-ribose to their targets. Few PARPs are able to create poly(ADP-ribose), whereas the majority transfers a single ADP-ribose. In the last decade, hydrolases were discovered which reverse mono(ADP-ribosyl)ation, detection methods were developed and new substrates were defined, including nucleic acids. Despite the continued effort, relatively little is still known about the biological function of most PARPs. In this review, we summarise key functions of ADP-ribosylation and introduce emerging insights.
Collapse
Affiliation(s)
- Karla L H Feijs-Žaja
- 9165 Institute of Biochemistry and Molecular Biology, RWTH Aachen University , Pauwelsstrasse 30, D-52074 Aachen, Germany
| | - Nonso J Ikenga
- 9165 Institute of Biochemistry and Molecular Biology, RWTH Aachen University , Pauwelsstrasse 30, D-52074 Aachen, Germany
| | - Roko Žaja
- 9165 Institute of Biochemistry and Molecular Biology, RWTH Aachen University , Pauwelsstrasse 30, D-52074 Aachen, Germany
| |
Collapse
|
11
|
Beatson EL, Risdon EN, Napoli GC, Price DK, Chau CH, Figg WD. Genomic Characterization of Preclinical Prostate Cancer Cell Line Models. Int J Mol Sci 2024; 25:6111. [PMID: 38892296 PMCID: PMC11172770 DOI: 10.3390/ijms25116111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/28/2024] [Accepted: 05/30/2024] [Indexed: 06/21/2024] Open
Abstract
As we move into the era of precision medicine, the growing relevance of genetic alterations to prostate cancer (PCa) development and treatment demonstrates the importance of characterizing preclinical models at the genomic level. Our study investigated the genomic characterization of eight PCa cell lines to understand which models are clinically relevant. We designed a custom AmpliSeq DNA gene panel that encompassed key molecular pathways targeting AR signaling, apoptosis, DNA damage repair, and PI3K/AKT/PTEN, in addition to tumor suppressor genes. We examined the relationship between cell line genomic alterations and therapeutic response. In addition, using DepMap's Celligner tool, we identified which preclinical models are most representative of specific prostate cancer patient populations on cBioPortal. These data will help investigators understand the genetic differences in preclinical models of PCa and determine which ones are relevant for use in their translational research.
Collapse
Affiliation(s)
| | | | | | | | | | - William D. Figg
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA (D.K.P.); (C.H.C.)
| |
Collapse
|
12
|
Bai L, Li P, Xiang Y, Jiao X, Chen J, Song L, Liang Z, Liu Y, Zhu Y, Lu LY. BRCA1 safeguards genome integrity by activating chromosome asynapsis checkpoint to eliminate recombination-defective oocytes. Proc Natl Acad Sci U S A 2024; 121:e2401386121. [PMID: 38696471 PMCID: PMC11087798 DOI: 10.1073/pnas.2401386121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 03/14/2024] [Indexed: 05/04/2024] Open
Abstract
In the meiotic prophase, programmed DNA double-strand breaks are repaired by meiotic recombination. Recombination-defective meiocytes are eliminated to preserve genome integrity in gametes. BRCA1 is a critical protein in somatic homologous recombination, but studies have suggested that BRCA1 is dispensable for meiotic recombination. Here we show that BRCA1 is essential for meiotic recombination. Interestingly, BRCA1 also has a function in eliminating recombination-defective oocytes. Brca1 knockout (KO) rescues the survival of Dmc1 KO oocytes far more efficiently than removing CHK2, a vital component of the DNA damage checkpoint in oocytes. Mechanistically, BRCA1 activates chromosome asynapsis checkpoint by promoting ATR activity at unsynapsed chromosome axes in Dmc1 KO oocytes. Moreover, Brca1 KO also rescues the survival of asynaptic Spo11 KO oocytes. Collectively, our study not only unveils an unappreciated role of chromosome asynapsis in eliminating recombination-defective oocytes but also reveals the dual functions of BRCA1 in safeguarding oocyte genome integrity.
Collapse
Affiliation(s)
- Long Bai
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Women’s Reproductive Health Laboratory of Zhejiang Province, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou310006, China
| | - Peng Li
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Women’s Reproductive Health Laboratory of Zhejiang Province, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou310006, China
| | - Yu Xiang
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Women’s Reproductive Health Laboratory of Zhejiang Province, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou310006, China
| | - Xiaofei Jiao
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Women’s Reproductive Health Laboratory of Zhejiang Province, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou310006, China
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou310029, China
| | - Jiyuan Chen
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Women’s Reproductive Health Laboratory of Zhejiang Province, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou310006, China
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou310029, China
| | - Licun Song
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Women’s Reproductive Health Laboratory of Zhejiang Province, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou310006, China
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou310029, China
| | - Zhongyang Liang
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Women’s Reproductive Health Laboratory of Zhejiang Province, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou310006, China
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou310029, China
| | - Yidan Liu
- Zhejiang Provincial Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou310006, China
| | - Yimin Zhu
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Women’s Reproductive Health Laboratory of Zhejiang Province, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou310006, China
- Department of Reproductive Endocrinology, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou310006, China
| | - Lin-Yu Lu
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Women’s Reproductive Health Laboratory of Zhejiang Province, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou310006, China
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou310029, China
- Zhejiang University Cancer Center, Hangzhou310029, China
| |
Collapse
|
13
|
Yue W, Li X, Zhan X, Wang L, Ma J, Bi M, Wang Q, Gu X, Xie B, Liu T, Guo H, Zhu X, Song C, Qiao J, Li M. PARP inhibitors suppress tumours via centrosome error-induced senescence independent of DNA damage response. EBioMedicine 2024; 103:105129. [PMID: 38640836 PMCID: PMC11052917 DOI: 10.1016/j.ebiom.2024.105129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 04/07/2024] [Accepted: 04/07/2024] [Indexed: 04/21/2024] Open
Abstract
BACKGROUND Poly(ADP-ribose) polymerase (PARP) inhibitors have emerged as promising chemotherapeutic drugs primarily against BRCA1/2-associated tumours, known as synthetic lethality. However, recent clinical trials reported patients' survival benefits from PARP inhibitor treatments, irrelevant to homologous recombination deficiency. Therefore, revealing the therapeutic mechanism of PARP inhibitors beyond DNA damage repair is urgently needed, which can facilitate precision medicine. METHODS A CRISPR-based knock-in technology was used to establish stable BRCA1 mutant cancer cells. The effects of PARP inhibitors on BRCA1 mutant cancer cells were evaluated by biochemical and cell biological experiments. Finally, we validated its in vivo effects in xenograft and patient-derived xenograft (PDX) tumour mice. FINDINGS In this study, we uncovered that the majority of clinical BRCA1 mutations in breast cancers were in and near the middle of the gene, rather than in essential regions for DNA damage repair. Representative mutations such as R1085I and E1222Q caused transient extra spindle poles during mitosis in cancer cells. PAR, which is synthesized by PARP2 but not PARP1 at mitotic centrosomes, clustered these transient extra poles, independent of DNA damage response. Common PARP inhibitors could effectively suppress PARP2-synthesized PAR and induce cell senescence by abrogating the correction of mitotic extra-pole error. INTERPRETATION Our findings uncover an alternative mechanism by which PARP inhibitors efficiently suppress tumours, thereby pointing to a potential new therapeutic strategy for centrosome error-related tumours. FUNDING Funded by National Natural Science Foundation of China (NSFC) (T2225006, 82272948, 82103106), Beijing Municipal Natural Science Foundation (Key program Z220011), and the National Clinical Key Specialty Construction Program, P. R. China (2023).
Collapse
Affiliation(s)
- Wei Yue
- State Key Laboratory of Female Fertility Promotion, Centre for Reproductive Medicine, Department of Obstetrics and Gynaecology, Peking University Third Hospital, Beijing, 100191, China; National Clinical Research Centre for Obstetrics and Gynaecology (Peking University Third Hospital), Beijing, 100191, China; Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing 100191, China; Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191, China
| | - Xinyu Li
- State Key Laboratory of Female Fertility Promotion, Centre for Reproductive Medicine, Department of Obstetrics and Gynaecology, Peking University Third Hospital, Beijing, 100191, China; National Clinical Research Centre for Obstetrics and Gynaecology (Peking University Third Hospital), Beijing, 100191, China; Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing 100191, China; Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191, China
| | - Xiaolu Zhan
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Lei Wang
- Centre for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China; Peking-Tsinghua Centre for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Jihong Ma
- State Key Laboratory of Female Fertility Promotion, Centre for Reproductive Medicine, Department of Obstetrics and Gynaecology, Peking University Third Hospital, Beijing, 100191, China; National Clinical Research Centre for Obstetrics and Gynaecology (Peking University Third Hospital), Beijing, 100191, China; Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing 100191, China; Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191, China
| | - Meiyu Bi
- State Key Laboratory of Female Fertility Promotion, Centre for Reproductive Medicine, Department of Obstetrics and Gynaecology, Peking University Third Hospital, Beijing, 100191, China; National Clinical Research Centre for Obstetrics and Gynaecology (Peking University Third Hospital), Beijing, 100191, China; Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing 100191, China; Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191, China
| | - Qilong Wang
- State Key Laboratory of Female Fertility Promotion, Centre for Reproductive Medicine, Department of Obstetrics and Gynaecology, Peking University Third Hospital, Beijing, 100191, China; National Clinical Research Centre for Obstetrics and Gynaecology (Peking University Third Hospital), Beijing, 100191, China; Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing 100191, China; Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191, China
| | - Xiaoyang Gu
- State Key Laboratory of Female Fertility Promotion, Centre for Reproductive Medicine, Department of Obstetrics and Gynaecology, Peking University Third Hospital, Beijing, 100191, China; National Clinical Research Centre for Obstetrics and Gynaecology (Peking University Third Hospital), Beijing, 100191, China; Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing 100191, China; Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191, China
| | - Bingteng Xie
- Key Laboratory of Molecular Medicine and Biological Diagnosis and Treatment (Ministry of Industry and Information Technology), School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Tong Liu
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Hongyan Guo
- National Clinical Research Centre for Obstetrics and Gynaecology (Peking University Third Hospital), Beijing, 100191, China; Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing 100191, China; Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191, China
| | - Xin Zhu
- State Key Laboratory of Female Fertility Promotion, Centre for Reproductive Medicine, Department of Obstetrics and Gynaecology, Peking University Third Hospital, Beijing, 100191, China; National Clinical Research Centre for Obstetrics and Gynaecology (Peking University Third Hospital), Beijing, 100191, China; Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing 100191, China; Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191, China
| | - Chen Song
- Centre for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China; Peking-Tsinghua Centre for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Jie Qiao
- State Key Laboratory of Female Fertility Promotion, Centre for Reproductive Medicine, Department of Obstetrics and Gynaecology, Peking University Third Hospital, Beijing, 100191, China; National Clinical Research Centre for Obstetrics and Gynaecology (Peking University Third Hospital), Beijing, 100191, China; Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing 100191, China; Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191, China
| | - Mo Li
- State Key Laboratory of Female Fertility Promotion, Centre for Reproductive Medicine, Department of Obstetrics and Gynaecology, Peking University Third Hospital, Beijing, 100191, China; National Clinical Research Centre for Obstetrics and Gynaecology (Peking University Third Hospital), Beijing, 100191, China; Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing 100191, China; Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191, China.
| |
Collapse
|
14
|
Andaluz S, Zhao B, Sinha S, Lagniton PNP, Costa DA, Ding X, Brito M, Wang SM. Using Portuguese BRCA pathogenic variation as a model to study the impact of human admixture on human health. BMC Genomics 2024; 25:416. [PMID: 38671360 PMCID: PMC11055274 DOI: 10.1186/s12864-024-10311-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND Admixture occurs between different ethnic human populations. The global colonization in recent centuries by Europeans led to the most significant admixture in human history. While admixture may enhance genetic diversity for better fitness, it may also impact on human health by transmitting genetic variants for disease susceptibility in the admixture population. The admixture by Portuguese global exploration initiated in the 15th century has reached over 20 million of Portuguese-heritage population worldwide. It provides a valuable model to study the impact of admixture on human health. BRCA1 and BRCA2 (BRCA) are two of the important tumor suppressor genes. The pathogenic variation (PV) in BRCA is well determined to cause high risk of hereditary breast and ovarian cancer. Tracing the distribution of Portuguese BRCA PV in Portuguese-heritage population will help to understand the impact of admixture on cancer susceptibility in modern humans. In this study, we analyzed the distribution of the Portuguese-originated BRCA variation in Brazilian population, which has high degree Portuguese-heritage. METHODS By comprehensive data mining, standardization and annotation, we generated a Portuguese-derived BRCA variation dataset and a Brazilian-derived BRCA variation dataset. We compared the two BRCA variation datasets to identify the BRCA variants shared between the two populations. RESULTS The Portuguese-derived BRCA variation dataset consists of 220 BRCA variants including 78 PVs from 11,482 Portuguese cancer patients, 93 (42.2%) in BRCA1 and 127 (57.7%) in BRCA2. Of the 556 Portuguese BRCA PV carriers carrying the 78 PVs, 331 (59.5%) carried the three Portuguese-BRCA founder PVs of BRCA1 c.2037delinsCC, BRCA1 c.3331_3334del and BRCA2 c.156_157insAlu. The Brazilian-derived BRCA variation dataset consists of 255 BRCA PVs from 7,711 cancer patients, 136 (53.3%) in BRCA1 and 119 (46.6%) in BRCA2. We developed an open database named dbBRCA-Portuguese ( https://genemutation.fhs.um.edu.mo/dbbrca-portuguese/ ) and an open database named dbBRCA-Brazilian ( https://genemutation.fhs.um.edu.mo/dbbrca-brazilian ) to host the BRCA variation data from Portuguese and Brazilian populations. We compared the BRCA PV datasets between Portuguese and Brazilian populations, and identified 29 Portuguese-specific BRCA PVs shared between Portuguese and Brazilian populations, 14 in BRCA1 including the Portuguese founder BRCA1 c.3331_3334del and BRCA1 c.2037delinsCC, and 15 in BRCA2 including the Portuguese founder BRCA2 c.156_157insAlu. Searching the 78 Portuguese BRCA PVs in over 5,000 ancient human genomes identified evolution origin for only 8 PVs in Europeans dated between 37,470 and 3,818 years before present, confirming the Portuguese-specificity of Portuguese BRCA PVs; comparing the 78 Portuguese BRCA PVs Portuguese, 255 Brazilian BRCA PVs, and 134 African BRCA PVs showed little overlapping, ruling out the possibility that the BRCA PVs shared between Portuguese and Brazilian may also be contributed by African. CONCLUSION Our study provides evidence that the admixture in recent human history contributed to cancer susceptibility in modern humans.
