1
|
Sun Z, Hong W, Xue C, Dong N. A comprehensive review of antibiotic resistance gene contamination in agriculture: Challenges and AI-driven solutions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 953:175971. [PMID: 39236811 DOI: 10.1016/j.scitotenv.2024.175971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/24/2024] [Accepted: 08/30/2024] [Indexed: 09/07/2024]
Abstract
Since their discovery, the prolonged and widespread use of antibiotics in veterinary and agricultural production has led to numerous problems, particularly the emergence and spread of antibiotic-resistant bacteria (ARB). In addition, other anthropogenic factors accelerate the horizontal transfer of antibiotic resistance genes (ARGs) and amplify their impact. In agricultural environments, animals, manure, and wastewater are the vectors of ARGs that facilitate their spread to the environment and humans via animal products, water, and other environmental pathways. Therefore, this review comprehensively analyzed the current status, removal methods, and future directions of ARGs on farms. This article 1) investigates the origins of ARGs on farms, the pathways and mechanisms of their spread to surrounding environments, and various strategies to mitigate their spread; 2) determines the multiple factors influencing the abundance of ARGs on farms, the pathways through which ARGs spread from farms to the environment, and the effects and mechanisms of non-antibiotic factors on the spread of ARGs; 3) explores methods for controlling ARGs in farm wastes; and 4) provides a comprehensive summary and integration of research across various fields, proposing that in modern smart farms, emerging technologies can be integrated through artificial intelligence to control or even eliminate ARGs. Moreover, challenges and future research directions for controlling ARGs on farms are suggested.
Collapse
Affiliation(s)
- Zhendong Sun
- The Laboratory of Molecular Nutrition and Immunity, College of Animal Science and Technology, Northeast Agricultural University, Harbin, PR China
| | - Weichen Hong
- The Laboratory of Molecular Nutrition and Immunity, College of Animal Science and Technology, Northeast Agricultural University, Harbin, PR China
| | - Chenyu Xue
- The Laboratory of Molecular Nutrition and Immunity, College of Animal Science and Technology, Northeast Agricultural University, Harbin, PR China
| | - Na Dong
- The Laboratory of Molecular Nutrition and Immunity, College of Animal Science and Technology, Northeast Agricultural University, Harbin, PR China.
| |
Collapse
|
2
|
Ketterer M, Chiquet P, Esposito M, Sedzicki J, Québatte M, Dehio C. The putative type 4 secretion system effector BspD is involved in maintaining envelope integrity of the pathogen Brucella. mSphere 2024; 9:e0023224. [PMID: 39387552 PMCID: PMC11580434 DOI: 10.1128/msphere.00232-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 08/05/2024] [Indexed: 10/15/2024] Open
Abstract
Brucellosis is a debilitating disease caused by the Gram-negative, facultative intracellular zoonotic pathogen Brucella. En route to its intracellular replicative niche, Brucella encounters various stressful environments that may compromise envelope integrity. Here we show that the proposed type 4 secretion system (T4SS) effector BspD is a conserved protein of the Rhizobiales, which does not show signs of co-evolution with the presence of a T4SS or a certain lifestyle. We further present data indicating that BspD is critical for the envelope integrity of Brucella abortus in the stationary phase and in the presence of EDTA, a compound known to destabilize the outer membrane. Deletion of bspD resulted in abnormal bacterial morphologies, indicating its involvement in maintaining envelope integrity. Additionally, the absence of BspD led to the formation of fewer and smaller intracellular microcolonies in a macrophage infection model. From our observations, we propose that BspD of B. abortus is critical for preserving the integrity of the bacterial envelope, particularly under stressful conditions, which may enhance Brucella's ability to survive within host cells. IMPORTANCE Brucellosis, caused by the intracellular pathogen Brucella, poses a significant health threat. Understanding how Brucella adapts to stressful environments is crucial. This study unveils BspD, a conserved protein within the Rhizobiales order, as a key player in maintaining Brucella's envelope integrity. Remarkably, BspD's presence within the Rizobiales appears independent of the presence of a T4SS or a specific lifestyle. Deletion of bspD resulted in compromised envelope integrity, abnormal bacterial morphologies, and reduced intracellular microcolony formation. These findings underscore BspD's critical role, particularly in stressful conditions like the stationary phase and EDTA exposure, and highlight its significance for the survival of Brucella within host cells. This elucidation deepens our understanding of Brucella pathogenesis and may inform future therapeutic strategies against brucellosis.
Collapse
|
3
|
Li L, Xu Q, Jiang S, Jing X, Shen Q, He JS, Yang Y, Ling N. Asymmetric winter warming reduces microbial carbon use efficiency and growth more than symmetric year-round warming in alpine soils. Proc Natl Acad Sci U S A 2024; 121:e2401523121. [PMID: 39401358 PMCID: PMC11513915 DOI: 10.1073/pnas.2401523121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 08/29/2024] [Indexed: 10/30/2024] Open
Abstract
Asymmetric seasonal warming trends are evident across terrestrial ecosystems, with winter temperatures rising more than summer ones. Yet, the impact of such asymmetric seasonal warming on soil microbial carbon metabolism and growth remains poorly understood. Using 18O isotope labeling, we examined the effects of a decade-long experimental seasonal warming on microbial carbon use efficiency (CUE) and growth in alpine grassland ecosystems. Moreover, the quantitative stable isotope probing with 18O-H2O was employed to evaluate taxon-specific bacterial growth in these ecosystems. Results show that symmetric year-round warming decreased microbial growth rate by 31% and CUE by 22%. Asymmetric winter warming resulted in a further decrease in microbial growth rate of 27% and microbial CUE of 59% compared to symmetric year-round warming. Long-term warming increased microbial carbon limitations, especially under asymmetric winter warming. Long-term warming suppressed the growth rates of most bacterial genera, with asymmetric winter warming having a stronger inhibition on the growth rates of specific genera (e.g., Gp10, Actinomarinicola, Bosea, Acidibacter, and Gemmata) compared to symmetric year-round warming. Bacterial growth was phylogenetically conserved, but this conservation diminished under warming conditions, primarily due to shifts in bacterial physiological states rather than the number of bacterial species and community composition. Overall, long-term warming escalated microbial carbon limitations, decreased microbial growth and CUE, with asymmetric winter warming having a more pronounced effect. Understanding these impacts is crucial for predicting soil carbon cycling as global warming progresses.
Collapse
Affiliation(s)
- Ling Li
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Centre for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, Gansu730020, China
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing210095, China
| | - Qicheng Xu
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing210095, China
| | - Shengjing Jiang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Centre for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, Gansu730020, China
| | - Xin Jing
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Centre for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, Gansu730020, China
| | - Qirong Shen
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing210095, China
| | - Jin-Sheng He
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Centre for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, Gansu730020, China
- Institute of Ecology, College of Urban and Environmental Sciences, and Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing100871, China
| | - Yunfeng Yang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing100871, China
| | - Ning Ling
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Centre for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, Gansu730020, China
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing210095, China
| |
Collapse
|
4
|
Lin B, Pathak JL, Gao H, Zhou Z, Ser HL, Wu L, Lee LH, Wang L, Chen J, Zhong M. A pilot study examining periodontally healthy middle-aged humans and monkeys display different levels of alveolar bone resorption, gingival inflammatory infiltrate, and salivary microbiota profile. PLoS One 2024; 19:e0311282. [PMID: 39413077 PMCID: PMC11482700 DOI: 10.1371/journal.pone.0311282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 09/13/2024] [Indexed: 10/18/2024] Open
Abstract
BACKGROUND Monkeys are an appropriate model for periodontal research owing to their similar dental anatomy and physiology unlike humans. Extensive literature exists on pathological periodontitis in monkeys and humans, although concerns regarding whether healthy middle-aged monkeys and humans display the same periodontal and oral microbial status remains unclear. AIMS AND OBJECTIVES The current study aimed to compare alveolar bone resorption, gingival inflammatory infiltrate, and salivary microbiota profile in periodontally healthy middle-aged humans and monkeys. METHODS CBCT examination and histological analysis were performed to compare the periodontal status in middle-aged healthy humans and monkeys. Oral saliva16S rRNA sequencing was performed to analyze the oral microbial profile. RESULTS The alveolar resorption was compared between humans and monkeys, to determine the periodontal health. The percentage attachment of attachment loss was more around the posteriors teeth in humans when compared to monkeys (p<0.05). The degree of gingival inflammation was analyzed in both the groups, the expression of CD 34,45was higher in humans. 16S rRNA analysis demonstrated less diversity of salivary microorganisms in humans than in monkeys. The relative abundance of Aggregatibacter, Haemophilus, Gemella, and Porphyromonas at the genus level was significantly less in humans than in monkeys (p(<0.05). CONCLUSION The periodontally healthy middle-aged humans and monkeys display different alveolar bone resorption and gingival inflammatory infiltrate levels. Furthermore, the salivary microbiota profile showed distinctly different oral microbiomes in these two primates. Our results suggest that the difference in alveolar bone status and gingival inflammatory infiltrate in healthy humans and monkeys might be associated with the diversity of the oral microbiome.
Collapse
Affiliation(s)
- Bingpeng Lin
- Department of Orthodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, China
| | - Janak L. Pathak
- Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, China
| | - Hongbin Gao
- Guangdong Laboratory Animals Monitoring Institute, Key Laboratory of Guangdong Laboratory Animals, Guangzhou, China
| | - Zijun Zhou
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Hooi-Leng Ser
- Novel Bacteria and Drug Discovery (NBDD) Research Group, Microbiome and Bioresource Research Strength (MBRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Subang Jaya, Malaysia
| | - Lihong Wu
- Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, China
| | - Learn-Han Lee
- Novel Bacteria and Drug Discovery (NBDD) Research Group, Microbiome and Bioresource Research Strength (MBRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Subang Jaya, Malaysia
- Microbiome Research Group, Research Centre for Life Science and Healthcare, Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute(CBI), University of Nottingham Ningbo China, Ningbo, China
| | - Lijing Wang
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Jianming Chen
- Department of Orthodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, China
| | - Mei Zhong
- Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
5
|
Wang X, Li J, Wang D, Sun C, Zhang X, Zhao J, Teng J, Wang Q. Unveiling microplastic's role in nitrogen cycling: Metagenomic insights from estuarine sediment microcosms. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 359:124591. [PMID: 39043311 DOI: 10.1016/j.envpol.2024.124591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/30/2024] [Accepted: 07/20/2024] [Indexed: 07/25/2024]
Abstract
Marine microplastics (MPs) pollution, with rivers as a major source, leads to MPs accumulation in estuarine sediments, which are also nitrogen cycling hotspots. However, the impact of MPs on nitrogen cycling in estuarine sediments has rarely been documented. In this study, we conducted microcosm experiment to investigate the effects of commonly encountered polyethylene (PE) and polystyrene (PS) MPs, with two MPs concentrations (0.3% and 3% wet sediment weight) based on environmental concentration considerations and dose-response effects, on sediment dissolved oxygen (DO) diffusion capacity and microbial communities using microelectrode system and metagenomic analysis respectively. The results indicated that high concentrations of PE-MPs inhibited DO diffusion during the mid-phase of the experiment, an effect that dissipated in the later stages. Metagenomic analysis revealed that MP treatments reduced the relative abundance of dominant microbial colonies in the sediments. The PCoA results demonstrated that MPs altered the microbial community structure, particularly evident under high concentration PE-MPs treatments. Functional analysis related to the nitrogen cycle suggested that PS-MPs promoted the nitrification, denitrification, and DNRA processes, but inhibited the ANRA process, while PE-MPs had an inhibitory effect on the nitrate reduction process and the ANRA process. Additionally, the high concentration of PE-MPs treatment significantly stimulated the abundance of genus (Bacillus) by 34.1% and genes (lip, pnbA) by 100-187.5% associated with plastic degradation, respectively. Overall, in terms of microbial community structure and the abundance of nitrogen cycling functional genes, PE- and PS- MPs exhibit both similarities and differences in their impact on nitrogen cycling. Our findings highlight the complexity of MP effects on nitrogen cycling in estuarine sediments and high concentrations of PE-MP stimulated plastic-degrading genus and genes.
Collapse
Affiliation(s)
- Xiaodan Wang
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, 266237, PR China; Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China
| | - Jiasen Li
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, 266237, PR China; Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China
| | - Dongyu Wang
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, 266237, PR China; Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China
| | - Chaofan Sun
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, 266237, PR China; Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China
| | - Xiaoli Zhang
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, 266237, PR China
| | - Jianmin Zhao
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, 266237, PR China; Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China
| | - Jia Teng
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, 266237, PR China; Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China
| | - Qing Wang
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, 266237, PR China; Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China.
| |
Collapse
|
6
|
Wang N, Ding D, Zhang H, Ding X, Zhang D, Yao C, Fan X, Ding R, Wang H, Jiang T. Anthropogenic activity shapes the assemble and co-occurrence pattern of microbial communities in fishing harbors around the Bohai economic circle. ENVIRONMENTAL RESEARCH 2024; 259:119563. [PMID: 38971358 DOI: 10.1016/j.envres.2024.119563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 06/25/2024] [Accepted: 07/03/2024] [Indexed: 07/08/2024]
Abstract
This study aimed to elucidate the effects of coastal environmental stress on the composition of sediment bacterial communities and their cooccurrence patterns in fishing harbors around the Bohai Economic Circle, China. Compared with the natural sea area, fishing harbors contained higher levels of organic pollution (organic pollution index = 0.12 ± 0.026) and considerably reduced bacterial richness and evenness. The distributions of sediment microbial communities clustered along the pollutant concentration gradients across fishing harbors. Betaproteobacteria dominated (76%) organically polluted fishing harbors, which were mostly disturbed by anthropogenic activities. However, the harbors also revealed the absence of numerous pathogenic (Coxiella and Legionella) and photosynthetic (Synechococcus and Leptolyngbya) bacteria. Abundant genera, including Thiobacillus and Arenimonas, exhibited a positive correlation with total phosphorus and a negative correlation with total nitrogen in sediments. Meanwhile, Sulfurovum, Psychrobacter, and Woeseia showed the opposite trend. Pollutant accumulation and anthropogenic activities caused the decrease in the sediment microbial diversity and dispersal ability and promoted convergent evolution. Severely polluted harbors with simplified cooccurrence networks revealed the presence of destabilized microbial communities. In addition, the modularity of bacterial networks decreased with organic pollution. Our results provide important insights into the adjustment mechanism of microbial communities to community organization and functions under environmental pollution stress. Overall, this study enhanced our understanding of how microbial communities in coastal sediments adapted and survived amidst anthropogenic activities like oily effluent discharges from large ships, wash water, domestic sewage, garbage, and fisheries wastes. It also examined their resilience to future contamination.
Collapse
Affiliation(s)
- Nan Wang
- School of Ocean, Yantai University, Yantai, 264005, China
| | - Dongsheng Ding
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China
| | - Huihui Zhang
- School of Ocean, Yantai University, Yantai, 264005, China
| | - Xiaokun Ding
- School of Ocean, Yantai University, Yantai, 264005, China
| | - Di Zhang
- School of Ocean, Yantai University, Yantai, 264005, China
| | - Chenghao Yao
- Shandong Hongxin Environmental Protection Technology Co., Ltd, China
| | - Xiao Fan
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China
| | - RenYe Ding
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China
| | - Hualong Wang
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, And Key Lab of Polar Oceanography and Global Ocean Change, Ocean University of China, Qingdao, 266003, China.
| | - Tao Jiang
- School of Ocean, Yantai University, Yantai, 264005, China.
| |
Collapse
|
7
|
Li L, Li C, Guo H, Liu Y, Sheng J, Guo S, Shen Q, Ling N, Guo J. Enhanced carbon use efficiency and warming resistance of soil microorganisms under organic amendment. ENVIRONMENT INTERNATIONAL 2024; 192:109043. [PMID: 39369561 DOI: 10.1016/j.envint.2024.109043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/30/2024] [Accepted: 09/29/2024] [Indexed: 10/08/2024]
Abstract
The frequency and intensity of extreme weather events, including rapid temperature fluctuations, are increasing because of climate change. Long-term fertilization practices have been observed to alter microbial physiology and community structure, thereby affecting soil carbon sequestration. However, the effects of warming on the carbon sequestration potential of soil microbes adapted to long-term fertilization remain poorly understood. In this study, we utilized 18O isotope labeling to assess microbial carbon use efficiency (CUE) and employed stable isotope probing (SIP) with 18O-H2O to identify growing taxa in response to temperature changes (5-35 °C). Organic amendment with manure or straw residue significantly increased microbial CUE by 86-181 % compared to unfertilized soils. The microorganisms inhabiting organic amended soils displayed greater resistance of microbial CUE to high temperatures (25-35 °C) compared to those inhabiting soils fertilized only with minerals. Microbial growth patterns determined by the classification of taxa into incorporators or non-incorporators based on 18O incorporation into DNA exhibited limited phylogenetic conservation in response to temperature changes. Microbial clusters were identified by grouping taxa with similar growth patterns across different temperatures. Organic amendments enriched microbial clusters associated with increased CUE, whereas clusters in unfertilized or mineral-only fertilized soils were linked to decreased CUE. Specifically, shifts in the composition of growing bacteria were correlated with enhanced microbial CUE, whereas modifications in the composition of growing fungi were associated with diminished CUE. Notably, the responses of microbial CUE to temperature fluctuations were primarily driven by changes in the bacterial composition. Overall, our findings demonstrate that organic amendments enhance soil microbial CUE and promote the enrichment of specific microbial clusters that are better equipped to cope with temperature changes. This study establishes a theoretical foundation for manipulating soil microbes to enhance carbon sequestration under global climate scenarios.
