1
|
Turcu D, Zadina A, Abbott LF, Sawtell NB. An end-to-end model of active electrosensation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.22.619741. [PMID: 39484381 PMCID: PMC11526905 DOI: 10.1101/2024.10.22.619741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Weakly electric fish localize and identify objects by sensing distortions in a self-generated electric field. Fish can determine the resistance and capacitance of an object, for example, even though the field distortions being sensed are small and highly-dependent on object distance and size. Here we construct a model of the responses of the fish's electroreceptors on the basis of experimental data, and we develop a model of the electric fields generated by the fish and the distortions due to objects of different resistances and capacitances. This provides us with an accurate and efficient method for generating large artificial data sets simulating fish interacting with a wide variety of objects. Using these sets, we train an artificial neural network (ANN), representing brain areas downstream of electroreceptors, to extract the 3D location, size, and electrical properties of objects. The model performs best if the ANN operates in two stages: first estimating object distance and size and then using this information to extract electrical properties. This suggests a specific form of modularity in the electrosensory system that can be tested experimentally and highlights the potential of end-to-end modeling for studies of sensory processing.
Collapse
Affiliation(s)
- Denis Turcu
- The Mortimer B. Zuckerman Mind, Brain and Behavior Institute, Department of Neuroscience, Columbia University, New York, New York, United States of America
- Kavli Institute for Brain Science, Columbia University, New York, New York, United States of America
| | - Abigail Zadina
- The Mortimer B. Zuckerman Mind, Brain and Behavior Institute, Department of Neuroscience, Columbia University, New York, New York, United States of America
| | - L F Abbott
- The Mortimer B. Zuckerman Mind, Brain and Behavior Institute, Department of Neuroscience, Columbia University, New York, New York, United States of America
- Kavli Institute for Brain Science, Columbia University, New York, New York, United States of America
| | - Nathaniel B Sawtell
- The Mortimer B. Zuckerman Mind, Brain and Behavior Institute, Department of Neuroscience, Columbia University, New York, New York, United States of America
- Kavli Institute for Brain Science, Columbia University, New York, New York, United States of America
| |
Collapse
|
2
|
Farnworth MS, Montgomery SH. Evolution of neural circuitry and cognition. Biol Lett 2024; 20:20230576. [PMID: 38747685 PMCID: PMC11285921 DOI: 10.1098/rsbl.2023.0576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 03/08/2024] [Accepted: 03/26/2024] [Indexed: 05/25/2024] Open
Abstract
Neural circuits govern the interface between the external environment, internal cues and outwardly directed behaviours. To process multiple environmental stimuli and integrate these with internal state requires considerable neural computation. Expansion in neural network size, most readily represented by whole brain size, has historically been linked to behavioural complexity, or the predominance of cognitive behaviours. Yet, it is largely unclear which aspects of circuit variation impact variation in performance. A key question in the field of evolutionary neurobiology is therefore how neural circuits evolve to allow improved behavioural performance or innovation. We discuss this question by first exploring how volumetric changes in brain areas reflect actual neural circuit change. We explore three major axes of neural circuit evolution-replication, restructuring and reconditioning of cells and circuits-and discuss how these could relate to broader phenotypes and behavioural variation. This discussion touches on the relevant uses and limitations of volumetrics, while advocating a more circuit-based view of cognition. We then use this framework to showcase an example from the insect brain, the multi-sensory integration and internal processing that is shared between the mushroom bodies and central complex. We end by identifying future trends in this research area, which promise to advance the field of evolutionary neurobiology.
Collapse
Affiliation(s)
- Max S. Farnworth
- School of Biological Sciences, University of Bristol, Bristol, UK
| | | |
Collapse
|
3
|
Elephant-nose fish 'see' farther by electric sensing when in groups. Nature 2024:10.1038/d41586-024-00464-3. [PMID: 38684829 DOI: 10.1038/d41586-024-00464-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
|
4
|
Pedraja F, Sawtell NB. Collective sensing in electric fish. Nature 2024; 628:139-144. [PMID: 38448593 DOI: 10.1038/s41586-024-07157-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 02/02/2024] [Indexed: 03/08/2024]
Abstract
A number of organisms, including dolphins, bats and electric fish, possess sophisticated active sensory systems that use self-generated signals (for example, acoustic or electrical emissions) to probe the environment1,2. Studies of active sensing in social groups have typically focused on strategies for minimizing interference from conspecific emissions2-4. However, it is well known from engineering that multiple spatially distributed emitters and receivers can greatly enhance environmental sensing (for example, multistatic radar and sonar)5-8. Here we provide evidence from modelling, neural recordings and behavioural experiments that the African weakly electric fish Gnathonemus petersii utilizes the electrical pulses of conspecifics to extend its electrolocation range, discriminate objects and increase information transmission. These results provide evidence for a new, collective mode of active sensing in which individual perception is enhanced by the energy emissions of nearby group members.
Collapse
Affiliation(s)
- Federico Pedraja
- Zuckerman Mind Brain Behavior Institute, Department of Neuroscience, Columbia University, New York, NY, USA.
| | - Nathaniel B Sawtell
- Zuckerman Mind Brain Behavior Institute, Department of Neuroscience, Columbia University, New York, NY, USA.
| |
Collapse
|
5
|
Zhang Y, Long D, Feng H, Shang K, Lu X, Fu C, Jiang Z, Fang J, Yao Y, He QC, Yang T. Bioinspired ion channel receptor based on hygroelectricity for precontact sensing of living organism. Biosens Bioelectron 2024; 247:115922. [PMID: 38096720 DOI: 10.1016/j.bios.2023.115922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/22/2023] [Accepted: 12/08/2023] [Indexed: 01/02/2024]
Abstract
Tactile sensors play an important role in human-machine interaction (HMI). Compared to contact tactile sensing, which leaves physical hardware vulnerable to wear and tear, proximity sensing is better at reacting to remote events before physical contact. The apteronotus albifrons possess ion channel receptors for remote surroundings perception. Inspired by the relevant ion channel structure and self-powered operation mode, we designed a new proximity sensor with ion rectification characteristics and self-powered capability. This bio-inspired ion channel receptor exploits the hygroelectric effect to convert the humidity information into a series of current signals when the living organism approaches, and it is insensitive to non-aquatic non-organisms. The sensor offers high sensitivity (2.3 mm-1), a suitable range (0-10 mm) for close object detection, fast response (0.3 s), and fast recovery (2.5 s). The unique combination of bio-sensitivity, non-contact detection characteristics, and humidity-based power generation capabilities enriches the functionality of future HMI electronics. As a proof of concept, the sensor has been successfully applied in different scenarios such as human health management, early warning systems, non-contact switches to prevent virus transmission, object recognition, and finger trajectory detection.
Collapse
Affiliation(s)
- Yong Zhang
- Tribology Research Institute, School of Mechanical Engineering, Southwest Jiaotong University, Chengdu, 610031, PR China
| | - Dongxu Long
- Sanechips Technology Co., Ltd. Shenzhen, 518055, PR China
| | - Huiling Feng
- College of Nuclear Technology and Automation Engineering, Chengdu University of Technology, Chengdu, Sichuan, 610059, PR China
| | - Kedong Shang
- Tribology Research Institute, School of Mechanical Engineering, Southwest Jiaotong University, Chengdu, 610031, PR China
| | - Xulei Lu
- Tribology Research Institute, School of Mechanical Engineering, Southwest Jiaotong University, Chengdu, 610031, PR China
| | - Chunqiao Fu
- Tribology Research Institute, School of Mechanical Engineering, Southwest Jiaotong University, Chengdu, 610031, PR China
| | - Zhongbao Jiang
- Tribology Research Institute, School of Mechanical Engineering, Southwest Jiaotong University, Chengdu, 610031, PR China
| | - Jiahao Fang
- Tribology Research Institute, School of Mechanical Engineering, Southwest Jiaotong University, Chengdu, 610031, PR China
| | - Yuming Yao
- Tribology Research Institute, School of Mechanical Engineering, Southwest Jiaotong University, Chengdu, 610031, PR China
| | - Qi-Chang He
- Tribology Research Institute, School of Mechanical Engineering, Southwest Jiaotong University, Chengdu, 610031, PR China; Univ Gustave Eiffel, MSME, CNRS UMR 8208, F-77454, Marne-la-Vallée, France.
