1
|
Ayala-García P, Herrero-Gómez I, Jiménez-Guerrero I, Otto V, Moreno-de Castro N, Müsken M, Jänsch L, van Ham M, Vinardell JM, López-Baena FJ, Ollero FJ, Pérez-Montaño F, Borrero-de Acuña JM. Extracellular Vesicle-Driven Crosstalk between Legume Plants and Rhizobia: The Peribacteroid Space of Symbiosomes as a Protein Trafficking Interface. J Proteome Res 2025; 24:94-110. [PMID: 39665174 DOI: 10.1021/acs.jproteome.4c00444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
Prokaryotes and eukaryotes secrete extracellular vesicles (EVs) into the surrounding milieu to preserve and transport elevated concentrations of biomolecules across long distances. EVs encapsulate metabolites, DNA, RNA, and proteins, whose abundance and composition fluctuate depending on environmental cues. EVs are involved in eukaryote-to-prokaryote communication owing to their ability to navigate different ecological niches and exchange molecular cargo between the two domains. Among the different bacterium-host relationships, rhizobium-legume symbiosis is one of the closest known to nature. A crucial developmental stage of symbiosis is the formation of N2-fixing root nodules by the plant. These nodules contain endocytosed rhizobia─called bacteroids─confined by plant-derived peribacteroid membranes. The unrestricted interface between the bacterial external membrane and the peribacteroid membrane is the peribacteroid space. Many molecular aspects of symbiosis have been studied, but the interbacterial and interdomain molecule trafficking by EVs in the peribacteroid space has not been questioned yet. Here, we unveil intensive EV trafficking within the symbiosome interface of several rhizobium-legume dual systems by developing a robust EV isolation procedure. We analyze the EV-encased proteomes from the peribacteroid space of each bacterium-host partnership, uncovering both conserved and differential traits of every symbiotic system. This study opens the gates for designing EV-based biotechnological tools for sustainable agriculture.
Collapse
Affiliation(s)
- Paula Ayala-García
- Department of Microbiology, Faculty of Biology, Universidad de Sevilla, Av. de la Reina Mercedes 6, 41012 Sevilla, Spain
| | - Irene Herrero-Gómez
- Department of Microbiology, Faculty of Biology, Universidad de Sevilla, Av. de la Reina Mercedes 6, 41012 Sevilla, Spain
| | - Irene Jiménez-Guerrero
- Department of Microbiology, Faculty of Biology, Universidad de Sevilla, Av. de la Reina Mercedes 6, 41012 Sevilla, Spain
| | - Viktoria Otto
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstr. 7, 38106 Braunschweig, Germany
| | - Natalia Moreno-de Castro
- Department of Microbiology, Faculty of Biology, Universidad de Sevilla, Av. de la Reina Mercedes 6, 41012 Sevilla, Spain
| | - Mathias Müsken
- Central Facility for Microscopy, Helmholtz Centre for Infection Research, Inhoffenstraße 7, 38124 Braunschweig, Germany
| | - Lothar Jänsch
- Cellular Proteome Research, Helmholtz Centre for Infection Research, Inhoffenstraße 7, 38124 Braunschweig, Germany
| | - Marco van Ham
- Cellular Proteome Research, Helmholtz Centre for Infection Research, Inhoffenstraße 7, 38124 Braunschweig, Germany
| | - José-María Vinardell
- Department of Microbiology, Faculty of Biology, Universidad de Sevilla, Av. de la Reina Mercedes 6, 41012 Sevilla, Spain
| | - Francisco Javier López-Baena
- Department of Microbiology, Faculty of Biology, Universidad de Sevilla, Av. de la Reina Mercedes 6, 41012 Sevilla, Spain
| | - Francisco Javier Ollero
- Department of Microbiology, Faculty of Biology, Universidad de Sevilla, Av. de la Reina Mercedes 6, 41012 Sevilla, Spain
| | - Francisco Pérez-Montaño
- Department of Microbiology, Faculty of Biology, Universidad de Sevilla, Av. de la Reina Mercedes 6, 41012 Sevilla, Spain
| | - José Manuel Borrero-de Acuña
- Department of Microbiology, Faculty of Biology, Universidad de Sevilla, Av. de la Reina Mercedes 6, 41012 Sevilla, Spain
| |
Collapse
|
2
|
Nethmini RT, Zhao H, Pan L, Qin X, Huang J, He Q, Shi X, Jiang G, Hou Q, Chen Q, Li X, Dong K, Xie L, Li N. Thermal sensitivity and niche plasticity of generalist and specialist leaf-endophytic bacteria in Mangrove Kandelia obovata. Commun Biol 2025; 8:5. [PMID: 39753754 PMCID: PMC11699152 DOI: 10.1038/s42003-024-07446-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 12/26/2024] [Indexed: 01/06/2025] Open
Abstract
Leaf endospheres harbor diverse bacterial communities, comprising generalists and specialists, that profoundly affect ecosystem functions. However, the ecological dynamics of generalist and specialist leaf-endophytic bacteria and their responses to climate change remain poorly understood. We investigated the diversity and environmental responses of generalist and specialist bacteria within the leaf endosphere of mangroves across China. Our findings show a predominance of specialists in the mangrove leaf endosphere. Temperature is the key factor driving community dissimilarity in both groups, yet it negatively influences the alpha diversity. Soil nutritional factors, particularly phosphate for generalists and total organic carbon for specialists are critical in shaping the functional profiles. Interestingly, temperature has a limited impact on functional profiles. Stochastic processes govern community assembly in both bacterial groups, altering the β-nearest taxon indices as temperatures increase. Our findings indicate that the halophytic leaf endosphere favors microbial niche specialization, due to its unique microenvironment and discrete niches, showing thermal sensitivity in terms of the microbial community profile. This study provides insights into niche differentiation and environmental adaptation mechanisms of leaf endophytic microbes in woody halophytes in response to environmental perturbations.
Collapse
Affiliation(s)
- Rajapakshalage Thashikala Nethmini
- Key Laboratory of Climate, Resources and Environment in Continental Shelf Sea and Deep Sea of Department of Education of Guangdong Province, Department of Oceanography, Key Laboratory for Coastal Ocean Variation and Disaster Prediction, College of Ocean and Meteorology, Guangdong Ocean University, Zhanjiang, China
| | - Huaxian Zhao
- Key Laboratory of Environment Change and Resources Use in Beibu Gulf, Ministry of Education (Nanning Normal University), Nanning, Guangxi, China
| | - Lianghao Pan
- Guangxi Academy of Marine Sciences (Guangxi Mangrove Research Center), Guangxi Key Lab of Mangrove Conservation and Utilization, Guangxi Academy of Sciences, Beihai, Guangxi, China
| | - Xinyi Qin
- Key Laboratory of Environment Change and Resources Use in Beibu Gulf, Ministry of Education (Nanning Normal University), Nanning, Guangxi, China
| | | | - Qing He
- Key Laboratory of Climate, Resources and Environment in Continental Shelf Sea and Deep Sea of Department of Education of Guangdong Province, Department of Oceanography, Key Laboratory for Coastal Ocean Variation and Disaster Prediction, College of Ocean and Meteorology, Guangdong Ocean University, Zhanjiang, China
| | - Xiaofang Shi
- Guangxi Academy of Marine Sciences (Guangxi Mangrove Research Center), Guangxi Key Lab of Mangrove Conservation and Utilization, Guangxi Academy of Sciences, Beihai, Guangxi, China
| | - Gonglingxia Jiang
- Key Laboratory of Climate, Resources and Environment in Continental Shelf Sea and Deep Sea of Department of Education of Guangdong Province, Department of Oceanography, Key Laboratory for Coastal Ocean Variation and Disaster Prediction, College of Ocean and Meteorology, Guangdong Ocean University, Zhanjiang, China
| | - Qinghua Hou
- Key Laboratory of Climate, Resources and Environment in Continental Shelf Sea and Deep Sea of Department of Education of Guangdong Province, Department of Oceanography, Key Laboratory for Coastal Ocean Variation and Disaster Prediction, College of Ocean and Meteorology, Guangdong Ocean University, Zhanjiang, China
| | - Qingxiang Chen
- Key Laboratory of Climate, Resources and Environment in Continental Shelf Sea and Deep Sea of Department of Education of Guangdong Province, Department of Oceanography, Key Laboratory for Coastal Ocean Variation and Disaster Prediction, College of Ocean and Meteorology, Guangdong Ocean University, Zhanjiang, China
| | - Xiaolei Li
- Key Laboratory of Climate, Resources and Environment in Continental Shelf Sea and Deep Sea of Department of Education of Guangdong Province, Department of Oceanography, Key Laboratory for Coastal Ocean Variation and Disaster Prediction, College of Ocean and Meteorology, Guangdong Ocean University, Zhanjiang, China
| | - Ke Dong
- Department of Biological Sciences, Kyonggi University, 154-42, Gwanggyosan-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16227, South Korea, Republic of Korea
| | - Lingling Xie
- Key Laboratory of Climate, Resources and Environment in Continental Shelf Sea and Deep Sea of Department of Education of Guangdong Province, Department of Oceanography, Key Laboratory for Coastal Ocean Variation and Disaster Prediction, College of Ocean and Meteorology, Guangdong Ocean University, Zhanjiang, China
| | - Nan Li
- Key Laboratory of Climate, Resources and Environment in Continental Shelf Sea and Deep Sea of Department of Education of Guangdong Province, Department of Oceanography, Key Laboratory for Coastal Ocean Variation and Disaster Prediction, College of Ocean and Meteorology, Guangdong Ocean University, Zhanjiang, China.
| |
Collapse
|
3
|
Wendlandt CE, Basu S, Montoya AP, Roberts P, Stewart JD, Coffin AB, Crowder DW, Kiers ET, Porter SS. Managing Friends and Foes: Sanctioning Mutualists in Mixed-Infection Nodules Trades off With Defense Against Antagonists. Evol Appl 2025; 18:e70064. [PMID: 39742388 PMCID: PMC11683190 DOI: 10.1111/eva.70064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 11/30/2024] [Accepted: 12/03/2024] [Indexed: 01/03/2025] Open
Abstract
Successful plant growth requires plants to minimize harm from antagonists and maximize benefit from mutualists. However, these outcomes may be difficult to achieve simultaneously, since plant defenses activated in response to antagonists can compromise mutualism function, and plant resources allocated to defense may trade off with resources allocated to managing mutualists. Here, we investigate how antagonist attack affects plant ability to manage mutualists with sanctions, in which a plant rewards cooperative mutualists and/or punishes uncooperative mutualists. We studied interactions among wild and domesticated pea plants, pea aphids, an aphid-vectored virus (Pea Enation Mosaic Virus, PEMV), and mutualistic rhizobial bacteria that fix nitrogen in root nodules. Using isogenic rhizobial strains that differ in their ability to fix nitrogen and express contrasting fluorescent proteins, we found that peas demonstrated sanctions in both singly-infected nodules and mixed-infection nodules containing both strains. However, the plant's ability to manage mutualists in mixed-infection nodules traded off with its ability to defend against antagonists: when plants were attacked by aphids, they stopped sanctioning within mixed-infection nodules, and plants that exerted stricter sanctions within nodules during aphid attack accumulated higher levels of the aphid-vectored virus, PEMV. Our findings suggest that plants engaged in defense against antagonists suffer a reduced ability to select for the most beneficial symbionts in mixed-infection tissues. Mixed-infection tissues may be relatively common in this mutualism, and reduced plant sanctions in these tissues could provide a refuge for uncooperative mutualists and compromise the benefit that plants obtain from mutualistic symbionts during antagonist attack. Understanding the conflicting selective pressures plants face in complex biotic environments will be crucial for breeding crop varieties that can maximize benefits from mutualists even when they encounter antagonists.
Collapse
Affiliation(s)
| | - Saumik Basu
- Department of EntomologyWashington State UniversityPullmanWashingtonUSA
- Department of EntomologyUniversity of GeorgiaTiftonGeorgiaUSA
| | | | - Paige Roberts
- School of Biological SciencesWashington State UniversityVancouverWashingtonUSA
| | - Justin D. Stewart
- Amsterdam Institute for Life and Environment (A‐LIFE), Section Ecology & EvolutionVrije Universiteit AmsterdamAmsterdamThe Netherlands
| | - Allison B. Coffin
- Department of Integrative Physiology and NeuroscienceWashington State UniversityVancouverWashingtonUSA
| | - David W. Crowder
- Department of EntomologyWashington State UniversityPullmanWashingtonUSA
| | - E. Toby Kiers
- Amsterdam Institute for Life and Environment (A‐LIFE), Section Ecology & EvolutionVrije Universiteit AmsterdamAmsterdamThe Netherlands
| | - Stephanie S. Porter
- School of Biological SciencesWashington State UniversityVancouverWashingtonUSA
| |
Collapse
|
4
|
Bellés-Sancho P, Golaz D, Paszti S, Vitale A, Liu Y, Bailly A, Eberl L, James EK, Pessi G. Tn-seq profiling reveals that NodS of the beta-rhizobium Paraburkholderia phymatum is detrimental for nodulating soybean. Commun Biol 2024; 7:1706. [PMID: 39730742 DOI: 10.1038/s42003-024-07385-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 12/09/2024] [Indexed: 12/29/2024] Open
Abstract
The beta-rhizobial strain Paraburkholderia phymatum STM815T is noteworthy for its wide host range in nodulating legumes, primarily mimosoids (over 50 different species) but also some papilionoids. It cannot, however, nodulate soybean (Glycine max [L.] Merr.), one of the world's most important crops. Here, we constructed a highly saturated genome-wide transposon library of a P. phymatum strain and employed a transposon sequencing (Tn-seq) approach to investigate the underlying genetic mechanisms of symbiotic incompatibility between P. phymatum and soybean. Soybean seedlings inoculated with the P. phymatum Tn-seq library display nodules on the roots that are mainly occupied by different mutants in a gene, nodS, coding for a methyltransferase involved in the biosynthesis of nodulation factors. The construction of a nodS deletion strain and a complemented mutant confirms that nodS is responsible for the nodulation-incompatibility of P. phymatum with soybean. Moreover, infection tests with different host plants reveal that NodS is necessary for optimal nodulation of common bean (Phaseolus vulgaris), but it is not required for nodulation of its natural host Mimosa pudica. In conclusion, our results suggest that NodS is involved in determining nodulation specificity of P. phymatum.
Collapse
Affiliation(s)
- Paula Bellés-Sancho
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland.
| | - Daphné Golaz
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Sarah Paszti
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Alessandra Vitale
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
- Laboratoires d'analyses médicales, Clinique de La Source, Lausanne, Switzerland
| | - Yilei Liu
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Aurélien Bailly
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Leo Eberl
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Euan K James
- Ecological Sciences, The James Hutton Institute, Invergowrie, Dundee, United Kingdom
| | - Gabriella Pessi
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
5
|
Domingo-Serrano L, Sanchis-López C, Alejandre C, Soldek J, Palacios JM, Albareda M. A microaerobically induced small heat shock protein contributes to Rhizobium leguminosarum/ Pisum sativum symbiosis and interacts with a wide range of bacteroid proteins. Appl Environ Microbiol 2024:e0138524. [PMID: 39714151 DOI: 10.1128/aem.01385-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 11/21/2024] [Indexed: 12/24/2024] Open
Abstract
During the establishment of the symbiosis with legume plants, rhizobia are exposed to hostile physical and chemical microenvironments to which adaptations are required. Stress response proteins including small heat shock proteins (sHSPs) were previously shown to be differentially regulated in bacteroids induced by Rhizobium leguminosarum bv. viciae UPM791 in different hosts. In this work, we undertook a functional analysis of the host-dependent sHSP RLV_1399. A rlv_1399-deleted mutant strain was impaired in the symbiotic performance with peas but not with lentil plants. Expression of rlv_1399 gene was induced under microaerobic conditions in a FnrN-dependent manner consistent with the presence of an anaerobox in its regulatory region. Overexpression of this sHSP improves the viability of bacterial cultures following exposure to hydrogen peroxide and to cationic nodule-specific cysteine-rich (NCR) antimicrobial peptides. Co-purification experiments have identified proteins related to nitrogenase synthesis, stress response, carbon and nitrogen metabolism, and to other relevant cellular functions as potential substrates for RLV_1399 in pea bacteroids. These results, along with the presence of unusually high number of copies of shsp genes in rhizobial genomes, indicate that sHSPs might play a relevant role in the adaptation of the bacteria against stress conditions inside their host.IMPORTANCEThe identification and analysis of the mechanisms involved in host-dependent bacterial stress response is important to develop optimal Rhizobium/legume combinations to maximize nitrogen fixation for inoculant development and might have also applications to extend nitrogen fixation to other crops. The data presented in this work indicate that sHSP RLV_1399 is part of the bacterial stress response to face specific stress conditions offered by each legume host. The identification of a wide diversity of sHSP potential targets reveals the potential of this protein to protect essential bacteroid functions. The finding that nitrogenase is the most abundant RLV_1399 substrate suggests that this protein is required to obtain an optimal nitrogen-fixing symbiosis.
