1
|
Zhang J, Xu S, Yue L, Lei H, Zhai X. A Collection of Novel Antitumor Agents That Regulate Lipid Metabolism in the Tumor Microenvironment. J Med Chem 2025; 68:49-80. [PMID: 39726379 DOI: 10.1021/acs.jmedchem.4c02809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
Lipid metabolism disorder is the cause of one of the most significant metabolic changes in tumors. In the process of tumor occurrence and development, tumor cells choose a continuous metabolic adaptation to accommodate the changing environment to the maximum extent possible. In a variety of tumors, the uptake, production, and storage of lipids are generally upregulated. Tumor cells take advantage of lipid metabolism to access basic energy, biofilm components, and signal molecules of the tumor microenvironment required for proliferation, survival, invasion, and metastasis. This Perspective briefly uncovers the main metabolic processes and key factors involved in lipid metabolism reprogramming, mainly related to lipid uptake, de novo synthesis and storage of fatty acids, oxidation of fatty acids, cholesterol synthesis, and related regulatory factors. From a medicinal chemistry perspective, agents against related key targets are reviewed, expecting to pave the way for promising antitumor drugs with prospects for application through lipid metabolism reprogramming.
Collapse
Affiliation(s)
- Jiahao Zhang
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, P.R. China
| | - Sha Xu
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, P.R. China
| | - Lingfeng Yue
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, P.R. China
| | - Hongrui Lei
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, P.R. China
| | - Xin Zhai
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, P.R. China
| |
Collapse
|
2
|
Yu W, Weber DJ, MacKerell AD. Detection of Putative Ligand Dissociation Pathways in Proteins Using Site-Identification by Ligand Competitive Saturation. J Chem Inf Model 2024. [PMID: 39729368 DOI: 10.1021/acs.jcim.4c01814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2024]
Abstract
Drug efficacy often correlates better with dissociation kinetics than binding affinity alone. To study binding kinetics computationally, it is necessary to identify all of the possible ligand dissociation pathways. The site identification by ligand competitive saturation (SILCS) method involves the precomputation of a set of maps (FragMaps), which describe the free energy landscapes of typical chemical functionalities in and around a target protein or RNA. In the current work, we present and implement a method to use SILCS to identify ligand dissociation pathways, termed "SILCS-Pathway." The A* pathfinding algorithm is utilized to enumerate ligand dissociation pathways between the ligand binding site and the surrounding bulk solvent environment defined on evenly spaced points around the protein based on a Fibonacci lattice. The cost function for the A* algorithm is calculated using the SILCS exclusion maps and the SILCS grid free energy scores, thereby identifying paths that account for local protein flexibility and potential favorable interactions with the ligand. By traversing all evenly distributed bulk solvent points around the protein, we located all possible dissociation pathways and clustered them to identify general ligand unbinding pathways. The procedure is verified by using proteins studied previously with enhanced sampling molecular dynamics (MD) techniques and is shown to be capable of capturing important ligand dissociation routes in a highly computationally efficient manner. The identified pathways will act as the foundation for determining ligand dissociation kinetics using SILCS free energy profiles, which will be described in a subsequent article.
Collapse
Affiliation(s)
- Wenbo Yu
- Computer-Aided Drug Design Center, Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland Baltimore, Baltimore, Maryland 21201, United States
- Institute for Bioscience and Biotechnology Research (IBBR), Rockville, Maryland 20850, United States
- Department of Biochemistry and Molecular Biology, Center for Biomolecular Therapeutics (CBT), School of Medicine, University of Maryland Baltimore, Baltimore, Maryland 21201, United States
| | - David J Weber
- Institute for Bioscience and Biotechnology Research (IBBR), Rockville, Maryland 20850, United States
- Department of Biochemistry and Molecular Biology, Center for Biomolecular Therapeutics (CBT), School of Medicine, University of Maryland Baltimore, Baltimore, Maryland 21201, United States
| | - Alexander D MacKerell
- Computer-Aided Drug Design Center, Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland Baltimore, Baltimore, Maryland 21201, United States
- Institute for Bioscience and Biotechnology Research (IBBR), Rockville, Maryland 20850, United States
- Department of Biochemistry and Molecular Biology, Center for Biomolecular Therapeutics (CBT), School of Medicine, University of Maryland Baltimore, Baltimore, Maryland 21201, United States
| |
Collapse
|
3
|
Horikoshi K, Sakai N, Oshima M, Yamauchi H, Ikeda M, Hayashi K, Yanagisawa H, Yamamori F, Kajikawa S, Hayashi D, Koshino A, Sako K, Yuasa T, Tamai A, Minami T, Nakagawa S, Kitajima S, Toyama T, Hara A, Shimizu M, Oota S, Ishida Y, Wada T, Iwata Y. Autotaxin concentrations in peritoneal dialysis effluent reflect peritoneal function. Ther Apher Dial 2024. [PMID: 39326924 DOI: 10.1111/1744-9987.14211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/13/2024] [Accepted: 09/06/2024] [Indexed: 09/28/2024]
Abstract
INTRODUCTION Peritoneal equilibration test (PET) has been used to monitor peritoneal function. A more convenient marker would be useful in clinical situations including home medical care. Autotaxin is known to leak into the interstitium as vascular permeability increases during the progression of tissue fibrosis. Therefore, we hypothesized that autotaxin concentrations in peritoneal dialysis (PD) effluent might reflect peritoneal function. METHODS This study enrolled 45 patients undergoing PD from 2016 to 2021. Autotaxin concentrations measured in PD effluent were evaluated for their associations with markers obtained from PET. RESULTS Mean age was 69 years, and 33 patients were men. Univariate and multivariate analyses revealed that autotaxin concentrations are associated with dialysate/plasma creatinine ratio, end/start dialysate glucose ratio, and the dip in the dialysate sodium concentration, a marker of ultrafiltration capacity, at baseline (all p < 0.05). CONCLUSIONS Autotaxin concentrations in PD effluent might be an adjunct marker that reflects peritoneal function.
Collapse
Affiliation(s)
- Keisuke Horikoshi
- Department of Nephrology and Rheumatology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Norihiko Sakai
- Department of Nephrology and Rheumatology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
- Division of Blood Purification, Kanazawa University Hospital, Kanazawa, Japan
| | - Megumi Oshima
- Department of Nephrology and Rheumatology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Hiroyuki Yamauchi
- Department of Nephrology, Seika Town National Health Insurance Hospital, Kyoto, Japan
| | - Megumi Ikeda
- Department of Nephrology and Rheumatology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Kaho Hayashi
- Department of Nephrology and Rheumatology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Hiroyoshi Yanagisawa
- Department of Nephrology and Rheumatology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Fumitaka Yamamori
- Department of Nephrology and Rheumatology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Sho Kajikawa
- Department of Nephrology and Rheumatology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Daiki Hayashi
- Department of Nephrology and Rheumatology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Akihiko Koshino
- Department of Nephrology and Rheumatology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Keisuke Sako
- Department of Nephrology and Rheumatology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Takahiro Yuasa
- Department of Nephrology and Rheumatology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Akira Tamai
- Department of Nephrology and Rheumatology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Taichiro Minami
- Department of Nephrology and Rheumatology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Shiori Nakagawa
- Department of Nephrology and Rheumatology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Shinji Kitajima
- Department of Nephrology and Rheumatology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
- Division of Blood Purification, Kanazawa University Hospital, Kanazawa, Japan
| | - Tadashi Toyama
- Department of Nephrology and Rheumatology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Akinori Hara
- Department of Nephrology and Rheumatology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Miho Shimizu
- Department of Nephrology and Rheumatology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Satoshi Oota
- Department of Internal medicine, Toyama City Hospital, Toyama, Japan
| | - Yoichi Ishida
- Department of Internal medicine, Toyama City Hospital, Toyama, Japan
| | - Takashi Wada
- Department of Nephrology and Rheumatology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Yasunori Iwata
- Department of Nephrology and Rheumatology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| |
Collapse
|
4
|
Foos N, Florial JB, Eymery M, Sinoir J, Felisaz F, Oscarsson M, Beteva A, Bowler MW, Nurizzo D, Papp G, Soler-Lopez M, Nanao M, Basu S, McCarthy AA. In situ serial crystallography facilitates 96-well plate structural analysis at low symmetry. IUCRJ 2024; 11:780-791. [PMID: 39008358 PMCID: PMC11364034 DOI: 10.1107/s2052252524005785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 06/14/2024] [Indexed: 07/16/2024]
Abstract
The advent of serial crystallography has rejuvenated and popularized room-temperature X-ray crystal structure determination. Structures determined at physiological temperature reveal protein flexibility and dynamics. In addition, challenging samples (e.g. large complexes, membrane proteins and viruses) form fragile crystals that are often difficult to harvest for cryo-crystallography. Moreover, a typical serial crystallography experiment requires a large number of microcrystals, mainly achievable through batch crystallization. Many medically relevant samples are expressed in mammalian cell lines, producing a meager quantity of protein that is incompatible with batch crystallization. This can limit the scope of serial crystallography approaches. Direct in situ data collection from a 96-well crystallization plate enables not only the identification of the best diffracting crystallization condition but also the possibility for structure determination under ambient conditions. Here, we describe an in situ serial crystallography (iSX) approach, facilitating direct measurement from crystallization plates mounted on a rapidly exchangeable universal plate holder deployed at a microfocus beamline, ID23-2, at the European Synchrotron Radiation Facility. We applied our iSX approach on a challenging project, autotaxin, a therapeutic target expressed in a stable human cell line, to determine the structure in the lowest-symmetry P1 space group at 3.0 Å resolution. Our in situ data collection strategy provided a complete dataset for structure determination while screening various crystallization conditions. Our data analysis reveals that the iSX approach is highly efficient at a microfocus beamline, improving throughput and demonstrating how crystallization plates can be routinely used as an alternative method of presenting samples for serial crystallography experiments at synchrotrons.
Collapse
Affiliation(s)
- Nicolas Foos
- European Molecular Biology LaboratoryGrenoble Outstation, 71 Avenue des Martyrs38042GrenobleFrance
| | - Jean-Baptise Florial
- European Molecular Biology LaboratoryGrenoble Outstation, 71 Avenue des Martyrs38042GrenobleFrance
| | - Mathias Eymery
- European Molecular Biology LaboratoryGrenoble Outstation, 71 Avenue des Martyrs38042GrenobleFrance
| | - Jeremy Sinoir
- European Molecular Biology LaboratoryGrenoble Outstation, 71 Avenue des Martyrs38042GrenobleFrance
| | - Franck Felisaz
- European Molecular Biology LaboratoryGrenoble Outstation, 71 Avenue des Martyrs38042GrenobleFrance
| | - Marcus Oscarsson
- European Synchrotron Radiation Facility71 Avenue des Martyrs38042GrenobleFrance
| | - Antonia Beteva
- European Synchrotron Radiation Facility71 Avenue des Martyrs38042GrenobleFrance
| | - Matthew W. Bowler
- European Molecular Biology LaboratoryGrenoble Outstation, 71 Avenue des Martyrs38042GrenobleFrance
| | - Didier Nurizzo
- European Synchrotron Radiation Facility71 Avenue des Martyrs38042GrenobleFrance
| | - Gergely Papp
- European Molecular Biology LaboratoryGrenoble Outstation, 71 Avenue des Martyrs38042GrenobleFrance
| | | | - Max Nanao
- European Synchrotron Radiation Facility71 Avenue des Martyrs38042GrenobleFrance
| | - Shibom Basu
- European Molecular Biology LaboratoryGrenoble Outstation, 71 Avenue des Martyrs38042GrenobleFrance
| | - Andrew A. McCarthy
- European Molecular Biology LaboratoryGrenoble Outstation, 71 Avenue des Martyrs38042GrenobleFrance
| |
Collapse
|
5
|
Briand-Mésange F, Gennero I, Salles J, Trudel S, Dahan L, Ausseil J, Payrastre B, Salles JP, Chap H. From Classical to Alternative Pathways of 2-Arachidonoylglycerol Synthesis: AlterAGs at the Crossroad of Endocannabinoid and Lysophospholipid Signaling. Molecules 2024; 29:3694. [PMID: 39125098 PMCID: PMC11314389 DOI: 10.3390/molecules29153694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/27/2024] [Accepted: 08/02/2024] [Indexed: 08/12/2024] Open
Abstract
2-arachidonoylglycerol (2-AG) is the most abundant endocannabinoid (EC), acting as a full agonist at both CB1 and CB2 cannabinoid receptors. It is synthesized on demand in postsynaptic membranes through the sequential action of phosphoinositide-specific phospholipase Cβ1 (PLCβ1) and diacylglycerol lipase α (DAGLα), contributing to retrograde signaling upon interaction with presynaptic CB1. However, 2-AG production might also involve various combinations of PLC and DAGL isoforms, as well as additional intracellular pathways implying other enzymes and substrates. Three other alternative pathways of 2-AG synthesis rest on the extracellular cleavage of 2-arachidonoyl-lysophospholipids by three different hydrolases: glycerophosphodiesterase 3 (GDE3), lipid phosphate phosphatases (LPPs), and two members of ecto-nucleotide pyrophosphatase/phosphodiesterases (ENPP6-7). We propose the names of AlterAG-1, -2, and -3 for three pathways sharing an ectocellular localization, allowing them to convert extracellular lysophospholipid mediators into 2-AG, thus inducing typical signaling switches between various G-protein-coupled receptors (GPCRs). This implies the critical importance of the regioisomerism of both lysophospholipid (LPLs) and 2-AG, which is the object of deep analysis within this review. The precise functional roles of AlterAGs are still poorly understood and will require gene invalidation approaches, knowing that both 2-AG and its related lysophospholipids are involved in numerous aspects of physiology and pathology, including cancer, inflammation, immune defenses, obesity, bone development, neurodegeneration, or psychiatric disorders.
Collapse
Affiliation(s)
- Fabienne Briand-Mésange
- Infinity-Toulouse Institute for Infectious and Inflammatory Diseases, University of Toulouse, INSERM, CNRS, Paul Sabatier University, 31059 Toulouse, France; (F.B.-M.); (I.G.); (J.S.); (S.T.); (J.A.); (J.-P.S.)
| | - Isabelle Gennero
- Infinity-Toulouse Institute for Infectious and Inflammatory Diseases, University of Toulouse, INSERM, CNRS, Paul Sabatier University, 31059 Toulouse, France; (F.B.-M.); (I.G.); (J.S.); (S.T.); (J.A.); (J.-P.S.)
- Centre Hospitalier Universitaire de Toulouse, Service de Biochimie, Institut Fédératif de Biologie, 31059 Toulouse, France
| | - Juliette Salles
- Infinity-Toulouse Institute for Infectious and Inflammatory Diseases, University of Toulouse, INSERM, CNRS, Paul Sabatier University, 31059 Toulouse, France; (F.B.-M.); (I.G.); (J.S.); (S.T.); (J.A.); (J.-P.S.)
- Centre Hospitalier Universitaire de Toulouse, Service de Psychiatrie D’urgences, de Crise et de Liaison, Institut des Handicaps Neurologiques, Psychiatriques et Sensoriels, 31059 Toulouse, France
| | - Stéphanie Trudel
- Infinity-Toulouse Institute for Infectious and Inflammatory Diseases, University of Toulouse, INSERM, CNRS, Paul Sabatier University, 31059 Toulouse, France; (F.B.-M.); (I.G.); (J.S.); (S.T.); (J.A.); (J.-P.S.)
- Centre Hospitalier Universitaire de Toulouse, Service de Biochimie, Institut Fédératif de Biologie, 31059 Toulouse, France
| | - Lionel Dahan
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 31062 Toulouse, France;
| | - Jérôme Ausseil
- Infinity-Toulouse Institute for Infectious and Inflammatory Diseases, University of Toulouse, INSERM, CNRS, Paul Sabatier University, 31059 Toulouse, France; (F.B.-M.); (I.G.); (J.S.); (S.T.); (J.A.); (J.-P.S.)
- Centre Hospitalier Universitaire de Toulouse, Service de Biochimie, Institut Fédératif de Biologie, 31059 Toulouse, France
| | - Bernard Payrastre
- I2MC-Institute of Metabolic and Cardiovascular Diseases, INSERM UMR1297 and University of Toulouse III, 31400 Toulouse, France;
- Centre Hospitalier Universitaire de Toulouse, Laboratoire d’Hématologie, 31400 Toulouse, France
| | - Jean-Pierre Salles
- Infinity-Toulouse Institute for Infectious and Inflammatory Diseases, University of Toulouse, INSERM, CNRS, Paul Sabatier University, 31059 Toulouse, France; (F.B.-M.); (I.G.); (J.S.); (S.T.); (J.A.); (J.-P.S.)
