1
|
Liu J, McRae EKS, Zhang M, Geary C, Andersen ES, Ren G. Non-averaged single-molecule tertiary structures reveal RNA self-folding through individual-particle cryo-electron tomography. Nat Commun 2024; 15:9084. [PMID: 39433544 PMCID: PMC11494099 DOI: 10.1038/s41467-024-52914-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 09/23/2024] [Indexed: 10/23/2024] Open
Abstract
Large-scale and continuous conformational changes in the RNA self-folding process present significant challenges for structural studies, often requiring trade-offs between resolution and observational scope. Here, we utilize individual-particle cryo-electron tomography (IPET) to examine the post-transcriptional self-folding process of designed RNA origami 6-helix bundle with a clasp helix (6HBC). By avoiding selection, classification, averaging, or chemical fixation and optimizing cryo-ET data acquisition parameters, we reconstruct 120 three-dimensional (3D) density maps from 120 individual particles at an electron dose of no more than 168 e-Å-2, achieving averaged resolutions ranging from 23 to 35 Å, as estimated by Fourier shell correlation (FSC) at 0.5. Each map allows us to identify distinct RNA helices and determine a unique tertiary structure. Statistical analysis of these 120 structures confirms two reported conformations and reveals a range of kinetically trapped, intermediate, and highly compacted states, demonstrating a maturation folding landscape likely driven by helix-helix compaction interactions.
Collapse
Affiliation(s)
- Jianfang Liu
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Ewan K S McRae
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, DK-8000, Aarhus, Denmark
- Center for RNA Therapeutics, Houston Methodist Research Institute, Houston, TX, 77030, USA
| | - Meng Zhang
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA, 94720, USA
| | - Cody Geary
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, DK-8000, Aarhus, Denmark
- Center for Molecular Biology of Heidelberg University (ZMBH), Heidelberg University, 69120, Heidelberg, Germany
| | - Ebbe Sloth Andersen
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, DK-8000, Aarhus, Denmark.
| | - Gang Ren
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
| |
Collapse
|
2
|
Liu J, McRae EKS, Zhang M, Geary C, Andersen ES, Ren G. Tertiary structure of single-instant RNA molecule reveals folding landscape. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.19.541511. [PMID: 37292713 PMCID: PMC10245749 DOI: 10.1101/2023.05.19.541511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The folding of RNA and protein molecules during their synthesis is a crucial self-assembly process that nature employs to convert genetic information into the complex molecular machinery that supports life. Misfolding events are the cause of several diseases, and the folding pathway of central biomolecules, such as the ribosome, is strictly regulated by programmed maturation processes and folding chaperones. However, the dynamic folding processes are challenging to study because current structure determination methods heavily rely on averaging, and existing computational methods do not efficiently simulate non-equilibrium dynamics. Here we utilize individual-particle cryo-electron tomography (IPET) to investigate the folding landscape of a rationally designed RNA origami 6-helix bundle that undergoes slow maturation from a "young" to "mature" conformation. By optimizing the IPET imaging and electron dose conditions, we obtain 3D reconstructions of 120 individual particles at resolutions ranging from 23-35 Å, enabling us first-time to observe individual RNA helices and tertiary structures without averaging. Statistical analysis of 120 tertiary structures confirms the two main conformations and suggests a possible folding pathway driven by helix-helix compaction. Studies of the full conformational landscape reveal both trapped states, misfolded states, intermediate states, and fully compacted states. The study provides novel insight into RNA folding pathways and paves the way for future studies of the energy landscape of molecular machines and self-assembly processes.
Collapse
|
3
|
Live-Cell Fluorescence Imaging of Magnetosome Organelle for Magnetotaxis Motility. Methods Mol Biol 2023; 2646:133-146. [PMID: 36842112 DOI: 10.1007/978-1-0716-3060-0_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
Abstract
The assessment of intracellular dynamics is crucial for understanding the function and formation process of bacterial organelle, just as it is for the inquisition of their eukaryotic counterparts. The methods for imaging magnetosome organelles in a magnetotactic bacterial cell using live-cell fluorescence imaging by highly inclined and laminated optical sheet (HILO) microscopy are presented in this chapter. Furthermore, we introduce methods for pH imaging in magnetosome lumen as an application of fluorescence magnetosome imaging.
Collapse
|
4
|
Gundlach KA, Briegel A. Zooming in on host-symbiont interactions: advances in cryo-EM sample processing methods and future application to symbiotic tissues. Symbiosis 2022. [DOI: 10.1007/s13199-022-00859-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AbstractAnimals, plants, and fungi live in a microbe-dominated world. Investigating the interactions and processes at the host-microbe interface offers insight to how bacteria influence the development, health, and disease of the host. Optimization of existing imaging technologies and development of novel instrumentation will provide the tools needed to fully understand the dynamic relationship that occurs at the host-microbe interface throughout the lifetime of the host. In this review, we describe the current methods used in cryo-electron microscopy (cryo-EM) including cryo-fixation, sample processing, FIB-SEM, and cryotomography. Further, we highlight the new advances associated with these methods that open the cryo-EM discipline to large, complex multicellular samples, like symbiotic tissues. We describe the advantages and challenges associated with correlative imaging techniques and sample thinning methods like lift-out. By highlighting recent pioneering studies in the large-volume or symbiotic sample workflows, we provide insight into how symbiotic model systems will benefit from cryo-EM methods to provide artefact-free, near-native, macromolecular-scale resolution imaging at the host-microbe interface throughout the development and maintenance of symbiosis. Cryo-EM methods have brought a deep fundamental understanding of prokaryotic biology since its conception. We propose the application of existing and novel cryo-EM techniques to symbiotic systems is the logical next step that will bring an even greater understanding how microbes interact with their host tissues.
Collapse
|
5
|
Zuber B, Lučić V. Neurons as a model system for cryo-electron tomography. J Struct Biol X 2022; 6:100067. [PMID: 35310407 PMCID: PMC8924422 DOI: 10.1016/j.yjsbx.2022.100067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Cryo-ET imaging of neurons is a versatile system for cell biology in situ. Structural and spatial localization analysis yields new insights into synaptic transmission. The synapse provides a rich environment for the development of image processing tools.
Cryo-electron tomography (Cryo-ET) provides unique opportunities to image cellular components at high resolution in their native state and environment. While many different cell types were investigated by cryo-ET, here we review application to neurons. We show that neurons are a versatile system that can be used to investigate general cellular components such as the cytoskeleton and membrane-bound organelles, in addition to neuron-specific processes such as synaptic transmission. Furthermore, the synapse provides a rich environment for the development of cryo-ET image processing tools suitable to elucidate the functional and spatial organization of compositionally and morphologically heterogeneous macromolecular complexes involved in biochemical signaling cascades, within their native, crowded cellular environments.
Collapse
|
6
|
Studying the surfaces of bacteria using neutron scattering: finding new openings for antibiotics. Biochem Soc Trans 2021; 48:2139-2149. [PMID: 33005925 PMCID: PMC7609035 DOI: 10.1042/bst20200320] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/26/2020] [Accepted: 09/01/2020] [Indexed: 12/29/2022]
Abstract
The use of neutrons as a scattering probe to investigate biological membranes has steadily grown in the past three decades, shedding light on the structure and behaviour of this ubiquitous and fundamental biological barrier. Meanwhile, the rise of antibiotic resistance has catalysed a renewed interest in understanding the mechanisms underlying the dynamics of antibiotics interaction with the bacterial cell envelope. It is widely recognised that the key reason behind the remarkable success of Gram-negative pathogens in developing antibiotic resistance lies in the effectiveness of their outer membrane (OM) in defending the cell from antibacterial compounds. Critical to its function, the highly asymmetric lipid distribution between the inner and outer bilayer leaflets of the OM, adds an extra level of complexity to the study of this crucial defence barrier. Here we review the opportunities offered by neutron scattering techniques, in particular reflectometry, to provide structural information on the interactions of antimicrobials with in vitro models of the OM. The differential sensitivity of neutrons towards hydrogen and deuterium makes them a unique probe to study the structure and behaviour of asymmetric membranes. Molecular-level understanding of the interactions between antimicrobials and the Gram-negative OM provides valuable insights that can aid drug development and broaden our knowledge of this critically important biological barrier.
Collapse
|
7
|
Semeraro EF, Marx L, Mandl J, Frewein MPK, Scott HL, Prévost S, Bergler H, Lohner K, Pabst G. Evolution of the analytical scattering model of live Escherichia coli. J Appl Crystallogr 2021; 54:473-485. [PMID: 33953653 PMCID: PMC8056759 DOI: 10.1107/s1600576721000169] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 01/05/2021] [Indexed: 11/10/2022] Open
Abstract
A previously reported multi-scale model for (ultra-)small-angle X-ray (USAXS/SAXS) and (very) small-angle neutron scattering (VSANS/SANS) of live Escherichia coli was revised on the basis of compositional/metabolomic and ultrastructural constraints. The cellular body is modeled, as previously described, by an ellipsoid with multiple shells. However, scattering originating from flagella was replaced by a term accounting for the oligosaccharide cores of the lipopolysaccharide leaflet of the outer membrane including its cross-term with the cellular body. This was mainly motivated by (U)SAXS experiments showing indistinguishable scattering for bacteria in the presence and absence of flagella or fimbrae. The revised model succeeded in fitting USAXS/SAXS and differently contrasted VSANS/SANS data of E. coli ATCC 25922 over four orders of magnitude in length scale. Specifically, this approach provides detailed insight into structural features of the cellular envelope, including the distance of the inner and outer membranes, as well as the scattering length densities of all bacterial compartments. The model was also successfully applied to E. coli K12, used for the authors' original modeling, as well as for two other E. coli strains. Significant differences were detected between the different strains in terms of bacterial size, intermembrane distance and its positional fluctuations. These findings corroborate the general applicability of the approach outlined here to quantitatively study the effect of bactericidal compounds on ultrastructural features of Gram-negative bacteria without the need to resort to any invasive staining or labeling agents.
Collapse
Affiliation(s)
- Enrico F. Semeraro
- University of Graz, Institute of Molecular Biosciences, NAWI Graz, 8010 Graz, Austria
- BioTechMed Graz, 8010 Graz, Austria
- Field of Excellence BioHealth – University of Graz, Graz, Austria
| | - Lisa Marx
- University of Graz, Institute of Molecular Biosciences, NAWI Graz, 8010 Graz, Austria
- BioTechMed Graz, 8010 Graz, Austria
- Field of Excellence BioHealth – University of Graz, Graz, Austria
| | - Johannes Mandl
- University of Graz, Institute of Molecular Biosciences, NAWI Graz, 8010 Graz, Austria
- BioTechMed Graz, 8010 Graz, Austria
- Field of Excellence BioHealth – University of Graz, Graz, Austria
| | - Moritz P. K. Frewein
- University of Graz, Institute of Molecular Biosciences, NAWI Graz, 8010 Graz, Austria
- BioTechMed Graz, 8010 Graz, Austria
- Field of Excellence BioHealth – University of Graz, Graz, Austria
- Institut Laue–Langevin, 38043 Grenoble, France
| | - Haden L. Scott
- University of Tennessee, Center for Environmental Biotechnology, Knoxville, Tennessee, USA
| | | | - Helmut Bergler
- University of Graz, Institute of Molecular Biosciences, NAWI Graz, 8010 Graz, Austria
- BioTechMed Graz, 8010 Graz, Austria
- Field of Excellence BioHealth – University of Graz, Graz, Austria
| | - Karl Lohner
- University of Graz, Institute of Molecular Biosciences, NAWI Graz, 8010 Graz, Austria
- BioTechMed Graz, 8010 Graz, Austria
- Field of Excellence BioHealth – University of Graz, Graz, Austria
| | - Georg Pabst
- University of Graz, Institute of Molecular Biosciences, NAWI Graz, 8010 Graz, Austria
- BioTechMed Graz, 8010 Graz, Austria
- Field of Excellence BioHealth – University of Graz, Graz, Austria
| |
Collapse
|
8
|
Hickey ME, He L. SERS imaging analyses of bacteria cells among plant tissues. Talanta 2021; 225:122008. [PMID: 33592747 DOI: 10.1016/j.talanta.2020.122008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/10/2020] [Accepted: 12/11/2020] [Indexed: 11/19/2022]
Abstract
A chemical imaging method to mass surveil bacteria cells among plant tissues in situ is reported. Bacteria cells were pre-labeled with 3-mercaptophenylboronic acid for complexation with gold nanoparticles. Surface-enhanced Raman spectra were collated en masse to generate panoramic chemical images of bacteria populations. The approach was successfully employed to study the distribution of mass bacteria populations directly on and in selected plant tissues. This study demonstrates the great potential with which SERS imaging can be utilized for the study of bacterial cells among complex matrices, in some ways that are superior to electron and fluorescent microscopies.
