1
|
Inagaki T, Kumar A, Komaki S, Nakajima KI, Izumiya Y. An atlas of chromatin landscape in KSHV-infected cells during de novo infection and reactivation. Virology 2024; 597:110146. [PMID: 38909515 DOI: 10.1016/j.virol.2024.110146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/04/2024] [Accepted: 06/18/2024] [Indexed: 06/25/2024]
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) is an oncogenic γ-herpesvirus with a double-stranded DNA capable of establishing latent infection in the host cell. During latency, only a limited number of viral genes are expressed in infected host cells, and that helps the virus to evade host immune cell response. During primary infection, the KSHV genome is chromatinized and maintained as an episome, which is tethered to the host chromosome via Latency Associated Nuclear Antigen (LANA). The KSHV episome undergoes the same chromatin modification with the host cell chromosome and, therefore, is regulated by various epigenetic modifications, such as DNA methylation, histone methylation, and histone acetylation. The KSHV genome is also organized in a spatiotemporal manner by forming genomic loops, which enable simultaneous and coordinated control of dynamic gene transcription, particularly during the lytic replication phase. The genome-wide approaches and advancing bioinformatic tools have increased the resolution of studies on the dynamic transcriptional control and our understanding of KSHV latency-lytic switch regulation. We will summarize our current understanding of the epigenetic gene regulation on the KSHV chromatin.
Collapse
Affiliation(s)
- Tomoki Inagaki
- Department of Dermatology, School of Medicine, The University of California Davis, Sacramento, CA, USA.
| | - Ashish Kumar
- Department of Dermatology, School of Medicine, The University of California Davis, Sacramento, CA, USA
| | - Somayeh Komaki
- Department of Dermatology, School of Medicine, The University of California Davis, Sacramento, CA, USA
| | - Ken-Ichi Nakajima
- Department of Dermatology, School of Medicine, The University of California Davis, Sacramento, CA, USA
| | - Yoshihiro Izumiya
- Department of Dermatology, School of Medicine, The University of California Davis, Sacramento, CA, USA; Department of Biochemistry and Molecular Medicine, School of Medicine, UC Davis, Sacramento, CA, USA
| |
Collapse
|
2
|
Kelnhofer-Millevolte LE, Arnold EA, Nguyen DH, Avgousti DC. Controlling Much? Viral Control of Host Chromatin Dynamics. Annu Rev Virol 2024; 11:171-191. [PMID: 38684115 DOI: 10.1146/annurev-virology-100422-011616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Viruses are exemplary molecular biologists and have been integral to scientific discovery for generations. It is therefore no surprise that nuclear replicating viruses have evolved to systematically take over host cell function through astoundingly specific nuclear and chromatin hijacking. In this review, we focus on nuclear replicating DNA viruses-herpesviruses and adenoviruses-as key examples of viral invasion in the nucleus. We concentrate on critical features of nuclear architecture, such as chromatin and the nucleolus, to illustrate the complexity of the virus-host battle for resources in the nucleus. We conclude with a discussion of the technological advances that have enabled the discoveries we describe and upcoming steps in this burgeoning field.
Collapse
Affiliation(s)
- Laurel E Kelnhofer-Millevolte
- Medical Scientist Training Program, University of Washington, Seattle, Washington, USA
- Department of Molecular and Cellular Biology, University of Washington, Seattle, Washington, USA
| | - Edward A Arnold
- Department of Microbiology, University of Washington, Seattle, Washington, USA
| | - Daniel H Nguyen
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA;
| | - Daphne C Avgousti
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA;
- Department of Microbiology, University of Washington, Seattle, Washington, USA
| |
Collapse
|
3
|
Kim KD, Lieberman PM. Viral remodeling of the 4D nucleome. Exp Mol Med 2024; 56:799-808. [PMID: 38658699 PMCID: PMC11058267 DOI: 10.1038/s12276-024-01207-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/21/2024] [Accepted: 01/25/2024] [Indexed: 04/26/2024] Open
Abstract
The dynamic spatial organization of genomes across time, referred to as the four-dimensional nucleome (4DN), is a key component of gene regulation and biological fate. Viral infections can lead to a reconfiguration of viral and host genomes, impacting gene expression, replication, latency, and oncogenic transformation. This review provides a summary of recent research employing three-dimensional genomic methods such as Hi-C, 4C, ChIA-PET, and HiChIP in virology. We review how viruses induce changes in gene loop formation between regulatory elements, modify chromatin accessibility, and trigger shifts between A and B compartments in the host genome. We highlight the central role of cellular chromatin organizing factors, such as CTCF and cohesin, that reshape the 3D structure of both viral and cellular genomes. We consider how viral episomes, viral proteins, and viral integration sites can alter the host epigenome and how host cell type and conditions determine viral epigenomes. This review consolidates current knowledge of the diverse host-viral interactions that impact the 4DN.
Collapse
Affiliation(s)
- Kyoung-Dong Kim
- Department of Systems Biotechnology, Chung-Ang University, Anseong, Korea.
| | | |
Collapse
|
4
|
Kobayashi N, Shimada K, Ishii A, Osaka R, Nishiyama T, Shigeta M, Yanagisawa H, Oka N, Kondo K. Identification of a strong genetic risk factor for major depressive disorder in the human virome. iScience 2024; 27:109203. [PMID: 38414857 PMCID: PMC10897923 DOI: 10.1016/j.isci.2024.109203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 11/07/2023] [Accepted: 02/07/2024] [Indexed: 02/29/2024] Open
Abstract
The heritability of major depressive disorder (MDD) is reportedly 30-50%. However, the genetic basis of its heritability remains unknown. Within SITH-1, a risk factor for MDD in human herpesvirus 6B (HHV-6B), we discovered a gene polymorphism with a large odds ratio for an association with MDD. It was a sequence whose number of repeats was inversely correlated with SITH-1 expression. This number was significantly lower in MDD patients. Rates for 17 or fewer repeats of the sequence were 67.9% for MDD and 28.6% for normal controls, with an odds ratio of 5.28. For patients with 17 or less repeats, the rate for presence of another MDD patient in their families was 47.4%, whereas there were no MDD patients in the families of patients with more than 17 repeats. Since HHV-6B is transmitted primarily mother to child and within families and persists for life, this gene polymorphism could potentially influence heritability of MDD.
Collapse
Affiliation(s)
- Nobuyuki Kobayashi
- Department of Virology, The Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi, Minato-ku, Tokyo 105-8461, Japan
| | - Kazuya Shimada
- Department of Virology, The Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi, Minato-ku, Tokyo 105-8461, Japan
| | - Azusa Ishii
- Department of Virology, The Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi, Minato-ku, Tokyo 105-8461, Japan
| | - Rui Osaka
- Department of Virology, The Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi, Minato-ku, Tokyo 105-8461, Japan
| | - Toshiko Nishiyama
- Department of Public Health & Environmental Medicine, The Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi, Minato-ku, Tokyo 105-8461, Japan
| | - Masahiro Shigeta
- Department of Psychiatry, The Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi, Minato-ku, Tokyo 105-8461, Japan
| | - Hiroyuki Yanagisawa
- Department of Public Health & Environmental Medicine, The Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi, Minato-ku, Tokyo 105-8461, Japan
| | - Naomi Oka
- Department of Virology, The Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi, Minato-ku, Tokyo 105-8461, Japan
| | - Kazuhiro Kondo
- Department of Virology, The Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi, Minato-ku, Tokyo 105-8461, Japan
| |
Collapse
|
5
|
Forni D, Pozzoli U, Cagliani R, Sironi M. Dinucleotide biases in the genomes of prokaryotic and eukaryotic dsDNA viruses and their hosts. Mol Ecol 2024; 33:e17287. [PMID: 38263702 DOI: 10.1111/mec.17287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/21/2023] [Accepted: 01/15/2024] [Indexed: 01/25/2024]
Abstract
The genomes of cellular organisms display CpG and TpA dinucleotide composition biases. Such biases have been poorly investigated in dsDNA viruses. Here, we show that in dsDNA virus, bacterial, and eukaryotic genomes, the representation of TpA and CpG dinucleotides is strongly dependent on genomic G + C content. Thus, the classical observed/expected ratios do not fully capture dinucleotide biases across genomes. Because a larger portion of the variance in TpA frequency was explained by G + C content, we explored which additional factors drive the distribution of CpG dinucleotides. Using the residuals of the linear regressions as a measure of dinucleotide abundance and ancestral state reconstruction across eukaryotic and prokaryotic virus trees, we identified an important role for phylogeny in driving CpG representation. Nonetheless, phylogenetic ANOVA analyses showed that few host associations also account for significant variations. Among eukaryotic viruses, most significant differences were observed between arthropod-infecting viruses and viruses that infect vertebrates or unicellular organisms. However, an effect of viral DNA methylation status (either driven by the host or by viral-encoded methyltransferases) is also likely. Among prokaryotic viruses, cyanobacteria-infecting phages resulted to be significantly CpG-depleted, whereas phages that infect bacteria in the genera Burkolderia and Staphylococcus were CpG-rich. Comparison with bacterial genomes indicated that this effect is largely driven by the general tendency for phages to resemble the host's genomic CpG content. Notably, such tendency is stronger for temperate than for lytic phages. Our data shed light into the processes that shape virus genome composition and inform manipulation strategies for biotechnological applications.
Collapse
Affiliation(s)
- Diego Forni
- Scientific Institute IRCCS E. MEDEA, Bioinformatics, Bosisio Parini, Italy
| | - Uberto Pozzoli
- Scientific Institute IRCCS E. MEDEA, Bioinformatics, Bosisio Parini, Italy
| | - Rachele Cagliani
- Scientific Institute IRCCS E. MEDEA, Bioinformatics, Bosisio Parini, Italy
| | - Manuela Sironi
- Scientific Institute IRCCS E. MEDEA, Bioinformatics, Bosisio Parini, Italy
| |
Collapse
|
6
|
Baral B, Kandpal M, Ray A, Jana A, Yadav DS, Sachin K, Mishra A, Baig MS, Jha HC. Helicobacter pylori and Epstein-Barr virus infection in cell polarity alterations. Folia Microbiol (Praha) 2024; 69:41-57. [PMID: 37672163 DOI: 10.1007/s12223-023-01091-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 08/28/2023] [Indexed: 09/07/2023]
Abstract
The asymmetrical distribution of the cellular organelles inside the cell is maintained by a group of cell polarity proteins. The maintenance of polarity is one of the vital host defense mechanisms against pathogens, and the loss of it contributes to infection facilitation and cancer progression. Studies have suggested that infection of viruses and bacteria alters cell polarity. Helicobacter pylori and Epstein-Barr virus are group I carcinogens involved in the progression of multiple clinical conditions besides gastric cancer (GC) and Burkitt's lymphoma, respectively. Moreover, the coinfection of both these pathogens contributes to a highly aggressive form of GC. H. pylori and EBV target the host cell polarity complexes for their pathogenesis. H. pylori-associated proteins like CagA, VacA OipA, and urease were shown to imbalance the cellular homeostasis by altering the cell polarity. Similarly, EBV-associated genes LMP1, LMP2A, LMP2B, EBNA3C, and EBNA1 also contribute to altered cell asymmetry. This review summarized all the possible mechanisms involved in cell polarity deformation in H. pylori and EBV-infected epithelial cells. We have also discussed deregulated molecular pathways like NF-κB, TGF-β/SMAD, and β-catenin in H. pylori, EBV, and their coinfection that further modulate PAR, SCRIB, or CRB polarity complexes in epithelial cells.