Collapse
Affiliation(s)
- Stephanie Andaluz
- Ministry of Education Frontiers Science Center for Precision Oncology, Cancer Center and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macao SRA, China
| | - Bojin Zhao
- Ministry of Education Frontiers Science Center for Precision Oncology, Cancer Center and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macao SRA, China
| | - Siddharth Sinha
- Ministry of Education Frontiers Science Center for Precision Oncology, Cancer Center and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macao SRA, China
| | - Philip Naderev Panuringan Lagniton
- Ministry of Education Frontiers Science Center for Precision Oncology, Cancer Center and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macao SRA, China
| | - Diogo Alpuim Costa
- Medical Oncology Department, Hospital de Cascais, Cascais; Haematology and Oncology Department, CUF Oncologia, Lisbon; NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Xiaofan Ding
- Ministry of Education Frontiers Science Center for Precision Oncology, Cancer Center and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macao SRA, China
| | - Miguel Brito
- Escola Superior de Tecnologia da Saúde de Lisboa, Instituto Politécnico de Lisboa, Lisbon, Portugal.
| | - San Ming Wang
- Ministry of Education Frontiers Science Center for Precision Oncology, Cancer Center and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macao SRA, China.
| |
Collapse
|
15
|
Scimeca M, Rovella V, Caporali S, Shi Y, Bischof J, Woodsmith J, Tisone G, Sica G, Amelio I, Melino G, Mauriello A, Bove P. Genetically driven predisposition leads to an unusually genomic unstable renal cell carcinoma. Discov Oncol 2024; 15:80. [PMID: 38512353 PMCID: PMC10957849 DOI: 10.1007/s12672-024-00894-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 02/16/2024] [Indexed: 03/23/2024] Open
Abstract
Renal cell carcinoma originates from the lining of the proximal convoluted renal tubule and represents the most common type of kidney cancer. Risk factors and comorbidities might be associated to renal cell carcinoma, while a small fraction of 2-3% emerges from patients with predisposing cancer syndromes, typically associated to hereditary mutations in VHL, folliculin, fumarate hydratase or MET genes. Here, we report a case of renal cell carcinoma in patient with concurrent germline mutations in BRCA1 and RAD51 genes. This case displays an unusual high mutational burden and chromosomal aberrations compared to the typical profile of renal cell carcinoma. Mutational analysis on whole genome sequencing revealed an enrichment of the MMR2 mutational signature, which is indicative of impaired DNA repair capacity. Overall, the tumor displayed a profile of unusual high genomic instability which suggests a possible origin from germline predisposing mutations in the DNA repair genes BRCA1 and RAD51. While BRCA1 and RAD51 germline mutations are well-characterised in breast and ovarian cancer, their role in renal cell carcinoma is still largely unexplored. The genomic instability detected in this case of renal cell carcinoma, along with the presence of unusual mutations, might offer support to clinicians for the development of patient-tailored therapies.
Collapse
Affiliation(s)
- Manuel Scimeca
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133, Rome, Italy
| | - Valentina Rovella
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133, Rome, Italy
| | - Sabrina Caporali
- Division for Systems Toxicology, Department of Biology, University of Konstanz, 78457, Konstanz, Germany
| | - Yufang Shi
- The Third Affiliated Hospital of Soochow University, Institutes for Translational Medicine, Soochow University, Suzhou, 215000, China
| | - Julia Bischof
- Indivumed GmbH, Falkenried, 88 Building D, 20251, Hamburg, Germany
| | | | - Giuseppe Tisone
- Department of Surgery, TOR, University of Rome Tor Vergata, 00133, Rome, Italy
| | - Giuseppe Sica
- Department of Surgery, TOR, University of Rome Tor Vergata, 00133, Rome, Italy
| | - Ivano Amelio
- Division for Systems Toxicology, Department of Biology, University of Konstanz, 78457, Konstanz, Germany
| | - Gerry Melino
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133, Rome, Italy.
| | - Alessandro Mauriello
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133, Rome, Italy.
| | - Pierluigi Bove
- Department of Surgery, TOR, University of Rome Tor Vergata, 00133, Rome, Italy.
| |
Collapse
|
16
|
He J, Huang C, Guo Y, Deng R, Li L, Chen R, Wang Y, Huang J, Zheng J, Zhao X, Yu J. PTEN-mediated dephosphorylation of 53BP1 confers cellular resistance to DNA damage in cancer cells. Mol Oncol 2024; 18:580-605. [PMID: 38060346 PMCID: PMC10920079 DOI: 10.1002/1878-0261.13563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 11/16/2023] [Accepted: 12/05/2023] [Indexed: 03/09/2024] Open
Abstract
Homologous recombination (HR) repair for DNA double-strand breaks (DSBs) is critical for maintaining genome stability and conferring the resistance of tumor cells to chemotherapy. Nuclear PTEN which contains both phosphatidylinositol 3,4,5-trisphosphate 3-phosphatase and protein phosphatase plays a key role in HR repair, but the underlying mechanism remains largely elusive. We find that SUMOylated PTEN promotes HR repair but represses nonhomologous end joining (NHEJ) repair by directly dephosphorylating TP53-binding protein 1 (53BP1). During DNA damage responses (DDR), tumor suppressor ARF (p14ARF) was phosphorylated and then interacted efficiently with PTEN, thus promoting PTEN SUMOylation as an atypical SUMO E3 ligase. Interestingly, SUMOylated PTEN was subsequently recruited to the chromatin at DSB sites. This was because SUMO1 that was conjugated to PTEN was recognized and bound by the SUMO-interacting motif (SIM) of breast cancer type 1 susceptibility protein (BRCA1), which has been located to the core of 53BP1 foci on chromatin during S/G2 stage. Furthermore, these chromatin-loaded PTEN directly and specifically dephosphorylated phosphothreonine-543 (pT543) of 53BP1, resulting in the dissociation of the 53BP1 complex, which facilitated DNA end resection and ongoing HR repair. SUMOylation-site-mutated PTENK254R mice also showed decreased DNA damage repair in vivo. Blocking the PTEN SUMOylation pathway with either a SUMOylation inhibitor or a p14ARF(2-13) peptide sensitized tumor cells to chemotherapy. Our study therefore provides a new mechanistic understanding of PTEN in HR repair and clinical intervention of chemoresistant tumors.
Collapse
Affiliation(s)
- Jianfeng He
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and InflammationShanghai Jiao Tong University School of MedicineChina
| | - Caihu Huang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and InflammationShanghai Jiao Tong University School of MedicineChina
| | - Yanmin Guo
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and InflammationShanghai Jiao Tong University School of MedicineChina
| | - Rong Deng
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and InflammationShanghai Jiao Tong University School of MedicineChina
| | - Lian Li
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and InflammationShanghai Jiao Tong University School of MedicineChina
| | - Ran Chen
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and InflammationShanghai Jiao Tong University School of MedicineChina
| | - Yanli Wang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and InflammationShanghai Jiao Tong University School of MedicineChina
| | - Jian Huang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and InflammationShanghai Jiao Tong University School of MedicineChina
| | - Junke Zheng
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of EducationShanghai Jiao Tong University School of MedicineChina
| | - Xian Zhao
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and InflammationShanghai Jiao Tong University School of MedicineChina
| | - Jianxiu Yu
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and InflammationShanghai Jiao Tong University School of MedicineChina
| |
Collapse
|
17
|
Arabnezhad MR, Haghani F, Ghaffarian-Bahraman A, Jafarzadeh E, Mohammadi H, Yadegari JG, Farkhondeh T, Aschner M, Darroudi M, Marouzi S, Samarghandian S. Involvement of Nrf2 Signaling in Lead-induced Toxicity. Curr Med Chem 2024; 31:3529-3549. [PMID: 37221680 DOI: 10.2174/0929867330666230522143341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 03/19/2023] [Accepted: 03/31/2023] [Indexed: 05/25/2023]
Abstract
Nuclear factor erythroid 2-related factor 2 (Nrf2) is used as one of the main protective factors against various pathological processes, as it regulates cells resistant to oxidation. Several studies have extensively explored the relationship between environmental exposure to heavy metals, particularly lead (Pb), and the development of various human diseases. These metals have been reported to be able to, directly and indirectly, induce the production of reactive oxygen species (ROS) and cause oxidative stress in various organs. Since Nrf2 signaling is important in maintaining redox status, it has a dual role depending on the specific biological context. On the one hand, Nrf2 provides a protective mechanism against metal-induced toxicity; on the other hand, it can induce metalinduced carcinogenesis upon prolonged exposure and activation. Therefore, the aim of this review was to summarize the latest knowledge on the functional interrelation between toxic metals, such as Pb and Nrf2 signaling.
Collapse
Affiliation(s)
- Mohammad-Reza Arabnezhad
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Fatemeh Haghani
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Ali Ghaffarian-Bahraman
- Occupational Environment Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Emad Jafarzadeh
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Hamidreza Mohammadi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Javad Ghasemian Yadegari
- Department of Pharmacognosy, Faculty of Pharmacy, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Tahereh Farkhondeh
- Department of Toxicology and Pharmacology, School of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Majid Darroudi
- Nuclear Medicine Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Somayeh Marouzi
- Department of Basic Medical Sciences, Neyshabur University of Medical Sciences, Neyshabur, Iran
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Saeed Samarghandian
- Healthy Ageing Research Centre, Neyshabur University of Medical Sciences, Neyshabur 9318614139, Iran
| |
Collapse
|
18
|
Yueh WT, Glass DJ, Johnson N. Brca1 Mouse Models: Functional Insights and Therapeutic Opportunities. J Mol Biol 2024; 436:168372. [PMID: 37979908 PMCID: PMC10882579 DOI: 10.1016/j.jmb.2023.168372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 11/08/2023] [Accepted: 11/14/2023] [Indexed: 11/20/2023]
Abstract
Brca1 mouse models were first reported in the mid-1990's shortly after cloning the human gene. Since then, many mouse models with a range of mutations have been generated, some mimic patient mutations, others are designed to probe specific protein domains and functions. In this review, we discuss early and recent studies using engineered Brca1 mouse alleles, and their implications for understanding Brca1 protein function in the context of DNA repair, tumorigenesis, and anti-cancer therapeutics.
Collapse
Affiliation(s)
- Wei-Ting Yueh
- Nuclear Dynamics Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - David J Glass
- Nuclear Dynamics Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Neil Johnson
- Nuclear Dynamics Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA.
| |
Collapse
|
19
|
Behl T, Kumar A, Vishakha, Sehgal A, Singh S, Sharma N, Yadav S, Rashid S, Ali N, Ahmed AS, Vargas-De-La-Cruz C, Bungau SG, Khan H. Understanding the mechanistic pathways and clinical aspects associated with protein and gene based biomarkers in breast cancer. Int J Biol Macromol 2023; 253:126595. [PMID: 37648139 DOI: 10.1016/j.ijbiomac.2023.126595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 08/22/2023] [Accepted: 08/27/2023] [Indexed: 09/01/2023]
Abstract
Cancer is one of the most widespread and severe diseases with a huge mortality rate. In recent years, the second-leading mortality rate of any cancer globally has been breast cancer, which is one of the most common and deadly cancers found in women. Detecting breast cancer in its initial stages simplifies treatment, decreases death risk, and recovers survival rates for patients. The death rate for breast cancer has risen to 0.024 % in some regions. Sensitive and accurate technologies are required for the preclinical detection of BC at an initial stage. Biomarkers play a very crucial role in the early identification as well as diagnosis of women with breast cancer. Currently, a wide variety of cancer biomarkers have been discovered for the diagnosis of cancer. For the identification of these biomarkers from serum or other body fluids at physiological amounts, many detection methods have been developed. In the case of breast cancer, biomarkers are especially helpful in discovering those who are more likely to develop the disease, determining prognosis at the time of initial diagnosis and choosing the best systemic therapy. In this study we have compiled various clinical aspects and signaling pathways associated with protein-based biomarkers and gene-based biomarkers.