Collapse
Affiliation(s)
- Lucía Domingo-Serrano
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Madrid, Spain
| | - Claudia Sanchis-López
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Madrid, Spain
| | - Carla Alejandre
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Madrid, Spain
| | - Joanna Soldek
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Madrid, Spain
| | - José Manuel Palacios
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Madrid, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid, Spain
| | - Marta Albareda
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Madrid, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid, Spain
| |
Collapse
|
6
|
Jia Y, Huan H, Zhang W, Wan B, Sun J, Tu Z. Soil infiltration mechanisms under plant root disturbance in arid and semi-arid grasslands and the response of solute transport in rhizosphere soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177633. [PMID: 39579890 DOI: 10.1016/j.scitotenv.2024.177633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 11/13/2024] [Accepted: 11/17/2024] [Indexed: 11/25/2024]
Abstract
The symbiotic relationship between plant roots and soil infiltration is of great significance for sustainable development of the agriculture and forestry. Through detailed summary of the relationship between root morphological parameters and soil infiltration rates in arid and semi-arid grasslands mainly with leguminous herbs, gramineous herbs and shrubs, the mechanisms that key parameters (root length density, surface area density, diameter, biomass density, architecture, secretion and decay rate) disturb soil infiltration through affecting soil structure such as porosity, soil bulk density and soil organic matter (SOM) are elucidated. Furthermore, the degree of root disturbance on soil structure and infiltration rates are partially clarified by constructing quantitatively structural equation modeling path diagrams. The results show roots have the most significant effect to increase soil infiltration rates through increasing non-capillary pores, contributing to >50 % of the positive effect. In contrast, the increased SOM influenced by roots can obstruct soil infiltration and offset about 25 % of the positive effects. In addition, the impact of root disturbance on transport of nutrients, pesticide and pathogenic microorganisms in rhizosphere soil is also discussed to analyze the potential influence on food and water environmental safety. The presence of roots reduces the amount of leachate-prone nutrients, but their disturbance increases the rate of soil infiltration thus accelerates transport of solutes into deeper soil. Meanwhile, the rhizosphere alters the environmental behavior of pesticides and pathogenic microorganisms, increasing risk of plant roots exposure to them. At present, systematically quantifying the interference of plant roots on soil structure and soil infiltration capacity remains a major challenge. It is necessary to further improve the research methodology and strengthen the study of root soil interaction mechanisms, providing scientific basis and technical support for sustainable agricultural development and ecological environment protection.
Collapse
Affiliation(s)
- Yuanyuan Jia
- Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, Changchun 130021, China; College of New Energy and Environment, Jilin University, Changchun 130021, China
| | - Huan Huan
- Technical Centre for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing 100012, China
| | - Wenjing Zhang
- Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, Changchun 130021, China; College of New Energy and Environment, Jilin University, Changchun 130021, China.
| | - Bo Wan
- Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, Changchun 130021, China; College of New Energy and Environment, Jilin University, Changchun 130021, China
| | - Jiaming Sun
- Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, Changchun 130021, China; College of New Energy and Environment, Jilin University, Changchun 130021, China
| | - Zhipeng Tu
- Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, Changchun 130021, China; College of New Energy and Environment, Jilin University, Changchun 130021, China
| |
Collapse
|
7
|
Deak EA, Martin TN, Stecca JDL, Conceição GM, Ferreira MM, Rumpel VS, Grolli Carvalho AF, Baena FJL. Sulfur fertilization and inoculation of soybean with Azospirillum brasilense and Bradyrhizobium spp. can improve grain yield and quality. Braz J Microbiol 2024:10.1007/s42770-024-01585-7. [PMID: 39666164 DOI: 10.1007/s42770-024-01585-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 12/05/2024] [Indexed: 12/13/2024] Open
Abstract
The success of biological nitrogen fixation (BNF) in soybean depends on two crucial factors, viz., seed inoculation and soil nutritional balance. The macronutrient sulfur (S) is vital to the formation of ferredoxin, a common source of electrons that controls the proper functioning of the subunits of the enzyme nitrogenase, responsible for the conversion of atmospheric nitrogen (N2) to ammonia (NH3+). However, as the S dynamics is a complex process in soil, it may cause to the plants to be sulfur limited. This study aims at assessing the relationship between S fertilization through the use of elemental-S, and bacterial inoculation (Bradyrhizobium spp.) and co-inoculation (Bradyrhizobium spp. and Azospirillum brasilense) on nodulation, production and quality of soybean. The study was performed on the 2017/2018 and 2018/2019 crop seasons, involving four experiments where two were carried out in Santa Maria and two in Augusto Pestana, Rio Grande do Sul, Brazil. Adopting the randomized experimental block design, the treatments included a 3 × 4 factorial design, with three inoculations (Non-inoculated control, Inoculation and Co-inoculation) together with four doses of S (0, 20, 40 and 60 kg ha- 1). Evaluations were done of the plant nodulation, accumulation of shoot dry matter, yield constituents, and quality of the soybean grain. S fertilization and co-inoculation promote an increase in plant nodulation, proving to be an important strategy to support nitrogen supply to soybean crops. The application of elemental sulfur in doses between 20 and 40 kg ha- 1 promotes nodulation, the accumulation of dry mass of plants, the productivity and quality of soybeans, in addition to benefiting nodulation when combined with co-inoculation of Bradyrhizobium ssp. and Azospirillum brasilense.
Collapse
Affiliation(s)
- Evandro Ademir Deak
- Departamento de Fitotecnia, Universidade Federal de Santa Maria - UFSM, Santa Maria, Rio Grande do Sul, Brazil
| | - Thomas Newton Martin
- Departamento de Fitotecnia, Universidade Federal de Santa Maria - UFSM, Santa Maria, Rio Grande do Sul, Brazil.
| | | | | | - Matheus Martins Ferreira
- Departamento de Fitotecnia, Universidade Federal de Santa Maria - UFSM, Santa Maria, Rio Grande do Sul, Brazil
| | - Vítor Sauzem Rumpel
- Universidade Regional do Noroeste do Estado do Rio Grande do Sul - UNIJUÍ, Ijuí, Rio Grande do Sul, Brazil
| | | | | |
Collapse
|
8
|
Sørensen MES, Stiller ML, Kröninger L, Nowack ECM. Protein import into bacterial endosymbionts and evolving organelles. FEBS J 2024. [PMID: 39658314 DOI: 10.1111/febs.17356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 10/28/2024] [Accepted: 12/03/2024] [Indexed: 12/12/2024]
Abstract
Bacterial endosymbionts are common throughout the eukaryotic tree of life and provide a range of essential functions. The intricate integration of bacterial endosymbionts into a host led to the formation of the energy-converting organelles, mitochondria and plastids, that have shaped eukaryotic evolution. Protein import from the host has been regarded as one of the distinguishing features of organelles as compared to endosymbionts. In recent years, research has delved deeper into a diverse range of endosymbioses and discovered evidence for 'exceptional' instances of protein import outside of the canonical organelles. Here we review the current evidence for protein import into bacterial endosymbionts. We cover both 'recently evolved' organelles, where there is evidence for hundreds of imported proteins, and endosymbiotic systems where currently only single protein import candidates are described. We discuss the challenges of establishing protein import machineries and the diversity of mechanisms that have independently evolved to solve them. Understanding these systems and the different independent mechanisms, they have evolved is critical to elucidate how cellular integration arises and deepens at the endosymbiont to organelle interface. We finish by suggesting approaches that could be used in the future to address the open questions. Overall, we believe that the evidence now suggests that protein import into bacterial endosymbionts is more common than generally realized, and thus that there is an increasing number of partnerships that blur the distinction between endosymbiont and organelle.
Collapse
Affiliation(s)
- Megan E S Sørensen
- Department of Biology, Institute of Microbial Cell Biology, Heinrich Heine University Düsseldorf, Germany
| | - Mygg L Stiller
- Department of Biology, Institute of Microbial Cell Biology, Heinrich Heine University Düsseldorf, Germany
| | - Lena Kröninger
- Department of Biology, Institute of Microbial Cell Biology, Heinrich Heine University Düsseldorf, Germany
| | - Eva C M Nowack
- Department of Biology, Institute of Microbial Cell Biology, Heinrich Heine University Düsseldorf, Germany
| |
Collapse
|
9
|
Fuentes-Romero F, Mercogliano M, De Chiara S, Alias-Villegas C, Navarro-Gómez P, Acosta-Jurado S, Silipo A, Medina C, Rodríguez-Carvajal MÁ, Dardanelli MS, Ruiz-Sainz JE, López-Baena FJ, Molinaro A, Vinardell JM, Di Lorenzo F. Exopolysaccharide is detrimental for the symbiotic performance of Sinorhizobium fredii HH103 mutants with a truncated lipopolysaccharide core. Biochem J 2024; 481:1621-1637. [PMID: 39450641 DOI: 10.1042/bcj20240599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/22/2024] [Accepted: 10/24/2024] [Indexed: 10/26/2024]
Abstract
The nitrogen-fixing rhizobia-legume symbiosis relies on a complex interchange of molecular signals between the two partners during the whole interaction. On the bacterial side, different surface polysaccharides, such as lipopolysaccharide (LPS) and exopolysaccharide (EPS), might play important roles for the success of the interaction. In a previous work we studied two Sinorhizobium fredii HH103 mutants affected in the rkpK and lpsL genes, which are responsible for the production of glucuronic acid and galacturonic acid, respectively. Both mutants produced an altered LPS, and the rkpK mutant, in addition, lacked EPS. These mutants were differently affected in symbiosis with Glycine max and Vigna unguiculata, with the lpsL mutant showing a stronger impairment than the rkpK mutant. In the present work we have further investigated the LPS structure and the symbiotic abilities of the HH103 lpsL and rkpK mutants. We demonstrate that both strains produce the same LPS, with a truncated core oligosaccharide devoid of uronic acids. We show that the symbiotic performance of the lpsL mutant with Macroptilium atropurpureum and Glycyrrhiza uralensis is worse than that of the rkpK mutant. Introduction of an exoA mutation (which avoids EPS production) in HH103 lpsL improved its symbiotic performance with G. max, M. atropurpureum, and G. uralensis to the level exhibited by HH103 rkpK, suggesting that the presence of EPS might hide the truncated LPS produced by the former mutant.
Collapse
Affiliation(s)
| | - Marcello Mercogliano
- Department of Chemical Sciences and Task Force for Microbiome Studies, University of Naples Federico II, Napoli, Italy
| | - Stefania De Chiara
- Department of Chemical Sciences and Task Force for Microbiome Studies, University of Naples Federico II, Napoli, Italy
| | | | - Pilar Navarro-Gómez
- Department of Microbiology, Faculty of Biology, University of Seville, Sevilla, Spain
| | | | - Alba Silipo
- Department of Chemical Sciences and Task Force for Microbiome Studies, University of Naples Federico II, Napoli, Italy
- CEINGE-Biotecnologie Avanzate Franco Salvatore, Napoli, Italy
| | - Carlos Medina
- Department of Microbiology, Faculty of Biology, University of Seville, Sevilla, Spain
| | | | - Marta S Dardanelli
- Departamento de Biología Molecular, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto-INBIAS, CONICET, Córdoba, Argentina
| | | | | | - Antonio Molinaro
- Department of Chemical Sciences and Task Force for Microbiome Studies, University of Naples Federico II, Napoli, Italy
- CEINGE-Biotecnologie Avanzate Franco Salvatore, Napoli, Italy
| | - José-María Vinardell
- Department of Microbiology, Faculty of Biology, University of Seville, Sevilla, Spain
| | - Flaviana Di Lorenzo
- Department of Chemical Sciences and Task Force for Microbiome Studies, University of Naples Federico II, Napoli, Italy
- CEINGE-Biotecnologie Avanzate Franco Salvatore, Napoli, Italy
| |
Collapse
|
10
|
Janczarek M, Adamczyk P, Gromada A, Polakowski C, Wengerska K, Bieganowski A. Adaptation of Rhizobium leguminosarum sv. trifolii strains to low temperature stress in both free-living stage and during symbiosis with clover. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175554. [PMID: 39151610 DOI: 10.1016/j.scitotenv.2024.175554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/12/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
Legume-rhizobial symbiosis plays an important role in agriculture and ecological restoration. This process occurs within special new structures, called nodules, formed mainly on legume roots. Soil bacteria, commonly known as rhizobia, fix atmospheric dinitrogen, converting it into a form that can be assimilated by plants. Various environmental factors, including a low temperature, have an impact on the symbiotic efficiency. Nevertheless, the effect of temperature on the phenotypic and symbiotic traits of rhizobia has not been determined in detail to date. Therefore, in this study, the influence of temperature on different cell surface and symbiotic properties of rhizobia was estimated. In total, 31 Rhizobium leguminosarum sv. trifolii strains isolated from root nodules of red clover plants growing in the subpolar and temperate climate regions, which essentially differ in year and day temperature profiles, were chosen for this analysis. Our results showed that temperature has a significant effect on several surface properties of rhizobial cells, such as hydrophobicity, aggregation, and motility. Low temperature also stimulated EPS synthesis and biofilm formation in R. leguminosarum sv. trifolii. This extracellular polysaccharide is known to play an important protective role against different environmental stresses. The strains produced large amounts of EPS under tested temperature conditions that facilitated adherence of rhizobial cells to different surfaces. The high adaptability of these strains to cold stress was also confirmed during symbiosis. Irrespective of their climatic origin, the strains proved to be highly effective in attachment to legume roots and were efficient microsymbionts of clover plants. However, some diversity in the response to low temperature stress was found among the strains. Among them, M16 and R137 proved to be highly competitive and efficient in nodule occupancy and biomass production; thus, they can be potential yield-enhancing inoculants of legumes.
Collapse
Affiliation(s)
- Monika Janczarek
- Department of Industrial and Environmental Microbiology, Institute of Biological Sciences, Maria Curie-Skłodowska University, 19 Akademicka, 20-033 Lublin, Poland.
| | - Paulina Adamczyk
- Department of Industrial and Environmental Microbiology, Institute of Biological Sciences, Maria Curie-Skłodowska University, 19 Akademicka, 20-033 Lublin, Poland.
| | - Anna Gromada
- Department of Industrial and Environmental Microbiology, Institute of Biological Sciences, Maria Curie-Skłodowska University, 19 Akademicka, 20-033 Lublin, Poland.
| | - Cezary Polakowski
- Department of Natural Environment Biogeochemistry, Institute of Agrophysics, Polish Academy of Sciences, 4 Doświadczalna, 20-290 Lublin, Poland.
| | - Karolina Wengerska
- Institute of Biological Basis of Animal Production, University of Life Sciences in Lublin, 13 Akademicka Street, 20-950 Lublin, Poland.
| | - Andrzej Bieganowski
- Department of Natural Environment Biogeochemistry, Institute of Agrophysics, Polish Academy of Sciences, 4 Doświadczalna, 20-290 Lublin, Poland.
| |
Collapse
|
11
|
Liu X, Dong H, Wang H, Ren X, Yang X, Li T, Fu G, Xia M, Fang H, Du G, Jin Z, Zhang D. Recent Advances in Genetic Engineering Strategies of Sinorhizobium meliloti. ACS Synth Biol 2024; 13:3497-3506. [PMID: 39481116 PMCID: PMC11574922 DOI: 10.1021/acssynbio.4c00348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2024]
Abstract
Sinorhizobium meliloti is a free-living soil Gram-negative bacterium that participates in nitrogen-fixation symbiosis with several legumes. S. meliloti has the potential to be utilized for the production of high-value nutritional compounds, such as vitamin B12. Advances in gene editing tools play a vital role in the development of S. meliloti strains with enhanced characteristics for biotechnological applications. Several novel genetic engineering strategies have emerged in recent years to investigate genetic modifications in S. meliloti. This review provides a comprehensive overview of the mechanism and application of the extensively used Tn5-mediated genetic engineering strategies. Strategies based on homologous recombination and site-specific recombination were also discussed. Subsequently, the development and application of the genetic engineering strategies utilizing various CRISPR/Cas systems in S. meliloti are summarized. This review may stimulate research interest among scientists, foster studies in the application areas of S. meliloti, and serve as a reference for the utilization of genome editing tools for other Rhizobium species.