Collapse
Affiliation(s)
- Budhadev Baral
- Infection Bioengineering Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore, Madhya Pradesh, 453552, India
| | - Meenakshi Kandpal
- Infection Bioengineering Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore, Madhya Pradesh, 453552, India
| | - Anushka Ray
- Infection Bioengineering Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore, Madhya Pradesh, 453552, India
| | - Ankit Jana
- Infection Bioengineering Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore, Madhya Pradesh, 453552, India
| | - Dhirendra Singh Yadav
- Central Forensic Science Laboratory, Pune, DFSS, Ministry of Home Affairs, Govt. of India, Talegaon MIDC Phase-1, Near JCB Factory, Pune, Maharashtra, 410506, India
| | - Kumar Sachin
- Himalayan School of Biosciences, Swami Rama Himalayan University, Swami Ram Nagar, Jolly Grant, Dehradun, Uttarakhand, 248 016, India
| | - Amit Mishra
- Department of Bioscience & Bioengineering, Indian Institute of Technology Jodhpur, NH 65 Nagaur Road, Karwar, Jodhpur District, Rajasthan, 342037, India
| | - Mirza S Baig
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore, Madhya Pradesh, 453552, India
| | - Hem Chandra Jha
- Infection Bioengineering Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore, Madhya Pradesh, 453552, India.
| |
Collapse
|
7
|
Li JSZ, Abbasi A, Kim DH, Lippman SM, Alexandrov LB, Cleveland DW. Chromosomal fragile site breakage by EBV-encoded EBNA1 at clustered repeats. Nature 2023; 616:504-509. [PMID: 37046091 PMCID: PMC10328181 DOI: 10.1038/s41586-023-05923-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 03/07/2023] [Indexed: 04/14/2023]
Abstract
Epstein-Barr virus (EBV) is an oncogenic herpesvirus associated with several cancers of lymphocytic and epithelial origin1-3. EBV encodes EBNA1, which binds to a cluster of 20 copies of an 18-base-pair palindromic sequence in the EBV genome4-6. EBNA1 also associates with host chromosomes at non-sequence-specific sites7, thereby enabling viral persistence. Here we show that the sequence-specific DNA-binding domain of EBNA1 binds to a cluster of tandemly repeated copies of an EBV-like, 18-base-pair imperfect palindromic sequence encompassing a region of about 21 kilobases at human chromosome 11q23. In situ visualization of the repetitive EBNA1-binding site reveals aberrant structures on mitotic chromosomes characteristic of inherently fragile DNA. We demonstrate that increasing levels of EBNA1 binding trigger dose-dependent breakage at 11q23, producing a fusogenic centromere-containing fragment and an acentric distal fragment, with both mis-segregated into micronuclei in the next cell cycles. In cells latently infected with EBV, elevating EBNA1 abundance by as little as twofold was sufficient to trigger breakage at 11q23. Examination of whole-genome sequencing of EBV-associated nasopharyngeal carcinomas revealed that structural variants are highly enriched on chromosome 11. Presence of EBV is also shown to be associated with an enrichment of chromosome 11 rearrangements across 2,439 tumours from 38 cancer types. Our results identify a previously unappreciated link between EBV and genomic instability, wherein EBNA1-induced breakage at 11q23 triggers acquisition of structural variations in chromosome 11.
Collapse
MESH Headings
- Humans
- Binding Sites
- DNA/chemistry
- DNA/metabolism
- Herpesvirus 4, Human/genetics
- Herpesvirus 4, Human/metabolism
- Herpesvirus 4, Human/pathogenicity
- Viral Proteins/genetics
- Viral Proteins/metabolism
- DNA Breaks, Double-Stranded
- Chromosomes, Human, Pair 11/chemistry
- Chromosomes, Human, Pair 11/genetics
- Chromosomes, Human, Pair 11/metabolism
- Genomic Instability
- Mitosis
- Chromosome Breakage
Collapse
Affiliation(s)
- Julia Su Zhou Li
- Ludwig Cancer Research, UC San Diego, La Jolla, CA, USA.
- Department of Cellular and Molecular Medicine, UC San Diego, La Jolla, CA, USA.
| | - Ammal Abbasi
- Department of Cellular and Molecular Medicine, UC San Diego, La Jolla, CA, USA
- Moores Cancer Center, UC San Diego, La Jolla, CA, USA
- Department of Bioengineering, UC San Diego, La Jolla, CA, USA
| | - Dong Hyun Kim
- Ludwig Cancer Research, UC San Diego, La Jolla, CA, USA
- Department of Cellular and Molecular Medicine, UC San Diego, La Jolla, CA, USA
- Oncology Research Unit, Pfizer Inc., San Diego, CA, USA
| | | | - Ludmil B Alexandrov
- Department of Cellular and Molecular Medicine, UC San Diego, La Jolla, CA, USA
- Moores Cancer Center, UC San Diego, La Jolla, CA, USA
- Department of Bioengineering, UC San Diego, La Jolla, CA, USA
| | - Don W Cleveland
- Ludwig Cancer Research, UC San Diego, La Jolla, CA, USA.
- Department of Cellular and Molecular Medicine, UC San Diego, La Jolla, CA, USA.
- Moores Cancer Center, UC San Diego, La Jolla, CA, USA.
| |
Collapse
|
8
|
Kim B, Kim KM. Role of Exosomes and Their Potential as Biomarkers in Epstein-Barr Virus-Associated Gastric Cancer. Cancers (Basel) 2023; 15:cancers15020469. [PMID: 36672418 PMCID: PMC9856651 DOI: 10.3390/cancers15020469] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/05/2023] [Accepted: 01/10/2023] [Indexed: 01/15/2023] Open
Abstract
Exosomes are a subtype of extracellular vesicles ranging from 30 to 150 nm and comprising many cellular components, including DNA, RNA, proteins, and metabolites, encapsulated in a lipid bilayer. Exosomes are secreted by many cell types and play important roles in intercellular communication in cancer. Viruses can hijack the exosomal pathway to regulate viral propagation, cellular immunity, and the microenvironment. Cells infected with Epstein-Barr virus (EBV), one of the most common oncogenic viruses, have also been found to actively secrete exosomes, and studies on their roles in EBV-related malignancies are ongoing. In this review, we focus on the role of exosomes in EBV-associated gastric cancer and their clinical applicability in diagnosis and treatment.
Collapse
Affiliation(s)
- Binnari Kim
- Department of Pathology, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan 44610, Republic of Korea
| | - Kyoung-Mee Kim
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea
- Center of Companion Diagnostics, Samsung Medical Center, Seoul 06351, Republic of Korea
- Correspondence: ; Tel.: +82-2-3410-2807; Fax: +82-2-3410-6396
| |
Collapse
|
9
|
Kim ET, Kim KD. Topological implications of DNA tumor viral episomes. BMB Rep 2022; 55:587-594. [PMID: 36379513 PMCID: PMC9813422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Indexed: 12/29/2022] Open
Abstract
A persistent DNA tumor virus infection transforms normal cells into cancer cells by either integrating its genome into host chromosomes or retaining it as an extrachromosomal entity called episome. Viruses have evolved mechanisms for attaching episomes to infected host cell chromatin to efficiently segregate the viral genome during mitosis. It has been reported that viral episome can affect the gene expression of the host chromosomes through interactions between viral episomes and epigenetic regulatory host factors. This mini review summarizes our current knowledge of the tethering sites of viral episomes, such as EBV, KSHV, and HBV, on host chromosomes analyzed by three-dimensional genomic tools. [BMB Reports 2022; 55(12): 587-594].
Collapse
Affiliation(s)
- Eui Tae Kim
- Department of Microbiology and Immunology, Jeju National University College of Medicine, Jeju 63241, Korea,Department of Biomedicine & Drug Development, Jeju National University, Jeju 63241, Korea
| | - Kyoung-Dong Kim
- Department of Systems Biotechnology, Chung-Ang University, Anseong 17546, Korea,Corresponding author. Tel: +82-31-670-3359; Fax: +82-31-675-3108; E-mail:
| |
Collapse
|
10
|
Agnarelli A, Vella V, Samuels M, Papanastasopoulos P, Giamas G. Incorporating Immunotherapy in the Management of Gastric Cancer: Molecular and Clinical Implications. Cancers (Basel) 2022; 14:cancers14184378. [PMID: 36139540 PMCID: PMC9496849 DOI: 10.3390/cancers14184378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/30/2022] [Accepted: 09/05/2022] [Indexed: 01/30/2023] Open
Abstract
Simple Summary Gastric cancer is one of the most common malignant tumours worldwide, with the fifth and third highest morbidity and mortality, respectively, of all cancers. Survival is limited, as most of the patients are diagnosed at an advanced stage, and are not suitable for surgery with a curative intent. Chemotherapy has only modestly improved patients’ outcomes and is mainly given with a palliative intent. Immunotherapy has improved overall survival of patients with gastric cancer, and has thus become a new standard of care in clinic. In this review we discuss the strong molecular rationale for the administration of immunotherapy in this disease and analyse the clinical data supporting its use. Abstract Gastric cancer has a median survival of 11 months, and this poor prognosis has not improved over the last 30 years. Recent pre-clinical data suggest that there is high tumour-related neoantigen expression in gastric cancer cells, suggesting that a clinical strategy that enhances the host’s immune system against cancer cells may be a successful approach to improve clinical outcomes. Additionally, there has been an increasing amount of translational evidence highlighting the relevance of PD-L1 expression in gastric cancer cells, indicating that PD-1/PD-L1 inhibitors may be useful. Several molecular subgroups of gastric cancer have been identified to respond with excellent outcomes to immunotherapy, including microsatellite instable tumours, tumours bearing a high tumour mutational burden, and tumours related to a chronic EBV infection. In gastric cancer, immunotherapy has produced durable responses in chemo-refractory patients; however, most recently there has been a lot of enthusiasm as several large-scale clinical trials highlight the improved survival noted from the incorporation of immunotherapy in the first line setting for advanced gastric cancer. Our review aims to discuss current pre-clinical and clinical data supporting the innovative role of immunotherapy in gastric cancer.
Collapse
|
11
|
Ivey A, Pratt H, Boone BA. Molecular pathogenesis and emerging targets of gastric adenocarcinoma. J Surg Oncol 2022; 125:1079-1095. [PMID: 35481910 PMCID: PMC9069999 DOI: 10.1002/jso.26874] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/15/2022] [Accepted: 03/19/2022] [Indexed: 12/24/2022]
Abstract
Gastric adenocarcinoma (GC) is a devastating disease and is the third leading cause of cancer deaths worldwide. This heterogeneous disease has several different classification systems that consider histological appearance and genomic alterations. Understanding the etiology of GC, including infection, hereditary conditions, and environmental factors, is of particular importance and is discussed in this review. To improve survival in GC, we also must improve our therapeutic strategies. Here, we discuss new targets that warrant further exploration.
Collapse
Affiliation(s)
- Abby Ivey
- Department of Cancer Cell Biology, West Virginia University Cancer Institute, West Virginia University, Morgantown, West Virginia, USA
| | - Hillary Pratt
- Department of Cancer Cell Biology, West Virginia University Cancer Institute, West Virginia University, Morgantown, West Virginia, USA
| | - Brian A Boone
- Department of Cancer Cell Biology, West Virginia University Cancer Institute, West Virginia University, Morgantown, West Virginia, USA
- Department of Surgery, Department of Microbiology, Immunology and Cell Biology, West Virginia University, Morgantown, West Virginia, USA
| |
Collapse
|
12
|
Yiu SPT, Guo R, Zerbe C, Weekes MP, Gewurz BE. Epstein-Barr virus BNRF1 destabilizes SMC5/6 cohesin complexes to evade its restriction of replication compartments. Cell Rep 2022; 38:110411. [PMID: 35263599 PMCID: PMC8981113 DOI: 10.1016/j.celrep.2022.110411] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 12/29/2021] [Accepted: 01/28/2022] [Indexed: 11/11/2022] Open
Abstract
Epstein-Barr virus (EBV) persistently infects people worldwide. Delivery of ∼170-kb EBV genomes to nuclei and use of nuclear membrane-less replication compartments (RCs) for their lytic cycle amplification necessitate evasion of intrinsic antiviral responses. Proteomics analysis indicates that, upon B cell infection or lytic reactivation, EBV depletes the cohesin SMC5/6, which has major roles in chromosome maintenance and DNA damage repair. The major tegument protein BNRF1 targets SMC5/6 complexes by a ubiquitin proteasome pathway dependent on calpain proteolysis and Cullin-7. In the absence of BNRF1, SMC5/6 associates with R-loop structures, including at the viral lytic origin of replication, and interferes with RC formation and encapsidation. CRISPR analysis identifies RC restriction roles of SMC5/6 components involved in DNA entrapment and SUMOylation. Our study highlights SMC5/6 as an intrinsic immune sensor and restriction factor for a human herpesvirus RC and has implications for the pathogenesis of EBV-associated cancers.