Collapse
Affiliation(s)
- Michael E Hickey
- Department of Food Science, University of Massachusetts, Amherst, MA, 01003, USA
| | - Lili He
- Department of Food Science, University of Massachusetts, Amherst, MA, 01003, USA.
| |
Collapse
|
9
|
Nardi P, Laanbroek HJ, Nicol GW, Renella G, Cardinale M, Pietramellara G, Weckwerth W, Trinchera A, Ghatak A, Nannipieri P. Biological nitrification inhibition in the rhizosphere: determining interactions and impact on microbially mediated processes and potential applications. FEMS Microbiol Rev 2021; 44:874-908. [PMID: 32785584 DOI: 10.1093/femsre/fuaa037] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 08/10/2020] [Indexed: 12/11/2022] Open
Abstract
Nitrification is the microbial conversion of reduced forms of nitrogen (N) to nitrate (NO3-), and in fertilized soils it can lead to substantial N losses via NO3- leaching or nitrous oxide (N2O) production. To limit such problems, synthetic nitrification inhibitors have been applied but their performance differs between soils. In recent years, there has been an increasing interest in the occurrence of biological nitrification inhibition (BNI), a natural phenomenon according to which certain plants can inhibit nitrification through the release of active compounds in root exudates. Here, we synthesize the current state of research but also unravel knowledge gaps in the field. The nitrification process is discussed considering recent discoveries in genomics, biochemistry and ecology of nitrifiers. Secondly, we focus on the 'where' and 'how' of BNI. The N transformations and their interconnections as they occur in, and are affected by, the rhizosphere, are also discussed. The NH4+ and NO3- retention pathways alternative to BNI are reviewed as well. We also provide hypotheses on how plant compounds with putative BNI ability can reach their targets inside the cell and inhibit ammonia oxidation. Finally, we discuss a set of techniques that can be successfully applied to solve unresearched questions in BNI studies.
Collapse
Affiliation(s)
- Pierfrancesco Nardi
- Consiglio per la ricerca e l'analisi dell'economia agraria - Research Centre for Agriculture and Environment (CREA-AA), Via della Navicella 2-4, Rome 00184, Italy
| | - Hendrikus J Laanbroek
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB Wageningen, The Netherlands; Ecology and Biodiversity Group, Department of Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Graeme W Nicol
- Laboratoire Ampère, École Centrale de Lyon, Université de Lyon, Ecully, 69134, France
| | - Giancarlo Renella
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padua, Viale dell'Università 16, 35020 Legnaro, Italy
| | - Massimiliano Cardinale
- Department of Biological and Environmental Sciences and Technologies - DiSTeBA, University of Salento, Centro Ecotekne - via Provinciale Lecce-Monteroni, I-73100, Lecce, Italy
| | - Giacomo Pietramellara
- Department of Agriculture, Food, Environment and Forestry, University of Firenze, P.le delle Cascine 28, Firenze 50144, Italy
| | - Wolfram Weckwerth
- Molecular Systems Biology (MOSYS), Department of Functional and Evolutionary Ecology, Faculty of Life Sciences, University of Vienna, Althanstrasse 14, Vienna, 1090, Austria; Vienna Metabolomics Center (VIME), University of Vienna, Althanstrasse 14, Vienna, 1090, Austria
| | - Alessandra Trinchera
- Consiglio per la ricerca e l'analisi dell'economia agraria - Research Centre for Agriculture and Environment (CREA-AA), Via della Navicella 2-4, Rome 00184, Italy
| | - Arindam Ghatak
- Molecular Systems Biology (MOSYS), Department of Functional and Evolutionary Ecology, Faculty of Life Sciences, University of Vienna, Althanstrasse 14, Vienna, 1090, Austria
| | - Paolo Nannipieri
- Department of Agriculture, Food, Environment and Forestry, University of Firenze, P.le delle Cascine 28, Firenze 50144, Italy
| |
Collapse
|
10
|
Semeraro EF, Marx L, Frewein MPK, Pabst G. Increasing complexity in small-angle X-ray and neutron scattering experiments: from biological membrane mimics to live cells. SOFT MATTER 2021; 17:222-232. [PMID: 32104874 DOI: 10.1039/c9sm02352f] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Small-angle X-ray and neutron scattering are well-established, non-invasive experimental techniques to interrogate global structural properties of biological membrane mimicking systems under physiologically relevant conditions. Recent developments, both in bottom-up sample preparation techniques for increasingly complex model systems, and in data analysis techniques have opened the path toward addressing long standing issues of biological membrane remodelling processes. These efforts also include emerging quantitative scattering studies on live cells, thus enabling a bridging of molecular to cellular length scales. Here, we review recent progress in devising compositional models for joint small-angle X-ray and neutron scattering studies on diverse membrane mimics - with a specific focus on membrane structural coupling to amphiphatic peptides and integral proteins - and live Escherichia coli. In particular, we outline the present state-of-the-art in small-angle scattering methods applied to complex membrane systems, highlighting how increasing system complexity must be followed by an advance in compositional modelling and data-analysis tools.
Collapse
Affiliation(s)
- Enrico F Semeraro
- University of Graz, Institute of Molecular Biosciences, Biophysics Division, NAWI Graz, 8010 Graz, Austria. and BioTechMed Graz, 8010 Graz, Austria
| | - Lisa Marx
- University of Graz, Institute of Molecular Biosciences, Biophysics Division, NAWI Graz, 8010 Graz, Austria. and BioTechMed Graz, 8010 Graz, Austria
| | - Moritz P K Frewein
- University of Graz, Institute of Molecular Biosciences, Biophysics Division, NAWI Graz, 8010 Graz, Austria. and BioTechMed Graz, 8010 Graz, Austria and Institut Laue-Langevin, 38000 Grenoble, France
| | - Georg Pabst
- University of Graz, Institute of Molecular Biosciences, Biophysics Division, NAWI Graz, 8010 Graz, Austria. and BioTechMed Graz, 8010 Graz, Austria
| |
Collapse
|
11
|
Scherr J, Tang Z, Küllmer M, Balser S, Scholz AS, Winter A, Parey K, Rittner A, Grininger M, Zickermann V, Rhinow D, Terfort A, Turchanin A. Smart Molecular Nanosheets for Advanced Preparation of Biological Samples in Electron Cryo-Microscopy. ACS NANO 2020; 14:9972-9978. [PMID: 32589396 DOI: 10.1021/acsnano.0c03052] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Transmission electron cryo-microscopy (cryoEM) of vitrified biological specimens is a powerful tool for structural biology. Current preparation of vitrified biological samples starts off with sample isolation and purification, followed by the fixation in a freestanding layer of amorphous ice. Here, we demonstrate that ultrathin (∼10 nm) smart molecular nanosheets having specific biorecognition sites embedded in a biorepulsive layer covalently bound to a mechanically stable carbon nanomembrane allow for a much simpler isolation and structural analysis. We characterize in detail the engineering of these nanosheets and their biorecognition properties employing complementary methods such as X-ray photoelectron and infrared spectroscopy, atomic force microscopy as well as surface plasmon resonance measurements. The desired functionality of the developed nanosheets is demonstrated by in situ selection of a His-tagged protein from a mixture and its subsequent structural analysis by cryoEM.
Collapse
Affiliation(s)
- Julian Scherr
- Department of Chemistry, University of Frankfurt, Max-von-Laue-Str. 7, 60438 Frankfurt, Germany
| | - Zian Tang
- Institute of Physical Chemistry, Friedrich Schiller University Jena, Lessingstr. 10, 07743 Jena, Germany
| | - Maria Küllmer
- Institute of Physical Chemistry, Friedrich Schiller University Jena, Lessingstr. 10, 07743 Jena, Germany
| | - Sebastian Balser
- Department of Chemistry, University of Frankfurt, Max-von-Laue-Str. 7, 60438 Frankfurt, Germany
| | - Alexander Stefan Scholz
- Department of Chemistry, University of Frankfurt, Max-von-Laue-Str. 7, 60438 Frankfurt, Germany
| | - Andreas Winter
- Institute of Physical Chemistry, Friedrich Schiller University Jena, Lessingstr. 10, 07743 Jena, Germany
| | - Kristian Parey
- Department of Structural Biology, Max Planck Institute of Biophysics, Max-von-Laue-Str. 3, 60438 Frankfurt, Germany
| | - Alexander Rittner
- Institute of Organic Chemistry and Chemical Biology, Buchmann Institute for Molecular Life Sciences, University of Frankfurt, Max-von-Laue-Str. 15, 60438 Frankfurt, Germany
| | - Martin Grininger
- Institute of Organic Chemistry and Chemical Biology, Buchmann Institute for Molecular Life Sciences, University of Frankfurt, Max-von-Laue-Str. 15, 60438 Frankfurt, Germany
| | - Volker Zickermann
- Institute of Biochemistry II, Medical School, University of Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany
| | - Daniel Rhinow
- Department of Structural Biology, Max Planck Institute of Biophysics, Max-von-Laue-Str. 3, 60438 Frankfurt, Germany
| | - Andreas Terfort
- Department of Chemistry, University of Frankfurt, Max-von-Laue-Str. 7, 60438 Frankfurt, Germany
| | - Andrey Turchanin
- Institute of Physical Chemistry, Friedrich Schiller University Jena, Lessingstr. 10, 07743 Jena, Germany
| |
Collapse
|
12
|
LoTToR: An Algorithm for Missing-Wedge Correction of the Low-Tilt Tomographic 3D Reconstruction of a Single-Molecule Structure. Sci Rep 2020; 10:10489. [PMID: 32591588 PMCID: PMC7320192 DOI: 10.1038/s41598-020-66793-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 05/27/2020] [Indexed: 01/01/2023] Open
Abstract
A single-molecule three-dimensional (3D) structure is essential for understanding the thermal vibrations and dynamics as well as the conformational changes during the chemical reaction of macromolecules. Individual-particle electron tomography (IPET) is an approach for obtaining a snap-shot 3D structure of an individual macromolecule particle by aligning the tilt series of electron tomographic (ET) images of a targeted particle through a focused iterative 3D reconstruction method. The method can reduce the influence on the 3D reconstruction from large-scale image distortion and deformation. Due to the mechanical tilt limitation, 3D reconstruction often contains missing-wedge artifacts, presented as elongation and an anisotropic resolution. Here, we report a post-processing method to correct the missing-wedge artifact. This low-tilt tomographic reconstruction (LoTToR) method contains a model-free iteration process under a set of constraints in real and reciprocal spaces. A proof of concept is conducted by using the LoTToR on a phantom, i.e., a simulated 3D reconstruction from a low-tilt series of images, including that within a tilt range of ±15°. The method is validated by using both negative-staining (NS) and cryo-electron tomography (cryo-ET) experimental data. A significantly reduced missing-wedge artifact verifies the capability of LoTToR, suggesting a new tool to support the future study of macromolecular dynamics, fluctuation and chemical activity from the viewpoint of single-molecule 3D structure determination.