Collapse
Affiliation(s)
- Tapan Behl
- School of Health Sciences and Technology, University of Petroleum and Energy Studies, Dehradun 248007, Uttarakhand, India
| | - Ankush Kumar
- Institute of Pharmaceutical Sciences, IET Bhaddal Technical Campus, Ropar 140108, Punjab, India
| | - Vishakha
- Institute of Pharmaceutical Sciences, IET Bhaddal Technical Campus, Ropar 140108, Punjab, India
| | - Aayush Sehgal
- GHG Khalsa College of Pharmacy, Gurusar Sadhar, 141104 Ludhiana, Punjab, India
| | - Sukhbir Singh
- Department of Pharmaceutics, MM College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana Ambala 133203, Haryana, India
| | - Neelam Sharma
- Department of Pharmaceutics, MM College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana Ambala 133203, Haryana, India
| | - Shivam Yadav
- School of Pharmacy, Babu Banarasi Das University, Lucknow 226028, Uttar Pradesh, India
| | - Summya Rashid
- Department of Pharmacology and Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia.
| | - Nemat Ali
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadah 11451, Saudi Arabia
| | - Amira Saber Ahmed
- Hormones Department, Medical Research and Clinical Studies Institute, National Research Centre, Giza 12622, Egypt
| | - Celia Vargas-De-La-Cruz
- Department of Pharmacology, Bromatology and Toxicology, Faculty of Pharmacy and Biochemistry, Universidad Nacional Mayor de San Marcos, Lima 150001, Peru; E-Health Research Center, Universidad de Ciencias y Humanidades, Lima 15001, Peru
| | - Simona Gabriela Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, Oradea 410087, Romania; Doctoral School of Biomedical Sciences, University of Oradea, Oradea 410087, Romania
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University, Mardan 23200, Pakistan.
| |
Collapse
|
20
|
Butkiewicz D, Krześniak M, Gdowicz-Kłosok A, Składowski K, Rutkowski T. DNA Double-Strand Break Response and Repair Gene Polymorphisms May Influence Therapy Results and Prognosis in Head and Neck Cancer Patients. Cancers (Basel) 2023; 15:4972. [PMID: 37894339 PMCID: PMC10605140 DOI: 10.3390/cancers15204972] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/05/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Radiotherapy and cisplatin-based chemotherapy belong to the main treatment modalities for head and neck squamous cell carcinoma (HNSCC) and induce cancer cell death by generating DNA damage, including the most severe double-strand breaks (DSBs). Alterations in DSB response and repair genes may affect individual DNA repair capacity and treatment sensitivity, contributing to the therapy resistance and poor prognosis often observed in HNSCC. In this study, we investigated the association of a panel of single-nucleotide polymorphisms (SNPs) in 20 DSB signaling and repair genes with therapy results and prognosis in 505 HNSCC patients treated non-surgically with DNA damage-inducing therapies. In the multivariate analysis, there were a total of 14 variants associated with overall, locoregional recurrence-free or metastasis-free survival. Moreover, we identified 10 of these SNPs as independent predictors of therapy failure and unfavorable prognosis in the whole group or in two treatment subgroups. These were MRE11 rs2155209, XRCC5 rs828907, RAD51 rs1801321, rs12593359, LIG4 rs1805388, CHEK1 rs558351, TP53 rs1042522, ATM rs1801516, XRCC6 rs2267437 and NBN rs2735383. Only CHEK1 rs558351 remained statistically significant after correcting for multiple testing. These results suggest that specific germline variants related to DSB response and repair may be potential genetic modifiers of therapy effects and disease progression in HNSCC treated with radiotherapy and cisplatin-based chemoradiation.
Collapse
Affiliation(s)
- Dorota Butkiewicz
- Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, 44-102 Gliwice, Poland
| | - Małgorzata Krześniak
- Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, 44-102 Gliwice, Poland
| | - Agnieszka Gdowicz-Kłosok
- Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, 44-102 Gliwice, Poland
| | - Krzysztof Składowski
- I Radiation and Clinical Oncology Department, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, 44-102 Gliwice, Poland
| | - Tomasz Rutkowski
- I Radiation and Clinical Oncology Department, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, 44-102 Gliwice, Poland
- Radiotherapy Department, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, 44-102 Gliwice, Poland
| |
Collapse
|
21
|
Heindel AJ, Brulet JW, Wang X, Founds MW, Libby AH, Bai DL, Lemke MC, Leace DM, Harris TE, Hafner M, Hsu KL. Chemoproteomic capture of RNA binding activity in living cells. Nat Commun 2023; 14:6282. [PMID: 37805600 PMCID: PMC10560261 DOI: 10.1038/s41467-023-41844-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 09/20/2023] [Indexed: 10/09/2023] Open
Abstract
Proteomic methods for RNA interactome capture (RIC) rely principally on crosslinking native or labeled cellular RNA to enrich and investigate RNA-binding protein (RBP) composition and function in cells. The ability to measure RBP activity at individual binding sites by RIC, however, has been more challenging due to the heterogenous nature of peptide adducts derived from the RNA-protein crosslinked site. Here, we present an orthogonal strategy that utilizes clickable electrophilic purines to directly quantify protein-RNA interactions on proteins through photoaffinity competition with 4-thiouridine (4SU)-labeled RNA in cells. Our photo-activatable-competition and chemoproteomic enrichment (PACCE) method facilitated detection of >5500 cysteine sites across ~3000 proteins displaying RNA-sensitive alterations in probe binding. Importantly, PACCE enabled functional profiling of canonical RNA-binding domains as well as discovery of moonlighting RNA binding activity in the human proteome. Collectively, we present a chemoproteomic platform for global quantification of protein-RNA binding activity in living cells.
Collapse
Affiliation(s)
- Andrew J Heindel
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Jeffrey W Brulet
- Department of Chemistry, University of Virginia, Charlottesville, VA, 22904, USA
| | - Xiantao Wang
- RNA Molecular Biology Laboratory, National Institute of Arthritis and Musculoskeletal and Skin Disease, Bethesda, MD, 20892, USA
| | - Michael W Founds
- Department of Chemistry, University of Virginia, Charlottesville, VA, 22904, USA
| | - Adam H Libby
- Department of Chemistry, University of Virginia, Charlottesville, VA, 22904, USA
- University of Virginia Cancer Center, University of Virginia, Charlottesville, VA, 22903, USA
| | - Dina L Bai
- Department of Chemistry, University of Virginia, Charlottesville, VA, 22904, USA
| | - Michael C Lemke
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - David M Leace
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Thurl E Harris
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Markus Hafner
- RNA Molecular Biology Laboratory, National Institute of Arthritis and Musculoskeletal and Skin Disease, Bethesda, MD, 20892, USA
| | - Ku-Lung Hsu
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA.
- Department of Chemistry, University of Virginia, Charlottesville, VA, 22904, USA.
- University of Virginia Cancer Center, University of Virginia, Charlottesville, VA, 22903, USA.
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, 22908, USA.
- Department of Chemistry, University of Texas at Austin, Austin, TX, 78712, USA.
| |
Collapse
|
22
|
Siddique A, Fatima W, Shahid N. Association of common BRCA1 variants with predisposition to breast tumors in Pakistan. Ann Hum Genet 2023; 87:222-231. [PMID: 37191028 DOI: 10.1111/ahg.12511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 01/19/2023] [Accepted: 04/27/2023] [Indexed: 05/17/2023]
Abstract
BRCA1 variants are extensively associated with increased risk of breast cancer. Early detection and screening of variants is still rare in developing countries. Here, we investigated six BRCA1 variants in 300 subjects from Pakistani population using tetra amplification-refractory mutation system (T-ARMS) PCR. Our results indicate significant association of BRCA1 variants rs8176237 (AA; OR 8.2, 95% CI 3.02-22.64, p < 0.0001), rs1060915 (CC; OR 4.29, 95% CI 1.94-9.48, p = 0.0003), and rs799912 (TT; OR 3.16, 95% CI 1.44-6.94, p = 0.004) with up to 8-fold increased odds of breast cancer under recessive model. Furthermore, BRCA1 haplotypes AGCACG and AGCCCT were associated with up to 18% breast cancer cases (p < 0.05). Additionally, we found association of these variants with up to 11-fold increased odds of benign breast tumors. Linkage disequilibrium (LD) block-wise analysis revealed haplotypes GCAC and ATAC were associated with significantly increased risk. To our knowledge, this is the first study that identifies the association of these BRCA1 variants with breast tumors in Pakistani population. In conclusion, BRCA1 variants investigated in the present study are associated with high odds of benign- and malignant breast tumors. Studies with bigger sample size may help early detection and screening to reduce the odds of breast cancer.
Collapse
Affiliation(s)
- Ayesha Siddique
- Department System Ecotoxicology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
- Institute for Environmental Research (Biology V), RWTH Aachen University, Aachen, Germany
- Department of Microbiology and Molecular Genetics, University of the Punjab, Lahore, Pakistan
| | - Warda Fatima
- Department of Microbiology and Molecular Genetics, University of the Punjab, Lahore, Pakistan
| | - Naeem Shahid
- Department System Ecotoxicology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
- Department of Evolutionary Ecology and Environmental Toxicology, Goethe University Frankfurt, Frankfurt am Main, Germany
| |
Collapse
|
23
|
Feng Z, Yang X, Tian M, Zeng N, Bai Z, Deng W, Zhao Y, Guo J, Yang Y, Zhang Z, Yang Y. BRCA genes as candidates for colorectal cancer genetic testing panel: systematic review and meta-analysis. BMC Cancer 2023; 23:807. [PMID: 37644384 PMCID: PMC10464413 DOI: 10.1186/s12885-023-11328-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 08/22/2023] [Indexed: 08/31/2023] Open
Abstract
BACKGROUND Breast cancer susceptibility gene (BRCA) mutation carriers are at an increased risk for breast, ovarian, prostate and pancreatic cancers. However, the role of BRCA is unclear in colorectal cancer; the results regarding the association between BRCA gene mutations and colorectal cancer risk are inconsistent and even controversial. This study aimed to investigate whether BRCA1 and BRCA2 gene mutations are associated with colorectal cancer risk. METHODS In this systematic review, we searched PubMed/MEDLINE, Embase and Cochrane Library databases, adhering to PRISMA guidelines. Study quality was assessed using the Newcastle-Ottawa Scale (NOS). Unadjusted odds ratios (ORs) were used to estimate the probability of Breast Cancer Type 1 Susceptibility gene (BRCA1) and Breast Cancer Type 2 Susceptibility gene (BRCA2) mutations in colorectal cancer patients. The associations were evaluated using fixed effect models. RESULTS Fourteen studies were included in the systematic review. Twelve studies, including seven case-control and five cohort studies, were included in the meta-analysis. A significant increase in the frequency of BRCA1 and BRCA2 mutations was observed in patients with colorectal cancer [OR = 1.34, 95% confidence interval (CI) = 1.02-1.76, P = 0.04]. In subgroup analysis, colorectal cancer patients had an increased odds of BRCA1 (OR = 1.48, 95% CI = 1.10-2.01, P = 0.01) and BRCA2 (OR = 1.56, 95% CI = 1.06-2.30, P = 0.02) mutations. CONCLUSIONS BRCA genes are one of the genes that may increase the risk of developing colorectal cancer. Thus, BRCA genes could be potential candidates that may be included in the colorectal cancer genetic testing panel.
Collapse
Affiliation(s)
- Zhewen Feng
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University & National Clinical Research Center for Digestive Diseases, No.95, Yong An Road, Xicheng District, Beijing, 100050, China
| | - Xiaobao Yang
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University & National Clinical Research Center for Digestive Diseases, No.95, Yong An Road, Xicheng District, Beijing, 100050, China
| | - Mingwei Tian
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University & National Clinical Research Center for Digestive Diseases, No.95, Yong An Road, Xicheng District, Beijing, 100050, China
| | - Na Zeng
- School of Public Health, Peking University, Beijing, China
| | - Zhigang Bai
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University & National Clinical Research Center for Digestive Diseases, No.95, Yong An Road, Xicheng District, Beijing, 100050, China
| | - Wei Deng
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University & National Clinical Research Center for Digestive Diseases, No.95, Yong An Road, Xicheng District, Beijing, 100050, China
| | - Yanyan Zhao
- MyGene Diagnostics Co., Ltd, Guangzhou, China
| | - Jianru Guo
- MyGene Diagnostics Co., Ltd, Guangzhou, China
| | - Yingchi Yang
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University & National Clinical Research Center for Digestive Diseases, No.95, Yong An Road, Xicheng District, Beijing, 100050, China
| | - Zhongtao Zhang
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University & National Clinical Research Center for Digestive Diseases, No.95, Yong An Road, Xicheng District, Beijing, 100050, China
| | - Yun Yang
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University & National Clinical Research Center for Digestive Diseases, No.95, Yong An Road, Xicheng District, Beijing, 100050, China.
| |
Collapse
|
24
|
Hu R, Li X, Hu Y, Zhang R, Lv Q, Zhang M, Sheng X, Zhao F, Chen Z, Ding Y, Yuan H, Wu X, Xing S, Yan X, Bao F, Wan P, Xiao L, Wang X, Xiao W, Decker EL, van Gessel N, Renault H, Wiedemann G, Horst NA, Haas FB, Wilhelmsson PKI, Ullrich KK, Neumann E, Lv B, Liang C, Du H, Lu H, Gao Q, Cheng Z, You H, Xin P, Chu J, Huang CH, Liu Y, Dong S, Zhang L, Chen F, Deng L, Duan F, Zhao W, Li K, Li Z, Li X, Cui H, Zhang YE, Ma C, Zhu R, Jia Y, Wang M, Hasebe M, Fu J, Goffinet B, Ma H, Rensing SA, Reski R, He Y. Adaptive evolution of the enigmatic Takakia now facing climate change in Tibet. Cell 2023; 186:3558-3576.e17. [PMID: 37562403 DOI: 10.1016/j.cell.2023.07.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 03/23/2023] [Accepted: 07/03/2023] [Indexed: 08/12/2023]
Abstract
The most extreme environments are the most vulnerable to transformation under a rapidly changing climate. These ecosystems harbor some of the most specialized species, which will likely suffer the highest extinction rates. We document the steepest temperature increase (2010-2021) on record at altitudes of above 4,000 m, triggering a decline of the relictual and highly adapted moss Takakia lepidozioides. Its de-novo-sequenced genome with 27,467 protein-coding genes includes distinct adaptations to abiotic stresses and comprises the largest number of fast-evolving genes under positive selection. The uplift of the study site in the last 65 million years has resulted in life-threatening UV-B radiation and drastically reduced temperatures, and we detected several of the molecular adaptations of Takakia to these environmental changes. Surprisingly, specific morphological features likely occurred earlier than 165 mya in much warmer environments. Following nearly 400 million years of evolution and resilience, this species is now facing extinction.