Collapse
Affiliation(s)
- Ling Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology, School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, Guangdong 518107, China; Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing 210095, China; Center for Grassland Microbiome, State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, Gansu, China
| | - Chenhua Li
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, Xinjiang 830011, China
| | - Hanyue Guo
- Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Yunhua Liu
- College of Resources and Environment, Xinjiang Agricultural University, Urumqi, Xinjiang 830052, China
| | - Jiandong Sheng
- College of Resources and Environment, Xinjiang Agricultural University, Urumqi, Xinjiang 830052, China
| | - Shiwei Guo
- Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Qirong Shen
- Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Ning Ling
- Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing 210095, China; Center for Grassland Microbiome, State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, Gansu, China
| | - Junjie Guo
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology, School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, Guangdong 518107, China.
| |
Collapse
|
8
|
Berggren H, Yıldırım Y, Nordahl O, Larsson P, Dopson M, Tibblin P, Lundin D, Pinhassi J, Forsman A. Ecological filtering drives rapid spatiotemporal dynamics in fish skin microbiomes. Mol Ecol 2024; 33:e17496. [PMID: 39161196 DOI: 10.1111/mec.17496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 08/01/2024] [Accepted: 08/05/2024] [Indexed: 08/21/2024]
Abstract
Skin microbiomes provide vital functions, yet knowledge about the drivers and processes structuring their species assemblages is limited-especially for non-model organisms. In this study, fish skin microbiome was assessed by high throughput sequencing of amplicon sequence variants from metabarcoding of V3-V4 regions in the 16S rRNA gene on fish hosts subjected to the following experimental manipulations: (i) translocation between fresh and brackish water habitats to investigate the role of environment; (ii) treatment with an antibacterial disinfectant to reboot the microbiome and investigate community assembly and priority effects; and (iii) maintained alone or in pairs to study the role of social environment and inter-host dispersal of microbes. The results revealed that fish skin microbiomes harbour a highly dynamic microbial composition that was distinct from bacterioplankton communities in the ambient water. Microbiome composition first diverged as an effect of translocation to either the brackish or freshwater habitat. When the freshwater individuals were translocated back to brackish water, their microbiome composition converged towards the fish microbiomes in the brackish habitat. In summary, external environmental conditions and individual-specific factors jointly determined the community composition dynamics, whereas inter-host dispersal had negligible effects. The dynamics of the microbiome composition was seemingly non-affected by reboot treatment, pointing towards high resilience to disturbance. The results emphasised the role of inter-individual variability for the unexplained variation found in many host-microbiome systems, although the mechanistic underpinnings remain to be identified.
Collapse
Affiliation(s)
- Hanna Berggren
- Ecology and Evolution in Microbial Model Systems (EEMiS), Department of Biology and Environmental Science, Linnaeus University, Kalmar, Sweden
| | - Yeşerin Yıldırım
- Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden
| | - Oscar Nordahl
- Ecology and Evolution in Microbial Model Systems (EEMiS), Department of Biology and Environmental Science, Linnaeus University, Kalmar, Sweden
| | - Per Larsson
- Ecology and Evolution in Microbial Model Systems (EEMiS), Department of Biology and Environmental Science, Linnaeus University, Kalmar, Sweden
| | - Mark Dopson
- Ecology and Evolution in Microbial Model Systems (EEMiS), Department of Biology and Environmental Science, Linnaeus University, Kalmar, Sweden
| | - Petter Tibblin
- Ecology and Evolution in Microbial Model Systems (EEMiS), Department of Biology and Environmental Science, Linnaeus University, Kalmar, Sweden
| | - Daniel Lundin
- Ecology and Evolution in Microbial Model Systems (EEMiS), Department of Biology and Environmental Science, Linnaeus University, Kalmar, Sweden
| | - Jarone Pinhassi
- Ecology and Evolution in Microbial Model Systems (EEMiS), Department of Biology and Environmental Science, Linnaeus University, Kalmar, Sweden
| | - Anders Forsman
- Ecology and Evolution in Microbial Model Systems (EEMiS), Department of Biology and Environmental Science, Linnaeus University, Kalmar, Sweden
| |
Collapse
|
9
|
Wang X, Zhao N, Li W, Pu X, Xu P, Wang P. Core Bacterial Taxa Determine Formation of Forage Yield in Fertilized Soil. Microorganisms 2024; 12:1679. [PMID: 39203522 PMCID: PMC11356994 DOI: 10.3390/microorganisms12081679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 08/06/2024] [Accepted: 08/13/2024] [Indexed: 09/03/2024] Open
Abstract
Understanding the roles of core bacterial taxa in forage production is crucial for developing sustainable fertilization practices that enhance the soil bacteria and forage yield. This study aims to investigate the impact of different fertilization regimes on soil bacterial community structure and function, with a particular focus on the role of core bacterial taxa in contributing to soil nutrient content and enhancing forage yield. Field experiments and high-throughput sequencing techniques were used to analyze the soil bacterial community structure and function under various fertilization regimes, including six treatments, control with no amendment (CK), double the standard rate of organic manure (T01), the standard rate of organic manure with nitrogen input equal to T04 (T02), half the standard rate of inorganic fertilizer plus half the standard rate of organic manure (T03), the standard rate of inorganic fertilizer reflecting local practice (T04), and double the standard rate of inorganic fertilizer (T05). The results demonstrated that organic manure treatments, particularly T01, significantly increased the forage yield and the diversity of core bacterial taxa. Core taxa from the Actinomycetota, Alphaproteobacteria, and Gammaproteobacteria classes were crucial in enhancing the soil nutrient content, directly correlating with forage yield. Fertilization significantly influenced functions relating to carbon and nitrogen cycling, with core taxa playing central roles. The diversity of core microbiota and soil nutrient levels were key determinants of forage yield variations across treatments. These findings underscore the critical role of core bacterial taxa in agroecosystem productivity and advocate for their consideration in fertilization strategies to optimize forage yield, supporting the shift towards sustainable agricultural practices.
Collapse
Affiliation(s)
- Xiangtao Wang
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China;
| | - Ningning Zhao
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Center for Grassland Microbiome, College of Pastoral, Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China
- Qiangtang Alpine Grassland Ecosystem Research Station, Tibet Agricultural and Animal Husbandry University, Nyingchi 860000, China
| | - Wencheng Li
- Qiangtang Alpine Grassland Ecosystem Research Station, Tibet Agricultural and Animal Husbandry University, Nyingchi 860000, China
- School of Ecology and Enviroment, Tibet University, Lhasa 850000, China
| | - Xin Pu
- Qiangtang Alpine Grassland Ecosystem Research Station, Tibet Agricultural and Animal Husbandry University, Nyingchi 860000, China
- College of Animal Science, Tibet Agricultural and Animal Husbandry University, Nyingchi 860000, China
| | - Peng Xu
- Qiangtang Alpine Grassland Ecosystem Research Station, Tibet Agricultural and Animal Husbandry University, Nyingchi 860000, China
- College of Animal Science, Tibet Agricultural and Animal Husbandry University, Nyingchi 860000, China
| | - Puchang Wang
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China;
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| |
Collapse
|
10
|
Ferrera I, Auladell A, Balagué V, Reñé A, Garcés E, Massana R, Gasol JM. Seasonal and interannual variability of the free-living and particle-associated bacteria of a coastal microbiome. ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e13299. [PMID: 39081120 PMCID: PMC11289420 DOI: 10.1111/1758-2229.13299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 05/08/2024] [Indexed: 08/03/2024]
Abstract
Marine microbial communities differ genetically, metabolically, and ecologically according to their lifestyle, and they may respond differently to environmental changes. In this study, we investigated the seasonal dynamics of bacterial assemblies in the free-living (FL) and particle-associated (PA) fractions across a span of 6 years in the Blanes Bay Microbial Observatory in the Northwestern Mediterranean. Both lifestyles showed marked seasonality. The trends in alpha diversity were similar, with lower values in spring-summer than in autumn-winter. Samples from both fractions were grouped seasonally and the percentage of community variability explained by the measured environmental variables was comparable (32% in FL and 31% in PA). Canonical analyses showed that biotic interactions were determinants of bacterioplankton dynamics and that their relevance varies depending on lifestyles. Time-decay curves confirmed a high degree of predictability in both fractions. Yet, 'seasonal' Amplicon Sequence Variants (ASVs) (as defined by Lomb Scargle time series analysis) in the PA communities represented 46% of the total relative abundance while these accounted for 30% in the FL fraction. These results demonstrate that bacteria inhabiting both fractions exhibit marked seasonality, highlighting the importance of accounting for both lifestyles to fully comprehend the dynamics of marine prokaryotic communities.
Collapse
Affiliation(s)
- Isabel Ferrera
- Department of Marine Biology and OceanographyInstitut de Ciències del Mar (ICM‐CSIC)BarcelonaCataloniaSpain
- Centro Oceanográfico de Málaga, Instituto Español de Oceanografía (IEO‐CSIC)MálagaSpain
| | - Adrià Auladell
- Department of Marine Biology and OceanographyInstitut de Ciències del Mar (ICM‐CSIC)BarcelonaCataloniaSpain
- Present address:
Institut de Biologia Evolutiva (IBE‐UPF‐CSIC)BarcelonaCataloniaSpain
| | - Vanessa Balagué
- Department of Marine Biology and OceanographyInstitut de Ciències del Mar (ICM‐CSIC)BarcelonaCataloniaSpain
| | - Albert Reñé
- Department of Marine Biology and OceanographyInstitut de Ciències del Mar (ICM‐CSIC)BarcelonaCataloniaSpain
| | - Esther Garcés
- Department of Marine Biology and OceanographyInstitut de Ciències del Mar (ICM‐CSIC)BarcelonaCataloniaSpain
| | - Ramon Massana
- Department of Marine Biology and OceanographyInstitut de Ciències del Mar (ICM‐CSIC)BarcelonaCataloniaSpain
| | - Josep M. Gasol
- Department of Marine Biology and OceanographyInstitut de Ciències del Mar (ICM‐CSIC)BarcelonaCataloniaSpain
| |
Collapse
|
11
|
Cerda Á, Rodríguez C, González M, González H, Serrano J, Leiva E. Feammox bacterial biofilm formation in HFMB. CHEMOSPHERE 2024; 358:142072. [PMID: 38657691 DOI: 10.1016/j.chemosphere.2024.142072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 04/08/2024] [Accepted: 04/16/2024] [Indexed: 04/26/2024]
Abstract
Nitrogen pollution has been increasing with the development of industrialization. Consequently, the excessive deposition of reactive nitrogen in the environment has generated the loss of biodiversity and eutrophication of different ecosystems. In 2005, a Feammox process was discovered that anaerobically metabolizes ammonium. Feammox with the use of hollow fiber membrane bioreactors (HFMB), based on the formation of biofilms of bacterial communities, has emerged as a possible efficient and sustainable method for ammonium removal in environments with high iron concentrations. This work sought to study the possibility of implementing, at laboratory scale, an efficient method by evaluating the use of HFMB. Samples from an internal circulation reactor (IC) incubated in culture media for Feammox bacteria. The cultures were enriched in a batch reactor to evaluate growth conditions. Next, HFMB assembly was performed, and Feammox parameters were monitored. Also, conventional PCR and scanning electron microscopy (SEM) analysis were performed to characterize the bacterial communities associated with biofilm formation. The use of sodium acetate presented the best performance for Feammox activity. The HFMB operation showed an ammonium (NH4+) removal of 50%. SEM analysis of the fibers illustrated the formation of biofilm networks formed by bacteria, which were identified as Albidiferax ferrireducens, Geobacter spp, Ferrovum myxofaciens, Shewanella spp., and Anammox. Functional genes Archaea/Bacteria ammonia monooxygenase, nrxA, hzsB, nirS and nosZ were also identified. The implementation of HFMB Feammox could be used as a sustainable tool for the removal of ammonium from wastewater produced because of anthropogenic activities.
Collapse
Affiliation(s)
- Ámbar Cerda
- Departamento de Química Inorgánica, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, Macul, 7820436, Santiago, Chile.
| | - Carolina Rodríguez
- Departamento de Química Inorgánica, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, Macul, 7820436, Santiago, Chile.
| | - Macarena González
- Departamento de Química Inorgánica, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, Macul, 7820436, Santiago, Chile.
| | - Heylin González
- Departamento de Ingeniería Hidráulica y Ambiental, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, Macul, 7820436, Santiago, Chile.
| | - Jennyfer Serrano
- Escuela de Biotecnología, Universidad Mayor, Camino La Pirámide 5750, Huechuraba, Santiago 8580745, Chile.
| | - Eduardo Leiva
- Departamento de Química Inorgánica, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, Macul, 7820436, Santiago, Chile; Departamento de Ingeniería Hidráulica y Ambiental, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, Macul, 7820436, Santiago, Chile.
| |
Collapse
|
12
|
Abraham JO, Lin B, Miller AE, Henry LP, Demmel MY, Warungu R, Mwangi M, Lobura PM, Pallares LF, Ayroles JF, Pringle RM, Rubenstein DI. Determinants of microbiome composition: Insights from free-ranging hybrid zebras (Equus quagga × grevyi). Mol Ecol 2024; 33:e17370. [PMID: 38682799 DOI: 10.1111/mec.17370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 04/12/2024] [Accepted: 04/17/2024] [Indexed: 05/01/2024]
Abstract
The composition of mammalian gut microbiomes is highly conserved within species, yet the mechanisms by which microbiome composition is transmitted and maintained within lineages of wild animals remain unclear. Mutually compatible hypotheses exist, including that microbiome fidelity results from inherited dietary habits, shared environmental exposure, morphophysiological filtering and/or maternal effects. Interspecific hybrids are a promising system in which to interrogate the determinants of microbiome composition because hybrids can decouple traits and processes that are otherwise co-inherited in their parent species. We used a population of free-living hybrid zebras (Equus quagga × grevyi) in Kenya to evaluate the roles of these four mechanisms in regulating microbiome composition. We analysed faecal DNA for both the trnL-P6 and the 16S rRNA V4 region to characterize the diets and microbiomes of the hybrid zebra and of their parent species, plains zebra (E. quagga) and Grevy's zebra (E. grevyi). We found that both diet and microbiome composition clustered by species, and that hybrid diets and microbiomes were largely nested within those of the maternal species, plains zebra. Hybrid microbiomes were less variable than those of either parent species where they co-occurred. Diet and microbiome composition were strongly correlated, although the strength of this correlation varied between species. These patterns are most consistent with the maternal-effects hypothesis, somewhat consistent with the diet hypothesis, and largely inconsistent with the environmental-sourcing and morphophysiological-filtering hypotheses. Maternal transmittance likely operates in conjunction with inherited feeding habits to conserve microbiome composition within species.