Collapse
Affiliation(s)
- Xuan Liu
- School of Biological Engineering, Dalian Polytechnic University, Dalian, 116034, China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Huina Dong
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Huiying Wang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Xinyi Ren
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Xia Yang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Tingting Li
- School of Biological Engineering, Dalian Polytechnic University, Dalian, 116034, China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Gang Fu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Miaomiao Xia
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Huan Fang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Guangqing Du
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Zhaoxia Jin
- School of Biological Engineering, Dalian Polytechnic University, Dalian, 116034, China
| | - Dawei Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| |
Collapse
|
12
|
Zhang K, Chen X, Shi X, Yang Z, Yang L, Liu D, Yu F. Endophytic Bacterial Community, Core Taxa, and Functional Variations Within the Fruiting Bodies of Laccaria. Microorganisms 2024; 12:2296. [PMID: 39597685 PMCID: PMC11596330 DOI: 10.3390/microorganisms12112296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 11/05/2024] [Accepted: 11/11/2024] [Indexed: 11/29/2024] Open
Abstract
Macrofungi do not exist in isolation but establish symbiotic relationships with microorganisms, particularly bacteria, within their fruiting bodies. Herein, we examined the fruiting bodies' bacteriome of seven species of the genus Laccaria collected from four locations in Yunnan, China. By analyzing bacterial diversity, community structure, and function through 16S rRNA sequencing, we observed the following: (1) In total, 4,840,291 high-quality bacterial sequences obtained from the fruiting bodies were grouped into 16,577 amplicon sequence variants (ASVs), and all samples comprised 23 shared bacterial ASVs. (2) The Allorhizobium-Neorhizobium-Pararhizobium-Rhizobium complex was found to be the most abundant and presumably coexisting bacterium. (3) A network analysis revealed that endophytic bacteria formed functional groups, which were dominated by the genera Allorhizobium-Neorhizobium-Pararhizobium-Rhizobium, Novosphingobium, and Variovorax. (4) The diversity, community structure, and dominance of ecological functions (chemoheterotrophy and nitrogen cycling) among endophytic bacteria were significantly shaped by geographic location, habitat, and fungal genotype, rather than fruiting body type. (5) A large number of the endophytic bacteria within Laccaria are bacteria that promote plant growth; however, some pathogenic bacteria that pose a threat to human health might also be present. This research advances our understanding of the microbial ecology of Laccaria and the factors shaping its endophytic bacterial communities.
Collapse
Affiliation(s)
- Kaixuan Zhang
- The Germplasm Bank of Wild Species & Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (K.Z.); (X.S.); (Z.Y.); (L.Y.)
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Xin Chen
- College of Life Sciences, Northwest Agriculture and Forestry University, Yangling 712100, China;
| | - Xiaofei Shi
- The Germplasm Bank of Wild Species & Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (K.Z.); (X.S.); (Z.Y.); (L.Y.)
| | - Zhenyan Yang
- The Germplasm Bank of Wild Species & Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (K.Z.); (X.S.); (Z.Y.); (L.Y.)
| | - Lian Yang
- The Germplasm Bank of Wild Species & Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (K.Z.); (X.S.); (Z.Y.); (L.Y.)
| | - Dong Liu
- The Germplasm Bank of Wild Species & Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (K.Z.); (X.S.); (Z.Y.); (L.Y.)
| | - Fuqiang Yu
- The Germplasm Bank of Wild Species & Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (K.Z.); (X.S.); (Z.Y.); (L.Y.)
| |
Collapse
|
13
|
Wang T, Chen Q, Liang Q, Zhao Q, Lu X, Tian J, Guan Z, Liu C, Li J, Zhou M, Tian J, Liang C. Bacillus suppresses nitrogen efficiency of soybean-rhizobium symbiosis through regulation of nitrogen-related transcriptional and microbial patterns. PLANT, CELL & ENVIRONMENT 2024; 47:4305-4322. [PMID: 38963088 DOI: 10.1111/pce.15023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 05/21/2024] [Accepted: 06/21/2024] [Indexed: 07/05/2024]
Abstract
The regulation of legume-rhizobia symbiosis by microorganisms has obtained considerable interest in recent research, particularly in the common rhizobacteria Bacillus. However, few studies have provided detailed explanations regarding the regulatory mechanisms involved. Here, we investigated the effects of Bacillus (Bac.B) on Bradyrhizobium-soybean (Glycine max) symbiosis and elucidated the underlying ecological mechanisms. We found that two Bradyrhizobium strains (i.e. Bra.Q2 and Bra.D) isolated from nodules significantly promoted nitrogen (N) efficiency of soybean via facilitating nodule formation, thereby enhanced plant growth and yield. However, the intrusion of Bac.B caused a reverse shift in the synergistic efficiency of N2 fixation in the soybean-Bradyrhizobium symbiosis. Biofilm formation and naringenin may be importantin suppression of Bra.Q2 growth regulated by Bac.B. In addition, transcriptome and microbiome analyses revealed that Bra.Q2 and Bac.B might interact to regulateN transport and assimilation, thus influence the bacterial composition related to plant N nutrition in nodules. Also, the metabolisms of secondary metabolites and hormones associated with plant-microbe interaction and growth regulation were modulated by Bra.Q2 and Bac.B coinoculation. Collectively, we demonstrate that Bacillus negatively affects Bradyrhizobium-soybean symbiosis and modulate microbial interactions in the nodule. Our findings highlight a novel Bacillus-based regulation to improve N efficiency and sustainable agricultural development.
Collapse
Affiliation(s)
- Tianqi Wang
- Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China
| | - Qianqian Chen
- Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China
| | - Quan Liang
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, China
| | - Qian Zhao
- Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China
| | - Xing Lu
- Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China
| | - Jihui Tian
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China
| | - Zidi Guan
- Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China
| | - Chang Liu
- Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China
| | - Jifu Li
- Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China
| | - Ming Zhou
- Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China
| | - Jiang Tian
- Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China
| | - Cuiyue Liang
- Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China
| |
Collapse
|
14
|
Magne K, Massot S, Folletti T, Sauviac L, Ait-Salem E, Pires I, Saad MM, Eida AA, Bougouffa S, Jugan A, Rolli E, Forquet R, Puech-Pages V, Maillet F, Bernal G, Gibelin C, Hirt H, Gruber V, Peyraud R, Vailleau F, Gourion B, Ratet P. Atypical rhizobia trigger nodulation and pathogenesis on the same legume hosts. Nat Commun 2024; 15:9246. [PMID: 39461961 PMCID: PMC11513132 DOI: 10.1038/s41467-024-53388-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
The emergence of commensalism and mutualism often derives from ancestral parasitism. However, in the case of rhizobium-legume interactions, bacterial strains displaying both pathogenic and nodulation features on a single host have not been described yet. Here, we isolated such a bacterium from Medicago nodules. On the same plant genotypes, the T4 strain can induce ineffective nodules in a highly competitive way and behave as a harsh parasite triggering plant death. The T4 strain presents this dual ability on multiple legume species of the Inverted Repeat-Lacking Clade, the output of the interaction relying on the developmental stage of the plant. Genomic and phenotypic clustering analysis show that T4 belongs to the nonsymbiotic Ensifer adhaerens group and clusters together with T173, another strain harboring this dual ability. In this work, we identify a bacterial clade that includes rhizobial strains displaying both pathogenic and nodulating abilities on a single legume host.
Collapse
Affiliation(s)
- Kévin Magne
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay, 91190, Gif sur Yvette, France
- Université Paris Cité, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay, 91190, Gif sur Yvette, France
- Université Paris-Saclay, INRAE, AgroParisTech, Institute Jean-Pierre Bourgin for Plant Sciences (IJPB), 78000, Versailles, France
| | - Sophie Massot
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay, 91190, Gif sur Yvette, France
- Université Paris Cité, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay, 91190, Gif sur Yvette, France
| | - Tifaine Folletti
- Laboratoire des Interactions Plantes Microbes Environnement, Université de Toulouse, INRAE, CNRS, 31326, Castanet-Tolosan, France
| | - Laurent Sauviac
- Laboratoire des Interactions Plantes Microbes Environnement, Université de Toulouse, INRAE, CNRS, 31326, Castanet-Tolosan, France
| | - Elhosseyn Ait-Salem
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay, 91190, Gif sur Yvette, France
- Université Paris Cité, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay, 91190, Gif sur Yvette, France
| | - Ilona Pires
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay, 91190, Gif sur Yvette, France
- Université Paris Cité, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay, 91190, Gif sur Yvette, France
| | - Maged M Saad
- DARWIN21, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia
| | - Abdul Aziz Eida
- DARWIN21, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia
| | - Salim Bougouffa
- Computational Bioscience Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Adrien Jugan
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay, 91190, Gif sur Yvette, France
- Université Paris Cité, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay, 91190, Gif sur Yvette, France
| | - Eleonora Rolli
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay, 91190, Gif sur Yvette, France
- Université Paris Cité, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay, 91190, Gif sur Yvette, France
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, 20133, Milan, Italy
| | | | - Virginie Puech-Pages
- Laboratoire de Recherche en Sciences Végétales, CNRS, UPS, Toulouse INP, Université de Toulouse, Toulouse, France
- Metatoul-AgromiX Platform, MetaboHUB, National Infrastructure for Metabolomics and Fluxomics, LRSV, Toulouse, France
| | - Fabienne Maillet
- Laboratoire des Interactions Plantes Microbes Environnement, Université de Toulouse, INRAE, CNRS, 31326, Castanet-Tolosan, France
| | - Gautier Bernal
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay, 91190, Gif sur Yvette, France
- Université Paris Cité, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay, 91190, Gif sur Yvette, France
| | - Chrystel Gibelin
- Laboratoire des Interactions Plantes Microbes Environnement, Université de Toulouse, INRAE, CNRS, 31326, Castanet-Tolosan, France
| | - Heribert Hirt
- DARWIN21, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia
| | - Véronique Gruber
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay, 91190, Gif sur Yvette, France
- Université Paris Cité, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay, 91190, Gif sur Yvette, France
| | | | - Fabienne Vailleau
- Laboratoire des Interactions Plantes Microbes Environnement, Université de Toulouse, INRAE, CNRS, 31326, Castanet-Tolosan, France
| | - Benjamin Gourion
- Laboratoire des Interactions Plantes Microbes Environnement, Université de Toulouse, INRAE, CNRS, 31326, Castanet-Tolosan, France.
| | - Pascal Ratet
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay, 91190, Gif sur Yvette, France.
- Université Paris Cité, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay, 91190, Gif sur Yvette, France.
| |
Collapse
|
15
|
Mergaert P, Giraud E. Pathogenic nematodes exploit Achilles' heel of plant symbioses. Trends Parasitol 2024; 40:873-875. [PMID: 39214775 DOI: 10.1016/j.pt.2024.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024]
Abstract
Cyst nematode parasites disrupt beneficial associations of crops with rhizobia and mycorrhiza. Chen et al. discovered the mechanism and demonstrated that the soybean cyst nematode Heterodera glycines secretes a chitinase that destroys key symbiotic signals from the microbial symbionts. The authors further developed a chitinase inhibitor that alleviates symbiosis inhibition.
Collapse
Affiliation(s)
- Peter Mergaert
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France.
| | - Eric Giraud
- PHIM Plant Health Institute of Montpellier, Université de Montpellier, IRD, CIRAD, INRAE, Institut Agro, Montpellier, France.
| |
Collapse
|
16
|
LaRoche J, Archibald JM. Marine microbiology: How to evolve a nitrogen-fixing organelle. Curr Biol 2024; 34:R826-R829. [PMID: 39255767 DOI: 10.1016/j.cub.2024.07.071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
The evolution of intracellular organelles by endosymbiosis is considered rare. Two recent studies suggest that endosymbioses between nitrogen-fixing bacteria and eukaryotic algae are approaching levels of integration comparable to cellular organelles, helping to solve the problem of oceanic nitrogen limitation.
Collapse
Affiliation(s)
- Julie LaRoche
- Department of Biology, Dalhousie University, Halifax, NS B3H 4R2, Canada; Institute for Comparative Genomics, Dalhousie University, Halifax, NS B3H 4R2, Canada.
| | - John M Archibald
- Institute for Comparative Genomics, Dalhousie University, Halifax, NS B3H 4R2, Canada; Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS B3H 4R2, Canada.
| |
Collapse
|
17
|
Mogro EG, Draghi WO, Lagares A, Lozano MJ. Identification and functional analysis of recent IS transposition events in rhizobia. Mob DNA 2024; 15:17. [PMID: 39237951 PMCID: PMC11375893 DOI: 10.1186/s13100-024-00327-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 08/29/2024] [Indexed: 09/07/2024] Open
Abstract
Rhizobia are alpha- and beta- Proteobacteria that, through the establishment of symbiotic interactions with leguminous plants, are able to fix atmospheric nitrogen as ammonium. The successful establishment of a symbiotic interaction is highly dependent on the availability of nitrogen sources in the soil, and on the specific rhizobia strain. Insertion sequences (ISs) are simple transposable genetic elements that can move to different locations within the host genome and are known to play an important evolutionary role, contributing to genome plasticity by acting as recombination hot-spots, and disrupting coding and regulatory sequences. Disruption of coding sequences may have occurred either in a common ancestor of the species or more recently. By means of ISComapare, we identified Differentially Located ISs (DLISs) in nearly related rhizobial strains of the genera Bradyrhizobium, Mesorhizobium, Rhizobium and Sinorhizobium. Our results revealed that recent IS transposition could have a role in adaptation by enabling the activation and inactivation of genes that could dynamically affect the competition and survival of rhizobia in the rhizosphere.
Collapse
Affiliation(s)
- Ezequiel G Mogro
- Instituto de Biotecnología y Biología Molecular (IBBM), Dep. Ciencias Biológicas - Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), CONICET CCT-LaPlata. La Plata, Buenos Aires, Argentina
| | - Walter O Draghi
- Instituto de Biotecnología y Biología Molecular (IBBM), Dep. Ciencias Biológicas - Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), CONICET CCT-LaPlata. La Plata, Buenos Aires, Argentina
| | - Antonio Lagares
- Instituto de Biotecnología y Biología Molecular (IBBM), Dep. Ciencias Biológicas - Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), CONICET CCT-LaPlata. La Plata, Buenos Aires, Argentina
| | - Mauricio J Lozano
- Instituto de Biotecnología y Biología Molecular (IBBM), Dep. Ciencias Biológicas - Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), CONICET CCT-LaPlata. La Plata, Buenos Aires, Argentina.
| |
Collapse
|
18
|
Porter SS, Dupin SE, Denison RF, Kiers ET, Sachs JL. Host-imposed control mechanisms in legume-rhizobia symbiosis. Nat Microbiol 2024:10.1038/s41564-024-01762-2. [PMID: 39095495 DOI: 10.1038/s41564-024-01762-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 06/17/2024] [Indexed: 08/04/2024]
Abstract
Legumes are ecologically and economically important plants that contribute to nutrient cycling and agricultural sustainability, features tied to their intimate symbiosis with nitrogen-fixing rhizobia. Rhizobia vary dramatically in quality, ranging from highly growth-promoting to non-beneficial; therefore, legumes must optimize their symbiosis with rhizobia through host mechanisms that select for beneficial rhizobia and limit losses to non-beneficial strains. In this Perspective, we examine the considerable scientific progress made in decoding host control over rhizobia, empirically examining both molecular and cellular mechanisms and their effects on rhizobia symbiosis and its benefits. We consider pre-infection controls, which require the production and detection of precise molecular signals by the legume to attract and select for compatible rhizobia strains. We also discuss post-infection mechanisms that leverage the nodule-level and cell-level compartmentalization of symbionts to enable host control over rhizobia development and proliferation in planta. These layers of host control each contribute to legume fitness by directing host resources towards a narrowing subset of more-beneficial rhizobia.
Collapse
Affiliation(s)
- Stephanie S Porter
- School of Biological Sciences, Washington State University, Vancouver, WA, USA
| | - Simon E Dupin
- Amsterdam Institute for Life and Environment, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - R Ford Denison
- Department of Ecology, Evolution, and Behavior, University of Minnesota, Saint Paul, MN, USA
| | - E Toby Kiers
- Amsterdam Institute for Life and Environment, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Joel L Sachs
- Department of Evolution, Ecology and Organismal Biology, University of California, Riverside, CA, USA.
| |
Collapse
|
19
|
Lorenz C, Vitale E, Hay-Mele B, Arena C. Plant growth promoting rhizobacteria (PGPR) application for coping with salinity and drought: a bibliometric network multi-analysis. PLANT BIOLOGY (STUTTGART, GERMANY) 2024; 26:777-788. [PMID: 38843103 DOI: 10.1111/plb.13661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 05/03/2024] [Indexed: 07/21/2024]
Abstract
Rhizobacteria play a crucial role in plant growth and yield, stimulating primary production and improving stress resistance. Climate change has several consequences worldwide that affect arable land and agriculture. Studies on plant-soil-microorganism interactions to enhance plant productivity and/or resistance to abiotic stress may open new perspectives. This strategy aims to make agricultural-relevant plant species able to complete their biological cycle in extreme soils with the help of inoculated or primed plant growth-promoting rhizobacteria (PGPR). We provide an overview of the evolution of interest in PGPR research in the last 30 years through: (i) a quantitative search on the Scopus database; (ii) keyword frequencies and clustering analysis, and (iii) a keyword network and time-gradient analysis. The review of scientific literature on PGPR highlighted an increase in publications in the last 15 years, and a specific time gradient on subtopics, such as abiotic stresses. The rise in PGPR as a keyword co-occurring with salinity and drought stresses aligns with the growing number of papers from countries directly or partly affected by climate change. The study of PGPR, its features, and related applications will be a key challenge in the next decades, considering climate change effects on agriculture. The increased interest in PGPR leads to deeper knowledge focused specifically on researching agriculturally sustainable solutions for soils affected by salinity and drought.