Collapse
|
13
|
Abstract
The FtsZ protein is a highly conserved bacterial tubulin homolog. In vivo, the functional form of FtsZ is the polymeric, ring-like structure (Z-ring) assembled at the future division site during cell division. While it is clear that the Z-ring plays an essential role in orchestrating cytokinesis, precisely what its functions are and how these functions are achieved remain elusive. In this article, we review what we have learned during the past decade about the Z-ring's structure, function, and dynamics, with a particular focus on insights generated by recent high-resolution imaging and single-molecule analyses. We suggest that the major function of the Z-ring is to govern nascent cell pole morphogenesis by directing the spatiotemporal distribution of septal cell wall remodeling enzymes through the Z-ring's GTP hydrolysis-dependent treadmilling dynamics. In this role, FtsZ functions in cell division as the counterpart of the cell shape-determining actin homolog MreB in cell elongation.
Collapse
Affiliation(s)
- Ryan McQuillen
- Department of Biophysics & Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA; ,
| | - Jie Xiao
- Department of Biophysics & Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA; ,
| |
Collapse
|
14
|
Peng MW, Guan Y, Liu JH, Chen L, Wang H, Xie ZZ, Li HY, Chen YP, Liu P, Yan P, Guo JS, Liu G, Shen Y, Fang F. Quantitative three-dimensional nondestructive imaging of whole anaerobic ammonium-oxidizing bacteria. JOURNAL OF SYNCHROTRON RADIATION 2020; 27:753-761. [PMID: 32381778 PMCID: PMC7285686 DOI: 10.1107/s1600577520002349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 02/19/2020] [Indexed: 06/11/2023]
Abstract
Anaerobic ammonium-oxidizing (anammox) bacteria play a key role in the global nitrogen cycle and in nitrogenous wastewater treatment. The anammox bacteria ultrastructure is unique and distinctly different from that of other prokaryotic cells. The morphological structure of an organism is related to its function; however, research on the ultrastructure of intact anammox bacteria is lacking. In this study, in situ three-dimensional nondestructive ultrastructure imaging of a whole anammox cell was performed using synchrotron soft X-ray tomography (SXT) and the total variation-based simultaneous algebraic reconstruction technique (TV-SART). Statistical and quantitative analyses of the intact anammox bacteria were performed. High soft X-ray absorption composition inside anammoxosome was detected and verified to be relevant to iron-binding protein. On this basis, the shape adaptation of the anammox bacteria response to iron was explored.
Collapse
Affiliation(s)
- Meng-Wen Peng
- Key Laboratory of the Three Gorges Reservoir Region’s Eco-Environments of MOE, Chongqing University, Chongqing 400045, People’s Republic of China
| | - Yong Guan
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026, People’s Republic of China
| | - Jian-Hong Liu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026, People’s Republic of China
| | - Liang Chen
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026, People’s Republic of China
| | - Han Wang
- Key Laboratory of the Three Gorges Reservoir Region’s Eco-Environments of MOE, Chongqing University, Chongqing 400045, People’s Republic of China
| | - Zheng-Zhe Xie
- i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, People’s Republic of China
| | - Hai-Yan Li
- Key Laboratory of the Three Gorges Reservoir Region’s Eco-Environments of MOE, Chongqing University, Chongqing 400045, People’s Republic of China
| | - You-Peng Chen
- Key Laboratory of the Three Gorges Reservoir Region’s Eco-Environments of MOE, Chongqing University, Chongqing 400045, People’s Republic of China
| | - Peng Liu
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, People’s Republic of China
| | - Peng Yan
- Key Laboratory of the Three Gorges Reservoir Region’s Eco-Environments of MOE, Chongqing University, Chongqing 400045, People’s Republic of China
| | - Jin-Song Guo
- Key Laboratory of the Three Gorges Reservoir Region’s Eco-Environments of MOE, Chongqing University, Chongqing 400045, People’s Republic of China
| | - Gang Liu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026, People’s Republic of China
| | - Yu Shen
- National Base of International Science and Technology Cooperation for Intelligent Manufacturing Service, Chongqing Technology and Business University, Chongqing 400067, People’s Republic of China
| | - Fang Fang
- Key Laboratory of the Three Gorges Reservoir Region’s Eco-Environments of MOE, Chongqing University, Chongqing 400045, People’s Republic of China
| |
Collapse
|
15
|
Chen Q, Dwyer C, Sheng G, Zhu C, Li X, Zheng C, Zhu Y. Imaging Beam-Sensitive Materials by Electron Microscopy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1907619. [PMID: 32108394 DOI: 10.1002/adma.201907619] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 12/20/2019] [Indexed: 05/15/2023]
Abstract
Electron microscopy allows the extraction of multidimensional spatiotemporally correlated structural information of diverse materials down to atomic resolution, which is essential for figuring out their structure-property relationships. Unfortunately, the high-energy electrons that carry this important information can cause damage by modulating the structures of the materials. This has become a significant problem concerning the recent boost in materials science applications of a wide range of beam-sensitive materials, including metal-organic frameworks, covalent-organic frameworks, organic-inorganic hybrid materials, 2D materials, and zeolites. To this end, developing electron microscopy techniques that minimize the electron beam damage for the extraction of intrinsic structural information turns out to be a compelling but challenging need. This article provides a comprehensive review on the revolutionary strategies toward the electron microscopic imaging of beam-sensitive materials and associated materials science discoveries, based on the principles of electron-matter interaction and mechanisms of electron beam damage. Finally, perspectives and future trends in this field are put forward.
Collapse
Affiliation(s)
- Qiaoli Chen
- Center for Electron Microscopy, State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology and College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Christian Dwyer
- Department of Physics, Arizona State University, Tempe, AZ, 85287-1504, USA
| | - Guan Sheng
- Advanced Membranes and Porous Materials Center, Physical Science and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Chongzhi Zhu
- Center for Electron Microscopy, State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology and College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Xiaonian Li
- Center for Electron Microscopy, State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology and College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Changlin Zheng
- State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai, 200438, China
| | - Yihan Zhu
- Center for Electron Microscopy, State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology and College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
| |
Collapse
|
16
|
Checa M, Millan-Solsona R, Blanco N, Torrents E, Fabregas R, Gomila G. Mapping the dielectric constant of a single bacterial cell at the nanoscale with scanning dielectric force volume microscopy. NANOSCALE 2019; 11:20809-20819. [PMID: 31657419 DOI: 10.1039/c9nr07659j] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Mapping the dielectric constant at the nanoscale of samples showing a complex topography, such as non-planar nanocomposite materials or single cells, poses formidable challenges to existing nanoscale dielectric microscopy techniques. Here we overcome these limitations by introducing Scanning Dielectric Force Volume Microscopy. This scanning probe microscopy technique is based on the acquisition of electrostatic force approach curves at every point of a sample and its post-processing and quantification by using a computational model that incorporates the actual measured sample topography. The technique provides quantitative nanoscale images of the local dielectric constant of the sample with unparalleled accuracy, spatial resolution and statistical significance, irrespectively of the complexity of its topography. We illustrate the potential of the technique by presenting a nanoscale dielectric constant map of a single bacterial cell, including its small-scale appendages. The bacterial cell shows three characteristic equivalent dielectric constant values, namely, εr,bac1 = 2.6 ± 0.2, εr,bac2 = 3.6 ± 0.4 and εr,bac3 = 4.9 ± 0.5, which enable identifying different dielectric properties of the cell wall and of the cytoplasmatic region, as well as, the existence of variations in the dielectric constant along the bacterial cell wall itself. Scanning Dielectric Force Volume Microscopy is expected to have an important impact in Materials and Life Sciences where the mapping of the dielectric properties of samples showing complex nanoscale topographies is often needed.
Collapse
Affiliation(s)
- Martí Checa
- Nanoscale Bioelectrical Characterization, Institut de Bioenginyeria de Catalunya (IBEC), The Barcelona Institute of Science and Technology, c/Baldiri i Reixac 11-15, 08028, Barcelona, Spain. and Departament d'Enginyeria Electrònica i Biomèdica, Universitat de Barcelona, c/Martí i Franquès 1, 08028, Barcelona, Spain
| | - Ruben Millan-Solsona
- Nanoscale Bioelectrical Characterization, Institut de Bioenginyeria de Catalunya (IBEC), The Barcelona Institute of Science and Technology, c/Baldiri i Reixac 11-15, 08028, Barcelona, Spain. and Departament d'Enginyeria Electrònica i Biomèdica, Universitat de Barcelona, c/Martí i Franquès 1, 08028, Barcelona, Spain
| | - Nuria Blanco
- Bacterial Infections: Antimicrobial Therapies, Institut de Bioenginyeria de Catalunya (IBEC), The Barcelona Institute of Science and Technology, c/Baldiri i Reixac 11-15, 08028, Barcelona
| | - Eduard Torrents
- Bacterial Infections: Antimicrobial Therapies, Institut de Bioenginyeria de Catalunya (IBEC), The Barcelona Institute of Science and Technology, c/Baldiri i Reixac 11-15, 08028, Barcelona
| | - Rene Fabregas
- Departament d'Enginyeria Electrònica i Biomèdica, Universitat de Barcelona, c/Martí i Franquès 1, 08028, Barcelona, Spain
| | - Gabriel Gomila
- Nanoscale Bioelectrical Characterization, Institut de Bioenginyeria de Catalunya (IBEC), The Barcelona Institute of Science and Technology, c/Baldiri i Reixac 11-15, 08028, Barcelona, Spain. and Departament d'Enginyeria Electrònica i Biomèdica, Universitat de Barcelona, c/Martí i Franquès 1, 08028, Barcelona, Spain
| |
Collapse
|
17
|
Doh JK, Chang YH, Enns CA, Lόpez CS, Beatty KE. Imaging VIPER-labeled Cellular Proteins by Correlative Light and Electron Microscopy. Bio Protoc 2019; 9:e3414. [PMID: 33654913 PMCID: PMC7853974 DOI: 10.21769/bioprotoc.3414] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 09/24/2019] [Accepted: 09/30/2019] [Indexed: 01/02/2023] Open
Abstract
Advances in fluorescence microscopy (FM), electron microscopy (EM), and correlative light and EM (CLEM) offer unprecedented opportunities for studying diverse proteins and nanostructures involved in fundamental cell biology. It is now possible to visualize and quantify the spatial organization of cellular proteins and other macromolecules by FM, EM, and CLEM. However, tagging and tracking cellular proteins across size scales is restricted by the scarcity of methods for attaching appropriate reporter chemistries to target proteins. Namely, there are few genetic tags compatible with EM. To overcome these issues we developed Versatile Interacting Peptide (VIP) tags, genetically-encoded peptide tags that can be used to image proteins by fluorescence and EM. VIPER, a VIP tag, can be used to label cellular proteins with bright, photo-stable fluorophores for FM or electron-dense nanoparticles for EM. In this Bio-Protocol, we provide an instructional guide for implementing VIPER for imaging a cell-surface receptor by CLEM. This protocol is complemented by two other Bio-Protocols outlining the use of VIPER ( Doh et al., 2019a and 2019b).