Collapse
Affiliation(s)
- Ruoyang Hu
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University (CNU), Beijing 100048, China; State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xuedong Li
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University (CNU), Beijing 100048, China
| | - Yong Hu
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University (CNU), Beijing 100048, China
| | - Runjie Zhang
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University (CNU), Beijing 100048, China
| | - Qiang Lv
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University (CNU), Beijing 100048, China
| | - Min Zhang
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University (CNU), Beijing 100048, China
| | - Xianyong Sheng
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University (CNU), Beijing 100048, China
| | - Feng Zhao
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University (CNU), Beijing 100048, China
| | - Zhijia Chen
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University (CNU), Beijing 100048, China
| | - Yuhan Ding
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University (CNU), Beijing 100048, China
| | - Huan Yuan
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University (CNU), Beijing 100048, China
| | - Xiaofeng Wu
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University (CNU), Beijing 100048, China
| | - Shuang Xing
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University (CNU), Beijing 100048, China
| | - Xiaoyu Yan
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University (CNU), Beijing 100048, China
| | - Fang Bao
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University (CNU), Beijing 100048, China
| | - Ping Wan
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University (CNU), Beijing 100048, China
| | - Lihong Xiao
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University (CNU), Beijing 100048, China; State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China
| | - Xiaoqin Wang
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University (CNU), Beijing 100048, China
| | - Wei Xiao
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University (CNU), Beijing 100048, China
| | - Eva L Decker
- Plant Biotechnology, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Nico van Gessel
- Plant Biotechnology, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Hugues Renault
- Plant Biotechnology, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany; Institut de Biologie Moléculaire des Plantes (IBMP), CNRS, University of Strasbourg, 67084 Strasbourg, France
| | - Gertrud Wiedemann
- Plant Biotechnology, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany; Inselspital, University of Bern, 3010 Bern, Switzerland
| | - Nelly A Horst
- Plant Biotechnology, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany; MetaSystems Hard & Software GmbH, 68804 Altlussheim, Germany
| | - Fabian B Haas
- Department of Biology, University of Marburg, 35043 Marburg, Germany
| | | | - Kristian K Ullrich
- Department of Biology, University of Marburg, 35043 Marburg, Germany; Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Biology, 24306 Plön, Germany
| | - Eva Neumann
- Department of Biology, University of Marburg, 35043 Marburg, Germany
| | - Bin Lv
- Department of Integrative Biology, University of Guelph, Guelph, ON N1G 2W1, Canada; Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, Sichuan 610041, China
| | - Chengzhi Liang
- National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huilong Du
- National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; School of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, Hebei 071002, China
| | - Hongwei Lu
- National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Qiang Gao
- National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; Genomics and Genetic Engineering Laboratory of Ornamental Plants, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Zhukuan Cheng
- National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Hanli You
- National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Peiyong Xin
- National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jinfang Chu
- National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chien-Hsun Huang
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center of Genetics and Development, Ministry of Education Key Laboratory of Biodiversity and Ecological Engineering, School of Life Sciences, Fudan University, Shanghai 200433, China; Key Laboratory of Forage and Endemic Crop Biology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010031, China
| | - Yang Liu
- Department of Ecology and Evolutionary Biology, University of Connecticut, Unit 3043, Storrs, CT 06269, USA; Key Laboratory of Southern Subtropical Plant Diversity, Fairy Lake Botanical Garden, Shenzhen & Chinese Academy of Sciences, Shenzhen, Guangdong 518004, China; State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, Guangdong 518085, China
| | - Shanshan Dong
- Key Laboratory of Southern Subtropical Plant Diversity, Fairy Lake Botanical Garden, Shenzhen & Chinese Academy of Sciences, Shenzhen, Guangdong 518004, China
| | - Liangsheng Zhang
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Fei Chen
- Sanya Nanfan Research Institute from Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya, Hainan 572025, China
| | - Lei Deng
- College of Resource Environment and Tourism, CNU, Beijing 100048, China
| | - Fuzhou Duan
- College of Resource Environment and Tourism, CNU, Beijing 100048, China
| | - Wenji Zhao
- College of Resource Environment and Tourism, CNU, Beijing 100048, China
| | - Kai Li
- Department of Chemistry, CNU, Beijing 100048, China
| | - Zhongfeng Li
- Department of Chemistry, CNU, Beijing 100048, China
| | - Xingru Li
- Department of Chemistry, CNU, Beijing 100048, China
| | - Hengjian Cui
- School of Mathematical Sciences, CNU, Beijing 100048, China
| | - Yong E Zhang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Chuan Ma
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Ruiliang Zhu
- Department of Biology, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Yu Jia
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Meizhi Wang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Mitsuyasu Hasebe
- Division of Evolutionary Biology, National Institute for Basic Biology, Okazaki, Aichi 444-8585, Japan; Department of Basic Biology, The Graduate School for Advanced Studies (SOKENDAI), Okazaki 444-8585, Japan
| | - Jinzhong Fu
- Department of Integrative Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Bernard Goffinet
- Department of Ecology and Evolutionary Biology, University of Connecticut, Unit 3043, Storrs, CT 06269, USA
| | - Hong Ma
- Department of Biology, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA
| | - Stefan A Rensing
- Department of Biology, University of Marburg, 35043 Marburg, Germany; Faculty of Chemistry and Pharmacy, University of Freiburg, 79104 Freiburg, Germany
| | - Ralf Reski
- Plant Biotechnology, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany; Signalling Research Centres BIOSS and CIBSS, University of Freiburg, 79104 Freiburg, Germany.
| | - Yikun He
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University (CNU), Beijing 100048, China.
| |
Collapse
|
25
|
Witus SR, Tuttle LM, Li W, Zelter A, Wang M, Kermoade KE, Wilburn DB, Davis TN, Brzovic PS, Zhao W, Klevit RE. BRCA1/BARD1 intrinsically disordered regions facilitate chromatin recruitment and ubiquitylation. EMBO J 2023; 42:e113565. [PMID: 37305927 PMCID: PMC10390874 DOI: 10.15252/embj.2023113565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 04/10/2023] [Accepted: 05/22/2023] [Indexed: 06/13/2023] Open
Abstract
BRCA1/BARD1 is a tumor suppressor E3 ubiquitin (Ub) ligase with roles in DNA damage repair and in transcriptional regulation. BRCA1/BARD1 RING domains interact with nucleosomes to facilitate mono-ubiquitylation of distinct residues on the C-terminal tail of histone H2A. These enzymatic domains constitute a small fraction of the heterodimer, raising the possibility of functional chromatin interactions involving other regions such as the BARD1 C-terminal domains that bind nucleosomes containing the DNA damage signal H2A K15-Ub and H4 K20me0, or portions of the expansive intrinsically disordered regions found in both subunits. Herein, we reveal novel interactions that support robust H2A ubiquitylation activity mediated through a high-affinity, intrinsically disordered DNA-binding region of BARD1. These interactions support BRCA1/BARD1 recruitment to chromatin and sites of DNA damage in cells and contribute to their survival. We also reveal distinct BRCA1/BARD1 complexes that depend on the presence of H2A K15-Ub, including a complex where a single BARD1 subunit spans adjacent nucleosome units. Our findings identify an extensive network of multivalent BARD1-nucleosome interactions that serve as a platform for BRCA1/BARD1-associated functions on chromatin.
Collapse
Affiliation(s)
- Samuel R Witus
- Department of BiochemistryUniversity of WashingtonSeattleWAUSA
| | - Lisa M Tuttle
- Department of BiochemistryUniversity of WashingtonSeattleWAUSA
| | - Wenjing Li
- Department of Biochemistry and Structural BiologyUniversity of Texas Health Science Center at San AntonioSan AntonioTXUSA
| | - Alex Zelter
- Department of BiochemistryUniversity of WashingtonSeattleWAUSA
| | - Meiling Wang
- Department of Biochemistry and Structural BiologyUniversity of Texas Health Science Center at San AntonioSan AntonioTXUSA
| | | | - Damien B Wilburn
- Department of Genome SciencesUniversity of WashingtonSeattleWAUSA
- Department of Chemistry and BiochemistryThe Ohio State UniversityColumbusOHUSA
| | - Trisha N Davis
- Department of BiochemistryUniversity of WashingtonSeattleWAUSA
| | - Peter S Brzovic
- Department of BiochemistryUniversity of WashingtonSeattleWAUSA
| | - Weixing Zhao
- Department of Biochemistry and Structural BiologyUniversity of Texas Health Science Center at San AntonioSan AntonioTXUSA
| | - Rachel E Klevit
- Department of BiochemistryUniversity of WashingtonSeattleWAUSA
| |
Collapse
|
26
|
Casado P, Rio-Machin A, Miettinen JJ, Bewicke-Copley F, Rouault-Pierre K, Krizsan S, Parsons A, Rajeeve V, Miraki-Moud F, Taussig DC, Bödör C, Gribben J, Heckman C, Fitzgibbon J, Cutillas PR. Integrative phosphoproteomics defines two biologically distinct groups of KMT2A rearranged acute myeloid leukaemia with different drug response phenotypes. Signal Transduct Target Ther 2023; 8:80. [PMID: 36843114 PMCID: PMC9968719 DOI: 10.1038/s41392-022-01288-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 11/18/2022] [Accepted: 12/03/2022] [Indexed: 02/28/2023] Open
Abstract
Acute myeloid leukaemia (AML) patients harbouring certain chromosome abnormalities have particularly adverse prognosis. For these patients, targeted therapies have not yet made a significant clinical impact. To understand the molecular landscape of poor prognosis AML we profiled 74 patients from two different centres (in UK and Finland) at the proteomic, phosphoproteomic and drug response phenotypic levels. These data were complemented with transcriptomics analysis for 39 cases. Data integration highlighted a phosphoproteomics signature that define two biologically distinct groups of KMT2A rearranged leukaemia, which we term MLLGA and MLLGB. MLLGA presented increased DOT1L phosphorylation, HOXA gene expression, CDK1 activity and phosphorylation of proteins involved in RNA metabolism, replication and DNA damage when compared to MLLGB and no KMT2A rearranged samples. MLLGA was particularly sensitive to 15 compounds including genotoxic drugs and inhibitors of mitotic kinases and inosine-5-monosphosphate dehydrogenase (IMPDH) relative to other cases. Intermediate-risk KMT2A-MLLT3 cases were mainly represented in a third group closer to MLLGA than to MLLGB. The expression of IMPDH2 and multiple nucleolar proteins was higher in MLLGA and correlated with the response to IMPDH inhibition in KMT2A rearranged leukaemia, suggesting a role of the nucleolar activity in sensitivity to treatment. In summary, our multilayer molecular profiling of AML with poor prognosis and KMT2A-MLLT3 karyotypes identified a phosphoproteomics signature that defines two biologically and phenotypically distinct groups of KMT2A rearranged leukaemia. These data provide a rationale for the potential development of specific therapies for AML patients characterised by the MLLGA phosphoproteomics signature identified in this study.
Collapse
Affiliation(s)
- Pedro Casado
- Cell Signalling and Proteomics Group, Centre for Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University of London, London, EC1M6BQ, UK
| | - Ana Rio-Machin
- Centre for Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University of London, London, EC1M6BQ, UK
| | - Juho J Miettinen
- Institute for Molecular Medicine Finland - FIMM, HiLIFE - Helsinki Institute of Life Science, iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki, Helsinki, Finland
| | - Findlay Bewicke-Copley
- Centre for Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University of London, London, EC1M6BQ, UK
| | - Kevin Rouault-Pierre
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, EC1M6BQ, UK
| | - Szilvia Krizsan
- HCEMM-SU Molecular Oncohematology Research Group, 1st Department of Pathology and Experimental Cancer Research, Semmelweis University Budapest, Budapest, Hungary
| | - Alun Parsons
- Institute for Molecular Medicine Finland - FIMM, HiLIFE - Helsinki Institute of Life Science, iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki, Helsinki, Finland
| | - Vinothini Rajeeve
- Cell Signalling and Proteomics Group, Centre for Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University of London, London, EC1M6BQ, UK
| | - Farideh Miraki-Moud
- Cancer Research UK Cancer Therapeutics Unit, Division of Cancer Therapeutics, The Institute of Cancer Research, Sutton, UK
| | - David C Taussig
- Cancer Research UK Cancer Therapeutics Unit, Division of Cancer Therapeutics, The Institute of Cancer Research, Sutton, UK
| | - Csaba Bödör
- HCEMM-SU Molecular Oncohematology Research Group, 1st Department of Pathology and Experimental Cancer Research, Semmelweis University Budapest, Budapest, Hungary
| | - John Gribben
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, EC1M6BQ, UK
| | - Caroline Heckman
- Institute for Molecular Medicine Finland - FIMM, HiLIFE - Helsinki Institute of Life Science, iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki, Helsinki, Finland
| | - Jude Fitzgibbon
- Centre for Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University of London, London, EC1M6BQ, UK
| | - Pedro R Cutillas
- Cell Signalling and Proteomics Group, Centre for Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University of London, London, EC1M6BQ, UK.
- The Alan Turing Institute, The British Library, 2QR, 96 Euston Rd, London, NW1 2DB, UK.
| |
Collapse
|
27
|
Choi E, Mun GI, Lee J, Lee H, Cho J, Lee YS. BRCA1 deficiency in triple-negative breast cancer: Protein stability as a basis for therapy. Biomed Pharmacother 2023; 158:114090. [PMID: 36493696 DOI: 10.1016/j.biopha.2022.114090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/24/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
Mutations in breast cancer-associated 1 (BRCA1) increase the lifetime risk of developing breast cancer by up to 51% over the risk of the general population. Many aspects of this multifunctional protein have been revealed, including its essential role in homologous recombination repair, E3 ubiquitin ligase activity, transcriptional regulation, and apoptosis. Although most studies have focused on BRCA1 deficiency due to mutations, only a minority of patients carry BRCA1 mutations. A recent study has suggested an expanded definition of BRCA1 deficiency with reduced BRCA1 levels, which accounts for almost half of all triple-negative breast cancer (TNBC) patients. Reduced BRCA1 levels can result from epigenetic modifications or increased proteasomal degradation. In this review, we discuss how this knowledge of BRCA1 function and regulation of BRCA1 protein stability can help overcome the challenges encountered in the clinic and advance current treatment strategies for BRCA1-related breast cancer patients, especially focusing on TNBC.