Collapse
Affiliation(s)
- Joel O Abraham
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey, USA
| | - Bing Lin
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey, USA
- School of Public and International Affairs, Princeton University, Princeton, New Jersey, USA
| | - Audrey E Miller
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey, USA
| | - Lucas P Henry
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey, USA
- Department of Biology, New York University, New York City, New York, USA
| | - Margaret Y Demmel
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey, USA
- Section of Ecology, Behavior and Evolution, University of California San Diego, San Diego, California, USA
| | | | | | | | - Luisa F Pallares
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey, USA
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, USA
- Friedrich Miescher Laboratory, Max Planck Society, Tübingen, Germany
| | - Julien F Ayroles
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey, USA
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, USA
| | - Robert M Pringle
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey, USA
| | - Daniel I Rubenstein
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey, USA
- Mpala Research Conservancy, Laikipia County, Kenya
| |
Collapse
|
13
|
Wang Y, Zou Q. Deciphering Microbial Adaptation in the Rhizosphere: Insights into Niche Preference, Functional Profiles, and Cross-Kingdom Co-occurrences. MICROBIAL ECOLOGY 2024; 87:74. [PMID: 38771320 PMCID: PMC11108897 DOI: 10.1007/s00248-024-02390-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 05/08/2024] [Indexed: 05/22/2024]
Abstract
Rhizosphere microbial communities are to be as critical factors for plant growth and vitality, and their adaptive differentiation strategies have received increasing amounts of attention but are poorly understood. In this study, we obtained bacterial and fungal amplicon sequences from the rhizosphere and bulk soils of various ecosystems to investigate the potential mechanisms of microbial adaptation to the rhizosphere environment. Our focus encompasses three aspects: niche preference, functional profiles, and cross-kingdom co-occurrence patterns. Our findings revealed a correlation between niche similarity and nucleotide distance, suggesting that niche adaptation explains nucleotide variation among some closely related amplicon sequence variants (ASVs). Furthermore, biological macromolecule metabolism and communication among abundant bacteria increase in the rhizosphere conditions, suggesting that bacterial function is trait-mediated in terms of fitness in new habitats. Additionally, our analysis of cross-kingdom networks revealed that fungi act as intermediaries that facilitate connections between bacteria, indicating that microbes can modify their cooperative relationships to adapt. Overall, the evidence for rhizosphere microbial community adaptation, via differences in gene and functional and co-occurrence patterns, elucidates the adaptive benefits of genetic and functional flexibility of the rhizosphere microbiota through niche shifts.
Collapse
Affiliation(s)
- Yansu Wang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Quan Zou
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, China.
| |
Collapse
|
14
|
Rafie SAA, Blentlinger LR, Putt AD, Williams DE, Joyner DC, Campa MF, Schubert MJ, Hoyt KP, Horn SP, Franklin JA, Hazen TC. Impact of prescribed fire on soil microbial communities in a Southern Appalachian Forest clear-cut. Front Microbiol 2024; 15:1322151. [PMID: 38741734 PMCID: PMC11090169 DOI: 10.3389/fmicb.2024.1322151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 04/08/2024] [Indexed: 05/16/2024] Open
Abstract
Escalating wildfire frequency and severity, exacerbated by shifting climate patterns, pose significant ecological and economic challenges. Prescribed burns, a common forest management tool, aim to mitigate wildfire risks and protect biodiversity. Nevertheless, understanding the impact of prescribed burns on soil and microbial communities in temperate mixed forests, considering temporal dynamics and slash fuel types, remains crucial. Our study, conducted at the University of Tennessee Forest Resources AgResearch and Education Center in Oak Ridge, TN, employed controlled burns across various treatments, and the findings indicate that low-intensity prescribed burns have none or minimal short-term effects on soil parameters but may alter soil nutrient concentrations, as evidenced by significant changes in porewater acetate, formate, and nitrate concentrations. These burns also induce shifts in microbial community structure and diversity, with Proteobacteria and Acidobacteria increasing significantly post-fire, possibly aiding soil recovery. In contrast, Verrucomicrobia showed a notable decrease over time, and other specific microbial taxa correlated with soil pH, porewater nitrate, ammonium, and phosphate concentrations. Our research contributes to understanding the intricate relationships between prescribed fire, soil dynamics, and microbial responses in temperate mixed forests in the Southern Appalachian Region, which is valuable for informed land management practices in the face of evolving environmental challenges.
Collapse
Affiliation(s)
- S. A. A. Rafie
- Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, TN, United States
- Institute for a Secure and Sustainable Environment, University of Tennessee, Knoxville, TN, United States
- Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - L. R. Blentlinger
- Department of Geography, University of Tennessee, Knoxville, TN, United States
| | - A. D. Putt
- Institute for a Secure and Sustainable Environment, University of Tennessee, Knoxville, TN, United States
- Department of Earth and Planetary Sciences, University of Tennessee, Knoxville, TN, United States
| | - D. E. Williams
- Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, TN, United States
- Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - D. C. Joyner
- Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, TN, United States
- Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - M. F. Campa
- Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, TN, United States
- Bredesen Center—Genome Science and Technology, University of Tennessee, Knoxville, TN, United States
| | - M. J. Schubert
- Forest Resources AgResearch and Education Center, Knoxville, TN, United States
| | - K. P. Hoyt
- Forest Resources AgResearch and Education Center, Knoxville, TN, United States
| | - S. P. Horn
- Department of Geography, University of Tennessee, Knoxville, TN, United States
| | - J. A. Franklin
- Department of Forestry, Wildlife and Fisheries, University of Tennessee, Knoxville, TN, United States
| | - T. C. Hazen
- Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, TN, United States
- Institute for a Secure and Sustainable Environment, University of Tennessee, Knoxville, TN, United States
- Oak Ridge National Laboratory, Oak Ridge, TN, United States
- Department of Earth and Planetary Sciences, University of Tennessee, Knoxville, TN, United States
- Bredesen Center—Genome Science and Technology, University of Tennessee, Knoxville, TN, United States
| |
Collapse
|
15
|
Liu Z, Gu H, Yao Q, Jiao F, Hu X, Liu J, Jin J, Liu X, Wang G. Soil pH and carbon quality index regulate the biogeochemical cycle couplings of carbon, nitrogen and phosphorus in the profiles of Isohumosols. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 922:171269. [PMID: 38423323 DOI: 10.1016/j.scitotenv.2024.171269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 02/13/2024] [Accepted: 02/23/2024] [Indexed: 03/02/2024]
Abstract
Soil biogeochemical cycles are essential for regulating ecosystem functions and services. However, little knowledge has been revealed on microbe-driven biogeochemical processes and their coupling mechanisms in soil profiles. This study investigated the vertical distribution of soil functional composition and their contribution to carbon (C), nitrogen (N) and phosphorus (P) cycling in the humus horizons (A-horizons) and parent material horizons (C-horizons) in Udic and Ustic Isohumosols using shotgun sequencing. Results showed that the diversity and relative abundance of microbial functional genes was influenced by soil horizons and soil types. In A-horizons, the relative abundances of N mineralization and liable C decomposition genes were significantly greater, but the P cycle-related genes, recalcitrant C decomposition and denitrification genes were lower compared to C-horizons. While, Ustic Isohumosols had lower relative abundances of C decomposition genes but higher relative abundances of N mineralization and P cycling-related pathways compared to Udic Isohumosols. The network analysis revealed that C-horizons had more interactions and stronger stability of functional gene networks than in A-horizons. Importantly, our results provide new insights into the potential mechanisms for the coupling processes of soil biogeochemical cycles among C, N and P, which is mediated by specific microbial taxa. Soil pH and carbon quality index (CQI) were two sensitive indicators for regulating the relative abundances and the relationships of functional genes in biogeochemical cycles. This study contributes to a deeper understanding of the ecological functions of soil microorganisms, thus providing a theoretical basis for the exploration and utilization of soil microbial resources and the development of soil ecological control strategies.
Collapse
Affiliation(s)
- Zhuxiu Liu
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, China
| | - Haidong Gu
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qin Yao
- College of Agronomy, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Feng Jiao
- College of Agronomy, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Xiaojing Hu
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, China
| | - Junjie Liu
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, China.
| | - Jian Jin
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, China
| | - Xiaobing Liu
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, China
| | - Guanghua Wang
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, China.
| |
Collapse
|
16
|
Xiao S, Gao J, Wang Q, Huang Z, Zhuang G. SOC bioavailability significantly correlated with the microbial activity mediated by size fractionation and soil morphology in agricultural ecosystems. ENVIRONMENT INTERNATIONAL 2024; 186:108588. [PMID: 38527397 DOI: 10.1016/j.envint.2024.108588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/14/2024] [Accepted: 03/18/2024] [Indexed: 03/27/2024]
Abstract
Despite the fact that physical and chemical processes have been widely proposed to explicate the stabilization mechanisms of soil organic carbon (SOC), thebioavailability of SOC linked to soil physical structure, microbial community structure, and functional genes remains poorly understood. This study aims to investigate the SOC division based on bioavailability differences formed by physical isolation, and to clarify the relationships of SOC bioavailability with soil elements, pore characteristics, and microbial activity. Results revealed that soil element abundances such as SOC, TN, and DOC ranked in the same order as the soil porosity as clay > silt ≥ coarse sand > fine sand in both top and sub soil. In contrast to silt and clay, which had reduced SOC bioavailability, fine sand and coarse sand had dramatically enhanced SOC bioavailability compared to the bulk soil. The bacterial and fungal community structure was significantly influenced by particle size, porosity, and soil elements. Copiotrophic bacteria and functional genes were more prevalent in fine sand than clay, which also contained more oligotrophic bacteria. The SOC bioavailability was positively correlated with abundances of functional genes, C degradation genes, and copiotrophic bacteria, but negatively correlated with abundances of soil elements, porosity, oligotrophic bacteria, and microbial biomass (p < 0.05). This indicated that the soil physical structure divided SOC into pools with varying levels of bioavailability, with sand fractions having more bioavailable organic carbon than finer fractions. Copiotrophic Proteobacteria and oligotrophic Acidobacteria, Firmicutes, and Gemmatimonadetes made up the majority of the bacteria linked to SOC mineralization. Additionally, the fungi Mortierellomycota and Mucoromycota, which are mostly involved in SOC mineralization, may have the potential for oligotrophic metabolism. Our results indicated that particle-size fractionation could influence the SOC bioavailability by restricting SOC accessibility and microbial activity, thus having a significant impact on sustaining soil organic carbon reserves in temperate agricultural ecosystems, and provided a new research direction for organic carbon stability.
Collapse
Affiliation(s)
- Shujie Xiao
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jie Gao
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Qiuying Wang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zixuan Huang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Sino-Danish College, University of Chinese Academy of Sciences, Beijing 101400, China; Sino-Danish Center for Education and Research, Beijing 101400, China
| | - Guoqiang Zhuang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
17
|
Zheng F, Gu J, Lu D, Yang J, Shuai X, Li C, Chen H. Mixing with native broadleaf trees modified soil microbial communities of Cunninghamia lanceolata monocultures in South China. Front Microbiol 2024; 15:1372128. [PMID: 38505544 PMCID: PMC10949948 DOI: 10.3389/fmicb.2024.1372128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 02/19/2024] [Indexed: 03/21/2024] Open
Abstract
Mixing with different broadleaf trees into the monocultures of Cunninghamia lanceolata is widely adopted as an efficient transformation of the pure C. lanceolata forest. However, it is unclear how native broad-leaved trees influence the belowground ecological environment of the pure C. lanceolata culture plantation in nutrient-poor soil of South China. Herein, we aimed to investigate how a long-time mixing with native broadleaf trees shape soil microbial community of the pure C. lanceolata forest across different soil depth (0-20 cm and 20-40 cm) and to clarify relationships between the modified soil microbial community and those affected soil chemical properties. Using high-throughput sequencing technology, microbial compositions from the mixed C. lanceolata-broadleaf forest and the pure C. lanceolata forest were analyzed. Network analysis was utilized to investigate correlations among microorganisms, and network robustness was assessed by calculating network natural connectivity. Results demonstrated that the content of soil microbial biomass carbon and nitrogen, total phosphorus and pH in mixed forest stand were significantly higher than those in pure forest stand, except for available phosphorus in topsoil (0-20 cm). Simultaneously, the mixed C. lanceolata-broadleaf forest has a more homogeneous bacterial and fungal communities across different soil depth compared with the pure C. lanceolata forest, wherein the mixed forest recruited more diverse bacterial community in subsoil (20-40 cm) and reduced the diversity of fungal community in topsoil. Meanwhile, the mixed forest showed higher bacterial community stability while the pure forest showed higher fungal community stability. Moreover, bacterial communities showed significant correlations with various soil chemical indicators, whereas fungal communities exhibited correlations with only TP and pH. Therefore, the mixed C. lanceolata-broadleaf forest rely on their recruiting bacterial community to enhance and maintain the higher nutrient status of soil while the pure C. lanceolata forest rely on some specific fungi to satisfy their phosphorus requirement for survive strategy.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Hongyue Chen
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| |
Collapse
|
18
|
Zhang X, Xu J, Dai J, Zhang L, Feng L, Tian X, Yang Q. Taxonomic, Phylogenomic and Bioactivity Profiling of Novel Phycosphere Bacterium from Model Cyanobacterium Synechococcus elongatus PCC 7942. Mar Drugs 2024; 22:36. [PMID: 38248661 PMCID: PMC10817584 DOI: 10.3390/md22010036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/14/2023] [Accepted: 12/29/2023] [Indexed: 01/23/2024] Open
Abstract
Phycosphere niches host rich microbial consortia that harbor dynamic algae-bacteria interactions with fundamental significance in varied natural ecosystems. Hence, culturing the uncultured microbial majority of the phycosphere microbiota is vital for deep understanding of the intricate mechanisms governing the dynamic interactions, and also to provide novel and rich microbial resources, and to discover new natural bioactive metabolites. Synechococcus elongatus PCC 7942 is a robust model cyanobacterium widely used in environment, synthesis biology, and biotechnology research. To expand the number of novel phycosphere species that were brought into culture and to discover the natural bioactivities, we presented a new yellow-pigmented bacterium named ABI-127-1, which was recovered from the phycosphere of PCC 7942, using an optimized bacterial isolation procedure. Combined polyphasic taxonomic and phylogenomic characterization was performed to confidently identify the new isolate as a potential novel species belonging to the genus Qipengyuania. The observed bioactivity of strain ABI-127-1 with promoting potential towards the growth and CO2 fixation efficiency of the host microalgae was measured. Additionally, the bacterial production of active bioflocculant exopolysaccharides was evaluated after culture optimization. Thus, these findings revealed the potential environmental and biotechnological implications of this new microalgae growth-promoting bacterium isolated from the phycosphere microenvironment.