Collapse
Affiliation(s)
- Stephanie Pei Tung Yiu
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, 181 Longwood Avenue, Boston, MA 02115, USA; Harvard Graduate Program in Virology, Boston, MA 02115, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
| | - Rui Guo
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, 181 Longwood Avenue, Boston, MA 02115, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
| | - Cassie Zerbe
- Cambridge Institute for Medical Research, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK
| | - Michael P Weekes
- Cambridge Institute for Medical Research, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK
| | - Benjamin E Gewurz
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, 181 Longwood Avenue, Boston, MA 02115, USA; Harvard Graduate Program in Virology, Boston, MA 02115, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
13
|
Retnakumar R, Nath AN, Nair GB, Chattopadhyay S. Gastrointestinal microbiome in the context of Helicobacter pylori infection in stomach and gastroduodenal diseases. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2022; 192:53-95. [DOI: 10.1016/bs.pmbts.2022.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
14
|
Niemeyer BF, Sanford B, Gibson JE, Berger JN, Oko LM, Medina E, Clambey ET, van Dyk LF. The gammaherpesvirus 68 viral cyclin facilitates expression of LANA. PLoS Pathog 2021; 17:e1010019. [PMID: 34780571 PMCID: PMC8629379 DOI: 10.1371/journal.ppat.1010019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 11/29/2021] [Accepted: 10/08/2021] [Indexed: 11/29/2022] Open
Abstract
Gammaherpesviruses establish life-long infections within their host and have been shown to be the causative agents of devastating malignancies. Chronic infection within the host is mediated through cycles of transcriptionally quiescent stages of latency with periods of reactivation into detectable lytic and productive infection. The mechanisms that regulate reactivation from latency remain poorly understood. Previously, we defined a critical role for the viral cyclin in promoting reactivation from latency. Disruption of the viral cyclin had no impact on the frequency of cells containing viral genome during latency, yet it remains unclear whether the viral cyclin influences latently infected cells in a qualitative manner. To define the impact of the viral cyclin on properties of latent infection, we utilized a viral cyclin deficient variant expressing a LANA-beta-lactamase fusion protein (LANA::βla), to enumerate both the cellular distribution and frequency of LANA gene expression. Disruption of the viral cyclin did not affect the cellular distribution of latently infected cells, but did result in a significant decrease in the frequency of cells that expressed LANA::βla across multiple tissues and in both immunocompetent and immunodeficient hosts. Strikingly, whereas the cyclin-deficient virus had a reactivation defect in bulk culture, sort purified cyclin-deficient LANA::βla expressing cells were fully capable of reactivation. These data emphasize that the γHV68 latent reservoir is comprised of at least two distinct stages of infection characterized by differential LANA expression, and that a primary function of the viral cyclin is to promote LANA expression during latency, a state associated with ex vivo reactivation competence. Gammaherpesviruses are ubiquitous viruses with oncogenic potential that establish latency for the life of the host. These viruses can emerge from latency through reactivation, a process that is controlled by the immune system. Control of viral latency and reactivation is thought to be critical to prevent γHV-associated disease. This study focuses on a virally-encoded cyclin that is required for reactivation from latency. By characterizing how the viral cyclin influences latent infection in pure cell populations, we find that the viral cyclin has a vital role in promoting viral gene expression during latency. This work provides new insight into the function of a virally encoded cyclin in promoting reactivation from latency.
Collapse
Affiliation(s)
- Brian F. Niemeyer
- Immunology and Microbiology Department, University of Colorado Denver School of Medicine, Aurora, Colorado, United States of America
| | - Bridget Sanford
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - Joy E. Gibson
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - Jennifer N. Berger
- Immunology and Microbiology Department, University of Colorado Denver School of Medicine, Aurora, Colorado, United States of America
| | - Lauren M. Oko
- Immunology and Microbiology Department, University of Colorado Denver School of Medicine, Aurora, Colorado, United States of America
| | - Eva Medina
- Immunology and Microbiology Department, University of Colorado Denver School of Medicine, Aurora, Colorado, United States of America
| | - Eric T. Clambey
- Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Linda F. van Dyk
- Immunology and Microbiology Department, University of Colorado Denver School of Medicine, Aurora, Colorado, United States of America
- * E-mail:
| |
Collapse
|
15
|
Cai J, Zhang B, Li Y, Zhu W, Akihisa T, Li W, Kikuchi T, Liu W, Feng F, Zhang J. Prophylactic and Therapeutic EBV Vaccines: Major Scientific Obstacles, Historical Progress, and Future Direction. Vaccines (Basel) 2021; 9:vaccines9111290. [PMID: 34835222 PMCID: PMC8623587 DOI: 10.3390/vaccines9111290] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/27/2021] [Accepted: 11/03/2021] [Indexed: 11/29/2022] Open
Abstract
The Epstein-Barr virus (EBV) infects more than 95% of adults worldwide and is associated with various malignant tumors and immune diseases, imparting a huge disease burden on the human population. Available EBV vaccines are imminent. Prophylactic vaccines can effectively prevent the spread of infection, whereas therapeutic vaccines mainly stimulate cell-mediated immunity and kill infected cells, thus curbing the development of malignant tumors. Nevertheless, there are still no approved EBV vaccines after decades of effort. The complexity of the EBV life cycle, the lack of appropriate animal models, and the limited reports on adjuvant selection and immune responses are gravely impeding progress in EBV vaccines. The soluble gp350 vaccine could reduce the incidence of infectious mononucleosis (IM), which seemed to offer hope, but could not prevent EBV infection. Continuous research and vaccine trials provide deep insights into the structural biology of viruses, the designs for immunogenicity, and the evolving vaccine platforms. Moreover, the new vaccine candidates are expected to achieve further success via combined immunization to elicit both a dual protection of B cells and epithelial cells, and sustainable immunization against infected cells at several phases of infection.
Collapse
Affiliation(s)
- Jing Cai
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China; (J.C.); (B.Z.); (Y.L.); (T.A.); (F.F.)
| | - Bodou Zhang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China; (J.C.); (B.Z.); (Y.L.); (T.A.); (F.F.)
| | - Yuqi Li
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China; (J.C.); (B.Z.); (Y.L.); (T.A.); (F.F.)
| | - Wanfang Zhu
- School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China; (W.Z.); (W.L.)
| | - Toshihiro Akihisa
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China; (J.C.); (B.Z.); (Y.L.); (T.A.); (F.F.)
- Research Institute for Science and Technology, Tokyo University of Science, Chiba 278-8510, Japan
| | - Wei Li
- Faculty of Pharmaceutical Sciences, Toho University, Chiba 274-8510, Japan; (W.L.); (T.K.)
| | - Takashi Kikuchi
- Faculty of Pharmaceutical Sciences, Toho University, Chiba 274-8510, Japan; (W.L.); (T.K.)
| | - Wenyuan Liu
- School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China; (W.Z.); (W.L.)
| | - Feng Feng
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China; (J.C.); (B.Z.); (Y.L.); (T.A.); (F.F.)
- Jiangsu Food and Pharmaceutical Science College, Huaian 223003, China
| | - Jie Zhang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China; (J.C.); (B.Z.); (Y.L.); (T.A.); (F.F.)
- Jiangsu Food and Pharmaceutical Science College, Huaian 223003, China
- Correspondence:
| |
Collapse
|
16
|
Abstract
Viral infection is an indisputable causal factor for nearly 17% of all human cancers. However, the diversity and complexity of oncogenic mechanisms raises new questions as to the mechanistic role of viruses in cancer. Classical viral oncogenes have been identified for all tumor-associated viruses. These oncogenes can have multiple oncogenic activities that may or may not be utilized in a particular tumor cell. In addition, stochastic events, like viral mutation and integration, as well as heritable host susceptibilities and immune deficiencies are also implicated in tumorigenesis. A more contemporary view of tumor biology highlights the importance of evolutionary forces that select for phenotypes better adapted to a complex and changing environment. Given the challenges of prioritizing singular mechanistic causes, it may be necessary to integrate concepts from evolutionary theory and systems biology to better understand viral cancer-driving forces. Here, we propose that viral infection provides a biological “entropy” that increases genetic variation and phenotypic plasticity, accelerating the main driving forces of cancer cell evolution. Viruses can also influence the evolutionary selection criteria by altering the tumor microenvironment and immune signaling. Utilizing concepts from cancer cell evolution, population genetics, thermodynamics, and systems biology may provide new perspectives on viral oncogenesis and identify novel therapeutic strategies for treating viruses and cancer.
Collapse
Affiliation(s)
- Italo Tempera
- Program in Gene Expression and Regulation, The Wistar Institute, Philadelphia, PA, United States
| | - Paul M Lieberman
- Program in Gene Expression and Regulation, The Wistar Institute, Philadelphia, PA, United States
| |
Collapse
|
17
|
Caspases Switch off the m 6A RNA Modification Pathway to Foster the Replication of a Ubiquitous Human Tumor Virus. mBio 2021; 12:e0170621. [PMID: 34425696 PMCID: PMC8406275 DOI: 10.1128/mbio.01706-21] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The methylation of RNA at the N6 position of adenosine (m6A) orchestrates multiple biological processes to control development, differentiation, and cell cycle, as well as various aspects of the virus life cycle. How the m6A RNA modification pathway is regulated to finely tune these processes remains poorly understood. Here, we discovered the m6A reader YTHDF2 as a caspase substrate via proteome-wide prediction, followed by in vitro and in vivo validations. We further demonstrated that cleavage-resistant YTHDF2 blocks, while cleavage-mimicking YTHDF2 fragments promote, the replication of a common human oncogenic virus, Epstein-Barr virus (EBV). Intriguingly, our study revealed a feedback regulation between YTHDF2 and caspase-8 via m6A modification of CASP8 mRNA and YTHDF2 cleavage during EBV replication. Further, we discovered that caspases cleave multiple components within the m6A RNA modification pathway to benefit EBV replication. Our study establishes that caspase disarming of the m6A RNA modification machinery fosters EBV replication. IMPORTANCE The discovery of an N6-methyladenosine (m6A) RNA modification pathway has fundamentally altered our understanding of the central dogma of molecular biology. This pathway is controlled by methyltransferases (writers), demethylases (erasers), and specific m6A binding proteins (readers). Emerging studies have linked the m6A RNA modification pathway to the life cycle of various viruses. However, very little is known regarding how this pathway is subverted to benefit viral replication. In this study, we established an unexpected linkage between cellular caspases and the m6A modification pathway, which is critical to drive the reactivation of a common tumor virus, Epstein-Barr virus (EBV).
Collapse
|
18
|
Frey TR, Akinyemi IA, Burton EM, Bhaduri-McIntosh S, McIntosh MT. An Ancestral Retrovirus Envelope Protein Regulates Persistent Gammaherpesvirus Lifecycles. Front Microbiol 2021; 12:708404. [PMID: 34434177 PMCID: PMC8381357 DOI: 10.3389/fmicb.2021.708404] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 07/14/2021] [Indexed: 11/13/2022] Open
Abstract
Human gammaherpesviruses Epstein-Barr virus (EBV) and Kaposi's sarcoma-associated herpesvirus (KSHV) persist as life-long infections alternating between latency and lytic replication. Human endogenous retroviruses (HERVs), via integration into the host genome, represent genetic remnants of ancient retroviral infections. Both show similar epigenetic silencing while dormant, but can reactivate in response to cell signaling cues or triggers that, for gammaherpesviruses, result in productive lytic replication. Given their co-existence with humans and shared epigenetic silencing, we asked if HERV expression might be linked to lytic activation of human gammaherpesviruses. We found ERVW-1 mRNA, encoding the functional HERV-W envelope protein Syncytin-1, along with other repeat class elements, to be elevated upon lytic activation of EBV. Knockdown/knockout of ERVW-1 reduced lytic activation of EBV and KSHV in response to various lytic cycle triggers. In this regard, reduced expression of immediate early proteins ZEBRA and RTA for EBV and KSHV, respectively, places Syncytin-1's influence on lytic activation mechanistically upstream of the latent-to-lytic switch. Conversely, overexpression of Syncytin-1 enhanced lytic activation of EBV and KSHV in response to lytic triggers, though this was not sufficient to induce lytic activation in the absence of such triggers. Syncytin-1 is expressed in replicating B cell blasts and lymphoma-derived B cell lines where it appears to contribute to cell cycle progression. Together, human gammaherpesviruses and B cells appear to have adapted a dependency on Syncytin-1 that facilitates the ability of EBV and KSHV to activate lytic replication from latency, while promoting viral persistence during latency by contributing to B cell proliferation.
Collapse
Affiliation(s)
- Tiffany R. Frey
- Department of Pediatrics, Child Health Research Institute, University of Florida, Gainesville, FL, United States
| | - Ibukun A. Akinyemi
- Department of Pediatrics, Child Health Research Institute, University of Florida, Gainesville, FL, United States
| | - Eric M. Burton
- Division of Infectious Diseases, Department of Pediatrics, University of Florida, Gainesville, FL, United States
| | - Sumita Bhaduri-McIntosh
- Division of Infectious Diseases, Department of Pediatrics, University of Florida, Gainesville, FL, United States
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL, United States
| | - Michael T. McIntosh
- Department of Pediatrics, Child Health Research Institute, University of Florida, Gainesville, FL, United States
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL, United States
| |
Collapse
|
19
|
How Epstein-Barr Virus and Kaposi's Sarcoma-Associated Herpesvirus Are Maintained Together to Transform the Same B-Cell. Viruses 2021; 13:v13081478. [PMID: 34452344 PMCID: PMC8402831 DOI: 10.3390/v13081478] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/22/2021] [Accepted: 07/22/2021] [Indexed: 11/28/2022] Open
Abstract
Epstein–Barr virus (EBV) and Kaposi’s sarcoma-associated herpesvirus (KSHV) independently cause human cancers, and both are maintained as plasmids in tumor cells. They differ, however, in their mechanisms of segregation; EBV partitions its genomes quasi-faithfully, while KSHV often clusters its genomes and partitions them randomly. Both viruses can infect the same B-cell to transform it in vitro and to cause primary effusion lymphomas (PELs) in vivo. We have developed simulations based on our measurements of these replicons in B-cells transformed in vitro to elucidate the synthesis and partitioning of these two viral genomes when in the same cell. These simulations successfully capture the biology of EBV and KSHV in PELs. They have revealed that EBV and KSHV replicate and partition independently, that they both contribute selective advantages to their host cell, and that KSHV pays a penalty to cluster its genomes.