Collapse
Affiliation(s)
- Eun Choi
- Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Gil-Im Mun
- Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Joohyun Lee
- Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Hanhee Lee
- Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Jaeho Cho
- Department of Radiation Oncology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Yun-Sil Lee
- Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea.
| |
Collapse
|
28
|
Zhao Y, Liu Z, Wang L, Liu H. Fumonisin B1 as a Tool to Explore Sphingolipid Roles in Arabidopsis Primary Root Development. Int J Mol Sci 2022; 23:12925. [PMID: 36361715 PMCID: PMC9654530 DOI: 10.3390/ijms232112925] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/19/2022] [Accepted: 10/21/2022] [Indexed: 03/28/2024] Open
Abstract
Fumonisin B1 is a mycotoxin that is structurally analogous to sphinganine and sphingosine and inhibits the biosynthesis of complex sphingolipids by repressing ceramide synthase. Based on the connection between FB1 and sphingolipid metabolism, FB1 has been widely used as a tool to explore the multiple functions of sphingolipids in mammalian and plant cells. The aim of this work was to determine the effect of sphingolipids on primary root development by exposing Arabidopsis (Arabidopsis thaliana) seedlings to FB1. We show that FB1 decreases the expression levels of several PIN-FORMED (PIN) genes and the key stem cell niche (SCN)-defining transcription factor genes WUSCHEL-LIKE HOMEOBOX5 (WOX5) and PLETHORAs (PLTs), resulting in the loss of quiescent center (QC) identity and SCN maintenance, as well as stunted root growth. In addition, FB1 induces cell death at the root apical meristem in a non-cell-type-specific manner. We propose that sphingolipids play a key role in primary root growth through the maintenance of the root SCN and the amelioration of cell death in Arabidopsis.
Collapse
Affiliation(s)
- Yanxue Zhao
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475000, China
| | - Zhongjie Liu
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China
| | - Lei Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475000, China
| | - Hao Liu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475000, China
| |
Collapse
|
29
|
Foo TK, Xia B. BRCA1-Dependent and Independent Recruitment of PALB2-BRCA2-RAD51 in the DNA Damage Response and Cancer. Cancer Res 2022; 82:3191-3197. [PMID: 35819255 PMCID: PMC9481714 DOI: 10.1158/0008-5472.can-22-1535] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/22/2022] [Accepted: 07/08/2022] [Indexed: 11/16/2022]
Abstract
The BRCA1-PALB2-BRCA2 axis plays essential roles in the cellular response to DNA double-strand breaks (DSB), maintenance of genome integrity, and suppression of cancer development. Upon DNA damage, BRCA1 is recruited to DSBs, where it facilitates end resection and recruits PALB2 and its associated BRCA2 to load the central recombination enzyme RAD51 to initiate homologous recombination (HR) repair. In recent years, several BRCA1-independent mechanisms of PALB2 recruitment have also been reported. Collectively, these available data illustrate a series of hierarchical, context-dependent, and cooperating mechanisms of PALB2 recruitment that is critical for HR and therapy response either in the presence or absence of BRCA1. Here, we review these BRCA1-dependent and independent mechanisms and their importance in DSB repair, cancer development, and therapy. As BRCA1-mutant cancer cells regain HR function, for which PALB2 is generally required, and become resistant to targeted therapies, such as PARP inhibitors, targeting BRCA1-independent mechanisms of PALB2 recruitment represents a potential new avenue to improve treatment of BRCA1-mutant tumors.
Collapse
Affiliation(s)
- Tzeh Keong Foo
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey and Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, New Jersey
| | - Bing Xia
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey and Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, New Jersey
| |
Collapse
|
30
|
Qi L, Chakravarthy R, Li MM, Deng CX, Li R, Hu Y. Phosphorylation of BRCA1 by ATM upon double-strand breaks impacts ATM function in end-resection: A potential feedback loop. iScience 2022; 25:104944. [PMID: 36065181 PMCID: PMC9440284 DOI: 10.1016/j.isci.2022.104944] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 07/25/2022] [Accepted: 08/11/2022] [Indexed: 11/24/2022] Open
Abstract
BRCA1 maintains genome stability by promoting homologous recombination (HR)-mediated DNA double-strand break (DSB) repair. Mutation of mouse BRCA1-S1152, corresponding to an ATM phosphorylation site in its human counterpart, resulted in increased genomic instability and tumor incidence. In this study, we report that BRCA1-S1152 is part of a feedback loop that sustains ATM activity. BRCA1-S1152A mutation impairs recruitment of the E3 ubiquitin ligase SKP2. This in turn attenuates NBS1-K63 ubiquitination by SKP2 at DSB, impairs sustained ATM activation, and ultimately leads to deficient end resection, the commitment step in the HR repair pathway. Auto-phosphorylation of human ATM at S1981 is known to be important for its kinase activation; we mutated the corresponding amino acid residue in mouse ATM (S1987A) to characterize potential roles of mouse ATM-S1987 in the BRCA1-SKP2-NBS1-ATM feedback loop. Unexpectedly, MEFs carrying the ATM-S1987A knockin mutation maintain damage-induced ATM kinase activation, suggesting a species-specific function of human ATM auto-phosphorylation.
Collapse
Affiliation(s)
- Leilei Qi
- Department of Anatomy and Cell Biology, the George Washington University, School of Medicine and Health Sciences, Washington DC20037, USA
| | - Reka Chakravarthy
- Department of Anatomy and Cell Biology, the George Washington University, School of Medicine and Health Sciences, Washington DC20037, USA
| | - Monica M. Li
- Department of Anatomy and Cell Biology, the George Washington University, School of Medicine and Health Sciences, Washington DC20037, USA
| | - Chu-Xia Deng
- Cancer Center, Faculty of Health Sciences, University of Macau, Macau, SAR China
| | - Rong Li
- Department of Biochemistry and Molecular Medicine, the George Washington University, School of Medicine and Health Sciences, Washington DC20037, USA
| | - Yanfen Hu
- Department of Anatomy and Cell Biology, the George Washington University, School of Medicine and Health Sciences, Washington DC20037, USA
| |
Collapse
|
31
|
Cui P, Li H, Wang C, Liu Y, Zhang M, Yin Y, Sun Z, Wang Y, Chen X. UBE2T regulates epithelial–mesenchymal transition through the PI3K-AKT pathway and plays a carcinogenic role in ovarian cancer. J Ovarian Res 2022; 15:103. [PMID: 36088429 PMCID: PMC9464398 DOI: 10.1186/s13048-022-01034-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 08/24/2022] [Indexed: 11/16/2022] Open
Abstract
Background Ubiquitin-binding enzyme E2T (UBE2T), a member of the E2 family of the ubiquitin–proteasome pathway, is associated with tumorigenesis of varioustumours; however, its role and mechanism in ovarian cancer remain unclear. Results Our study revealed that UBE2T is highly expressed in ovarian cancer; this high expression was closely related to poor prognosis. Immunohistochemistry was used to validate the high expression of UBE2T in ovarian cancer. This is the first study to demonstrate that UBE2T expression is higher in ovarian cancer with BRCA mutation. Moreover, we demonstrated that UBE2T gene silencing significantly inhibited ovarian cancer cell proliferation and invasion. The epithelial–mesenchymal transition (EMT) of ovarian cancer cells and phosphatidylinositol 3 kinase/protein kinase B (PI3K-AKT) pathway were significantly inhibited. Adding the mechanistic target of rapamycin activator MHY1485 activated the PI3K-AKT pathway and significantly restored the proliferative and invasive ability of ovarian cancer cells. Furthermore, a tumorigenesis experiment in nude mice revealed that tumour growth on mice body surface and tumour tissue EMT were significantly inhibited after UBE2T gene silencing. Conclusions This study demonstrated that UBE2T regulates EMT via the PI3K-AKT pathway and plays a carcinogenic role in ovarian cancer. Moreover, UBE2T may interact with BRCA to affect ovarian cancer occurrence and development. Hence, UBE2T may be a valuable novel biomarker for the early diagnosis and prognosis and treatment of ovarian cancer. Further, UBE2T inhibition may be effective for treating ovarian cancer. Supplementary Information The online version contains supplementary material available at 10.1186/s13048-022-01034-9.
Collapse
|
32
|
DNA Damage Response Regulation by Histone Ubiquitination. Int J Mol Sci 2022; 23:ijms23158187. [PMID: 35897775 PMCID: PMC9332593 DOI: 10.3390/ijms23158187] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/19/2022] [Accepted: 07/22/2022] [Indexed: 11/30/2022] Open
Abstract
Cells are constantly exposed to numerous genotoxic stresses that induce DNA damage. DNA double-strand breaks (DSBs) are among the most serious damages and should be systematically repaired to preserve genomic integrity. The efficiency of repair is closely associated with chromatin structure, which is regulated by posttranslational modifications of histones, including ubiquitination. Recent evidence shows crosstalk between histone ubiquitination and DNA damage responses, suggesting an integrated model for the systematic regulation of DNA repair. There are two major pathways for DSB repair, viz., nonhomologous end joining and homologous recombination, and the choice of the pathway is partially controlled by posttranslational modifications of histones, including ubiquitination. Histone ubiquitination changes chromatin structure in the vicinity of DSBs and serves as a platform to select and recruit repair proteins; the removal of these modifications by deubiquitinating enzymes suppresses the recruitment of repair proteins and promotes the convergence of repair reactions. This article provides a comprehensive overview of the DNA damage response regulated by histone ubiquitination in response to DSBs.
Collapse
|
33
|
Alvarez S, da Silva Almeida AC, Albero R, Biswas M, Barreto-Galvez A, Gunning TS, Shaikh A, Aparicio T, Wendorff A, Piovan E, Van Vlierberghe P, Gygi S, Gautier J, Madireddy A, A Ferrando A. Functional mapping of PHF6 complexes in chromatin remodeling, replication dynamics, and DNA repair. Blood 2022; 139:3418-3429. [PMID: 35338774 PMCID: PMC9185155 DOI: 10.1182/blood.2021014103] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 02/27/2022] [Indexed: 01/05/2023] Open
Abstract
The Plant Homeodomain 6 gene (PHF6) encodes a nucleolar and chromatin-associated leukemia tumor suppressor with proposed roles in transcription regulation. However, specific molecular mechanisms controlled by PHF6 remain rudimentarily understood. Here we show that PHF6 engages multiple nucleosome remodeling protein complexes, including nucleosome remodeling and deacetylase, SWI/SNF and ISWI factors, the replication machinery and DNA repair proteins. Moreover, after DNA damage, PHF6 localizes to sites of DNA injury, and its loss impairs the resolution of DNA breaks, with consequent accumulation of single- and double-strand DNA lesions. Native chromatin immunoprecipitation sequencing analyses show that PHF6 specifically associates with difficult-to-replicate heterochromatin at satellite DNA regions enriched in histone H3 lysine 9 trimethyl marks, and single-molecule locus-specific analyses identify PHF6 as an important regulator of genomic stability at fragile sites. These results extend our understanding of the molecular mechanisms controlling hematopoietic stem cell homeostasis and leukemia transformation by placing PHF6 at the crossroads of chromatin remodeling, replicative fork dynamics, and DNA repair.
Collapse
Affiliation(s)
- Silvia Alvarez
- Institute for Cancer Genetics, Columbia University, New York, NY
| | | | - Robert Albero
- Institute for Cancer Genetics, Columbia University, New York, NY
| | - Mayukh Biswas
- Institute for Cancer Genetics, Columbia University, New York, NY
| | | | - Thomas S Gunning
- Institute for Cancer Genetics, Columbia University, New York, NY
| | - Anam Shaikh
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ
| | - Tomas Aparicio
- Institute for Cancer Genetics, Columbia University, New York, NY
| | | | - Erich Piovan
- UOC Immunologia e Diagnostica Molecolare Oncologica, Istituto Oncologico Veneto-Istituto Di Ricovero e Cura a Carattere Scientifico (IRCCS), Padova, Italy
- Dipartimento di Scienze Chirurgiche, Oncologiche e Gastroenterologiche, Sezione di Oncologia, Università di Padova, Padova, Italy
| | - Pieter Van Vlierberghe
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent, Ghent, Belgium
| | - Steven Gygi
- Department of Cell Biology, Harvard Medical School, Boston, MA
| | - Jean Gautier
- Institute for Cancer Genetics, Columbia University, New York, NY
- Department of Genetics and Development, College of Physicians and Surgeons, and
| | | | - Adolfo A Ferrando
- Institute for Cancer Genetics, Columbia University, New York, NY
- Department of Systems Biology, Columbia University, New York, NY; and
- Department of Pediatrics and
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY
| |
Collapse
|
34
|
Raafat Elsayed AA, Al-Marsoummi S, Vomhof-Dekrey EE, Basson MD. SLFN12 Over-expression Sensitizes Triple Negative Breast Cancer Cells to Chemotherapy Drugs and Radiotherapy. Cancer Genomics Proteomics 2022; 19:328-338. [PMID: 35430566 PMCID: PMC9016483 DOI: 10.21873/cgp.20323] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 01/31/2022] [Accepted: 02/02/2022] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND/AIM Schlafen 12 (SLFN12) expression correlates with survival in triple negative breast cancer (TNBC). SLFN12 slows TNBC proliferation and induces TNBC differentiation, but whether SLFN12 affects the tumoral response to chemotherapy or radiation is unknown. MATERIALS AND METHODS We over-expressed SLFN12 in MDA-MB-231 cells using two different lentiviral vectors. We assessed viable cell numbers via crystal violet assay after treatment with carboplatin, paclitaxel, olaparib, zoledronic acid, camptothecin, or cesium irradiation. CHK1 and CHK2 phosphorylation was assessed by western blot and the effects of inhibiting CHK1/CHK2 by AZD7762 were examined. Key findings were confirmed in Hs578t and BT549 TNBC cells after adenoviral SLFN12 over-expression. RESULTS SLFN12 over-expression increased TNBC sensitivity to radiation, carboplatin, paclitaxel, zoledronic acid, and camptothecin, but not to olaparib. SLFN12 over-expression decreased CHK1 and CHK2 phosphorylation after treatment with the DNA damaging agent camptothecin (CPT). The CHK1/CHK2 inhibitor diminished the significant cytotoxicity difference between over-expression and baseline SLFN12 levels in response to carboplatin. CONCLUSION SLFN12 increases TNBC sensitivity to DNA-damaging agents at least in part by reducing CHK1/2 phosphorylation. This may contribute to improved survival in patients whose TNBC over-expresses SLFN12. Therefore, SLFN12 levels may be used to customize or predict radiotherapy and chemotherapy effects in TNBC.