Collapse
Affiliation(s)
- Xiaoling Zhang
- Department of Marine Chemistry, College of Marine Science and Technology, Zhejiang Ocean University, Zhoushan 316022, China
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National “111” Center for Cellular Regulation and Molecular Pharmaceutics, College of Bioengineering, Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China
- ABI Group, Laboratory of Phycosphere Microbiology, Zhejiang Ocean University, Zhoushan 316021, China
| | - Jiaquan Xu
- Department of Marine Chemistry, College of Marine Science and Technology, Zhejiang Ocean University, Zhoushan 316022, China
- Zhejiang Provincial Key Laboratory of Petrochemical Pollution Control, Zhejiang Ocean University, Zhoushan 316022, China
- Donghai Laboratory, Zhoushan 316022, China
| | - Jun Dai
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National “111” Center for Cellular Regulation and Molecular Pharmaceutics, College of Bioengineering, Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China
| | - Lei Zhang
- Zhejiang Provincial Key Laboratory of Petrochemical Pollution Control, Zhejiang Ocean University, Zhoushan 316022, China
| | - Lijuan Feng
- Zhejiang Provincial Key Laboratory of Petrochemical Pollution Control, Zhejiang Ocean University, Zhoushan 316022, China
| | - Xiaoqing Tian
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China
| | - Qiao Yang
- ABI Group, Laboratory of Phycosphere Microbiology, Zhejiang Ocean University, Zhoushan 316021, China
- Zhejiang Provincial Key Laboratory of Petrochemical Pollution Control, Zhejiang Ocean University, Zhoushan 316022, China
- Donghai Laboratory, Zhoushan 316022, China
- State Key Laboratory of Swine and Poultry Breeding Industry, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| |
Collapse
|
19
|
Liu XJA, Han S, Frey SD, Melillo JM, Zhou J, DeAngelis KM. Microbial responses to long-term warming differ across soil microenvironments. ISME COMMUNICATIONS 2024; 4:ycae051. [PMID: 38699060 PMCID: PMC11065356 DOI: 10.1093/ismeco/ycae051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/26/2024] [Accepted: 04/02/2024] [Indexed: 05/05/2024]
Abstract
Soil carbon loss is likely to increase due to climate warming, but microbiomes and microenvironments may dampen this effect. In a 30-year warming experiment, physical protection within soil aggregates affected the thermal responses of soil microbiomes and carbon dynamics. In this study, we combined metagenomic analysis with physical characterization of soil aggregates to explore mechanisms by which microbial communities respond to climate warming across different soil microenvironments. Long-term warming decreased the relative abundances of genes involved in degrading labile compounds (e.g. cellulose), but increased those genes involved in degrading recalcitrant compounds (e.g. lignin) across aggregate sizes. These changes were observed in most phyla of bacteria, especially for Acidobacteria, Actinobacteria, Bacteroidetes, Chloroflexi, and Planctomycetes. Microbial community composition was considerably altered by warming, leading to declined diversity for bacteria and fungi but not for archaea. Microbial functional genes, diversity, and community composition differed between macroaggregates and microaggregates, indicating the essential role of physical protection in controlling microbial community dynamics. Our findings suggest that microbes have the capacity to employ various strategies to acclimate or adapt to climate change (e.g. warming, heat stress) by shifting functional gene abundances and community structures in varying microenvironments, as regulated by soil physical protection.
Collapse
Affiliation(s)
- Xiao Jun A Liu
- Department of Microbiology, University of Massachusetts, Amherst, MA 01003, United States
- Institute for Environmental Genomics and School of Biological Sciences, University of Oklahoma , Norman, OK 73019, United States
| | - Shun Han
- Institute for Environmental Genomics and School of Biological Sciences, University of Oklahoma , Norman, OK 73019, United States
| | - Serita D Frey
- Department of Natural Resources and the Environment, University of New Hampshire, Durham, NH 03824, United States
| | - Jerry M Melillo
- The Ecosystems Center, Marine Biological Laboratory, Woods Hole, MA 02543, United States
| | - Jizhong Zhou
- Institute for Environmental Genomics and School of Biological Sciences, University of Oklahoma , Norman, OK 73019, United States
- Earth and Environmental Sciences, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States
- School of Civil Engineering and Environmental Sciences and School of Computer Science, University of Oklahoma, Norman, OK 73019, United States
| | - Kristen M DeAngelis
- Department of Microbiology, University of Massachusetts, Amherst, MA 01003, United States
| |
Collapse
|
20
|
Ren K, Mo Y, Xiao P, Rønn R, Xu Z, Xue Y, Chen H, Rivera WL, Rensing C, Yang J. Microeukaryotic plankton evolutionary constraints in a subtropical river explained by environment and bacteria along differing taxonomic resolutions. ISME COMMUNICATIONS 2024; 4:ycae026. [PMID: 38559570 PMCID: PMC10980835 DOI: 10.1093/ismeco/ycae026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/20/2024] [Accepted: 02/20/2024] [Indexed: 04/04/2024]
Abstract
Microeukaryotic plankton communities are keystone components for keeping aquatic primary productivity. Currently, variations in microeukaryotic plankton diversity have often been explained by local ecological factors but not by evolutionary constraints. We used amplicon sequencing of 100 water samples across five years to investigate the ecological preferences of the microeukaryotic plankton community in a subtropical riverine ecosystem. We found that microeukaryotic plankton diversity was less associated with bacterial abundance (16S rRNA gene copy number) than bacterial diversity. Further, environmental effects exhibited a larger influence on microeukaryotic plankton community composition than bacterial community composition, especially at fine taxonomic levels. The evolutionary constraints of microeukaryotic plankton community increased with decreasing taxonomic resolution (from 97% to 91% similarity levels), but not significant change from 85% to 70% similarity levels. However, compared with the bacterial community, the evolutionary constraints were shown to be more affected by environmental variables. This study illustrated possible controlling environmental and bacterial drivers of microeukaryotic diversity and community assembly in a subtropical river, thereby indirectly reflecting on the quality status of the water environment by providing new clues on the microeukaryotic community assembly.
Collapse
Affiliation(s)
- Kexin Ren
- Aquatic EcoHealth Group, Key Laboratory of Urban Environment and Health, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Yuanyuan Mo
- Aquatic EcoHealth Group, Key Laboratory of Urban Environment and Health, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
| | - Peng Xiao
- Aquatic EcoHealth Group, Key Laboratory of Urban Environment and Health, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- National and Local Joint Engineering Research Center for Ecological Treatment Technology of Urban Water Pollution, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Regin Rønn
- Aquatic EcoHealth Group, Key Laboratory of Urban Environment and Health, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- Department of Biology, University of Copenhagen, Copenhagen DK2100, Denmark
| | - Zijie Xu
- Aquatic EcoHealth Group, Key Laboratory of Urban Environment and Health, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuanyuan Xue
- Aquatic EcoHealth Group, Key Laboratory of Urban Environment and Health, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Huihuang Chen
- Aquatic EcoHealth Group, Key Laboratory of Urban Environment and Health, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Windell L Rivera
- Pathogen-Host-Environment Interactions Research Laboratory, Institute of Biology, College of Science, University of the Philippines Diliman, Quezon City 1101, Philippines
| | - Christopher Rensing
- Aquatic EcoHealth Group, Key Laboratory of Urban Environment and Health, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- Institute of Environmental Microbiology, College of Resources and the Environment, Fujian Agriculture & Forestry University, Fuzhou 350002, China
| | - Jun Yang
- Aquatic EcoHealth Group, Key Laboratory of Urban Environment and Health, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| |
Collapse
|
21
|
Zhang E, Lu Y, Zhao R, Yin X, Zhang J, Yu B, Yao M, Liao Z, Lan X. Endophytic bacterial community structure and diversity of the medicinal plant Mirabilis himalaica from different locations. Braz J Microbiol 2023; 54:2991-3003. [PMID: 37921953 PMCID: PMC10689605 DOI: 10.1007/s42770-023-01149-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 10/06/2023] [Indexed: 11/05/2023] Open
Abstract
Endophytic bacteria play important roles in medicinal plant growth, abiotic stress, and metabolism. Mirabilis himalaica (Edgew.) Heimerl is known for its medicinal value as Tibetan traditional plant; however, little is known about the endophytic bacteria associated with this plant in different geographic conditions and vegetal tissues. To compare the endophytic bacterial community associated with this plant in different geographic conditions and vegetal tissues, we collected the leaves, stems, and roots of M. himalaica from five locations, Nongmu college (NM), Gongbujiangda (GB), Zhanang County (ZL), Lang County (LX), and Sangri County (SR), and sequenced the 16S rRNA V5-V7 region with the Illumina sequencing method. A total of 522,450 high-quality sequences and 4970 operational taxonomic units (OTUs) were obtained. The different tissues from different locations harbored unique bacterial assemblages. Proteobacteria and Actinobacteria were the dominant phyla in all the samples, while the dominant genera changed based on the different tissues. The endophytic bacterial structures in the leaf and stem tissues were different compared to root tissues. Redundancy analysis (RDA) showed that the endophytic bacterial community was significantly correlated with pH, available phosphorus (AP), total phosphorus (TP), total nitrogen (TN), and soil organic matter (SOM). These findings suggested that the geographic conditions, climate type, ecosystem type, and tissues determined the endophytic bacterial composition and relative abundances. This conclusion could facilitate an understanding of the relationship and ecological function of the endophytic bacteria associated with M. himalaica and provide valuable information for artificial planting of M. himalaica and identifying and applying functional endophytic bacteria.
Collapse
Affiliation(s)
- Erhao Zhang
- The Provincial and Ministerial Co-Founded Collaborative Innovation Center for R & D in Tibet Characteristic Agricultural and Animal Husbandry Resources, The Center for Xizang Chinese (Tibetan) Medicine Resource, Joint Laboratory for Tibetan Materia Medica Resources Scientific Protection and Utilization Research of Tibetan Medical Research Center of Tibet, Tibet Agriculture and Animal Husbandry University, Nyingchi, 860000, Tibet, China
| | - Yazhou Lu
- The Provincial and Ministerial Co-Founded Collaborative Innovation Center for R & D in Tibet Characteristic Agricultural and Animal Husbandry Resources, The Center for Xizang Chinese (Tibetan) Medicine Resource, Joint Laboratory for Tibetan Materia Medica Resources Scientific Protection and Utilization Research of Tibetan Medical Research Center of Tibet, Tibet Agriculture and Animal Husbandry University, Nyingchi, 860000, Tibet, China
| | - Rundong Zhao
- The Provincial and Ministerial Co-Founded Collaborative Innovation Center for R & D in Tibet Characteristic Agricultural and Animal Husbandry Resources, The Center for Xizang Chinese (Tibetan) Medicine Resource, Joint Laboratory for Tibetan Materia Medica Resources Scientific Protection and Utilization Research of Tibetan Medical Research Center of Tibet, Tibet Agriculture and Animal Husbandry University, Nyingchi, 860000, Tibet, China
| | - Xiu Yin
- The Provincial and Ministerial Co-Founded Collaborative Innovation Center for R & D in Tibet Characteristic Agricultural and Animal Husbandry Resources, The Center for Xizang Chinese (Tibetan) Medicine Resource, Joint Laboratory for Tibetan Materia Medica Resources Scientific Protection and Utilization Research of Tibetan Medical Research Center of Tibet, Tibet Agriculture and Animal Husbandry University, Nyingchi, 860000, Tibet, China
| | - Jie Zhang
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, 466001, Henan, China
| | - Benxia Yu
- Chongqing Academy of Chinese Materia Medica, Chongqing, 400065, China
| | - Min Yao
- Jiangxi Institute for Drug Control, NMPA Key Laboratory of Quality Evaluation of Traditional Chinese Patent Medicine, Nanchang, 330029, Jiangxi, China
| | - Zhihua Liao
- Key Laboratory of Eco-Environments in the Three Gorges Reservoir Region, Ministry of Education, Chongqing Engineering and Technology Research Center for Sweetpotato, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Xiaozhong Lan
- The Provincial and Ministerial Co-Founded Collaborative Innovation Center for R & D in Tibet Characteristic Agricultural and Animal Husbandry Resources, The Center for Xizang Chinese (Tibetan) Medicine Resource, Joint Laboratory for Tibetan Materia Medica Resources Scientific Protection and Utilization Research of Tibetan Medical Research Center of Tibet, Tibet Agriculture and Animal Husbandry University, Nyingchi, 860000, Tibet, China.
- Chongqing Academy of Chinese Materia Medica, Chongqing, 400065, China.
| |
Collapse
|
22
|
Deshoux M, Sadet-Bourgeteau S, Gentil S, Prévost-Bouré NC. Effects of biochar on soil microbial communities: A meta-analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 902:166079. [PMID: 37553053 DOI: 10.1016/j.scitotenv.2023.166079] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 08/02/2023] [Accepted: 08/03/2023] [Indexed: 08/10/2023]
Abstract
Changes in soil microbial communities may impact soil fertility and stability because microbial communities are key to soil functioning by supporting soil ecological quality and agricultural production. The effects of soil amendment with biochar on soil microbial communities are widely documented but studies highlighted a high degree of variability in their responses following biochar application. The multiple conditions under which they were conducted (experimental designs, application rates, soil types, biochar properties) make it difficult to identify general trends. This supports the need to better determine the conditions of biochar production and application that promote soil microbial communities. In this context, we performed the first ever meta-analysis of the biochar effects on soil microbial biomass and diversity (prokaryotes and fungi) based on high-throughput sequencing data. The majority of the 181 selected publications were conducted in China and evaluated the short-term impact (<3 months) of biochar. We demonstrated that a large panel of variables corresponding to biochar properties, soil characteristics, farming practices or experimental conditions, can affect the effects of biochar on soil microbial characteristics. Using a variance partitioning approach, we showed that responses of soil microbial biomass and prokaryotic diversity were highly dependent on biochar properties. They were influenced by pyrolysis temperature, biochar pH, application rate and feedstock type, as wood-derived biochars have particular physico-chemical properties (high C:N ratio, low nutrient content, large pores size) compared to non-wood-derived biochars. Fungal community data was more heterogenous and scarcer than prokaryote data (30 publications). Fungal diversity indices were rather dependent on soil properties: they were higher in medium-textured soils, with low pH but high soil organic carbon. Altogether, this meta-analysis illustrates the need for long-term field studies in European agricultural context for documenting responses of soil microbial communities to biochar application under diverse conditions combining biochar types, soil properties and conditions of use.
Collapse
Affiliation(s)
- Maëlle Deshoux
- INRAE UMR Agroécologie, Institut Agro, University Bourgogne, University Bourgogne Franche-Comté, F-21000 Dijon, France; Groupe Bordet, Froidvent, F-21290 Leuglay, France.
| | - Sophie Sadet-Bourgeteau
- INRAE UMR Agroécologie, Institut Agro, University Bourgogne, University Bourgogne Franche-Comté, F-21000 Dijon, France
| | | | | |
Collapse
|
23
|
Gusmão ACB, Peres FV, Paula FS, Pellizari VH, Kolm HE, Signori CN. Microbial communities in the deep-sea sediments of the South São Paulo Plateau, Southwestern Atlantic Ocean. Int Microbiol 2023; 26:1041-1051. [PMID: 37093322 DOI: 10.1007/s10123-023-00358-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/30/2023] [Accepted: 04/06/2023] [Indexed: 04/25/2023]
Abstract
Microbial communities play a key role in the ocean, acting as primary producers, nutrient recyclers, and energy providers. The São Paulo Plateau is a region located on the southeastern coast of Brazil within economic importance, due to its oil and gas reservoirs. With this focus, this study examined the diversity and composition of microbial communities in marine sediments located at three oceanographic stations in the southern region of São Paulo Plateau using the HOV Shinkai 6500 in 2013. The 16S rRNA gene was sequenced using the universal primers (515F and 926R) by the Illumina Miseq platform. The taxonomic compositions of samples recovered from SP3 station were markedly distinct from those obtained from SP1 and SP2. Although all three stations exhibited a high abundance of Gammaproteobacteria (> 15%), this taxon dominated more than 90% of composition of the A and C sediment layers at SP3. The highest abundance of the archaeal class Nitrososphaeria was presented at SP1, mainly at layer C (~ 21%), being absent at SP3 station. The prediction of chemoheterotrophy and fermentation as important microbial functions was supported by the data. Additionally, other metabolic pathways related to the cycles of nitrogen, carbon and sulfur were also predicted. The core microbiome analysis comprised only two ASVs. Our study contributes to a better understanding of microbial communities in an economically important little-explored region. This is the third microbiological survey in plateau sediments and the first focused on the southern region.