Collapse
Affiliation(s)
- Julia K. Doh
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon 97239, USA
| | - Young Hwan Chang
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon 97239, USA
- OHSU Center for Spatial Systems Biomedicine, Oregon Health & Science University, Portland, Oregon 97239, USA
| | - Caroline A. Enns
- Department of Cell, Developmental, and Cancer Biology, Oregon Health & Science University, Portland, Oregon 97239, USA
| | - Claudia S. Lόpez
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon 97239, USA
- OHSU Center for Spatial Systems Biomedicine, Oregon Health & Science University, Portland, Oregon 97239, USA
- Multiscale Microscopy Core, Oregon Health & Science University, Portland, Oregon 97239, USA
| | - Kimberly E. Beatty
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon 97239, USA
- OHSU Center for Spatial Systems Biomedicine, Oregon Health & Science University, Portland, Oregon 97239, USA
| |
Collapse
|
18
|
Abstract
Diverse mechanisms and functions of posttranscriptional regulation by small regulatory RNAs and RNA-binding proteins have been described in bacteria. In contrast, little is known about the spatial organization of RNAs in bacterial cells. In eukaryotes, subcellular localization and transport of RNAs play important roles in diverse physiological processes, such as embryonic patterning, asymmetric cell division, epithelial polarity, and neuronal plasticity. It is now clear that bacterial RNAs also can accumulate at distinct sites in the cell. However, due to the small size of bacterial cells, RNA localization and localization-associated functions are more challenging to study in bacterial cells, and the underlying molecular mechanisms of transcript localization are less understood. Here, we review the emerging examples of RNAs localized to specific subcellular locations in bacteria, with indications that subcellular localization of transcripts might be important for gene expression and regulatory processes. Diverse mechanisms for bacterial RNA localization have been suggested, including close association to their genomic site of transcription, or to the localizations of their protein products in translation-dependent or -independent processes. We also provide an overview of the state of the art of technologies to visualize and track bacterial RNAs, ranging from hybridization-based approaches in fixed cells to in vivo imaging approaches using fluorescent protein reporters and/or RNA aptamers in single living bacterial cells. We conclude with a discussion of open questions in the field and ongoing technological developments regarding RNA imaging in eukaryotic systems that might likewise provide novel insights into RNA localization in bacteria.
Collapse
|
19
|
Khursigara CM, Koval SF, Moyles DM, Harris RJ. Inroads through the bacterial cell envelope: seeing is believing. Can J Microbiol 2018; 64:601-617. [DOI: 10.1139/cjm-2018-0091] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A singular feature of all prokaryotic cells is the presence of a cell envelope composed of a cytoplasmic membrane and a cell wall. The introduction of bacterial cell fractionation techniques in the 1950s and 1960s along with developments in procedures for electron microscopy opened the window towards an understanding of the chemical composition and architecture of the cell envelope. This review traces the contribution of Terry Beveridge in these endeavours, beginning with his doctoral studies in the 1970s on the structure of paracrystalline surface arrays (S-layers), followed by an exploration of cryogenic methods for preserving bacteria for ultrastructural analyses. His insights are reflected in a current example of the contribution of cryo-electron microscopy to S-layer studies — the structure and assembly of the surface array of Caulobacter crescentus. The review then focuses on Terry’s contributions to imaging the ultrastructure of bacterial cell envelopes and to the development of cryo-electron microscopy techniques, including the use of CEMOVIS (Cryo-electron Microscopy of Vitreous Sections) to “see” the ultrastructure of the Gram-positive cell envelope — his last scientific endeavour.
Collapse
Affiliation(s)
- Cezar M. Khursigara
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
- Molecular and Cellular Imaging Facility, Advanced Analysis Centre, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Susan F. Koval
- Department of Microbiology and Immunology, University of Western Ontario, London, ON N6A 5C1, Canada
| | - Dianne M. Moyles
- Molecular and Cellular Imaging Facility, Advanced Analysis Centre, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Robert J. Harris
- Molecular and Cellular Imaging Facility, Advanced Analysis Centre, University of Guelph, Guelph, ON N1G 2W1, Canada
| |
Collapse
|
20
|
IgG Antibody 3D Structures and Dynamics. Antibodies (Basel) 2018; 7:antib7020018. [PMID: 31544870 PMCID: PMC6698877 DOI: 10.3390/antib7020018] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 04/13/2018] [Accepted: 04/16/2018] [Indexed: 12/19/2022] Open
Abstract
Antibodies are vital for human health because of their ability to function as nature's drugs by protecting the body from infection. In recent decades, antibodies have been used as pharmaceutics for targeted therapy in patients with cancer, autoimmune diseases, and cardiovascular diseases. Capturing the dynamic structure of antibodies and characterizing antibody fluctuation is critical for gaining a deeper understanding of their structural characteristics and for improving drug development. Current techniques for studying three-dimensional (3D) structural heterogeneity and variability of proteins have limitations in ascertaining the dynamic structural behavior of antibodies and antibody-antigen complexes. Here, we review current techniques used to study antibody structures with a focus on the recently developed individual-particle electron tomography (IPET) technique. IPET, as a particle-by-particle methodology for 3D structural characterization, has shown advantages in studying structural variety and conformational changes of antibodies, providing direct imaging data for biomolecular engineering to improve development and clinical application of synthetic antibodies.
Collapse
|
21
|
Fakra SC, Luef B, Castelle CJ, Mullin SW, Williams KH, Marcus MA, Schichnes D, Banfield JF. Correlative Cryogenic Spectromicroscopy to Investigate Selenium Bioreduction Products. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:503-512. [PMID: 26371540 DOI: 10.1021/acs.est.5b01409] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Accurate mapping of the composition and structure of minerals and associated biological materials is critical in geomicrobiology and environmental research. Here, we have developed an apparatus that allows the correlation of cryogenic transmission electron microscopy (cryo-TEM) and synchrotron hard X-ray microprobe (SHXM) data sets to precisely determine the distribution, valence state, and structure of selenium in biofilms sampled from a contaminated aquifer near Rifle, CO. Results were replicated in the laboratory via anaerobic selenate-reducing enrichment cultures. 16S rRNA analyses of field-derived biofilm indicated the dominance of Betaproteobacteria from the Comamonadaceae family and uncultivated members of the Simplicispira genus. The major product in field and culture-derived biofilms is ∼25-300 nm red amorphous Se0 aggregates of colloidal nanoparticles. Correlative analyses of the cultures provided direct evidence for the microbial dissimilatory reduction of Se(VI) to Se(IV) to Se0. Extended X-ray absorption fine-structure spectroscopy showed red amorphous Se0 with a first shell Se-Se interatomic distance of 2.339 ± 0.003 Å. Complementary scanning transmission X-ray microscopy revealed that these aggregates are strongly associated with a protein-rich biofilm matrix. These findings have important implications for predicting the stability and mobility of Se bioremediation products and understanding of Se biogeochemical cycling. The approach, involving the correlation of cryo-SHXM and cryo-TEM data sets from the same specimen area, is broadly applicable to biological and environmental samples.
Collapse
Affiliation(s)
- Sirine C Fakra
- Department of Earth and Planetary Science and ‡Department of Plant & Microbial Biology, University of California , Berkeley, California 94720, United States
- Advanced Light Source and ∥Earth Sciences Division, Lawrence Berkeley National Lab , Berkeley, California 94720, United States
| | - Birgit Luef
- Department of Earth and Planetary Science and ‡Department of Plant & Microbial Biology, University of California , Berkeley, California 94720, United States
- Advanced Light Source and ∥Earth Sciences Division, Lawrence Berkeley National Lab , Berkeley, California 94720, United States
| | - Cindy J Castelle
- Department of Earth and Planetary Science and ‡Department of Plant & Microbial Biology, University of California , Berkeley, California 94720, United States
- Advanced Light Source and ∥Earth Sciences Division, Lawrence Berkeley National Lab , Berkeley, California 94720, United States
| | - Sean W Mullin
- Department of Earth and Planetary Science and ‡Department of Plant & Microbial Biology, University of California , Berkeley, California 94720, United States
- Advanced Light Source and ∥Earth Sciences Division, Lawrence Berkeley National Lab , Berkeley, California 94720, United States
| | - Kenneth H Williams
- Department of Earth and Planetary Science and ‡Department of Plant & Microbial Biology, University of California , Berkeley, California 94720, United States
- Advanced Light Source and ∥Earth Sciences Division, Lawrence Berkeley National Lab , Berkeley, California 94720, United States
| | - Matthew A Marcus
- Department of Earth and Planetary Science and ‡Department of Plant & Microbial Biology, University of California , Berkeley, California 94720, United States
- Advanced Light Source and ∥Earth Sciences Division, Lawrence Berkeley National Lab , Berkeley, California 94720, United States
| | - Denise Schichnes
- Department of Earth and Planetary Science and ‡Department of Plant & Microbial Biology, University of California , Berkeley, California 94720, United States
- Advanced Light Source and ∥Earth Sciences Division, Lawrence Berkeley National Lab , Berkeley, California 94720, United States
| | - Jillian F Banfield
- Department of Earth and Planetary Science and ‡Department of Plant & Microbial Biology, University of California , Berkeley, California 94720, United States
- Advanced Light Source and ∥Earth Sciences Division, Lawrence Berkeley National Lab , Berkeley, California 94720, United States
| |
Collapse
|
22
|
Engelhardt H, Bollschweiler D. Cryo-Electron Microscopy of Extremely Halophilic Microbes. J Microbiol Methods 2018. [DOI: 10.1016/bs.mim.2018.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
23
|
|
24
|
Semeraro EF, Devos JM, Porcar L, Forsyth VT, Narayanan T. In vivo analysis of the Escherichia coli ultrastructure by small-angle scattering. IUCRJ 2017; 4:751-757. [PMID: 29123677 PMCID: PMC5668860 DOI: 10.1107/s2052252517013008] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 09/12/2017] [Indexed: 06/07/2023]
Abstract
The flagellated Gram-negative bacterium Escherichia coli is one of the most studied microorganisms. Despite extensive studies as a model prokaryotic cell, the ultrastructure of the cell envelope at the nanometre scale has not been fully elucidated. Here, a detailed structural analysis of the bacterium using a combination of small-angle X-ray and neutron scattering (SAXS and SANS, respectively) and ultra-SAXS (USAXS) methods is presented. A multiscale structural model has been derived by incorporating well established concepts in soft-matter science such as a core-shell colloid for the cell body, a multilayer membrane for the cell wall and self-avoiding polymer chains for the flagella. The structure of the cell envelope was resolved by constraining the model by five different contrasts from SAXS, and SANS at three contrast match points and full contrast. This allowed the determination of the membrane electron-density profile and the inter-membrane distances on a quantitative scale. The combination of USAXS and SAXS covers size scales from micrometres down to nanometres, enabling the structural elucidation of cells from the overall geometry down to organelles, thereby providing a powerful method for a non-invasive investigation of the ultrastructure. This approach may be applied for probing in vivo the effect of detergents, antibiotics and antimicrobial peptides on the bacterial cell wall.