Collapse
Affiliation(s)
- C Lorenz
- Laboratory of Plant Ecology, Department of Biology, University of Naples Federico II, Naples, Italy
| | - E Vitale
- Laboratory of Plant Ecology, Department of Biology, University of Naples Federico II, Naples, Italy
| | - B Hay-Mele
- Laboratory of Plant Ecology, Department of Biology, University of Naples Federico II, Naples, Italy
| | - C Arena
- Laboratory of Plant Ecology, Department of Biology, University of Naples Federico II, Naples, Italy
- NBFC-National Biodiversity Future Center, Palermo, Italy
| |
Collapse
|
20
|
Lopez LE, Chuah YS, Encina F, Carignani Sardoy M, Berdion Gabarain V, Mutwil M, Estevez JM. New molecular components that regulate the transcriptional hub in root hairs: coupling environmental signals with endogenous hormones to coordinate growth. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:4171-4179. [PMID: 37875460 DOI: 10.1093/jxb/erad419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 10/23/2023] [Indexed: 10/26/2023]
Abstract
Root hairs have become an important model system for studying plant growth, and in particular how plants modulate their growth in response to cell-intrinsic and environmental stimuli. In this review, we discuss recent advances in our understanding of the molecular mechanisms underlying the growth of Arabidopsis root hairs in the interface between responses to environmental cues (e.g. nutrients such as nitrates and phosphate, and microorganisms) and hormonal stimuli (e.g. auxin). Growth of root hairs is under the control of several transcription factors that are also under strong regulation at different levels. We highlight recent new discoveries along these transcriptional pathways that might have the potential to increase our capacity to enhance nutrient uptake by the roots in the context of abiotic stresses. We use the text-mining capacities of the PlantConnectome database to generate an up-to-date view of root hairs growth within these complex biological contexts.
Collapse
Affiliation(s)
- Leonel E Lopez
- Fundación Instituto Leloir and IIBBA-CONICET. Av. Patricias Argentinas 435, Buenos Aires C1405BWE, Argentina
- ANID-Millennium Science Initiative Program-Millennium Nucleus for the Development of Super Adaptable Plants (MN-SAP), Santiago 8370146, Chile
| | - Yu Song Chuah
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Felipe Encina
- Fundación Instituto Leloir and IIBBA-CONICET. Av. Patricias Argentinas 435, Buenos Aires C1405BWE, Argentina
- ANID-Millennium Science Initiative Program-Millennium Nucleus for the Development of Super Adaptable Plants (MN-SAP), Santiago 8370146, Chile
- ANID-Millennium Science Initiative Program-Millennium Institute for Integrative Biology (iBio), Santiago 8331150, Chile
| | - Mariana Carignani Sardoy
- Fundación Instituto Leloir and IIBBA-CONICET. Av. Patricias Argentinas 435, Buenos Aires C1405BWE, Argentina
- ANID-Millennium Science Initiative Program-Millennium Nucleus for the Development of Super Adaptable Plants (MN-SAP), Santiago 8370146, Chile
| | - Victoria Berdion Gabarain
- Fundación Instituto Leloir and IIBBA-CONICET. Av. Patricias Argentinas 435, Buenos Aires C1405BWE, Argentina
- ANID-Millennium Science Initiative Program-Millennium Nucleus for the Development of Super Adaptable Plants (MN-SAP), Santiago 8370146, Chile
| | - Marek Mutwil
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - José M Estevez
- Fundación Instituto Leloir and IIBBA-CONICET. Av. Patricias Argentinas 435, Buenos Aires C1405BWE, Argentina
- ANID-Millennium Science Initiative Program-Millennium Nucleus for the Development of Super Adaptable Plants (MN-SAP), Santiago 8370146, Chile
- ANID-Millennium Science Initiative Program-Millennium Institute for Integrative Biology (iBio), Santiago 8331150, Chile
- Centro de Biotecnología Vegetal (CBV), Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago 8370146, Chile
| |
Collapse
|
21
|
Sainz MM, Sotelo-Silveira M, Filippi CV, Zardo S. Legume-rhizobia symbiosis: Translatome analysis. Genet Mol Biol 2024; 47Suppl 1:e20230284. [PMID: 38954532 PMCID: PMC11223499 DOI: 10.1590/1678-4685-gmb-2023-0284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 03/31/2024] [Indexed: 07/04/2024] Open
Abstract
Leguminous plants can establish endosymbiotic relationships with nitrogen-fixing soil rhizobacteria. Bacterial infection and nodule organogenesis are two independent but highly coordinated genetic programs that are active during this interaction. These genetic programs can be regulated along all the stages of gene expression. Most of the studies, for both eukaryotes and prokaryotes, focused on the transcriptional regulation level determining the abundance of mRNAs. However, it has been demonstrated that mRNA levels only sometimes correlate with the abundance or activity of the coded proteins. For this reason, in the past two decades, interest in the role of translational control of gene expression has increased, since the subset of mRNA being actively translated outperforms the information gained only by the transcriptome. In the case of legume-rhizobia interactions, the study of the translatome still needs to be explored further. Therefore, this review aims to discuss the methodologies for analyzing polysome-associated mRNAs at the genome-scale and their contribution to studying translational control to understand the complexity of this symbiotic interaction. Moreover, the Dual RNA-seq approach is discussed for its relevance in the context of a symbiotic nodule, where intricate multi-species gene expression networks occur.
Collapse
Affiliation(s)
- María Martha Sainz
- Universidad de la República, Facultad de Agronomía, Departamento
de Biología Vegetal, Laboratorio de Bioquímica, Montevideo, Uruguay
| | - Mariana Sotelo-Silveira
- Universidad de la República, Facultad de Agronomía, Departamento
de Biología Vegetal, Laboratorio de Bioquímica, Montevideo, Uruguay
| | - Carla V. Filippi
- Universidad de la República, Facultad de Agronomía, Departamento
de Biología Vegetal, Laboratorio de Bioquímica, Montevideo, Uruguay
| | - Sofía Zardo
- Universidad de la República, Facultad de Agronomía, Departamento
de Biología Vegetal, Laboratorio de Bioquímica, Montevideo, Uruguay
| |
Collapse
|
22
|
Bian Q, Cheng K, Chen L, Jiang Y, Li D, Xie Z, Wang X, Sun B. Organic amendments increased Chinese milk vetch symbiotic nitrogen fixation by enriching Mesorhizobium in rhizosphere. ENVIRONMENTAL RESEARCH 2024; 252:118923. [PMID: 38636641 DOI: 10.1016/j.envres.2024.118923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/01/2024] [Accepted: 04/10/2024] [Indexed: 04/20/2024]
Abstract
Symbiotic nitrogen fixation of Chinese milk vetch (Astragalus sinicus L.) can fix nitrogen from the atmosphere and serve as an organic nitrogen source in agricultural ecosystems. Exogenous organic material application is a common practice of affecting symbiotic nitrogen fixation; however, the results of the regulation activities remain under discussion. Studies on the impact of organic amendments on symbiotic nitrogen fixation have focused on dissolved organic carbon content changes, whereas the impact on dissolved organic carbon composition and the underlying mechanism remain unclear. In situ pot experiments were carried out using soils from a 40-year-old field experiment platform to investigate symbiotic nitrogen fixation rate trends, dissolved organic carbon concentration and component, and diazotroph community structure in roots and in rhizosphere soils following long-term application of different exogenous organic substrates, i.e., green manure, green manure and pig manure, and green manure and rice straw. Remarkable increases in rate were observed in and when compared with that in green manure treatment, with the greatest enhancement observed in the treatment. Moreover, organic amendments, particularly pig manure application, altered diazotroph community composition in rhizosphere soils, therefore increasing the abundance of the host-specific genus Mesorhizobium. Furthermore, organic amendments influence the diazotroph communities through two primary mechanisms. Firstly, the components of dissolved organic carbon promote an increase in available iron, facilitated by the presence of humus substrates. Secondly, the elevated content of dissolved organic carbon and available iron expands the niche breadth of Mesorhizobium within the rhizosphere. Consequently, these alterations result in a modified diazotroph community within the rhizosphere, which in turn influences Mesorhizobium nodulation in the root and symbiotic nitrogen fixation rate. The results of the present study enhance our understanding of the impact of organic amendments on symbiotic nitrogen fixation and the underlying mechanism, highlighting the key role of dissolved organic carbon composition on diazotroph community composition in the rhizosphere.
Collapse
Affiliation(s)
- Qing Bian
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Kun Cheng
- Institute of Red Soil and Germplasm Resources, Jinxian, 331717, China
| | - Ling Chen
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Yuji Jiang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Daming Li
- Institute of Red Soil and Germplasm Resources, Jinxian, 331717, China.
| | - Zubin Xie
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Xiaoyue Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China.
| | - Bo Sun
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| |
Collapse
|
23
|
Casas-Román A, Lorite MJ, Werner M, Muñoz S, Gallegos MT, Sanjuán J. The gap gene of Rhizobium etli is required for both free life and symbiosis with common beans. Microbiol Res 2024; 284:127737. [PMID: 38705080 DOI: 10.1016/j.micres.2024.127737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/15/2024] [Accepted: 04/20/2024] [Indexed: 05/07/2024]
Abstract
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH or Gap) is a ubiquitous enzyme essential for carbon and energy metabolism in most organisms. Despite its primary role in sugar metabolism, GAPDH is recognized for its involvement in diverse cellular processes, being considered a paradigm among multifunctional/moonlighting proteins. Besides its canonical cytoplasmic location, GAPDH has been detected on cell surfaces or as a secreted protein in prokaryotes, yet little is known about its possible roles in plant symbiotic bacteria. Here we report that Rhizobium etli, a nitrogen-fixing symbiont of common beans, carries a single gap gene responsible for both GAPDH glycolytic and gluconeogenic activities. An active Gap protein is required throughout all stages of the symbiosis between R. etli and its host plant Phaseolus vulgaris. Both glycolytic and gluconeogenic Gap metabolic activities likely contribute to bacterial fitness during early and intermediate stages of the interaction, whereas GAPDH gluconeogenic activity seems critical for nodule invasion and nitrogen fixation. Although the R. etli Gap protein is secreted in a c-di-GMP related manner, no involvement of the R. etli gap gene in c-di-GMP related phenotypes, such as flocculation, biofilm formation or EPS production, was observed. Notably, the R. etli gap gene fully complemented a double gap1/gap2 mutant of Pseudomonas syringae for free life growth, albeit only partially in planta, suggesting potential specific roles for each type of Gap protein. Nevertheless, further research is required to unravel additional functions of the R. etli Gap protein beyond its essential metabolic roles.
Collapse
Affiliation(s)
- Ariana Casas-Román
- Departmento de Microbiología del Suelo y la Planta, Estación Experimental del Zaidín (CSIC), Granada, Spain
| | - María-José Lorite
- Departmento de Microbiología del Suelo y la Planta, Estación Experimental del Zaidín (CSIC), Granada, Spain
| | - Mariana Werner
- Departmento de Microbiología del Suelo y la Planta, Estación Experimental del Zaidín (CSIC), Granada, Spain
| | - Socorro Muñoz
- Departmento de Microbiología del Suelo y la Planta, Estación Experimental del Zaidín (CSIC), Granada, Spain
| | - María-Trinidad Gallegos
- Departmento de Microbiología del Suelo y la Planta, Estación Experimental del Zaidín (CSIC), Granada, Spain.
| | - Juan Sanjuán
- Departmento de Microbiología del Suelo y la Planta, Estación Experimental del Zaidín (CSIC), Granada, Spain.
| |
Collapse
|
24
|
Gamalero E, Glick BR. Use of plant growth-promoting bacteria to facilitate phytoremediation. AIMS Microbiol 2024; 10:415-448. [PMID: 38919713 PMCID: PMC11194615 DOI: 10.3934/microbiol.2024021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/31/2024] [Accepted: 06/04/2024] [Indexed: 06/27/2024] Open
Abstract
Here, phytoremediation studies of toxic metal and organic compounds using plants augmented with plant growth-promoting bacteria, published in the past few years, were summarized and reviewed. These studies complemented and extended the many earlier studies in this area of research. The studies summarized here employed a wide range of non-agricultural plants including various grasses indigenous to regions of the world. The plant growth-promoting bacteria used a range of different known mechanisms to promote plant growth in the presence of metallic and/or organic toxicants and thereby improve the phytoremediation ability of most plants. Both rhizosphere and endophyte PGPB strains have been found to be effective within various phytoremediation schemes. Consortia consisting of several PGPB were often more effective than individual PGPB in assisting phytoremediation in the presence of metallic and/or organic environmental contaminants.
Collapse
Affiliation(s)
- Elisa Gamalero
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale, Viale T. Michel 11, Alessandria, 15121, Italy
| | - Bernard R. Glick
- Department of Biology, University of Waterloo, Waterloo, ON, Canada N2L 3G1
| |
Collapse
|
25
|
Ali R, Chaluvadi SR, Wang X, Hazzouri KM, Sudalaimuthuasari N, Rafi M, Al-Nuaimi M, Sasi S, Antepenko E, Bennetzen JL, Amiri KMA. Microbiome properties in the root nodules of Prosopis cineraria, a leguminous desert tree. Microbiol Spectr 2024; 12:e0361723. [PMID: 38624222 PMCID: PMC11237379 DOI: 10.1128/spectrum.03617-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 03/14/2024] [Indexed: 04/17/2024] Open
Abstract
We conducted a comprehensive analysis of the total microbiome and transcriptionally active microbiome communities in the roots and root nodules of Prosopis cineraria, an important leguminous tree in arid regions of many Asian countries. Mature P. cineraria trees growing in the desert did not exhibit any detected root nodules. However, we observed root nodules on the roots of P. cineraria growing on a desert farm and on young plants growing in a growth chamber, when inoculated with rhizosphere soil, including with rhizosphere soil from near desert tree roots that had no nodules. Compared to nearby soil, non-nodulated roots were enriched with Actinobacteria (e.g., Actinophytocola sp.), whereas root nodules sampled from the desert farm and growth chamber had abundant Alphaproteobacteria (e.g., Ensifer sp.). These nodules yielded many microbes in addition to such nitrogen-fixing bacteria as Ensifer and Sinorhizobium species. Significant differences exist in the composition and abundance of microbial isolates between the nodule surface and the nodule endosphere. Shotgun metagenome analysis of nodule endospheres revealed that the root nodules comprised over 90% bacterial DNA, whereas metatranscriptome analysis showed that the plant produces vastly more transcripts than the microbes in these nodules. Control inoculations demonstrated that four out of six Rhizobium, Agrobacterium, or Ensifer isolates purified from P. cineraria nodules produced nodules in the roots of P. cineraria seedlings under greenhouse conditions. The best nodulation was achieved when seedlings were inoculated with a mixture of those bacterial strains. Though root nodulation could be achieved under water stress conditions, nodule number and nodule biomass increased with copious water availability. .IMPORTANCEMicrobial communities were investigated in roots and root nodules of Prosopis cineraria, a leguminous tree species in arid Asian regions that is responsible for exceptionally important contributions to soil fertility in these dramatically dry locations. Soil removed from regions near nodule-free roots on these mature plants contained an abundance of bacteria with the genetic ability to generate nodules and fix nitrogen but did not normally nodulate in their native rhizosphere environment, suggesting a very different co-evolved relationship than that observed for herbaceous legumes. The relative over-expression of the low-gene-density plant DNA compared to the bacterial DNA in the nodules was also unexpected, indicating a very powerful induction of host genetic contributions within the nodule. Finally, the water dependence of nodulation in inoculated seedlings suggested a possible link between early seedling growth (before a deep root system can be developed) and the early development of nitrogen-fixing capability.