Collapse
Affiliation(s)
- Ana Carolina Bercini Gusmão
- Department of Biological Oceanography, Oceanographic Institute, University of São Paulo, Praça Do Oceanográfico, 191. CEP: 05508-120, São Paulo, Brazil.
| | - Francielli Vilela Peres
- Department of Biological Oceanography, Oceanographic Institute, University of São Paulo, Praça Do Oceanográfico, 191. CEP: 05508-120, São Paulo, Brazil
| | - Fabiana S Paula
- Department of Biological Oceanography, Oceanographic Institute, University of São Paulo, Praça Do Oceanográfico, 191. CEP: 05508-120, São Paulo, Brazil
| | - Vivian Helena Pellizari
- Department of Biological Oceanography, Oceanographic Institute, University of São Paulo, Praça Do Oceanográfico, 191. CEP: 05508-120, São Paulo, Brazil
| | - Hedda Elisabeth Kolm
- Department of Oceanography, Center for Marine Studies, Federal University of Paraná, Pontal do Paraná, Brazil
| | - Camila Negrão Signori
- Department of Biological Oceanography, Oceanographic Institute, University of São Paulo, Praça Do Oceanográfico, 191. CEP: 05508-120, São Paulo, Brazil
| |
Collapse
|
24
|
Lai D, Hedlund BP, Mau RL, Jiao JY, Li J, Hayer M, Dijkstra P, Schwartz E, Li WJ, Dong H, Palmer M, Dodsworth JA, Zhou EM, Hungate BA. Resource partitioning and amino acid assimilation in a terrestrial geothermal spring. THE ISME JOURNAL 2023; 17:2112-2122. [PMID: 37741957 PMCID: PMC10579274 DOI: 10.1038/s41396-023-01517-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 08/31/2023] [Accepted: 09/13/2023] [Indexed: 09/25/2023]
Abstract
High-temperature geothermal springs host simplified microbial communities; however, the activities of individual microorganisms and their roles in the carbon cycle in nature are not well understood. Here, quantitative stable isotope probing (qSIP) was used to track the assimilation of 13C-acetate and 13C-aspartate into DNA in 74 °C sediments in Gongxiaoshe Hot Spring, Tengchong, China. This revealed a community-wide preference for aspartate and a tight coupling between aspartate incorporation into DNA and the proliferation of aspartate utilizers during labeling. Both 13C incorporation into DNA and changes in the abundance of taxa during incubations indicated strong resource partitioning and a significant phylogenetic signal for aspartate incorporation. Of the active amplicon sequence variants (ASVs) identified by qSIP, most could be matched with genomes from Gongxiaoshe Hot Spring or nearby springs with an average nucleotide similarity of 99.4%. Genomes corresponding to aspartate primary utilizers were smaller, near-universally encoded polar amino acid ABC transporters, and had codon preferences indicative of faster growth rates. The most active ASVs assimilating both substrates were not abundant, suggesting an important role for the rare biosphere in the community response to organic carbon addition. The broad incorporation of aspartate into DNA over acetate by the hot spring community may reflect dynamic cycling of cell lysis products in situ or substrates delivered during monsoon rains and may reflect N limitation.
Collapse
Affiliation(s)
- Dengxun Lai
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV, USA
| | - Brian P Hedlund
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV, USA.
- Nevada Institute for Personalized Medicine, University of Nevada Las Vegas, Las Vegas, NV, USA.
| | - Rebecca L Mau
- Center for Ecosystem Science and Society, Northern Arizona University and Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA
| | - Jian-Yu Jiao
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Junhui Li
- Center for Ecosystem Science and Society, Northern Arizona University and Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA
| | - Michaela Hayer
- Center for Ecosystem Science and Society, Northern Arizona University and Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA
| | - Paul Dijkstra
- Center for Ecosystem Science and Society, Northern Arizona University and Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA
| | - Egbert Schwartz
- Center for Ecosystem Science and Society, Northern Arizona University and Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA
| | - Wen-Jun Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Hailiang Dong
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing, China and Department of Geology and Environmental Earth Science, Miami University, Oxford, OH, USA
| | - Marike Palmer
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV, USA
| | - Jeremy A Dodsworth
- Department of Biology, California State University, San Bernardino, CA, USA
| | - En-Min Zhou
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV, USA
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
- School of Resource Environment and Earth Science, Yunnan University, Kunming, China
| | - Bruce A Hungate
- Center for Ecosystem Science and Society, Northern Arizona University and Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA.
| |
Collapse
|
25
|
Meng F, Guo S, Zhang L, Lu Y, Li M, Tan Y, Zha K, Yuan S. Ecological mechanisms of biofilm development in the hybrid sludge-biofilm process: Implications for process start-up and optimization. WATER RESEARCH 2023; 245:120587. [PMID: 37717335 DOI: 10.1016/j.watres.2023.120587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 08/28/2023] [Accepted: 09/05/2023] [Indexed: 09/19/2023]
Abstract
The hybrid sludge-biofilm processes have been widely applied for the construction or upgradation of biological wastewater treatment process. Ecological mechanisms of biofilm development remain unclear in the hybrid ecosystem, because of the intricate interactive effects between sludge and biofilms. Herein, the establishment principles of biofilms with distinct coexisting sludge amounts were uncovered by varying sludge retention times (SRTs) from 5 to 40 days in the hybrid process. With the increasing of SRTs, biofilm biomass decreased with the increase of suspended sludge, resulting in lower biofilm proportion. As estimated by the Gompertz growth model, the increased sludge amounts (i.e., higher SRTs of 20 and 40 days) prolonged the initial colonization stage and decreased the specific development rate of biofilms when compared to lower sludge amounts with the shorter SRTs (i.e., 5 and 10 days). Null model analysis demonstrated that deterministic homogenous selection could facilitate the colonization and accumulation of biofilms with less coexisting sludge (SRT of 10 days). However, stochastic ecological drift and homogenizing dispersal dominated the colonization and accumulation stages of biofilms with more coexisting sludge (SRT of 20 days), respectively. The ecological networks reflected that positively-related taxa presented taxonomic relatedness, whereas high inconsistency of taxonomic relatedness was observed among aggregate forms or development stages as affected by varied SRTs. The high incidence of intra-taxa co-occurrence patterns suggested that taxa with similar ecological niches could be specifically selected in biofilms when being exposed with less coexisting sludge. This study uncovered ecological mechanisms of biofilm development driven by varying the SRTs of suspended sludge, which would help to propose appropriate strategies for the efficient start-up and optimization of the hybrid sludge-biofilm system.
Collapse
Affiliation(s)
- Fangang Meng
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, PR China; National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha, Hunan 410125, PR China
| | - Sixian Guo
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, PR China; National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha, Hunan 410125, PR China
| | - Lidan Zhang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Yi Lu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Mengdi Li
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Yongtao Tan
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Keqi Zha
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Shasha Yuan
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, PR China; National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha, Hunan 410125, PR China.
| |
Collapse
|
26
|
Du S, Li XQ, Feng J, Huang Q, Liu YR. Soil core microbiota drive community resistance to mercury stress and maintain functional stability. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 894:165056. [PMID: 37348729 DOI: 10.1016/j.scitotenv.2023.165056] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/14/2023] [Accepted: 06/19/2023] [Indexed: 06/24/2023]
Abstract
Soil microbial communities have resistance to environmental stresses and thus can maintain ecosystem functions such as decomposition, nutrient provisioning, and plant pathogen control. However, predominant factors driving community resistance of soil microbiome to heavy metal pollution stresses and ecosystem functional stability are still unclear, limiting our ability to forecast how soil pollution might affect ecosystem sustainability. Here, we conducted microcosm experiments to estimate the importance of soil microbiome in predicting community resistance to heavy metal mercury (Hg) stress in paired paddy and upland fields. We found that community resistance of soil microbiome was strongly correlated with ecosystem functional stability, so were the individual groups of organisms such as bacteria, saprotrophic fungi, and phototrophic protists. The core phylotypes within soil microbiome had a major contribution to community resistance, which was essential for the maintenance of functional stability. Co-occurrence network further confirmed that community resistances of main ecological clusters were positively correlated with ecosystem functional stability. Together, our results provide new insights into the link between community resistance and functional stability, and highlight the importance of core microbiota in driving community resistance to environmental stresses and maintain functional stability.
Collapse
Affiliation(s)
- Shuai Du
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Xin-Qi Li
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Jiao Feng
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Qiaoyun Huang
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China; Hubei Key Laboratory of Soil Environment and Pollution Remediation, Huazhong Agricultural University, Wuhan 430070, China
| | - Yu-Rong Liu
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China; Hubei Key Laboratory of Soil Environment and Pollution Remediation, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
27
|
Smith AH, Bogar LM, Moeller HV. Fungal Fight Club: phylogeny and growth rate predict competitive outcomes among ectomycorrhizal fungi. FEMS Microbiol Ecol 2023; 99:fiad108. [PMID: 37697652 PMCID: PMC10516346 DOI: 10.1093/femsec/fiad108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/01/2023] [Accepted: 09/07/2023] [Indexed: 09/13/2023] Open
Abstract
Ectomycorrhizal fungi are among the most prevalent fungal partners of plants and can constitute up to one-third of forest microbial biomass. As mutualistic partners that supply nutrients, water, and pathogen defense, these fungi impact host plant health and biogeochemical cycling. Ectomycorrhizal fungi are also extremely diverse, and the community of fungal partners on a single plant host can consist of dozens of individuals. However, the factors that govern competition and coexistence within these communities are still poorly understood. In this study, we used in vitro competitive assays between five ectomycorrhizal fungal strains to examine how competition and pH affect fungal growth. We also tested the ability of evolutionary history to predict the outcomes of fungal competition. We found that the effects of pH and competition on fungal performance varied extensively, with changes in growth media pH sometimes reversing competitive outcomes. Furthermore, when comparing the use of phylogenetic distance and growth rate in predicting competitive outcomes, we found that both methods worked equally well. Our study further highlights the complexity of ectomycorrhizal fungal competition and the importance of considering phylogenetic distance, ecologically relevant traits, and environmental conditions in predicting the outcomes of these interactions.
Collapse
Affiliation(s)
- Alexander H Smith
- Department of Integrative Biology, University of Colorado, Denver Auraria Campus Science Building 1150 12th St, Denver CO 80204, USA
| | - Laura M Bogar
- Department of Plant Biology, University of California, Davis, 605 Hutchison Dr Green Hall rm 1002 Davis CA 95616-5720, USA
| | - Holly V Moeller
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara CA 93106-9620, USA
| |
Collapse
|
28
|
Mathrani A, Yip W, Sequeira-Bisson IR, Barnett D, Stevenson O, Taylor MW, Poppitt SD. Effect of a 12-Week Polyphenol Rutin Intervention on Markers of Pancreatic β-Cell Function and Gut Microbiota in Adults with Overweight without Diabetes. Nutrients 2023; 15:3360. [PMID: 37571297 PMCID: PMC10420824 DOI: 10.3390/nu15153360] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 07/18/2023] [Accepted: 07/21/2023] [Indexed: 08/13/2023] Open
Abstract
Supplementation with prebiotic polyphenol rutin is a potential dietary therapy for type 2 diabetes prevention in adults with obesity, based on previous glycaemic improvement in transgenic mouse models. Gut microbiota are hypothesised to underpin these effects. We investigated the effect of rutin supplementation on pancreatic β-cell function measured as C-peptide/glucose ratio, and 16S rRNA gene-based gut microbiota profiles, in a cohort of individuals with overweight plus normoglycaemia or prediabetes. Eighty-seven participants were enrolled, aged 18-65 years with BMI of 23-35 kg/m2. This was a 12-week double-blind randomised controlled trial (RCT), with 3 treatments comprising (i) placebo control, (ii) 500 mg/day encapsulated rutin, and (iii) 500 mg/day rutin-supplemented yoghurt. A 2-h oral glucose tolerance test (OGTT) was performed at baseline and at the end of the trial, with faecal samples also collected. Compliance with treatment was high (~90%), but rutin in both capsule and dietary format did not alter pancreatic β-cell response to OGTT over 12 weeks. Gut bacterial community composition also did not significantly change, with Firmicutes dominating irrespective of treatment. Fasting plasma glucose negatively correlated with the abundance of the butyrate producer Roseburia inulinivorans, known for its anti-inflammatory capacity. This is the first RCT to investigate postprandial pancreatic β-cell function in response to rutin supplementation.
Collapse
Affiliation(s)
- Akarsh Mathrani
- School of Biological Sciences, University of Auckland, Auckland 1010, New Zealand; (A.M.); (W.Y.); (I.R.S.-B.)
- High-Value Nutrition National Science Challenge, Auckland 1010, New Zealand
| | - Wilson Yip
- School of Biological Sciences, University of Auckland, Auckland 1010, New Zealand; (A.M.); (W.Y.); (I.R.S.-B.)
- High-Value Nutrition National Science Challenge, Auckland 1010, New Zealand
- Human Nutrition Unit, University of Auckland, Auckland 1024, New Zealand
| | - Ivana R. Sequeira-Bisson
- School of Biological Sciences, University of Auckland, Auckland 1010, New Zealand; (A.M.); (W.Y.); (I.R.S.-B.)
- High-Value Nutrition National Science Challenge, Auckland 1010, New Zealand
- Human Nutrition Unit, University of Auckland, Auckland 1024, New Zealand
| | - Daniel Barnett
- Department of Statistics, University of Auckland, Auckland 1010, New Zealand; (D.B.); (O.S.)
| | - Oliver Stevenson
- Department of Statistics, University of Auckland, Auckland 1010, New Zealand; (D.B.); (O.S.)
| | - Michael W. Taylor
- School of Biological Sciences, University of Auckland, Auckland 1010, New Zealand; (A.M.); (W.Y.); (I.R.S.-B.)
- High-Value Nutrition National Science Challenge, Auckland 1010, New Zealand
| | - Sally D. Poppitt
- School of Biological Sciences, University of Auckland, Auckland 1010, New Zealand; (A.M.); (W.Y.); (I.R.S.-B.)
- High-Value Nutrition National Science Challenge, Auckland 1010, New Zealand
- Human Nutrition Unit, University of Auckland, Auckland 1024, New Zealand
- Department of Medicine, University of Auckland, Auckland 1010, New Zealand
| |
Collapse
|
29
|
Ontiveros VJ, Capitán JA, Casamayor EO, Alonso D. Colonization-persistence trade-offs in natural bacterial communities. Proc Biol Sci 2023; 290:20230709. [PMID: 37403500 PMCID: PMC10320335 DOI: 10.1098/rspb.2023.0709] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 06/05/2023] [Indexed: 07/06/2023] Open
Abstract
Fitness equalizing mechanisms, such as trade-offs, are recognized as one of the main factors promoting species coexistence in community ecology. However, they have rarely been explored in microbial communities. Although microbial communities are highly diverse, the coexistence of their multiple taxa is largely attributed to niche differences and high dispersal rates, following the principle 'everything is everywhere, but the environment selects'. We use a dynamical stochastic model based on the theory of island biogeography to study highly diverse bacterial communities over time across three different systems (soils, alpine lakes and shallow saline lakes). Assuming fitness equalization mechanisms, here we newly analytically derive colonization-persistence trade-offs, and report a signal of such trade-offs in natural bacterial communities. Moreover, we show that different subsets of species in the community drive this trade-off. Rare taxa, which are occasional and more likely to follow independent colonization/extinction dynamics, drive this trade-off in the aquatic communities, while the core sub-community did it in the soils. We conclude that equalizing mechanisms may be more important than previously recognized in bacterial communities. Our work also emphasizes the fundamental value of dynamical models for understanding temporal patterns and processes in highly diverse communities.
Collapse
Affiliation(s)
- Vicente J. Ontiveros
- Theoretical and Computational Ecology, Center for Advanced Studies of Blanes (CEAB-CSIC), Spanish Council for Scientific Research, Accés Cala St. Francesc 14, E-17300 Blanes, Spain
| | - José A. Capitán
- Theoretical and Computational Ecology, Center for Advanced Studies of Blanes (CEAB-CSIC), Spanish Council for Scientific Research, Accés Cala St. Francesc 14, E-17300 Blanes, Spain
- Complex Systems Group. Department of Applied Mathematics, Universidad Politécnica de Madrid. Av. Juan de Herrera, 6. E-28040 Madrid, Spain
| | - Emilio O. Casamayor
- Integrative Freshwater Ecology Group, Centre of Advanced Studies of Blanes (CEAB-CSIC), Spanish Council for Scientific Research, Accés Cala St. Francesc 14, E-17300 Blanes, Spain
| | - David Alonso
- Theoretical and Computational Ecology, Center for Advanced Studies of Blanes (CEAB-CSIC), Spanish Council for Scientific Research, Accés Cala St. Francesc 14, E-17300 Blanes, Spain
| |
Collapse
|
30
|
Xu X, Wang W, Zhang Y, Meng Q, Huang T, Zhang W. Analysis on the properties of hydrolyzed amino acids in typical municipal sludge. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:60760-60767. [PMID: 37041356 DOI: 10.1007/s11356-023-26794-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 03/28/2023] [Indexed: 05/10/2023]
Abstract
In this study, amino acids, proteins, and microbial communities in sludge from different wastewater treatment plants (WWTPs) were analyzed. The results showed that the bacterial communities of different sludge samples were similar at the phylum level, and the dominant bacterial species in sludge samples with the same treatment process were the consistent. The main amino acids in EPS of different layers were different, and the amino acid results of different sludge samples were quite different, but the content of hydrophilic amino acids in all samples was higher than that of hydrophobic amino acids. And the total content of glycine, serine, and threonine related to sludge dewatering was positively correlated with protein content in sludge. In addition, the content of nitrifying bacteria and denitrifying bacteria in sludge was also positively correlated with the content of hydrophilic amino acids. In this study, the correlations between proteins, amino acids, and microbial communities in sludge were analyzed respectively, and the internal relationship was found. And it provided ideas for further study of sludge dewatering characteristics in the future.