| | - Tingting Yang
- Tribology Research Institute, School of Mechanical Engineering, Southwest Jiaotong University, Chengdu, 610031, PR China.
| |
Collapse
|
6
|
El-Mansi AA, Rady AM, Ibrahim EH, ElBealy E. Cellular patterning and cyto-architectural organization of the skin of electric catfish (Malapterurus electricus, Siluriformes) with a particular emphasis on its ampullary electroreceptor. ZOOLOGY 2024; 163:126159. [PMID: 38471427 DOI: 10.1016/j.zool.2024.126159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 02/04/2024] [Accepted: 02/28/2024] [Indexed: 03/14/2024]
Abstract
The functional morphology of the skin of Malapteruridae is presumably evolved to cope with a diversified range of ambient physiological, environmental, and behavioral conditions. Herein, we firstly characterized the microstructures and intriguing patterning of the skin of twelve adult electric catfish (Malapterurus electricus, Malapteruridae) using histological, histochemical, immunofluorescent, and ELISA standard methodology. The skin comprises three sequentially-oriented layers: the epidermis, dermis, and hypodermis with a significantly increased thickness of the former. The epidermis contains four types of cells: the surface epithelial cells, mucous cells, granular cells, and club cells. We defined distinctive ampullary electroreceptors in the outer epidermis that possess flask-shaped sensory crypt containing electroreceptor cells together with vertical collagen rods. Dermis and hypodermis are composed of connective tissue; however, the former is much more coarse and dense with comparable reactivity for Masson-Goldner trichrome (MT). Placing our data in the context of the limited body of previous work, we showed subtle changes in the expression of mucin subunits together with cytoskeletal fractions of collagens, myosin, F-actin, keratins, and tubulins. Taken as a whole, our results convincingly showed that the skin of M. electricus shares some structural similarities to other Siluriformes, however, it has some functional modifications that are implicated in protection, defense, and foraging behavior.
Collapse
Affiliation(s)
- Ahmed A El-Mansi
- Biology Dept., Faculty of Science, King Khalid University, Abha, 61421, Saudi Arabia.
| | - Ahmed M Rady
- Biology Dept., Faculty of Science, King Saud University, Riyadh, Saudi Arabia
| | - Esam H Ibrahim
- Biology Dept., Faculty of Science, King Khalid University, Abha, 61421, Saudi Arabia
| | - Eman ElBealy
- Biology Dept., Faculty of Science, King Khalid University, Abha, 61421, Saudi Arabia
| |
Collapse
|
7
|
Pedraja F, Sawtell NB. Collective Sensing in Electric Fish. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.13.557613. [PMID: 37745367 PMCID: PMC10515903 DOI: 10.1101/2023.09.13.557613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
A number of organisms, including dolphins, bats, and electric fish, possess sophisticated active sensory systems that use self-generated signals (e.g. acoustic or electrical emissions) to probe the environment1,2. Studies of active sensing in social groups have typically focused on strategies for minimizing interference from conspecific emissions2-4. However, it is well-known from engineering that multiple spatially distributed emitters and receivers can greatly enhance environmental sensing (e.g. multistatic radar and sonar)5-8. Here we provide evidence from modeling, neural recordings, and behavioral experiments that the African weakly electric fish Gnathonemus petersii utilizes the electrical pulses of conspecifics to extend electrolocation range, discriminate objects, and increase information transmission. These results suggest a novel, collective mode of active sensing in which individual perception is enhanced by the energy emissions of nearby group members.
Collapse
Affiliation(s)
- Federico Pedraja
- Zuckerman Mind Brain Behavior Institute, Department of Neuroscience, Columbia University, New York, NY 10027
| | - Nathaniel B Sawtell
- Zuckerman Mind Brain Behavior Institute, Department of Neuroscience, Columbia University, New York, NY 10027
| |
Collapse
|
8
|
Barkan CL, Leininger EC, Zornik E. Everything in modulation: neuromodulators as keys to understanding communication dynamics. Integr Comp Biol 2021; 61:854-866. [PMID: 34038510 DOI: 10.1093/icb/icab102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Across the animal kingdom, the ability to produce communication signals appropriate to social encounters is essential, but how these behaviors are selected and adjusted in a context-dependent manner is poorly understood. This question can be addressed on many levels, including sensory processing by peripheral organs and the CNS, sensorimotor integration in decision-making brain regions, and motor circuit activation and modulation. Because neuromodulator systems act at each of these levels, they are a useful lens through which to explore the mechanisms underlying complex patterns of communication. It has been clear for decades that understanding the logic of input-output decision making by the nervous system requires far more than simply identifying the connections linking sensory organs to motor circuits; this is due in part to the fact that neuromodulators can promote distinct and temporally dynamic responses to similar signals. We focus on the vocal circuit dynamics of Xenopus frogs, and describe complementary examples from diverse vertebrate communication systems. While much remains to be discovered about how neuromodulators direct flexibility in communication behaviors, these examples illustrate that several neuromodulators can act upon the same circuit at multiple levels of control, and that the functional consequence of neuromodulation can depend on species-specific factors as well as dynamic organismal characteristics like internal state.
Collapse
Affiliation(s)
| | | | - Erik Zornik
- Reed College, Biology Department, Portland, OR
| |
Collapse
|
9
|
Marquez MM, Chacron MJ. Serotonergic Modulation of Sensory Neuron Activity and Behavior in Apteronotus albifrons. Front Integr Neurosci 2020; 14:38. [PMID: 32733214 PMCID: PMC7358949 DOI: 10.3389/fnint.2020.00038] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 06/15/2020] [Indexed: 01/12/2023] Open
Abstract
Organisms must constantly adapt to changes in their environment to survive. It is thought that neuromodulators such as serotonin enable sensory neurons to better process input encountered during different behavioral contexts. Here, we investigated how serotonergic innervation affects neural and behavioral responses to behaviorally relevant envelope stimuli in the weakly electric fish species Apteronotus albifrons. Under baseline conditions, we found that exogenous serotonin application within the electrosensory lateral line lobe increased sensory neuron excitability, thereby promoting burst firing. We found that serotonin enhanced the responses to envelope stimuli of pyramidal cells within the lateral segment of the electrosensory lateral line lobe (ELL) by increasing sensitivity, with the increase more pronounced for stimuli with higher temporal frequencies (i.e., >0.2 Hz). Such increases in neural sensitivity were due to increased burst firing. At the organismal level, bilateral serotonin application within the ELL lateral segment enhanced behavioral responses to sensory input through increases in sensitivity. Similar to what was observed for neural responses, increases in behavioral sensitivity were more pronounced for higher (i.e., >0.2 Hz) temporal frequencies. Surprisingly, a comparison between our results and previous ones obtained in the closely related species A. leptorhynchus revealed that, while serotonin application gave rise to similar effects on neural excitability and responses to sensory input, serotonin application also gave rise to marked differences in behavior. Specifically, behavioral responses in A. leptorhynchus were increased primarily for lower (i.e., ≤0.2 Hz) rather than for higher temporal frequencies. Thus, our results strongly suggest that there are marked differences in how sensory neural responses are processed downstream to give rise to behavior across both species. This is even though previous results have shown that the behavioral responses of both species to envelope stimuli were identical when serotonin is not applied.