Collapse
Affiliation(s)
| | | | | | - V. Trevor Forsyth
- Institut Laue–Langevin, 38042 Grenoble, France
- Life Sciences Department, Keele University, Staffordshire ST5 5BG, England
| | | |
Collapse
|
25
|
Abstract
Cellular mechanical properties play an integral role in bacterial survival and adaptation. Historically, the bacterial cell wall and, in particular, the layer of polymeric material called the peptidoglycan were the elements to which cell mechanics could be primarily attributed. Disrupting the biochemical machinery that assembles the peptidoglycan (e.g., using the β-lactam family of antibiotics) alters the structure of this material, leads to mechanical defects, and results in cell lysis. Decades after the discovery of peptidoglycan-synthesizing enzymes, the mechanisms that underlie their positioning and regulation are still not entirely understood. In addition, recent evidence suggests a diverse group of other biochemical elements influence bacterial cell mechanics, may be regulated by new cellular mechanisms, and may be triggered in different environmental contexts to enable cell adaptation and survival. This review summarizes the contributions that different biomolecular components of the cell wall (e.g., lipopolysaccharides, wall and lipoteichoic acids, lipid bilayers, peptidoglycan, and proteins) make to Gram-negative and Gram-positive bacterial cell mechanics. We discuss the contribution of individual proteins and macromolecular complexes in cell mechanics and the tools that make it possible to quantitatively decipher the biochemical machinery that contributes to bacterial cell mechanics. Advances in this area may provide insight into new biology and influence the development of antibacterial chemotherapies.
Collapse
Affiliation(s)
- George K Auer
- Department of Biomedical Engineering, University of Wisconsin-Madison , Madison, Wisconsin 53706, United States
| | - Douglas B Weibel
- Department of Biomedical Engineering, University of Wisconsin-Madison , Madison, Wisconsin 53706, United States.,Department of Biochemistry, University of Wisconsin-Madison , Madison, Wisconsin 53706, United States.,Department of Chemistry, University of Wisconsin-Madison , Madison, Wisconsin 53706, United States
| |
Collapse
|
26
|
Wang L, Guan Y, Liang Z, Guo L, Wei C, Luo R, Liu G, Tian Y. A modified equally sloped algorithm based on the total variation algorithm in computed tomography for insufficient data. JOURNAL OF SYNCHROTRON RADIATION 2017; 24:490-497. [PMID: 28244445 DOI: 10.1107/s160057751700100x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Accepted: 01/19/2017] [Indexed: 06/06/2023]
Abstract
Computed tomography (CT) has become an important technique for analyzing the inner structures of material, biological and energy fields. However, there are often challenges in the practical application of CT due to insufficient data. For example, the maximum rotation angle of the sample stage is limited by sample space or image reconstruction from the limited number of views required to reduce the X-ray dose delivered to the sample. Therefore, it is difficult to acquire CT images with complete data. In this work, an iterative reconstruction algorithm based on the minimization of the image total variation (TV) has been utilized to develop equally sloped tomography (EST), and the reconstruction was carried out from limited-angle, few-view and noisy data. A synchrotron CT experiment on hydroxyapatite was also carried out to demonstrate the ability of the TV-EST algorithm. The results indicated that the new TV-EST algorithm was capable of achieving high-quality reconstructions from projections with insufficient data.
Collapse
Affiliation(s)
- Lei Wang
- National Synchrotion Radiation Laboratory, University of Science and Technology of China, 3#222, 42 Hezuohua South Road, Hefei, Anhui 230026, People's Republic of China
| | - Yong Guan
- National Synchrotion Radiation Laboratory, University of Science and Technology of China, 3#222, 42 Hezuohua South Road, Hefei, Anhui 230026, People's Republic of China
| | - Zhiting Liang
- National Synchrotion Radiation Laboratory, University of Science and Technology of China, 3#222, 42 Hezuohua South Road, Hefei, Anhui 230026, People's Republic of China
| | - Liang Guo
- National Synchrotion Radiation Laboratory, University of Science and Technology of China, 3#222, 42 Hezuohua South Road, Hefei, Anhui 230026, People's Republic of China
| | - Chenxi Wei
- National Synchrotion Radiation Laboratory, University of Science and Technology of China, 3#222, 42 Hezuohua South Road, Hefei, Anhui 230026, People's Republic of China
| | - Ronghui Luo
- National Synchrotion Radiation Laboratory, University of Science and Technology of China, 3#222, 42 Hezuohua South Road, Hefei, Anhui 230026, People's Republic of China
| | - Gang Liu
- National Synchrotion Radiation Laboratory, University of Science and Technology of China, 3#222, 42 Hezuohua South Road, Hefei, Anhui 230026, People's Republic of China
| | - Yangchao Tian
- National Synchrotion Radiation Laboratory, University of Science and Technology of China, 3#222, 42 Hezuohua South Road, Hefei, Anhui 230026, People's Republic of China
| |
Collapse
|
27
|
Schrad JR, Young EJ, Abrahão JS, Cortines JR, Parent KN. Microscopic Characterization of the Brazilian Giant Samba Virus. Viruses 2017; 9:v9020030. [PMID: 28216551 PMCID: PMC5332949 DOI: 10.3390/v9020030] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 01/25/2017] [Accepted: 02/02/2017] [Indexed: 12/13/2022] Open
Abstract
Prior to the discovery of the mimivirus in 2003, viruses were thought to be physically small and genetically simple. Mimivirus, with its ~750-nm particle size and its ~1.2-Mbp genome, shattered these notions and changed what it meant to be a virus. Since this discovery, the isolation and characterization of giant viruses has exploded. One of the more recently discovered giant viruses, Samba virus, is a Mimivirus that was isolated from the Rio Negro in the Brazilian Amazon. Initial characterization of Samba has revealed some structural information, although the preparation techniques used are prone to the generation of structural artifacts. To generate more native-like structural information for Samba, we analyzed the virus through cryo-electron microscopy, cryo-electron tomography, scanning electron microscopy, and fluorescence microscopy. These microscopy techniques demonstrated that Samba particles have a capsid diameter of ~527 nm and a fiber length of ~155 nm, making Samba the largest Mimivirus yet characterized. We also compared Samba to a fiberless mimivirus variant. Samba particles, unlike those of mimivirus, do not appear to be rigid, and quasi-icosahedral, although the two viruses share many common features, including a multi-layered capsid and an asymmetric nucleocapsid, which may be common amongst the Mimiviruses.
Collapse
Affiliation(s)
- Jason R Schrad
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, 48824 MI, USA.
| | - Eric J Young
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, 48824 MI, USA.
| | - Jônatas S Abrahão
- Laboratório de Vírus, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901 Minas Gerais, Brazil.
- Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes (URMITE) UM63 CNRS 7278 IRD 198 INSERM U1095, Aix-Marseille University, 13385 Marseille Cedex 05, France.
| | - Juliana R Cortines
- Departamento de Virologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-902 Rio de Janeiro, Brazil.
| | - Kristin N Parent
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, 48824 MI, USA.
| |
Collapse
|
28
|
Three-Dimensional Structure of the Ultraoligotrophic Marine Bacterium "Candidatus Pelagibacter ubique". Appl Environ Microbiol 2017; 83:AEM.02807-16. [PMID: 27836840 DOI: 10.1128/aem.02807-16] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Accepted: 11/09/2016] [Indexed: 11/20/2022] Open
Abstract
SAR11 bacteria are small, heterotrophic, marine alphaproteobacteria found throughout the oceans. They thrive at the low nutrient concentrations typical of open ocean conditions, although the adaptations required for life under those conditions are not well understood. To illuminate this issue, we used cryo-electron tomography to study "Candidatus Pelagibacter ubique" strain HTCC1062, a member of the SAR11 clade. Our results revealed its cellular dimensions and details of its intracellular organization. Frozen-hydrated cells, which were preserved in a life-like state, had an average cell volume (enclosed by the outer membrane) of 0.037 ± 0.011 μm3 Strikingly, the periplasmic space occupied ∼20% to 50% of the total cell volume in log-phase cells and ∼50% to 70% in stationary-phase cells. The nucleoid occupied the convex side of the crescent-shaped cells and the ribosomes predominantly occupied the concave side, at a relatively high concentration of 10,000 to 12,000 ribosomes/μm3 Outer membrane pore complexes, likely composed of PilQ, were frequently observed in both log-phase and stationary-phase cells. Long filaments, most likely type IV pili, were found on dividing cells. The physical dimensions, intracellular organization, and morphological changes throughout the life cycle of "Ca. Pelagibacter ubique" provide structural insights into the functional adaptions of these oligotrophic ultramicrobacteria to their habitat. IMPORTANCE Bacterioplankton of the SAR11 clade (Pelagibacterales) are of interest because of their global biogeochemical significance and because they appear to have been molded by unusual evolutionary circumstances that favor simplicity and efficiency. They have adapted to an ecosystem in which nutrient concentrations are near the extreme limits at which transport systems can function adequately, and they have evolved streamlined genomes to execute only functions essential for life. However, little is known about the actual size limitations and cellular features of living oligotrophic ultramicrobacteria. In this study, we have used cryo-electron tomography to obtain accurate physical information about the cellular architecture of "Candidatus Pelagibacter ubique," the first cultivated member of the SAR11 clade. These results provide foundational information for answering questions about the cell architecture and functions of these ultrasmall oligotrophic bacteria.
Collapse
|
29
|
Tacke S, Krzyzanek V, Nüsse H, Wepf RA, Klingauf J, Reichelt R. A Versatile High-Vacuum Cryo-transfer System for Cryo-microscopy and Analytics. Biophys J 2016; 110:758-65. [PMID: 26910419 DOI: 10.1016/j.bpj.2016.01.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 01/17/2016] [Accepted: 01/20/2016] [Indexed: 02/07/2023] Open
Abstract
Cryogenic microscopy methods have gained increasing popularity, as they offer an unaltered view on the architecture of biological specimens. As a prerequisite, samples must be handled under cryogenic conditions below their recrystallization temperature, and contamination during sample transfer and handling must be prevented. We present a high-vacuum cryo-transfer system that streamlines the entire handling of frozen-hydrated samples from the vitrification process to low temperature imaging for scanning transmission electron microscopy and transmission electron microscopy. A template for cryo-electron microscopy and multimodal cryo-imaging approaches with numerous sample transfer steps is presented.
Collapse
Affiliation(s)
- Sebastian Tacke
- Institute of Medical Physics and Biophysics, University of Münster, Münster, Germany.
| | - Vladislav Krzyzanek
- Institute of Scientific Instruments, The Czech Academy of Sciences, Brno, Czech Republic
| | - Harald Nüsse
- Institute of Medical Physics and Biophysics, University of Münster, Münster, Germany
| | - Roger Albert Wepf
- Scientific Center for Optical and Electron Microscopy, ETH Zürich, Zürich, Switzerland
| | - Jürgen Klingauf
- Institute of Medical Physics and Biophysics, University of Münster, Münster, Germany
| | - Rudolf Reichelt
- Institute of Medical Physics and Biophysics, University of Münster, Münster, Germany
| |
Collapse
|
30
|
Subcompartmentalization by cross-membranes during early growth of Streptomyces hyphae. Nat Commun 2016; 7:12467. [PMID: 27514833 PMCID: PMC4990651 DOI: 10.1038/ncomms12467] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 07/05/2016] [Indexed: 12/02/2022] Open
Abstract
Bacteria of the genus Streptomyces are a model system for bacterial multicellularity. Their mycelial life style involves the formation of long multinucleated hyphae during vegetative growth, with occasional cross-walls separating long compartments. Reproduction occurs by specialized aerial hyphae, which differentiate into chains of uninucleoid spores. While the tubulin-like FtsZ protein is required for the formation of all peptidoglycan-based septa in Streptomyces, canonical divisome-dependent cell division only occurs during sporulation. Here we report extensive subcompartmentalization in young vegetative hyphae of Streptomyces coelicolor, whereby 1 μm compartments are formed by nucleic acid stain-impermeable barriers. These barriers possess the permeability properties of membranes and at least some of them are cross-membranes without detectable peptidoglycan. Z-ladders form during the early growth, but cross-membrane formation does not depend on FtsZ. Thus, a new level of hyphal organization is presented involving unprecedented high-frequency compartmentalization, which changes the old dogma that Streptomyces vegetative hyphae have scarce compartmentalization. Bacteria of the genus Streptomyces form cellular filaments (hyphae) in which sporadic peptidoglycan cell walls separate multinucleate compartments. Here, Yagüe et al. show that young hyphae are further compartmentalized by cross-membranes lacking detectable peptidoglycan.