- Centre Hospitalier Universitaire de Toulouse, Unité d’Endocrinologie et Maladies Osseuses, Hôpital des Enfants, 31059 Toulouse, France
| | - Hugues Chap
- Infinity-Toulouse Institute for Infectious and Inflammatory Diseases, University of Toulouse, INSERM, CNRS, Paul Sabatier University, 31059 Toulouse, France; (F.B.-M.); (I.G.); (J.S.); (S.T.); (J.A.); (J.-P.S.)
- Académie des Sciences, Inscriptions et Belles Lettres de Toulouse, Hôtel d’Assézat, 31000 Toulouse, France
| |
Collapse
|
6
|
Fischer C, Schreiber Y, Nitsch R, Vogt J, Thomas D, Geisslinger G, Tegeder I. Lysophosphatidic Acid Receptors LPAR5 and LPAR2 Inversely Control Hydroxychloroquine-Evoked Itch and Scratching in Mice. Int J Mol Sci 2024; 25:8177. [PMID: 39125747 PMCID: PMC11312285 DOI: 10.3390/ijms25158177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/20/2024] [Accepted: 07/24/2024] [Indexed: 08/12/2024] Open
Abstract
Lysophosphatidic acids (LPAs) evoke nociception and itch in mice and humans. In this study, we assessed the signaling paths. Hydroxychloroquine was injected intradermally to evoke itch in mice, which evoked an increase of LPAs in the skin and in the thalamus, suggesting that peripheral and central LPA receptors (LPARs) were involved in HCQ-evoked pruriception. To unravel the signaling paths, we assessed the localization of candidate genes and itching behavior in knockout models addressing LPAR5, LPAR2, autotaxin/ENPP2 and the lysophospholipid phosphatases, as well as the plasticity-related genes Prg1/LPPR4 and Prg2/LPPR3. LacZ reporter studies and RNAscope revealed LPAR5 in neurons of the dorsal root ganglia (DRGs) and in skin keratinocytes, LPAR2 in cortical and thalamic neurons, and Prg1 in neuronal structures of the dorsal horn, thalamus and SSC. HCQ-evoked scratching behavior was reduced in sensory neuron-specific Advillin-LPAR5-/- mice (peripheral) but increased in LPAR2-/- and Prg1-/- mice (central), and it was not affected by deficiency of glial autotaxin (GFAP-ENPP2-/-) or Prg2 (PRG2-/-). Heat and mechanical nociception were not affected by any of the genotypes. The behavior suggested that HCQ-mediated itch involves the activation of peripheral LPAR5, which was supported by reduced itch upon treatment with an LPAR5 antagonist and autotaxin inhibitor. Further, HCQ-evoked calcium fluxes were reduced in primary sensory neurons of Advillin-LPAR5-/- mice. The results suggest that LPA-mediated itch is primarily mediated via peripheral LPAR5, suggesting that a topical LPAR5 blocker might suppress "non-histaminergic" itch.
Collapse
Affiliation(s)
- Caroline Fischer
- Institute for Clinical Pharmacology, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt am Main, Germany; (C.F.); (D.T.); (G.G.)
| | - Yannick Schreiber
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, 60596 Frankfurt am Main, Germany;
| | - Robert Nitsch
- Institute for Translational Neuroscience, Medical Faculty, WWU Münster, 48149 Münster, Germany;
| | - Johannes Vogt
- Department of Molecular and Translational Neurosciences, Institute for Anatomy and Center of Molecular Medicine Cologne (CMMC), and Cologne Excellence Cluster for Aging associated Diseases (CECAD), University of Cologne, 50923 Köln, Germany;
| | - Dominique Thomas
- Institute for Clinical Pharmacology, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt am Main, Germany; (C.F.); (D.T.); (G.G.)
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, 60596 Frankfurt am Main, Germany;
| | - Gerd Geisslinger
- Institute for Clinical Pharmacology, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt am Main, Germany; (C.F.); (D.T.); (G.G.)
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, 60596 Frankfurt am Main, Germany;
- Fraunhofer Cluster of Excellence of Immune Mediated Diseases (CIMD), 60596 Frankfurt am Main, Germany
| | - Irmgard Tegeder
- Institute for Clinical Pharmacology, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt am Main, Germany; (C.F.); (D.T.); (G.G.)
| |
Collapse
|
7
|
Schmithals C, Kakoschky B, Denk D, von Harten M, Klug JH, Hintermann E, Dropmann A, Hamza E, Jacomin AC, Marquardt JU, Zeuzem S, Schirmacher P, Herrmann E, Christen U, Vogl TJ, Waidmann O, Dooley S, Finkelmeier F, Piiper A. Tumour-specific activation of a tumour-blood transport improves the diagnostic accuracy of blood tumour markers in mice. EBioMedicine 2024; 105:105178. [PMID: 38889481 PMCID: PMC11237870 DOI: 10.1016/j.ebiom.2024.105178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 04/12/2024] [Accepted: 05/17/2024] [Indexed: 06/20/2024] Open
Abstract
BACKGROUND The accuracy of blood-based early tumour recognition is compromised by signal production at non-tumoral sites, low amount of signal produced by small tumours, and variable tumour production. Here we examined whether tumour-specific enhancement of vascular permeability by the particular tumour homing peptide, iRGD, which carries dual function of binding to integrin receptors overexpressed in the tumour vasculature and is known to promote extravasation via neuropilin-1 receptor upon site-specific cleavage, might be useful to improve blood-based tumour detection by inducing a yet unrecognised vice versa tumour-to-blood transport. METHODS To detect an iRGD-induced tumour-to-blood transport, we examined the effect of intravenously injected iRGD on blood levels of α-fetoprotein (AFP) and autotaxin in several mouse models of hepatocellular carcinoma (HCC) or in mice with chronic liver injury without HCC, and on prostate-specific antigen (PSA) levels in mice with prostate cancer. FINDINGS Intravenously injected iRGD rapidly and robustly elevated the blood levels of AFP in several mouse models of HCC, but not in mice with chronic liver injury. The effect was primarily seen in mice with small tumours and normal basal blood AFP levels, was attenuated by an anti-neuropilin-1 antibody, and depended on the concentration gradient between tumour and blood. iRGD treatment was also able to increase blood levels of autotaxin in HCC mice, and of PSA in mice with prostate cancer. INTERPRETATION We conclude that iRGD induces a tumour-to-blood transport in a tumour-specific fashion that has potential of improving diagnosis of early stage cancer. FUNDING Deutsche Krebshilfe, DKTK, LOEWE-Frankfurt Cancer Institute.
Collapse
Affiliation(s)
- Christian Schmithals
- Goethe University Frankfurt, University Hospital, Medical Clinic 1, Frankfurt am Main, Germany
| | - Bianca Kakoschky
- Goethe University Frankfurt, University Hospital, Medical Clinic 1, Frankfurt am Main, Germany
| | - Dominic Denk
- Goethe University Frankfurt, University Hospital, Medical Clinic 1, Frankfurt am Main, Germany; Frankfurt Cancer Institute, Goethe University Frankfurt, University Hospital, Frankfurt am Main, Germany
| | - Maike von Harten
- Goethe University Frankfurt, University Hospital, Medical Clinic 1, Frankfurt am Main, Germany
| | - Jan Henrik Klug
- Goethe University Frankfurt, University Hospital, Medical Clinic 1, Frankfurt am Main, Germany
| | - Edith Hintermann
- Pharmazentrum Frankfurt / ZAFES, Goethe University Frankfurt, University Hospital, Frankfurt am Main, Germany
| | - Anne Dropmann
- Molecular Hepatology-Alcohol Associated Diseases, Department of Medicine II, Medical Faculty Mannheim, University of Heidelberg, Germany
| | - Eman Hamza
- Goethe University Frankfurt, University Hospital, Medical Clinic 1, Frankfurt am Main, Germany; Suez University, Faculty of Science, Zoology Department, Suez, Egypt
| | - Anne Claire Jacomin
- Frankfurt Cancer Institute, Goethe University Frankfurt, University Hospital, Frankfurt am Main, Germany; Institute of Biochemistry II, Faculty of Medicine, Goethe University, Frankfurt am Main, Germany
| | - Jens U Marquardt
- Department of Medicine I, University Medical Centre Schleswig-Holstein - Campus Lübeck, Lübeck, Germany
| | - Stefan Zeuzem
- Goethe University Frankfurt, University Hospital, Medical Clinic 1, Frankfurt am Main, Germany; German Cancer Consortium (DKTK), Partner Site Frankfurt/M., a Partnership Between DKFZ and University Hospital Frankfurt/M., Germany
| | | | - Eva Herrmann
- Goethe University Frankfurt, University Hospital, Institute of Biostatistics and Mathematical Modelling, Germany
| | - Urs Christen
- Pharmazentrum Frankfurt / ZAFES, Goethe University Frankfurt, University Hospital, Frankfurt am Main, Germany
| | - Thomas J Vogl
- Goethe University Frankfurt, University Hospital, Institute for Diagnostic and Interventional Radiology, Germany
| | - Oliver Waidmann
- Goethe University Frankfurt, University Hospital, Medical Clinic 1, Frankfurt am Main, Germany; Centrum für Hämatologie und Onkologie Bethanien, Frankfurt/Main, Germany
| | - Steven Dooley
- Molecular Hepatology-Alcohol Associated Diseases, Department of Medicine II, Medical Faculty Mannheim, University of Heidelberg, Germany
| | - Fabian Finkelmeier
- Goethe University Frankfurt, University Hospital, Medical Clinic 1, Frankfurt am Main, Germany; Frankfurt Cancer Institute, Goethe University Frankfurt, University Hospital, Frankfurt am Main, Germany
| | - Albrecht Piiper
- Goethe University Frankfurt, University Hospital, Medical Clinic 1, Frankfurt am Main, Germany; Frankfurt Cancer Institute, Goethe University Frankfurt, University Hospital, Frankfurt am Main, Germany; German Cancer Consortium (DKTK), Partner Site Frankfurt/M., a Partnership Between DKFZ and University Hospital Frankfurt/M., Germany.
| |
Collapse
|
8
|
Gairola A, Wetten A, Dyson J. Sodium/bile acid co-transporter inhibitors currently in preclinical or early clinical development for the treatment of primary biliary cholangitis. Expert Opin Investig Drugs 2024; 33:485-495. [PMID: 38613839 DOI: 10.1080/13543784.2024.2343789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 04/12/2024] [Indexed: 04/15/2024]
Abstract
INTRODUCTION Pruritus is common and often undertreated in patients with primary biliary cholangitis (PBC). Existing treatments largely have an aging and low-quality evidence base, and studies included only small numbers of patients. More recent data that has added to our understanding of pruritus treatments has often come from clinical trials where itching was a secondary outcome measure in a trial designed primarily to assess disease-modifying agents. This area represents an unmet clinical need in the management of PBC. AREAS COVERED In this manuscript, we first summarize the proposed mechanisms for PBC-related pruritus and the current treatment paradigm. We then present an appraisal of the existing pre-clinical and clinical evidence for the use of ileal bile acid transporter inhibitors (IBATis) for this indication in PBC patients. EXPERT OPINION Evidence for the efficacy of IBATis is promising but limited by the currently available volume of data. Furthermore, larger clinical trials with long-term data on efficacy, safety and tolerability are needed to confirm the role of using IBATis in clinical practice and their place on the itch treatment ladder. Additional focus should also be given to exploring the disease-modifying potential of IBATis in PBC.
Collapse
Affiliation(s)
- Abhishek Gairola
- Liver Unit, Freeman Hospital, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle, UK
| | - Aaron Wetten
- Liver Unit, Freeman Hospital, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle, UK
- Institute of Cellular Medicine, Faculty of Medical Sciences, Newcastle University, Newcastle, UK
| | - Jessica Dyson
- Liver Unit, Freeman Hospital, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle, UK
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle, UK
| |
Collapse
|
9
|
Matas-Rico E, Moolenaar WH. Tumor immune escape by autotaxin: keeping eosinophils at bay. Trends Cancer 2024; 10:283-285. [PMID: 38494373 DOI: 10.1016/j.trecan.2024.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 03/07/2024] [Indexed: 03/19/2024]
Abstract
Secreted autotaxin (ATX) promotes tumor progression by producing the pleiotropic lipid mediator lysophosphatidic acid (LPA). In a recent Nature Cancer paper, Bhattacharyya et al. show that ATX/LPA signaling suppresses CCL11-driven infiltration of eosinophils into the pancreatic tumor microenvironment to facilitate tumor progression, thus revealing a new ATX-mediated immune escape mechanism and highlighting the antitumor potential of eosinophils.
Collapse
Affiliation(s)
- Elisa Matas-Rico
- Department of Cell Biology, Genetics and Physiology, University of Málaga, Málaga, Spain
| | - Wouter H Moolenaar
- Division of Biochemistry, the Netherlands Cancer Institute, Plesmanlaan, Amsterdam.
| |
Collapse
|
10
|
Eymery MC, Nguyen KA, Basu S, Hausmann J, Tran-Nguyen VK, Seidel HP, Gutierrez L, Boumendjel A, McCarthy AA. Discovery of potent chromone-based autotaxin inhibitors inspired by cannabinoids. Eur J Med Chem 2024; 263:115944. [PMID: 37976710 DOI: 10.1016/j.ejmech.2023.115944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 11/05/2023] [Accepted: 11/06/2023] [Indexed: 11/19/2023]
Abstract
Autotaxin (ATX) is an enzyme primarily known for the production of lysophosphatidic acid. Being involved in the development of major human diseases, such as cancer and neurodegenerative diseases, the enzyme has been featured in multiple studies as a pharmacological target. We previously found that the cannabinoid tetrahydrocannabinol (THC) could bind and act as an excellent inhibitor of ATX. This study aims to use the cannabinoid scaffold as a starting point to find cannabinoid-unrelated ATX inhibitors, following a funnel down approach in which large chemical libraries sharing chemical similarities with THC were screened to identify lead scaffold types for optimization. This approach allowed us to identify compounds bearing chromone and indole scaffolds as promising ATX inhibitors. Further optimization led to MEY-003, which is characterized by the direct linkage of an N-pentyl indole to the 5,7-dihydroxychromone moiety. This molecule has potent inhibitory activity towards ATX-β and ATX-ɣ as evidenced by enzymatic studies and its mode of action was rationalized by structural biology studies using macromolecular X-ray crystallography.
Collapse
Affiliation(s)
- Mathias Christophe Eymery
- European Molecular Biology Laboratory, EMBL Grenoble, 71 Avenue des Martyrs, 38000, Grenoble, France; Univ. Grenoble Alpes, INSERM U1039, LRB, 38000, Grenoble, France
| | - Kim-Anh Nguyen
- Univ. Grenoble Alpes, INSERM U1039, LRB, 38000, Grenoble, France
| | - Shibom Basu
- European Molecular Biology Laboratory, EMBL Grenoble, 71 Avenue des Martyrs, 38000, Grenoble, France
| | - Jens Hausmann
- European Molecular Biology Laboratory, EMBL Grenoble, 71 Avenue des Martyrs, 38000, Grenoble, France
| | - Viet-Khoa Tran-Nguyen
- Unité de Biologie Fonctionnelle et Adaptative (BFA), Université Paris Cité, 75013, Paris, France
| | - Hans Peter Seidel
- European Molecular Biology Laboratory, EMBL Grenoble, 71 Avenue des Martyrs, 38000, Grenoble, France
| | - Lola Gutierrez
- European Molecular Biology Laboratory, EMBL Grenoble, 71 Avenue des Martyrs, 38000, Grenoble, France
| | | | - Andrew Aloysius McCarthy
- European Molecular Biology Laboratory, EMBL Grenoble, 71 Avenue des Martyrs, 38000, Grenoble, France
| |
Collapse
|
11
|
Luo W, Gu Y, Fu S, Wang J, Zhang J, Wang Y. Emerging opportunities to treat idiopathic pulmonary fibrosis: Design, discovery, and optimizations of small-molecule drugs targeting fibrogenic pathways. Eur J Med Chem 2023; 260:115762. [PMID: 37683364 DOI: 10.1016/j.ejmech.2023.115762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/15/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF) is the most common fibrotic form of idiopathic diffuse lung disease. Due to limited treatment options, IPF patients suffer from poor survival. About ten years ago, Pirfenidone (Shionogi, 2008; InterMune, 2011) and Nintedanib (Boehringer Ingelheim, 2014) were approved, greatly changing the direction of IPF drug design. However, limited efficacy and side effects indicate that neither can reverse the process of IPF. With insights into the occurrence of IPF, novel targets and agents have been proposed, which have fundamentally changed the treatment of IPF. With the next-generation agents, targeting pro-fibrotic pathways in the epithelial-injury model offers a promising approach. Besides, several next-generation IPF drugs have entered phase II/III clinical trials with encouraging results. Due to the rising IPF treatment requirements, there is an urgent need to completely summarize the mechanisms, targets, problems, and drug design strategies over the past ten years. In this review, we summarize known mechanisms, target types, drug design, and novel technologies of IPF drug discovery, aiming to provide insights into the future development and clinical application of next-generation IPF drugs.