Collapse
Affiliation(s)
- Xin Xu
- College of Energy and Environment, Shenyang Aerospace University, Shenyang, 110136, China
| | - Weiyun Wang
- College of Energy and Environment, Shenyang Aerospace University, Shenyang, 110136, China.
- Key Laboratory of Clean Energy of Liaoning, Shenyang, 110136, China.
| | - Yufang Zhang
- College of Energy and Environment, Shenyang Aerospace University, Shenyang, 110136, China
| | - Qingsi Meng
- College of Energy and Environment, Shenyang Aerospace University, Shenyang, 110136, China
| | - Tengda Huang
- College of Energy and Environment, Shenyang Aerospace University, Shenyang, 110136, China
| | - Wanli Zhang
- College of Energy and Environment, Shenyang Aerospace University, Shenyang, 110136, China
- Key Laboratory of Clean Energy of Liaoning, Shenyang, 110136, China
| |
Collapse
|
31
|
Zhang D, Yu H, Yang Y, Liu F, Li M, Huang J, Yu Y, Wang C, Jiang F, He Z, Yan Q. Ecological interactions and the underlying mechanism of anammox and denitrification across the anammox enrichment with eutrophic lake sediments. MICROBIOME 2023; 11:82. [PMID: 37081531 PMCID: PMC10116762 DOI: 10.1186/s40168-023-01532-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 03/22/2023] [Indexed: 05/03/2023]
Abstract
BACKGROUND Increasing attention has recently been devoted to the anaerobic ammonium oxidation (anammox) in eutrophic lakes due to its potential key functions in nitrogen (N) removal for eutrophication control. However, successful enrichment of anammox bacteria from lake sediments is still challenging, partly due to the ecological interactions between anammox and denitrifying bacteria across such enrichment with lake sediments remain unclear. RESULTS This study thus designed to fill such knowledge gaps using bioreactors to enrich anammox bacteria with eutrophic lake sediments for more than 365 days. We continuously monitored the influent and effluent water, measured the anammox and denitrification efficiencies, quantified the anammox and denitrifying bacteria, as well as the related N cycling genes. We found that the maximum removal efficiencies of NH4+ and NO2- reached up to 85.92% and 95.34%, respectively. Accordingly, the diversity of anammox and denitrifying bacteria decreased significantly across the enrichment, and the relative dominant anammox (e.g., Candidatus Jettenia) and denitrifying bacteria (e.g., Thauera, Afipia) shifted considerably. The ecological cooperation between anammox and denitrifying bacteria tended to increase the microbial community stability, indicating a potential coupling between anammox and denitrifying bacteria. Moreover, the nirS-type denitrifiers showed stronger coupling with anammox bacteria than that of nirK-type denitrifiers during the enrichment. Functional potentials as depicted by metagenome sequencing confirmed the ecological interactions between anammox and denitrification. Metagenome-assembled genomes-based ecological model indicated that the most dominant denitrifiers could provide various materials such as amino acid, cofactors, and vitamin for anammox bacteria. Cross-feeding in anammox and denitrifying bacteria highlights the importance of microbial interactions for increasing the anammox N removal in eutrophic lakes. CONCLUSIONS This study greatly expands our understanding of cooperation mechanisms among anammox and denitrifying bacteria during the anammox enrichment with eutrophic lake sediments, which sheds new insights into N removal for controlling lake eutrophication. Video Abstract.
Collapse
Affiliation(s)
- Dandan Zhang
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, School of Ecology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory for Biocontrol, Sun Yat-Sen University, Guangzhou, 510006 China
| | - Huang Yu
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, School of Ecology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory for Biocontrol, Sun Yat-Sen University, Guangzhou, 510006 China
| | - Yuchun Yang
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, School of Ecology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory for Biocontrol, Sun Yat-Sen University, Guangzhou, 510006 China
| | - Fei Liu
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, School of Ecology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory for Biocontrol, Sun Yat-Sen University, Guangzhou, 510006 China
| | - Mingyue Li
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, School of Ecology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory for Biocontrol, Sun Yat-Sen University, Guangzhou, 510006 China
| | - Jie Huang
- Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072 China
| | - Yuhe Yu
- Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072 China
| | - Cheng Wang
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, School of Ecology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory for Biocontrol, Sun Yat-Sen University, Guangzhou, 510006 China
| | - Feng Jiang
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, School of Ecology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory for Biocontrol, Sun Yat-Sen University, Guangzhou, 510006 China
| | - Zhili He
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, School of Ecology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory for Biocontrol, Sun Yat-Sen University, Guangzhou, 510006 China
| | - Qingyun Yan
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, School of Ecology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory for Biocontrol, Sun Yat-Sen University, Guangzhou, 510006 China
| |
Collapse
|
32
|
Graham EB, Knelman JE. Implications of Soil Microbial Community Assembly for Ecosystem Restoration: Patterns, Process, and Potential. MICROBIAL ECOLOGY 2023; 85:809-819. [PMID: 36735065 DOI: 10.1007/s00248-022-02155-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 12/02/2022] [Indexed: 05/04/2023]
Abstract
While it is now widely accepted that microorganisms provide essential functions in restoration ecology, the nature of relationships between microbial community assembly and ecosystem recovery remains unclear. There has been a longstanding challenge to decipher whether microorganisms facilitate or simply follow ecosystem recovery, and evidence for each is mixed at best. We propose that understanding microbial community assembly processes is critical to understanding the role of microorganisms during ecosystem restoration and thus optimizing management strategies. We examine how the connection between environment, community structure, and function is fundamentally underpinned by the processes governing community assembly of these microbial communities. We review important factors to consider in evaluating microbial community structure in the context of ecosystem recovery as revealed in studies of microbial succession: (1) variation in community assembly processes, (2) linkages to ecosystem function, and (3) measurable microbial community attributes. We seek to empower restoration ecology with microbial assembly and successional understandings that can generate actionable insights and vital contexts for ecosystem restoration efforts.
Collapse
Affiliation(s)
- Emily B Graham
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA.
- School of Biological Sciences, Washington State University, Richland, WA, USA.
| | - Joseph E Knelman
- Institute for Arctic and Alpine Research, University of Colorado, Boulder, CO, USA
| |
Collapse
|
33
|
Stone BWG, Dijkstra P, Finley BK, Fitzpatrick R, Foley MM, Hayer M, Hofmockel KS, Koch BJ, Li J, Liu XJA, Martinez A, Mau RL, Marks J, Monsaint-Queeney V, Morrissey EM, Propster J, Pett-Ridge J, Purcell AM, Schwartz E, Hungate BA. Life history strategies among soil bacteria-dichotomy for few, continuum for many. THE ISME JOURNAL 2023; 17:611-619. [PMID: 36732614 PMCID: PMC10030646 DOI: 10.1038/s41396-022-01354-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 12/19/2022] [Accepted: 12/21/2022] [Indexed: 02/04/2023]
Abstract
Study of life history strategies may help predict the performance of microorganisms in nature by organizing the complexity of microbial communities into groups of organisms with similar strategies. Here, we tested the extent that one common application of life history theory, the copiotroph-oligotroph framework, could predict the relative population growth rate of bacterial taxa in soils from four different ecosystems. We measured the change of in situ relative growth rate to added glucose and ammonium using both 18O-H2O and 13C quantitative stable isotope probing to test whether bacterial taxa sorted into copiotrophic and oligotrophic groups. We saw considerable overlap in nutrient responses across most bacteria regardless of phyla, with many taxa growing slowly and few taxa that grew quickly. To define plausible life history boundaries based on in situ relative growth rates, we applied Gaussian mixture models to organisms' joint 18O-13C signatures and found that across experimental replicates, few taxa could consistently be assigned as copiotrophs, despite their potential for fast growth. When life history classifications were assigned based on average relative growth rate at varying taxonomic levels, finer resolutions (e.g., genus level) were significantly more effective in capturing changes in nutrient response than broad taxonomic resolution (e.g., phylum level). Our results demonstrate the difficulty in generalizing bacterial life history strategies to broad lineages, and even to single organisms across a range of soils and experimental conditions. We conclude that there is a continued need for the direct measurement of microbial communities in soil to advance ecologically realistic frameworks.
Collapse
Affiliation(s)
- Bram W G Stone
- Earth and Biological Sciences Directorate, Pacific Northwest National Lab, Richland, WA, USA.
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ, USA.
| | - Paul Dijkstra
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ, USA
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA
| | - Brianna K Finley
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA, USA
| | - Raina Fitzpatrick
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ, USA
| | - Megan M Foley
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ, USA
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA
| | - Michaela Hayer
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ, USA
| | - Kirsten S Hofmockel
- Earth and Biological Sciences Directorate, Pacific Northwest National Lab, Richland, WA, USA
- Department of Agronomy, Iowa State University, Ames, IA, USA
| | - Benjamin J Koch
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ, USA
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA
| | - Junhui Li
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ, USA
- APC Microbiome Ireland and School of Microbiology, University College Cork, Cork, Ireland
| | - Xiao Jun A Liu
- Institute for Environmental Genomics, Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, USA
| | - Ayla Martinez
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ, USA
| | - Rebecca L Mau
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ, USA
| | - Jane Marks
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ, USA
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA
| | | | - Ember M Morrissey
- Division of Plant and Soil Sciences, West Virginia University, Morgantown, WV, USA
| | - Jeffrey Propster
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ, USA
| | - Jennifer Pett-Ridge
- Physical and Life Sciences Directorate, Lawrence Livermore National Lab, Livermore, CA, USA
- Life and Environmental Sciences Department, University of California Merced, Merced, CA, USA
| | - Alicia M Purcell
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ, USA
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, USA
| | - Egbert Schwartz
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ, USA
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA
| | - Bruce A Hungate
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ, USA
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA
| |
Collapse
|
34
|
Ramon C, Stelling J. Functional comparison of metabolic networks across species. Nat Commun 2023; 14:1699. [PMID: 36973280 PMCID: PMC10043025 DOI: 10.1038/s41467-023-37429-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 03/16/2023] [Indexed: 03/29/2023] Open
Abstract
Metabolic phenotypes are pivotal for many areas, but disentangling how evolutionary history and environmental adaptation shape these phenotypes is an open problem. Especially for microbes, which are metabolically diverse and often interact in complex communities, few phenotypes can be determined directly. Instead, potential phenotypes are commonly inferred from genomic information, and rarely were model-predicted phenotypes employed beyond the species level. Here, we propose sensitivity correlations to quantify similarity of predicted metabolic network responses to perturbations, and thereby link genotype and environment to phenotype. We show that these correlations provide a consistent functional complement to genomic information by capturing how network context shapes gene function. This enables, for example, phylogenetic inference across all domains of life at the organism level. For 245 bacterial species, we identify conserved and variable metabolic functions, elucidate the quantitative impact of evolutionary history and ecological niche on these functions, and generate hypotheses on associated metabolic phenotypes. We expect our framework for the joint interpretation of metabolic phenotypes, evolution, and environment to help guide future empirical studies.
Collapse
Affiliation(s)
- Charlotte Ramon
- Department of Biosystems Science and Engineering and SIB Swiss Institute of Bioinformatics, ETH Zurich, 4058, Basel, Switzerland
- Ph.D. Program Systems Biology, Life Science Zurich Graduate School, Zurich, Switzerland
| | - Jörg Stelling
- Department of Biosystems Science and Engineering and SIB Swiss Institute of Bioinformatics, ETH Zurich, 4058, Basel, Switzerland.
| |
Collapse
|
35
|
Fitzpatrick CR, Copeland J, Wang PW, Guttman DS, Kotanen PM, Johnson MTJ. Habitats Within the Plant Root Differ in Bacterial Network Topology and Taxonomic Assortativity. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2023; 36:165-175. [PMID: 36463399 DOI: 10.1094/mpmi-09-22-0188-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The root microbiome is composed of distinct epiphytic (rhizosphere) and endophytic (endosphere) habitats. Differences in abiotic and biotic factors drive differences in microbial community diversity and composition between these habitats, though how they shape the interactions among community members is unknown. Here, we coupled a large-scale characterization of the rhizosphere and endosphere bacterial communities of 30 plant species across two watering treatments with co-occurrence network analysis to understand how root habitats and soil moisture shape root bacterial network properties. We used a novel bootstrapping procedure and null network modeling to overcome some of the limitations associated with microbial co-occurrence network construction and analysis. Endosphere networks had elevated node betweenness centrality versus the rhizosphere, indicating greater overall connectivity among core bacterial members of the root endosphere. Taxonomic assortativity was higher in the endosphere, whereby positive co-occurrence was more likely between bacteria within the same phylum while negative co-occurrence was more likely between bacterial taxa from different phyla. This taxonomic assortativity could be driven by positive and negative interactions among members of the same or different phylum, respectively, or by similar niche preferences associated with phylum rank among root inhabiting bacteria across plant host species. In contrast to the large differences between root habitats, drought had limited effects on network properties but did result in a higher proportion of shared co-occurrences between rhizosphere and endosphere networks. Our study points to fundamentally different ecological processes shaping bacterial co-occurrence across root habitats. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Connor R Fitzpatrick
- Department of Ecology & Evolutionary Biology, University of Toronto, Toronto M5S 3B2, Canada
- Department of Biology, University of Toronto Mississauga, Mississauga L5L 1C6, Canada
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599, U.S.A
| | - Julia Copeland
- Centre for the Analysis of Genome Evolution & Function, University of Toronto, Toronto M5S 3B2, Canada
| | - Pauline W Wang
- Centre for the Analysis of Genome Evolution & Function, University of Toronto, Toronto M5S 3B2, Canada
- Department of Cell & Systems Biology, University of Toronto, Toronto M5S 3B2, Canada
| | - David S Guttman
- Centre for the Analysis of Genome Evolution & Function, University of Toronto, Toronto M5S 3B2, Canada
- Department of Cell & Systems Biology, University of Toronto, Toronto M5S 3B2, Canada
| | - Peter M Kotanen
- Department of Ecology & Evolutionary Biology, University of Toronto, Toronto M5S 3B2, Canada
- Department of Biology, University of Toronto Mississauga, Mississauga L5L 1C6, Canada
| | - Marc T J Johnson
- Department of Ecology & Evolutionary Biology, University of Toronto, Toronto M5S 3B2, Canada
- Department of Biology, University of Toronto Mississauga, Mississauga L5L 1C6, Canada
| |
Collapse
|
36
|
Distinct Growth Responses of Tundra Soil Bacteria to Short-Term and Long-Term Warming. Appl Environ Microbiol 2023; 89:e0154322. [PMID: 36847530 PMCID: PMC10056963 DOI: 10.1128/aem.01543-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023] Open
Abstract
Increases in Arctic temperatures have thawed permafrost and accelerated tundra soil microbial activity, releasing greenhouse gases that amplify climate warming. Warming over time has also accelerated shrub encroachment in the tundra, altering plant input abundance and quality, and causing further changes to soil microbial processes. To better understand the effects of increased temperature and the accumulated effects of climate change on soil bacterial activity, we quantified the growth responses of individual bacterial taxa to short-term warming (3 months) and long-term warming (29 years) in moist acidic tussock tundra. Intact soil was assayed in the field for 30 days using 18O-labeled water, from which taxon-specific rates of 18O incorporation into DNA were estimated as a proxy for growth. Experimental treatments warmed the soil by approximately 1.5°C. Short-term warming increased average relative growth rates across the assemblage by 36%, and this increase was attributable to emergent growing taxa not detected in other treatments that doubled the diversity of growing bacteria. However, long-term warming increased average relative growth rates by 151%, and this was largely attributable to taxa that co-occurred in the ambient temperature controls. There was also coherence in relative growth rates within broad taxonomic levels with orders tending to have similar growth rates in all treatments. Growth responses tended to be neutral in short-term warming and positive in long-term warming for most taxa and phylogenetic groups co-occurring across treatments regardless of phylogeny. Taken together, growing bacteria responded distinctly to short-term and long-term warming, and taxa growing in each treatment exhibited deep phylogenetic organization. IMPORTANCE Soil carbon stocks in the tundra and underlying permafrost have become increasingly vulnerable to microbial decomposition due to climate change. The microbial responses to Arctic warming must be understood in order to predict the effects of future microbial activity on carbon balance in a warming Arctic. In response to our warming treatments, tundra soil bacteria grew faster, consistent with increased rates of decomposition and carbon flux to the atmosphere. Our findings suggest that bacterial growth rates may continue to increase in the coming decades as faster growth is driven by the accumulated effects of long-term warming. Observed phylogenetic organization of bacterial growth rates may also permit taxonomy-based predictions of bacterial responses to climate change and inclusion into ecosystem models.