Collapse
Affiliation(s)
- Mariana M Marquez
- Computational Systems Neuroscience Laboratory, Department of Physiology, McGill University, Montreal, QC, Canada
| | - Maurice J Chacron
- Computational Systems Neuroscience Laboratory, Department of Physiology, McGill University, Montreal, QC, Canada
| |
Collapse
|
10
|
Metzen MG, Hofmann V, Chacron MJ. Neural Synchrony Gives Rise to Amplitude- and Duration-Invariant Encoding Consistent With Perception of Natural Communication Stimuli. Front Neurosci 2020; 14:79. [PMID: 32116522 PMCID: PMC7025533 DOI: 10.3389/fnins.2020.00079] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 01/20/2020] [Indexed: 11/13/2022] Open
Abstract
When confronted with a highly variable environment, it remains poorly understood how neural populations encode and classify natural stimuli to give rise to appropriate and consistent behavioral responses. Here we investigated population coding of natural communication signals with different attributes (i.e., amplitude and duration) in the electrosensory system of the weakly electric fish Apteronotus leptorhynchus. Our results show that, while single peripheral neurons encode the detailed timecourse of different stimulus waveforms, measures of population synchrony are effectively unchanged because of coordinated increases and decreases in activity. A phenomenological mathematical model reproduced this invariance and shows that this can be explained by considering homogeneous populations whose responses are solely determined by single neuron firing properties. Moreover, recordings from downstream central neurons reveal that synchronous afferent activity is actually decoded and thus most likely transmitted to higher brain areas. Finally, we demonstrate that the associated behavioral responses at the organism level are invariant. Our results provide a mechanism by which amplitude- and duration-invariant coding of behaviorally relevant sensory input emerges across successive brain areas thereby presumably giving rise to invariant behavioral responses. Such mechanisms are likely to be found in other systems that share anatomical and functional features with the electrosensory system (e.g., auditory, visual, vestibular).
Collapse
Affiliation(s)
- Michael G Metzen
- Computational Systems Neuroscience Laboratory, Department of Physiology, McGill University, Montreal, QC, Canada
| | - Volker Hofmann
- Computational Systems Neuroscience Laboratory, Department of Physiology, McGill University, Montreal, QC, Canada
| | - Maurice J Chacron
- Computational Systems Neuroscience Laboratory, Department of Physiology, McGill University, Montreal, QC, Canada
| |
Collapse
|
11
|
Field CE, Petersen TA, Alves-Gomes JA, Braun CB. A JAR of Chirps: The Gymnotiform Chirp Can Function as Both a Communication Signal and a Jamming Avoidance Response. Front Integr Neurosci 2019; 13:55. [PMID: 31632247 PMCID: PMC6783576 DOI: 10.3389/fnint.2019.00055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 09/09/2019] [Indexed: 11/13/2022] Open
Abstract
The weakly electric gymnotiform fish produce a rhythmic electric organ discharge (EOD) used for communication and active electrolocation. The EOD frequency is entrained to a medullary pacemaker nucleus. During communication and exploration, this rate can be modulated by a pre-pacemaker network, resulting in specific patterns of rate modulation, including stereotyped communication signals and dynamic interactions with conspecifics known as a Jamming Avoidance Response (JAR). One well-known stereotyped signal is the chirp, a brief upward frequency sweep usually lasting less than 500 ms. The abrupt change in frequency has dramatic effects on phase precession between two signalers. We report here on chirping in Brachyhypopmus cf. sullivani, Microsternarchus cf. bilineatus Lineage C, and Steatogenys cf. elegans during conspecific playback experiments. Microsternarchus also exhibits two behaviors that include chirp-like extreme frequency modulations, EOD interruptions with hushing silence and tumultuous rises, and these are described in terms of receiver impact. These behaviors all have substantial impact on interference caused by conspecifics and may be a component of the JAR in some species. Chirps are widely used in electronic communications systems, sonar, and other man-made active sensing systems. The brevity of the chirp, and the phase disruption it causes, makes chirps effective as attention-grabbing or readiness signals. This conforms to the varied assigned functions across gymnotiforms, including pre-combat aggressive or submissive signals or during courtship and mating. The specific behavioral contexts of chirp expression vary across species, but the physical structure of the chirp makes it extremely salient to conspecifics. Chirps may be expected in a wide range of behavioral contexts where their function depends on being noticeable and salient. Further, in pulse gymnotiforms, the chirp is well structured to comprise a robust jamming signal to a conspecific receiver if specifically timed to the receiver's EOD cycle. Microsternarchus and Steatogenys exploit this feature and include chirps in dynamic jamming avoidance behaviors. This may be an evolutionary re-use of a circuitry for a specific signal in another context.
Collapse
Affiliation(s)
- Caitlin E Field
- Department of Psychology, Hunter College, The City University of New York, New York, NY, United States.,New York City Department of Parks and Recreation, New York, NY, United States
| | - Thiago Alexandre Petersen
- Laboratório de Fisiologia Comportamental e Evolução, Instituto Nacional de Pesquisas da Amazônia, Manaus, Brazil
| | - José A Alves-Gomes
- Laboratório de Fisiologia Comportamental e Evolução, Instituto Nacional de Pesquisas da Amazônia, Manaus, Brazil
| | - Christopher B Braun
- Department of Psychology, Hunter College, The City University of New York, New York, NY, United States
| |
Collapse
|
12
|
Shifman AR, Lewis JE. The complexity of high-frequency electric fields degrades electrosensory inputs: implications for the jamming avoidance response in weakly electric fish. J R Soc Interface 2019; 15:rsif.2017.0633. [PMID: 29367237 DOI: 10.1098/rsif.2017.0633] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 01/04/2018] [Indexed: 11/12/2022] Open
Abstract
Sensory systems encode environmental information that is necessary for adaptive behavioural choices, and thus greatly influence the evolution of animal behaviour and the underlying neural circuits. Here, we evaluate how the quality of sensory information impacts the jamming avoidance response (JAR) in weakly electric fish. To sense their environment, these fish generate an oscillating electric field: the electric organ discharge (EOD). Nearby fish with similar EOD frequencies perform the JAR to increase the difference between their EOD frequencies, i.e. their difference frequency (DF). The fish determines the sign of the DF: when it has a lower frequency (DF > 0), EOD frequency is decreased and vice versa. We study the sensory basis of the JAR in two species: Apteronotus leptorhynchus have a high frequency (ca 1000 Hz), spatio-temporally heterogeneous electric field, whereas Eigenmannia sp. have a low frequency (ca 300 Hz), spatially uniform field. We show that the increased complexity of the Apteronotus field decreases the reliability of sensory cues used to determine the DF. Interestingly, Apteronotus responds to all JAR stimuli by increasing EOD frequency, having lost the neural pathway that produces JAR-related decreases in EOD frequency. Our results suggest that electric field complexity may have influenced the evolution of the JAR by degrading the related sensory information.
Collapse
Affiliation(s)
- Aaron R Shifman
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada K1N 6N5 .,Center for Neural Dynamics, University of Ottawa, Ottawa, Ontario, Canada K1N 6N5.,uOttawa Brain and Mind Research Institute, Ottawa, Ontario, Canada K1H 8M5
| | - John E Lewis
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada K1N 6N5.,Center for Neural Dynamics, University of Ottawa, Ottawa, Ontario, Canada K1N 6N5.,uOttawa Brain and Mind Research Institute, Ottawa, Ontario, Canada K1H 8M5
| |
Collapse
|
13
|
Petzold JM, Alves-Gomes JA, Smith GT. Chirping and asymmetric jamming avoidance responses in the electric fish Distocyclus conirostris. ACTA ACUST UNITED AC 2018; 221:jeb.178913. [PMID: 30012575 DOI: 10.1242/jeb.178913] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 07/11/2018] [Indexed: 11/20/2022]
Abstract
Electrosensory systems of weakly electric fish must accommodate competing demands of sensing the environment (electrolocation) and receiving social information (electrocommunication). The jamming avoidance response (JAR) is a behavioral strategy thought to reduce electrosensory interference from conspecific signals close in frequency. We used playback experiments to characterize electric organ discharge frequency (EODf), chirping behavior and the JAR of Distocyclus conirostris, a gregarious electric fish species. EODs of D. conirostris had low frequencies (∼80-200 Hz) that shifted in response to playback stimuli. Fish consistently lowered EODf in response to higher-frequency stimuli but inconsistently raised or lowered EODf in response to lower-frequency stimuli. This led to jamming avoidance or anti-jamming avoidance, respectively. We compare these behaviors with those of closely related electric fish (Eigenmannia and Sternopygus) and suggest that the JAR may have additional social functions and may not solely minimize the deleterious effects of jamming, as its name suggests.