Collapse
Affiliation(s)
- Wenxin Luo
- Department of Pulmonary and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, Joint Research Institution of Altitude Health, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yilin Gu
- Department of Pulmonary and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, Joint Research Institution of Altitude Health, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Siyu Fu
- Department of Pulmonary and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, Joint Research Institution of Altitude Health, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jiaxing Wang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, 38163, Tennessee, United States
| | - Jifa Zhang
- Department of Pulmonary and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, Joint Research Institution of Altitude Health, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu, 610212, Sichuan, China.
| | - Yuxi Wang
- Department of Pulmonary and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, Joint Research Institution of Altitude Health, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu, 610212, Sichuan, China.
| |
Collapse
|
12
|
Janovicz A, Majer A, Kosztelnik M, Geiszt M, Chun J, Ishii S, Tigyi GJ, Benyó Z, Ruisanchez É. Autotaxin-lysophosphatidic acid receptor 5 axis evokes endothelial dysfunction via reactive oxygen species signaling. Exp Biol Med (Maywood) 2023; 248:1887-1894. [PMID: 37837357 PMCID: PMC10792427 DOI: 10.1177/15353702231199081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 07/29/2023] [Indexed: 10/16/2023] Open
Abstract
Lysophosphatidylcholine (LPC) is a bioactive lipid that has been shown to attenuate endothelium-dependent vasorelaxation contributing to endothelial dysfunction; however, the underlying mechanisms are not well understood. In this study, we investigated the molecular mechanisms involved in the development of LPC-evoked impairment of endothelium-dependent vasorelaxation. In aortic rings isolated from wild-type (WT) mice, a 20-min exposure to LPC significantly reduced the acetylcholine chloride (ACh)-induced vasorelaxation indicating the impairment of normal endothelial function. Interestingly, pharmacological inhibition of autotaxin (ATX) by GLPG1690 partially reversed the endothelial dysfunction, suggesting that lysophosphatidic acid (LPA) derived from LPC may be involved in the effect. Therefore, the effect of LPC was also tested in aortic rings isolated from different LPA receptor knock-out (KO) mice. LPC evoked a marked reduction in ACh-dependent vasorelaxation in Lpar1, Lpar2, and Lpar4 KO, but its effect was significantly attenuated in Lpar5 KO vessels. Furthermore, addition of superoxide dismutase reduced the LPC-induced endothelial dysfunction in WT but not in the Lpar5 KO mice. In addition, LPC increased H2O2 release from WT vessels, which was significantly reduced in Lpar5 KO vessels. Our findings indicate that the ATX-LPA-LPA5 receptor axis is involved in the development of LPC-induced impairment of endothelium-dependent vasorelaxation via LPA5 receptor-mediated reactive oxygen species production. Taken together, in this study, we identified a new pathway contributing to the development of LPC-induced endothelial dysfunction.
Collapse
Affiliation(s)
- Anna Janovicz
- Institute of Translational Medicine, Semmelweis University, H-1094 Budapest, Hungary
- Eötvös Loránd Research Network and Semmelweis University (ELKH-SE) Cerebrovascular and Neurocognitive Disorders Research Group, H-1052 Budapest, Hungary
| | - Aliz Majer
- Institute of Translational Medicine, Semmelweis University, H-1094 Budapest, Hungary
| | - Mónika Kosztelnik
- Institute of Translational Medicine, Semmelweis University, H-1094 Budapest, Hungary
- Eötvös Loránd Research Network and Semmelweis University (ELKH-SE) Cerebrovascular and Neurocognitive Disorders Research Group, H-1052 Budapest, Hungary
| | - Miklós Geiszt
- Department of Physiology, Faculty of Medicine, Semmelweis University, H-1094 Budapest, Hungary
| | - Jerold Chun
- Translational Neuroscience at Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Satoshi Ishii
- Department of Immunology, Graduate School of Medicine, Akita University, Akita 010-8543, Japan
| | - Gábor József Tigyi
- Institute of Translational Medicine, Semmelweis University, H-1094 Budapest, Hungary
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Zoltán Benyó
- Institute of Translational Medicine, Semmelweis University, H-1094 Budapest, Hungary
- Eötvös Loránd Research Network and Semmelweis University (ELKH-SE) Cerebrovascular and Neurocognitive Disorders Research Group, H-1052 Budapest, Hungary
| | - Éva Ruisanchez
- Institute of Translational Medicine, Semmelweis University, H-1094 Budapest, Hungary
- Eötvös Loránd Research Network and Semmelweis University (ELKH-SE) Cerebrovascular and Neurocognitive Disorders Research Group, H-1052 Budapest, Hungary
| |
Collapse
|
13
|
Sun Z, Zhang Y, Zhang M, Zhou S, Cheng W, Xue L, Zhou P, Li X, Zhang Z, Zuo L. Integrated brain and plasma dual-channel metabolomics to explore the treatment effects of Alpinia oxyphyllaFructus on Alzheimer's disease. PLoS One 2023; 18:e0285401. [PMID: 37552694 PMCID: PMC10409282 DOI: 10.1371/journal.pone.0285401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 04/22/2023] [Indexed: 08/10/2023] Open
Abstract
Alpinia oxyphylla Fructus, called Yizhi in Chinese, is the dried fruit of Alpinia oxyphylla Miquel. It has been used in traditional Chinese medicine to treat dementia and memory defects of Alzheimer's disease for many years. However, the underlying mechanism is still unclear. In this study, we used a rat Alzheimer's disease model on intrahippocampal injection of aggregated Aβ1-42 to study the effects of Alpinia oxyphylla Fructus. A brain and plasma dual-channel metabolomics approach combined with multivariate statistical analysis was further performed to determine the effects of Alpinia oxyphylla Fructus on Alzheimer's disease animals. As a result, in the Morris water maze test, Alpinia oxyphylla Fructus had a clear ability to ameliorate the impaired learning and memory of Alzheimer's disease rats. 11 differential biomarkers were detected in AD rats' brains. The compounds mainly included amino acids and phospholipids; after Alpinia oxyphylla Fructus administration, 9 regulated biomarkers were detected compared with the AD model group. In the plasma of AD rats, 29 differential biomarkers, primarily amino acids, phospholipids and fatty acids, were identified; After administration, 23 regulated biomarkers were detected. The metabolic pathways of regulated metabolites suggest that Alpinia oxyphylla Fructus ameliorates memory and learning deficits in AD rats principally by regulating amino acid metabolism, lipids metabolism, and energy metabolism. In conclusion, our results confirm and enhance our current understanding of the therapeutic effects of Alpinia oxyphylla Fructus on Alzheimer's disease. Meanwhile, our work provides new insight into the potential intervention mechanism of Alpinia oxyphylla Fructus for Alzheimer's disease treatment.
Collapse
Affiliation(s)
- Zhi Sun
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
- Henan Engineering Research Center of Clinical Mass Spectrometry for Precision Medicine, Zhengzhou, Henan Province, China
| | - Yuanyuan Zhang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
- Henan Engineering Research Center of Clinical Mass Spectrometry for Precision Medicine, Zhengzhou, Henan Province, China
| | - Mengya Zhang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
- Henan Engineering Research Center of Clinical Mass Spectrometry for Precision Medicine, Zhengzhou, Henan Province, China
| | - Shengnan Zhou
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
- Henan Engineering Research Center of Clinical Mass Spectrometry for Precision Medicine, Zhengzhou, Henan Province, China
| | - Wenbo Cheng
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China
| | - Lianping Xue
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
- Henan Engineering Research Center of Clinical Mass Spectrometry for Precision Medicine, Zhengzhou, Henan Province, China
| | - Peipei Zhou
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
- Henan Engineering Research Center of Clinical Mass Spectrometry for Precision Medicine, Zhengzhou, Henan Province, China
| | - Xiaojing Li
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
- Henan Engineering Research Center of Clinical Mass Spectrometry for Precision Medicine, Zhengzhou, Henan Province, China
| | - Zhibo Zhang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
- Henan Engineering Research Center of Clinical Mass Spectrometry for Precision Medicine, Zhengzhou, Henan Province, China
| | - Lihua Zuo
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
- Henan Engineering Research Center of Clinical Mass Spectrometry for Precision Medicine, Zhengzhou, Henan Province, China
| |
Collapse
|
14
|
Torres RM, Turner JA, D’Antonio M, Pelanda R, Kremer KN. Regulation of CD8 T-cell signaling, metabolism, and cytotoxic activity by extracellular lysophosphatidic acid. Immunol Rev 2023; 317:203-222. [PMID: 37096808 PMCID: PMC10523933 DOI: 10.1111/imr.13208] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 04/07/2023] [Accepted: 04/08/2023] [Indexed: 04/26/2023]
Abstract
Lysophosphatidic acid (LPA) is an endogenous bioactive lipid that is produced extracellularly and signals to cells via cognate LPA receptors, which are G-protein coupled receptors (GPCRs). Mature lymphocytes in mice and humans express three LPA receptors, LPA2 , LPA5, and LPA6 , and work from our group has determined that LPA5 signaling by T lymphocytes inhibits specific antigen-receptor signaling pathways that ultimately impair lymphocyte activation, proliferation, and function. In this review, we discuss previous and ongoing work characterizing the ability of an LPA-LPA5 axis to serve as a peripheral immunological tolerance mechanism that restrains adaptive immunity but is subverted during settings of chronic inflammation. Specifically, LPA-LPA5 signaling is found to regulate effector cytotoxic CD8 T cells by (at least) two mechanisms: (i) regulating the actin-microtubule cytoskeleton in a manner that impairs immunological synapse formation between an effector CD8 T cell and antigen-specific target cell, thus directly impairing cytotoxic activity, and (ii) shifting T-cell metabolism to depend on fatty-acid oxidation for mitochondrial respiration and reducing metabolic efficiency. The in vivo outcome of LPA5 inhibitory activity impairs CD8 T-cell killing and tumor immunity in mouse models providing impetus to consider LPA5 antagonism for the treatment of malignancies and chronic infections.
Collapse
Affiliation(s)
- Raul M. Torres
- Department of Immunology & Microbiology, University of Colorado School of Medicine, Aurora Colorado, 80045
| | - Jacqueline A. Turner
- Department of Immunology & Microbiology, University of Colorado School of Medicine, Aurora Colorado, 80045
| | - Marc D’Antonio
- Department of Immunology & Microbiology, University of Colorado School of Medicine, Aurora Colorado, 80045
| | - Roberta Pelanda
- Department of Immunology & Microbiology, University of Colorado School of Medicine, Aurora Colorado, 80045
| | - Kimberly N. Kremer
- Department of Immunology & Microbiology, University of Colorado School of Medicine, Aurora Colorado, 80045
| |
Collapse
|
15
|
Turner JA, Fredrickson MA, D'Antonio M, Katsnelson E, MacBeth M, Van Gulick R, Chimed TS, McCarter M, D'Alessandro A, Robinson WA, Couts KL, Pelanda R, Klarquist J, Tobin RP, Torres RM. Lysophosphatidic acid modulates CD8 T cell immunosurveillance and metabolism to impair anti-tumor immunity. Nat Commun 2023; 14:3214. [PMID: 37270644 PMCID: PMC10239450 DOI: 10.1038/s41467-023-38933-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 05/19/2023] [Indexed: 06/05/2023] Open
Abstract
Lysophosphatidic acid (LPA) is a bioactive lipid which increases in concentration locally and systemically across different cancer types. Yet, the exact mechanism(s) of how LPA affects CD8 T cell immunosurveillance during tumor progression remain unknown. We show LPA receptor (LPAR) signaling by CD8 T cells promotes tolerogenic states via metabolic reprogramming and potentiating exhaustive-like differentiation to modulate anti-tumor immunity. We found LPA levels predict response to immunotherapy and Lpar5 signaling promotes cellular states associated with exhausted phenotypes on CD8 T cells. Importantly, we show that Lpar5 regulates CD8 T cell respiration, proton leak, and reactive oxygen species. Together, our findings reveal that LPA serves as a lipid-regulated immune checkpoint by modulating metabolic efficiency through LPAR5 signaling on CD8 T cells. Our study offers key insights into the mechanisms governing adaptive anti-tumor immunity and demonstrates LPA could be exploited as a T cell directed therapy to improve dysfunctional anti-tumor immunity.
Collapse
Affiliation(s)
- Jacqueline A Turner
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, USA
- Medical Scientist Training Program, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, USA
| | - Malia A Fredrickson
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, USA
| | - Marc D'Antonio
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, USA
| | - Elizabeth Katsnelson
- Division of Surgical Oncology, Department of Surgery, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, USA
| | - Morgan MacBeth
- Division of Medical Oncology, Department of Medicine, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, USA
| | - Robert Van Gulick
- Division of Medical Oncology, Department of Medicine, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, USA
| | - Tugs-Saikhan Chimed
- Division of Medical Oncology, Department of Medicine, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, USA
| | - Martin McCarter
- Division of Surgical Oncology, Department of Surgery, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, USA
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, USA
| | - William A Robinson
- Division of Medical Oncology, Department of Medicine, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, USA
| | - Kasey L Couts
- Division of Medical Oncology, Department of Medicine, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, USA
| | - Roberta Pelanda
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, USA
| | - Jared Klarquist
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, USA
| | - Richard P Tobin
- Division of Surgical Oncology, Department of Surgery, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, USA
| | - Raul M Torres
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|
16
|
Eymery MC, McCarthy AA, Hausmann J. Linking medicinal cannabis to autotaxin-lysophosphatidic acid signaling. Life Sci Alliance 2023; 6:e202201595. [PMID: 36623871 PMCID: PMC9834664 DOI: 10.26508/lsa.202201595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 11/25/2022] [Accepted: 11/25/2022] [Indexed: 01/11/2023] Open
Abstract
Autotaxin is primarily known for the formation of lysophosphatidic acid (LPA) from lysophosphatidylcholine. LPA is an important signaling phospholipid that can bind to six G protein-coupled receptors (LPA1-6). The ATX-LPA signaling axis is a critical component in many physiological and pathophysiological conditions. Here, we describe a potent inhibition of Δ9-trans-tetrahydrocannabinol (THC), the main psychoactive compound of medicinal cannabis and related cannabinoids, on the catalysis of two isoforms of ATX with nanomolar apparent EC50 values. Furthermore, we decipher the binding interface of ATX to THC, and its derivative 9(R)-Δ6a,10a-THC (6a10aTHC), by X-ray crystallography. Cellular experiments confirm this inhibitory effect, revealing a significant reduction of internalized LPA1 in the presence of THC with simultaneous ATX and lysophosphatidylcholine stimulation. Our results establish a functional interaction of THC with autotaxin-LPA signaling and highlight novel aspects of medicinal cannabis therapy.
Collapse
Affiliation(s)
- Mathias C Eymery
- European Molecular Biology Laboratory, Grenoble, Grenoble, France
| | | | - Jens Hausmann
- European Molecular Biology Laboratory, Grenoble, Grenoble, France
- European Molecular Biology Laboratory, Chemical Biology Core Facility, Heidelberg, Germany
| |
Collapse
|
17
|
Sagini K, Urbanelli L, Buratta S, Emiliani C, Llorente A. Lipid Biomarkers in Liquid Biopsies: Novel Opportunities for Cancer Diagnosis. Pharmaceutics 2023; 15:pharmaceutics15020437. [PMID: 36839759 PMCID: PMC9966160 DOI: 10.3390/pharmaceutics15020437] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/23/2023] [Accepted: 01/24/2023] [Indexed: 01/31/2023] Open
Abstract
Altered cellular metabolism is a well-established hallmark of cancer. Although most studies have focused on the metabolism of glucose and glutamine, the upregulation of lipid metabolism is also frequent in cells undergoing oncogenic transformation. In fact, cancer cells need to meet the enhanced demand of plasma membrane synthesis and energy production to support their proliferation. Moreover, lipids are precursors of signaling molecules, termed lipid mediators, which play a role in shaping the tumor microenvironment. Recent methodological advances in lipid analysis have prompted studies aimed at investigating the whole lipid content of a sample (lipidome) to unravel the complexity of lipid changes in cancer patient biofluids. This review focuses on the application of mass spectrometry-based lipidomics for the discovery of cancer biomarkers. Here, we have summarized the main lipid alteration in cancer patients' biofluids and uncovered their potential use for the early detection of the disease and treatment selection. We also discuss the advantages of using biofluid-derived extracellular vesicles as a platform for lipid biomarker discovery. These vesicles have a molecular signature that is a fingerprint of their originating cells. Hence, the analysis of their molecular cargo has emerged as a promising strategy for the identification of sensitive and specific biomarkers compared to the analysis of the unprocessed biofluid.