Collapse
|
31
|
Farley MM, Tu J, Kearns DB, Molineux IJ, Liu J. Ultrastructural analysis of bacteriophage Φ29 during infection of Bacillus subtilis. J Struct Biol 2016; 197:163-171. [PMID: 27480510 DOI: 10.1016/j.jsb.2016.07.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 07/26/2016] [Accepted: 07/28/2016] [Indexed: 12/13/2022]
Abstract
Recent advances in cryo-electron tomography (cryo-ET) have allowed direct visualization of the initial interactions between bacteriophages and their hosts. Previous studies focused on phage infection in Gram-negative bacteria but it is of particular interest how phages penetrate the thick, highly cross-linked Gram-positive cell wall. Here we detail structural intermediates of phage Φ29 during infection of Bacillus subtilis. Use of a minicell-producing strain facilitated in situ tomographic reconstructions of infecting phage particles. Φ29 initially contacts the cell wall at an angle through a subset of the twelve appendages, which are attached to the collar at the head proximal portion of the tail knob. The appendages are flexible and switch between extended and downward conformations during this stage of reversible adsorption; appendages enzymatically hydrolyze wall teichoic acids to bring the phage closer to the cell. A cell wall-degrading enzyme at the distal tip of the tail knob locally digests peptidoglycan, facilitating penetration of the tail further into the cell wall, and the phage particle reorients so that the tail becomes perpendicular to the cell surface. All twelve appendages attain the same "down" conformation during this stage of adsorption. Once the tail has become totally embedded in the cell wall, the tip can fuse with the cytoplasmic membrane. The membrane bulges out, presumably to facilitate genome ejection into the cytoplasm, and the deformation remains after complete ejection. This study provides the first visualization of the structural changes occurring in a phage particle during adsorption and genome transfer into a Gram-positive bacterium.
Collapse
Affiliation(s)
- Madeline M Farley
- Department of Pathology and Laboratory Medicine, University of Texas Medical School at Houston, Houston, TX 77030, USA
| | - Jiagang Tu
- Department of Pathology and Laboratory Medicine, University of Texas Medical School at Houston, Houston, TX 77030, USA
| | - Daniel B Kearns
- Department of Biology, Indiana University, 1001 East Third Street, Bloomington, IN 47405, USA
| | - Ian J Molineux
- Center for Infectious Disease, Department of Molecular Biosciences, Institute for Cell and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA.
| | - Jun Liu
- Department of Pathology and Laboratory Medicine, University of Texas Medical School at Houston, Houston, TX 77030, USA.
| |
Collapse
|
32
|
Guay MD, Czaja W, Aronova MA, Leapman RD. Compressed Sensing Electron Tomography for Determining Biological Structure. Sci Rep 2016; 6:27614. [PMID: 27291259 PMCID: PMC4904377 DOI: 10.1038/srep27614] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 05/20/2016] [Indexed: 12/22/2022] Open
Abstract
There has been growing interest in applying compressed sensing (CS) theory and practice to reconstruct 3D volumes at the nanoscale from electron tomography datasets of inorganic materials, based on known sparsity in the structure of interest. Here we explore the application of CS for visualizing the 3D structure of biological specimens from tomographic tilt series acquired in the scanning transmission electron microscope (STEM). CS-ET reconstructions match or outperform commonly used alternative methods in full and undersampled tomogram recovery, but with less significant performance gains than observed for the imaging of inorganic materials. We propose that this disparity stems from the increased structural complexity of biological systems, as supported by theoretical CS sampling considerations and numerical results in simulated phantom datasets. A detailed analysis of the efficacy of CS-ET for undersampled recovery is therefore complicated by the structure of the object being imaged. The numerical nonlinear decoding process of CS shares strong connections with popular regularized least-squares methods, and the use of such numerical recovery techniques for mitigating artifacts and denoising in reconstructions of fully sampled datasets remains advantageous. This article provides a link to the software that has been developed for CS-ET reconstruction of electron tomographic data sets.
Collapse
Affiliation(s)
- Matthew D. Guay
- University of Maryland, Department of Applied Mathematics and Scientific Computation, College Park, MD 20742, USA
| | - Wojciech Czaja
- University of Maryland, Department of Mathematics, College Park, MD 20742, USA
| | - Maria A. Aronova
- National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, USA
| | - Richard D. Leapman
- National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
33
|
Abstract
Cryo-electron tomography (cryo-ET) has emerged as a leading technique for three-dimensional visualization of large macromolecular complexes and their conformational changes in their native cellular environment. However, the resolution and potential applications of cryo-ET are fundamentally limited by specimen thickness, preventing high-resolution in situ visualization of macromolecular structures in many bacteria (such as Escherichia coli and Salmonella enterica). Minicells, which were discovered nearly 50 years ago, have recently been exploited as model systems to visualize molecular machines in situ, due to their smaller size and other unique properties. In this review, we discuss strategies for producing minicells and highlight their use in the study of chemotactic signaling, protein secretion, and DNA translocation. In combination with powerful genetic tools and advanced imaging techniques, minicells provide a springboard for in-depth structural studies of bacterial macromolecular complexes in situ and therefore offer a unique approach for gaining novel structural insights into many important processes in microbiology.
Collapse
|
34
|
Zhang L, Lei D, Smith JM, Zhang M, Tong H, Zhang X, Lu Z, Liu J, Alivisatos AP, Ren G. Three-dimensional structural dynamics and fluctuations of DNA-nanogold conjugates by individual-particle electron tomography. Nat Commun 2016; 7:11083. [PMID: 27025159 PMCID: PMC4820932 DOI: 10.1038/ncomms11083] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 02/19/2016] [Indexed: 12/13/2022] Open
Abstract
DNA base pairing has been used for many years to direct the arrangement of inorganic
nanocrystals into small groupings and arrays with tailored optical and electrical
properties. The control of DNA-mediated assembly depends crucially on a better
understanding of three-dimensional structure of DNA-nanocrystal-hybridized building
blocks. Existing techniques do not allow for structural determination of these
flexible and heterogeneous samples. Here we report cryo-electron microscopy and
negative-staining electron tomography approaches to image, and three-dimensionally
reconstruct a single DNA-nanogold conjugate, an 84-bp double-stranded DNA with two
5-nm nanogold particles for potential substrates in plasmon-coupling experiments. By
individual-particle electron tomography reconstruction, we obtain 14 density maps at
∼2-nm resolution. Using these maps as constraints, we derive 14
conformations of dsDNA by molecular dynamics simulations. The conformational
variation is consistent with that from liquid solution, suggesting that
individual-particle electron tomography could be an expected approach to study
DNA-assembling and flexible protein structure and dynamics. The control of DNA-mediated assembly depends on a precise
understanding of the three-dimensional structure of DNA-nanocrystal-hybridized building
blocks. Here, the authors use cryo-electron microscopy and negative-staining techniques
to investigate the morphology of DNA-nanogold conjugates.
Collapse
Affiliation(s)
- Lei Zhang
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA.,Department of Applied Physics, School of Science, Xi'an Jiaotong University, Xi'an 710049, China
| | - Dongsheng Lei
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Jessica M Smith
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA.,Department of Chemistry, University of California, Berkeley, California 94720, USA.,Department of Materials Science, University of California, Berkeley, California 94720, USA
| | - Meng Zhang
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Huimin Tong
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Xing Zhang
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA.,Department of Applied Physics, School of Science, Xi'an Jiaotong University, Xi'an 710049, China
| | - Zhuoyang Lu
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA.,Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of the Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, China.,School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China.,Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Jiankang Liu
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of the Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, China.,School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China.,Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - A Paul Alivisatos
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA.,Department of Chemistry, University of California, Berkeley, California 94720, USA.,Department of Materials Science, University of California, Berkeley, California 94720, USA.,Kavli Energy NanoScience Institute, University of California, Berkeley, California 94720, USA
| | - Gang Ren
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| |
Collapse
|
35
|
Liang Z, Guan Y, Liu G, Chen X, Li F, Guo P, Tian Y. A modified discrete algebraic reconstruction technique for multiple grey image reconstruction for limited angle range tomography. JOURNAL OF SYNCHROTRON RADIATION 2016; 23:606-616. [PMID: 26917150 DOI: 10.1107/s1600577516000564] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 01/11/2016] [Indexed: 06/05/2023]
Abstract
The `missing wedge', which is due to a restricted rotation range, is a major challenge for quantitative analysis of an object using tomography. With prior knowledge of the grey levels, the discrete algebraic reconstruction technique (DART) is able to reconstruct objects accurately with projections in a limited angle range. However, the quality of the reconstructions declines as the number of grey levels increases. In this paper, a modified DART (MDART) was proposed, in which each independent region of homogeneous material was chosen as a research object, instead of the grey values. The grey values of each discrete region were estimated according to the solution of the linear projection equations. The iterative process of boundary pixels updating and correcting the grey values of each region was executed alternately. Simulation experiments of binary phantoms as well as multiple grey phantoms show that MDART is capable of achieving high-quality reconstructions with projections in a limited angle range. The interesting advancement of MDART is that neither prior knowledge of the grey values nor the number of grey levels is necessary.