Collapse
|
20
|
Burassakarn A, Srisathaporn S, Pientong C, Wongjampa W, Vatanasapt P, Patarapadungkit N, Ekalaksananan T. Exosomes-carrying Epstein-Barr virus-encoded small RNA-1 induces indoleamine 2, 3-dioxygenase expression in tumor-infiltrating macrophages of oral squamous-cell carcinomas and suppresses T-cell activity by activating RIG-I/IL-6/TNF-α pathway. Oral Oncol 2021; 117:105279. [PMID: 33819809 DOI: 10.1016/j.oraloncology.2021.105279] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 03/17/2021] [Accepted: 03/22/2021] [Indexed: 12/12/2022]
Abstract
OBJECTIVES Although exosomes carrying Epstein-Barr virus-encoded small RNA-1 (EBER-1) are involved in the immunosuppressive tumor microenvironments of EBV-associated head and neck carcinomas, the effects of EBER-1-associated exosomes on tumor-infiltrating macrophages are poorly understood. MATERIALS AND METHODS The association between EBV infection and expression of indoleamine 2,3-dioxygenase (IDO) was assessed in 165 paraffin-embedded oral squamous cell carcinoma (OSCC) tissue samples. Using in vitro techniques, we investigated whether stimulation of the RIG-I/IL-6/TNF-α pathway by exosomes carrying EBER-1 is critical for IDO induction in macrophages. We performed a thymidine incorporation and a cell cytolytic assay to test for up-regulated IDO in macrophages that can block the proliferation and function of effector T cells. RESULTS Some infiltrated macrophages expressed levels of IDO higher than OSCC cells which was significantly associated with presence of EBV. The production of IDO, tumor necrosis factor-alpha (TNF-α) and interleukin-6 (IL-6) in human monocyte-derived macrophages (MDMs) was induced by EBV-associated exosomes in vitro. Mechanistically, the retinoic acid-inducible gene I (RIG-I) pathway in MDMs was stimulated by EBV-encoded small RNA-1 (EBER-1) whereas the inhibition of these pathways by BX-795 almost abolished the production of these two cytokines and IDO induction. Also, the EBER-1-activated IDO in MDMs suppressed the proliferation of T lymphocytes and diminished the cytolytic activity of CD8+ T cells. CONCLUSION Exosomes carrying EBER-1 could induce IDO expression in MDMs, considerably aided by an IL-6 and TNF-α-dependent mechanism via the RIG-I signaling pathway, which might create an immunosuppressive microenvironment affecting T-cell immune responses.
Collapse
Affiliation(s)
- Ati Burassakarn
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; HPV & EBV and Carcinogenesis Research Group, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Sawarot Srisathaporn
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; HPV & EBV and Carcinogenesis Research Group, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Chamsai Pientong
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; HPV & EBV and Carcinogenesis Research Group, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Weerayut Wongjampa
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; HPV & EBV and Carcinogenesis Research Group, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Patravoot Vatanasapt
- Department of Otorhinolaryngology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; HPV & EBV and Carcinogenesis Research Group, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Natcha Patarapadungkit
- Department of Pathology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; HPV & EBV and Carcinogenesis Research Group, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Tipaya Ekalaksananan
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; Department of Otorhinolaryngology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand.
| |
Collapse
|
21
|
Clinical Manifestations and Epigenetic Regulation of Oral Herpesvirus Infections. Viruses 2021; 13:v13040681. [PMID: 33920978 PMCID: PMC8071331 DOI: 10.3390/v13040681] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/13/2021] [Accepted: 04/13/2021] [Indexed: 12/20/2022] Open
Abstract
The oral cavity is often the first site where viruses interact with the human body. The oral epithelium is a major site of viral entry, replication and spread to other cell types, where chronic infection can be established. In addition, saliva has been shown as a primary route of person-to-person transmission for many viruses. From a clinical perspective, viral infection can lead to several oral manifestations, ranging from common intraoral lesions to tumors. Despite the clinical and biological relevance of initial oral infection, little is known about the mechanism of regulation of the viral life cycle in the oral cavity. Several viruses utilize host epigenetic machinery to promote their own life cycle. Importantly, viral hijacking of host chromatin-modifying enzymes can also lead to the dysregulation of host factors and in the case of oncogenic viruses may ultimately play a role in promoting tumorigenesis. Given the known roles of epigenetic regulation of viral infection, epigenetic-targeted antiviral therapy has been recently explored as a therapeutic option for chronic viral infection. In this review, we highlight three herpesviruses with known roles in oral infection, including herpes simplex virus type 1, Epstein–Barr virus and Kaposi’s sarcoma-associated herpesvirus. We focus on the respective oral clinical manifestations of these viruses and their epigenetic regulation, with a specific emphasis on the viral life cycle in the oral epithelium.
Collapse
|
22
|
Wang G, Zarek C, Chang T, Tao L, Lowe A, Reese TA. Th2 Cytokine Modulates Herpesvirus Reactivation in a Cell Type Specific Manner. J Virol 2021; 95:JVI.01946-20. [PMID: 33536178 PMCID: PMC8103696 DOI: 10.1128/jvi.01946-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 01/26/2021] [Indexed: 12/14/2022] Open
Abstract
Gammaherpesviruses, such as Epstein-Barr virus (EBV), Kaposi's sarcoma associated virus (KSHV), and murine γ-herpesvirus 68 (MHV68), establish latent infection in B cells, macrophages, and non-lymphoid cells, and can induce both lymphoid and non-lymphoid cancers. Research on these viruses has relied heavily on immortalized B cell and endothelial cell lines. Therefore, we know very little about the cell type specific regulation of virus infection. We have previously shown that treatment of MHV68-infected macrophages with the cytokine interleukin-4 (IL-4) or challenge of MHV68-infected mice with an IL-4-inducing parasite leads to virus reactivation. However, we do not know if all latent reservoirs of the virus, including B cells, reactivate the virus in response to IL-4. Here we used an in vivo approach to address the question of whether all latently infected cell types reactivate MHV68 in response to a particular stimulus. We found that IL-4 receptor expression on macrophages was required for IL-4 to induce virus reactivation, but that it was dispensable on B cells. We further demonstrated that the transcription factor, STAT6, which is downstream of the IL-4 receptor and binds virus gene 50 N4/N5 promoter in macrophages, did not bind to the virus gene 50 N4/N5 promoter in B cells. These data suggest that stimuli that promote herpesvirus reactivation may only affect latent virus in particular cell types, but not in others.Importance Herpesviruses establish life-long quiescent infections in specific cells in the body, and only reactivate to produce infectious virus when precise signals induce them to do so. The signals that induce herpesvirus reactivation are often studied only in one particular cell type infected with the virus. However, herpesviruses establish latency in multiple cell types in their hosts. Using murine gammaherpesvirus-68 (MHV68) and conditional knockout mice, we examined the cell type specificity of a particular reactivation signal, interleukin-4 (IL-4). We found that IL-4 only induced herpesvirus reactivation from macrophages, but not from B cells. This work indicates that regulation of virus latency and reactivation is cell type specific. This has important implications for therapies aimed at either promoting or inhibiting reactivation for the control or elimination of chronic viral infections.
Collapse
Affiliation(s)
- Guoxun Wang
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Christina Zarek
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Tyron Chang
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Lili Tao
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Alexandria Lowe
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Tiffany A Reese
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
23
|
Leong MML, Lung ML. The Impact of Epstein-Barr Virus Infection on Epigenetic Regulation of Host Cell Gene Expression in Epithelial and Lymphocytic Malignancies. Front Oncol 2021; 11:629780. [PMID: 33718209 PMCID: PMC7947917 DOI: 10.3389/fonc.2021.629780] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 01/18/2021] [Indexed: 12/29/2022] Open
Abstract
Epstein-Barr virus (EBV) infection is associated with a variety of malignancies including Burkitt's lymphoma (BL), Hodgkin's disease, T cell lymphoma, nasopharyngeal carcinoma (NPC), and ∼10% of cases of gastric cancer (EBVaGC). Disruption of epigenetic regulation in the expression of tumor suppressor genes or oncogenes has been considered as one of the important mechanisms for carcinogenesis. Global hypermethylation is a distinct feature in NPC and EBVaGC, whereas global reduction of H3K27me3 is more prevalent in EBVaGC and EBV-transformed lymphoblastoid cells. In BL, EBV may even usurp the host factors to epigenetically regulate its own viral gene expression to restrict latency and lytic switch, resulting in evasion of immunosurveillance. Furthermore, in BL and EBVaGC, the interaction between the EBV episome and the host genome is evident with respectively unique epigenetic features. While the interaction is associated with suppression of gene expression in BL, the corresponding activity in EBVaGC is linked to activation of gene expression. As EBV establishes a unique latency program in these cancer types, it is possible that EBV utilizes different latency proteins to hijack the epigenetic modulators in the host cells for pathogenesis. Since epigenetic regulation of gene expression is reversible, understanding the precise mechanisms about how EBV dysregulates the epigenetic mechanisms enables us to identify the potential targets for epigenetic therapies. This review summarizes the currently available epigenetic profiles of several well-studied EBV-associated cancers and the relevant distinct mechanisms leading to aberrant epigenetic signatures due to EBV.
Collapse
Affiliation(s)
- Merrin Man Long Leong
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States.,Department of Microbiology, Harvard Medical School, Harvard University, Boston, MA, United States
| | - Maria Li Lung
- Department of Clinical Oncology, University of Hong Kong, Hong Kong, Hong Kong
| |
Collapse
|
24
|
Epigenetic reprogramming sensitizes immunologically silent EBV+ lymphomas to virus-directed immunotherapy. Blood 2021; 135:1870-1881. [PMID: 32157281 DOI: 10.1182/blood.2019004126] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 02/14/2020] [Indexed: 12/31/2022] Open
Abstract
Despite advances in T-cell immunotherapy against Epstein-Barr virus (EBV)-infected lymphomas that express the full EBV latency III program, a critical barrier has been that most EBV+ lymphomas express the latency I program, in which the single Epstein-Barr nuclear antigen (EBNA1) is produced. EBNA1 is poorly immunogenic, enabling tumors to evade immune responses. Using a high-throughput screen, we identified decitabine as a potent inducer of immunogenic EBV antigens, including LMP1, EBNA2, and EBNA3C. Induction occurs at low doses and persists after removal of decitabine. Decitabine treatment of latency I EBV+ Burkitt lymphoma (BL) sensitized cells to lysis by EBV-specific cytotoxic T cells (EBV-CTLs). In latency I BL xenografts, decitabine followed by EBV-CTLs results in T-cell homing to tumors and inhibition of tumor growth. Collectively, these results identify key epigenetic factors required for latency restriction and highlight a novel therapeutic approach to sensitize EBV+ lymphomas to immunotherapy.
Collapse
|
25
|
van Gent M, Reich A, Velu SE, Gack MU. Nonsense-mediated decay controls the reactivation of the oncogenic herpesviruses EBV and KSHV. PLoS Biol 2021; 19:e3001097. [PMID: 33596193 PMCID: PMC7888593 DOI: 10.1371/journal.pbio.3001097] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 01/08/2021] [Indexed: 12/20/2022] Open
Abstract
The oncogenic human herpesviruses Epstein-Barr virus (EBV) and Kaposi's sarcoma-associated herpesvirus (KSHV) are the causative agents of multiple malignancies. A hallmark of herpesviruses is their biphasic life cycle consisting of latent and lytic infection. In this study, we identified that cellular nonsense-mediated decay (NMD), an evolutionarily conserved RNA degradation pathway, critically regulates the latent-to-lytic switch of EBV and KSHV infection. The NMD machinery suppresses EBV and KSHV Rta transactivator expression and promotes maintenance of viral latency by targeting the viral polycistronic transactivator transcripts for degradation through the recognition of features in their 3' UTRs. Treatment with a small-molecule NMD inhibitor potently induced reactivation in a variety of EBV- and KSHV-infected cell types. In conclusion, our results identify NMD as an important host process that controls oncogenic herpesvirus reactivation, which may be targeted for the therapeutic induction of lytic reactivation and the eradication of tumor cells.
Collapse
Affiliation(s)
- Michiel van Gent
- Florida Research and Innovation Center, Cleveland Clinic, Port Saint Lucie, Florida, United States of America
- Department of Microbiology, The University of Chicago, Chicago, Illinois, United States of America
| | - Adrian Reich
- Florida Research and Innovation Center, Cleveland Clinic, Port Saint Lucie, Florida, United States of America
| | - Sadanandan E. Velu
- Department of Chemistry, University of Alabama Birmingham, Birmingham, Alabama, United States of America
| | - Michaela U. Gack
- Florida Research and Innovation Center, Cleveland Clinic, Port Saint Lucie, Florida, United States of America
- Department of Microbiology, The University of Chicago, Chicago, Illinois, United States of America
| |
Collapse
|
26
|
Sun K, Jia K, Lv H, Wang SQ, Wu Y, Lei H, Chen X. EBV-Positive Gastric Cancer: Current Knowledge and Future Perspectives. Front Oncol 2020; 10:583463. [PMID: 33381453 PMCID: PMC7769310 DOI: 10.3389/fonc.2020.583463] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 09/09/2020] [Indexed: 12/16/2022] Open
Abstract
Gastric cancer is the fifth most common malignant tumor and second leading cause of cancer-related deaths worldwide. With the improved understanding of gastric cancer, a subset of gastric cancer patients infected with Epstein–Barr virus (EBV) has been identified. EBV-positive gastric cancer is a type of tumor with unique genomic aberrations, significant clinicopathological features, and a good prognosis. After EBV infects the human body, it first enters an incubation period in which the virus integrates its DNA into the host and expresses the latent protein and then affects DNA methylation through miRNA under the action of the latent protein, which leads to the occurrence of EBV-positive gastric cancer. With recent developments in immunotherapy, better treatment of EBV-positive gastric cancer patients appears achievable. Moreover, studies show that treatment with immunotherapy has a high effective rate in patients with EBV-positive gastric cancer. This review summarizes the research status of EBV-positive gastric cancer in recent years and indicates areas for improvement of clinical practice.