Collapse
Affiliation(s)
- Krizia Sagini
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, The Norwegian Radium Hospital, 0379 Oslo, Norway
- Centre for Cancer Cell Reprogramming, Faculty of Medicine, University of Oslo, Montebello, 0379 Oslo, Norway
- Correspondence: ; Tel.: +47-22-78-18-13
| | - Lorena Urbanelli
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06123 Perugia, Italy
| | - Sandra Buratta
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06123 Perugia, Italy
| | - Carla Emiliani
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06123 Perugia, Italy
- CEMIN (Center of Excellence for Innovative Nanostructured Material), University of Perugia, 06123 Perugia, Italy
| | - Alicia Llorente
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, The Norwegian Radium Hospital, 0379 Oslo, Norway
- Centre for Cancer Cell Reprogramming, Faculty of Medicine, University of Oslo, Montebello, 0379 Oslo, Norway
- Department for Mechanical, Electronics and Chemical Engineering, Oslo Metropolitan University, 0167 Oslo, Norway
| |
Collapse
|
18
|
Alyamani M, Kadivar M, Erjefält J, Johansson-Lindbom B, Duan RD, Nilsson Å, Marsal J. Alkaline sphingomyelinase (NPP7) impacts the homeostasis of intestinal T lymphocyte populations. Front Immunol 2023; 13:1050625. [PMID: 36741374 PMCID: PMC9894718 DOI: 10.3389/fimmu.2022.1050625] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 12/21/2022] [Indexed: 01/21/2023] Open
Abstract
Background and aim Alkaline sphingomyelinase (NPP7) is expressed by intestinal epithelial cells and is crucial for the digestion of dietary sphingomyelin. NPP7 also inactivates proinflammatory mediators including platelet-activating factor and lysophosphatidylcholine. The aim of this study was to examine a potential role for NPP7 in the homeostasis of the intestinal immune system. Methods We quantified the numbers of B-lymphocytes, plasma cells, T-lymphocytes including regulatory T-lymphocytes (Tregs), natural killer cells, dendritic cells, macrophages, and neutrophils, in the small and large intestines, the mesenteric lymph nodes and the spleens of heterozygous and homozygous NPP7 knockout (KO) and wildtype (WT) mice. Tissues were examined by immunohistochemistry and stainings quantified using computerized image analysis. Results The numbers of both small and large intestinal CD3ε+, CD4+, and CD8α+ T-lymphocytes were significantly higher in NPP7 KO compared to WT mice (with a dose-response relationship in the large intestine), whereas Treg numbers were unchanged, and dendritic cell numbers reduced. In contrast, the numbers of CD3ε+ and CD4+ T-lymphocytes in mesenteric lymph nodes were significantly reduced in NPP7 KO mice, while no differences were observed in spleens. The numbers of B-lymphocytes, plasma cells, natural killer cells, macrophages, and neutrophils were similar between genotypes. Conclusion NPP7 contributes to the regulation of dendritic cell and T-lymphocyte numbers in mesenteric lymph nodes and both the small and large intestines, thus playing a role in the homeostasis of gut immunity. Although it is likely that the downstream effects of NPP7 activity involve the sphingomyelin metabolites ceramide and spingosine-1-phosphate, the exact mechanisms behind this regulatory function of NPP7 need to be addressed in future studies.
Collapse
Affiliation(s)
- Manar Alyamani
- Immunology Section, Department of Experimental Medical Science, Lund University, Lund, Sweden,Unit of Airway Inflammation, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Mohammad Kadivar
- Immunology Section, Department of Experimental Medical Science, Lund University, Lund, Sweden,Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
| | - Jonas Erjefält
- Unit of Airway Inflammation, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Bengt Johansson-Lindbom
- Immunology Section, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Rui-Dong Duan
- Section of Medicine, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Åke Nilsson
- Section of Medicine, Department of Clinical Sciences, Lund University, Lund, Sweden,Department of Gastroenterology, Skane University Hospital, Lund/Malmö, Sweden
| | - Jan Marsal
- Immunology Section, Department of Experimental Medical Science, Lund University, Lund, Sweden,Section of Medicine, Department of Clinical Sciences, Lund University, Lund, Sweden,Department of Gastroenterology, Skane University Hospital, Lund/Malmö, Sweden,*Correspondence: Jan Marsal,
| |
Collapse
|
19
|
Vít O, Petrák J. Autotaxin and Lysophosphatidic Acid Signalling: the Pleiotropic Regulatory Network in Cancer. Folia Biol (Praha) 2023; 69:149-162. [PMID: 38583176 DOI: 10.14712/fb2023069050149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Autotaxin, also known as ecto-nucleotide pyrophosphatase/phosphodiesterase family member 2, is a secreted glycoprotein that plays multiple roles in human physiology and cancer pathology. This protein, by converting lysophosphatidylcholine into lysophosphatidic acid, initiates a complex signalling cascade with significant biological implications. The article outlines the autotaxin gene and protein structure, expression regulation and physiological functions, but focuses mainly on the role of autotaxin in cancer development and progression. Autotaxin and lysophosphatidic acid signalling influence several aspects of cancer, including cell proliferation, migration, metastasis, therapy resistance, and interactions with the immune system. The potential of autotaxin as a diagnostic biomarker and promising drug target is also examined.
Collapse
Affiliation(s)
- Ondřej Vít
- BIOCEV, First Faculty of Medicine, Charles University, Vestec, Czech Republic.
| | - Jiří Petrák
- BIOCEV, First Faculty of Medicine, Charles University, Vestec, Czech Republic
| |
Collapse
|
20
|
Spencer SA, Suárez-Pozos E, Verdugo JS, Wang H, Afshari FS, Li G, Manam S, Yasuda D, Ortega A, Lister JA, Ishii S, Zhang Y, Fuss B. Lysophosphatidic acid signaling via LPA 6 : A negative modulator of developmental oligodendrocyte maturation. J Neurochem 2022; 163:478-499. [PMID: 36153691 PMCID: PMC9772207 DOI: 10.1111/jnc.15696] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 09/20/2022] [Accepted: 09/21/2022] [Indexed: 01/14/2023]
Abstract
The developmental process of central nervous system (CNS) myelin sheath formation is characterized by well-coordinated cellular activities ultimately ensuring rapid and synchronized neural communication. During this process, myelinating CNS cells, namely oligodendrocytes (OLGs), undergo distinct steps of differentiation, whereby the progression of earlier maturation stages of OLGs represents a critical step toward the timely establishment of myelinated axonal circuits. Given the complexity of functional integration, it is not surprising that OLG maturation is controlled by a yet fully to be defined set of both negative and positive modulators. In this context, we provide here first evidence for a role of lysophosphatidic acid (LPA) signaling via the G protein-coupled receptor LPA6 as a negative modulatory regulator of myelination-associated gene expression in OLGs. More specifically, the cell surface accessibility of LPA6 was found to be restricted to the earlier maturation stages of differentiating OLGs, and OLG maturation was found to occur precociously in Lpar6 knockout mice. To further substantiate these findings, a novel small molecule ligand with selectivity for preferentially LPA6 and LPA6 agonist characteristics was functionally characterized in vitro in primary cultures of rat OLGs and in vivo in the developing zebrafish. Utilizing this approach, a negative modulatory role of LPA6 signaling in OLG maturation could be corroborated. During development, such a functional role of LPA6 signaling likely serves to ensure timely coordination of circuit formation and myelination. Under pathological conditions as seen in the major human demyelinating disease multiple sclerosis (MS), however, persistent LPA6 expression and signaling in OLGs can be seen as an inhibitor of myelin repair. Thus, it is of interest that LPA6 protein levels appear elevated in MS brain samples, thereby suggesting that LPA6 signaling may represent a potential new druggable pathway suitable to promote myelin repair in MS.
Collapse
Affiliation(s)
- Samantha A Spencer
- Department of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Edna Suárez-Pozos
- Department of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Jazmín Soto Verdugo
- Department of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del IPN, Ciudad de México, México
| | - Huiqun Wang
- Department of Medicinal Chemistry, Virginia Commonwealth University School of Pharmacy, Richmond, Virginia, USA
| | - Fatemah S Afshari
- Department of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Guo Li
- Department of Medicinal Chemistry, Virginia Commonwealth University School of Pharmacy, Richmond, Virginia, USA
| | - Susmita Manam
- Department of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Daisuke Yasuda
- Department of Immunology, Akita University Graduate School of Medicine, Akita, Japan
| | - Arturo Ortega
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del IPN, Ciudad de México, México
| | - James A Lister
- Department of Human and Molecular Genetics, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Satoshi Ishii
- Department of Immunology, Akita University Graduate School of Medicine, Akita, Japan
| | - Yan Zhang
- Department of Medicinal Chemistry, Virginia Commonwealth University School of Pharmacy, Richmond, Virginia, USA
| | - Babette Fuss
- Department of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| |
Collapse
|
21
|
Fan Y, Wang J, Wang Y, Li Y, Wang S, Weng Y, Yang Q, Chen C, Lin L, Qiu Y, Wang J, Chen F, He B, Liu F. Development and Clinical Validation of a Novel 5 Gene Signature Based on Fatty Acid Metabolism-Related Genes in Oral Squamous Cell Carcinoma. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:3285393. [PMID: 36478991 PMCID: PMC9722305 DOI: 10.1155/2022/3285393] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 11/12/2022] [Accepted: 11/17/2022] [Indexed: 12/03/2022]
Abstract
BACKGROUND/AIM Lipid metabolism disorders play a crucial role in tumor development and progression. The aim of the study focused on constructing a novel prognostic model of oral squamous cell carcinoma (OSCC) patients using fatty acid metabolism-related genes. METHODS Microarray test and data from The Cancer Genome Atlas (TCGA) were used to identify differentially expressed genes related to fatty acid metabolism. The quantitative real-time polymerase chain reaction (qRT-PCR) was then used to validate the expression of targeted fatty acid metabolism genes. A risk predictive scoring model of fatty acid metabolism-related genes was generated using a multivariate Cox model. The efficacy of this model was assessed by time-dependent receiver operating characteristic curve (ROC). RESULTS 14 fatty acid metabolism-related genes were identified by microarray test and TCGA database analysis and then confirmed by PCR. Finally, a 5 gene signature (ACACB, FABP3, PDK4, PPARG, and PLIN5) was constructed and a RiskScore was calculated for each patient. Compared to the high RiskScore group, the low RiskScore group had better overall survival (OS) (p = 0.02). The RiskScore derived from a 5 gene signature was a prognostic factor (HR: 3.73, 95% CI: 1.38, 10.09) for OSCC patients. The predictive classification efficiencies of RiskScore were evaluated and the area under the curve (AUC) values for 1, 3, and 5 years were 0.613, 0.652, and 0.681, respectively. Then we compared the predictive performance of the prognostic model with or without the RiskScore. The 5 gene-derived RiskScore can improve the predictive performance with AUC values of 0.760, 0.803, and 0.830 for 1, 3, and 5 years OS in prognostic model including the RiskScore. While the predicted AUC values of the model without RiskScore for 1, 3, and 5 years OS were 0.699, 0.715, and 0.714, respectively. CONCLUSION We developed a predictive score model using 5 fatty acid metabolism-related genes, which could be a potential prognostic indicator in OSCC.
Collapse
Affiliation(s)
- Yi Fan
- Department of Epidemiology and Health Statistics, Fujian Provincial Key Laboratory of Environment Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, China
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fujian, China
| | - Jing Wang
- Central Laboratory, Quanzhou First Hospital Affiliated to Fujian Medical University, China
| | - Yaping Wang
- Department of Epidemiology and Health Statistics, Fujian Provincial Key Laboratory of Environment Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, China
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fujian, China
| | - Yanni Li
- Department of Epidemiology and Health Statistics, Fujian Provincial Key Laboratory of Environment Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, China
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fujian, China
| | - Sijie Wang
- Department of Epidemiology and Health Statistics, Fujian Provincial Key Laboratory of Environment Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, China
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fujian, China
| | - Yanfeng Weng
- Department of Epidemiology and Health Statistics, Fujian Provincial Key Laboratory of Environment Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, China
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fujian, China
| | - Qiujiao Yang
- Department of Epidemiology and Health Statistics, Fujian Provincial Key Laboratory of Environment Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, China
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fujian, China
| | - Chen Chen
- Department of Epidemiology and Health Statistics, Fujian Provincial Key Laboratory of Environment Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, China
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fujian, China
| | - Lisong Lin
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Fujian Medical University, Fujian, China
| | - Yu Qiu
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Fujian Medical University, Fujian, China
| | - Jing Wang
- Laboratory Center, The Major Subject of Environment and Health of Fujian Key Universities, School of Public Health, Fujian Medical University, Fujian, China
| | - Fa Chen
- Department of Epidemiology and Health Statistics, Fujian Provincial Key Laboratory of Environment Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, China
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fujian, China
| | - Baochang He
- Department of Epidemiology and Health Statistics, Fujian Provincial Key Laboratory of Environment Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, China
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fujian, China
| | - Fengqiong Liu
- Department of Epidemiology and Health Statistics, Fujian Provincial Key Laboratory of Environment Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, China
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fujian, China
| |
Collapse
|
22
|
Booijink R, Salgado‐Polo F, Jamieson C, Perrakis A, Bansal R. A type IV Autotaxin inhibitor ameliorates acute liver injury and nonalcoholic steatohepatitis. EMBO Mol Med 2022; 14:e16333. [PMID: 35833384 PMCID: PMC9449594 DOI: 10.15252/emmm.202216333] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/29/2022] [Accepted: 06/30/2022] [Indexed: 11/09/2022] Open
Abstract
The lysophosphatidic acid (LPA) signaling axis is an important but rather underexplored pathway in liver disease. LPA is predominantly produced by Autotaxin (ATX) that has gained significant attention with an impressive number of ATX inhibitors (type I-IV) reported. Here, we evaluated the therapeutic potential of a (yet unexplored) type IV inhibitor, Cpd17, in liver injury. We first confirmed the involvement of the ATX-LPA signaling axis in human and murine diseased livers. Then, we evaluated the effects of Cpd17, in comparison with the classic type I inhibitor PF8380, in vitro, where Cpd17 showed higher efficacy. Thereafter, we characterized the mechanism-of-action of both inhibitors and found that Cpd17 was more potent in inhibiting RhoA-mediated cytoskeletal remodeling, and phosphorylation of MAPK/ERK and AKT/PKB. Finally, the therapeutic potential of Cpd17 was investigated in CCl4 -induced acute liver injury and diet-induced nonalcoholic steatohepatitis, demonstrating an excellent potential of Cpd17 in reducing liver injury in both disease models in vivo. We conclude that ATX inhibition, by type IV inhibitor in particular, has an excellent potential for clinical application in liver diseases.