Collapse
Affiliation(s)
- Rashid Ali
- Mitrix Bio., Inc., Farmington, Connecticut, USA
| | | | - Xuewen Wang
- Department of Genetics, University of Georgia, Athens, Georgia, USA
| | - Khaled M. Hazzouri
- Khalifa Center for Genetic Engineering and Biotechnology, United Arab Emirates University, Al-Ain, UAE
| | | | - Mohammed Rafi
- Khalifa Center for Genetic Engineering and Biotechnology, United Arab Emirates University, Al-Ain, UAE
| | - Mariam Al-Nuaimi
- Khalifa Center for Genetic Engineering and Biotechnology, United Arab Emirates University, Al-Ain, UAE
| | - Shina Sasi
- Khalifa Center for Genetic Engineering and Biotechnology, United Arab Emirates University, Al-Ain, UAE
| | - Eric Antepenko
- Department of Genetics, University of Georgia, Athens, Georgia, USA
| | | | - Khaled M. A. Amiri
- Khalifa Center for Genetic Engineering and Biotechnology, United Arab Emirates University, Al-Ain, UAE
- Department of Biology, College of Science, United Arab Emirates University, Al-Ain, UAE
| |
Collapse
|
26
|
Sandhu AK, Fischer BR, Subramanian S, Hoppe AD, Brözel VS. Self-growth suppression in Bradyrhizobium diazoefficiens is caused by a diffusible antagonist. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.01.596975. [PMID: 38853965 PMCID: PMC11160724 DOI: 10.1101/2024.06.01.596975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Microbes in soil navigate interactions by recognizing kin, forming social groups, exhibiting antagonistic behavior, and engaging in competitive kin rivalry. Here, we investigated a novel phenomenon of self-growth suppression (sibling rivalry) observed in Bradyrhizobium diazoefficiens USDA 110. Swimming colonies of USDA 110 developed a distinct demarcation line and inter-colony zone when inoculated adjacent to each other. In addition to self, USDA 110 suppressed growth of other Bradyrhizobium strains and several other soil bacteria. We demonstrated that the phenomenon of sibling rivalry is due to growth suppression but not cell death. The cells in the inter-colony zone were culturable but have reduced respiratory activity, ATP levels and motility. The observed growth suppression was due to the presence of a diffusible effector compound. This effector was labile, preventing extraction, and identification, but it is unlikely a protein or a strong acid or base. This counterintuitive phenomenon of self-growth suppression suggests a strategic adaptation for conserving energy and resources in competitive soil environments. Bradyrhizobium's utilization of antagonism including self-growth suppression likely provides a competitive advantage for long-term success in soil ecosystems.
Collapse
Affiliation(s)
- Armaan Kaur Sandhu
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57006
| | - Brady R. Fischer
- Department of Chemistry, Biochemistry and Physics, South Dakota State University, Brookings, SD 57006
| | - Senthil Subramanian
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57006
| | - Adam D. Hoppe
- Department of Chemistry, Biochemistry and Physics, South Dakota State University, Brookings, SD 57006
| | - Volker S. Brözel
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57006
- Department of Biochemistry, Genetics and Microbiology; Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| |
Collapse
|
27
|
Tschitschko B, Esti M, Philippi M, Kidane AT, Littmann S, Kitzinger K, Speth DR, Li S, Kraberg A, Tienken D, Marchant HK, Kartal B, Milucka J, Mohr W, Kuypers MMM. Rhizobia-diatom symbiosis fixes missing nitrogen in the ocean. Nature 2024; 630:899-904. [PMID: 38723661 PMCID: PMC11208148 DOI: 10.1038/s41586-024-07495-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 04/30/2024] [Indexed: 06/21/2024]
Abstract
Nitrogen (N2) fixation in oligotrophic surface waters is the main source of new nitrogen to the ocean1 and has a key role in fuelling the biological carbon pump2. Oceanic N2 fixation has been attributed almost exclusively to cyanobacteria, even though genes encoding nitrogenase, the enzyme that fixes N2 into ammonia, are widespread among marine bacteria and archaea3-5. Little is known about these non-cyanobacterial N2 fixers, and direct proof that they can fix nitrogen in the ocean has so far been lacking. Here we report the discovery of a non-cyanobacterial N2-fixing symbiont, 'Candidatus Tectiglobus diatomicola', which provides its diatom host with fixed nitrogen in return for photosynthetic carbon. The N2-fixing symbiont belongs to the order Rhizobiales and its association with a unicellular diatom expands the known hosts for this order beyond the well-known N2-fixing rhizobia-legume symbioses on land6. Our results show that the rhizobia-diatom symbioses can contribute as much fixed nitrogen as can cyanobacterial N2 fixers in the tropical North Atlantic, and that they might be responsible for N2 fixation in the vast regions of the ocean in which cyanobacteria are too rare to account for the measured rates.
Collapse
Affiliation(s)
- Bernhard Tschitschko
- Max Planck Institute for Marine Microbiology, Bremen, Germany
- Department of Microbiology, University of Innsbruck, Innsbruck, Austria
| | - Mertcan Esti
- Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Miriam Philippi
- Max Planck Institute for Marine Microbiology, Bremen, Germany
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
| | - Abiel T Kidane
- Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Sten Littmann
- Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Katharina Kitzinger
- Max Planck Institute for Marine Microbiology, Bremen, Germany
- Centre for Microbiology and Environmental Systems Science, Division of Microbial Ecology, University of Vienna, Vienna, Austria
| | - Daan R Speth
- Max Planck Institute for Marine Microbiology, Bremen, Germany
- Centre for Microbiology and Environmental Systems Science, Division of Microbial Ecology, University of Vienna, Vienna, Austria
| | - Shengjie Li
- Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Alexandra Kraberg
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
| | - Daniela Tienken
- Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Hannah K Marchant
- Max Planck Institute for Marine Microbiology, Bremen, Germany
- MARUM - Centre for Marine Environmental Sciences, University of Bremen, Bremen, Germany
| | - Boran Kartal
- Max Planck Institute for Marine Microbiology, Bremen, Germany
- School of Science, Constructor University, Bremen, Germany
| | - Jana Milucka
- Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Wiebke Mohr
- Max Planck Institute for Marine Microbiology, Bremen, Germany
| | | |
Collapse
|
28
|
van Lill M, Venter SN, Muema EK, Palmer M, Chan WY, Beukes CW, Steenkamp ET. SeqCode facilitates naming of South African rhizobia left in limbo. Syst Appl Microbiol 2024; 47:126504. [PMID: 38593622 DOI: 10.1016/j.syapm.2024.126504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/13/2024] [Accepted: 03/18/2024] [Indexed: 04/11/2024]
Abstract
South Africa is well-known for the diversity of its legumes and their nitrogen-fixing bacterial symbionts. However, in contrast to their plant partners, remarkably few of these microbes (collectively referred to as rhizobia) from South Africa have been characterised and formally described. This is because the rules of the International Code of Nomenclature of Prokaryotes (ICNP) are at odds with South Africa's National Environmental Management: Biodiversity Act and its associated regulations. The ICNP requires that a culture of the proposed type strain for a novel bacterial species be deposited in two international culture collections and be made available upon request without restrictions, which is not possible under South Africa's current national regulations. Here, we describe seven new Mesorhizobium species obtained from root nodules of Vachellia karroo, an iconic tree legume distributed across various biomes in southern Africa. For this purpose, 18 rhizobial isolates were delineated into putative species using genealogical concordance, after which their plausibility was explored with phenotypic characters and average genome relatedness. For naming these new species, we employed the rules of the recently published Code of Nomenclature of Prokaryotes described from Sequence Data (SeqCode), which utilizes genome sequences as nomenclatural types. The work presented in this study thus provides an illustrative example of how the SeqCode allows for a standardised approach for naming cultivated organisms for which the deposition of a type strain in international culture collections is currently problematic.
Collapse
Affiliation(s)
- Melandré van Lill
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa.
| | - Stephanus N Venter
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Esther K Muema
- Department of Soil Science, Faculty of AgriSciences, Stellenbosch University, South Africa
| | - Marike Palmer
- Department of Microbiology, University of Manitoba, Winnipeg, MB, Canada
| | - Wai Y Chan
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | | | - Emma T Steenkamp
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa.
| |
Collapse
|
29
|
Yu T, Wu X, Song Y, Lv H, Zhang G, Tang W, Zheng Z, Wang X, Gu Y, Zhou X, Li J, Tian S, Hou X, Chen Q, Xin D, Ni H. Isolation and Identification of Salinity-Tolerant Rhizobia and Nodulation Phenotype Analysis in Different Soybean Germplasms. Curr Issues Mol Biol 2024; 46:3342-3352. [PMID: 38666939 PMCID: PMC11049135 DOI: 10.3390/cimb46040209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/01/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
Increasing the soybean-planting area and increasing the soybean yield per unit area are two effective solutions to improve the overall soybean yield. Northeast China has a large saline soil area, and if soybeans could be grown there with the help of isolated saline-tolerant rhizobia, the soybean cultivation area in China could be effectively expanded. In this study, soybeans were planted in soils at different latitudes in China, and four strains of rhizobia were isolated and identified from the soybean nodules. According to the latitudes of the soil-sampling sites from high to low, the four isolated strains were identified as HLNEAU1, HLNEAU2, HLNEAU3, and HLNEAU4. In this study, the isolated strains were identified for their resistances, and their acid and saline tolerances and nitrogen fixation capacities were preliminarily identified. Ten representative soybean germplasm resources in Northeast China were inoculated with these four strains, and the compatibilities of these four rhizobium strains with the soybean germplasm resources were analyzed. All four isolates were able to establish different extents of compatibility with 10 soybean resources. Hefeng 50 had good compatibility with the four isolated strains, while Suinong 14 showed the best compatibility with HLNEAU2. The isolated rhizobacteria could successfully establish symbiosis with the soybeans, but host specificity was also present. This study was a preliminary exploration of the use of salinity-tolerant rhizobacteria to help the soybean nitrogen fixation in saline soils in order to increase the soybean acreage, and it provides a valuable theoretical basis for the application of saline-tolerant rhizobia.
Collapse
Affiliation(s)
- Tong Yu
- Key Laboratory of Soybean Biology of the Chinese Ministry of Education, Key Laboratory of Soybean Biology and Breeding, Genetics of Chinese Agriculture Ministry, College of Agriculture, Northeast Agricultural University, Harbin 150036, China; (T.Y.); (Y.S.); (H.L.); (G.Z.); (W.T.); (Z.Z.); (X.W.); (Y.G.); (X.Z.); (J.L.); (S.T.); (X.H.); (Q.C.)
| | - Xiaodong Wu
- Heilongjiang Green Food Science Research Institute, Harbin 150000, China;
| | - Yunshan Song
- Key Laboratory of Soybean Biology of the Chinese Ministry of Education, Key Laboratory of Soybean Biology and Breeding, Genetics of Chinese Agriculture Ministry, College of Agriculture, Northeast Agricultural University, Harbin 150036, China; (T.Y.); (Y.S.); (H.L.); (G.Z.); (W.T.); (Z.Z.); (X.W.); (Y.G.); (X.Z.); (J.L.); (S.T.); (X.H.); (Q.C.)
| | - Hao Lv
- Key Laboratory of Soybean Biology of the Chinese Ministry of Education, Key Laboratory of Soybean Biology and Breeding, Genetics of Chinese Agriculture Ministry, College of Agriculture, Northeast Agricultural University, Harbin 150036, China; (T.Y.); (Y.S.); (H.L.); (G.Z.); (W.T.); (Z.Z.); (X.W.); (Y.G.); (X.Z.); (J.L.); (S.T.); (X.H.); (Q.C.)
| | - Guoqing Zhang
- Key Laboratory of Soybean Biology of the Chinese Ministry of Education, Key Laboratory of Soybean Biology and Breeding, Genetics of Chinese Agriculture Ministry, College of Agriculture, Northeast Agricultural University, Harbin 150036, China; (T.Y.); (Y.S.); (H.L.); (G.Z.); (W.T.); (Z.Z.); (X.W.); (Y.G.); (X.Z.); (J.L.); (S.T.); (X.H.); (Q.C.)
| | - Weinan Tang
- Key Laboratory of Soybean Biology of the Chinese Ministry of Education, Key Laboratory of Soybean Biology and Breeding, Genetics of Chinese Agriculture Ministry, College of Agriculture, Northeast Agricultural University, Harbin 150036, China; (T.Y.); (Y.S.); (H.L.); (G.Z.); (W.T.); (Z.Z.); (X.W.); (Y.G.); (X.Z.); (J.L.); (S.T.); (X.H.); (Q.C.)
| | - Zefeng Zheng
- Key Laboratory of Soybean Biology of the Chinese Ministry of Education, Key Laboratory of Soybean Biology and Breeding, Genetics of Chinese Agriculture Ministry, College of Agriculture, Northeast Agricultural University, Harbin 150036, China; (T.Y.); (Y.S.); (H.L.); (G.Z.); (W.T.); (Z.Z.); (X.W.); (Y.G.); (X.Z.); (J.L.); (S.T.); (X.H.); (Q.C.)
| | - Xiaohan Wang
- Key Laboratory of Soybean Biology of the Chinese Ministry of Education, Key Laboratory of Soybean Biology and Breeding, Genetics of Chinese Agriculture Ministry, College of Agriculture, Northeast Agricultural University, Harbin 150036, China; (T.Y.); (Y.S.); (H.L.); (G.Z.); (W.T.); (Z.Z.); (X.W.); (Y.G.); (X.Z.); (J.L.); (S.T.); (X.H.); (Q.C.)
| | - Yumeng Gu
- Key Laboratory of Soybean Biology of the Chinese Ministry of Education, Key Laboratory of Soybean Biology and Breeding, Genetics of Chinese Agriculture Ministry, College of Agriculture, Northeast Agricultural University, Harbin 150036, China; (T.Y.); (Y.S.); (H.L.); (G.Z.); (W.T.); (Z.Z.); (X.W.); (Y.G.); (X.Z.); (J.L.); (S.T.); (X.H.); (Q.C.)
| | - Xin Zhou
- Key Laboratory of Soybean Biology of the Chinese Ministry of Education, Key Laboratory of Soybean Biology and Breeding, Genetics of Chinese Agriculture Ministry, College of Agriculture, Northeast Agricultural University, Harbin 150036, China; (T.Y.); (Y.S.); (H.L.); (G.Z.); (W.T.); (Z.Z.); (X.W.); (Y.G.); (X.Z.); (J.L.); (S.T.); (X.H.); (Q.C.)
| | - Jianlin Li
- Key Laboratory of Soybean Biology of the Chinese Ministry of Education, Key Laboratory of Soybean Biology and Breeding, Genetics of Chinese Agriculture Ministry, College of Agriculture, Northeast Agricultural University, Harbin 150036, China; (T.Y.); (Y.S.); (H.L.); (G.Z.); (W.T.); (Z.Z.); (X.W.); (Y.G.); (X.Z.); (J.L.); (S.T.); (X.H.); (Q.C.)
| | - Siyi Tian
- Key Laboratory of Soybean Biology of the Chinese Ministry of Education, Key Laboratory of Soybean Biology and Breeding, Genetics of Chinese Agriculture Ministry, College of Agriculture, Northeast Agricultural University, Harbin 150036, China; (T.Y.); (Y.S.); (H.L.); (G.Z.); (W.T.); (Z.Z.); (X.W.); (Y.G.); (X.Z.); (J.L.); (S.T.); (X.H.); (Q.C.)
| | - Xiuming Hou
- Key Laboratory of Soybean Biology of the Chinese Ministry of Education, Key Laboratory of Soybean Biology and Breeding, Genetics of Chinese Agriculture Ministry, College of Agriculture, Northeast Agricultural University, Harbin 150036, China; (T.Y.); (Y.S.); (H.L.); (G.Z.); (W.T.); (Z.Z.); (X.W.); (Y.G.); (X.Z.); (J.L.); (S.T.); (X.H.); (Q.C.)
| | - Qingshan Chen
- Key Laboratory of Soybean Biology of the Chinese Ministry of Education, Key Laboratory of Soybean Biology and Breeding, Genetics of Chinese Agriculture Ministry, College of Agriculture, Northeast Agricultural University, Harbin 150036, China; (T.Y.); (Y.S.); (H.L.); (G.Z.); (W.T.); (Z.Z.); (X.W.); (Y.G.); (X.Z.); (J.L.); (S.T.); (X.H.); (Q.C.)
| | - Dawei Xin
- Key Laboratory of Soybean Biology of the Chinese Ministry of Education, Key Laboratory of Soybean Biology and Breeding, Genetics of Chinese Agriculture Ministry, College of Agriculture, Northeast Agricultural University, Harbin 150036, China; (T.Y.); (Y.S.); (H.L.); (G.Z.); (W.T.); (Z.Z.); (X.W.); (Y.G.); (X.Z.); (J.L.); (S.T.); (X.H.); (Q.C.)
| | - Hejia Ni
- Key Laboratory of Soybean Biology of the Chinese Ministry of Education, Key Laboratory of Soybean Biology and Breeding, Genetics of Chinese Agriculture Ministry, College of Agriculture, Northeast Agricultural University, Harbin 150036, China; (T.Y.); (Y.S.); (H.L.); (G.Z.); (W.T.); (Z.Z.); (X.W.); (Y.G.); (X.Z.); (J.L.); (S.T.); (X.H.); (Q.C.)
| |
Collapse
|
30
|
Kehlet-Delgado H, Montoya AP, Jensen KT, Wendlandt CE, Dexheimer C, Roberts M, Torres Martínez L, Friesen ML, Griffitts JS, Porter SS. The evolutionary genomics of adaptation to stress in wild rhizobium bacteria. Proc Natl Acad Sci U S A 2024; 121:e2311127121. [PMID: 38507447 PMCID: PMC10990125 DOI: 10.1073/pnas.2311127121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 02/08/2024] [Indexed: 03/22/2024] Open
Abstract
Microbiota comprise the bulk of life's diversity, yet we know little about how populations of microbes accumulate adaptive diversity across natural landscapes. Adaptation to stressful soil conditions in plants provides seminal examples of adaptation in response to natural selection via allelic substitution. For microbes symbiotic with plants however, horizontal gene transfer allows for adaptation via gene gain and loss, which could generate fundamentally different evolutionary dynamics. We use comparative genomics and genetics to elucidate the evolutionary mechanisms of adaptation to physiologically stressful serpentine soils in rhizobial bacteria in western North American grasslands. In vitro experiments demonstrate that the presence of a locus of major effect, the nre operon, is necessary and sufficient to confer adaptation to nickel, a heavy metal enriched to toxic levels in serpentine soil, and a major axis of environmental soil chemistry variation. We find discordance between inferred evolutionary histories of the core genome and nreAXY genes, which often reside in putative genomic islands. This suggests that the evolutionary history of this adaptive variant is marked by frequent losses, and/or gains via horizontal acquisition across divergent rhizobium clades. However, different nre alleles confer distinct levels of nickel resistance, suggesting allelic substitution could also play a role in rhizobium adaptation to serpentine soil. These results illustrate that the interplay between evolution via gene gain and loss and evolution via allelic substitution may underlie adaptation in wild soil microbiota. Both processes are important to consider for understanding adaptive diversity in microbes and improving stress-adapted microbial inocula for human use.