Collapse
Affiliation(s)
- Ahmed Adham Raafat Elsayed
- Department of Surgery, School of Medicine and the Health Sciences, University of North Dakota, Grand Forks, ND, U.S.A
| | - Sarmad Al-Marsoummi
- Department of Pathology, School of Medicine and the Health Sciences, University of North Dakota, Grand Forks, ND, U.S.A
| | - Emilie E Vomhof-Dekrey
- Department of Surgery, School of Medicine and the Health Sciences, University of North Dakota, Grand Forks, ND, U.S.A
- Department of Biomedical Sciences, School of Medicine and the Health Sciences, University of North Dakota, Grand Forks, ND, U.S.A
| | - Marc D Basson
- Department of Surgery, School of Medicine and the Health Sciences, University of North Dakota, Grand Forks, ND, U.S.A.;
- Department of Pathology, School of Medicine and the Health Sciences, University of North Dakota, Grand Forks, ND, U.S.A
- Department of Biomedical Sciences, School of Medicine and the Health Sciences, University of North Dakota, Grand Forks, ND, U.S.A
| |
Collapse
|
35
|
Yue W, Ma J, Xiao Y, Wang P, Gu X, Xie B, Li M. The Apoptotic Resistance of BRCA1-Deficient Ovarian Cancer Cells is Mediated by cAMP. Front Cell Dev Biol 2022; 10:889656. [PMID: 35517499 PMCID: PMC9065249 DOI: 10.3389/fcell.2022.889656] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 03/23/2022] [Indexed: 11/17/2022] Open
Abstract
Breast cancer type 1 susceptibility protein (BRCA1) is essential for homologous recombination repair of DNA double-strand breaks. Loss of BRCA1 is lethal to embryos due to extreme genomic instability and the activation of p53-dependent apoptosis. However, the apoptosis is resisted in BRCA1-deficient cancer cells even though their p53 is proficient. In this study, by analysis of transcriptome data of ovarian cancer patients bearing BRCA1 defects in TCGA database, we found that cAMP signaling pathway was significantly activated. Experimentally, we found that BRCA1 deficiency caused an increased expression of ADRB1, a transmembrane receptor that can promote the generation of cAMP. The elevated cAMP not only inhibited DNA damage-induced apoptosis through abrogating p53 accumulation, but also suppressed the proliferation of cytotoxic T lymphocytes by enhancing the expression of immunosuppressive factors DKK1. Inhibition of ADRB1 effectively killed cancer cells by abolishing the apoptotic resistance. These findings uncover a novel mechanism of apoptotic resistance in BRCA1-deficient ovarian cancer cells and point to a potentially new strategy for treating BRCA1-mutated tumors.
Collapse
Affiliation(s)
- Wei Yue
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology (Peking University Third Hospital), Beijing, China
| | - Jihong Ma
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology (Peking University Third Hospital), Beijing, China
| | - Yinan Xiao
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology (Peking University Third Hospital), Beijing, China
| | - Pan Wang
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology (Peking University Third Hospital), Beijing, China
| | - Xiaoyang Gu
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology (Peking University Third Hospital), Beijing, China
| | - Bingteng Xie
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Mo Li
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology (Peking University Third Hospital), Beijing, China
- *Correspondence: Mo Li,
| |
Collapse
|
36
|
Khan MA, Siddiqui MQ, Kuligina E, Varma AK. Evaluation of conformational transitions of h-BRCA2 functional domain and unclassified variant Arg2502Cys using multimodal approach. Int J Biol Macromol 2022; 209:716-724. [PMID: 35413318 DOI: 10.1016/j.ijbiomac.2022.04.049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 04/02/2022] [Accepted: 04/06/2022] [Indexed: 11/26/2022]
Abstract
Breast cancer type 2 susceptibility (BRCA2) protein plays an essential role in the repair mechanism of DNA double-strand breaks and interstrand cross-links by Homologous recombination. Germline mutations identified in the BRCA2 gene confer an increased risk of hereditary breast and ovarian cancer. Missense mutations are identified all over the gene, including the DNA binding region of BRCA2 that interacts with FANCD2. However, the majority of these missense mutations are classified as 'Variants of Uncertain Significance' due to a lack of structural, functional and clinical correlations. Therefore, multi-disciplinary in-silico, in-vitro and biophysical approaches have been explored to characterize an unclassified missense mutation, BRCA2 Arg2502Cys, identified from a case-control study. Circular-dichroism and Fluorescence spectroscopy show that the Arg2502Cys mutation in hBRCA2 (residues 2350-2545) decreases the α-helical/β-sheet propensity of the wild-type protein and perturb the tertiary structure conformation. Molecular dynamics simulations revealed alteration in the intramolecular H-bonds, overall compactness and stability of the hydrophobic core were observed in the mutant protein. Principle component analysis indicated that Arg2502Cys mutant exhibited comparatively large conformational transitions and periodic fluctuation. Therefore, to our conclusion, BRCA2 Arg2502Cys mutant perturbed the structural integrity and conformational dynamics of BRCA2.
Collapse
Affiliation(s)
- Mudassar Ali Khan
- Advanced Centre for Treatment, Research and Education in Cancer, Kharghar, Navi Mumbai, Maharashtra 410210, India; Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai 400094, India
| | - M Quadir Siddiqui
- Advanced Centre for Treatment, Research and Education in Cancer, Kharghar, Navi Mumbai, Maharashtra 410210, India; Present address: Alberta RNA Research and Training Institute, Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive, Lethbridge, AB T1K 3M4, Canada
| | - Ekaterina Kuligina
- N.N. Petrov Institute of Oncology, Laboratory of Molecular Oncology, RU-197758, Pesochny-2, St.-Petersburg, Russia
| | - Ashok K Varma
- Advanced Centre for Treatment, Research and Education in Cancer, Kharghar, Navi Mumbai, Maharashtra 410210, India; Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai 400094, India.
| |
Collapse
|
37
|
Youn CK, Lee JH, Hariharasudhan G, Kim HB, Kim J, Lee S, Lim SC, Yoon SP, Park SG, Chang IY, You HJ. HspBP1 is a dual function regulatory protein that controls both DNA repair and apoptosis in breast cancer cells. Cell Death Dis 2022; 13:309. [PMID: 35387978 PMCID: PMC8986865 DOI: 10.1038/s41419-022-04766-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 03/15/2022] [Accepted: 03/25/2022] [Indexed: 02/07/2023]
Abstract
The Hsp70-binding protein 1 (HspBP1) belongs to a family of co-chaperones that regulate Hsp70 activity and whose biological significance is not well understood. In the present study, we show that when HspBP1 is either knocked down or overexpressed in BRCA1-proficient breast cancer cells, there were profound changes in tumorigenesis, including anchorage-independent cell growth in vitro and in tumor formation in xenograft models. However, HspBP1 did not affect tumorigenic properties in BRCA1-deficient breast cancer cells. The mechanisms underlying HspBP1-induced tumor suppression were found to include interactions with BRCA1 and promotion of BRCA1-mediated homologous recombination DNA repair, suggesting that HspBP1 contributes to the suppression of breast cancer by regulating BRCA1 function and thereby maintaining genomic stability. Interestingly, independent of BRCA1 status, HspBP1 facilitates cell survival in response to ionizing radiation (IR) by interfering with the association of Hsp70 and apoptotic protease-activating factor-1. These findings suggest that decreased HspBP1 expression, a common occurrence in high-grade and metastatic breast cancers, leads to genomic instability and enables resistance to IR treatment.
Collapse
Affiliation(s)
- Cha Kyung Youn
- DNA Damage Response Network Center, Chosun University School of Medicine, 375 Seosuk-dong, Gwangju, Republic of Korea
- Department of Meridian & AcupointᆞDiagnosis, College of Korean Medicine, Dongshin University, 67, Dongsindae-gil, Naju-si, Jeollanam-do, Republic of Korea
| | - Jung-Hee Lee
- DNA Damage Response Network Center, Chosun University School of Medicine, 375 Seosuk-dong, Gwangju, Republic of Korea
- Department of Cellular and Molecular Medicine, Chosun University School of Medicine, 375 Seosuk-dong, Gwangju, Republic of Korea
| | - Gurusamy Hariharasudhan
- DNA Damage Response Network Center, Chosun University School of Medicine, 375 Seosuk-dong, Gwangju, Republic of Korea
| | - Hong Beum Kim
- DNA Damage Response Network Center, Chosun University School of Medicine, 375 Seosuk-dong, Gwangju, Republic of Korea
- Division of Natural Medical Sciences, Chosun University School of Medicine, 375 Seosuk-dong, Gwangju, Republic of Korea
| | - Jeeho Kim
- DNA Damage Response Network Center, Chosun University School of Medicine, 375 Seosuk-dong, Gwangju, Republic of Korea
| | - Sumi Lee
- DNA Damage Response Network Center, Chosun University School of Medicine, 375 Seosuk-dong, Gwangju, Republic of Korea
| | - Sung-Chul Lim
- DNA Damage Response Network Center, Chosun University School of Medicine, 375 Seosuk-dong, Gwangju, Republic of Korea
- Department of Pathology, Chosun University School of Medicine, 375 Seosuk-dong, Gwangju, Republic of Korea
| | - Sang-Pil Yoon
- Department of Anatomy, School of Medicine, Jeju National University, Jeju-Do, Republic of Korea
| | - Sang-Gon Park
- Department of Hemato-oncology, Chosun University Hospital Internal Medicine, Gwangju, Republic of Korea.
| | - In-Youb Chang
- Department of Anatomy, Chosun University School of Medicine, 375 Seosuk-dong, Gwangju, Republic of Korea.
| | - Ho Jin You
- DNA Damage Response Network Center, Chosun University School of Medicine, 375 Seosuk-dong, Gwangju, Republic of Korea.
- Department of Pharmacology, Chosun University School of Medicine, 375 Seosuk-dong, Gwangju, Republic of Korea.
| |
Collapse
|
38
|
Baker Rogers J, Higa GM. Spoken and Unspoken Matters Regarding the Use of Opioids in Cancer. J Pain Res 2022; 15:909-924. [PMID: 35411188 PMCID: PMC8994621 DOI: 10.2147/jpr.s349107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 03/24/2022] [Indexed: 11/23/2022] Open
Affiliation(s)
- Janna Baker Rogers
- Sections of Geriatrics, Palliative Medicine and Hospice, Department of Medicine, School of Medicine, West Virginia University, Morgantown, WV, USA
| | - Gerald M Higa
- Departments of Clinical Pharmacy and Medicine, Schools of Pharmacy and Medicine, West Virginia University, Morgantown, WV, USA
- Correspondence: Gerald M Higa, Departments of Clinical Pharmacy and Medicine, Schools of Pharmacy and Medicine, West Virginia University, Morgantown, WV, USA, 26506, Email
| |
Collapse
|
39
|
Park D, Gharghabi M, Reczek CR, Plow R, Yungvirt C, Aldaz CM, Huebner K. Wwox Binding to the Murine Brca1-BRCT Domain Regulates Timing of Brip1 and CtIP Phospho-Protein Interactions with This Domain at DNA Double-Strand Breaks, and Repair Pathway Choice. Int J Mol Sci 2022; 23:ijms23073729. [PMID: 35409089 PMCID: PMC8999063 DOI: 10.3390/ijms23073729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/21/2022] [Accepted: 03/24/2022] [Indexed: 11/16/2022] Open
Abstract
Wwox-deficient human cells show elevated homologous recombination, leading to resistance to killing by double-strand break-inducing agents. Human Wwox binds to the Brca1 981-PPLF-984 Wwox-binding motif, likely blocking the pChk2 phosphorylation site at Brca1-S988. This phosphorylation site is conserved across mammalian species; the PPLF motif is conserved in primates but not in rodents. We now show that murine Wwox does not bind Brca1 near the conserved mouse Brca1 phospho-S971 site, leaving it open for Chk2 phosphorylation and Brca1 activation. Instead, murine Wwox binds to Brca1 through its BRCT domain, where pAbraxas, pBrip1, and pCtIP, of the A, B, and C binding complexes, interact to regulate double-strand break repair pathway response. In Wwox-deficient mouse cells, the Brca1-BRCT domain is thus accessible for immediate binding of these phospho-proteins. We confirm elevated homologous recombination in Wwox-silenced murine cells, as in human cells. Wwox-deficient murine cells showed increased ionizing radiation-induced Abraxas, Brca1, and CtIP foci and long resected single-strand DNA, early after ionizing radiation. Wwox deletion increased the basal level of Brca1-CtIP interaction and the expression level of the MRN-CtIP protein complex, key players in end-resection, and facilitated Brca1 release from foci. Inhibition of phospho-Chk2 phosphorylation of Brca1-S971 delays the end-resection; the delay of premature end-resection by combining Chk2 inhibition with ionizing radiation or carboplatin treatment restored ionizing radiation and platinum sensitivity in Wwox-deficient murine cells, as in human cells, supporting the use of murine in vitro and in vivo models in preclinical cancer treatment research.
Collapse
Affiliation(s)
- Dongju Park
- Department of Cancer Biology and Genetics, The Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; (M.G.); (R.P.); (C.Y.)
- Correspondence: (D.P.); (K.H.); Tel.: +1-614-685-9124 (D.P.); +1-614-292-4850 (K.H.)
| | - Mehdi Gharghabi
- Department of Cancer Biology and Genetics, The Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; (M.G.); (R.P.); (C.Y.)