Collapse
Affiliation(s)
- Richell Booijink
- Translational Liver Research, Department of Medical Cell BioPhysics, Faculty of Science and TechnologyUniversity of TwenteEnschedeThe Netherlands
- Oncode Institute, Division of BiochemistryNetherlands Cancer InstituteAmsterdamThe Netherlands
| | - Fernando Salgado‐Polo
- Oncode Institute, Division of BiochemistryNetherlands Cancer InstituteAmsterdamThe Netherlands
| | - Craig Jamieson
- Department of Pure and Applied ChemistryUniversity of StrathclydeGlasgowUK
| | - Anastassis Perrakis
- Oncode Institute, Division of BiochemistryNetherlands Cancer InstituteAmsterdamThe Netherlands
| | - Ruchi Bansal
- Translational Liver Research, Department of Medical Cell BioPhysics, Faculty of Science and TechnologyUniversity of TwenteEnschedeThe Netherlands
| |
Collapse
|
23
|
Karshovska E, Mohibullah R, Zhu M, Zahedi F, Thomas D, Magkrioti C, Geissler C, Megens RTA, Bianchini M, Nazari-Jahantigh M, Ferreirós N, Aidinis V, Schober A. ENPP2 (Endothelial Ectonucleotide Pyrophosphatase/Phosphodiesterase 2) Increases Atherosclerosis in Female and Male Mice. Arterioscler Thromb Vasc Biol 2022; 42:1023-1036. [PMID: 35708027 DOI: 10.1161/atvbaha.122.317682] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Maladapted endothelial cells (ECs) secrete ENPP2 (ectonucleotide pyrophosphatase/phosphodiesterase 2; autotaxin)-a lysophospholipase D that generates lysophosphatidic acids (LPAs). ENPP2 derived from the arterial wall promotes atherogenic monocyte adhesion induced by generating LPAs, such as arachidonoyl-LPA (LPA20:4), from oxidized lipoproteins. Here, we aimed to determine the role of endothelial ENPP2 in the production of LPAs and atherosclerosis. METHODS We quantified atherosclerosis in mice harboring loxP-flanked Enpp2 alleles crossed with Apoe-/- mice expressing tamoxifen-inducible Cre recombinase under the control of the EC-specific bone marrow X kinase promoter after 12 weeks of high-fat diet feeding. RESULTS A tamoxifen-induced EC-specific Enpp2 knockout decreased atherosclerosis, accumulation of lesional macrophages, monocyte adhesion, and expression of endothelial CXCL (C-X-C motif chemokine ligand) 1 in male and female Apoe-/- mice. In vitro, ENPP2 mediated the mildly oxidized LDL (low-density lipoprotein)-induced expression of CXCL1 in aortic ECs by generating LPA20:4, palmitoyl-LPA (LPA16:0), and oleoyl-LPA (LPA18:1). ENPP2 and its activity were detected on the endothelial surface by confocal imaging. The expression of endothelial Enpp2 established a strong correlation between the plasma levels of LPA16:0, stearoyl-LPA (LPA18:0), and LPA18:1 and plaque size and a strong negative correlation between the LPA levels and ENPP2 activity in the plasma. Moreover, endothelial Enpp2 knockout increased the weight of high-fat diet-fed male Apoe-/- mice. CONCLUSIONS We demonstrated that the expression of ENPP2 in ECs promotes atherosclerosis and endothelial inflammation in a sex-independent manner. This might be due to the generation of LPA20:4, LPA16:0, and LPA18:1 from mildly oxidized lipoproteins on the endothelial surface.
Collapse
Affiliation(s)
- Ela Karshovska
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-University, Munich, Germany (E.K., R.M., M.Z., F.Z., C.G., R.T.A.M., M.B., M.N.-J., A.S.)
| | - Rokia Mohibullah
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-University, Munich, Germany (E.K., R.M., M.Z., F.Z., C.G., R.T.A.M., M.B., M.N.-J., A.S.)
| | - Mengyu Zhu
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-University, Munich, Germany (E.K., R.M., M.Z., F.Z., C.G., R.T.A.M., M.B., M.N.-J., A.S.).,Cardiovascular Research Institute Maastricht, Maastricht University, the Netherlands (M.Z., R.T.A.M.)
| | - Farima Zahedi
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-University, Munich, Germany (E.K., R.M., M.Z., F.Z., C.G., R.T.A.M., M.B., M.N.-J., A.S.).,Now with Department of Biomedical Science and Mari Lowe Center for Comparative Oncology, University of Pennsylvania, Philadelphia (F.Z.)
| | - Dominique Thomas
- Institute of Clinical Pharmacology, Johann Wolfgang Goethe-University, Frankfurt, Germany (D.T., N.F.).,Fraunhofer Institute for Translational Medicine and Pharmacology, Frankfurt, Germany (D.T.)
| | - Christiana Magkrioti
- Division of Immunology, Biomedical Science Research, Center Alexander Fleming, Athens, Greece (C.M., V.A.)
| | - Claudia Geissler
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-University, Munich, Germany (E.K., R.M., M.Z., F.Z., C.G., R.T.A.M., M.B., M.N.-J., A.S.)
| | - Remco T A Megens
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-University, Munich, Germany (E.K., R.M., M.Z., F.Z., C.G., R.T.A.M., M.B., M.N.-J., A.S.).,Cardiovascular Research Institute Maastricht, Maastricht University, the Netherlands (M.Z., R.T.A.M.)
| | - Mariaelvy Bianchini
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-University, Munich, Germany (E.K., R.M., M.Z., F.Z., C.G., R.T.A.M., M.B., M.N.-J., A.S.)
| | - Maliheh Nazari-Jahantigh
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-University, Munich, Germany (E.K., R.M., M.Z., F.Z., C.G., R.T.A.M., M.B., M.N.-J., A.S.).,German Centre for Cardiovascular Research, Partner Site Munich Heart Alliance, Germany (M.N.-J., A.S.)
| | - Nerea Ferreirós
- Institute of Clinical Pharmacology, Johann Wolfgang Goethe-University, Frankfurt, Germany (D.T., N.F.)
| | - Vassilis Aidinis
- Division of Immunology, Biomedical Science Research, Center Alexander Fleming, Athens, Greece (C.M., V.A.)
| | - Andreas Schober
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-University, Munich, Germany (E.K., R.M., M.Z., F.Z., C.G., R.T.A.M., M.B., M.N.-J., A.S.).,German Centre for Cardiovascular Research, Partner Site Munich Heart Alliance, Germany (M.N.-J., A.S.)
| |
Collapse
|
24
|
Van Hoose PM, Yang L, Kraemer M, Ubele M, Morris AJ, Smyth SS. Lipid phosphate phosphatase 3 in smooth muscle cells regulates angiotensin II-induced abdominal aortic aneurysm formation. Sci Rep 2022; 12:5664. [PMID: 35383201 PMCID: PMC8983654 DOI: 10.1038/s41598-022-08422-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 12/10/2021] [Indexed: 01/28/2023] Open
Abstract
Genetic variants that regulate lipid phosphate phosphatase 3 (LPP3) expression are risk factors for the development of atherosclerotic cardiovascular disease. LPP3 is dynamically upregulated in the context of vascular inflammation with particularly heightened expression in smooth muscle cells (SMC), however, the impact of LPP3 on vascular pathology is not fully understood. We investigated the role of LPP3 and lysophospholipid signaling in a well-defined model of pathologic aortic injury and observed Angiotensin II (Ang II) increases expression of PLPP3 in SMCs through nuclear factor kappa B (NF-κB) signaling Plpp3 global reduction (Plpp3+/-) or SMC-specific deletion (SM22-Δ) protects hyperlipidemic mice from AngII-mediated aneurysm formation. LPP3 expression regulates SMC differentiation state and lowering LPP3 levels promotes a fibroblast-like phenotype. Decreased inactivation of bioactive lysophosphatidic acid (LPA) in settings of LPP3 deficiency may underlie these phenotypes because deletion of LPA receptor 4 in mice promotes early aortic dilation and rupture in response to AngII. LPP3 expression and LPA signaling influence SMC and vessel wall responses that are important for aortic dissection and aneurysm formation. These findings could have important implications for therapeutics targeting LPA metabolism and signaling in ongoing clinical trials.
Collapse
Affiliation(s)
- Patrick M Van Hoose
- Gill Heart and Vascular Institute, University of Kentucky, 741 South Limestone BBSRB, Rm: B347, Lexington, KY, 40536-0509, USA
| | - Liping Yang
- Gill Heart and Vascular Institute, University of Kentucky, 741 South Limestone BBSRB, Rm: B347, Lexington, KY, 40536-0509, USA
| | - Maria Kraemer
- Gill Heart and Vascular Institute, University of Kentucky, 741 South Limestone BBSRB, Rm: B347, Lexington, KY, 40536-0509, USA
| | - Margo Ubele
- Gill Heart and Vascular Institute, University of Kentucky, 741 South Limestone BBSRB, Rm: B347, Lexington, KY, 40536-0509, USA
| | - Andrew J Morris
- Gill Heart and Vascular Institute, University of Kentucky, 741 South Limestone BBSRB, Rm: B347, Lexington, KY, 40536-0509, USA
- Lexington Veterans Affair Medical Center, Lexington, KY, USA
| | - Susan S Smyth
- Gill Heart and Vascular Institute, University of Kentucky, 741 South Limestone BBSRB, Rm: B347, Lexington, KY, 40536-0509, USA.
- Lexington Veterans Affair Medical Center, Lexington, KY, USA.
| |
Collapse
|
25
|
Plasma metabolomic profiles reveal regulatory effect of chitosan oligosaccharides on loperamide-induced constipation in mice. J Pharm Biomed Anal 2022; 211:114590. [DOI: 10.1016/j.jpba.2022.114590] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 01/04/2022] [Accepted: 01/09/2022] [Indexed: 12/17/2022]
|
26
|
Lobasso S, Tanzarella P, Mannavola F, Tucci M, Silvestris F, Felici C, Ingrosso C, Corcelli A, Lopalco P. A Lipidomic Approach to Identify Potential Biomarkers in Exosomes From Melanoma Cells With Different Metastatic Potential. Front Physiol 2021; 12:748895. [PMID: 34867454 PMCID: PMC8637280 DOI: 10.3389/fphys.2021.748895] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 10/18/2021] [Indexed: 12/21/2022] Open
Abstract
Melanoma, one of the most lethal cutaneous cancers, is characterized by its ability to metastasize to other distant sites, such as the bone. Melanoma cells revealed a variable in vitro propensity to be attracted toward bone fragments, and melanoma-derived exosomes play a role in regulating the osteotropism of these cells. We have here investigated the lipid profiles of melanoma cell lines (LCP and SK-Mel28) characterized by different metastatic propensities to colonize the bone. We have purified exosomes from cell supernatants by ultracentrifugation, and their lipid composition has been compared to identify potential lipid biomarkers for different migration and invasiveness of melanoma cells. Matrix-assisted laser desorption ionization-time-of-flight/mass spectrometry (MALDI-TOF/MS) lipid analysis has been performed on very small amounts of intact parental cells and exosomes by skipping lipid extraction and separation steps. Statistical analysis has been applied to MALDI mass spectra in order to discover significant differences in lipid profiles. Our results clearly show more saturated and shorter fatty acid tails in poorly metastatic (LCP) cells compared with highly metastatic (SK-Mel28) cells, particularly for some species of phosphatidylinositol. Sphingomyelin, lysophosphatidylcholine, and phosphatidic acid were enriched in exosome membranes compared to parental cells. In addition, we have clearly detected a peculiar phospholipid bis(monoacylglycero)phosphate as a specific lipid marker of exosomes. MALDI-TOF/MS lipid profiles of exosomes derived from the poorly and highly metastatic cells were not significantly different.
Collapse
Affiliation(s)
- Simona Lobasso
- Department of Basic Medical Sciences, Neuroscience, and Sense Organs, University of Bari Aldo Moro, Bari, Italy
| | - Paola Tanzarella
- Department of Basic Medical Sciences, Neuroscience, and Sense Organs, University of Bari Aldo Moro, Bari, Italy
| | - Francesco Mannavola
- Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, Bari, Italy.,Division of Medical Oncology, A.O.U. Consorziale Policlinico di Bari, Bari, Italy
| | - Marco Tucci
- Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, Bari, Italy.,Division of Medical Oncology, A.O.U. Consorziale Policlinico di Bari, Bari, Italy
| | - Francesco Silvestris
- Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, Bari, Italy.,Division of Medical Oncology, A.O.U. Consorziale Policlinico di Bari, Bari, Italy
| | - Claudia Felici
- Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, Bari, Italy.,Division of Medical Oncology, A.O.U. Consorziale Policlinico di Bari, Bari, Italy.,Centre of Omic Sciences, IRCCS San Raffaele Hospital, Milan, Italy
| | - Chiara Ingrosso
- Institute for Chemical and Physical Processes (IPCF)-CNR SS Bari, Bari, Italy
| | - Angela Corcelli
- Department of Basic Medical Sciences, Neuroscience, and Sense Organs, University of Bari Aldo Moro, Bari, Italy
| | - Patrizia Lopalco
- Department of Basic Medical Sciences, Neuroscience, and Sense Organs, University of Bari Aldo Moro, Bari, Italy
| |
Collapse
|
27
|
Phospholipase A1 Member A Activates Fibroblast-like Synoviocytes through the Autotaxin-Lysophosphatidic Acid Receptor Axis. Int J Mol Sci 2021; 22:ijms222312685. [PMID: 34884486 PMCID: PMC8657932 DOI: 10.3390/ijms222312685] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/29/2021] [Accepted: 11/19/2021] [Indexed: 02/07/2023] Open
Abstract
Lysophosphatidylserine (lysoPS) is known to regulate immune cell functions. Phospholipase A1 member A (PLA1A) can generate this bioactive lipid through hydrolysis of sn-1 fatty acids on phosphatidylserine (PS). PLA1A has been associated with cancer metastasis, asthma, as well as acute coronary syndrome. However, the functions of PLA1A in the development of systemic autoimmune rheumatic diseases remain elusive. To investigate the possible implication of PLA1A during rheumatic diseases, we monitored PLA1A in synovial fluids from patients with rheumatoid arthritis and plasma of early-diagnosed arthritis (EA) patients and clinically stable systemic lupus erythematosus (SLE) patients. We used human primary fibroblast-like synoviocytes (FLSs) to evaluate the PLA1A-induced biological responses. Our results highlighted that the plasma concentrations of PLA1A in EA and SLE patients were elevated compared to healthy donors. High concentrations of PLA1A were also detected in synovial fluids from rheumatoid arthritis patients compared to those from osteoarthritis (OA) and gout patients. The origin of PLA1A in FLSs and the arthritic joints remained unknown, as healthy human primary FLSs does not express the PLA1A transcript. Besides, the addition of recombinant PLA1A stimulated cultured human primary FLSs to secrete IL-8. Preincubation with heparin, autotaxin (ATX) inhibitor HA130 or lysophosphatidic acid (LPA) receptor antagonist Ki16425 reduced PLA1A-induced-secretion of IL-8. Our data suggested that FLS-associated PLA1A cleaves membrane-exposed PS into lysoPS, which is subsequently converted to LPA by ATX. Since primary FLSs do not express any lysoPS receptors, the data suggested PLA1A-mediated pro-inflammatory responses through the ATX-LPA receptor signaling axis.
Collapse
|
28
|
Matas-Rico E, Frijlink E, van der Haar Àvila I, Menegakis A, van Zon M, Morris AJ, Koster J, Salgado-Polo F, de Kivit S, Lança T, Mazzocca A, Johnson Z, Haanen J, Schumacher TN, Perrakis A, Verbrugge I, van den Berg JH, Borst J, Moolenaar WH. Autotaxin impedes anti-tumor immunity by suppressing chemotaxis and tumor infiltration of CD8 + T cells. Cell Rep 2021; 37:110013. [PMID: 34788605 PMCID: PMC8761359 DOI: 10.1016/j.celrep.2021.110013] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 10/07/2021] [Accepted: 10/26/2021] [Indexed: 01/22/2023] Open
Abstract
Autotaxin (ATX; ENPP2) produces lysophosphatidic acid (LPA) that regulates multiple biological functions via cognate G protein-coupled receptors LPAR1–6. ATX/LPA promotes tumor cell migration and metastasis via LPAR1 and T cell motility via LPAR2, yet its actions in the tumor immune microenvironment remain unclear. Here, we show that ATX secreted by melanoma cells is chemorepulsive for tumor-infiltrating lymphocytes (TILs) and circulating CD8+ T cells ex vivo, with ATX functioning as an LPA-producing chaperone. Mechanistically, T cell repulsion predominantly involves Gα12/13-coupled LPAR6. Upon anti-cancer vaccination of tumor-bearing mice, ATX does not affect the induction of systemic T cell responses but, importantly, suppresses tumor infiltration of cytotoxic CD8+ T cells and thereby impairs tumor regression. Moreover, single-cell data from melanoma tumors are consistent with intratumoral ATX acting as a T cell repellent. These findings highlight an unexpected role for the pro-metastatic ATX-LPAR axis in suppressing CD8+ T cell infiltration to impede anti-tumor immunity, suggesting new therapeutic opportunities. Through LPA production, ATX modulates the tumor microenvironment in autocrine-paracrine manners. Matas-Rico et al. show that ATX/LPA is chemorepulsive for T cells with a dominant inhibitory role for Gα12/13-coupled LPAR6. Upon anticancer vaccination, tumor-intrinsic ATX suppresses the infiltration of CD8+ T cells without affecting their cytotoxic quality.