Collapse
Affiliation(s)
| | | | - Kyson T. Jensen
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT84602
| | | | | | - Miles Roberts
- School of Biological Sciences, Washington State University, Vancouver, WA98686
| | | | - Maren L. Friesen
- Department of Plant Pathology, Washington State University, Pullman, WA99164
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA99164
| | - Joel S. Griffitts
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT84602
| | - Stephanie S. Porter
- School of Biological Sciences, Washington State University, Vancouver, WA98686
| |
Collapse
|
31
|
Li X, Li Z, Wei Y, Chen Z, Xie S. Identification and characterization of the TetR family transcriptional regulator NffT in Rhizobium johnstonii. Appl Environ Microbiol 2024; 90:e0185123. [PMID: 38426790 PMCID: PMC10952539 DOI: 10.1128/aem.01851-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 02/02/2024] [Indexed: 03/02/2024] Open
Abstract
Symbiotic nitrogen fixation (SNF) by rhizobia is not only the main natural bionitrogen-source for organisms but also a green process leveraged to increase the fertility of soil for agricultural production. However, an insufficient understanding of the regulatory mechanism of SNF hinders its practical application. During SNF, nifA-fixA signaling is essential for the biosynthesis of nitrogenases and electron transfer chain proteins. In the present study, the TetR regulator NffT, whose mutation increased fixA expression, was discovered through a fixA-promoter-β-glucuronidase fusion assay performed with Rhizobium johnstonii. Real-time quantitative PCR analysis showed that nffT deletion increased the expression of symbiotic genes including nifA and fixA in nifA-fixA signaling, and fixL, fixK, fnrN, and fixN9 in fixL-fixN signaling. nffT overexpression resulted in disordered nodules and reduced nitrogen-fixing efficiency. Electrophoretic mobility shift assays revealed that NffT directly regulated the transcription of RL0091-93, which encode an ATP-binding ABC transporter predicted to be involved in carbohydrate transport. Purified His-tagged NffT bound to a 68 bp DNA sequence located -32 to -99 bp upstream of RL0091-93 and NffT deletion significantly increased the expression of RL0091-93. nffT-promoter-β-glucuronidase fusion assay indicated that nffT expression was regulated by the cobNTS genes and cobalamin. Mutations in cobNTS significantly decreased the expression of nffT, and cobalamin restored its expression. These results revealed that NffT affects nodule development and nitrogen-fixing reaction by participating in a complex regulatory network of symbiotic and carbohydrate metabolic genes and, thus, plays a pivotal regulatory role during symbiosis of R. johnstonii-Pisum sativum.IMPORTANCESymbiotic nitrogen fixation (SNF) by rhizobia is a green way to maintain soil fertility without causing environmental pollution or consuming chemical energy. A detailed understanding of the regulatory mechanism of this complex process is essential for promoting sustainable agriculture. In this study, we discovered the TetR-type regulator NffT, which suppressed the expression of fixA in Rhizobium johnstonii. Furthermore, NffT was confirmed to play pleiotropic roles in R. johnstonii-Pisum sativum symbiosis; specifically, it inhibited rhizobial growth, nodule differentiation, and nitrogen-fixing reactions. We revealed that NffT indirectly affected R. johnstonii-P. sativum symbiosis by participating in a complex regulatory network of symbiotic and carbohydrate metabolic genes. Furthermore, cobalamin, a chemical molecule, was reported for the first time to be involved in TetR-type protein transcription during symbiosis. Thus, NffT identification connects SNF regulation with genetic, metabolic, and chemical signals and provides new insights into the complex regulation of SNF, laying an experimental basis for the targeted construction of rhizobial strains with highly efficient nitrogen-fixing capacity.
Collapse
Affiliation(s)
- Xiaofang Li
- Institute of Biopharmaceuticals, School of Pharmaceutical Sciences, Taizhou University, Taizhou, Zhejiang, China
| | - Zhangqun Li
- Institute of Biopharmaceuticals, School of Pharmaceutical Sciences, Taizhou University, Taizhou, Zhejiang, China
| | - Yajuan Wei
- Institute of Biopharmaceuticals, School of Pharmaceutical Sciences, Taizhou University, Taizhou, Zhejiang, China
| | - Zirui Chen
- Institute of Biopharmaceuticals, School of Pharmaceutical Sciences, Taizhou University, Taizhou, Zhejiang, China
| | - Shijie Xie
- Institute of Biopharmaceuticals, School of Pharmaceutical Sciences, Taizhou University, Taizhou, Zhejiang, China
| |
Collapse
|
32
|
Kim M, Kim W, Park Y, Jung J, Park W. Lineage-specific evolution of Aquibium, a close relative of Mesorhizobium, during habitat adaptation. Appl Environ Microbiol 2024; 90:e0209123. [PMID: 38412007 PMCID: PMC10952388 DOI: 10.1128/aem.02091-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 02/06/2024] [Indexed: 02/28/2024] Open
Abstract
The novel genus Aquibium that lacks nitrogenase was recently reclassified from the Mesorhizobium genus. The genomes of Aquibium species isolated from water were smaller and had higher GC contents than those of Mesorhizobium species. Six Mesorhizobium species lacking nitrogenase were found to exhibit low similarity in the average nucleotide identity values to the other 24 Mesorhizobium species. Therefore, they were classified as the non-N2-fixing Mesorhizobium lineage (N-ML), an evolutionary intermediate species. The results of our phylogenomic analyses and the loss of Rhizobiales-specific fur/mur indicated that Mesorhizobium species may have evolved from Aquibium species through an ecological transition. Halotolerant and alkali-resistant Aquibium and Mesorhizobium microcysteis belonging to N-ML possessed many tripartite ATP-independent periplasmic transporter and sodium/proton antiporter subunits composed of seven genes (mrpABCDEFG). These genes were not present in the N2-fixing Mesorhizobium lineage (ML), suggesting that genes acquired for adaptation to highly saline and alkaline environments were lost during the evolution of ML as the habitat changed to soil. Land-to-water habitat changes in Aquibium species, close relatives of Mesorhizobium species, could have influenced their genomic evolution by the gain and loss of genes. Our study indicated that lineage-specific evolution could have played a significant role in shaping their genome architecture and conferring their ability to thrive in different habitats.IMPORTANCEPhylogenetic analyses revealed that the Aquibium lineage (AL) and non-N2-fixing Mesorhizobium lineage (N-ML) were monophyletically grouped into distinct clusters separate from the N2-fixing Mesorhizobium lineage (ML). The N-ML, an evolutionary intermediate species having characteristics of both ancestral and descendant species, could provide a genomic snapshot of the genetic changes that occur during adaptation. Genomic analyses of AL, N-ML, and ML revealed that changes in the levels of genes related to transporters, chemotaxis, and nitrogen fixation likely reflect adaptations to different environmental conditions. Our study sheds light on the complex and dynamic nature of the evolution of rhizobia in response to changes in their environment and highlights the crucial role of genomic analysis in understanding these processes.
Collapse
Affiliation(s)
- Minkyung Kim
- Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul, South Korea
| | - Wonjae Kim
- Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul, South Korea
| | - Yerim Park
- Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul, South Korea
| | - Jaejoon Jung
- Department of Life Science, Chung-Ang University, Seoul, South Korea
| | - Woojun Park
- Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul, South Korea
| |
Collapse
|
33
|
Ghosh P, Chakraborty J. Exploring the role of symbiotic modifier peptidases in the legume - rhizobium symbiosis. Arch Microbiol 2024; 206:147. [PMID: 38462552 DOI: 10.1007/s00203-024-03920-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/27/2024] [Accepted: 02/28/2024] [Indexed: 03/12/2024]
Abstract
Legumes can establish a mutual association with soil-derived nitrogen-fixing bacteria called 'rhizobia' forming lateral root organs called root nodules. Rhizobia inside the root nodules get transformed into 'bacteroids' that can fix atmospheric nitrogen to ammonia for host plants in return for nutrients and shelter. A substantial 200 million tons of nitrogen is fixed annually through biological nitrogen fixation. Consequently, the symbiotic mechanism of nitrogen fixation is utilized worldwide for sustainable agriculture and plays a crucial role in the Earth's ecosystem. The development of effective nitrogen-fixing symbiosis between legumes and rhizobia is very specialized and requires coordinated signaling. A plethora of plant-derived nodule-specific cysteine-rich (NCR or NCR-like) peptides get actively involved in this complex and tightly regulated signaling process of symbiosis between some legumes of the IRLC (Inverted Repeat-Lacking Clade) and Dalbergioid clades and nitrogen-fixing rhizobia. Recent progress has been made in identifying two such peptidases that actively prevent bacterial differentiation, leading to symbiotic incompatibility. In this review, we outlined the functions of NCRs and two nitrogen-fixing blocking peptidases: HrrP (host range restriction peptidase) and SapA (symbiosis-associated peptidase A). SapA was identified through an overexpression screen from the Sinorhizobium meliloti 1021 core genome, whereas HrrP is inherited extra-chromosomally. Interestingly, both peptidases affect the symbiotic outcome by degrading the NCR peptides generated from the host plants. These NCR-degrading peptidases can shed light on symbiotic incompatibility, helping to elucidate the reasons behind the inefficiency of nitrogen fixation observed in certain groups of rhizobia with specific legumes.
Collapse
Affiliation(s)
- Prithwi Ghosh
- Department of Botany, Narajole Raj College, Vidyasagar University, Midnapore, 721211, India.
| | - Joydeep Chakraborty
- School of Plant Sciences and Food Security, Tel Aviv University, Tel-Aviv, Israel
| |
Collapse
|
34
|
Liang H, Yang L, He X, Wu Q, Chen D, Liu M, Shen P. Rhizosphere Ventilation Effects on Root Development and Bacterial Diversity of Peanut in Compacted Soil. PLANTS (BASEL, SWITZERLAND) 2024; 13:790. [PMID: 38592790 PMCID: PMC10975058 DOI: 10.3390/plants13060790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/22/2024] [Accepted: 03/07/2024] [Indexed: 04/11/2024]
Abstract
Soil compaction is one of the crucial factors that restrains the root respiration, energy metabolism and growth of peanut (Arachis hypogaea L.) due to hypoxia, which can be alleviated by ventilation. We therefore carried out a pot experiment with three treatments: no ventilation control (CK), (2) ventilation volumes at 1.2 (T1), and 1.5 (T2) times of the standard ventilation volume (2.02 L/pot). Compared to no-ventilation in compacted soil, ventilation T1 significantly increased total root length, root surface area, root volume and tips at the peanut anthesis stage (62 days after sowing), while T2 showed a negative impact on the above-mentioned root morphological characteristics. At the podding stage (S2, 95 days after sowing), both ventilation treatments improved root morphology, especially under T1. Compared to CK, both ventilation T1 and T2 decreased the activities of enzymes involving the anaerobic respiration, including root lactate dehydrogenase, pyruvate decarboxylase and alcohol dehydrogenase. The activities of antioxidant enzymes of root superoxide dismutase, peroxidase and catalase also decreased at S1, while superoxide dismutase and peroxidase significantly increased under T1 at S2. The ventilation of compacted soil changed soil nitrogen-fixing bacterial communities, with highest bacterial alpha diversity indices under T1. The Pearson correlation analyses indicated a positive relationship between the relative abundance of Bradyrhizobiaceae and root activity, and between unclassified_family of Rhizobiales and the root surface area, while Enterobacteriaceae had a negative impact on the root nodule number. The Pearson correlation test showed that the root surface, tips and activity positively correlated with root superoxide dismutase and peroxidase activities. These results demonstrate that soil ventilation could enhance plant root growth, the diversity and function of soil nitrogen-fixing bacterial communities. The generated results from this present study could serve as important evidence in alleviating soil hypoxia caused by compaction.
Collapse
Affiliation(s)
- Haiyan Liang
- Shandong Peanut Research Institute/Key Laboratory of Peanut Biology, Genetics & Breeding, Ministry of Agriculture and Rural Affairs, Shandong Academy of Agricultural Sciences, Qingdao 266100, China; (H.L.); (L.Y.); (Q.W.); (D.C.); (M.L.)
| | - Liyu Yang
- Shandong Peanut Research Institute/Key Laboratory of Peanut Biology, Genetics & Breeding, Ministry of Agriculture and Rural Affairs, Shandong Academy of Agricultural Sciences, Qingdao 266100, China; (H.L.); (L.Y.); (Q.W.); (D.C.); (M.L.)
| | - Xinhua He
- School of Biological Sciences, University of Western Australia, Perth 6009, Australia;
- Department of Land, Air and Water Resources, University of California at Davis, Davis, CA 90616, USA
| | - Qi Wu
- Shandong Peanut Research Institute/Key Laboratory of Peanut Biology, Genetics & Breeding, Ministry of Agriculture and Rural Affairs, Shandong Academy of Agricultural Sciences, Qingdao 266100, China; (H.L.); (L.Y.); (Q.W.); (D.C.); (M.L.)
| | - Dianxu Chen
- Shandong Peanut Research Institute/Key Laboratory of Peanut Biology, Genetics & Breeding, Ministry of Agriculture and Rural Affairs, Shandong Academy of Agricultural Sciences, Qingdao 266100, China; (H.L.); (L.Y.); (Q.W.); (D.C.); (M.L.)
| | - Miao Liu
- Shandong Peanut Research Institute/Key Laboratory of Peanut Biology, Genetics & Breeding, Ministry of Agriculture and Rural Affairs, Shandong Academy of Agricultural Sciences, Qingdao 266100, China; (H.L.); (L.Y.); (Q.W.); (D.C.); (M.L.)
| | - Pu Shen
- Shandong Peanut Research Institute/Key Laboratory of Peanut Biology, Genetics & Breeding, Ministry of Agriculture and Rural Affairs, Shandong Academy of Agricultural Sciences, Qingdao 266100, China; (H.L.); (L.Y.); (Q.W.); (D.C.); (M.L.)
| |
Collapse
|
35
|
Qiao L, Lin J, Suzaki T, Liang P. Staying hungry: a roadmap to harnessing central regulators of symbiotic nitrogen fixation under fluctuating nitrogen availability. ABIOTECH 2024; 5:107-113. [PMID: 38576431 PMCID: PMC10987428 DOI: 10.1007/s42994-023-00123-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 10/27/2023] [Indexed: 04/06/2024]
Abstract
Legumes have evolved specific inventions to enhance nitrogen (N) acquisition by establishing symbiotic interactions with N-fixing rhizobial bacteria. Because symbiotic N fixation is energetically costly, legumes have developed sophisticated mechanisms to ensure carbon-nitrogen balance, in a variable environment, both locally and at the whole plant level, by monitoring nodule number, nodule development, and nodular nitrogenase activity, as well as controlling nodule senescence. Studies of the autoregulation of nodulation and regulation of nodulation by nodule inception (NIN) and NIN-LIKE PROTEINs (NLPs) have provided great insights into the genetic mechanisms underlying the nitrate-induced regulation of root nodulation for adapting to N availability in the rhizosphere. However, many aspects of N-induced pleiotropic regulation remain to be fully explained, such as N-triggered senescence in mature nodules. Wang et al. determined that this process is governed by a transcriptional network regulated by NAC-type transcription factors. Characterization and dissection of these soybean nitrogen-associated NAPs (SNAPs) transcription factor-mastered networks have yielded a roadmap for exploring how legumes rewire nodule functions across a range of N levels, laying the foundation for enhancing the growth of N-deprived crops in agricultural settings.