Collapse
Affiliation(s)
- Jacquelyn M Petzold
- Department of Biology, Indiana University, 1001 E. 3rd St., Bloomington, IN 47405, USA.,Center for the Integrative Study of Animal Behavior, Indiana University, 409 N. Park Ave., Bloomington, IN 47405, USA
| | - José A Alves-Gomes
- Laboratório de Fisiologia Comportamental e Evolução (LFCE), Instituto Nacional de Pesquisas da Amazônia (INPA), Manaus, AM 69083-000, Brazil
| | - G Troy Smith
- Department of Biology, Indiana University, 1001 E. 3rd St., Bloomington, IN 47405, USA .,Center for the Integrative Study of Animal Behavior, Indiana University, 409 N. Park Ave., Bloomington, IN 47405, USA
| |
Collapse
|
14
|
Thomas RA, Metzen MG, Chacron MJ. Weakly electric fish distinguish between envelope stimuli arising from different behavioral contexts. ACTA ACUST UNITED AC 2018; 221:jeb.178244. [PMID: 29954835 DOI: 10.1242/jeb.178244] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Accepted: 06/14/2018] [Indexed: 11/20/2022]
Abstract
Understanding how sensory information is processed by the brain in order to give rise to behavior remains poorly understood in general. Here, we investigated the behavioral responses of the weakly electric fish Apteronotus albifrons to stimuli arising from different contexts, by measuring changes in the electric organ discharge (EOD) frequency. Specifically, we focused on envelopes, which can arise either because of movement (i.e. motion envelopes) or because of interactions between the electric fields of three of more fish (i.e. social envelopes). Overall, we found that the animal's EOD frequency effectively tracked the detailed time course of both motion and social envelopes. In general, behavioral sensitivity (i.e. gain) decreased while phase lag increased with increasing envelope and carrier frequency. However, changes in gain and phase lag as a function of changes in carrier frequency were more prominent for motion than for social envelopes in general. Importantly, we compared behavioral responses to motion and social envelopes with similar characteristics. Although behavioral sensitivities were similar, we observed an increased response lag for social envelopes, primarily for low carrier frequencies. Thus, our results imply that the organism can, based on behavioral responses, distinguish envelope stimuli resulting from movement from those that instead result from social interactions. We discuss the implications of our results for neural coding of envelopes and propose that behavioral responses to motion and social envelopes are mediated by different neural circuits in the brain.
Collapse
Affiliation(s)
- Rhalena A Thomas
- Department of Physiology, McGill University, Montreal, Quebec, Canada H3G 1Y6
| | - Michael G Metzen
- Department of Physiology, McGill University, Montreal, Quebec, Canada H3G 1Y6
| | - Maurice J Chacron
- Department of Physiology, McGill University, Montreal, Quebec, Canada H3G 1Y6
| |
Collapse
|
15
|
Neeley B, Overholt T, Artz E, Kinsey SG, Marsat G. Selective and Context-Dependent Social and Behavioral Effects of Δ9-Tetrahydrocannabinol in Weakly Electric Fish. BRAIN, BEHAVIOR AND EVOLUTION 2018; 91:214-227. [PMID: 30045017 DOI: 10.1159/000490171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 05/16/2018] [Indexed: 02/02/2023]
Abstract
Cannabinoid (CB) receptors are widespread in the nervous system and influence a variety of behaviors. Weakly electric fish have been a useful model system in the study of the neural basis of behavior, but we know nothing of the role played by the CB system. Here, we determine the overall behavioral effect of a nonselective CB receptor agonist, namely Δ9-tetrahydrocannabinol (THC), in the weakly electric fish Apte-ronotus leptorhynchus. Using various behavioral paradigms involving social stimuli, we show that THC decreases locomotor behavior, as in many species, and influences communication and social behavior. Across the different experiments, we found that the propensity to emit communication signals (chirps) and seek social interactions was affected in a context-dependent manner. We explicitly tested this hypothesis by comparing the behavioral effects of THC injection in fish placed in a novel versus a familiar social and physical environment. THC-injected fish were less likely to chirp than control fish in familiar situations but not in novel ones. The tendency to be in close proximity to other fish was affected only in novel environments, with control fish clustering more than THC-injected ones. By identifying behaviors affected by CB agonists, our study can guide further comparative and neurophysiological studies of the role of the CB system using a weakly electric fish as a model.
Collapse
Affiliation(s)
- Brandon Neeley
- Department of Biology, West Virginia University, Morgantown, West Virginia, USA
| | - Tyler Overholt
- Department of Biology, West Virginia University, Morgantown, West Virginia, USA
| | - Emily Artz
- Department of Biology, West Virginia University, Morgantown, West Virginia, USA
| | - Steven G Kinsey
- Department of Psychology, West Virginia University, Morgantown, West Virginia, USA.,Rockefeller Neuroscience Institute, West Virginia University, Morgantown, West Virginia, USA
| | - Gary Marsat
- Department of Biology, West Virginia University, Morgantown, West Virginia, USA.,Rockefeller Neuroscience Institute, West Virginia University, Morgantown, West Virginia, USA
| |
Collapse
|
16
|
Metzen MG, Huang CG, Chacron MJ. Descending pathways generate perception of and neural responses to weak sensory input. PLoS Biol 2018; 16:e2005239. [PMID: 29939982 PMCID: PMC6040869 DOI: 10.1371/journal.pbio.2005239] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 07/11/2018] [Accepted: 06/12/2018] [Indexed: 01/24/2023] Open
Abstract
Natural sensory stimuli frequently consist of a fast time-varying waveform whose amplitude or contrast varies more slowly. While changes in contrast carry behaviorally relevant information necessary for sensory perception, their processing by the brain remains poorly understood to this day. Here, we investigated the mechanisms that enable neural responses to and perception of low-contrast stimuli in the electrosensory system of the weakly electric fish Apteronotus leptorhynchus. We found that fish reliably detected such stimuli via robust behavioral responses. Recordings from peripheral electrosensory neurons revealed stimulus-induced changes in firing activity (i.e., phase locking) but not in their overall firing rate. However, central electrosensory neurons receiving input from the periphery responded robustly via both phase locking and increases in firing rate. Pharmacological inactivation of feedback input onto central electrosensory neurons eliminated increases in firing rate but did not affect phase locking for central electrosensory neurons in response to low-contrast stimuli. As feedback inactivation eliminated behavioral responses to these stimuli as well, our results show that it is changes in central electrosensory neuron firing rate that are relevant for behavior, rather than phase locking. Finally, recordings from neurons projecting directly via feedback to central electrosensory neurons revealed that they provide the necessary input to cause increases in firing rate. Our results thus provide the first experimental evidence that feedback generates both neural and behavioral responses to low-contrast stimuli that are commonly found in the natural environment. Feedback input from more central to more peripheral brain areas is found ubiquitously in the central nervous system of vertebrates. In this study, we used a combination of electrophysiological, behavioral, and pharmacological approaches to reveal a novel function for feedback pathways in generating neural and behavioral responses to weak sensory input in the weakly electric fish. We first determined that weak sensory input gives rise to responses that are phase locked in both peripheral sensory neurons and in the central neurons that are their downstream targets. However, central neurons also responded to weak sensory inputs that were not relayed via a feedforward input from the periphery, because complete inactivation of the feedback pathway abolished increases in firing rate but not the phase locking in response to weak sensory input. Because such inactivation also abolished the behavioral responses, our results show that the increases in firing rate in central neurons, and not the phase locking, are decoded downstream to give rise to perception. Finally, we discovered that the neurons providing feedback input were also activated by weak sensory input, thereby offering further evidence that feedback is necessary to elicit increases in firing rate that are needed for perception.