Collapse
|
37
|
Elevated temperature and CO 2 strongly affect the growth strategies of soil bacteria. Nat Commun 2023; 14:391. [PMID: 36693873 PMCID: PMC9873651 DOI: 10.1038/s41467-023-36086-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 01/13/2023] [Indexed: 01/26/2023] Open
Abstract
The trait-based strategies of microorganisms appear to be phylogenetically conserved, but acclimation to climate change may complicate the scenario. To study the roles of phylogeny and environment on bacterial responses to sudden moisture increases, we determine bacterial population-specific growth rates by 18O-DNA quantitative stable isotope probing (18O-qSIP) in soils subjected to a free-air CO2 enrichment (FACE) combined with warming. We find that three growth strategies of bacterial taxa - rapid, intermediate and slow responders, defined by the timing of the peak growth rates - are phylogenetically conserved, even at the sub-phylum level. For example, members of class Bacilli and Sphingobacteriia are mainly rapid responders. Climate regimes, however, modify the growth strategies of over 90% of species, partly confounding the initial phylogenetic pattern. The growth of rapid bacterial responders is more influenced by phylogeny, whereas the variance for slow responders is primarily explained by environmental conditions. Overall, these results highlight the role of phylogenetic and environmental constraints in understanding and predicting the growth strategies of soil microorganisms under global change scenarios.
Collapse
|
38
|
Sharma U, Rawat D, Mukherjee P, Farooqi F, Mishra V, Sharma RS. Ecological life strategies of microbes in response to antibiotics as a driving factor in soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 854:158791. [PMID: 36108841 DOI: 10.1016/j.scitotenv.2022.158791] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/31/2022] [Accepted: 09/11/2022] [Indexed: 06/15/2023]
Abstract
Antibiotics as a selection pressure driving the evolution of soil microbial communities is not well understood. Since microbial functions govern ecosystem services, an ecological framework is required to understand and predict antibiotic-induced functional and structural changes in microbial communities. Therefore, metagenomic studies explaining the impacts of antibiotics on soil microbial communities were mined, and alterations in microbial taxa were analyzed through an ecological lens using Grimes's Competitor-Stress tolerator-Ruderal (CSR) model. We propose considering antibiotics as the primary abiotic factor mentioned in the CSR model and classifying non-susceptible microbial taxa as degraders, resistant, and resilient groups analogous to competitors, stress tolerators, and ruderal strategists, respectively. Firmicutes, Bacteroidetes, Actinobacteria, and Proteobacteria were among the phyla harboring most members with antibiotic-resistant groups. However, some antibiotic-resistant microbes in these phyla could not only tolerate but also subsist solely on antibiotics, while others degraded antibiotics as a part of secondary metabolism. Irrespective of their taxonomic affiliation, microbes with each life strategy displayed similar phenotypic characteristics. Therefore, it is recommended to consider microbial functional traits associated with each life strategy while analyzing the ecological impacts of antibiotics. Also, potential ecological crises posed by antibiotics through changes in microbial community and ecosystem functions were visualized. Applying ecological theory to understand and predict antibiotics-induced changes in microbial communities will also provide better insight into microbial behavior in the background of emerging contaminants and help develop a robust ecological classification system of microbes.
Collapse
Affiliation(s)
- Udita Sharma
- Bioresources & Environmental Biotechnology Laboratory, Department of Environmental Studies, University of Delhi, Delhi 110007, India
| | - Deepak Rawat
- Bioresources & Environmental Biotechnology Laboratory, Department of Environmental Studies, University of Delhi, Delhi 110007, India; Department of Environmental Studies, Janki Devi Memorial College, University of Delhi, Delhi 110060, India
| | - Paromita Mukherjee
- Bioresources & Environmental Biotechnology Laboratory, Department of Environmental Studies, University of Delhi, Delhi 110007, India
| | - Furqan Farooqi
- Bioresources & Environmental Biotechnology Laboratory, Department of Environmental Studies, University of Delhi, Delhi 110007, India
| | - Vandana Mishra
- Bioresources & Environmental Biotechnology Laboratory, Department of Environmental Studies, University of Delhi, Delhi 110007, India; Centre for Interdisciplinary Studies on Mountain & Hill Environment (CISMHE), University of Delhi, Delhi 110007, India.
| | - Radhey Shyam Sharma
- Bioresources & Environmental Biotechnology Laboratory, Department of Environmental Studies, University of Delhi, Delhi 110007, India; Delhi School of Climate Change & Sustainability, Institute of Eminence, University of Delhi, Delhi 110007, India.
| |
Collapse
|
39
|
Zhu Y, Liu Y, Chang H, Yang H, Zhang W, Zhang Y, Sun H. Deciphering the microbial community structures and functions of wastewater treatment at high-altitude area. Front Bioeng Biotechnol 2023; 11:1107633. [PMID: 36923457 PMCID: PMC10009103 DOI: 10.3389/fbioe.2023.1107633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 01/30/2023] [Indexed: 03/02/2023] Open
Abstract
Introduction: The proper operation of wastewater treatment plants is a key factor in maintaining a stable river and lake environment. Low purification efficiency in winter is a common problem in high-altitude wastewater treatment plants (WWTPs), and analysis of the microbial community involved in the sewage treatment process at high-altitude can provide valuable references for improving this problem. Methods: In this study, the bacterial communities of high- and low-altitude WWTPs were investigated using Illumina high-throughput sequencing (HTS). The interaction between microbial community and environmental variables were explored by co-occurrence correlation network. Results: At genus level, Thauera (5.2%), unclassified_Rhodocyclaceae (3.0%), Dokdonella (2.5%), and Ferribacterium (2.5%) were the dominant genera in high-altitude group. The abundance of nitrogen and phosphorus removal bacteria were higher in high-altitude group (10.2% and 1.3%, respectively) than in low-altitude group (5.4% and 0.6%, respectively). Redundancy analysis (RDA) and co-occurrence network analysis showed that altitude, ultraviolet index (UVI), pH, dissolved oxygen (DO) and total nitrogen (TN) were the dominated environmental factors (p < 0.05) affecting microbial community assembly, and these five variables explained 21.4%, 20.3%, 16.9%, 11.5%, and 8.2% of the bacterial assembly of AS communities. Discussion: The community diversity of high-altitude group was lower than that of low-altitude group, and WWTPs of high-altitude aeras had a unique microbial community structure. Low temperature and strong UVI are pivotal factors contributing to the reduced diversity of activated sludge microbial communities at high-altitudes.
Collapse
Affiliation(s)
- Yuliang Zhu
- School of Environmental and Material Engineering, Yantai University, Yantai, China.,School of Civil Engineering, Yantai University, Yantai, Shandong, China
| | - Yucan Liu
- School of Civil Engineering, Yantai University, Yantai, Shandong, China
| | - Huanhuan Chang
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, China
| | - Hao Yang
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, China
| | - Wei Zhang
- School of Environmental and Material Engineering, Yantai University, Yantai, China
| | - Yanxiang Zhang
- School of Environmental and Material Engineering, Yantai University, Yantai, China
| | - Hongwei Sun
- School of Environmental and Material Engineering, Yantai University, Yantai, China
| |
Collapse
|
40
|
Chen X, Han M, Liang Y, Zhao W, Wu Y, Sun Y, Shao H, McMinn A, Zhu L, Wang M. Progress in 'taxonomic sufficiency' in aquatic biological investigations. MARINE POLLUTION BULLETIN 2022; 185:114192. [PMID: 36356341 DOI: 10.1016/j.marpolbul.2022.114192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 09/24/2022] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
The 'taxonomic sufficiency' (TS) approach has been applied to algae, protists, invertebrates, and vertebrates, generally by aggregating species-level abundance data to a higher taxonomic level, where genus-level data are often highly correlated with species-level data and are a valid proxy level. The TS approach offers the possibility of a comparison of data from different geographical areas and highlights the effects of contaminants. The TS approach is stable in the face of different researchers and in the comparison of long-term biological survey data. The effectiveness of the TS approach may increase with increasing environmental gradients or spatial area. The TS approach should be avoided when the spatial area is small and small differences in species-level data are considered important, so as not to cancel out the distribution patterns specific to the local environment of the biological taxa.
Collapse
Affiliation(s)
- Xuechao Chen
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266003, China
| | - Meiaoxue Han
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266003, China
| | - Yantao Liang
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266003, China; UMT-OUC Joint Centre for Marine Studies, Qingdao 266003, China
| | - Wanting Zhao
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Yuejiao Wu
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Ying Sun
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Hongbing Shao
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266003, China; UMT-OUC Joint Centre for Marine Studies, Qingdao 266003, China
| | - Andrew McMinn
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266003, China; Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, TAS 7001, Australia.
| | - Liyan Zhu
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
| | - Min Wang
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266003, China; The affiliated hospital of Qingdao University, Qingdao 266000, China; UMT-OUC Joint Centre for Marine Studies, Qingdao 266003, China.
| |
Collapse
|
41
|
Sindhu SS, Sehrawat A, Glick BR. The involvement of organic acids in soil fertility, plant health and environment sustainability. Arch Microbiol 2022; 204:720. [DOI: 10.1007/s00203-022-03321-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/22/2022] [Accepted: 11/03/2022] [Indexed: 11/21/2022]
|
42
|
Munk P, Brinch C, Møller FD, Petersen TN, Hendriksen RS, Seyfarth AM, Kjeldgaard JS, Svendsen CA, van Bunnik B, Berglund F, Larsson DGJ, Koopmans M, Woolhouse M, Aarestrup FM. Genomic analysis of sewage from 101 countries reveals global landscape of antimicrobial resistance. Nat Commun 2022; 13:7251. [PMID: 36456547 PMCID: PMC9715550 DOI: 10.1038/s41467-022-34312-7] [Citation(s) in RCA: 113] [Impact Index Per Article: 37.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 10/20/2022] [Indexed: 12/03/2022] Open
Abstract
Antimicrobial resistance (AMR) is a major threat to global health. Understanding the emergence, evolution, and transmission of individual antibiotic resistance genes (ARGs) is essential to develop sustainable strategies combatting this threat. Here, we use metagenomic sequencing to analyse ARGs in 757 sewage samples from 243 cities in 101 countries, collected from 2016 to 2019. We find regional patterns in resistomes, and these differ between subsets corresponding to drug classes and are partly driven by taxonomic variation. The genetic environments of 49 common ARGs are highly diverse, with most common ARGs carried by multiple distinct genomic contexts globally and sometimes on plasmids. Analysis of flanking sequence revealed ARG-specific patterns of dispersal limitation and global transmission. Our data furthermore suggest certain geographies are more prone to transmission events and should receive additional attention.
Collapse
Affiliation(s)
- Patrick Munk
- Research Group for Genomic Epidemiology, Technical University of Denmark, Kgs, Lyngby, Denmark.
| | - Christian Brinch
- Research Group for Genomic Epidemiology, Technical University of Denmark, Kgs, Lyngby, Denmark
| | - Frederik Duus Møller
- Research Group for Genomic Epidemiology, Technical University of Denmark, Kgs, Lyngby, Denmark
| | - Thomas N Petersen
- Research Group for Genomic Epidemiology, Technical University of Denmark, Kgs, Lyngby, Denmark
| | - Rene S Hendriksen
- Research Group for Genomic Epidemiology, Technical University of Denmark, Kgs, Lyngby, Denmark
| | - Anne Mette Seyfarth
- Research Group for Genomic Epidemiology, Technical University of Denmark, Kgs, Lyngby, Denmark
| | - Jette S Kjeldgaard
- Research Group for Genomic Epidemiology, Technical University of Denmark, Kgs, Lyngby, Denmark
| | - Christina Aaby Svendsen
- Research Group for Genomic Epidemiology, Technical University of Denmark, Kgs, Lyngby, Denmark
| | - Bram van Bunnik
- Centre for Immunity, Infection and Evolution, University of Edinburgh, Edinburgh, UK
| | - Fanny Berglund
- Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, Gothenburg, Sweden
| | - D G Joakim Larsson
- Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, Gothenburg, Sweden
| | - Marion Koopmans
- Department of Viroscience, Erasmus MC, Rotterdam, The Netherlands
| | - Mark Woolhouse
- Centre for Immunity, Infection and Evolution, University of Edinburgh, Edinburgh, UK
| | - Frank M Aarestrup
- Research Group for Genomic Epidemiology, Technical University of Denmark, Kgs, Lyngby, Denmark
| |
Collapse
|
43
|
Tran T, French E, Iyer-Pascuzzi AS. In vitro functional characterization predicts the impact of bacterial root endophytes on plant growth. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:5758-5772. [PMID: 35596672 DOI: 10.1093/jxb/erac228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 05/18/2022] [Indexed: 06/15/2023]
Abstract
Utilizing beneficial microbes for crop improvement is one strategy to achieve sustainable agriculture. However, identifying microbial isolates that promote crop growth is challenging, in part because using bacterial taxonomy to predict an isolate's effect on plant growth may not be reliable. The overall aim of this work was to determine whether in vitro functional traits of bacteria were predictive of their in planta impact. We isolated 183 bacterial endophytes from field-grown roots of two tomato species, Solanum lycopersicum and S. pimpinellifolium. Sixty isolates were screened for six in vitro functional traits: auxin production, siderophore production, phosphate solubilization, antagonism to a soilborne pathogen, and the presence of two antimicrobial metabolite synthesis genes. Hierarchical clustering of the isolates based on the in vitro functional traits identified several groups of isolates sharing similar traits. We called these groups 'functional groups'. To understand how in vitro functional traits of bacteria relate to their impact on plants, we inoculated three isolates from each of the functional groups on tomato seedlings. Isolates within the same functional group promoted plant growth at similar levels, regardless of their host origin or taxonomy. Together, our results demonstrate the importance of examining root endophyte functions for improving crop production.
Collapse
Affiliation(s)
- Tri Tran
- Department of Botany and Plant Pathology, Center for Plant Biology, Purdue University, West Lafayette, IN, USA
| | - Elizabeth French
- Department of Botany and Plant Pathology, Center for Plant Biology, Purdue University, West Lafayette, IN, USA
| | - Anjali S Iyer-Pascuzzi
- Department of Botany and Plant Pathology, Center for Plant Biology, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
44
|
Pan Y, Kang P, Tan M, Hu J, Zhang Y, Zhang J, Song N, Li X. Root exudates and rhizosphere soil bacterial relationships of Nitraria tangutorum are linked to k-strategists bacterial community under salt stress. FRONTIERS IN PLANT SCIENCE 2022; 13:997292. [PMID: 36119572 PMCID: PMC9471988 DOI: 10.3389/fpls.2022.997292] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 08/10/2022] [Indexed: 06/15/2023]
Abstract
When plants are subjected to various biotic and abiotic stresses, the root system responds actively by secreting different types and amounts of bioactive compounds, while affects the structure of rhizosphere soil bacterial community. Therefore, understanding plant-soil-microbial interactions, especially the strength of microbial interactions, mediated by root exudates is essential. A short-term experiment was conducted under drought and salt stress to investigate the interaction between root exudates and Nitraria tangutorum rhizosphere bacterial communities. We found that drought and salt stress increased rhizosphere soil pH (9.32 and 20.6%) and electrical conductivity (1.38 and 11 times), respectively, while decreased organic matter (27.48 and 31.38%), total carbon (34.55 and 29.95%), and total phosphorus (20 and 28.57%) content of N. tangutorum rhizosphere soil. Organic acids, growth hormones, and sugars were the main differential metabolites of N. tangutorum under drought and salt stress. Salt stress further changed the N. tangutorum rhizosphere soil bacterial community structure, markedly decreasing the relative abundance of Bacteroidota as r-strategist while increasing that of Alphaproteobacteria as k-strategists. The co-occurrence network analysis showed that drought and salt stress reduced the connectivity and complexity of the rhizosphere bacterial network. Soil physicochemical properties and root exudates in combination with salt stress affect bacterial strategies and interactions. Our study revealed the mechanism of plant-soil-microbial interactions under the influence of root exudates and provided new insights into the responses of bacterial communities to stressful environments.