Collapse
Affiliation(s)
- Elisa Matas-Rico
- Division of Biochemistry, Netherlands Cancer Institute, Amsterdam, the Netherlands.
| | - Elselien Frijlink
- Division of Tumor Biology and Immunology, Netherlands Cancer Institute, Amsterdam, the Netherlands; Oncode Institute, Utrecht, the Netherlands
| | - Irene van der Haar Àvila
- Division of Tumor Biology and Immunology, Netherlands Cancer Institute, Amsterdam, the Netherlands; Oncode Institute, Utrecht, the Netherlands
| | - Apostolos Menegakis
- Oncode Institute, Utrecht, the Netherlands; Division of Cell Biology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Maaike van Zon
- Division of Molecular Oncology and Immunology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Andrew J Morris
- Division of Cardiovascular Medicine, Gill Heart Institute and Lexington Veterans Affairs Medical Center, University of Kentucky, Lexington, KY, USA
| | - Jan Koster
- Laboratory for Experimental Oncology and Radiobiology, Amsterdam UMC, Amsterdam, the Netherlands
| | - Fernando Salgado-Polo
- Division of Biochemistry, Netherlands Cancer Institute, Amsterdam, the Netherlands; Oncode Institute, Utrecht, the Netherlands
| | - Sander de Kivit
- Division of Tumor Biology and Immunology, Netherlands Cancer Institute, Amsterdam, the Netherlands; Oncode Institute, Utrecht, the Netherlands
| | - Telma Lança
- Oncode Institute, Utrecht, the Netherlands; Division of Molecular Oncology and Immunology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Antonio Mazzocca
- Interdisciplinary Department of Medicine, University of Bari School of Medicine, Bari, Italy
| | - Zoë Johnson
- iOnctura SA, Campus Biotech Innovation Park, Geneva, Switzerland
| | - John Haanen
- Division of Molecular Oncology and Immunology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Ton N Schumacher
- Oncode Institute, Utrecht, the Netherlands; Division of Molecular Oncology and Immunology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Anastassis Perrakis
- Division of Biochemistry, Netherlands Cancer Institute, Amsterdam, the Netherlands; Oncode Institute, Utrecht, the Netherlands
| | - Inge Verbrugge
- Division of Tumor Biology and Immunology, Netherlands Cancer Institute, Amsterdam, the Netherlands; Oncode Institute, Utrecht, the Netherlands
| | - Joost H van den Berg
- Division of Molecular Oncology and Immunology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Jannie Borst
- Division of Tumor Biology and Immunology, Netherlands Cancer Institute, Amsterdam, the Netherlands; Oncode Institute, Utrecht, the Netherlands.
| | - Wouter H Moolenaar
- Division of Biochemistry, Netherlands Cancer Institute, Amsterdam, the Netherlands.
| |
Collapse
|
29
|
Autotaxin May Have Lysophosphatidic Acid-Unrelated Effects on Three-Dimension (3D) Cultured Human Trabecular Meshwork (HTM) Cells. Int J Mol Sci 2021; 22:ijms222112039. [PMID: 34769470 PMCID: PMC8584821 DOI: 10.3390/ijms222112039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/03/2021] [Accepted: 11/05/2021] [Indexed: 01/25/2023] Open
Abstract
PURPOSE The objective of the current study was to evaluate the effects of the autotaxin (ATX)-lysophosphatidic acid (LPA) signaling axis on the human trabecular meshwork (HTM) in two-dimensional (2D) and three-dimensional (3D) cultures of HTM cells. METHODS The effects were characterized by transendothelial electrical resistance (TEER) and FITC-dextran permeability (2D), measurements of size and stiffness (3D), and the expression of several genes, including extracellular matrix (ECM) molecules, their modulators, and endoplasmic reticulum (ER) stress-related factors. RESULTS A one-day exposure to 200 nM LPA induced significant down-sizing effects of the 3D HTM spheroids, and these effects were enhanced slightly on longer exposure. The TEER and FITC-dextran permeability data indicate that LPA induced an increase in the barrier function of the 2D HTM monolayers. A one-day exposure to a 2 mg/L solution of ATX also resulted in a significant decrease in the sizes of the 3D HTM spheroids, and an increase in stiffness was also observed. The gene expression of several ECMs, their regulators and ER-stress related factors by the 3D HTM spheroids were altered by both ATX and LPA, but in different manners. CONCLUSIONS The findings presented herein suggest that ATX may have additional roles in the human TM, in addition to the ATX-LPA signaling axis.
Collapse
|
30
|
Ntatsoulis K, Karampitsakos T, Tsitoura E, Stylianaki EA, Matralis AN, Tzouvelekis A, Antoniou K, Aidinis V. Commonalities Between ARDS, Pulmonary Fibrosis and COVID-19: The Potential of Autotaxin as a Therapeutic Target. Front Immunol 2021; 12:687397. [PMID: 34671341 PMCID: PMC8522582 DOI: 10.3389/fimmu.2021.687397] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 08/13/2021] [Indexed: 12/15/2022] Open
Abstract
Severe COVID-19 is characterized by acute respiratory distress syndrome (ARDS)-like hyperinflammation and endothelial dysfunction, that can lead to respiratory and multi organ failure and death. Interstitial lung diseases (ILD) and pulmonary fibrosis confer an increased risk for severe disease, while a subset of COVID-19-related ARDS surviving patients will develop a fibroproliferative response that can persist post hospitalization. Autotaxin (ATX) is a secreted lysophospholipase D, largely responsible for the extracellular production of lysophosphatidic acid (LPA), a pleiotropic signaling lysophospholipid with multiple effects in pulmonary and immune cells. In this review, we discuss the similarities of COVID-19, ARDS and ILDs, and suggest ATX as a possible pathologic link and a potential common therapeutic target.
Collapse
Affiliation(s)
- Konstantinos Ntatsoulis
- Institute of Bio-Innovation, Biomedical Sciences Research Center Alexander Fleming, Athens, Greece
| | - Theodoros Karampitsakos
- Department of Respiratory Medicine, School of Medicine, University of Patras, Patras, Greece
| | - Eliza Tsitoura
- Laboratory of Molecular & Cellular Pneumonology, Department of Respiratory Medicine, School of Medicine, University of Crete, Heraklion, Greece
| | - Elli-Anna Stylianaki
- Institute of Bio-Innovation, Biomedical Sciences Research Center Alexander Fleming, Athens, Greece
| | - Alexios N. Matralis
- Institute of Bio-Innovation, Biomedical Sciences Research Center Alexander Fleming, Athens, Greece
| | - Argyrios Tzouvelekis
- Department of Respiratory Medicine, School of Medicine, University of Patras, Patras, Greece
| | - Katerina Antoniou
- Laboratory of Molecular & Cellular Pneumonology, Department of Respiratory Medicine, School of Medicine, University of Crete, Heraklion, Greece
| | - Vassilis Aidinis
- Institute of Bio-Innovation, Biomedical Sciences Research Center Alexander Fleming, Athens, Greece
| |
Collapse
|
31
|
Lua I, Balog S, Yanagi A, Tateno C, Asahina K. Loss of lysophosphatidic acid receptor 1 in hepatocytes reduces steatosis via down-regulation of CD36. Prostaglandins Other Lipid Mediat 2021; 156:106577. [PMID: 34147666 PMCID: PMC8490298 DOI: 10.1016/j.prostaglandins.2021.106577] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 05/19/2021] [Accepted: 06/15/2021] [Indexed: 12/13/2022]
Abstract
Nonalcoholic steatohepatitis is a major public health concern and is characterized by the accumulation of triglyceride in hepatocytes and inflammation in the liver. Steatosis is caused by dysregulation of the influx and efflux of lipids, lipogenesis, and mitochondrial β-oxidation. Extracellular lysophosphatidic acid (LPA) regulates a broad range of cellular processes in development, tissue injury, and cancer. In the present study, we examined the roles of LPA in steatohepatitis induced by a methionine-choline-deficient (MCD) diet in mice. Hepatocytes express LPA receptor (Lpar) 1-3 mRNAs. Steatosis developed in mice fed the MCD diet was reduced by treatment with inhibitors for pan-LPAR or LPAR1. Hepatocyte-specific deletion of the Lpar1 gene also reduced the steatosis in the MCD model. Deletion of the Lpar1 gene in hepatocytes reduced expression of Cd36, a gene encoding a fatty acid transporter. Although LPA/LPAR1 signaling induces expression of Srebp1 mRNA in hepatocytes, LPA does not fully induce expression of SREBP1-target genes involved in lipogenesis. Human hepatocytes repopulated in chimeric mice are known to develop steatosis and treatment with an LPAR1 inhibitor reduces expression of CD36 mRNA and steatosis. Our data indicate that antagonism of LPAR1 reduces steatosis in mouse and human hepatocytes by down-regulation of Cd36.
Collapse
Affiliation(s)
- Ingrid Lua
- The Southern California Research Center for ALPD and Cirrhosis, Department of Pathology, Keck School of Medicine, University of Southern California, CA, 90033, United States
| | - Steven Balog
- The Southern California Research Center for ALPD and Cirrhosis, Department of Pathology, Keck School of Medicine, University of Southern California, CA, 90033, United States
| | - Ami Yanagi
- Department of Research and Development, PhoenixBio Co., Ltd., Higashi-Hiroshima, Hiroshima, 739-0046, Japan
| | - Chise Tateno
- Department of Research and Development, PhoenixBio Co., Ltd., Higashi-Hiroshima, Hiroshima, 739-0046, Japan
| | - Kinji Asahina
- The Southern California Research Center for ALPD and Cirrhosis, Department of Pathology, Keck School of Medicine, University of Southern California, CA, 90033, United States.
| |
Collapse
|
32
|
Bian X, Liu R, Meng Y, Xing D, Xu D, Lu Z. Lipid metabolism and cancer. J Exp Med 2021; 218:211616. [PMID: 33601415 PMCID: PMC7754673 DOI: 10.1084/jem.20201606] [Citation(s) in RCA: 451] [Impact Index Per Article: 112.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 10/15/2020] [Accepted: 10/26/2020] [Indexed: 02/05/2023] Open
Abstract
Dysregulation in lipid metabolism is among the most prominent metabolic alterations in cancer. Cancer cells harness lipid metabolism to obtain energy, components for biological membranes, and signaling molecules needed for proliferation, survival, invasion, metastasis, and response to the tumor microenvironment impact and cancer therapy. Here, we summarize and discuss current knowledge about the advances made in understanding the regulation of lipid metabolism in cancer cells and introduce different approaches that have been clinically used to disrupt lipid metabolism in cancer therapy.
Collapse
Affiliation(s)
- Xueli Bian
- Cancer Institute of The Affiliated Hospital of Qingdao University and Qingdao Cancer Institute, Qingdao, China
| | - Rui Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ying Meng
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Dongming Xing
- Cancer Institute of The Affiliated Hospital of Qingdao University and Qingdao Cancer Institute, Qingdao, China.,School of Life Sciences, Tsinghua University, Beijing, China
| | - Daqian Xu
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhimin Lu
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China.,Zhejiang University Cancer Center, Hangzhou, China
| |
Collapse
|
33
|
Role of Lysophospholipid Metabolism in Chronic Myelogenous Leukemia Stem Cells. Cancers (Basel) 2021; 13:cancers13143434. [PMID: 34298649 PMCID: PMC8305981 DOI: 10.3390/cancers13143434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 07/05/2021] [Accepted: 07/07/2021] [Indexed: 02/02/2023] Open
Abstract
Simple Summary In this review, I discuss our recent finding that lysophospholipid metabolism is essential for the maintenance of chronic myelogenous leukemia (CML) stem cells. Lysophospholipids have only one fatty acid chain and so are more hydrophilic than phospholipids, allowing them to act as lipid second messengers. We demonstrated that the stem cell quiescence and TKI resistance displayed by CML stem cells in vivo are sustained by the Gdpd3 enzyme involved in lysophospholipid metabolism. At the mechanistic level, Gdpd3 function allows lysophospholipid metabolism to suppress the AKT/mTORC1-mediated cell growth pathway while activating the stemness factors FOXO and β-catenin. Our results thus link lysophospholipid metabolism to CML stemness, and may thereby open up new therapeutic avenues to overcome CML relapse post-TKI therapy. Abstract It is well known that mature chronic myelogenous leukemia (CML) cells proliferate in response to oncogenic BCR–ABL1-dependent signaling, but how CML stem cells are able to survive in an oncogene-independent manner and cause disease relapse has long been elusive. Here, I put into the context of the broader literature our recent finding that lysophospholipid metabolism is essential for the maintenance of CML stem cells. I describe the fundamentals of lysophospholipid metabolism and discuss how one of its key enzymes, Glycerophosphodiester Phosphodiesterase Domain Containing 3 (Gdpd3), is responsible for maintaining the unique characteristics of CML stem cells. I also explore how this knowledge may be exploited to devise novel therapies for CML patients.
Collapse
|
34
|
Liu Z, Liu J, Zhang T, Li L, Zhang S, Jia H, Xia Y, Shi M, Zhang J, Yue S, Chen X, Yu J. Distinct BTK inhibitors differentially induce apoptosis but similarly suppress chemotaxis and lipid accumulation in mantle cell lymphoma. BMC Cancer 2021; 21:732. [PMID: 34174847 PMCID: PMC8235860 DOI: 10.1186/s12885-021-08475-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 06/04/2021] [Indexed: 11/10/2022] Open
Abstract
Background The more selective second-generation BTK inhibitors (BTKi) Acalabrutinib and Zanubrutinib and the first-generation BTKi Ibrutinib are highlighted by their clinical effectiveness in mantle cell lymphoma (MCL), however, similarities and differences of their biological and molecular effects on anti-survival of MCL cells induced by these BTKi with distinct binding selectivity against BTK remain largely unknown. Methods AlamarBlue assays were performed to define cytotoxicity of BTKi against MCL cells, Jeko-1 and Mino. Cleaved PARP and caspase-3 levels were examined by immunoblot analysis to study BTKi-induced apoptotic effects. Biological effects of BTKi on MCL-cell chemotaxis and lipid droplet (LD) accumulation were examined in Jeko-1, Mino and primary MCL cells via Transwell and Stimulated Raman scattering imaging analysis respectively. Enzyme-linked immunoassays were used to determine CCL3 and CCL4 levels in MCL-cell culture supernatants. RNA-seq analyses identified BTKi targets which were validated by quantitative RT-PCR (qRT-PCR) and immunoblot analysis. Results Acalabrutinib and Zanubrutinib induced moderate apoptosis in Ibrutinib high-sensitive JeKo-1 cells and Ibrutinib low-sensitive Mino cells, which was accompanied by cleaved PARP and caspase-3. Such effects might be caused by the stronger ability of Ibrutinib to upregulate the expression of pro-apoptotic genes, such as HRK, GADD45A, and ATM, in JeKo-1 cells than in Mino cells, and the expression of such apoptotic genes was slightly changed by Acalabrutinib and Zanubrutinib in both JeKo-1 and Mino cells. Further, Acalabrutinib, Zanubrutinib and Ibrutinib reduced MCL-cell chemotaxis with similar efficiency, due to their similar abilities to downmodulate chemokines, such as CCL3 and CCL4. Also, these three BTKi similarly suppressed MCL-cell LD accumulation via downregulating lipogenic factors, DGAT2, SCD, ENPP2 and ACACA without significant differences. Conclusion BTKi demonstrated differential capacities to induce MCL-cell apoptosis due to their distinct capabilities to regulate the expression of apoptosis-related genes, and similar biological and molecular inhibitory effects on MCL-cell chemotaxis and LD accumulation. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-021-08475-3.