Collapse
Affiliation(s)
- Michael G. Metzen
- Department of Physiology, McGill University, Montreal, Quebec, Canada
| | - Chengjie G. Huang
- Department of Physiology, McGill University, Montreal, Quebec, Canada
| | - Maurice J. Chacron
- Department of Physiology, McGill University, Montreal, Quebec, Canada
- * E-mail:
| |
Collapse
|
17
|
Petzold JM, Marsat G, Smith GT. Co-adaptation of electric organ discharges and chirps in South American ghost knifefishes (Apteronotidae). ACTA ACUST UNITED AC 2016; 110:200-215. [PMID: 27989653 DOI: 10.1016/j.jphysparis.2016.10.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 10/24/2016] [Accepted: 10/25/2016] [Indexed: 10/20/2022]
Abstract
Animal communication signals that simultaneously share the same sensory channel are likely to co-evolve to maximize the transmission of each signal component. Weakly electric fish continuously produce a weak electric field that functions in communication. Fish modulate the electric organ discharge (EOD) on short timescales to produce context-specific signals called chirps. EODs and chirps are simultaneously detected by electroreceptors and processed in the electrosensory system. We analyzed these signals, first to explore whether EOD waveform is encoded in the signal received by electroreceptors and then to examine how EODs and chirps interact to influence conspicuousness. Our findings show that gross discrimination of sinusoidal from complex EOD waveforms is feasible for all species, but fine discrimination of waveform may be possible only for species with waveforms of intermediate complexity. The degree of chirp frequency modulation and chirp relative decay strongly influenced chirp conspicuousness, but other chirp parameters were less influential. The frequency difference between the interacting EODs also strongly impacted chirp conspicuousness. Finally, we developed a method for creating hybrid chirp/EOD combinations to independently analyze the impact of chirp species, EOD species, and EOD difference frequency on chirp conspicuousness. All three components and their interactions strongly influenced chirp conspicuousness, which suggests that evolutionary changes in parameters of either chirps or EODs are likely to influence chirp detection. Examining other environmental factors such as noise created by fish movement and species-typical patterns of sociality may enrich our understanding of how interacting EODs affect the detection and discrimination of chirps across species.
Collapse
Affiliation(s)
- Jacquelyn M Petzold
- Department of Biology, Indiana University, 1001 E. 3rd St., Bloomington, IN 47405, USA; Center for the Integrative Study of Animal Behavior, Indiana University, 409 N. Park Ave., Bloomington, IN 47405, USA.
| | - Gary Marsat
- Department of Biology, West Virginia University, 53 Campus Dr., Morgantown, WV 26506, USA
| | - G Troy Smith
- Department of Biology, Indiana University, 1001 E. 3rd St., Bloomington, IN 47405, USA; Center for the Integrative Study of Animal Behavior, Indiana University, 409 N. Park Ave., Bloomington, IN 47405, USA
| |
Collapse
|
18
|
Carlson BA, Gallant JR. From sequence to spike to spark: evo-devo-neuroethology of electric communication in mormyrid fishes. J Neurogenet 2013; 27:106-29. [PMID: 23802152 DOI: 10.3109/01677063.2013.799670] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Mormyrid fishes communicate using pulses of electricity, conveying information about their identity, behavioral state, and location. They have long been used as neuroethological model systems because they are uniquely suited to identifying cellular mechanisms for behavior. They are also remarkably diverse, and they have recently emerged as a model system for studying how communication systems may influence the process of speciation. These two lines of inquiry have now converged, generating insights into the neural basis of evolutionary change in behavior, as well as the influence of sensory and motor systems on behavioral diversification and speciation. Here, we review the mechanisms of electric signal generation, reception, and analysis and relate these to our current understanding of the evolution and development of electromotor and electrosensory systems. We highlight the enormous potential of mormyrids for studying evolutionary developmental mechanisms of behavioral diversification, and make the case for developing genomic and transcriptomic resources. A complete mormyrid genome sequence would enable studies that extend our understanding of mormyrid behavior to the molecular level by linking morphological and physiological mechanisms to their genetic basis. Applied in a comparative framework, genomic resources would facilitate analysis of evolutionary processes underlying mormyrid diversification, reveal the genetic basis of species differences in behavior, and illuminate the origins of a novel vertebrate sensory and motor system. Genomic approaches to studying the evo-devo-neuroethology of mormyrid communication represent a deeply integrative approach to understanding the evolution, function, development, and mechanisms of behavior.
Collapse
Affiliation(s)
- Bruce A Carlson
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri 63130-4899, USA.
| | | |
Collapse
|
19
|
Abstract
The emerging field of "neuro-evo-devo" is beginning to reveal how the molecular and neural substrates that underlie brain function are based on variations in evolutionarily ancient and conserved neurochemical and neural circuit themes. Comparative work across bilaterians is reviewed to highlight how early neural patterning specifies modularity of the embryonic brain, which lays a foundation on which manipulation of neurogenesis creates adjustments in brain size. Small variation within these developmental mechanisms contributes to the evolution of brain diversity. Comparing the specification and spatial distribution of neural phenotypes across bilaterians has also suggested some major brain evolution trends, although much more work on profiling neural connections with neurochemical specificity across a wide diversity of organisms is needed. These comparative approaches investigating the evolution of brain form and function hold great promise for facilitating a mechanistic understanding of how variation in brain morphology, neural phenotypes, and neural networks influences brain function and behavioral diversity across organisms.
Collapse
Affiliation(s)
- Lauren A O'Connell
- Faculty of Arts and Sciences (FAS) Center for Systems Biology, Harvard University, Cambridge, Massachusetts 02138, USA.
| |
Collapse
|
20
|
Broughton RE, Betancur-R R, Li C, Arratia G, Ortí G. Multi-locus phylogenetic analysis reveals the pattern and tempo of bony fish evolution. PLOS CURRENTS 2013; 5:ecurrents.tol.2ca8041495ffafd0c92756e75247483e. [PMID: 23788273 PMCID: PMC3682800 DOI: 10.1371/currents.tol.2ca8041495ffafd0c92756e75247483e] [Citation(s) in RCA: 100] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Over half of all vertebrates are "fishes", which exhibit enormous diversity in morphology, physiology, behavior, reproductive biology, and ecology. Investigation of fundamental areas of vertebrate biology depend critically on a robust phylogeny of fishes, yet evolutionary relationships among the major actinopterygian and sarcopterygian lineages have not been conclusively resolved. Although a consensus phylogeny of teleosts has been emerging recently, it has been based on analyses of various subsets of actinopterygian taxa, but not on a full sample of all bony fishes. Here we conducted a comprehensive phylogenetic study on a broad taxonomic sample of 61 actinopterygian and sarcopterygian lineages (with a chondrichthyan outgroup) using a molecular data set of 21 independent loci. These data yielded a resolved phylogenetic hypothesis for extant Osteichthyes, including 1) reciprocally monophyletic Sarcopterygii and Actinopterygii, as currently understood, with polypteriforms as the first diverging lineage within Actinopterygii; 2) a monophyletic group containing gars and bowfin (= Holostei) as sister group to teleosts; and 3) the earliest diverging lineage among teleosts being Elopomorpha, rather than Osteoglossomorpha. Relaxed-clock dating analysis employing a set of 24 newly applied fossil calibrations reveals divergence times that are more consistent with paleontological estimates than previous studies. Establishing a new phylogenetic pattern with accurate divergence dates for bony fishes illustrates several areas where the fossil record is incomplete and provides critical new insights on diversification of this important vertebrate group.
Collapse
|
21
|
Lyons-Warren AM, Hollmann M, Carlson BA. Sensory receptor diversity establishes a peripheral population code for stimulus duration at low intensities. ACTA ACUST UNITED AC 2012; 215:2586-600. [PMID: 22786635 DOI: 10.1242/jeb.064733] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Peripheral filtering is a fundamental mechanism for establishing frequency tuning in sensory systems. By contrast, detection of temporal features, such as duration, is generally thought to result from temporal coding in the periphery, followed by an analysis of peripheral response times within the central nervous system. We investigated how peripheral filtering properties affect the coding of stimulus duration in the electrosensory system of mormyrid fishes using behavioral and electrophysiological measures of duration tuning. We recorded from individual knollenorgans, the electrosensory receptors that mediate communication, and found correlated variation in frequency tuning and duration tuning, as predicted by a simple circuit model. In response to relatively high intensity stimuli, knollenorgans responded reliably with fixed latency spikes, consistent with a temporal code for stimulus duration. At near-threshold intensities, however, both the reliability and the temporal precision of responses decreased. Evoked potential recordings from the midbrain, as well as behavioral responses to electrosensory stimulation, revealed changes in sensitivity across the range of durations associated with the greatest variability in receptor sensitivity. Further, this range overlapped with the natural range of variation in species-specific communication signals, suggesting that peripheral duration tuning affects the coding of behaviorally relevant stimuli. We measured knollenorgan, midbrain and behavioral responses to natural communication signals and found that each of them were duration dependent. We conclude that at relatively low intensities for which temporal coding is ineffective, diversity among sensory receptors establishes a population code, in which duration is reflected in the population of responding knollenorgans.