Collapse
Affiliation(s)
- Zhiting Liang
- National Synchrotion Radiation Laboratory, University of Science and Technology of China, 3#419, No.42 Hezuohua South Road, Hefei, Anhui 230029, People's Republic of China
| | - Yong Guan
- National Synchrotion Radiation Laboratory, University of Science and Technology of China, 3#419, No.42 Hezuohua South Road, Hefei, Anhui 230029, People's Republic of China
| | - Gang Liu
- National Synchrotion Radiation Laboratory, University of Science and Technology of China, 3#419, No.42 Hezuohua South Road, Hefei, Anhui 230029, People's Republic of China
| | - Xiangyu Chen
- National Synchrotion Radiation Laboratory, University of Science and Technology of China, 3#419, No.42 Hezuohua South Road, Hefei, Anhui 230029, People's Republic of China
| | - Fahu Li
- National Synchrotion Radiation Laboratory, University of Science and Technology of China, 3#419, No.42 Hezuohua South Road, Hefei, Anhui 230029, People's Republic of China
| | - Pengfei Guo
- National Synchrotion Radiation Laboratory, University of Science and Technology of China, 3#419, No.42 Hezuohua South Road, Hefei, Anhui 230029, People's Republic of China
| | - Yangchao Tian
- National Synchrotion Radiation Laboratory, University of Science and Technology of China, 3#419, No.42 Hezuohua South Road, Hefei, Anhui 230029, People's Republic of China
| |
Collapse
|
36
|
References. Antibiotics (Basel) 2015. [DOI: 10.1128/9781555819316.refs] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
37
|
Ercius P, Alaidi O, Rames MJ, Ren G. Electron Tomography: A Three-Dimensional Analytic Tool for Hard and Soft Materials Research. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2015; 27:5638-63. [PMID: 26087941 PMCID: PMC4710474 DOI: 10.1002/adma.201501015] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Revised: 04/22/2015] [Indexed: 05/23/2023]
Abstract
Three-dimensional (3D) structural analysis is essential to understand the relationship between the structure and function of an object. Many analytical techniques, such as X-ray diffraction, neutron spectroscopy, and electron microscopy imaging, are used to provide structural information. Transmission electron microscopy (TEM), one of the most popular analytic tools, has been widely used for structural analysis in both physical and biological sciences for many decades, in which 3D objects are projected into two-dimensional (2D) images. In many cases, 2D-projection images are insufficient to understand the relationship between the 3D structure and the function of nanoscale objects. Electron tomography (ET) is a technique that retrieves 3D structural information from a tilt series of 2D projections, and is gradually becoming a mature technology with sub-nanometer resolution. Distinct methods to overcome sample-based limitations have been separately developed in both physical and biological science, although they share some basic concepts of ET. This review discusses the common basis for 3D characterization, and specifies difficulties and solutions regarding both hard and soft materials research. It is hoped that novel solutions based on current state-of-the-art techniques for advanced applications in hybrid matter systems can be motivated.
Collapse
Affiliation(s)
- Peter Ercius
- Lawrence Berkeley National Laboratory, 1 Cyclotron Rd., Berkeley, CA 94720, USA
| | - Osama Alaidi
- Lawrence Berkeley National Laboratory, 1 Cyclotron Rd., Berkeley, CA 94720, USA
| | - Matthew J. Rames
- Lawrence Berkeley National Laboratory, 1 Cyclotron Rd., Berkeley, CA 94720, USA
| | - Gang Ren
- Lawrence Berkeley National Laboratory, 1 Cyclotron Rd., Berkeley, CA 94720, USA
| |
Collapse
|
38
|
Yi H, Strauss JD, Ke Z, Alonas E, Dillard RS, Hampton CM, Lamb KM, Hammonds JE, Santangelo PJ, Spearman PW, Wright ER. Native immunogold labeling of cell surface proteins and viral glycoproteins for cryo-electron microscopy and cryo-electron tomography applications. J Histochem Cytochem 2015; 63:780-92. [PMID: 26069287 PMCID: PMC4823802 DOI: 10.1369/0022155415593323] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 05/29/2015] [Indexed: 11/22/2022] Open
Abstract
Numerous methods have been developed for immunogold labeling of thick, cryo-preserved biological specimens. However, most of the methods are permutations of chemical fixation and sample sectioning, which select and isolate the immunolabeled region of interest. We describe a method for combining immunogold labeling with cryo-electron microscopy (cryo-EM) and cryo-electron tomography (cryo-ET) of the surface proteins of intact mammalian cells or the surface glycoproteins of assembling and budding viruses in the context of virus-infected mammalian cells cultured on EM grids. In this method, the cells were maintained in culture media at physiologically relevant temperatures while sequentially incubated with the primary and secondary antibodies. Subsequently, the immunogold-labeled specimens were vitrified and observed under cryo-conditions in the transmission electron microscope. Cryo-EM and cryo-ET examination of the immunogold-labeled cells revealed the association of immunogold particles with the target antigens. Additionally, the cellular structure was unaltered by pre-immunolabeling chemical fixation and retained well-preserved plasma membranes, cytoskeletal elements, and macromolecular complexes. We think this technique will be of interest to cell biologists for cryo-EM and conventional studies of native cells and pathogen-infected cells.
Collapse
Affiliation(s)
- Hong Yi
- Robert P. Apkarian Integrated Electron Microscopy Core, Emory University, Atlanta, Georgia (HY, ERW)
| | - Joshua D Strauss
- Division of Pediatric Infectious Diseases, Emory University School of Medicine, Children's Healthcare of Atlanta, Atlanta, Georgia (JDS, RSD, CMH, KML, JEH, PWS, ERW)
| | - Zunlong Ke
- School of Biology, Georgia Institute of Technology, Atlanta, Georgia (ZK)
| | - Eric Alonas
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia (EA, PJS)
| | - Rebecca S Dillard
- Division of Pediatric Infectious Diseases, Emory University School of Medicine, Children's Healthcare of Atlanta, Atlanta, Georgia (JDS, RSD, CMH, KML, JEH, PWS, ERW)
| | - Cheri M Hampton
- Division of Pediatric Infectious Diseases, Emory University School of Medicine, Children's Healthcare of Atlanta, Atlanta, Georgia (JDS, RSD, CMH, KML, JEH, PWS, ERW)
| | - Kristen M Lamb
- Division of Pediatric Infectious Diseases, Emory University School of Medicine, Children's Healthcare of Atlanta, Atlanta, Georgia (JDS, RSD, CMH, KML, JEH, PWS, ERW)
| | - Jason E Hammonds
- Division of Pediatric Infectious Diseases, Emory University School of Medicine, Children's Healthcare of Atlanta, Atlanta, Georgia (JDS, RSD, CMH, KML, JEH, PWS, ERW)
| | - Philip J Santangelo
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia (EA, PJS)
| | - Paul W Spearman
- Division of Pediatric Infectious Diseases, Emory University School of Medicine, Children's Healthcare of Atlanta, Atlanta, Georgia (JDS, RSD, CMH, KML, JEH, PWS, ERW)
| | - Elizabeth R Wright
- Robert P. Apkarian Integrated Electron Microscopy Core, Emory University, Atlanta, Georgia (HY, ERW)
- Division of Pediatric Infectious Diseases, Emory University School of Medicine, Children's Healthcare of Atlanta, Atlanta, Georgia (JDS, RSD, CMH, KML, JEH, PWS, ERW)
| |
Collapse
|
39
|
Structural remodeling of bacteriophage T4 and host membranes during infection initiation. Proc Natl Acad Sci U S A 2015; 112:E4919-28. [PMID: 26283379 DOI: 10.1073/pnas.1501064112] [Citation(s) in RCA: 143] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The first stages of productive bacteriophage infections of bacterial host cells require efficient adsorption to the cell surface followed by ejection of phage DNA into the host cytoplasm. To achieve this goal, a phage virion must undergo significant structural remodeling. For phage T4, the most obvious change is the contraction of its tail. Here, we use skinny E. coli minicells as a host, along with cryo-electron tomography and mutant phage virions, to visualize key structural intermediates during initiation of T4 infection. We show for the first time that most long tail fibers are folded back against the tail sheath until irreversible adsorption, a feature compatible with the virion randomly walking across the cell surface to find an optimal site for infection. Our data confirm that tail contraction is triggered by structural changes in the baseplate, as intermediates were found with remodeled baseplates and extended tails. After contraction, the tail tube penetrates the host cell periplasm, pausing while it degrades the peptidoglycan layer. Penetration into the host cytoplasm is accompanied by a dramatic local outward curvature of the cytoplasmic membrane as it fuses with the phage tail tip. The baseplate hub protein gp27 and/or the ejected tape measure protein gp29 likely form the transmembrane channel for viral DNA passage into the cell cytoplasm. Building on the wealth of prior biochemical and structural information, this work provides new molecular insights into the mechanistic pathway of T4 phage infection.
Collapse
|
40
|
Galetti E, Curtis A, Meles GA, Baptie B. Uncertainty loops in travel-time tomography from nonlinear wave physics. PHYSICAL REVIEW LETTERS 2015; 114:148501. [PMID: 25910166 DOI: 10.1103/physrevlett.114.148501] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Indexed: 06/04/2023]
Abstract
Estimating image uncertainty is fundamental to guiding the interpretation of geoscientific tomographic maps. We reveal novel uncertainty topologies (loops) which indicate that while the speeds of both low- and high-velocity anomalies may be well constrained, their locations tend to remain uncertain. The effect is widespread: loops dominate around a third of United Kingdom Love wave tomographic uncertainties, changing the nature of interpretation of the observed anomalies. Loops exist due to 2nd and higher order aspects of wave physics; hence, although such structures must exist in many tomographic studies in the physical sciences and medicine, they are unobservable using standard linearized methods. Higher order methods might fruitfully be adopted.
Collapse
Affiliation(s)
- Erica Galetti
- School of GeoSciences, The University of Edinburgh, Grant Institute, The King's Buildings, James Hutton Road, Edinburgh EH9 3FE, United Kingdom
| | - Andrew Curtis
- School of GeoSciences, The University of Edinburgh, Grant Institute, The King's Buildings, James Hutton Road, Edinburgh EH9 3FE, United Kingdom
| | - Giovanni Angelo Meles
- School of GeoSciences, The University of Edinburgh, Grant Institute, The King's Buildings, James Hutton Road, Edinburgh EH9 3FE, United Kingdom
| | - Brian Baptie
- British Geological Survey, Murchison House, West Mains Road, Edinburgh EH9 3LA, United Kingdom
| |
Collapse
|
41
|
Luef B, Frischkorn KR, Wrighton KC, Holman HYN, Birarda G, Thomas BC, Singh A, Williams KH, Siegerist CE, Tringe SG, Downing KH, Comolli LR, Banfield JF. Diverse uncultivated ultra-small bacterial cells in groundwater. Nat Commun 2015; 6:6372. [DOI: 10.1038/ncomms7372] [Citation(s) in RCA: 266] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 01/23/2015] [Indexed: 02/04/2023] Open
|
42
|
Delgado L, Martínez G, López-Iglesias C, Mercadé E. Cryo-electron tomography of plunge-frozen whole bacteria and vitreous sections to analyze the recently described bacterial cytoplasmic structure, the Stack. J Struct Biol 2015; 189:220-9. [PMID: 25617813 DOI: 10.1016/j.jsb.2015.01.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 01/13/2015] [Indexed: 11/25/2022]
Abstract
Cryo-electron tomography (CET) of plunge-frozen whole bacteria and vitreous sections (CETOVIS) were used to revise and expand the structural knowledge of the "Stack", a recently described cytoplasmic structure in the Antarctic bacterium Pseudomonas deceptionensis M1(T). The advantages of both techniques can be complementarily combined to obtain more reliable insights into cells and their components with three-dimensional imaging at different resolutions. Cryo-electron microscopy (Cryo-EM) and CET of frozen-hydrated P. deceptionensis M1(T) cells confirmed that Stacks are found at different locations within the cell cytoplasm, in variable number, separately or grouped together, very close to the plasma membrane (PM) and oriented at different angles (from 35° to 90°) to the PM, thus establishing that they were not artifacts of the previous sample preparation methods. CET of plunge-frozen whole bacteria and vitreous sections verified that each Stack consisted of a pile of oval disc-like subunits, each disc being surrounded by a lipid bilayer membrane and separated from each other by a constant distance with a mean value of 5.2±1.3nm. FM4-64 staining and confocal microscopy corroborated the lipid nature of the membrane of the Stacked discs. Stacks did not appear to be invaginations of the PM because no continuity between both membranes was visible when whole bacteria were analyzed. We are still far from deciphering the function of these new structures, but a first experimental attempt links the Stacks with a given phase of the cell replication process.