Collapse
Affiliation(s)
- Zhuojun Liu
- Interdisciplinary Institute of Cancer Diagnosis and Treatment, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beihang University, Beijing, 100083, China.,School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Jia Liu
- Interdisciplinary Institute of Cancer Diagnosis and Treatment, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beihang University, Beijing, 100083, China.,School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Tianming Zhang
- Interdisciplinary Institute of Cancer Diagnosis and Treatment, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beihang University, Beijing, 100083, China.,School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Lin Li
- Interdisciplinary Institute of Cancer Diagnosis and Treatment, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beihang University, Beijing, 100083, China.,School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Shuo Zhang
- School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Hao Jia
- School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Yuanshi Xia
- School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Mingxia Shi
- Department of Hematology, the First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Jing Zhang
- Interdisciplinary Institute of Cancer Diagnosis and Treatment, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beihang University, Beijing, 100083, China.,School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Shuhua Yue
- School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Xiaofang Chen
- School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China.
| | - Jian Yu
- Interdisciplinary Institute of Cancer Diagnosis and Treatment, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beihang University, Beijing, 100083, China. .,School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China.
| |
Collapse
|
35
|
Igarashi N, Honjo M, Yamagishi R, Kurano M, Yatomi Y, Igarashi K, Kaburaki T, Aihara M. Crosstalk between transforming growth factor β-2 and Autotaxin in trabecular meshwork and different subtypes of glaucoma. J Biomed Sci 2021; 28:47. [PMID: 34140021 PMCID: PMC8212476 DOI: 10.1186/s12929-021-00745-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 06/11/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Elevated transforming growth factor (TGF)-β2 in aqueous humor (AH) has been suggested to contribute to trabecular meshwork (TM) fibrosis and intraocular pressure (IOP) regulation in primary open-angle glaucoma (POAG), but TGF-β2 is downregulated in secondary open-angle glaucoma (SOAG). Because autotaxin (ATX) is upregulated in SOAG, we investigated the relationships and trans-signaling interactions of these mediators. METHODS The level of ATX in AH was determined using a two-site immunoenzymetric assay, and TGF-β levels were measured using the Bio-Plex Pro TGF-β Assay. RNA scope was used to assess the expression of ATX and TGF-β2 in human's eye specimen. And in vitro studies were performed using hTM cells to explore if trans-signaling of TGF-β2 regulates ATX expressions. RESULTS TGF-β2/ATX ratio was significantly high in AH of control or POAG compared with SOAG, and negatively correlated with IOP. RNA scope revelated positive expressions of both TGF-β2 and ATX in ciliary body (CB) and TM in control, but ATX expressions was significantly enhanced in SOAG. In hTM cells, ATX expressions were regulated by TGF-β2 with concentration-dependent manner. In counter, ATX also induced TGF-β1, TGF-β2 and TGFBI upregulations and activation of the Smad-sensitive promoter, as well as upregulation of fibrotic markers, and these upregulation was significantly suppressed by both TGF-β and ATX inhibition. CONCLUSIONS Trans-signaling of TGF-β2 regulates ATX expressions and thereby induced upregulations of TGF-βs or fibrosis of hTM. TGF-β2 trans-signaling potently regulate ATX transcription and signaling in hTM cells, which may reflect different profile of these mediators in glaucoma subtypes. Trial Registration This prospective observational study was approved by the Institutional Review Board of the University of Tokyo and was registered with the University Hospital Medical Information Network Clinical Trials Registry of Japan (ID: UMIN000027137). All study procedures conformed to the Declaration of Helsinki. Written informed consent was obtained from each patient.
Collapse
Affiliation(s)
- Nozomi Igarashi
- Department of Ophthalmology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Megumi Honjo
- Department of Ophthalmology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
| | - Reiko Yamagishi
- Department of Ophthalmology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Makoto Kurano
- Department of Clinical Laboratory Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo Bunkyo-ku, Tokyo, 113-8655, Japan.,CREST, Japan Science and Technology Corporation (JST), Saitama, Japan
| | - Yutaka Yatomi
- Department of Clinical Laboratory Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo Bunkyo-ku, Tokyo, 113-8655, Japan.,CREST, Japan Science and Technology Corporation (JST), Saitama, Japan.,Department of Clinical Laboratory, The University of Tokyo Hospital, Tokyo, Japan
| | - Koji Igarashi
- Bioscience Division, Reagent Development Department, AIA Research Group, TOSOH Corporation, Kanagawa, Japan
| | - Toshikatsu Kaburaki
- Department of Ophthalmology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,Department of Ophthalmology, Jichi Medical University Saitama Medical Center, Saitama, Japan
| | - Makoto Aihara
- Department of Ophthalmology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
36
|
Nabi MM, Mamun MA, Islam A, Hasan MM, Waliullah ASM, Tamannaa Z, Sato T, Kahyo T, Setou M. Mass spectrometry in the lipid study of cancer. Expert Rev Proteomics 2021; 18:201-219. [PMID: 33793353 DOI: 10.1080/14789450.2021.1912602] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Introduction: Cancer is a heterogeneous disease that exploits various metabolic pathways to meet the demand for increased energy and structural components. Lipids are biomolecules that play essential roles as high energy sources, mediators, and structural components of biological membranes. Accumulating evidence has established that altered lipid metabolism is a hallmark of cancer.Areas covered: Mass spectrometry (MS) is a label-free analytical tool that can simultaneously identify and quantify hundreds of analytes. To date, comprehensive lipid studies exclusively rely on this technique. Here, we reviewed the use of MS in the study of lipids in various cancers and discuss its instrumental limitations and challenges.Expert opinion: MS and MS imaging have significantly contributed to revealing altered lipid metabolism in a variety of cancers. Currently, a single MS approach cannot profile the entire lipidome because of its lack of sensitivity and specificity for all lipid classes. For the metabolic pathway investigation, lipid study requires the integration of MS with other molecular approaches. Future developments regarding the high spatial resolution, mass resolution, and sensitivity of MS instruments are warranted.
Collapse
Affiliation(s)
- Md Mahamodun Nabi
- Department of Cellular & Molecular Anatomy, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan.,Institute of Food and Radiation Biology, Atomic Energy Research Establishment, Ganakbari, Savar, Dhaka, Bangladesh
| | - Md Al Mamun
- Department of Cellular & Molecular Anatomy, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Ariful Islam
- Department of Cellular & Molecular Anatomy, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Md Mahmudul Hasan
- Department of Cellular & Molecular Anatomy, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - A S M Waliullah
- Department of Cellular & Molecular Anatomy, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Zinat Tamannaa
- Department of Cellular & Molecular Anatomy, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Tomohito Sato
- Department of Cellular & Molecular Anatomy, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Tomoaki Kahyo
- Department of Cellular & Molecular Anatomy, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan.,International Mass Imaging Center, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Mitsutoshi Setou
- Department of Cellular & Molecular Anatomy, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan.,International Mass Imaging Center, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan.,Department of Systems Molecular Anatomy, Institute for Medical Photonics Research, Preeminent Medical Photonics Education & Research Center, Hamamatsu, Shizuoka, Japan
| |
Collapse
|
37
|
Review of Diagnostic Biomarkers in Autoimmune Pancreatitis: Where Are We Now? Diagnostics (Basel) 2021; 11:diagnostics11050770. [PMID: 33923064 PMCID: PMC8146865 DOI: 10.3390/diagnostics11050770] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 04/22/2021] [Accepted: 04/23/2021] [Indexed: 12/16/2022] Open
Abstract
Autoimmune pancreatitis (AIP) is a pancreatic manifestation of an IgG4-related disease (IgG4-RD). AIP lacks disease-specific biomarkers, and therefore, it is difficult to distinguish AIP from malignancies, especially pancreatic cancer. In this review, we have summarized the latest findings on potential diagnostic biomarkers for AIP. Many investigations have been conducted, but no specific biomarkers for AIP are identified. Therefore, further studies are required to identify accurate diagnostic biomarkers for AIP.
Collapse
|
38
|
Boehm T, Ristl R, Joseph S, Petroczi K, Klavins K, Valent P, Jilma B. Metabolome and lipidome derangements during a severe mast cell activation event in a patient with indolent systemic mastocytosis. J Allergy Clin Immunol 2021; 148:1533-1544. [PMID: 33864889 DOI: 10.1016/j.jaci.2021.03.043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 03/02/2021] [Accepted: 03/30/2021] [Indexed: 12/27/2022]
Abstract
BACKGROUND The number of mast cells in various organs is elevated manifold in individuals with systemic mastocytosis. Degranulation can lead to life-threatening symptomatology. No data about the alterations of the metabolome and lipidome during an attack have been published. OBJECTIVE Our aim was to analyze changes in metabolomics and lipidomics during the acute phase of a severe mast cell activation event. METHODS A total of 43 metabolites and 11 lipid classes comprising 200 subvariants from multiple plasma samples in duplicate, covering 72 hours of a severe mast cell activation attack with nausea and vomiting, were compared with 2 baseline samples by using quantitative liquid chromatography-mass spectrometry. RESULTS A strong enterocyte dysfunction reflected in an almost 20-fold reduction in the functional small bowel length was extrapolated from strongly reduced ornithine and citrulline concentrations and was very likely secondary to severe endothelial cell dysfunction with hypoperfusion and extensive vascular leakage. Highly increased histamine and lactate concentrations accompanied the peak in clinical symptoms. Elevated asymmetric and symmetric dimethylarginine levels combined with reduced arginine levels compromised endothelial nitric oxide synthase activity and nitric oxide signaling. Specific and extensive depletion of many lysophosphatidylcholine variants indicates localized autotaxin activation and lysophosphatidic acid release. A strong correlation of clinical parameters with histamine concentrations and symptom reduction after 100-fold elevated plasma diamine oxidase concentrations implies that histamine is the key driver of the acute phase. CONCLUSIONS Rapid elimination of elevated histamine concentrations through use of recombinant human diamine oxidase, supplementation of lysophosphatidylcholine for immunomodulation, inhibition of autotaxin activity, and/or blockade of lysophosphatidic acid receptors might represent new treatment options for life-threatening mast cell activation events.
Collapse
Affiliation(s)
- Thomas Boehm
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria.
| | - Robin Ristl
- Section for Medical Statistics, Center of Medical Statistics, Informatics, and Intelligent Systems, Medical University of Vienna, Vienna, Austria
| | - Saijo Joseph
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Karin Petroczi
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Kristaps Klavins
- CeMM Research Center for Molecular Medicine, Austrian Academy of Sciences, Vienna, Austria
| | - Peter Valent
- Department of Internal Medicine I, Division of Hematology and Hemostaseology and Ludwig Boltzmann Cluster Oncology, Medical University of Vienna, Vienna, Austria
| | - Bernd Jilma
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
39
|
Fukiage A, Fujino H, Miki D, Ishii Y, Serikawa M, Tsuge M, Imamura M, Aikata H, Hayes CN, Chayama K. Clinical Usefulness of Serum Autotaxin for Early Prediction of Relapse in Male Patients with Type 1 Autoimmune Pancreatitis. Dig Dis Sci 2021; 66:1268-1275. [PMID: 32436125 DOI: 10.1007/s10620-020-06338-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 05/09/2020] [Indexed: 01/06/2023]
Abstract
BACKGROUND Serum IgG4 level is a useful diagnostic marker for autoimmune pancreatitis (AIP), but it is difficult to use to predict relapse. AIMS We investigated whether serum autotaxin (ATX) level is predictive of AIP relapse after steroid therapy. METHODS Fifty-six patients with type 1 AIP were investigated. We measured serum ATX at the time of diagnosis. We selected 24 males for whom serum samples during steroid therapy had been obtained and measured serum ATX at steroid therapy for induction of remission and at maintenance therapy. In the relapse group, we also measured ATX at the time of relapse. RESULTS ATX was significantly higher in female patients than in male patients. In order to clarify changes in ATX during steroid therapy, we focused on 24 male patients. We found that ATX decreased significantly during steroid therapy for induction of remission and at the time of maintenance therapy. In half of all patients who relapsed during maintenance therapy, ATX was significantly elevated at the time of relapse compared with that of induction therapy (P = 0.039). When we compared ATX at the time of maintenance therapy between patients with relapse and without, we observed significantly higher ATX in the former (P = 0.024). We found that the combination of ATX and elastase-1 could predict relapse with high accuracy (95%). CONCLUSIONS Preliminary evidence suggests that serum ATX might serve as a candidate biomarker to predict relapse of AIP as well as to monitor the effect of steroid therapy.
Collapse
Affiliation(s)
- Ayami Fukiage
- Department of Gastroenterology and Metabolism, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Hatsue Fujino
- Department of Gastroenterology and Metabolism, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Daiki Miki
- Department of Gastroenterology and Metabolism, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
- Research Center for Hepatology and Gastroenterology, Hiroshima University, Hiroshima, Japan
| | - Yasutaka Ishii
- Department of Gastroenterology and Metabolism, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Masahiro Serikawa
- Department of Gastroenterology and Metabolism, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Masataka Tsuge
- Department of Gastroenterology and Metabolism, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
- Research Center for Hepatology and Gastroenterology, Hiroshima University, Hiroshima, Japan
| | - Michio Imamura
- Department of Gastroenterology and Metabolism, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
- Research Center for Hepatology and Gastroenterology, Hiroshima University, Hiroshima, Japan
| | - Hiroshi Aikata
- Department of Gastroenterology and Metabolism, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
- Research Center for Hepatology and Gastroenterology, Hiroshima University, Hiroshima, Japan
| | - C Nelson Hayes
- Department of Gastroenterology and Metabolism, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
- Research Center for Hepatology and Gastroenterology, Hiroshima University, Hiroshima, Japan
- RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Kazuaki Chayama
- Department of Gastroenterology and Metabolism, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan.
- Research Center for Hepatology and Gastroenterology, Hiroshima University, Hiroshima, Japan.
- RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.
| |
Collapse
|
40
|
Langedijk JAGM, Beuers UH, Oude Elferink RPJ. Cholestasis-Associated Pruritus and Its Pruritogens. Front Med (Lausanne) 2021; 8:639674. [PMID: 33791327 PMCID: PMC8006388 DOI: 10.3389/fmed.2021.639674] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 02/12/2021] [Indexed: 12/17/2022] Open
Abstract
Pruritus is a debilitating symptom of various cholestatic disorders, including primary biliary cholangitis (PBC), primary sclerosing cholangitis (PSC) and inherited progressive familial intrahepatic cholestasis (PFIC). The molecular mechanisms leading to cholestasis-associated pruritus are still unresolved and the involved pruritogens are indecisive. As a consequence of pruritus, patients suffer from sleep deprivation, loss of daytime concentration, auto-mutilation and sometimes even suicidal ideations. Current guideline-approved therapy of cholestasis-associated pruritus includes stepwise administration of several medications, which may alleviate complaints in some, but not all affected patients. Therefore, also experimental therapeutic approaches are required to improve patients' quality of life. This article reviews the current state of research on pruritogens and their receptors, and shortly discusses the most recent experimental therapies.
Collapse
Affiliation(s)
| | | | - Ronald P. J. Oude Elferink
- Amsterdam University Medical Centers, Tytgat Institute for Liver and Intestinal Research, Research Institute Amsterdam Gastroenterology, Endocrinology and Metabolism (AGEM), University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
41
|
Ray R, Sinha S, Aidinis V, Rai V. Atx regulates skeletal muscle regeneration via LPAR1 and promotes hypertrophy. Cell Rep 2021; 34:108809. [PMID: 33657371 DOI: 10.1016/j.celrep.2021.108809] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 01/19/2021] [Accepted: 02/09/2021] [Indexed: 12/24/2022] Open
Abstract
Muscle differentiation is a multifaceted and tightly controlled process required for the formation of skeletal muscle fibers. Satellite cells are the direct cellular contributors to muscle repair in injuries or disorders. Here, we show that autotaxin (Atx) expression and activity is required for satellite cell differentiation. Conditional ablation of Atx or its pharmacological inhibition impairs muscle repair. Mechanistically, we identify LPAR1 as the key receptor in Atx-LPA signaling. Myogenic gene array and pathway analysis identified that Atx-LPA signaling activates ribosomal protein S6 kinase (S6K), an mTOR-dependent master regulator of muscle cell growth via LPAR1. Furthermore, Atx transgenic mice show muscle hypertrophic effects and accelerated regeneration. Intramuscular injections of Atx/LPA show muscle hypertrophy. In addition, the regulatory effects of Atx on differentiation are conserved in human myoblasts. This study identifies Atx as a critical master regulator in murine and human muscles, identifying a promising extracellular ligand in muscle formation, regeneration, and hypertrophy.
Collapse
Affiliation(s)
- Rashmi Ray
- Institute of Life Sciences (An Autonomous Institute of Department of Biotechnology), Bhubaneswar 751023, India; Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Sunita Sinha
- Institute of Life Sciences (An Autonomous Institute of Department of Biotechnology), Bhubaneswar 751023, India; Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Vassilis Aidinis
- Biomedical Sciences Research Center "Alexander Fleming," 16672 Athens, Greece
| | - Vivek Rai
- Institute of Life Sciences (An Autonomous Institute of Department of Biotechnology), Bhubaneswar 751023, India.
| |
Collapse
|
42
|
Aqueous autotaxin and TGF-βs are promising diagnostic biomarkers for distinguishing open-angle glaucoma subtypes. Sci Rep 2021; 11:1408. [PMID: 33446826 PMCID: PMC7809106 DOI: 10.1038/s41598-021-81048-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 01/03/2021] [Indexed: 11/08/2022] Open
Abstract
The purpose of this study is to examine if aqueous autotaxin (ATX) and TGF-β levels could be used for differentiating glaucoma subtypes. This prospective observational study was performed using aqueous humor samples obtained from 281 consecutive patients. Open angle glaucoma patients were classified into three groups: primary open-angle glaucoma (POAG), secondary open-angle glaucoma (SOAG), and exfoliation glaucoma (XFG). Aqueous levels of ATX and TGF-βs were quantified. The AUC as well as sensitivity and specificity for the classification into normal and glaucoma subtypes using four indicators-ATX, TGF-β1, TGF-β2, and TGF-β3, upon the application of three machine learning methods. ATX, TGF-β1, and TGF-β3 were positively correlated with IOP, and ATX was significantly and negatively correlated with the mean deviation. From least absolute shrinkage and selection operator regression analysis, the AUC values to distinguish each subgroup [normal, POAG, SOAG, and XFG] ranged between 0.675 (POAG vs. normal) and 0.966 (XFG vs. normal), when four variables were used. High AUC values were obtained with ATX for discriminating XFG from normal eyes and with TGF-β3 for discriminating XFG from normal eyes, POAG, or SOAG. Aqueous TGF-β and ATX exhibited high diagnostic performance in detecting glaucoma subtypes, and could be promising biomarkers for glaucoma.