Collapse
Affiliation(s)
- Keran Sun
- Department of Oncology, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Keqi Jia
- Department of Pathology, Pathology Department of Hebei Medical University, Shijiazhuang, China
| | - Huifang Lv
- Department of Oncology, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Sai-Qi Wang
- Department of Oncology, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Yan Wu
- Department of Oncology, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Huijun Lei
- Department of Oncology, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Xiaobing Chen
- Department of Oncology, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| |
Collapse
|
27
|
Ohsaki E, Ueda K. Interplay Between KSHV and the Host DNA Damage Response. Front Cell Infect Microbiol 2020; 10:604351. [PMID: 33425783 PMCID: PMC7793933 DOI: 10.3389/fcimb.2020.604351] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 11/09/2020] [Indexed: 12/11/2022] Open
Abstract
Interactions between viruses and cellular factors are essential for viral replication or host defense. The DNA damage response (DDR) orchestrates a molecular network of cellular mechanisms that integrates cell cycle regulation and DNA repair or apoptosis. Numerous studies have revealed that the DDR is activated by virus infection, aberrant DNA structures generated by viral DNA replication, or the integration of retroviruses. Although the DDR is an essential function for maintaining the genomic integrity of cells, viruses may utilize this mechanism to build a convenient environment for themselves, and the resulting perturbation of the DDR has been shown to increase the risk of tumorigenesis. There have been many studies investigating the roles of the DDR in oncogenic viruses such as Epstein-Barr virus (EBV), human papillomavirus (HPV), hepatitis B virus (HBV), human T-cell leukemia virus type 1 (HTLV-1), and Kaposi’s sarcoma-associated herpesvirus (KSHV). This review summarizes current knowledge on the roles of DDR in the KSHV lifecycle.
Collapse
Affiliation(s)
- Eriko Ohsaki
- Division of Virology, Department of Microbiology and Immunology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Keiji Ueda
- Division of Virology, Department of Microbiology and Immunology, Osaka University Graduate School of Medicine, Suita, Japan
| |
Collapse
|
28
|
Identification and Prevalence of Phascolarctid Gammaherpesvirus Types 1 and 2 in South Australian Koala Populations. Viruses 2020; 12:v12090948. [PMID: 32867109 PMCID: PMC7552032 DOI: 10.3390/v12090948] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/20/2020] [Accepted: 08/22/2020] [Indexed: 01/01/2023] Open
Abstract
To determine Phascolarctid gammaherpesviruses (PhaHV) infection in South Australian koala populations, 80 oropharyngeal swabs from wild-caught and 87 oropharyngeal spleen samples and swabs from euthanased koalas were tested using two specific PCR assays developed to detect PhaHV-1 and PhaHV-2. In wild-caught koalas, active shedding of PhaHV was determined by positive oropharyngeal samples in 72.5% (58/80) of animals, of which 44.8% (26/58) had PhaHV-1, 20.7% (12/58) PhaHV-2 and 34.5% (20/58) both viral subtypes. In the euthanased koalas, systemic infection was determined by positive PCR in spleen samples and found in 72.4% (63/87) of koalas. Active shedding was determined by positive oropharyngeal results and found in 54.0% (47/87) of koalas. Koalas infected and actively shedding PhaHV-1 alone, PhaHV-2 alone or shedding both viral subtypes were 48.9% (23/47), 14.9% (7/47) and 36.2% (17/47), respectively. Only 45.9% (40/87) were not actively shedding, of which 40.0% (16/40) of these had systemic infections. Both wild-caught and euthanased koalas actively shedding PhaHV-2 were significantly more likely to be actively shedding both viral subtypes. Active shedding of PhaHV-2 had a significant negative correlation with BCS in the euthanased cohort, and active shedding of PhaHV-1 had a significant positive relationship with age in both wild-caught and euthanased cohorts.
Collapse
|
29
|
Guo R, Jiang C, Zhang Y, Govande A, Trudeau SJ, Chen F, Fry CJ, Puri R, Wolinsky E, Schineller M, Frost TC, Gebre M, Zhao B, Giulino-Roth L, Doench JG, Teng M, Gewurz BE. MYC Controls the Epstein-Barr Virus Lytic Switch. Mol Cell 2020; 78:653-669.e8. [PMID: 32315601 DOI: 10.1016/j.molcel.2020.03.025] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 02/14/2020] [Accepted: 03/16/2020] [Indexed: 12/12/2022]
Abstract
Epstein-Barr virus (EBV) is associated with multiple human malignancies. To evade immune detection, EBV switches between latent and lytic programs. How viral latency is maintained in tumors or in memory B cells, the reservoir for lifelong EBV infection, remains incompletely understood. To gain insights, we performed a human genome-wide CRISPR/Cas9 screen in Burkitt lymphoma B cells. Our analyses identified a network of host factors that repress lytic reactivation, centered on the transcription factor MYC, including cohesins, FACT, STAGA, and Mediator. Depletion of MYC or factors important for MYC expression reactivated the lytic cycle, including in Burkitt xenografts. MYC bound the EBV genome origin of lytic replication and suppressed its looping to the lytic cycle initiator BZLF1 promoter. Notably, MYC abundance decreases with plasma cell differentiation, a key lytic reactivation trigger. Our results suggest that EBV senses MYC abundance as a readout of B cell state and highlights Burkitt latency reversal therapeutic targets.
Collapse
Affiliation(s)
- Rui Guo
- Division of Infectious Disease, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Chang Jiang
- Division of Infectious Disease, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Yuchen Zhang
- Division of Infectious Disease, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Apurva Govande
- Harvard Graduate Program in Virology, Boston, MA 02115, USA
| | - Stephen J Trudeau
- Division of Infectious Disease, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Fang Chen
- Cell Signaling Technology, Inc., Danvers, MA 01923, USA
| | | | - Rishi Puri
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Emma Wolinsky
- Division of Infectious Disease, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Molly Schineller
- Division of Infectious Disease, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Thomas C Frost
- Harvard Graduate Program in Virology, Boston, MA 02115, USA
| | - Makda Gebre
- Harvard Graduate Program in Virology, Boston, MA 02115, USA
| | - Bo Zhao
- Division of Infectious Disease, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Lisa Giulino-Roth
- Division of Pediatric Hematology/Oncology, Weill Cornell Medical College, New York, NY 10065, USA
| | - John G Doench
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Mingxiang Teng
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA.
| | - Benjamin E Gewurz
- Division of Infectious Disease, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Harvard Graduate Program in Virology, Boston, MA 02115, USA.
| |
Collapse
|
30
|
B Cell-Specific Transcription Activator PAX5 Recruits p300 To Support EBNA1-Driven Transcription. J Virol 2020; 94:JVI.02028-19. [PMID: 31941781 DOI: 10.1128/jvi.02028-19] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 12/23/2019] [Indexed: 01/09/2023] Open
Abstract
The binding of Epstein-Barr Virus (EBV) nuclear antigen 1 (EBNA1) to the latent replication origin (oriP) triggers multiple downstream events to support virus-induced pathogenesis and tumorigenesis. Although EBV is widely recognized as a B-lymphotropic infectious agent, little is known about how tissue-specific factors are involved in the establishment of latency. Here, we showed that EBNA1 binds B cell activator PAX5 to promote EBNA1/oriP-dependent binding and transcription. In addition to showing that short hairpin RNA (shRNA)-mediated PAX5 knockdown substantially abrogated the above EBNA1-dependent functions, two mini-EBV reporter plasmids were used to perform nonlytic nano-luciferase (nLuc) activity and chromatin immunoprecipitation (ChIP) assays to show how EBNA1 cooperates with PAX5 to activate the transcription at the oriP site. The expression plasmids of two PAX5 mutants, V26G (EBNA1 binding mutant) and P80R (which remained EBNA1 associated), were used to assess their capability to restore the defects caused by PAX5 depletion in EBNA1/oriP-mediated binding, transcription, and maintenance of the genome copy number of the mini-EBV episome reporter in BJAB cells stably expressing EBNA1 or that of the EBV genome in EBV-infected BJAB cells. Since p300 is known to be associated with PAX5, we showed that the loss of function of the P80R mutant in support of EBNA1/oriP-mediated transcription under PAX5 depletion conditions was linked to its defective binding to p300. ChIP-quantitative PCR (qPCR) confirmed that P80R indeed failed to recruit p300 to the oriP DNA. Our discovery suggests that EBV has evolved an exquisite strategy to take advantage of tissue-specific factors to enable the establishment of viral latency.IMPORTANCE Although B cells are known to be the primary target for EBV infection, there is limited knowledge regarding the mechanism that determines this preferable tissue tropism. An in-depth understanding of the potential link of tissue-specific factors with the viral genes and their functioning is key to deciphering how EBV induces persistent infection in the distinct types of host cells. In this study, a substantial protein-protein interaction mediated by the B cell-specific activator PAX5 and EBNA1 was identified as the general requirement for the binding of EBNA1 to the latent replication origin and for downstream events. Of importance, the EBNA1-PAX5-p300 network is directly linked to EBNA1-dependent transcription. These findings suggest that targeting the viral gene-associated tissue-specific factors may lead to new therapeutic strategies for EBV-associated malignancies.
Collapse
|
31
|
Gastric cancer: genome damaged by bugs. Oncogene 2020; 39:3427-3442. [PMID: 32123313 PMCID: PMC7176583 DOI: 10.1038/s41388-020-1241-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 02/18/2020] [Accepted: 02/20/2020] [Indexed: 12/20/2022]
Abstract
Gastric cancer (GC) is one of the leading causes of cancer-related death worldwide. The role of the microorganisms in gastric tumorigenesis attracts much attention in recent years. These microorganisms include bacteria, virus, and fungi. Among them, Helicobacter pylori (H. pylori) infection is by far the most important risk factor for GC development, with special reference to the early-onset cases. H. pylori targets multiple cellular components by utilizing various virulence factors to modulate the host proliferation, apoptosis, migration, and inflammatory response. Epstein–Barr virus (EBV) serves as another major risk factor in gastric carcinogenesis. The virus protein, EBER noncoding RNA, and EBV miRNAs contribute to the tumorigenesis by modulating host genome methylation and gene expression. In this review, we summarized the related reports about the colonized microorganism in the stomach and discussed their specific roles in gastric tumorigenesis. Meanwhile, we highlighted the therapeutic significance of eradicating the microorganisms in GC treatment.
Collapse
|
32
|
Sethuraman S, Thomas M, Gay LA, Renne R. Computational analysis of ribonomics datasets identifies long non-coding RNA targets of γ-herpesviral miRNAs. Nucleic Acids Res 2019; 46:8574-8589. [PMID: 29846699 PMCID: PMC6144796 DOI: 10.1093/nar/gky459] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 05/14/2018] [Indexed: 12/16/2022] Open
Abstract
Ribonomics experiments involving crosslinking and immuno-precipitation (CLIP) of Ago proteins have expanded the understanding of the miRNA targetome of several organisms. These techniques, collectively referred to as CLIP-seq, have been applied to identifying the mRNA targets of miRNAs expressed by Kaposi’s Sarcoma-associated herpes virus (KSHV) and Epstein–Barr virus (EBV). However, these studies focused on identifying only those RNA targets of KSHV and EBV miRNAs that are known to encode proteins. Recent studies have demonstrated that long non-coding RNAs (lncRNAs) are also targeted by miRNAs. In this study, we performed a systematic re-analysis of published datasets from KSHV- and EBV-driven cancers. We used CLIP-seq data from lymphoma cells or EBV-transformed B cells, and a crosslinking, ligation and sequencing of hybrids dataset from KSHV-infected endothelial cells, to identify novel lncRNA targets of viral miRNAs. Here, we catalog the lncRNA targetome of KSHV and EBV miRNAs, and provide a detailed in silico analysis of lncRNA–miRNA binding interactions. Viral miRNAs target several hundred lncRNAs, including a subset previously shown to be aberrantly expressed in human malignancies. In addition, we identified thousands of lncRNAs to be putative targets of human miRNAs, suggesting that miRNA–lncRNA interactions broadly contribute to the regulation of gene expression.