- Department of Outcomes and Translational Sciences, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA
| | - Colleen R. Reczek
- Department of Pathology & Cell Biology, Columbia University Irving Medical Center, Columbia University, New York, NY 10032, USA;
| | - Rebecca Plow
- Department of Cancer Biology and Genetics, The Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; (M.G.); (R.P.); (C.Y.)
| | - Charles Yungvirt
- Department of Cancer Biology and Genetics, The Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; (M.G.); (R.P.); (C.Y.)
| | - C. Marcelo Aldaz
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, 1881 East Road, Houston, TX 77054, USA;
| | - Kay Huebner
- Department of Cancer Biology and Genetics, The Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; (M.G.); (R.P.); (C.Y.)
- Correspondence: (D.P.); (K.H.); Tel.: +1-614-685-9124 (D.P.); +1-614-292-4850 (K.H.)
| |
Collapse
|
40
|
BRCA1 mutations in high-grade serous ovarian cancer are associated with proteomic changes in DNA repair, splicing, transcription regulation and signaling. Sci Rep 2022; 12:4445. [PMID: 35292711 PMCID: PMC8924168 DOI: 10.1038/s41598-022-08461-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 02/23/2022] [Indexed: 11/08/2022] Open
Abstract
Despite recent advances in the management of BRCA1 mutated high-grade serous ovarian cancer (HGSC), the physiology of these tumors remains poorly understood. Here we provide a comprehensive molecular understanding of the signaling processes that drive HGSC pathogenesis with the addition of valuable ubiquitination profiling, and their dependency on BRCA1 mutation-state directly in patient-derived tissues. Using a multilayered proteomic approach, we show the tight coordination between the ubiquitination and phosphorylation regulatory layers and their role in key cellular processes related to BRCA1-dependent HGSC pathogenesis. In addition, we identify key bridging proteins, kinase activity, and post-translational modifications responsible for molding distinct cancer phenotypes, thus providing new opportunities for therapeutic intervention, and ultimately advance towards a more personalized patient care.
Collapse
|
41
|
DNA binding and cleavage, BRCA1 gene interaction, antiglycation and anticancer studies of transition metal complexes of sulfonamides. Mol Divers 2022; 26:3093-3113. [PMID: 35182295 DOI: 10.1007/s11030-021-10366-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 12/13/2021] [Indexed: 10/19/2022]
Abstract
A series of 4-((4-methylphenylsulfonamido)methyl)cyclohexanecarboxylic acid (NaMSCCA) transition metal complexes [Cu(II), Zn(II), Ni(II), Mn(II), and Co(II)] have been synthesized by precipitation method. The characterization was done by physical techniques, FT-IR spectroscopy, mass spectrometry, and NMR spectroscopy. The molecular structures of nickel (II) AZ-3 and cobalt (II) AZ-5 complexes were determined by the X-ray diffraction technique and found to crystallize in the triclinic space group P-1. The coordination geometry around the central nickel (AZ-3) and cobalt (AZ-5) atoms was square planar bipyramidal. Molecular docking was performed with duplex DNA of sequence d(CGCGAATTCGCG)2 DNA to determine the probable binding mode of compounds. Then these synthesized compounds were used to perform DNA cleavage activity through the agarose gel electrophoresis method. Among the compounds, compounds AZ-1 and AZ-2 exhibited good nuclease activity. The DNA sequence of breast-cancer suppressor gene 1 (BRCA1) was amplified through PCR and interaction studies of compounds AZ-1 and AZ-2 were performed through gel electrophoresis and fluorescence emission spectroscopy. The expression analysis of the BRCA1 gene was also performed to quantify the expression relative fold change (2^-(∆∆CT)) after treatment with compounds. All synthesized compounds were evaluated for their antioxidant and antiglycation activities and AZ-2 exhibited excellent results. The molecular docking study of these compounds was performed against the protein structure of advanced glycation end products to support the experimental results. Anticancer activity of compounds was performed through MTT assay. Copper and zinc complexes depicted the highest anticancer activity against human breast adenocarcinoma (MCF7) and human corneal epithelial cell (HCEC) cell lines.
Collapse
|
42
|
Li J, Zhao B, Huang T, Qin Z, Wang SM. Human BRCA pathogenic variants were originated during recent human history. Life Sci Alliance 2022; 5:5/5/e202101263. [PMID: 35165121 PMCID: PMC8860097 DOI: 10.26508/lsa.202101263] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 01/25/2022] [Accepted: 01/26/2022] [Indexed: 01/05/2023] Open
Abstract
BRCA1 and BRCA2 (BRCA) play essential roles in maintaining genome stability. BRCA germline pathogenic variants increase cancer risk. However, the evolutionary origin of human BRCA pathogenic variants remains largely elusive. We tested the 2,972 human BRCA1 and 3,652 human BRCA2 pathogenic variants from ClinVar database in 100 vertebrates across eight clades, but failed to find evidence to show cross-species evolution conservation as the origin; we searched the variants in 2,792 ancient human genome data, and identified 28 BRCA1 and 22 BRCA2 pathogenic variants in 44 cases dated from 45,000 to 300 yr ago; we analyzed the haplotype-dated human BRCA pathogenic founder variants, and observed that they were mostly arisen within the past 3,000 yr; we traced ethnic distribution of human BRCA pathogenic variants, and found that the majority were present in single or a few ethnic populations. Based on the data, we propose that human BRCA pathogenic variants were highly likely arisen in recent human history after the latest out-of-Africa migration, and the expansion of modern human population could largely increase the variation spectrum.
Collapse
Affiliation(s)
- Jiaheng Li
- MoE Frontiers Science Center for Precision Oncology, Cancer Center and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau, China
| | - Bojin Zhao
- MoE Frontiers Science Center for Precision Oncology, Cancer Center and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau, China
| | - Teng Huang
- MoE Frontiers Science Center for Precision Oncology, Cancer Center and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau, China
| | - Zixin Qin
- MoE Frontiers Science Center for Precision Oncology, Cancer Center and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau, China
| | - San Ming Wang
- MoE Frontiers Science Center for Precision Oncology, Cancer Center and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau, China
| |
Collapse
|
43
|
Ejaz S, Abbas Z, Nouroz F. Exceptional behavior of breast cancer-associated type 1 gene in breast invasive carcinoma. J Cancer Res Ther 2022; 18:1743-1753. [DOI: 10.4103/jcrt.jcrt_1310_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
44
|
Alavattam KG, Maezawa S, Andreassen PR, Namekawa SH. Meiotic sex chromosome inactivation and the XY body: a phase separation hypothesis. Cell Mol Life Sci 2021; 79:18. [PMID: 34971404 DOI: 10.1007/s00018-021-04075-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 09/08/2021] [Accepted: 10/14/2021] [Indexed: 10/19/2022]
Abstract
In mammalian male meiosis, the heterologous X and Y chromosomes remain unsynapsed and, as a result, are subject to meiotic sex chromosome inactivation (MSCI). MSCI is required for the successful completion of spermatogenesis. Following the initiation of MSCI, the X and Y chromosomes undergo various epigenetic modifications and are transformed into a nuclear body termed the XY body. Here, we review the mechanisms underlying the initiation of two essential, sequential processes in meiotic prophase I: MSCI and XY-body formation. The initiation of MSCI is directed by the action of DNA damage response (DDR) pathways; downstream of the DDR, unique epigenetic states are established, leading to the formation of the XY body. Accumulating evidence suggests that MSCI and subsequent XY-body formation may be driven by phase separation, a physical process that governs the formation of membraneless organelles and other biomolecular condensates. Thus, here we gather literature-based evidence to explore a phase separation hypothesis for the initiation of MSCI and the formation of the XY body.
Collapse
Affiliation(s)
- Kris G Alavattam
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, 98195, USA.,Center for Cardiovascular Biology, University of Washington, Seattle, WA, 98109, USA.,Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, 98109, USA.,Department of Genome Sciences, University of Washington, Seattle, WA, 98195, USA
| | - So Maezawa
- Faculty of Science and Technology, Department of Applied Biological Science, Tokyo University of Science, Chiba, 278-8510, Japan
| | - Paul R Andreassen
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Satoshi H Namekawa
- Department of Microbiology and Molecular Genetics, University of California, Davis, CA, 95616, USA.
| |
Collapse
|
45
|
Kanwar N, Balde Z, Nair R, Dawe M, Chen S, Maganti M, Atenafu EG, Manolescu S, Wei C, Mao A, Fu F, Wang D, Cheung A, Yerofeyeva Y, Peters R, Liu K, Desmedt C, Sotiriou C, Szekely B, Kulka J, McKee TD, Hirano N, Bartlett JMS, Yaffe MJ, Bedard PL, McCready D, Done SJ. Heterogeneity of Circulating Tumor Cell-Associated Genomic Gains in Breast Cancer and Its Association with the Host Immune Response. Cancer Res 2021; 81:6196-6206. [PMID: 34711609 PMCID: PMC9397625 DOI: 10.1158/0008-5472.can-21-1079] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 08/10/2021] [Accepted: 10/25/2021] [Indexed: 01/07/2023]
Abstract
Tumor cells that preferentially enter circulation include the precursors of metastatic cancer. Previously, we characterized circulating tumor cells (CTC) from patients with breast cancer and identified a signature of genomic regions with recurrent copy-number gains. Through FISH, we now show that these CTC-associated regions are detected within the matched untreated primary tumors of these patients (21% to 69%, median 55.5%, n = 19). Furthermore, they are more prevalent in the metastases of patients who died from breast cancer after multiple rounds of treatment (70% to 100%, median 93%, samples n = 41). Diversity indices revealed that higher spatial heterogeneity for these regions within primary tumors is associated with increased dissemination and metastasis. An identified subclone with multiple regions gained (MRG clone) was enriched in a posttreatment primary breast carcinoma as well as multiple metastatic tumors and local breast recurrences obtained at autopsy, indicative of a distinct early subclone with the capability to resist multiple lines of treatment and eventually cause death. In addition, multiplex immunofluorescence revealed that tumor heterogeneity is significantly associated with the degree of infiltration of B lymphocytes in triple-negative breast cancer, a subtype with a large immune component. Collectively, these data reveal the functional potential of genetic subclones that comprise heterogeneous primary breast carcinomas and are selected for in CTCs and posttreatment breast cancer metastases. In addition, they uncover a relationship between tumor heterogeneity and host immune response in the tumor microenvironment. SIGNIFICANCE: As breast cancers progress, they become more heterogeneous for multiple regions amplified in circulating tumor cells, and intratumoral spatial heterogeneity is associated with the immune landscape.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- Biomarkers, Tumor/genetics
- Combined Modality Therapy
- Female
- Follow-Up Studies
- Gene Expression Regulation, Neoplastic
- Humans
- Immunity
- Lung Neoplasms/genetics
- Lung Neoplasms/immunology
- Lung Neoplasms/secondary
- Lung Neoplasms/therapy
- Lymphocytes, Tumor-Infiltrating/immunology
- Middle Aged
- Neoplasm Recurrence, Local/genetics
- Neoplasm Recurrence, Local/immunology
- Neoplasm Recurrence, Local/pathology
- Neoplasm Recurrence, Local/therapy
- Neoplastic Cells, Circulating/pathology
- Prognosis
- Prospective Studies
- Survival Rate
- Triple Negative Breast Neoplasms/genetics
- Triple Negative Breast Neoplasms/immunology
- Triple Negative Breast Neoplasms/pathology
- Triple Negative Breast Neoplasms/therapy
- Tumor Cells, Cultured
- Tumor Microenvironment
Collapse
Affiliation(s)
- Nisha Kanwar
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Zaldy Balde
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Ranju Nair
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Melanie Dawe
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Shiyi Chen
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, Canada
| | - Manjula Maganti
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Eshetu G Atenafu
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Sabrina Manolescu
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Carrie Wei
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Amanda Mao
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Fred Fu
- STTARR Innovation Centre, University Health Network, Toronto, Canada
| | - Dan Wang
- Biomarker Imaging Research Laboratory, Sunnybrook Research Institute, Toronto, Canada
| | - Alison Cheung
- Biomarker Imaging Research Laboratory, Sunnybrook Research Institute, Toronto, Canada
| | - Yulia Yerofeyeva
- Biomarker Imaging Research Laboratory, Sunnybrook Research Institute, Toronto, Canada
| | - Rachel Peters
- Biomarker Imaging Research Laboratory, Sunnybrook Research Institute, Toronto, Canada
| | - Kela Liu
- Biomarker Imaging Research Laboratory, Sunnybrook Research Institute, Toronto, Canada
| | - Christine Desmedt
- Laboratory for Translational Breast Cancer Research, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Christos Sotiriou
- Laboratory for Translational Breast Cancer Research, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Borbala Szekely
- 2nd Department of Pathology, Semmelweis University, Budapest, Hungary
| | - Janina Kulka
- 2nd Department of Pathology, Semmelweis University, Budapest, Hungary
| | - Trevor D McKee
- STTARR Innovation Centre, University Health Network, Toronto, Canada
| | - Naoto Hirano
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Department of Immunology, University of Toronto, Toronto, Canada
| | - John M S Bartlett
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
- Ontario Institute for Cancer Research, Toronto, Canada
| | - Martin J Yaffe
- Biomarker Imaging Research Laboratory, Sunnybrook Research Institute, Toronto, Canada
- Ontario Institute for Cancer Research, Toronto, Canada
| | - Philippe L Bedard
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - David McCready
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Susan J Done
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada.