Collapse
|
43
|
Tan Z, Lei H, Guo M, Chen Y, Zhai X. An updated patent review of autotaxin inhibitors (2017-present). Expert Opin Ther Pat 2021; 31:421-434. [PMID: 33342311 DOI: 10.1080/13543776.2021.1867106] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
INTRODUCTION The ATX-LPA axis is an attractive target for therapeutic intervention in a variety of diseases, such as tumor metastasis, fibrosis, pruritus, multiple sclerosis, inflammation, autoimmune conditions, metabolic syndrome, and so on. Accordingly, considerable efforts have been devoted to the development of new chemical entities capable of modulating the ATX-LPA axis. AREAS COVERED This review aims to provide an overview of novel ATX inhibitors reported in patents from September 2016 to August 2020, discussing their structural characteristics and inhibitory potency in vitro and in vivo. EXPERT OPINION In the past four years, the classification of ATX inhibitors based on binding modes has brought great benefits to the discovery of more efficacious inhibitors. In addition to GLPG1690 currently in phase III clinical studies for IPF, BBT-877, and BLD-0409 as potent ATX inhibitors have been enrolled in phase I clinical evaluation; meanwhile, many effective molecules were also reported successively. However, most emerging ATX inhibitors in the last four years are closely analogs of previous entities, such as GLPG1690 and PF-8380, which translate into the urgently identification of ATX inhibitors with diverse structural features and promising properties in the near future.
Collapse
Affiliation(s)
- Zehui Tan
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, China
| | - Hongrui Lei
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, China
| | - Ming Guo
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, China
| | - Yuxiang Chen
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, China
| | - Xin Zhai
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, China
| |
Collapse
|
44
|
Zhang Q, Yang X, Wang Q, Zhang Y, Gao P, Li Z, Liu R, Xu H, Bi K, Li Q. "Modeling-Prediction" Strategy for Deep Profiling of Lysophosphatidic Acids by Liquid Chromatography-Mass Spectrometry: Exploration Biomarkers of Breast Cancer. J Chromatogr A 2020; 1634:461634. [PMID: 33176220 DOI: 10.1016/j.chroma.2020.461634] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 09/18/2020] [Accepted: 10/19/2020] [Indexed: 01/13/2023]
Abstract
Lysophosphatidic acids (LPAs) are important bioactive phospholipids consisting of various species involved in a wide array of physiological and pathological processes. However, LPAs were rarely identified in untargeted lipidomics studies because of the incompatibility with analytical methods. Moreover, in targeted studies, the coverages of LPAs remained unsatisfactorily low due to the limitation of reference standards. Herein, a "modeling-prediction" workflow for deep profiling of LPAs by liquid chromatography-mass spectrometry was developed. Multiple linear regression models of qualitative and quantitative parameters were established according to features of fatty acyl tails of the commercial standards to predict the corresponding parameters for unknown LPAs. Then 72 multiple reaction monitoring (MRM) transitions were monitored simultaneously and species of LPA 14:0, LPA 16:1, LPA 18:3, LPA 20:3 and LPA 20:5 were firstly characterized and quantified in plasma. Finally, the workflow was applied to explore the changes of LPAs in plasma of breast cancer patients compared with healthy volunteers. Multi-LPAs indexes with strong diagnostic ability for breast cancer were identified successfully using Student's t- test, orthogona partial least-squares discrimination analysis (OPLS-DA) and logistic regression- receiver operating characteristic (ROC) curve analysis. The proposed workflow with high sensitivity, high accuracy, high coverage and reliable identification would be a powerful complement to untargeted lipidomics and shed a light on the analysis of other lipids.
Collapse
Affiliation(s)
- Qian Zhang
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Xiao Yang
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Qian Wang
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Yiwen Zhang
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Peng Gao
- Metabolomics Core Facility of RHLCCC, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, United States
| | - Zuojing Li
- School of Medical Devices, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Ran Liu
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Huarong Xu
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Kaishun Bi
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Qing Li
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China.
| |
Collapse
|
45
|
The lysophospholipase D enzyme Gdpd3 is required to maintain chronic myelogenous leukaemia stem cells. Nat Commun 2020; 11:4681. [PMID: 32943626 PMCID: PMC7499193 DOI: 10.1038/s41467-020-18491-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Accepted: 08/26/2020] [Indexed: 02/02/2023] Open
Abstract
Although advanced lipidomics technology facilitates quantitation of intracellular lipid components, little is known about the regulation of lipid metabolism in cancer cells. Here, we show that disruption of the Gdpd3 gene encoding a lysophospholipase D enzyme significantly decreased self-renewal capacity in murine chronic myelogenous leukaemia (CML) stem cells in vivo. Sophisticated lipidomics analyses revealed that Gdpd3 deficiency reduced levels of certain lysophosphatidic acids (LPAs) and lipid mediators in CML cells. Loss of Gdpd3 also activated AKT/mTORC1 signalling and cell cycle progression while suppressing Foxo3a/β-catenin interaction within CML stem cell nuclei. Strikingly, CML stem cells carrying a hypomorphic mutation of Lgr4/Gpr48, which encodes a leucine-rich repeat (LRR)-containing G-protein coupled receptor (GPCR) acting downstream of Gdpd3, displayed inadequate disease-initiating capacity in vivo. Our data showing that lysophospholipid metabolism is required for CML stem cell maintenance in vivo establish a new, biologically significant mechanism of cancer recurrence that is independent of oncogene addiction. How lipid metabolism can affect cancer recurrence is still unclear. Here, the authors show that the lysophospholipase D Gdpd3 maintains self-renewal capacity of CML stem cells by regulating the quiescence, and AKT/mTORC1 and Foxo3a/β-catenin signalling in an oncogene-independent manner.
Collapse
|
46
|
Abdul Rahman M, Mohamad Haron DE, Hollows RJ, Abdul Ghani ZDF, Ali Mohd M, Chai WL, Ng CC, Lye MS, Karsani SA, Yap LF, Paterson IC. Profiling lysophosphatidic acid levels in plasma from head and neck cancer patients. PeerJ 2020; 8:e9304. [PMID: 32547888 PMCID: PMC7278886 DOI: 10.7717/peerj.9304] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 05/15/2020] [Indexed: 11/20/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) represents a significant world health problem, with approximately 600,000 new cases being diagnosed annually. The prognosis for patients with HNSCC is poor and, therefore, the identification of biomarkers for screening, diagnosis and prognostication would be clinically beneficial. A limited number of studies have used lipidomics to profile lipid species in the plasma of cancer patients. However, the profile and levels of lysophosphatidic acid (LPA) species have not been examined in HNSCC. In this study, a targeted lipidomics approach using liquid chromatography triple quadrupole mass spectrometry (LCMS/MS) was used to analyse the concentration of LPA (16:0 LPA, 18:0 LPA, 18:1 LPA, 18:2 LPA and 20:4 LPA) in the plasma of patients with oral squamous cell carcinoma (OSCC) and nasopharyngeal carcinoma (NPC), together with healthy controls. The levels of three LPA species (18:1 LPA, 18:2 LPA and 20:4 LPA) were significantly lower in the plasma of OSCC patients, whilst the concentrations of all five LPA species tested were significantly lower in plasma from NPC patients. Furthermore, the order of abundance of LPA species in plasma was different between the control and cancer groups, with 16:0 LPA, 18:0 LPA levels being more abundant in OSCC and NPC patients. Medium to strong correlations were observed using all pairs of LPA species and a clear separation of the normal and tumour groups was observed using PCA analysis. In summary, the results of this study showed that the levels of several LPA species in the plasma of patients with OSCC and NPC were lower than those from healthy individuals. Understanding these variations may provide novel insights into the role of LPA in these cancers.
Collapse
Affiliation(s)
- Mariati Abdul Rahman
- Department of Oral and Craniofacial Sciences, University of Malaya, Kuala Lumpur, Malaysia.,Department of Craniofacial Diagnostics and Biosciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | | | - Robert J Hollows
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | | | - Mustafa Ali Mohd
- Faculty of Medicine and Health Sciences, UCSI University, Kuala Lumpur, Malaysia
| | - Wen Lin Chai
- Department of Restorative Dentistry, University of Malaya, Kuala Lumpur, Malaysia
| | - Ching Ching Ng
- Institute of Biological Sciences, University of Malaya, Kuala Lumpur, Malaysia
| | - Munn Sann Lye
- Department of Community Medicine, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | | | - Lee Fah Yap
- Department of Oral and Craniofacial Sciences, University of Malaya, Kuala Lumpur, Malaysia
| | - Ian C Paterson
- Department of Oral and Craniofacial Sciences, University of Malaya, Kuala Lumpur, Malaysia.,Oral Cancer Research and Coordinating Centre, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
47
|
Prevention of age-associated neuronal hyperexcitability with improved learning and attention upon knockout or antagonism of LPAR2. Cell Mol Life Sci 2020; 78:1029-1050. [PMID: 32468095 PMCID: PMC7897625 DOI: 10.1007/s00018-020-03553-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 04/16/2020] [Accepted: 05/13/2020] [Indexed: 12/20/2022]
Abstract
Recent studies suggest that synaptic lysophosphatidic acids (LPAs) augment glutamate-dependent cortical excitability and sensory information processing in mice and humans via presynaptic LPAR2 activation. Here, we studied the consequences of LPAR2 deletion or antagonism on various aspects of cognition using a set of behavioral and electrophysiological analyses. Hippocampal neuronal network activity was decreased in middle-aged LPAR2−/− mice, whereas hippocampal long-term potentiation (LTP) was increased suggesting cognitive advantages of LPAR2−/− mice. In line with the lower excitability, RNAseq studies revealed reduced transcription of neuronal activity markers in the dentate gyrus of the hippocampus in naïve LPAR2−/− mice, including ARC, FOS, FOSB, NR4A, NPAS4 and EGR2. LPAR2−/− mice behaved similarly to wild-type controls in maze tests of spatial or social learning and memory but showed faster and accurate responses in a 5-choice serial reaction touchscreen task requiring high attention and fast spatial discrimination. In IntelliCage learning experiments, LPAR2−/− were less active during daytime but normally active at night, and showed higher accuracy and attention to LED cues during active times. Overall, they maintained equal or superior licking success with fewer trials. Pharmacological block of the LPAR2 receptor recapitulated the LPAR2−/− phenotype, which was characterized by economic corner usage, stronger daytime resting behavior and higher proportions of correct trials. We conclude that LPAR2 stabilizes neuronal network excitability upon aging and allows for more efficient use of resting periods, better memory consolidation and better performance in tasks requiring high selective attention. Therapeutic LPAR2 antagonism may alleviate aging-associated cognitive dysfunctions.
Collapse
|
48
|
Chun J, Kihara Y, Jonnalagadda D, Blaho VA. Fingolimod: Lessons Learned and New Opportunities for Treating Multiple Sclerosis and Other Disorders. Annu Rev Pharmacol Toxicol 2020; 59:149-170. [PMID: 30625282 DOI: 10.1146/annurev-pharmtox-010818-021358] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Fingolimod (FTY720, Gilenya) was the first US Food and Drug Administration-approved oral therapy for relapsing forms of multiple sclerosis (MS). Research on modified fungal metabolites converged with basic science studies that had identified lysophospholipid (LP) sphingosine 1-phosphate (S1P) receptors, providing mechanistic insights on fingolimod while validating LP receptors as drug targets. Mechanism of action (MOA) studies identified receptor-mediated processes involving the immune system and the central nervous system (CNS). These dual actions represent a more general theme for S1P and likely other LP receptor modulators. Fingolimod's direct CNS activities likely contribute to its efficacy in MS, with particular relevance to treating progressive disease stages and forms that involve neurodegeneration. The evolving understanding of fingolimod's MOA has provided strategies for developing next-generation compounds with superior attributes, suggesting new ways to target S1P as well as other LP receptor modulators for novel therapeutics in the CNS and other organ systems.
Collapse
Affiliation(s)
- Jerold Chun
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California 92037, USA;
| | - Yasuyuki Kihara
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California 92037, USA;
| | - Deepa Jonnalagadda
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California 92037, USA;
| | - Victoria A Blaho
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California 92037, USA;
| |
Collapse
|
49
|
Snaebjornsson MT, Janaki-Raman S, Schulze A. Greasing the Wheels of the Cancer Machine: The Role of Lipid Metabolism in Cancer. Cell Metab 2020; 31:62-76. [PMID: 31813823 DOI: 10.1016/j.cmet.2019.11.010] [Citation(s) in RCA: 560] [Impact Index Per Article: 112.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 10/27/2019] [Accepted: 11/12/2019] [Indexed: 12/12/2022]
Abstract
Altered lipid metabolism is among the most prominent metabolic alterations in cancer. Enhanced synthesis or uptake of lipids contributes to rapid cancer cell growth and tumor formation. Lipids are a highly complex group of biomolecules that not only constitute the structural basis of biological membranes but also function as signaling molecules and an energy source. Here, we summarize recent evidence implicating altered lipid metabolism in different aspects of the cancer phenotype and discuss potential strategies by which targeting lipid metabolism could provide a therapeutic window for cancer treatment.
Collapse
Affiliation(s)
- Marteinn Thor Snaebjornsson
- Biochemistry and Molecular Biology, Theodor-Boveri-Institute, Biocenter, Am Hubland, 97074 Würzburg, Germany; Division of Tumor Metabolism and Microenvironment, German Cancer Research Center, Im Neuenheimer Feld 581, 69120 Heidelberg, Germany.
| | - Sudha Janaki-Raman
- Biochemistry and Molecular Biology, Theodor-Boveri-Institute, Biocenter, Am Hubland, 97074 Würzburg, Germany.
| | - Almut Schulze
- Biochemistry and Molecular Biology, Theodor-Boveri-Institute, Biocenter, Am Hubland, 97074 Würzburg, Germany; Division of Tumor Metabolism and Microenvironment, German Cancer Research Center, Im Neuenheimer Feld 581, 69120 Heidelberg, Germany.
| |
Collapse
|
50
|
Deregulated Lysophosphatidic Acid Metabolism and Signaling in Liver Cancer. Cancers (Basel) 2019; 11:cancers11111626. [PMID: 31652837 PMCID: PMC6893780 DOI: 10.3390/cancers11111626] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 10/18/2019] [Accepted: 10/20/2019] [Indexed: 02/06/2023] Open
Abstract
Liver cancer is one of the leading causes of death worldwide due to late diagnosis and scarcity of treatment options. The major risk factor for liver cancer is cirrhosis with the underlying causes of cirrhosis being viral infection (hepatitis B or C), metabolic deregulation (Non-alcoholic fatty liver disease (NAFLD) in the presence of obesity and diabetes), alcohol or cholestatic disorders. Lysophosphatidic acid (LPA) is a bioactive phospholipid with numerous effects, most of them compatible with the hallmarks of cancer (proliferation, migration, invasion, survival, evasion of apoptosis, deregulated metabolism, neoangiogenesis, etc.). Autotaxin (ATX) is the enzyme responsible for the bulk of extracellular LPA production, and together with LPA signaling is involved in chronic inflammatory diseases, fibrosis and cancer. This review discusses the most important findings and the mechanisms related to ATX/LPA/LPAR involvement on metabolic, viral and cholestatic liver disorders and their progression to liver cancer in the context of human patients and mouse models. It focuses on the role of ATX/LPA in NAFLD development and its progression to liver cancer as NAFLD has an increasing incidence which is associated with the increasing incidence of liver cancer. Bearing in mind that adipose tissue accounts for the largest amount of LPA production, many studies have implicated LPA in adipose tissue metabolism and inflammation, liver steatosis, insulin resistance, glucose intolerance and lipogenesis. At the same time, LPA and ATX play crucial roles in fibrotic diseases. Given that hepatocellular carcinoma (HCC) is usually developed on the background of liver fibrosis, therapies that both delay the progression of fibrosis and prevent its development to malignancy would be very promising. Therefore, ATX/LPA signaling appears as an attractive therapeutic target as evidenced by the fact that it is involved in both liver fibrosis progression and liver cancer development.
Collapse
|