Collapse
Affiliation(s)
- Ariel M Lyons-Warren
- Department of Biology, Washington University in St Louis, St Louis, MO 63130-4899, USA
| | | | | |
Collapse
|
22
|
Walz H, Hupé GJ, Benda J, Lewis JE. The neuroethology of electrocommunication: how signal background influences sensory encoding and behaviour in Apteronotus leptorhynchus. ACTA ACUST UNITED AC 2012; 107:13-25. [PMID: 22981958 DOI: 10.1016/j.jphysparis.2012.07.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Revised: 07/05/2012] [Accepted: 07/19/2012] [Indexed: 10/27/2022]
Abstract
Weakly-electric fish are a well-established model system for neuroethological studies on communication and aggression. Sensory encoding of their electric communication signals, as well as behavioural responses to these signals, have been investigated in great detail under laboratory conditions. In the wave-type brown ghost knifefish, Apteronotus leptorhynchus, transient increases in the frequency of the generated electric field, called chirps, are particularly well-studied, since they can be readily evoked by stimulating a fish with artificial signals mimicking conspecifics. When two fish interact, both their quasi-sinusoidal electric fields (called electric organ discharge, EOD) superimpose, resulting in a beat, an amplitude modulation at the frequency difference between the two EODs. Although chirps themselves are highly stereotyped signals, the shape of the amplitude modulation resulting from a chirp superimposed on a beat background depends on a number of parameters, such as the beat frequency, modulation depth, and beat phase at which the chirp is emitted. Here we review the influence of these beat parameters on chirp encoding in the three primary stages of the electrosensory pathway: electroreceptor afferents, the hindbrain electrosensory lateral line lobe, and midbrain torus semicircularis. We then examine the role of these parameters, which represent specific features of various social contexts, on the behavioural responses of A. leptorhynchus. Some aspects of the behaviour may be explained by the coding properties of early sensory neurons to chirp stimuli. However, the complexity and diversity of behavioural responses to chirps in the context of different background parameters cannot be explained solely on the basis of the sensory responses and thus suggest that critical roles are played by higher processing stages.
Collapse
Affiliation(s)
- Henriette Walz
- Bernstein Center for Computational Neuroscience Munich, 82152 Martinsried, Germany
| | - Ginette J Hupé
- Department of Biology and Centre for Neural Dynamics, University of Ottawa, Ottawa, ON, Canada K1N 6N5
| | - Jan Benda
- Institute of Neurobiology, University of Tübingen, 72076 Tübingen, Germany.
| | - John E Lewis
- Department of Biology and Centre for Neural Dynamics, University of Ottawa, Ottawa, ON, Canada K1N 6N5
| |
Collapse
|
23
|
Lavoué S, Miya M, Arnegard ME, Sullivan JP, Hopkins CD, Nishida M. Comparable ages for the independent origins of electrogenesis in African and South American weakly electric fishes. PLoS One 2012; 7:e36287. [PMID: 22606250 PMCID: PMC3351409 DOI: 10.1371/journal.pone.0036287] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Accepted: 03/29/2012] [Indexed: 11/26/2022] Open
Abstract
One of the most remarkable examples of convergent evolution among vertebrates is illustrated by the independent origins of an active electric sense in South American and African weakly electric fishes, the Gymnotiformes and Mormyroidea, respectively. These groups independently evolved similar complex systems for object localization and communication via the generation and reception of weak electric fields. While good estimates of divergence times are critical to understanding the temporal context for the evolution and diversification of these two groups, their respective ages have been difficult to estimate due to the absence of an informative fossil record, use of strict molecular clock models in previous studies, and/or incomplete taxonomic sampling. Here, we examine the timing of the origins of the Gymnotiformes and the Mormyroidea using complete mitogenome sequences and a parametric bayesian method for divergence time reconstruction. Under two different fossil-based calibration methods, we estimated similar ages for the independent origins of the Mormyroidea and Gymnotiformes. Our absolute estimates for the origins of these groups either slightly postdate, or just predate, the final separation of Africa and South America by continental drift. The most recent common ancestor of the Mormyroidea and Gymnotiformes was found to be a non-electrogenic basal teleost living more than 85 millions years earlier. For both electric fish lineages, we also estimated similar intervals (16-19 or 22-26 million years, depending on calibration method) between the appearance of electroreception and the origin of myogenic electric organs, providing rough upper estimates for the time periods during which these complex electric organs evolved de novo from skeletal muscle precursors. The fact that the Gymnotiformes and Mormyroidea are of similar age enhances the comparative value of the weakly electric fish system for investigating pathways to evolutionary novelty, as well as the influences of key innovations in communication on the process of species radiation.
Collapse
Affiliation(s)
- Sébastien Lavoué
- Institute of Oceanography, National Taiwan University, Taipei, Taiwan.
| | | | | | | | | | | |
Collapse
|
24
|
Affiliation(s)
- Mark E Nelson
- Beckman Institute, University of Illinois, 405 N. Mathew Ave, Urbana, IL 61801, USA.
| |
Collapse
|
25
|
Abstract
The complexity of nervous systems alters the evolvability of behaviour. Complex nervous systems are phylogenetically constrained; nevertheless particular species-specific behaviours have repeatedly evolved, suggesting a predisposition towards those behaviours. Independently evolved behaviours in animals that share a common neural architecture are generally produced by homologous neural structures, homologous neural pathways and even in the case of some invertebrates, homologous identified neurons. Such parallel evolution has been documented in the chromatic sensitivity of visual systems, motor behaviours and complex social behaviours such as pair-bonding. The appearance of homoplasious behaviours produced by homologous neural substrates suggests that there might be features of these nervous systems that favoured the repeated evolution of particular behaviours. Neuromodulation may be one such feature because it allows anatomically defined neural circuitry to be re-purposed. The developmental, genetic and physiological mechanisms that contribute to nervous system complexity may also bias the evolution of behaviour, thereby affecting the evolvability of species-specific behaviour.
Collapse
Affiliation(s)
- Paul S Katz
- Neuroscience Institute, Georgia State University, PO Box 5030, Atlanta, GA 30302, USA.
| |
Collapse
|
26
|
Different roles for homologous interneurons in species exhibiting similar rhythmic behaviors. Curr Biol 2011; 21:1036-43. [PMID: 21620707 DOI: 10.1016/j.cub.2011.04.040] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2011] [Revised: 04/01/2011] [Accepted: 04/26/2011] [Indexed: 11/20/2022]
Abstract
It is often assumed that similar behaviors in related species are produced by similar neural mechanisms. To test this, we examined the neuronal basis of a simple swimming behavior in two nudibranchs (Mollusca, Opisthobranchia), Melibe leonina and Dendronotus iris. The side-to-side swimming movements of Dendronotus [1] strongly resemble those of Melibe [2, 3]. In Melibe, it was previously shown that the central pattern generator (CPG) for swimming is composed of two bilaterally symmetric pairs of identified interneurons, swim interneuron 1 (Si1) and swim interneuron 2 (Si2), which are electrically coupled ipsilaterally and mutually inhibit both contralateral counterparts [2, 4]. We identified homologs of Si1 and Si2 in Dendronotus. (Henceforth, homologous neurons in each species will be distinguished by the subscripts (Den) and (Mel).) We found that Si2(Den) and Si2(Mel) play similar roles in generating the swim motor pattern. However, unlike Si1(Mel), Si1(Den) was not part of the swim CPG, was not strongly coupled to the ipsilateral Si2(Den), and did not inhibit the contralateral neurons. Thus, species differences exist in the neuronal organization of the swim CPGs despite the similarity of the behaviors. Therefore, similarity in species-typical behavior is not necessarily predictive of common neural mechanisms, even for homologous neurons in closely related species.