Collapse
Affiliation(s)
- Lijin Qiao
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, China
- MOA Key Laboratory of Soil Microbiology, Rhizobium Research Center, China Agricultural University, Beijing, China
| | - Jieshun Lin
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Takuya Suzaki
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki Japan
- Tsukuba Plant-Innovation Research Center, University of Tsukuba, Tsukuba, Ibaraki Japan
| | - Pengbo Liang
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, China
- MOA Key Laboratory of Soil Microbiology, Rhizobium Research Center, China Agricultural University, Beijing, China
| |
Collapse
|
36
|
Carvia-Hermoso C, Cuéllar V, Bernabéu-Roda LM, van Dillewijn P, Soto MJ. Sinorhizobium meliloti GR4 Produces Chromosomal- and pSymA-Encoded Type IVc Pili That Influence the Interaction with Alfalfa Plants. PLANTS (BASEL, SWITZERLAND) 2024; 13:628. [PMID: 38475474 DOI: 10.3390/plants13050628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/09/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024]
Abstract
Type IVc Pili (T4cP), also known as Tad or Flp pili, are long thin microbial filaments that are made up of small-sized pilins. These appendages serve different functions in bacteria, including attachment, biofilm formation, surface sensing, motility, and host colonization. Despite their relevant role in diverse microbial lifestyles, knowledge about T4cP in bacteria that establish symbiosis with legumes, collectively referred to as rhizobia, is still limited. Sinorhizobium meliloti contains two clusters of T4cP-related genes: flp-1 and flp-2, which are located on the chromosome and the pSymA megaplasmid, respectively. Bundle-forming pili associated with flp-1 are involved in the competitive nodulation of alfalfa plants, but the role of flp-2 remains elusive. In this work, we have performed a comprehensive bioinformatic analysis of T4cP genes in the highly competitive S. meliloti GR4 strain and investigated the role of its flp clusters in pilus biogenesis, motility, and in the interaction with alfalfa. Single and double flp-cluster mutants were constructed on the wild-type genetic background as well as in a flagellaless derivative strain. Our data demonstrate that both chromosomal and pSymA flp clusters are functional in pili biogenesis and contribute to surface translocation and nodule formation efficiency in GR4. In this strain, the presence of flp-1 in the absence of flp-2 reduces the competitiveness for nodule occupation.
Collapse
Affiliation(s)
- Cristina Carvia-Hermoso
- Department of Biotechnology and Environmental Protection, Estación Experimental del Zaidín, CSIC, 18008 Granada, Spain
| | - Virginia Cuéllar
- Department of Biotechnology and Environmental Protection, Estación Experimental del Zaidín, CSIC, 18008 Granada, Spain
| | - Lydia M Bernabéu-Roda
- Department of Biotechnology and Environmental Protection, Estación Experimental del Zaidín, CSIC, 18008 Granada, Spain
| | - Pieter van Dillewijn
- Department of Biotechnology and Environmental Protection, Estación Experimental del Zaidín, CSIC, 18008 Granada, Spain
| | - María J Soto
- Department of Biotechnology and Environmental Protection, Estación Experimental del Zaidín, CSIC, 18008 Granada, Spain
| |
Collapse
|
37
|
Han F, Li H, Lyu E, Zhang Q, Gai H, Xu Y, Bai X, He X, Khan AQ, Li X, Xie F, Li F, Fang X, Wei M. Soybean-mediated suppression of BjaI/BjaR 1 quorum sensing in Bradyrhizobium diazoefficiens impacts symbiotic nitrogen fixation. Appl Environ Microbiol 2024; 90:e0137423. [PMID: 38251894 PMCID: PMC10880635 DOI: 10.1128/aem.01374-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 11/23/2023] [Indexed: 01/23/2024] Open
Abstract
The acyl-homoserine lactones (AHLs)-mediated LuxI/LuxR quorum sensing (QS) system orchestrates diverse bacterial behaviors in response to changes in population density. The role of the BjaI/BjaR1 QS system in Bradyrhizobium diazoefficiens USDA 110, which shares homology with LuxI/LuxR, remains elusive during symbiotic interaction with soybean. Here this genetic system in wild-type (WT) bacteria residing inside nodules exhibited significantly reduced activity compared to free-living cells, potentially attributed to soybean-mediated suppression. The deletion mutant strain ΔbjaR1 showed significantly enhanced nodulation induction and nitrogen fixation ability. Nevertheless, its ultimate symbiotic outcome (plant dry weight) in soybeans was compromised. Furthermore, comparative analysis of the transcriptome, proteome, and promoter activity revealed that the inactivation of BjaR1 systematically activated and inhibited genomic modules associated with nodulation and nitrogen metabolism. The former appeared to be linked to a significant decrease in the expression of NodD2, a key cell-density-dependent repressor of nodulation genes, while the latter conferred bacterial growth and nitrogen fixation insensitivity to environmental nitrogen. In addition, BjaR1 exerted a positive influence on the transcription of multiple genes involved in a so-called central intermediate metabolism within the nodule. In conclusion, our findings highlight the crucial role of the BjaI/BjaR1 QS circuit in positively regulating bacterial nitrogen metabolism and emphasize the significance of the soybean-mediated suppression of this genetic system for promoting efficient symbiotic nitrogen fixation by B. diazoefficiens.IMPORTANCEThe present study demonstrates, for the first time, that the BjaI/BjaR1 QS system of Bradyrhizobium diazoefficiens has a significant impact on its nodulation and nitrogen fixation capability in soybean by positively regulating NodD2 expression and bacterial nitrogen metabolism. Moreover, it provides novel insights into the importance of suppressing the activity of this QS circuit by the soybean host plant in establishing an efficient mutual relationship between the two symbiotic partners. This research expands our understanding of legumes' role in modulating symbiotic nitrogen fixation through rhizobial QS-mediated metabolic functioning, thereby deepening our comprehension of symbiotic coevolution theory. In addition, these findings may hold great promise for developing quorum quenching technology in agriculture.
Collapse
Affiliation(s)
- Fang Han
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| | - Huiquan Li
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| | - Ermeng Lyu
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| | - Qianqian Zhang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| | - Haoyu Gai
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| | - Yunfang Xu
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| | - Xuemei Bai
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| | - Xueqian He
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| | - Abdul Qadir Khan
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| | - Xiaolin Li
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Fang Xie
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Fengmin Li
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| | - Xiangwen Fang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| | - Min Wei
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| |
Collapse
|
38
|
Aroney STN, Pini F, Kessler C, Poole PS, Sánchez-Cañizares C. The motility and chemosensory systems of Rhizobium leguminosarum, their role in symbiosis, and link to PTS Ntr regulation. Environ Microbiol 2024; 26:e16570. [PMID: 38216524 DOI: 10.1111/1462-2920.16570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 12/13/2023] [Indexed: 01/14/2024]
Abstract
Motility and chemotaxis are crucial processes for soil bacteria and plant-microbe interactions. This applies to the symbiotic bacterium Rhizobium leguminosarum, where motility is driven by flagella rotation controlled by two chemotaxis systems, Che1 and Che2. The Che1 cluster is particularly important in free-living motility prior to the establishment of the symbiosis, with a che1 mutant delayed in nodulation and reduced in nodulation competitiveness. The Che2 system alters bacteroid development and nodule maturation. In this work, we also identified 27 putative chemoreceptors encoded in the R. leguminosarum bv. viciae 3841 genome and characterized its motility in different growth conditions. We describe a metabolism-based taxis system in rhizobia that acts at high concentrations of dicarboxylates to halt motility independent of chemotaxis. Finally, we show how PTSNtr influences cell motility, with PTSNtr mutants exhibiting reduced swimming in different media. Motility is restored by the active forms of the PTSNtr output regulatory proteins, unphosphorylated ManX and phosphorylated PtsN. Overall, this work shows how rhizobia typify soil bacteria by having a high number of chemoreceptors and highlights the importance of the motility and chemotaxis mechanisms in a free-living cell in the rhizosphere, and at different stages of the symbiosis.
Collapse
Affiliation(s)
| | | | - Celia Kessler
- Department of Biology, University of Oxford, Oxford, UK
| | | | | |
Collapse
|
39
|
Poole P. Symbiosis for rhizobia is not an easy ride. Nat Microbiol 2024; 9:314-315. [PMID: 38316923 DOI: 10.1038/s41564-023-01591-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Affiliation(s)
- Philip Poole
- Department of Biology, University of Oxford, Oxford, UK.
| |
Collapse
|
40
|
Fedorova EE, Pueyo JJ. Microbial Colonization of the Host Plant: Cellular and Molecular Mechanisms of Symbiosis. Int J Mol Sci 2024; 25:639. [PMID: 38203809 PMCID: PMC10779097 DOI: 10.3390/ijms25010639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 12/30/2023] [Indexed: 01/12/2024] Open
Abstract
Nitrogen is an essential element for all plants, animals, and microorganisms in the Earth's biosphere [...].
Collapse
Affiliation(s)
- Elena E. Fedorova
- Timiryazev Institute of Plant Physiology, Russian Academy of Science, 127276 Moscow, Russia
| | - José J. Pueyo
- Department of Soil, Plant and Environmental Quality, Institute of Agricultural Sciences, ICA-CSIC, 28006 Madrid, Spain;
| |
Collapse
|
41
|
González Porras MÁ, Pons I, García-Lozano M, Jagdale S, Emmerich C, Weiss B, Salem H. Extracellular symbiont colonizes insect during embryo development. ISME COMMUNICATIONS 2024; 4:ycae005. [PMID: 38439943 PMCID: PMC10910848 DOI: 10.1093/ismeco/ycae005] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/11/2024] [Accepted: 01/17/2024] [Indexed: 03/06/2024]
Abstract
Insects typically acquire their beneficial microbes early in development. Endosymbionts housed intracellularly are commonly integrated during oogenesis or embryogenesis, whereas extracellular microbes are only known to be acquired after hatching by immature instars such as larvae or nymphs. Here, however, we report on an extracellular symbiont that colonizes its host during embryo development. Tortoise beetles (Chrysomelidae: Cassidinae) host their digestive bacterial symbiont Stammera extracellularly within foregut symbiotic organs and in ovary-associated glands to ensure its vertical transmission. We outline the initial stages of symbiont colonization and observe that although the foregut symbiotic organs develop 3 days prior to larval emergence, they remain empty until the final 24 h of embryo development. Infection by Stammera occurs during that timeframe and prior to hatching. By experimentally manipulating symbiont availability to embryos in the egg, we describe a 12-h developmental window governing colonization by Stammera. Symbiotic organs form normally in aposymbiotic larvae, demonstrating that these Stammera-bearing structures develop autonomously. In adults, the foregut symbiotic organs are already colonized following metamorphosis and host a stable Stammera population to facilitate folivory. The ovary-associated glands, however, initially lack Stammera. Symbiont abundance subsequently increases within these transmission organs, thereby ensuring sufficient titers at the onset of oviposition ~29 days following metamorphosis. Collectively, our findings reveal that Stammera colonization precedes larval emergence, where its proliferation is eventually decoupled in adult beetles to match the nutritional and reproductive requirements of its host.
Collapse
Affiliation(s)
| | - Inès Pons
- Mutualisms Research Group, Max Planck Institute for Biology, Tübingen 72076, Germany
| | - Marleny García-Lozano
- Mutualisms Research Group, Max Planck Institute for Biology, Tübingen 72076, Germany
| | - Shounak Jagdale
- Mutualisms Research Group, Max Planck Institute for Biology, Tübingen 72076, Germany
| | - Christiane Emmerich
- Mutualisms Research Group, Max Planck Institute for Biology, Tübingen 72076, Germany
| | - Benjamin Weiss
- Department of Insect Symbiosis, Max Planck Institute for Chemical Ecology, Jena 07745, Germany
| | - Hassan Salem
- Mutualisms Research Group, Max Planck Institute for Biology, Tübingen 72076, Germany
- Smithsonian Tropical Research Institute, Panama City 0843-03092, Republic of Panama
| |
Collapse
|
42
|
Dallachiesa D, Aguilar OM, Lozano MJ. Improved detection and phylogenetic analysis of plant proteins containing LysM domains. FUNCTIONAL PLANT BIOLOGY : FPB 2024; 51:NULL. [PMID: 38007819 DOI: 10.1071/fp23131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 10/31/2023] [Indexed: 11/28/2023]
Abstract
Plants perceive N-acetyl-d-glucosamine-containing oligosaccharides that play a role in the interaction with bacteria and fungi, through cell-surface receptors containing a tight bundle of three LysM domains in their extracellular region. However, the identification of LysM domains of receptor-like kinases (RLK)/receptor-like proteins (RLP) using sequence based methods has led to some ambiguity, as some proteins have been annotated with only one or two LysM domains. This missing annotation was likely produced by the failure of the LysM hidden Markov model (HMM) from the Pfam database to correctly identify some LysM domains in proteins of plant origin. In this work, we provide improved HMMs for LysM domain detection in plants, that were built from the structural alignment of manually curated LysM domain structures from the Protein Data Bank and AlphaFold Protein Structure Database. Furthermore, we evaluated different sets of ligand-specific HMMs that were able to correctly classify a limited set of fully characterised RLK/Ps by their ligand specificity. In contrast, the phylogenetic analysis of the extracellular region of RLK/Ps, or of their individual LysM domains, was unable to discriminate these proteins by their ligand specificity. The HMMs reported here will allow a more sensitive detection of plant proteins containing LysM domains and help improve their characterisation.
Collapse
Affiliation(s)
- Dardo Dallachiesa
- Instituto de Biotecnología y Biología Molecular (IBBM) - CONICET-CCT La Plata - Universidad Nacional de La Plata, La Plata, Argentina
| | - O Mario Aguilar
- Instituto de Biotecnología y Biología Molecular (IBBM) - CONICET-CCT La Plata - Universidad Nacional de La Plata, La Plata, Argentina
| | - Mauricio J Lozano
- Instituto de Biotecnología y Biología Molecular (IBBM) - CONICET-CCT La Plata - Universidad Nacional de La Plata, La Plata, Argentina
| |
Collapse
|
43
|
Fuentes-Romero F, Alías-Villegas C, Navarro-Gómez P, Acosta-Jurado S, Bernabéu-Roda LM, Cuéllar V, Soto MJ, Vinardell JM. Methods for Studying Swimming and Surface Motilities in Rhizobia. Methods Mol Biol 2024; 2751:205-217. [PMID: 38265718 DOI: 10.1007/978-1-0716-3617-6_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
Rhizobia are soil proteobacteria able to establish a nitrogen-fixing interaction with legumes. In this interaction, rhizobia must colonize legume roots, infect them, and become hosted inside new organs formed by the plants and called nodules. Rhizobial motility, not being essential for symbiosis, might affect the degree of success of the interaction with legumes. Because of this, the study of rhizobial motility (either swimming or surface motility) might be of interest for research teams working on rhizobial symbiotic performance. In this chapter, we describe the protocols we use in our laboratories for studying the different types of motilities exhibited by Sinorhizobium fredii and Sinorhizobium meliloti, as well as for analyzing the presence of flagella in these bacteria. All these protocols might be used (or adapted) for studying bacterial motility in rhizobia.