Collapse
Affiliation(s)
- Sunantha Sethuraman
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL 32610, USA
| | - Merin Thomas
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL 32610, USA
| | - Lauren A Gay
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL 32610, USA
| | - Rolf Renne
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL 32610, USA.,UF Health Cancer Center, University of Florida, Gainesville, FL 32610, USA.,UF Genetics Institute, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
33
|
Methylation analysis of plasma DNA informs etiologies of Epstein-Barr virus-associated diseases. Nat Commun 2019; 10:3256. [PMID: 31332191 PMCID: PMC6646310 DOI: 10.1038/s41467-019-11226-5] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 07/02/2019] [Indexed: 12/13/2022] Open
Abstract
Epstein-Barr virus (EBV) is associated with a number of diseases, including malignancies. Currently, it is not known whether patients with different EBV-associated diseases have different methylation profiles of circulating EBV DNA. Through whole-genome methylation analysis of plasma samples from patients with nasopharyngeal carcinoma (NPC), EBV-associated lymphoma and infectious mononucleosis, we demonstrate that EBV DNA methylation profiles exhibit a disease-associated pattern. This observation implies a significant potential for the development of methylation analysis of plasma EBV DNA for NPC diagnostics. We further analyse the plasma EBV DNA methylome of NPC and non-NPC subjects from a prospective screening cohort. Plasma EBV DNA fragments demonstrate differential methylation patterns between NPC and non-NPC subjects. Combining such differential methylation patterns with the fractional concentration (count) and size of plasma EBV DNA, population screening of NPC is performed with an improved positive predictive value of 35.1%, compared to a count- and size-based only protocol. Epstein-Barr virus (EBV) is associated with different malignant diseases and circulating EBV DNA is a biomarker for nasopharyngeal carcinoma (NPC). Here, the authors report that plasma EBV DNA methylation profiles show disease-associated patterns and can help to distinguish NPC and non-NPC subjects.
Collapse
|
34
|
Chakravorty A, Sugden B, Johannsen EC. An Epigenetic Journey: Epstein-Barr Virus Transcribes Chromatinized and Subsequently Unchromatinized Templates during Its Lytic Cycle. J Virol 2019; 93:e02247-18. [PMID: 30700606 PMCID: PMC6450099 DOI: 10.1128/jvi.02247-18] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The Epstein-Barr virus (EBV) lytic phase, like those of all herpesviruses, proceeds via an orderly cascade that integrates DNA replication and gene expression. EBV early genes are expressed independently of viral DNA amplification, and several early gene products facilitate DNA amplification. On the other hand, EBV late genes are defined by their dependence on viral DNA replication for expression. Recently, a set of orthologous genes found in beta- and gammaherpesviruses have been determined to encode a viral preinitiation complex (vPIC) that mediates late gene expression. The EBV vPIC requires an origin of lytic replication in cis, implying that the vPIC mediates transcription from newly replicated DNA. In agreement with this implication, EBV late gene mRNAs localize to replication factories. Notably, these factories exclude canonical histones. In this review, we compare and contrast the mechanisms and epigenetics of EBV early and late gene expression. We summarize recent findings, propose a model explaining the dependence of EBV late gene expression on lytic DNA amplification, and suggest some directions for future study.
Collapse
Affiliation(s)
- Adityarup Chakravorty
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Bill Sugden
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Eric C Johannsen
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
35
|
Dugan JP, Coleman CB, Haverkos B. Opportunities to Target the Life Cycle of Epstein-Barr Virus (EBV) in EBV-Associated Lymphoproliferative Disorders. Front Oncol 2019; 9:127. [PMID: 30931253 PMCID: PMC6428703 DOI: 10.3389/fonc.2019.00127] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 02/13/2019] [Indexed: 12/29/2022] Open
Abstract
Many lymphoproliferative disorders (LPDs) are considered "EBV associated" based on detection of the virus in tumor tissue. EBV drives proliferation of LPDs via expression of the viral latent genes and many pre-clinical and clinical studies have shown EBV-associated LPDs can be treated by exploiting the viral life cycle. After a brief review of EBV virology and the natural life cycle within a host we will discuss the importance of the viral gene programs expressed during specific viral phases, as well as within immunocompetent vs. immunocompromised hosts and corresponding EBV-associated LPDs. We will then review established and emerging treatment approaches for EBV-associated LPDs based on EBV gene expression programs. Patients with EBV-associated LPDs can have a poor performance status, multiple comorbidities, and/or are immunocompromised from organ transplantation, autoimmune disease, or other congenital or acquired immunodeficiency making them poor candidates to receive intensive cytotoxic chemotherapy. With the emergence of EBV-directed therapy there is hope that we can devise more effective therapies that confer milder toxicity.
Collapse
Affiliation(s)
- James P. Dugan
- Division of Hematology, University of Colorado, Aurora, CO, United States
| | - Carrie B. Coleman
- Division of Immunology, University of Colorado, Aurora, CO, United States
| | - Bradley Haverkos
- Division of Hematology, University of Colorado, Aurora, CO, United States
| |
Collapse
|
36
|
Butnaru M, Gaglia MM. Transcriptional and post-transcriptional regulation of viral gene expression in the gamma-herpesvirus Kaposi's sarcoma-associated herpesvirus. CURRENT CLINICAL MICROBIOLOGY REPORTS 2019; 5:219-228. [PMID: 30854283 DOI: 10.1007/s40588-018-0102-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Purpose of review Kaposi's sarcoma-associated herpesvirus (KSHV), the etiological agent of the AIDS-associated tumor Kaposi's sarcoma, is a complex virus that expresses ~90 proteins in a regulated temporal cascade during its replication cycle. Although KSHV relies on cellular machinery for gene expression, it also uses specialized regulators to control nearly every step of the process. In this review we discuss the current understanding of KSHV gene regulation. Recent findings High-throughput sequencing and a new robust system to mutate KSHV have paved the way for comprehensive studies of KSHV gene expression, leading to the characterization of new viral factors that control late gene expression and post-transcriptional steps of gene regulation. They have also revealed key aspects of chromatin-based control of gene expression in the latent and lytic cycle. Summary The combination of mutant analysis and high-throughput sequencing will continue to expand our model of KSHV gene regulation and point to potential new targets for anti-KSHV drugs.
Collapse
Affiliation(s)
- Matthew Butnaru
- Graduate Program in Biochemistry, Sackler School of Biomedical Sciences, Tufts University, Boston, MA, USA
- Department of Molecular Biology and Microbiology, School of Medicine, Tufts University, Boston, MA, USA
| | - Marta M Gaglia
- Department of Molecular Biology and Microbiology, School of Medicine, Tufts University, Boston, MA, USA
| |
Collapse
|
37
|
Pang PS, Liu T, Lin W, Tsang CM, Yip YL, Zhou Y, Guan XY, Chan RCK, Tsao SW, Deng W. Defining early events of Epstein-Barr virus (EBV) infection in immortalized nasopharyngeal epithelial cells using cell-free EBV infection. J Gen Virol 2019; 100:999-1012. [PMID: 30816843 DOI: 10.1099/jgv.0.001243] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Epstein-Barr virus (EBV) infection is strongly associated with nasopharyngeal carcinoma, a common cancer in Southeast Asia and certain regions of Africa. However, the dynamics of EBV episome maintenance in infected nasopharyngeal epithelial (NPE) cells remain largely undefined. Here, we report the establishment of a highly efficient cell-free EBV infection method for NPE cells. By using this method, we have defined some of the dynamic events involved in the early stage of EBV infection in NPE cells. We report, for the first time, a rapid loss of EBV copies from infected NPE cells during the first 12-72 h post-infection. The rate of EBV loss slowed at later stages of infection. Live cell imaging revealed that the freshly infected NPE cells were delayed in entry into mitosis compared with uninfected cells. Freshly infected NPE cells transcribed significantly higher levels of lytic EBV genes BZLF1 and BMRF1 yet significantly lower levels of EBER1/2 than stably infected NPE cells. Notably, there were very low or undetectable levels of protein expressions of EBNA1, LMP1, Zta and Rta in freshly infected NPE cells, whereas EBNA1 and LMP1 proteins were readily detected in stable EBV-infected NPE cells. The kinetics of EBV loss and the differential EBV gene expression profiles between freshly and stably infected NPE cells are in line with the suggestion of epigenetic changes in the EBV genome that affect viral gene expression and the adaptation of host cells to EBV infection to maintain persistent EBV infection in NPE cells.
Collapse
Affiliation(s)
- Pei Shin Pang
- 1School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, SAR, PR China
| | - Tengfei Liu
- 1School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, SAR, PR China
| | - Weitao Lin
- 1School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, SAR, PR China
| | - Chi-Man Tsang
- 1School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, SAR, PR China.,2Department of Anatomical and Cellular Pathology, The State Key Translational Laboratory, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, SAR, PR China
| | - Yim-Ling Yip
- 1School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, SAR, PR China
| | - Yuan Zhou
- 1School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, SAR, PR China
| | - Xin-Yuan Guan
- 3Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, SAR, PR China
| | - Ronald Cheong-Kin Chan
- 2Department of Anatomical and Cellular Pathology, The State Key Translational Laboratory, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, SAR, PR China
| | - Sai-Wah Tsao
- 1School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, SAR, PR China
| | - Wen Deng
- 4School of Nursing, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, SAR, PR China
| |
Collapse
|
38
|
Immune System Modulation and Viral Persistence in Bats: Understanding Viral Spillover. Viruses 2019; 11:v11020192. [PMID: 30813403 PMCID: PMC6410205 DOI: 10.3390/v11020192] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 02/17/2019] [Accepted: 02/20/2019] [Indexed: 12/18/2022] Open
Abstract
Bats harbor a myriad of viruses and some of these viruses may have spilled over to other species including humans. Spillover events are rare and several factors must align to create the “perfect storm” that would ultimately lead to a spillover. One of these factors is the increased shedding of virus by bats. Several studies have indicated that bats have unique defense mechanisms that allow them to be persistently or latently infected with viruses. Factors leading to an increase in the viral load of persistently infected bats would facilitate shedding of virus. This article reviews the unique nature of bat immune defenses that regulate virus replication and the various molecular mechanisms that play a role in altering the balanced bat–virus relationship.
Collapse
|
39
|
De Leo A, Deng Z, Vladimirova O, Chen HS, Dheekollu J, Calderon A, Myers KA, Hayden J, Keeney F, Kaufer BB, Yuan Y, Robertson E, Lieberman PM. LANA oligomeric architecture is essential for KSHV nuclear body formation and viral genome maintenance during latency. PLoS Pathog 2019; 15:e1007489. [PMID: 30682185 PMCID: PMC6364946 DOI: 10.1371/journal.ppat.1007489] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 02/06/2019] [Accepted: 11/27/2018] [Indexed: 12/16/2022] Open
Abstract
The molecular basis for the formation of functional, higher-ordered macro-molecular domains is not completely known. The Kaposi’s Sarcoma-Associated Herpesvirus (KSHV) genome forms a super-molecular domain structure during latent infection that is strictly dependent on the DNA binding of the viral nuclear antigen LANA to the viral terminal repeats (TR). LANA is known to form oligomeric structures that have been implicated in viral episome maintenance. In this study, we show that the LANA oligomerization interface is required for the formation of higher-order nuclear bodies that partially colocalize with DAXX, EZH2, H3K27me3, and ORC2 but not with PML. These nuclear bodies assemble at the periphery of condensed cellular chromosomes during mitotic cell division. We demonstrate that the LANA oligomerization interface contributes to the cooperative DNA binding at the viral TR and the recruitment of ORC to the viral episome. Oligomerization mutants failed to auto-regulate LANA/ORF73 transcription, and this correlated with the loss of a chromosome conformational DNA-loop between the TR and LANA promoter. Viral genomes with LANA oligomerization mutants were subject to genome rearrangements including the loss of subgenomic DNA. Our data suggests that LANA oligomerization drives stable binding to the TR and formation of an epigenetically stable chromatin architecture resulting in higher-order LANA nuclear bodies important for viral genome integrity and long-term episome persistence. KSHV genomes persist in large nuclear bodies in latently infected cells. The KSHV encoded nuclear antigen LANA is required for the efficient replication and stable maintenance of viral genomes during latent infection. LANA is also known to form oligomeric structures, but it is not known how these structures contribute to LANA function in living cells. Here, we show that LANA oligomerization is required for cooperative binding to the KSHV terminal repeat (TR), and the recruitment of the Origin Recognition Complex (ORC) to viral TR. LANA oligomerization is required for a chromosome conformation DNA loop between TR and the LANA promoter implicated in LANA transcription autoregulation. LANA oligomerization is also required for formation of large nuclear bodies that colocalize with DAXX, EZH2, ORC2, but not PML. LANA nuclear bodies distribute along the nuclear periphery, and their arrangement is transmitted faithfully to daughter cells during mitotic cell division. Finally, we show that KSHV genomes containing mutations in the LANA oligomerization interface fail to maintain the complete viral genome, suggesting they are defective in DNA replication or repair. These findings reveal new mechanisms of LANA episome maintenance through formation of higher-order chromosome-conformations.