Collapse
Affiliation(s)
- Yaqing Pan
- Shapotou Desert Research and Experiment Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
| | - Peng Kang
- College of Biological Sciences and Engineering, North Minzu University, Yinchuan, China
| | - Min Tan
- College of Biological Sciences and Engineering, North Minzu University, Yinchuan, China
| | - Jinpeng Hu
- College of Pastoral Agriculture Science and Technology, Lanzhou University, Yinchuan, China
| | - Yaqi Zhang
- College of Biological Sciences and Engineering, North Minzu University, Yinchuan, China
| | - Jinlin Zhang
- College of Pastoral Agriculture Science and Technology, Lanzhou University, Yinchuan, China
| | - Naiping Song
- Breeding Base for Key Laboratory Land Degradation and Ecological Restoration in Northwest China, Ningxia University, Yinchuan, China
| | - Xinrong Li
- Shapotou Desert Research and Experiment Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
| |
Collapse
|
45
|
Roguet A, Newton RJ, Eren AM, McLellan SL. Guts of the Urban Ecosystem: Microbial Ecology of Sewer Infrastructure. mSystems 2022; 7:e0011822. [PMID: 35762794 PMCID: PMC9426572 DOI: 10.1128/msystems.00118-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 05/25/2022] [Indexed: 11/20/2022] Open
Abstract
Microbes have inhabited the oceans and soils for millions of years and are uniquely adapted to their habitat. In contrast, sewer infrastructure in modern cities dates back only ~150 years. Sewer pipes transport human waste and provide a view into public health, but the resident organisms that likely modulate these features are relatively unexplored. Here, we show that the bacterial assemblages sequenced from untreated wastewater in 71 U.S. cities were highly coherent at a fine sequence level, suggesting that urban infrastructure separated by great spatial distances can give rise to strikingly similar communities. Within the overall microbial community structure, temperature had a discernible impact on the distribution patterns of closely related amplicon sequence variants, resulting in warm and cold ecotypes. Two bacterial genera were dominant in most cities regardless of their size or geographic location; on average, Arcobacter accounted for 11% and Acinetobacter 10% of the entire community. Metagenomic analysis of six cities revealed these highly abundant resident organisms carry clinically important antibiotic resistant genes blaCTX-M, blaOXA, and blaTEM. In contrast, human fecal bacteria account for only ~13% of the community; therefore, antibiotic resistance gene inputs from human sources to the sewer system could be comparatively small, which will impact measurement capabilities when monitoring human populations using wastewater. With growing awareness of the metabolic potential of microbes within these vast networks of pipes and the ability to examine the health of human populations, it is timely to increase our understanding of the ecology of these systems. IMPORTANCE Sewer infrastructure is a relatively new habitat comprised of thousands of kilometers of pipes beneath cities. These wastewater conveyance systems contain large reservoirs of microbial biomass with a wide range of metabolic potential and are significant reservoirs of antibiotic resistant organisms; however, we lack an adequate understanding of the ecology or activity of these communities beyond wastewater treatment plants. The striking coherence of the sewer microbiome across the United States demonstrates that the sewer environment is highly selective for a particular microbial community composition. Therefore, results from more in-depth studies or proven engineering controls in one system could be extrapolated more broadly. Understanding the complex ecology of sewer infrastructure is critical for not only improving our ability to treat human waste and increasing the sustainability of our cities but also to create scalable and effective sewage microbial observatories, which are inevitable investments of the future to monitor health in human populations.
Collapse
Affiliation(s)
- Adélaïde Roguet
- School of Freshwater Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, USA
| | - Ryan J. Newton
- School of Freshwater Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, USA
| | - A. Murat Eren
- Helmholtz Institute for Functional Marine Biodiversity, Oldenburg, Germany
- Josephine Bay Paul Center, Marine Biological Laboratory, Woods Hole, Massachusetts, USA
| | - Sandra L. McLellan
- School of Freshwater Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, USA
| |
Collapse
|
46
|
Gao Y, Wu M. Microbial genomic trait evolution is dominated by frequent and rare pulsed evolution. SCIENCE ADVANCES 2022; 8:eabn1916. [PMID: 35857501 PMCID: PMC9286504 DOI: 10.1126/sciadv.abn1916] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 06/02/2022] [Indexed: 06/12/2023]
Abstract
On the macroevolutionary time scale, does trait evolution proceed gradually or by rapid bursts (pulses) separated by prolonged periods of stasis or slow evolution? Although studies have shown that pulsed evolution is prevalent in animals, our knowledge about the tempo and mode of evolution across the tree of life is very limited. This long-standing debate calls for a test in bacteria and archaea, the most ancient and diverse forms of life with unique population genetic properties. Using a likelihood-based framework, we show that pulsed evolution is not only present but also prevalent and predominant in microbial genomic trait evolution. We detected two distinct types of pulsed evolution (small frequent and large rare jumps) that are predicted by the punctuated equilibrium and quantum evolution theories. Our findings suggest that major bacterial lineages could have originated in quick bursts and that pulsed evolution is a common theme across the tree of life.
Collapse
Affiliation(s)
- Yingnan Gao
- Department of Biology, University of Virginia, Charlottesville, VA 22094, USA
| | - Martin Wu
- Department of Biology, University of Virginia, Charlottesville, VA 22094, USA
| |
Collapse
|
47
|
Roy J, Mazel F, Dumack K, Bonkowski M, Rillig MC. Hierarchical phylogenetic community assembly of soil protists in a temperate agricultural field. Environ Microbiol 2022; 24:5498-5508. [PMID: 35837871 DOI: 10.1111/1462-2920.16134] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 06/27/2022] [Accepted: 07/09/2022] [Indexed: 11/27/2022]
Abstract
Protists are abundant, diverse and perform essential functions in soils. Protistan community structure and its change across time or space are traditionally studied at the species-level but the relative importance of the processes shaping these patterns depends on the taxon phylogenetic resolution. Using 18S rDNA amplicon data of the Cercozoa, a group of dominant soil protists, from an agricultural field in western Germany, we observed a turnover of relatively closely related taxa (from sequence variants to genus-level clades) across soil depth; while across soil habitats (rhizosphere, bulk soil, drilosphere) we observed turnover of relatively distantly related taxa, confirming Paracercomonadidae as a rhizosphere-associated clade. We extended our approach to show that closely related Cercozoa encounter divergent AM fungi across soil depth and that distantly related Cercozoa encounter closely related AM fungi across soil compartments. This study suggests that soil Cercozoa community assembly at the field-scale is driven by niche-based processes shaped by evolutionary legacy of adaptation to conditions primarily related to soil compartment, followed by soil layer, giving a deeper understanding on the selection pressures that shaped their evolution.
Collapse
Affiliation(s)
- Julien Roy
- Institut für Biologie, Ökologie der Pflanzen, Freie Universität Berlin, Berlin, Germany.,Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany
| | - Florent Mazel
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Kennet Dumack
- Terrestrial Ecology Group, Institute of Zoology, University of Cologne, Cologne, Germany
| | - Michael Bonkowski
- Terrestrial Ecology Group, Institute of Zoology, University of Cologne, Cologne, Germany
| | - Matthias C Rillig
- Institut für Biologie, Ökologie der Pflanzen, Freie Universität Berlin, Berlin, Germany.,Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany
| |
Collapse
|
48
|
de Souza AJ, de Araújo Pereira AP, Pedrinho A, Andreote FD, Tornisielo VL, Tizioto PC, Coutinho LL, Regitano JB. Land use and roles of soil bacterial community in the dissipation of atrazine. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 827:154239. [PMID: 35245545 DOI: 10.1016/j.scitotenv.2022.154239] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 02/24/2022] [Accepted: 02/26/2022] [Indexed: 06/14/2023]
Abstract
Atrazine (ATZ) is one of the most widely used herbicides in the world even though it is classified as a carcinogenic endocrine disruptor. This study focused on how land use (grazing versus cultivation in parallel soils, the latter under no-till with a seven-year history of ATZ application) and bacterial community diversity affected ATZ dissipation. Proteobacteria, Bacteroidetes, Firmicutes, Actinobacteria, Acidobacteria, Verrucomicrobia, Planctomycetes, and Gemmatimonadetes were the dominant phyla in both soils. The mineralization of ATZ was much higher in soils under cultivation up to the onset of moderate diversity depletion (dilution =10-3), corresponding to 44-52% of the amount applied (< 5% in the grazed soil). This was attributed to the higher diversity and complexity of the soils´ bacterial communities which consist of microbial groups that were more adapted as a result of previous exposure to ATZ. In these cases, ATZ dissipation was attributed mainly to mineralization (DT50 = 4-11 d). However, formation of non-extractable ATZ residues was exceptionally important in the other cases (DT50 = 17-44 d). The cultivated soils also presented a higher number of bacterial genera correlated with ATZ dissipation, in which Acidothermus, Aquicela, Arenimonas, Candidatus_Koribacter, Hirschia, MND1, Nitrospira, Occallatibacter, OM27_clade, and Ralstonia are suggested as potential ATZ-degraders. Finally, ATZ dissipation was mostly associated with an abundance of microbial functions related to energy supply and N-metabolism, suggesting co-metabolism is its first biodegradation step.
Collapse
Affiliation(s)
- Adijailton Jose de Souza
- Luiz de Queiroz College of Agriculture (ESALQ), University of São Paulo, Piracicaba, São Paulo, Brazil
| | | | - Alexandre Pedrinho
- Luiz de Queiroz College of Agriculture (ESALQ), University of São Paulo, Piracicaba, São Paulo, Brazil
| | - Fernando Dini Andreote
- Luiz de Queiroz College of Agriculture (ESALQ), University of São Paulo, Piracicaba, São Paulo, Brazil
| | - Valdemar Luiz Tornisielo
- Center of Nuclear Energy for Agriculture (CENA), University of São Paulo, Piracicaba, São Paulo, Brazil
| | | | - Luiz Lehmann Coutinho
- Luiz de Queiroz College of Agriculture (ESALQ), University of São Paulo, Piracicaba, São Paulo, Brazil
| | - Jussara Borges Regitano
- Luiz de Queiroz College of Agriculture (ESALQ), University of São Paulo, Piracicaba, São Paulo, Brazil.
| |
Collapse
|
49
|
Hall SJ, Huang W, Napieralski SA, Roden E. Shared Microbial Taxa Respond Predictably to Cyclic Time-Varying Oxygen Limitation in Two Disparate Soils. Front Microbiol 2022; 13:866828. [PMID: 35722278 PMCID: PMC9203030 DOI: 10.3389/fmicb.2022.866828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 05/16/2022] [Indexed: 11/27/2022] Open
Abstract
Periodic oxygen (O2) limitation in humid terrestrial soils likely influences microbial composition, but whether communities share similar responses in disparate environments remains unclear. To test if specific microbial taxa share consistent responses to anoxia in radically different soils, we incubated a rainforest Oxisol and cropland Mollisol under cyclic, time-varying anoxic/oxic cycles in the laboratory. Both soils are known to experience anoxic periods of days to weeks under field conditions; our incubation treatments consisted of anoxic periods of 0, 2, 4, 8, or 12 d followed by 4 d of oxic conditions, repeated for a total of 384 d. Taxa measured by 16S rRNA gene sequences after 48 d and 384 d of experimental treatments varied strongly with increasing anoxic period duration, and responses to anoxia often differed between soils at multiple taxonomic levels. Only 19% of the 30,356 operational taxonomic units (OTUs) occurred in both soils, and most OTUs did not respond consistently to O2 treatments. However, the OTUs present in both soils were disproportionally abundant, comprising 50% of sequences, and they often had a similar response to anoxic period duration in both soils (p < 0.0001). Overall, 67 OTUs, 36 families, 15 orders, 10 classes, and two phyla had significant and directionally consistent (positive or negative) responses to anoxic period duration in both soils. Prominent OTUs and taxonomic groups increasing with anoxic period duration in both soils included actinomycetes (Micromonosporaceae), numerous Ruminococcaceae, possible metal reducers (Anaeromyxobacter) or oxidizers (Candidatus Koribacter), methanogens (Methanomicrobia), and methanotrophs (Methylocystaceae). OTUs decreasing with anoxic duration in both soils included nitrifiers (Nitrospira) and ubiquitous unidentified Bradyrhizobiaceae and Micromonosporaceae. Even within the same genus, different OTUs occasionally showed strong positive or negative responses to anoxic duration (e.g., Dactylosporangium in the Actinobacteria), highlighting a potential for adaptation or niche partitioning in variable-O2 environments. Overall, brief anoxic periods impacted the abundance of certain microbial taxa in predictable ways, suggesting that microbial community data may partially reflect and integrate spatiotemporal differences in O2 availability within and among soils.
Collapse
Affiliation(s)
- Steven J. Hall
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, IA, United States
- *Correspondence: Steven J. Hall,
| | - Wenjuan Huang
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, IA, United States
| | | | - Eric Roden
- Department of Geoscience, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
50
|
Biological Microbial Interactions from Cooccurrence Networks in a High Mountain Lacustrine District. mSphere 2022; 7:e0091821. [PMID: 35642514 PMCID: PMC9241510 DOI: 10.1128/msphere.00918-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A fundamental question in biology is why some species tend to occur together in the same locations, while others are never observed coexisting. This question becomes particularly relevant for microorganisms thriving in the highly diluted waters of high mountain lakes, where biotic interactions might be required to make the most of an extreme environment. We studied a high-throughput gene data set of alpine lakes (>220 Pyrenean lakes) with cooccurrence network analysis to infer potential biotic interactions, using the combination of a probabilistic method for determining significant cooccurrences and coexclusions between pairs of species and a conceptual framework for classifying the nature of the observed cooccurrences and coexclusions. This computational approach (i) determined and quantified the importance of environmental variables and spatial distribution and (ii) defined potential interacting microbial assemblages. We determined the properties and relationships between these assemblages by examining node properties at the taxonomic level, indicating associations with their potential habitat sources (i.e., aquatic versus terrestrial) and their functional strategies (i.e., parasitic versus mixotrophic). Environmental variables explained fewer pairs in bacteria than in microbial eukaryotes for the alpine data set, with pH alone explaining the highest proportion of bacterial pairs. Nutrient composition was also relevant for explaining association pairs, particularly in microeukaryotes. We identified a reduced subset of pairs with the highest probability of species interactions (“interacting guilds”) that significantly reached higher occupancies and lower mean relative abundances in agreement with the carrying capacity hypothesis. The interacting bacterial guilds could be more related to habitat and microdispersal processes (i.e., aquatic versus soil microbes), whereas for microeukaryotes trophic roles (osmotrophs, mixotrophs, and parasitics) could potentially play a major role. Overall, our approach may add helpful information to guide further efforts for a mechanistic understanding of microbial interactions in situ. IMPORTANCE A fundamental question in biology is why some species tend to occur together in the same locations, while others are never observed to coexist. This question becomes particularly relevant for microorganisms thriving in the highly diluted waters of high mountain lakes, in which biotic interactions might be required to make the most of an extreme environment. Microbial metacommunities are too often only studied in terms of their environmental niches and geographic barriers since they show inherent difficulties to quantify biological interactions and their role as drivers of ecosystem functioning. Our study highlights that telling apart potential interactions from both environmental and geographic niches may help for the initial characterization of organisms with similar ecologies in a large scope of ecosystems, even when information about actual interactions is partial and limited. The multilayered statistical approach carried out here offers the possibility of going beyond taxonomy to understand microbiological behavior in situ.
Collapse
|