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Laboratory Medicine Program, University Health Network, Toronto, Canada
| |
Collapse
|
46
|
Kang HJ, Lee HY, Kim KT, Kim JW, Lee JY, Kim SW, Kim JC, Shin IS, Kim N, Kim JM. Genetic Differences between Physical Injury Patients With and Without Post-traumatic Syndrome: Focus on Secondary Findings and Potential Variants Revealed by Whole Exome Sequencing. CLINICAL PSYCHOPHARMACOLOGY AND NEUROSCIENCE 2021; 19:683-694. [PMID: 34690123 PMCID: PMC8553524 DOI: 10.9758/cpn.2021.19.4.683] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 10/22/2020] [Accepted: 10/26/2020] [Indexed: 11/25/2022]
Abstract
Objective Sudden traumatic physical injuries often cause psychological distress, which may be associated with chronic disability. Although considerable effort has been expended to identify genetic predictors of post-traumatic stress disorder (PTSD) after traumatic events, genetic predictors of psychological distress in response to severe physical injuries have been yet to be elucidated using whole exome sequencing (WES). Here, the genetic architecture of post-traumatic syndrome (PTS), which encompasses a broad range of psychiatric disorders after traumatic events including depression, anxiety disorder, acute stress disorder, and PTSD, was explored using WES in severely physically injured patients, focusing on secondary findings and potential PTS-related variants. Methods In total, 141 severely physically injured patients were consecutively recruited, and PTS was evaluated within 1 month of the injury. Secondary findings were analyzed according to PTS status. To identify PTS-related variants, genome-wide association analyses and the optimal sequencing kernel association test were performed. Results Of the 141 patients, 88 (62%) experienced PTS. There were 108 disease-causing variants in severely physically injured patients. As secondary findings, the stress- and inflammation-related signaling pathways were enriched in the PTS patients, while the glucose metabolism pathway was enriched in those without PTS. However, no significant PTS-related variants were identified. Conclusion Our findings suggest that genetic alterations in stress and inflammatory pathways might increase the likelihood of PTS immediately after severe physical injury. Future studies with larger samples and longitudinal designs are needed.
Collapse
Affiliation(s)
- Hee-Ju Kang
- Department of Psychiatry, Chonnam National University Medical School, Gwangju, Korea
| | - Ho-Yeon Lee
- Department of Bioinformatics, Korea Research Institute of Bioscience and Biotechnology School of Bioscience, University of Science and Technology (UST), Daejeon, Korea.,Genome Editing Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea
| | - Ki-Tae Kim
- Department of Laboratory Medicine, Korea University Anam Hospital, Seoul, Korea
| | - Ju-Wan Kim
- Department of Psychiatry, Chonnam National University Medical School, Gwangju, Korea
| | - Ju-Yeon Lee
- Department of Psychiatry, Chonnam National University Medical School, Gwangju, Korea
| | - Sung-Wan Kim
- Department of Psychiatry, Chonnam National University Medical School, Gwangju, Korea
| | - Jung-Chul Kim
- Trauma Center, Department of Surgery, Chonnam National University Medical School, Gwangju, Korea
| | - Il-Seon Shin
- Department of Psychiatry, Chonnam National University Medical School, Gwangju, Korea
| | - Namshin Kim
- Department of Bioinformatics, Korea Research Institute of Bioscience and Biotechnology School of Bioscience, University of Science and Technology (UST), Daejeon, Korea.,Genome Editing Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea
| | - Jae-Min Kim
- Department of Psychiatry, Chonnam National University Medical School, Gwangju, Korea
| |
Collapse
|
47
|
Billaud A, Chevalier LM, Augereau P, Frenel JS, Passot C, Campone M, Morel A. Functional pre-therapeutic evaluation by genome editing of variants of uncertain significance of essential tumor suppressor genes. Genome Med 2021; 13:174. [PMID: 34749799 PMCID: PMC8576946 DOI: 10.1186/s13073-021-00976-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 09/23/2021] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Targeted therapies in oncology are promising but variants of uncertain significance (VUS) limit their use for clinical management and necessitate functional testing in vitro. Using BRCA1 and BRCA2 variants, which have consequences on PARP inhibitor sensitivity, and POLE variants, potential biomarkers of immunotherapy response, we developed a rapid functional assay based on CRISPR-Cas9 genome editing to determine the functional consequences of these variants having potentially direct implications on patients' access to targeted therapies. METHODS We first evaluated the functional impact of 26 BRCA1 and 7 BRCA2 variants by editing and comparing NGS results between the variant of interest and a silent control variant. Ten of these variants had already been classified as benign or pathogenic and were used as controls. Finally, we extended this method to the characterization of POLE VUS. RESULTS For the 23 variants that were unclassified or for which conflicting interpretations had been reported, 15 were classified as functionally normal and 6 as functionally abnormal. Another two variants were found to have intermediate consequences, both with potential impacts on splicing. We then compared these scores to the patients' responses to PARP inhibitors when possible. Finally, to prove the application of our method to the classification of variants from other tumor suppressor genes, we exemplified with three POLE VUS. Among them, two were classified with an intermediate functional impact and one was functionally abnormal. Eventually, four POLE variants previously classified in databases were also evaluated. However, we found evidence of a discordance with the classification, variant p.Leu424Val being found here functionally normal. CONCLUSIONS Our new rapid functional assay can be used to characterize the functional implication of BRCA1 and BRCA2 variants, giving patients whose variants were evaluated as functionally abnormal access to PARP inhibitor treatment. Retrospective analysis of patients' responses to PARP inhibitors, where accessible, was consistent with our functional score evaluation and confirmed the accuracy of our protocol. This method could potentially be extended to the classification of VUS from all essential tumor suppressor genes and can be performed within a timeframe compatible with clinical applications, thereby having a direct theranostic impact.
Collapse
Affiliation(s)
- Amandine Billaud
- Université d'Angers, Inserm, CRCINA, SFR ICAT, F-49000, Angers, France
- Institut de Cancérologie de l'Ouest Nantes-Angers, F-49000, Angers, France
| | - Louise-Marie Chevalier
- Université d'Angers, Inserm, CRCINA, SFR ICAT, F-49000, Angers, France
- Institut de Cancérologie de l'Ouest Nantes-Angers, F-49000, Angers, France
| | - Paule Augereau
- Institut de Cancérologie de l'Ouest Nantes-Angers, F-49000, Angers, France
| | - Jean-Sebastien Frenel
- Institut de Cancérologie de l'Ouest Nantes-Angers, F-49000, Angers, France
- Université de Nantes, Inserm, CRCINA, F-44000, Nantes, France
| | - Christophe Passot
- Institut de Cancérologie de l'Ouest Nantes-Angers, F-49000, Angers, France
| | - Mario Campone
- Institut de Cancérologie de l'Ouest Nantes-Angers, F-49000, Angers, France
- Université de Nantes, Inserm, CRCINA, F-44000, Nantes, France
| | - Alain Morel
- Université d'Angers, Inserm, CRCINA, SFR ICAT, F-49000, Angers, France.
- Institut de Cancérologie de l'Ouest Nantes-Angers, F-49000, Angers, France.
| |
Collapse
|
48
|
Ferragut Cardoso AP, Banerjee M, Nail AN, Lykoudi A, States JC. miRNA dysregulation is an emerging modulator of genomic instability. Semin Cancer Biol 2021; 76:120-131. [PMID: 33979676 PMCID: PMC8576067 DOI: 10.1016/j.semcancer.2021.05.004] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/30/2021] [Accepted: 05/03/2021] [Indexed: 12/12/2022]
Abstract
Genomic instability consists of a range of genetic alterations within the genome that contributes to tumor heterogeneity and drug resistance. It is a well-established characteristic of most cancer cells. Genome instability induction results from defects in DNA damage surveillance mechanisms, mitotic checkpoints and DNA repair machinery. Accumulation of genetic alterations ultimately sets cells towards malignant transformation. Recent studies suggest that miRNAs are key players in mediating genome instability. miRNAs are a class of small RNAs expressed in most somatic tissues and are part of the epigenome. Importantly, in many cancers, miRNA expression is dysregulated. Consequently, this review examines the role of miRNA dysregulation as a causal step for induction of genome instability and subsequent carcinogenesis. We focus specifically on mechanistic studies assessing miRNA(s) and specific subtypes of genome instability or known modes of genome instability. In addition, we provide insight on the existing knowledge gaps within the field and possible ways to address them.
Collapse
Affiliation(s)
- Ana P Ferragut Cardoso
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, 40202, USA
| | - Mayukh Banerjee
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, 40202, USA
| | - Alexandra N Nail
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, 40202, USA
| | - Angeliki Lykoudi
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, 40202, USA
| | - J Christopher States
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, 40202, USA.
| |
Collapse
|
49
|
Zimmer K, Kocher F, Puccini A, Seeber A. Targeting BRCA and DNA Damage Repair Genes in GI Cancers: Pathophysiology and Clinical Perspectives. Front Oncol 2021; 11:662055. [PMID: 34707985 PMCID: PMC8542868 DOI: 10.3389/fonc.2021.662055] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 09/15/2021] [Indexed: 12/11/2022] Open
Abstract
Mutated germline alleles in the DNA damage repair (DDR) genes “breast cancer gene 1” (BRCA1) and BRCA2 have originally been identified as major susceptibility genes in breast and ovarian cancers. With the establishment and approval of more cost-effective gene sequencing methods, germline and somatic BRCA mutations have been detected in several cancers. Since the approval of poly (ADP)-ribose polymerase inhibitors (PARPi) for BRCA-mutated cancers, BRCA mutations gained rising therapeutic implications. The impact and significance of BRCA mutations have been evaluated extensively in the last decades. Moreover, other genes involved in the DDR pathway, such as ATM, ATR, or CHK1, have emerged as potential new treatment targets, as inhibitors of these proteins are currently under clinical investigation. This review gives a concise overview on the emerging clinical implications of mutations in the DDR genes in gastrointestinal cancers with a focus on BRCA mutations.
Collapse
Affiliation(s)
- Kai Zimmer
- Department of Hematology and Oncology, Comprehensive Cancer Center Innsbruck, Medical University of Innsbruck, Innsbruck, Austria
| | - Florian Kocher
- Department of Hematology and Oncology, Comprehensive Cancer Center Innsbruck, Medical University of Innsbruck, Innsbruck, Austria
| | - Alberto Puccini
- Medical Oncology Unit 1, Ospedale Policlinico San Martino Istituto di ricovero e cura a carattere scientifico (IRCCS), University of Genoa, Genoa, Italy
| | - Andreas Seeber
- Department of Hematology and Oncology, Comprehensive Cancer Center Innsbruck, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
50
|
Jimeno S, Prados-Carvajal R, Fernández-Ávila MJ, Silva S, Silvestris DA, Endara-Coll M, Rodríguez-Real G, Domingo-Prim J, Mejías-Navarro F, Romero-Franco A, Jimeno-González S, Barroso S, Cesarini V, Aguilera A, Gallo A, Visa N, Huertas P. ADAR-mediated RNA editing of DNA:RNA hybrids is required for DNA double strand break repair. Nat Commun 2021; 12:5512. [PMID: 34535666 PMCID: PMC8448848 DOI: 10.1038/s41467-021-25790-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 08/23/2021] [Indexed: 02/08/2023] Open
Abstract
The maintenance of genomic stability requires the coordination of multiple cellular tasks upon the appearance of DNA lesions. RNA editing, the post-transcriptional sequence alteration of RNA, has a profound effect on cell homeostasis, but its implication in the response to DNA damage was not previously explored. Here we show that, in response to DNA breaks, an overall change of the Adenosine-to-Inosine RNA editing is observed, a phenomenon we call the RNA Editing DAmage Response (REDAR). REDAR relies on the checkpoint kinase ATR and the recombination factor CtIP. Moreover, depletion of the RNA editing enzyme ADAR2 renders cells hypersensitive to genotoxic agents, increases genomic instability and hampers homologous recombination by impairing DNA resection. Such a role of ADAR2 in DNA repair goes beyond the recoding of specific transcripts, but depends on ADAR2 editing DNA:RNA hybrids to ease their dissolution.
Collapse
Affiliation(s)
- Sonia Jimeno
- Departamento de Genética, Universidad de Sevilla, Sevilla, 41080, Spain.
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Sevilla, 41092, Spain.
| | - Rosario Prados-Carvajal
- Departamento de Genética, Universidad de Sevilla, Sevilla, 41080, Spain
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Sevilla, 41092, Spain
| | - María Jesús Fernández-Ávila
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Sevilla, 41092, Spain
| | - Sonia Silva
- Departamento de Genética, Universidad de Sevilla, Sevilla, 41080, Spain
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Sevilla, 41092, Spain
| | - Domenico Alessandro Silvestris
- RNA Editing Lab, Oncohaematology Department, IRCCS Ospedale Pediatrico "Bambino Gesù", Viale San Paolo 15, 00146, Rome, Italy
| | - Martín Endara-Coll
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 10691, Stockholm, Sweden
| | - Guillermo Rodríguez-Real
- Departamento de Genética, Universidad de Sevilla, Sevilla, 41080, Spain
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Sevilla, 41092, Spain
| | - Judit Domingo-Prim
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 10691, Stockholm, Sweden
- Moirai Biodesign SL, Parc Científic de Barcelona, 08028, Barcelona, Spain
| | - Fernando Mejías-Navarro
- Departamento de Genética, Universidad de Sevilla, Sevilla, 41080, Spain
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Sevilla, 41092, Spain
| | - Amador Romero-Franco
- Departamento de Genética, Universidad de Sevilla, Sevilla, 41080, Spain
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Sevilla, 41092, Spain
| | - Silvia Jimeno-González
- Departamento de Genética, Universidad de Sevilla, Sevilla, 41080, Spain
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Sevilla, 41092, Spain
| | - Sonia Barroso
- Departamento de Genética, Universidad de Sevilla, Sevilla, 41080, Spain
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Sevilla, 41092, Spain
| | - Valeriana Cesarini
- RNA Editing Lab, Oncohaematology Department, IRCCS Ospedale Pediatrico "Bambino Gesù", Viale San Paolo 15, 00146, Rome, Italy
| | - Andrés Aguilera
- Departamento de Genética, Universidad de Sevilla, Sevilla, 41080, Spain
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Sevilla, 41092, Spain
| | - Angela Gallo
- RNA Editing Lab, Oncohaematology Department, IRCCS Ospedale Pediatrico "Bambino Gesù", Viale San Paolo 15, 00146, Rome, Italy
| | - Neus Visa
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 10691, Stockholm, Sweden
| | - Pablo Huertas
- Departamento de Genética, Universidad de Sevilla, Sevilla, 41080, Spain.
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Sevilla, 41092, Spain.
| |
Collapse
|