Collapse
|
27
|
Greenwood AK, Peichel CL, Zottoli SJ. Distinct startle responses are associated with neuroanatomical differences in pufferfishes. ACTA ACUST UNITED AC 2010; 213:613-20. [PMID: 20118312 DOI: 10.1242/jeb.037085] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Despite the key function of the Mauthner cells (M-cells) in initiating escape responses and thereby promoting survival, there are multiple examples of M-cell loss across the teleost phylogeny. Only a few studies have directly considered the behavioral consequences of naturally occurring M-cell variation across species. We chose to examine this issue in pufferfishes, as previous research suggested that there might be variability in M-cell anatomy in this group of fish. We characterized the M-cell anatomy and fast-start responses of two pufferfish species, Tetraodon nigroviridis and Diodon holocanthus. T. nigroviridis showed robust fast-starts to both tactile and acoustic startling stimuli. These fast-starts occurred with a latency typical of M-cell initiation in other fish, and retrograde labeling of spinal-projection neurons revealed that T. nigroviridis does have M-cells. By contrast, D. holocanthus only rarely exhibited fast-start-like behavior, and these responses were at a substantially longer latency and were much less extensive than those of T. nigroviridis. Using three complementary anatomical techniques we were unable to identify obvious M-cell candidates in D. holocanthus. These results provide a clear correlation between M-cell presence or absence and dramatic differences in fast-start behavior. The rich diversity within the pufferfish clade should allow future studies investigating the factors that contribute to this correlated anatomical and behavioral variation.
Collapse
Affiliation(s)
- A K Greenwood
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.
| | | | | |
Collapse
|
28
|
Lavoué S, Arnegard ME, Sullivan JP, Hopkins CD. Petrocephalus of Odzala offer insights into evolutionary patterns of signal diversification in the Mormyridae, a family of weakly electrogenic fishes from Africa. ACTA ACUST UNITED AC 2008; 102:322-39. [PMID: 18992333 DOI: 10.1016/j.jphysparis.2008.10.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Electric signals of mormyrid fishes have recently been described from several regions of Africa. Members of the Mormyridae produce weak electric organ discharges (EODs) as part of a specialized electrosensory communication and orientation system. Sympatric species often express distinctive EODs, which may contribute to species recognition during mate choice in some lineages. Striking examples of interspecific EOD variation within assemblages have been reported for two monophyletic radiations: the Paramormyrops of Gabon and the Campylomormyrus of Lower Congo. Here, we describe a speciose assemblage of Petrocephalus in the Lékoli River system of Odzala National Park, Republic of Congo. This widespread genus comprises the subfamily (Petrocephalinae) that is the sister group to all other mormyrids (Mormyrinae). Eleven Petrocephalus species were collected in Odzala, five of which are not described taxonomically. We quantify EOD variation within this assemblage and show that all eleven species produce EOD waveforms of brief duration (species means range from 144 to 663mus) compared to many other mormyrids. We also present reconstructed phylogenetic relationships among species based on cytochrome b sequences. Discovery of the Odzala assemblage greatly increases the number of Petrocephalus species for which EODs and DNA sequence data are available, permitting a first qualitative comparison between mormyrid subfamilies of the divergence patterns that have been described within lineages. We find that the Petrocephalus assemblage in Odzala is not a monophyletic radiation. Genetic divergence among Petrocephalus species often appears higher than among Paramormyrops or Campylomormyrus species. In contrast, results of this study and others suggest that Petrocephalus may generally exhibit less interspecific EOD divergence, as well as smaller sex differences in EOD waveforms, compared to Paramormyrops and Campylomormyrus. We discuss possible causes and consequences of EOD diversification patterns observed within mormyrid subfamilies as a framework for future comparative studies of signal evolution using this emerging model system.
Collapse
Affiliation(s)
- Sébastien Lavoué
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA.
| | | | | | | |
Collapse
|
29
|
In vitro studies of closed-loop feedback and electrosensory processing in Apteronotus leptorhynchus. ACTA ACUST UNITED AC 2008; 102:173-80. [PMID: 18996475 DOI: 10.1016/j.jphysparis.2008.10.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Electrosensory systems comprise extensive feedback pathways. It is also well known that these pathways exhibit synaptic plasticity on a wide-range of time scales. Recent in vitro brain slice studies have characterized synaptic plasticity in the two main feedback pathways to the electrosensory lateral line lobe (ELL), a primary electrosensory nucleus in Apteronotus leptorhynchus. Currently-used slice preparations, involving networks in open-loop conditions, allow feedback inputs to be studied in isolation, a critical step in determining their synaptic properties. However, to fully understand electrosensory processing, we must understand how dynamic feedback modulates neuronal responses under closed-loop conditions. To bridge the gap between current in vitro approaches and more complex in vivo work, we present two new in vitro approaches for studying the roles of closed-loop feedback in electrosensory processing. The first involves a hybrid-network approach using dynamic clamp, and the second involves a new slice preparation that preserves one of the feedback pathways to ELL in a closed-loop condition.
Collapse
|
30
|
Silva A, Quintana L, Perrone R, Sierra F. Sexual and seasonal plasticity in the emission of social electric signals. Behavioral approach and neural bases. ACTA ACUST UNITED AC 2008; 102:272-8. [PMID: 18992332 DOI: 10.1016/j.jphysparis.2008.10.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Behavior in electric fish includes modulations of a stereotyped electric organ discharge (EOD) in addition to locomotor displays. Gymnotiformes can modulate the EOD rate to produce signals that participate in different behaviors. We studied the reproductive behavior of Brachyhypopomus pinnicaudatus both in the wild and laboratory settings. During the breeding season, fish produce sexually dimorphic social electric signals (SES): males emit three types of chirps (distinguished by their duration and internal structure), and accelerations, whereas females interrupt their EOD. Since these SES imply EOD frequency modulations, the pacemaker nucleus (PN) is involved in their generation and constitutes the main target organ to explore seasonal and sexual plasticity of the CNS. The PN has two types of neurons, pacemakers and relays, which receive modulatory inputs from pre-pacemaker structures. These neurons show an anisotropic rostro-caudal and dorso-ventral distribution that is paralleled by different field potential waveforms in distinct portions of the PN. In vivo glutamate injections in different areas of the PN provoke different kinds of EOD rate modulations. Ventral injections produce chirp-like responses in breeding males and EOD interruptions in breeding females, whereas dorsal injections provoke EOD frequency rises in both sexes. In the non-breeding season, males and females respond with interruptions when stimulated ventrally and frequency rises when injected dorsally. Our results show that changes of glutamate effects in the PN could explain the seasonal and sexual differences in the generation of SES. By means of behavioral recordings both in the wild and in laboratory settings, and by electrophysiological and pharmacological experiments, we have identified sexual and seasonal plasticity of the CNS and explored its underlying mechanisms.
Collapse
Affiliation(s)
- Ana Silva
- Departamento de Neurofisiología, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay.
| | | | | | | |
Collapse
|
31
|
Yamaguchi A, Gooler D, Herrold A, Patel S, Pong WW. Temperature-dependent regulation of vocal pattern generator. J Neurophysiol 2008; 100:3134-43. [PMID: 18829853 DOI: 10.1152/jn.01309.2007] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Vocalizations of Xenopus laevis are generated by central pattern generators (CPGs). The advertisement call of male X. laevis is a complex biphasic motor rhythm consisting of fast and slow trills (a train of clicks). We found that the trill rate of these advertisement calls is sensitive to temperature and that this rate modification of the vocal rhythms originates in the central pattern generators. In vivo the rates of fast and slow trills increased linearly with an increase in temperature. In vitro a similar linear relation between temperature and compound action potential frequency in the laryngeal nerve was found when fictive advertisement calls were evoked in the isolated brain. Temperature did not limit the contractile properties of laryngeal muscles within the frequency range of vocalizations. We next took advantage of the temperature sensitivity of the vocal CPG in vitro to localize the source of the vocal rhythms. We focused on the dorsal tegmental area of the medulla (DTAM), a brain stem nucleus that is essential for vocal production. We found that bilateral cooling of DTAM reduced both fast and slow trill rates. Thus we conclude that DTAM is a source of biphasic vocal rhythms.