Collapse
Affiliation(s)
- Alessandra De Leo
- Program in Gene Expression and Regulation, The Wistar Institute, Philadelphia, Pennsylvania, United States of America
| | - Zhong Deng
- Program in Gene Expression and Regulation, The Wistar Institute, Philadelphia, Pennsylvania, United States of America
| | - Olga Vladimirova
- Program in Gene Expression and Regulation, The Wistar Institute, Philadelphia, Pennsylvania, United States of America
| | - Horng-Shen Chen
- Program in Gene Expression and Regulation, The Wistar Institute, Philadelphia, Pennsylvania, United States of America
| | - Jayaraju Dheekollu
- Program in Gene Expression and Regulation, The Wistar Institute, Philadelphia, Pennsylvania, United States of America
| | - Abram Calderon
- Program in Gene Expression and Regulation, The Wistar Institute, Philadelphia, Pennsylvania, United States of America
| | - Kenneth A. Myers
- Department of Biological Sciences, University of the Sciences, Philadelphia, Pennsylvania, United States of America
| | - James Hayden
- Program in Gene Expression and Regulation, The Wistar Institute, Philadelphia, Pennsylvania, United States of America
| | - Frederick Keeney
- Program in Gene Expression and Regulation, The Wistar Institute, Philadelphia, Pennsylvania, United States of America
| | - Benedikt B. Kaufer
- Department of Virology, Institute Virology, Freie Universitat Berlin, Berlin, Germany
| | - Yan Yuan
- Department of Biochemistry, School of Dentistry, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Erle Robertson
- Department of Microbiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Paul M. Lieberman
- Program in Gene Expression and Regulation, The Wistar Institute, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
40
|
Sorel O, Dewals BG. The Critical Role of Genome Maintenance Proteins in Immune Evasion During Gammaherpesvirus Latency. Front Microbiol 2019; 9:3315. [PMID: 30687291 PMCID: PMC6333680 DOI: 10.3389/fmicb.2018.03315] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 12/20/2018] [Indexed: 12/25/2022] Open
Abstract
Gammaherpesviruses are important pathogens that establish latent infection in their natural host for lifelong persistence. During latency, the viral genome persists in the nucleus of infected cells as a circular episomal element while the viral gene expression program is restricted to non-coding RNAs and a few latency proteins. Among these, the genome maintenance protein (GMP) is part of the small subset of genes expressed in latently infected cells. Despite sharing little peptidic sequence similarity, gammaherpesvirus GMPs have conserved functions playing essential roles in latent infection. Among these functions, GMPs have acquired an intriguing capacity to evade the cytotoxic T cell response through self-limitation of MHC class I-restricted antigen presentation, further ensuring virus persistence in the infected host. In this review, we provide an updated overview of the main functions of gammaherpesvirus GMPs during latency with an emphasis on their immune evasion properties.
Collapse
Affiliation(s)
- Océane Sorel
- Immunology-Vaccinology, Department of Infectious and Parasitic Diseases, Faculty of Veterinary Medicine-FARAH, University of Liège, Liège, Belgium.,Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, United States
| | - Benjamin G Dewals
- Immunology-Vaccinology, Department of Infectious and Parasitic Diseases, Faculty of Veterinary Medicine-FARAH, University of Liège, Liège, Belgium
| |
Collapse
|
41
|
Gerow CM, Rapin N, Voordouw MJ, Elliot M, Misra V, Subudhi S. Arousal from hibernation and reactivation of Eptesicus fuscus gammaherpesvirus (EfHV) in big brown bats. Transbound Emerg Dis 2018; 66:1054-1062. [PMID: 30554475 DOI: 10.1111/tbed.13102] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 12/05/2018] [Accepted: 12/10/2018] [Indexed: 01/03/2023]
Abstract
Many viruses that cause serious and often fatal disease in humans have spilled over from bats. Recent evidence suggests that stress may enhance virus shedding by bats increasing the possibility of transmission to other species. To understand the reasons for spillover is therefore important to determine the molecular pathways that link stress to virus reactivation and shedding in bats. We recently isolated and characterized a gammaherpesvirus (Eptesicus fuscus herpesvirus, EfHV) autochthonous to North American big brown bats. Since herpesviruses are known to reactivate from latent infections in response to a wide variety of stressors, EfHV presents us with an opportunity to study how physiological, behavioural or environmental changes may influence the big brown bats' relationship with EfHV. To understand the biology of the virus and how the extended periods of torpor experienced by these bats during hibernation along with the stress of arousal might influence the virus-host relationship, we attempted to detect the virus in the blood of wild-caught non-hibernating bats as well as captive bats arising from hibernation. We compared the prevalence of EfHV in the blood (using PCR) and EfHV-specific antibodies (using ELISA) between captive hibernating bats and wild-caught non-hibernating bats. We detected EfHV only in the blood of captive hibernating bats (27.8% = 10/36) and not in wild-caught non-hibernating bats (0.0% = 0/43). In contrast, the EfHV-specific antibody titres were higher in the non-hibernating bats compared to the hibernating bats. Our study suggests that: (a) viral DNA in blood indicates reactivation from latency, (b) long periods of hibernation lead to suppression of immunity, (c) stress of arousal from hibernation reactivates the virus in bats with lower levels of anti-viral immunity (indicated by humoral immune response), and (d) levels of anti-viral immunity increase in non-hibernating bats following reactivation.
Collapse
Affiliation(s)
- Caleigh M Gerow
- Department of Microbiology, Western College of Veterinary Microbiology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Noreen Rapin
- Department of Microbiology, Western College of Veterinary Microbiology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Maarten J Voordouw
- Department of Microbiology, Western College of Veterinary Microbiology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Melanie Elliot
- Wildlife Rehab Society of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Vikram Misra
- Department of Microbiology, Western College of Veterinary Microbiology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Sonu Subudhi
- Department of Microbiology, Western College of Veterinary Microbiology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
42
|
Fukayama M, Kunita A, Kaneda A. Gastritis-Infection-Cancer Sequence of Epstein-Barr Virus-Associated Gastric Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1045:437-457. [PMID: 29896679 DOI: 10.1007/978-981-10-7230-7_20] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Epstein-Barr virus-associated gastric cancer (EBVaGC) is a representative EBV-infected epithelial neoplasm, which is now included as one of the four subtypes of The Cancer Genome Atlas molecular classification of gastric cancer. In this review, we portray a gastritis-infection-cancer sequence of EBVaGC. This virus-associated type of gastric cancer demonstrates clonal growth of EBV-infected epithelial cells within the mucosa of atrophic gastritis. Its core molecular abnormality is the EBV-specific hyper-epigenotype of CpG island promoter methylation, which induces silencing of tumor suppressor genes. This is due to the infection-induced disruption of the balance between DNA methylation and DNA demethylation activities. Abnormalities in the host cell genome, including phosphatidylinositol-4,5-biphosphate 3-kinase catalytic subunit α (PIK3CA), AT-rich interaction domain 1A (ARID1A), and programmed death-ligand 1 (PD-L1), are associated with the development and progression of EBVaGC. Furthermore, posttranscriptional modulation affects the transformation processes of EBV-infected cells, such as epithelial mesenchymal transition and anti-apoptosis, via cellular and viral microRNAs (miRNAs). Once established, cancer cells of EBVaGC remodel their microenvironment, at least partly, via the delivery of exosomes containing cellular and viral miRNAs. After exosomes are incorporated, these molecules change the functions of stromal cells, tuning the microenvironment for EBVaGC. During this series of events, EBV hijacks and uses cellular machineries, such as DNA methylation and the miRNA delivery system. This portrait of gastritis-infection-cancer sequences highlights the survival strategies of EBV in the stomach epithelial cells and may be useful for the integration of therapeutic modalities against EBV-driven gastric cancer.
Collapse
Affiliation(s)
- Masashi Fukayama
- Department of Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
| | - Akiko Kunita
- Department of Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Atsushi Kaneda
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan
| |
Collapse
|
43
|
Frost TC, Gewurz BE. Epigenetic crossroads of the Epstein-Barr virus B-cell relationship. Curr Opin Virol 2018; 32:15-23. [PMID: 30227386 DOI: 10.1016/j.coviro.2018.08.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 08/24/2018] [Indexed: 12/14/2022]
Abstract
Epstein-Barr virus (EBV) is a gamma-herpesvirus that establishes lifelong infection in the majority of people worldwide. EBV uses epigenetic reprogramming to switch between multiple latency states in order to colonize the memory B-cell compartment and to then periodically undergo lytic reactivation upon plasma cell differentiation. This review focuses on recent advances in the understanding of epigenetic mechanisms that EBV uses to control its lifecycle and to subvert the growth and survival pathways that underly EBV-driven B-cell differentiation versus B-cell growth transformation, a hallmark of the first human tumor virus. These include the formation of viral super enhancers that drive expression of key host dependency factors, evasion of tumor suppressor responses, prevention of plasmablast differentiation, and regulation of the B-cell lytic switch.
Collapse
Affiliation(s)
- Thomas C Frost
- Graduate Program in Virology, Harvard Medical School, Boston, MA, 02115, USA
| | - Benjamin E Gewurz
- Graduate Program in Virology, Harvard Medical School, Boston, MA, 02115, USA; Division of Infectious Disease, Department of Medicine, Brigham & Women's Hospital, Boston, MA, 02115, USA; Department of Microbiology, Harvard Medical School, Boston, MA, 02115, USA; Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA, 02142, USA.
| |
Collapse
|
44
|
PARP1 Stabilizes CTCF Binding and Chromatin Structure To Maintain Epstein-Barr Virus Latency Type. J Virol 2018; 92:JVI.00755-18. [PMID: 29976663 PMCID: PMC6146685 DOI: 10.1128/jvi.00755-18] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 06/26/2018] [Indexed: 12/14/2022] Open
Abstract
EBV is a human gammaherpesvirus that infects more than 95% of individuals worldwide. Upon infection, EBV circularizes as an episome and establishes a chronic, latent infection in B cells. In doing so, the virus utilizes host cell machinery to regulate and maintain the viral genome. In otherwise healthy individuals, EBV infection is typically nonpathological; however, latent infection is potentially oncogenic and is responsible for 1% of human cancers. During latent infection, EBV expresses specific sets of proteins according to the given latency type, each of which is associated with specific types of cancers. For example, type III latency, in which the virus expresses its full repertoire of latent proteins, is characteristic of AIDS-associated and posttransplant lymphomas associated with EBV infection. Understanding how viral latency type is regulated at the chromatin level may reveal potential targets for EBV-specific pharmacological intervention in EBV-associated cancers. Epstein Barr virus (EBV) is a potentially oncogenic gammaherpesvirus that establishes a chronic, latent infection in memory B cells. The EBV genome persists in infected host cells as a chromatinized episome and is subject to chromatin-mediated regulation. Binding of the host insulator protein CTCF to the EBV genome has an established role in maintaining viral latency type. CTCF is posttranslationally modified by the host enzyme PARP1. PARP1, or poly(ADP-ribose) polymerase 1, catalyzes the transfer of a poly(ADP-ribose) (PAR) moiety from NAD+ onto acceptor proteins, including itself, histone proteins, and CTCF. PARylation of CTCF by PARP1 can affect CTCF's insulator activity, DNA binding capacity, and ability to form chromatin loops. Both PARP1 and CTCF have been implicated in the regulation of EBV latency and lytic reactivation. Thus, we predicted that pharmacological inhibition with PARP1 inhibitors would affect EBV latency type through a chromatin-specific mechanism. Here, we show that PARP1 and CTCF colocalize at specific sites throughout the EBV genome and provide evidence to suggest that PARP1 acts to stabilize CTCF binding and maintain the open chromatin landscape at the active Cp promoter during type III latency. Further, PARP1 activity is important in maintaining latency type-specific viral gene expression. The data presented here provide a rationale for the use of PARP inhibitors in the treatment of EBV-associated cancers exhibiting type III latency and ultimately could contribute to an EBV-specific treatment strategy for AIDS-related or posttransplant lymphomas. IMPORTANCE EBV is a human gammaherpesvirus that infects more than 95% of individuals worldwide. Upon infection, EBV circularizes as an episome and establishes a chronic, latent infection in B cells. In doing so, the virus utilizes host cell machinery to regulate and maintain the viral genome. In otherwise healthy individuals, EBV infection is typically nonpathological; however, latent infection is potentially oncogenic and is responsible for 1% of human cancers. During latent infection, EBV expresses specific sets of proteins according to the given latency type, each of which is associated with specific types of cancers. For example, type III latency, in which the virus expresses its full repertoire of latent proteins, is characteristic of AIDS-associated and posttransplant lymphomas associated with EBV infection. Understanding how viral latency type is regulated at the chromatin level may reveal potential targets for EBV-specific pharmacological intervention in EBV-associated cancers.