Collapse
Affiliation(s)
- Lidia Delgado
- Cryo-Electron Microscopy, Scientific and Technological Centers, University of Barcelona, Barcelona, Spain; Department of Microbiology, Faculty of Pharmacy, University of Barcelona, Barcelona, Spain
| | - Gema Martínez
- Cryo-Electron Microscopy, Scientific and Technological Centers, University of Barcelona, Barcelona, Spain
| | - Carmen López-Iglesias
- Cryo-Electron Microscopy, Scientific and Technological Centers, University of Barcelona, Barcelona, Spain.
| | - Elena Mercadé
- Department of Microbiology, Faculty of Pharmacy, University of Barcelona, Barcelona, Spain.
| |
Collapse
|
43
|
Helvig S, D. M. Azmi I, M. Moghimi S, Yaghmur A. Recent Advances in Cryo-TEM Imaging of Soft Lipid Nanoparticles. AIMS BIOPHYSICS 2015. [DOI: 10.3934/biophy.2015.2.116] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
44
|
Fu X, Himes BA, Ke D, Rice WJ, Ning J, Zhang P. Controlled bacterial lysis for electron tomography of native cell membranes. Structure 2014; 22:1875-1882. [PMID: 25456413 DOI: 10.1016/j.str.2014.09.017] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Revised: 09/22/2014] [Accepted: 09/27/2014] [Indexed: 11/16/2022]
Abstract
Cryo-electron tomography (cryoET) has become a powerful tool for direct visualization of 3D structures of native biological specimens at molecular resolution, but its application is limited to thin specimens (<300 nm). Recently, vitreous sectioning and cryoFIB milling technologies were developed to physically reduce the specimen thickness; however, cryoET analysis of membrane protein complexes within native cell membranes remains a great challenge. Here, we use phage ΦX174 lysis gene E to rapidly produce native, intact, bacterial cell membranes for high resolution cryoET. We characterized E gene-induced cell lysis using FIB/SEM and cryoEM and showed that the bacteria cytoplasm was largely depleted through spot lesion, producing ghosts with the cell membranes intact. We further demonstrated the utility of E-gene-induced lysis for cryoET using the bacterial chemotaxis receptor signaling complex array. The described method should have a broad application for structural and functional studies of native, intact cell membranes and membrane protein complexes.
Collapse
Affiliation(s)
- Xiaofeng Fu
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA
| | - Benjamin A Himes
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA
| | - Danxia Ke
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA
| | - William J Rice
- New York Structural Biology Center, 89 Convent Avenue, New York, NY 10027, USA
| | - Jiying Ning
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA
| | - Peijun Zhang
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA; Department of Mechanical Engineering and Materials Science, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA 15260, USA.
| |
Collapse
|
45
|
Comolli LR, Banfield JF. Inter-species interconnections in acid mine drainage microbial communities. Front Microbiol 2014; 5:367. [PMID: 25120533 PMCID: PMC4110969 DOI: 10.3389/fmicb.2014.00367] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Accepted: 07/01/2014] [Indexed: 02/04/2023] Open
Abstract
Metagenomic studies are revolutionizing our understanding of microbes in the biosphere. They have uncovered numerous proteins of unknown function in tens of essentially unstudied lineages that lack cultivated representatives. Notably, few of these microorganisms have been visualized, and even fewer have been described ultra-structurally in their essentially intact, physiologically relevant states. Here, we present cryogenic transmission electron microscope (cryo-TEM) 2D images and 3D tomographic datasets for archaeal species from natural acid mine drainage (AMD) microbial communities. Ultrastructural findings indicate the importance of microbial interconnectedness via a range of mechanisms, including direct cytoplasmic bridges and pervasive pili. The data also suggest a variety of biological structures associated with cell-cell interfaces that lack explanation. Some may play roles in inter-species interactions. Interdependences amongst the archaea may have confounded prior isolation efforts. Overall, the findings underline knowledge gaps related to archaeal cell components and highlight the likely importance of co-evolution in shaping microbial lineages.
Collapse
Affiliation(s)
- Luis R Comolli
- Structural Biology and Imaging Department, Life Sciences Division, Lawrence Berkeley National Laboratory Berkeley, CA, USA
| | - Jill F Banfield
- Department of Earth and Planetary Science, University of California, Berkeley Berkeley, CA, USA
| |
Collapse
|
46
|
Nans A, Saibil HR, Hayward RD. Pathogen-host reorganization during Chlamydia invasion revealed by cryo-electron tomography. Cell Microbiol 2014; 16:1457-72. [PMID: 24809274 PMCID: PMC4336559 DOI: 10.1111/cmi.12310] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Revised: 05/01/2014] [Accepted: 05/02/2014] [Indexed: 02/06/2023]
Abstract
Invasion of host cells is a key early event during bacterial infection, but the underlying pathogen–host interactions are yet to be fully visualized in three-dimensional detail. We have captured snapshots of the early stages of bacterial-mediated endocytosis in situ by exploiting the small size of chlamydial elementary bodies (EBs) for whole-cell cryo-electron tomography. Chlamydiae are obligate intracellular bacteria that infect eukaryotic cells and cause sexually transmitted infections and trachoma, the leading cause of preventable blindness. We demonstrate that Chlamydia trachomatis LGV2 EBs are intrinsically polarized. One pole is characterized by a tubular inner membrane invagination, while the other exhibits asymmetric periplasmic expansion to accommodate an array of type III secretion systems (T3SSs). Strikingly, EBs orient with their T3SS-containing pole facing target cells, enabling the T3SSs to directly contact the cellular plasma membrane. This contact induces enveloping macropinosomes, actin-rich filopodia and phagocytic cups to zipper tightly around the internalizing bacteria. Once encapsulated into tight early vacuoles, EB polarity and the T3SSs are lost. Our findings reveal previously undescribed structural transitions in both pathogen and host during the initial steps of chlamydial invasion.
Collapse
Affiliation(s)
- Andrea Nans
- Department of Crystallography, Institute of Structural and Molecular Biology, Birkbeck College, University of London, Malet Street, London, WC1E 7HX, UK
| | | | | |
Collapse
|
47
|
Liu B, Yu HH, Ng TW, Paterson DL, Velkov T, Li J, Fu J. Nanoscale focused ion beam tomography of single bacterial cells for assessment of antibiotic effects. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2014; 20:537-547. [PMID: 24589280 DOI: 10.1017/s1431927614000026] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Antibiotic resistance is a major risk to human health, and to provide valuable insights into mechanisms of resistance, innovative methods are needed to examine the cellular responses to antibiotic treatment. Focused ion beam tomography is proposed to image and assess the detailed three-dimensional (3D) ultrastructure of single bacterial cells. By iteratively removing slices of thickness in the order of 10 nm, high magnification 2D images can be acquired by scanning electron microscopy at single-digit nanometer resolution. In this study, Klebsiella pneumoniae was treated with polymyxin B, and 3D models of both cell envelope and cytoplasm regions containing the nucleoid and ribosomes were reconstructed. The 3D volume containing the nucleoid and ribosomes was significantly smaller, and the cell length along the longitudinal axis was extended by 40% in the treated cells, implying stress responses to the drug treatment. More than a 200% increase in protrusions per unit surface area on the cell envelope was observed in the curvature analysis after treatment. Experiments by conventional transmission electron microscopy and atomic force microscopy were also performed, followed by comparison and discussions. In conclusion, the proposed 3D imaging method and associated analysis provide a unique tool for the assessment of antibiotic effects on multidrug-resistant bacteria at nanometer resolution.
Collapse
Affiliation(s)
- Boyin Liu
- 1 Department of Mechanical and Aerospace Engineering, Monash University, Clayton, VIC 3800, Australia
| | - Heidi H Yu
- 2 Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Tuck Wah Ng
- 1 Department of Mechanical and Aerospace Engineering, Monash University, Clayton, VIC 3800, Australia
| | - David L Paterson
- 3 Centre for Clinical Research, University of Queensland, Brisbane, QLD 4072, Australia
| | - Tony Velkov
- 2 Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Jian Li
- 2 Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Jing Fu
- 1 Department of Mechanical and Aerospace Engineering, Monash University, Clayton, VIC 3800, Australia
| |
Collapse
|
48
|
Local regularization of tilt projections reduces artifacts in electron tomography. J Struct Biol 2014; 186:28-37. [PMID: 24632448 DOI: 10.1016/j.jsb.2014.03.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 03/05/2014] [Accepted: 03/10/2014] [Indexed: 11/21/2022]
Abstract
Electron tomography produces very high resolution 3D image volumes useful for investigating the structure and function of cellular components. Unfortunately, unavoidable discontinuities and physical constraints in the acquisition geometry lead to a range of artifacts that can affect the reconstructed image. In particular, highly electron dense regions, such as gold nanoparticles, can hide proximal biological structures and degrade the overall quality of the reconstructed tomograms. In this work we introduce a pre-reconstruction non-conservative non-linear isotropic diffusion (NID) filter that automatically identifies and reduces local irregularities in the tilt projections. We illustrate the improvement in quality obtained using this approach for reconstructed tomograms generated from samples of malaria parasite-infected red blood cells. A quantitative and qualitative evaluation for our approach on both simulated and real data is provided.
Collapse
|
49
|
Wolf SG, Houben L, Elbaum M. Cryo-scanning transmission electron tomography of vitrified cells. Nat Methods 2014; 11:423-8. [DOI: 10.1038/nmeth.2842] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Accepted: 12/23/2013] [Indexed: 01/26/2023]
|
50
|
Mochalov KE, Efimov AE, Bobrovsky A, Agapov II, Chistyakov AA, Oleinikov V, Sukhanova A, Nabiev I. Combined scanning probe nanotomography and optical microspectroscopy: a correlative technique for 3D characterization of nanomaterials. ACS NANO 2013; 7:8953-8962. [PMID: 23991901 DOI: 10.1021/nn403448p] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Combination of 3D structural analysis with optical characterization of the same sample area on the nanoscale is a highly demanded approach in nanophotonics, materials science, and quality control of nanomaterial. We have developed a correlative microscopy technique where the 3D structure of the sample is reconstructed on the nanoscale by means of a "slice-and-view" combination of ultramicrotomy and scanning probe microscopy (scanning probe nanotomography, SPNT), and its optical characteristics are analyzed using microspectroscopy. This approach has been used to determine the direct quantitative relationship of the 3D structural characteristics of nanovolumes of materials with their microscopic optical properties. This technique has been applied to 3D structural and optical characterization of a hybrid material consisting of cholesteric liquid crystals doped with fluorescent quantum dots (QDs) that can be used for photochemical patterning and image recording through the changes in the dissymmetry factor of the circular polarization of QD emission. The differences in the polarization images and fluorescent spectra of this hybrid material have proved to be correlated with the arrangement of the areas of homogeneous distribution and heterogeneous clustering of QDs. The reconstruction of the 3D nanostructure of the liquid crystal matrix in the areas of homogeneous QDs distribution has shown that QDs do not perturb the periodic planar texture of the cholesteric liquid crystal matrix, whereas QD clusters do perturb it. The combined microspectroscopy-nanotomography technique will be important for evaluating the effects of nanoparticles on the structural organization of organic and liquid crystal matrices and biomedical materials, as well as quality control of nanotechnology fabrication processes and products.
Collapse
Affiliation(s)
- Konstantin E Mochalov
- Laboratory of Nano-bioengineering, National Research Nuclear University "Moscow Engineering Physics Institute", 115409 Moscow, Russian Federation
| | | | | | | | | | | | | | | |
Collapse
|