Collapse
Affiliation(s)
| | - Cynthia Alías-Villegas
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide, Consejo Superior de Investigaciones Científicas and Junta de Andalucía, Seville, Spain
| | - Pilar Navarro-Gómez
- Department of Microbiology, Faculty of Biology, University of Seville, Seville, Spain
| | - Sebastián Acosta-Jurado
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide, Consejo Superior de Investigaciones Científicas and Junta de Andalucía, Seville, Spain
| | - Lydia M Bernabéu-Roda
- Department ofBiotechnology and EnvironmentalProtection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Virginia Cuéllar
- Department ofBiotechnology and EnvironmentalProtection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - María J Soto
- Department ofBiotechnology and EnvironmentalProtection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - José M Vinardell
- Department of Microbiology, Faculty of Biology, University of Seville, Seville, Spain.
| |
Collapse
|
44
|
Tomás-Gallardo L, Cabrera JJ, Mesa S. Surface Plasmon Resonance as a Tool to Elucidate the Molecular Determinants of Key Transcriptional Regulators Controlling Rhizobial Lifestyles. Methods Mol Biol 2024; 2751:145-163. [PMID: 38265715 DOI: 10.1007/978-1-0716-3617-6_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
Bacteria must be provided with a battery of tools integrated into regulatory networks, in order to respond and, consequently, adapt their physiology to changing environments. Within these networks, transcription factors finely orchestrate the expression of genes in response to a variety of signals, by recognizing specific DNA sequences at their promoter regions. Rhizobia are host-interacting soil bacteria that face severe changes to adapt their physiology from free-living conditions to the nitrogen-fixing endosymbiotic state inside root nodules associated with leguminous plants. One of these cues is the low partial pressure of oxygen within root nodules.Surface plasmon resonance (SPR) constitutes a technique that allows to measure molecular interactions dynamics at real time by detecting changes in the refractive index of a surface. Here, we implemented the SPR methodology to analyze the discriminatory determinants of transcription factors for specific interaction with their target genes. We focused on FixK2, a CRP/FNR-type protein with a central role in the complex oxygen-responsive regulatory network in the soybean endosymbiont Bradyrhizobium diazoefficiens. Our study unveiled relevant residues for protein-DNA interaction as well as allowed us to monitor kinetics and stability protein-DNA complex. We believe that this approach can be employed for the characterization of other relevant transcription factors which can assist to the better understanding of the adaptation of bacteria with agronomic or human interest to their different modes of life.
Collapse
Affiliation(s)
- Laura Tomás-Gallardo
- Proteomics and Biochemistry Unit, Andalusian Centre for Developmental Biology, CSIC-Junta de Andalucía-Pablo de Olavide University, Seville, Spain.
| | - Juan J Cabrera
- Department of Soil and Plant Microbiology, Estación Experimental del Zaidín, CSIC, Granada, Spain
| | - Socorro Mesa
- Department of Soil and Plant Microbiology, Estación Experimental del Zaidín, CSIC, Granada, Spain
| |
Collapse
|
45
|
Navarro-Gómez P, Fuentes-Romero F, Pérez-Montaño F, Jiménez-Guerrero I, Alías-Villegas C, Ayala-García P, Almozara A, Medina C, Ollero FJ, Rodríguez-Carvajal MÁ, Ruiz-Sainz JE, López-Baena FJ, Vinardell JM, Acosta-Jurado S. A complex regulatory network governs the expression of symbiotic genes in Sinorhizobium fredii HH103. FRONTIERS IN PLANT SCIENCE 2023; 14:1322435. [PMID: 38186594 PMCID: PMC10771577 DOI: 10.3389/fpls.2023.1322435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 12/04/2023] [Indexed: 01/09/2024]
Abstract
Introduction The establishment of the rhizobium-legume nitrogen-fixing symbiosis relies on the interchange of molecular signals between the two symbionts. We have previously studied by RNA-seq the effect of the symbiotic regulators NodD1, SyrM, and TtsI on the expression of the symbiotic genes (the nod regulon) of Sinorhizobium fredii HH103 upon treatment with the isoflavone genistein. In this work we have further investigated this regulatory network by incorporating new RNA-seq data of HH103 mutants in two other regulatory genes, nodD2 and nolR. Both genes code for global regulators with a predominant repressor effect on the nod regulon, although NodD2 acts as an activator of a small number of HH103 symbiotic genes. Methods By combining RNA-seq data, qPCR experiments, and b-galactosidase assays of HH103 mutants harbouring a lacZ gene inserted into a regulatory gene, we have analysed the regulatory relations between the nodD1, nodD2, nolR, syrM, and ttsI genes, confirming previous data and discovering previously unknown relations. Results and discussion Previously we showed that HH103 mutants in the nodD2, nolR, syrM, or ttsI genes gain effective nodulation with Lotus japonicus, a model legume, although with different symbiotic performances. Here we show that the combinations of mutations in these genes led, in most cases, to a decrease in symbiotic effectiveness, although all of them retained the ability to induce the formation of nitrogen-fixing nodules. In fact, the nodD2, nolR, and syrM single and double mutants share a set of Nod factors, either overproduced by them or not generated by the wild-type strain, that might be responsible for gaining effective nodulation with L. japonicus.
Collapse
Affiliation(s)
- Pilar Navarro-Gómez
- Departamento de Microbiología, Universidad de Sevilla, Sevilla, Spain
- Departamento de Biología Molecular e Ingeniería Bioquímica, Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide/Consejo Superior de Investigaciones Científicas/Junta de Andalucía, Sevilla, Spain
| | | | | | | | - Cynthia Alías-Villegas
- Departamento de Microbiología, Universidad de Sevilla, Sevilla, Spain
- Departamento de Biología Molecular e Ingeniería Bioquímica, Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide/Consejo Superior de Investigaciones Científicas/Junta de Andalucía, Sevilla, Spain
| | | | - Andrés Almozara
- Departamento de Microbiología, Universidad de Sevilla, Sevilla, Spain
| | - Carlos Medina
- Departamento de Microbiología, Universidad de Sevilla, Sevilla, Spain
| | | | | | | | | | | | - Sebastián Acosta-Jurado
- Departamento de Microbiología, Universidad de Sevilla, Sevilla, Spain
- Departamento de Biología Molecular e Ingeniería Bioquímica, Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide/Consejo Superior de Investigaciones Científicas/Junta de Andalucía, Sevilla, Spain
| |
Collapse
|
46
|
Vannier N, Mesny F, Getzke F, Chesneau G, Dethier L, Ordon J, Thiergart T, Hacquard S. Genome-resolved metatranscriptomics reveals conserved root colonization determinants in a synthetic microbiota. Nat Commun 2023; 14:8274. [PMID: 38092730 PMCID: PMC10719396 DOI: 10.1038/s41467-023-43688-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 11/16/2023] [Indexed: 12/17/2023] Open
Abstract
The identification of processes activated by specific microbes during microbiota colonization of plant roots has been hampered by technical constraints in metatranscriptomics. These include lack of reference genomes, high representation of host or microbial rRNA sequences in datasets, or difficulty to experimentally validate gene functions. Here, we recolonized germ-free Arabidopsis thaliana with a synthetic, yet representative root microbiota comprising 106 genome-sequenced bacterial and fungal isolates. We used multi-kingdom rRNA depletion, deep RNA-sequencing and read mapping against reference microbial genomes to analyse the in planta metatranscriptome of abundant colonizers. We identified over 3,000 microbial genes that were differentially regulated at the soil-root interface. Translation and energy production processes were consistently activated in planta, and their induction correlated with bacterial strains' abundance in roots. Finally, we used targeted mutagenesis to show that several genes consistently induced by multiple bacteria are required for root colonization in one of the abundant bacterial strains (a genetically tractable Rhodanobacter). Our results indicate that microbiota members activate strain-specific processes but also common gene sets to colonize plant roots.
Collapse
Affiliation(s)
- Nathan Vannier
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, 50829, Cologne, Germany
- IGEPP, INRAE, Institut Agro, Univ Rennes, 35653, Le Rheu, France
| | - Fantin Mesny
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, 50829, Cologne, Germany
- Institute for Plant Sciences, University of Cologne, 50923, Cologne, Germany
| | - Felix Getzke
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, 50829, Cologne, Germany
| | - Guillaume Chesneau
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, 50829, Cologne, Germany
| | - Laura Dethier
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, 50829, Cologne, Germany
| | - Jana Ordon
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, 50829, Cologne, Germany
| | - Thorsten Thiergart
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, 50829, Cologne, Germany
| | - Stéphane Hacquard
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, 50829, Cologne, Germany.
- Cluster of Excellence on Plant Sciences, Max Planck Institute for Plant Breeding Research, 50829, Cologne, Germany.
| |
Collapse
|
47
|
Msaddak A, Quiñones MA, Mars M, Pueyo JJ. The Beneficial Effects of Inoculation with Selected Nodule-Associated PGPR on White Lupin Are Comparable to Those of Inoculation with Symbiotic Rhizobia. PLANTS (BASEL, SWITZERLAND) 2023; 12:4109. [PMID: 38140436 PMCID: PMC10747367 DOI: 10.3390/plants12244109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 12/01/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023]
Abstract
Nodule endophytes and associated bacteria are non-symbiotic bacteria that colonize legume nodules. They accompany nodulating rhizobia and can form beneficial associations, as some of them are plant growth-promoting rhizobacteria (PGPR) that are able to promote germination and plant growth and increase tolerance to biotic and abiotic stress. White lupin (Lupinus albus) is a legume crop that is gaining relevance as a suitable alternative to soybean as a plant protein source. Eleven nodule-associated bacteria were isolated from white lupin nodules grown in a Tunisian soil. They belonged to the genera Rhizobium, Ensifer, Pseudomonas and Bacillus. Their plant growth-promoting (PGP) and enzymatic activities were tested in vitro. Strains Pseudomonas sp., L1 and L12, displayed most PGP activities tested, and were selected for in planta assays. Inoculation with strains L1 or L12 increased seed germination and had the same positive effects on all plant growth parameters as did inoculation with symbiotic Bradyrhizobium canariense, with no significant differences among treatments. Inoculation with efficient nitrogen-fixing rhizobia must compete with rhizobia present in the soil that sometimes nodulate efficiently but fix nitrogen poorly, leading to a low response to inoculation. In such cases, inoculation with highly effective PGPR might represent a feasible alternative to boost crop productivity.
Collapse
Affiliation(s)
- Abdelhakim Msaddak
- Department of Soil, Plant and Environmental Quality, Institute of Agricultural Sciences, ICA-CSIC, 28006 Madrid, Spain;
- Laboratory of Biodiversity and Valorization of Arid Areas Bioresources, BVBAA, Faculty of Sciences, University of Gabès, Erriadh, Zrig, Gabès 6072, Tunisia;
| | - Miguel A. Quiñones
- Department of Soil, Plant and Environmental Quality, Institute of Agricultural Sciences, ICA-CSIC, 28006 Madrid, Spain;
| | - Mohamed Mars
- Laboratory of Biodiversity and Valorization of Arid Areas Bioresources, BVBAA, Faculty of Sciences, University of Gabès, Erriadh, Zrig, Gabès 6072, Tunisia;
| | - José J. Pueyo
- Department of Soil, Plant and Environmental Quality, Institute of Agricultural Sciences, ICA-CSIC, 28006 Madrid, Spain;
| |
Collapse
|
48
|
Nies F, Wein T, Hanke DM, Springstein BL, Alcorta J, Taubenheim C, Dagan T. Role of natural transformation in the evolution of small cryptic plasmids in Synechocystis sp. PCC 6803. ENVIRONMENTAL MICROBIOLOGY REPORTS 2023; 15:656-668. [PMID: 37794696 PMCID: PMC10667661 DOI: 10.1111/1758-2229.13203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 09/04/2023] [Indexed: 10/06/2023]
Abstract
Small cryptic plasmids have no clear effect on the host fitness and their functional repertoire remains obscure. The naturally competent cyanobacterium Synechocystis sp. PCC 6803 harbours several small cryptic plasmids; whether their evolution with this species is supported by horizontal transfer remains understudied. Here, we show that the small cryptic plasmid DNA is transferred in the population exclusively by natural transformation, where the transfer frequency of plasmid-encoded genes is similar to that of chromosome-encoded genes. Establishing a system to follow gene transfer, we compared the transfer frequency of genes encoded in cryptic plasmids pCA2.4 (2378 bp) and pCB2.4 (2345 bp) within and between populations of two Synechocystis sp. PCC 6803 labtypes (termed Kiel and Sevilla). Our results reveal that plasmid gene transfer frequency depends on the recipient labtype. Furthermore, gene transfer via whole plasmid uptake in the Sevilla labtype ranged among the lowest detected transfer rates in our experiments. Our study indicates that horizontal DNA transfer via natural transformation is frequent in the evolution of small cryptic plasmids that reside in naturally competent organisms. Furthermore, we suggest that the contribution of natural transformation to cryptic plasmid persistence in Synechocystis is limited.
Collapse
Affiliation(s)
- Fabian Nies
- Institute of General MicrobiologyKiel UniversityKielGermany
| | - Tanita Wein
- Institute of General MicrobiologyKiel UniversityKielGermany
- Present address:
Department of Molecular GeneticsWeizmann Institute of ScienceRehovotIsrael
| | | | - Benjamin L. Springstein
- Institute of General MicrobiologyKiel UniversityKielGermany
- Present address:
Institute of Science and Technology AustriaKlosterneuburgAustria
| | - Jaime Alcorta
- Department of Molecular Genetics and Microbiology, Biological Sciences FacultyPontifical Catholic University of ChileSantiagoChile
| | - Claudia Taubenheim
- Institute of General MicrobiologyKiel UniversityKielGermany
- Present address:
Department of Internal Medicine IIUniversity Medical Center Schleswig‐HolsteinKielGermany
| | - Tal Dagan
- Institute of General MicrobiologyKiel UniversityKielGermany
| |
Collapse
|
49
|
Fan K, Wang Z, Sze CC, Niu Y, Wong FL, Li MW, Lam HM. MicroRNA 4407 modulates nodulation in soybean by repressing a root-specific ISOPENTENYLTRANSFERASE (GmIPT3). THE NEW PHYTOLOGIST 2023; 240:1034-1051. [PMID: 37653681 DOI: 10.1111/nph.19222] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 07/28/2023] [Indexed: 09/02/2023]
Abstract
MicroRNAs (miRNAs) are important regulators of plant biological processes, including soybean nodulation. One miRNA, miR4407, was identified in soybean roots and nodules. However, the function of miR4407 in soybean is still unknown. MiR4407, unique to soybean, positively regulates lateral root emergence and root structures and represses a root-specific ISOPENTENYLTRANSFERASE (GmIPT3). By altering the expression of miR4407 and GmIPT3, we investigated the role of miR4407 in lateral root and nodule development. Both miR4407 and GmIPT3 are expressed in the inner root cortex and nodule primordia. Upon rhizobial inoculation, miR4407 was downregulated while GmIPT3 was upregulated. Overexpressing miR4407 reduced the number of nodules in transgenic soybean hairy roots while overexpressing the wild-type GmIPT3 or a miR4407-resistant GmIPT3 mutant (mGmIPT3) significantly increased the nodule number. The mechanism of miR4407 and GmIPT3 functions was also linked to autoregulation of nodulation (AON), where miR4407 overexpression repressed miR172c and activated its target, GmNNC1, turning on AON. Exogenous CK mimicked the effects of GmIPT3 overexpression on miR172c, supporting the notion that GmIPT3 regulates nodulation by enhancing root-derived CK. Overall, our data revealed a new miRNA-mediated regulatory mechanism of nodulation in soybean. MiR4407 showed a dual role in lateral root and nodule development.
Collapse
Affiliation(s)
- Kejing Fan
- School of Life Sciences and Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Zhili Wang
- School of Life Sciences and Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Ching-Ching Sze
- School of Life Sciences and Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Yongchao Niu
- School of Life Sciences and Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Fuk-Ling Wong
- School of Life Sciences and Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Man-Wah Li
- School of Life Sciences and Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Hon-Ming Lam
- School of Life Sciences and Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| |
Collapse
|
50
|
Van Cauwenberghe J, Simms EL. How might bacteriophages shape biological invasions? mBio 2023; 14:e0188623. [PMID: 37812005 PMCID: PMC10653932 DOI: 10.1128/mbio.01886-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2023] Open
Abstract
Invasions by eukaryotes dependent on environmentally acquired bacterial mutualists are often limited by the ability of bacterial partners to survive and establish free-living populations. Focusing on the model legume-rhizobium mutualism, we apply invasion biology hypotheses to explain how bacteriophages can impact the competitiveness of introduced bacterial mutualists. Predicting how phage-bacteria interactions affect invading eukaryotic hosts requires knowing the eco-evolutionary constraints of introduced and native microbial communities, as well as their differences in abundance and diversity. By synthesizing research from invasion biology, as well as bacterial, viral, and community ecology, we create a conceptual framework for understanding and predicting how phages can affect biological invasions through their effects on bacterial mutualists.
Collapse
Affiliation(s)
- Jannick Van Cauwenberghe
- Institute of Biodiversity, Faculty of Biological Sciences, Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, Jena, Germany
- Department of Integrative Biology, University of California, Berkeley, California, USA
| | - Ellen L. Simms
- Department of Integrative Biology, University of California, Berkeley, California, USA
| |
Collapse
|