Collapse
|
45
|
El-Sharkawy A, Al Zaidan L, Malki A. Epstein-Barr Virus-Associated Malignancies: Roles of Viral Oncoproteins in Carcinogenesis. Front Oncol 2018; 8:265. [PMID: 30116721 PMCID: PMC6082928 DOI: 10.3389/fonc.2018.00265] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Accepted: 06/27/2018] [Indexed: 12/19/2022] Open
Abstract
The Epstein–Barr virus (EBV) is the first herpesvirus identified to be associated with human cancers known to infect the majority of the world population. EBV-associated malignancies are associated with a latent form of infection, and several of the EBV-encoded latent proteins are known to mediate cellular transformation. These include six nuclear antigens and three latent membrane proteins (LMPs). In lymphoid and epithelial tumors, viral latent gene expressions have distinct pattern. In both primary and metastatic tumors, the constant expression of latent membrane protein 2A (LMP2A) at the RNA level suggests that this protein is the key player in the EBV-associated tumorigenesis. While LMP2A contributing to the malignant transformation possibly by cooperating with the aberrant host genome. This can be done in part by dysregulating signaling pathways at multiple points, notably in the cell cycle and apoptotic pathways. Recent studies also have confirmed that LMP1 and LMP2 contribute to carcinoma progression and that this may reflect the combined effects of these proteins on activation of multiple signaling pathways. This review article aims to investigate the aforementioned EBV-encoded proteins that reveal established roles in tumor formation, with a greater emphasis on the oncogenic LMPs (LMP1 and LMP2A) and their roles in dysregulating signaling pathways. It also aims to provide a quick look on the six members of the EBV nuclear antigens and their roles in dysregulating apoptosis.
Collapse
Affiliation(s)
- Ahmed El-Sharkawy
- Human Molecular Genetics Laboratory, Institute of Genetics and Biophysics "A. Buzzati-Traverso" (IGB)-CNR, Naples, Italy.,Biomolecular Science Programme, Università Degli Studi Della Campania "Luigi Vanvitelli", Naples, Italy
| | - Lobna Al Zaidan
- Biomedical Science Department, College of Health Sciences, Qatar University, Doha, Qatar
| | - Ahmed Malki
- Biomedical Science Department, College of Health Sciences, Qatar University, Doha, Qatar
| |
Collapse
|
46
|
KRAB-ZFP Repressors Enforce Quiescence of Oncogenic Human Herpesviruses. J Virol 2018; 92:JVI.00298-18. [PMID: 29695433 DOI: 10.1128/jvi.00298-18] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 04/21/2018] [Indexed: 12/15/2022] Open
Abstract
Cancer-causing herpesviruses infect nearly every human and persist indefinitely in B lymphocytes in a quiescent state known as latency. A hallmark of this quiescence or latency is the presence of extrachromosomal viral genomes with highly restricted expression of viral genes. Silencing of viral genes ensures both immune evasion by the virus and limited pathology to the host, yet how multiple genes on multiple copies of viral genomes are simultaneously silenced is a mystery. In a unifying theme, we report that both cancer-causing human herpesviruses, despite having evolved independently, are silenced through the activities of two members of the Krüppel-associated box (KRAB) domain-zinc finger protein (ZFP) (KRAB-ZFP) epigenetic silencing family, revealing a novel STAT3-KRAB-ZFP axis of virus latency. This dual-edged antiviral strategy restricts the destructive ability of the lytic phase while promoting the cancer-causing latent phase. These findings also unveil roles for KRAB-ZFPs in silencing of multicopy foreign genomes with the promise of evicting herpesviruses to kill viral cancers bearing clonal viral episomes.IMPORTANCE Despite robust immune responses, cancer-causing viruses Epstein-Barr virus (EBV) and Kaposi's sarcoma-associated herpesvirus (KSHV) persist for life. This persistence is accomplished partly through a stealth mechanism that keeps extrachromosomal viral genomes quiescent. Quiescence, or latency, ensures that not every cell harboring viral genomes is killed directly through lytic activation or indirectly via the immune response, thereby evicting virus from host. For the host, quiescence limits pathology. Thus, both virus and host benefit from quiescence, yet how quiescence is maintained through silencing of a large set of viral genes on multiple viral genomes is not well understood. Our studies reveal that members of a gene-silencing family, the KRAB-ZFPs, promote quiescence of both cancer-causing human viruses through simultaneous silencing of multiple genes on multicopy extrachromosomal viral genomes.
Collapse
|
47
|
Murray MJ, Peters NE, Reeves MB. Navigating the Host Cell Response during Entry into Sites of Latent Cytomegalovirus Infection. Pathogens 2018; 7:pathogens7010030. [PMID: 29547547 PMCID: PMC5874756 DOI: 10.3390/pathogens7010030] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 03/12/2018] [Accepted: 03/13/2018] [Indexed: 02/07/2023] Open
Abstract
The host cell represents a hostile environment that viruses must counter in order to establish infection. Human cytomegalovirus (HCMV) is no different and encodes a multitude of functions aimed at disabling, re-directing or hijacking cellular functions to promulgate infection. However, during the very early stages of infection the virus relies on the outcome of interactions between virion components, cell surface receptors and host signalling pathways to promote an environment that supports infection. In the context of latent infection—where the virus establishes an infection in an absence of many gene products specific for lytic infection—these initial interactions are crucial events. In this review, we will discuss key host responses triggered by viral infection and how, in turn, the virus ameliorates the impact on the establishment of non-lytic infections of cells. We will focus on strategies to evade intrinsic antiviral and innate immune responses and consider their impact on viral infection. Finally, we will consider the hypothesis that the very early events upon viral infection are important for dictating the outcome of infection and consider the possibility that events that occur during entry into non-permissive cells are unique and thus contribute to the establishment of latency.
Collapse
Affiliation(s)
- Matthew J Murray
- Institute of Immunity & Transplantation, University College London, Royal Free Campus, London NW3 2PF, UK.
| | - Nicholas E Peters
- Institute of Immunity & Transplantation, University College London, Royal Free Campus, London NW3 2PF, UK.
| | | |
Collapse
|
48
|
Turunen A, Rautava J, Grénman R, Syrjänen K, Syrjänen S. Epstein-Barr virus (EBV)-encoded small RNAs (EBERs) associated with poor prognosis of head and neck carcinomas. Oncotarget 2018; 8:27328-27338. [PMID: 28423694 PMCID: PMC5432338 DOI: 10.18632/oncotarget.16033] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 02/12/2017] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Epstein-Barr virus (EBV) is the main cause of nasopharyngeal carcinoma (NPC), also found in other head and neck carcinomas (HNSCCs) where its role remains controversial. RESULTS EBV was found in 80% and 21% of the samples with PCR and ISH (in cancer cells), respectively. Eight of ISH-positive samples were not NPCs. EBER-RNA detection in carcinoma cells was associated with worse prognosis, whether or not NPCs were included. HPV/EBV and HSV/HPV coinfections associated with a shorter survival. LMP-1 expression, positive in 51% of samples did not correlate with the disease outcome. MATERIALS AND METHODS We analyzed EBV in 73 HNSCC samples with a known HPV and HSV-1 status, using in situ hybridization (ISH) and immunohistochemistry (IHC) for EBV-early transcripts (EBER) and LMP-1 protein, respectively. EBV-DNA was detected with a Luminex-based method. The results were correlated with HPV-status and disease outcome. CONCLUSIONS EBV is transcriptionally active in NPC cells but also in a subgroup of other HNSCCs.
Collapse
Affiliation(s)
- Aaro Turunen
- Department of Oral Pathology, Institute of Dentistry, University of Turku, Turku, Finland
| | - Jaana Rautava
- Department of Oral Pathology, Institute of Dentistry, University of Turku, Turku, Finland.,Department of Pathology, Turku University Central Hospital, Turku, Finland
| | - Reidar Grénman
- Department of Otorhinolaryngology - Head and Neck Surgery, Turku University Hospital, Turku, Finland
| | - Kari Syrjänen
- Department of Clinical Research, Biohit HealthCare Oyj, Helsinki, Finland
| | - Stina Syrjänen
- Department of Oral Pathology, Institute of Dentistry, University of Turku, Turku, Finland.,Department of Pathology, Turku University Central Hospital, Turku, Finland
| |
Collapse
|
49
|
Gelgor A, Gam Ze Letova C, Yegorov Y, Kalt I, Sarid R. Nucleolar stress enhances lytic reactivation of the Kaposi's sarcoma-associated herpesvirus. Oncotarget 2018; 9:13822-13833. [PMID: 29568397 PMCID: PMC5862618 DOI: 10.18632/oncotarget.24497] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 02/01/2018] [Indexed: 02/07/2023] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) is a human tumorigenic virus exhibiting two forms of infection, latent and lytic. Latent infection is abortive and allows the virus to establish lifelong infection, while lytic infection is productive, and is needed for virus dissemination within the host and between hosts. Latent infection may reactivate and switch towards the lytic cycle. This switch is a critical step in the maintenance of long-term infection and for the development of KSHV-related neoplasms. In this study, we examined the effect of nucleolar stress, manifested by failure in ribosome biogenesis or function and often coupled with p53 activation, on lytic reactivation of KSHV. To this end, we induced nucleolar stress by treatment with Actinomycin D, CX-5461 or BMH-21. Treatment with these compounds alone did not induce the lytic cycle. However, enhancement of the lytic cycle by these compounds was evident when combined with expression of the viral protein K-Rta. Further experiments employing combined treatments with Nutlin-3, knock-down of p53 and isogenic p53+/+ and p53-/- cells indicated that the enhancement of lytic reactivation by nucleolar stress does not depend on p53. Thus, our study identifies nucleolar stress as a novel regulator of KSHV infection, which synergizes with K-Rta expression to increase lytic reactivation. This suggests that certain therapeutic interventions, which induce nucleolar stress, may affect the outcome of KSHV infection.
Collapse
Affiliation(s)
- Anastasia Gelgor
- The Mina and Everard Goodman Faculty of Life Sciences and Advanced Materials and Nanotechnology Institute, Bar Ilan University, Ramat-Gan, Israel
| | - Chen Gam Ze Letova
- The Mina and Everard Goodman Faculty of Life Sciences and Advanced Materials and Nanotechnology Institute, Bar Ilan University, Ramat-Gan, Israel
| | - Yana Yegorov
- The Mina and Everard Goodman Faculty of Life Sciences and Advanced Materials and Nanotechnology Institute, Bar Ilan University, Ramat-Gan, Israel
| | - Inna Kalt
- The Mina and Everard Goodman Faculty of Life Sciences and Advanced Materials and Nanotechnology Institute, Bar Ilan University, Ramat-Gan, Israel
| | - Ronit Sarid
- The Mina and Everard Goodman Faculty of Life Sciences and Advanced Materials and Nanotechnology Institute, Bar Ilan University, Ramat-Gan, Israel
| |
Collapse
|
50
|
McNees AL, Harrigal LJ, Kelly A, Minard CG, Wong C, Butel JS. Viral microRNA effects on persistent infection of human lymphoid cells by polyomavirus SV40. PLoS One 2018; 13:e0192799. [PMID: 29432481 PMCID: PMC5809058 DOI: 10.1371/journal.pone.0192799] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 01/30/2018] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Polyomaviruses, including simian virus 40 (SV40), display evidence of lymphotropic properties. This study analyzed the nature of SV40-human lymphocyte interactions in established cell lines and in primary lymphocytes. The effects of viral microRNA and the structure of the viral regulatory region on SV40 persistence were examined. RESULTS SV40 DNA was maintained in infected B cell and myeloid cell lines during cell growth for at least 28 days. Limiting dilution analysis showed that low amounts of SV40 DNA (~2 copies per cell) were retained over time. Infected B cells remained viable and able to proliferate. Genome copies of the SV40 microRNA-null mutant persisted at higher levels than the DNA of wild-type viruses. Complex viral regulatory regions produced modestly higher DNA levels than simple regulatory regions. Viral large T-antigen protein was detected at low frequency and at low levels in infected B cells. Following infection of primary lymphocytes, SV40 DNA was detected in CD19+ B cells and CD14+ monocytes, but not in CD3+ T cells. Rescue attempts using either lysates of SV40-infected B lymphocytes, coculture of live cells, or infectious center assays all showed that replication-competent SV40 could be recovered on rare occasions. SV40 infections altered the expression of several B cell surface markers, with more pronounced changes following infections with the microRNA-null mutant. CONCLUSION These findings indicate that SV40 can establish persistent infections in human B lymphocytes. The cells retain low copy numbers of viral DNA; the infections are nonproductive and noncytolytic but can occasionally produce infectious virus. SV40 microRNA negatively regulates the degree of viral effects on B cells. SIGNIFICANCE Lymphocytes may serve as viral reservoirs and may function to disseminate polyomaviruses to different tissues in a host. To our knowledge, this report is the first extensive analysis of viral microRNA effects on SV40 infection of human lymphocytes.
Collapse
Affiliation(s)
- Adrienne L. McNees
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Lindsay J. Harrigal
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Aoife Kelly
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Charles G. Minard
- Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, Texas, United States of America
| | - Connie Wong
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Janet S. Butel
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
| |
Collapse
|