Collapse
Affiliation(s)
- Ayako Yamaguchi
- Boston University, Biology Department, Boston, MA 02215, USA.
| | | | | | | | | |
Collapse
|
32
|
Ramcharitar JU, Tan EW, Fortune ES. Global Electrosensory Oscillations Enhance Directional Responses of Midbrain Neurons inEigenmannia. J Neurophysiol 2006; 96:2319-26. [PMID: 16790600 DOI: 10.1152/jn.00311.2006] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Eigenmannia, a genus of weakly electric fish, exhibits a specialized behavior known as the jamming avoidance response (JAR). The JAR results in a categorical difference between Eigenmannia that are in groups of conspecifics and those that are alone. Fish in groups exhibit the JAR behavior and thereby experience ongoing, global synchronous 20- to 50-Hz electrosensory oscillations, whereas solitary fish do not. Although previous work has shown that these ongoing signals do not significantly degrade electrosensory behavior, these oscillations nevertheless elicit short-term synaptic depression in midbrain circuits. Because short-term synaptic depression can have profound effects on the transmission of information through synapses, we examined the differences in intracellularly recorded responses of midbrain neurons in awake, behaving fish to moving electrosensory images under electrosensory conditions that mimic solitary fish and fish in groups. In solitary conditions, moving objects elicited Gaussian or sinusoidal postsynaptic potentials (PSPs) that commonly exhibited preferential responses to a direction of motion. Surprisingly, when the same stimulus was presented in the presence of the global oscillations, directional selectivity was increased in all neurons tested. The magnitudes of the differences in PSP amplitude for preferred and nonpreferred directions were correlated with a measure of short-term synaptic depression in both conditions. The electrosensory consequences of the JAR appear to result in an enhancement of the representation of direction of motion in midbrain neurons. The data also support a role for short-term synaptic depression in the generation and modulation of directional responses.
Collapse
Affiliation(s)
- J U Ramcharitar
- Department of Psychological and Brain Sciences, The Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218, USA
| | | | | |
Collapse
|
33
|
Fortune ES. The decoding of electrosensory systems. Curr Opin Neurobiol 2006; 16:474-80. [PMID: 16837187 DOI: 10.1016/j.conb.2006.06.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2006] [Accepted: 06/29/2006] [Indexed: 10/24/2022]
Abstract
Progress in the study of electrosensory systems has been facilitated by the systematic use of behavior as a tool to probe the nervous system. Indeed, a specific behavior that is found in a subset of weakly electric fishes, the jamming avoidance response, was used to identify and characterize an entire suite of brain circuits, from sensory receptors to motor units, that are involved in control of this behavior. Recent progress has focused on a re-analysis of this circuit in relation to newly described electrosensory behaviors, including prey capture, social signaling and the tracking of electrosensory objects. This re-analysis has led to a re-evaluation of the broader functional relevance of specific neural solutions to computational problems that are related to the control of the jamming avoidance response. Some of the recent insights that have emerged from this work include descriptions of mechanisms underlying dynamic receptive field properties, descriptions of the neural activity related to simultaneously occurring sensory stimuli, and a greater understanding of the role of short-term synaptic plasticity in temporal processing.
Collapse
Affiliation(s)
- Eric S Fortune
- Department of Psychological and Brain Sciences, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA.
| |
Collapse
|
34
|
Fortune ES, Rose GJ, Kawasaki M. Encoding and processing biologically relevant temporal information in electrosensory systems. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2006; 192:625-35. [PMID: 16450118 DOI: 10.1007/s00359-006-0102-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2005] [Revised: 10/28/2005] [Accepted: 12/26/2005] [Indexed: 10/25/2022]
Abstract
Wave-type weakly electric fish are specialists in time-domain processing: behaviors in these animals are often tightly correlated with the temporal structure of electrosensory signals. Behavioral responses in these fish can be dependent on differences in the temporal structure of electrosensory signals alone. This feature has facilitated the study of temporal codes and processing in central nervous system circuits of these animals. The temporal encoding and mechanisms used to transform temporal codes in the brain have been identified and characterized in several species, including South American gymnotid species and in the African mormyrid genus Gymnarchus. These distantly related groups use similar strategies for neural computations of information on the order of microseconds, milliseconds, and seconds. Here, we describe a suite of mechanisms for behaviorally relevant computations of temporal information that have been elucidated in these systems. These results show the critical role that behavioral experiments continue to have in the study of the neural control of behavior and its evolution.
Collapse
Affiliation(s)
- E S Fortune
- Department of Psychological and Brain Sciences, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA.
| | | | | |
Collapse
|
35
|
Bass AH, Zakon HH. Sonic and electric fish: at the crossroads of neuroethology and behavioral neuroendocrinology. Horm Behav 2005; 48:360-72. [PMID: 16005002 DOI: 10.1016/j.yhbeh.2005.05.022] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2005] [Revised: 05/23/2005] [Accepted: 05/31/2005] [Indexed: 10/25/2022]
Abstract
Field and laboratory studies of weakly electric and sound-producing teleost fishes demonstrate how steroidal and non-steroidal hormones mediate the translation of neural events into behavior. The development of this research program has depended upon an interdisciplinary neuroethological approach that has characterized the neurophysiological properties of the motor and sensory pathways that lead to the production and detection of easily quantified highly stereotyped behaviors, namely, electric organ discharges (EODs) and vocalizations. Neuroethological studies of these teleosts have now integrated a behavioral neuroendocrinology approach that has provided several examples of how hormone-sensitive neurobiological traits contribute to adaptive behavioral plasticity in natural habitats. As such, these studies provide guideposts for comparable studies in other groups of teleosts and vertebrates in general.
Collapse
Affiliation(s)
- Andrew H Bass
- Department of Neurobiology and Behavior, Seeley G. Mudd Hall, Cornell University, Ithaca, NY 14853, USA.
| | | |
Collapse
|
36
|
Arnegard ME, Carlson BA. Electric organ discharge patterns during group hunting by a mormyrid fish. Proc Biol Sci 2005; 272:1305-14. [PMID: 16006329 PMCID: PMC1560340 DOI: 10.1098/rspb.2005.3101] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Weakly electric fish emit and receive low-voltage electric organ discharges (EODs) for electrolocation and communication. Since the discovery of the electric sense, their behaviours in the wild have remained elusive owing to their nocturnal habits and the inaccessible environments in which they live. The transparency of Lake Malawi provided the first opportunity to simultaneously observe freely behaving mormyrid fish and record their EODs. We observed a piscivorous mormyrid, Mormyrops anguilloides, hunting in small groups in Lake Malawi while feeding on rock-frequenting cichlids of the largest known vertebrate species flock. Video recordings yielded the novel and unexpected finding that these groups resembled hunting packs by being largely composed of the same individuals across days. We show that EOD accelerations accompany prey probing and size estimation by M. anguilloides. In addition, group members occasionally synchronize bursts of EODs with an extraordinary degree of precision afforded by the mormyrid echo response. The characteristics and context of burst synchronization suggest that it may function as a pack cohesion signal. Our observations highlight the potential richness of social behaviours in a basal vertebrate lineage, and provide a framework for future investigations of the neural mechanisms, behavioural rules and ecological significance of social predation in M. anguilloides.
Collapse
Affiliation(s)
- Matthew E Arnegard
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA.
| | | |
Collapse
|
37
|
Sawtell NB, Williams A, Bell CC. From sparks to spikes: information processing in the electrosensory systems of fish. Curr Opin Neurobiol 2005; 15:437-43. [PMID: 16009545 DOI: 10.1016/j.conb.2005.06.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2005] [Accepted: 06/30/2005] [Indexed: 11/28/2022]
Abstract
Recent work on electrosensory systems in fish has combined traditional neuroethological approaches with quantitative methods for characterizing neural coding. These studies have shed light on general issues in sensory processing, including how peripheral sensory receptors encode external stimuli and how these representations are transformed at subsequent stages of processing.
Collapse
Affiliation(s)
- Nathaniel B Sawtell
- Neurological Sciences Institute, Oregon Health & Sciences University, Beaverton, Oregon 97006, USA.
| | | | | |
Collapse
|