1
|
De Paolis V, Paolillo N, Siri T, Grosso A, Lorello V, Spina C, Caporali G, La Regina F, Vignoli B, Giorgi C. An antisense-long-noncoding-RNA modulates p75 NTR expression levels during neuronal polarization. iScience 2025; 28:111566. [PMID: 39811648 PMCID: PMC11730960 DOI: 10.1016/j.isci.2024.111566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/05/2024] [Accepted: 12/06/2024] [Indexed: 01/16/2025] Open
Abstract
Proper polarization of newly generated neurons is a critical process for neural network formation and brain development. The pan-neurotrophin p75NTR receptor plays a key role in this process localizing asymmetrically in one of the differentiating neurites and specifying its axonal identity in response to neurotrophins. During axonal specification, p75NTR levels are transiently modulated, yet the molecular mechanisms underlying this process are not known. Here, we identified a previously uncharacterized natural antisense transcript, AS-p75, encoded within the p75NGFR mouse gene. Using an in vitro model of polarizing murine neurons, we found that AS-p75 and p75NTR display divergent expression profiles and that p75NTR expression levels increase upon competition or depletion of AS-p75, indicating that AS-p75 is a negative regulator of p75NTR expression. Depletion of AS-p75 also results in altered p75NTR subcellular distribution and affects the polarization process. Overall, our data uncovered AS-p75 as a modulator of p75NTR expression, offering new insights into the regulation of this neurotrophin receptor during in vitro neuronal polarization.
Collapse
Affiliation(s)
- Veronica De Paolis
- Department of Experimental Medicine, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy
- European Brain Research Institute (EBRI), Fondazione Rita Levi-Montalcini, Viale Regina Elena 295, 00161 Rome, Italy
- Institute of Biochemistry and Cell Biology, National Research Council of Italy (IBBC-CNR), Via Ercole Ramarini 32, 00015 Monterotondo, Italy
| | - Nicoletta Paolillo
- European Brain Research Institute (EBRI), Fondazione Rita Levi-Montalcini, Viale Regina Elena 295, 00161 Rome, Italy
| | - Tiziano Siri
- European Brain Research Institute (EBRI), Fondazione Rita Levi-Montalcini, Viale Regina Elena 295, 00161 Rome, Italy
- Department of Sciences, University of Roma Tre, Viale Guglielmo Marconi 446, 00146 Rome, Italy
- CERVO Brain Research Center, Quebec City, QC G1J 2G3, Canada
| | - Alessandra Grosso
- European Brain Research Institute (EBRI), Fondazione Rita Levi-Montalcini, Viale Regina Elena 295, 00161 Rome, Italy
- Department of Biology and Biotechnology “Charles Darwin”, University of Rome “Sapienza”, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Veronica Lorello
- European Brain Research Institute (EBRI), Fondazione Rita Levi-Montalcini, Viale Regina Elena 295, 00161 Rome, Italy
- Department of Biology and Biotechnology “Charles Darwin”, University of Rome “Sapienza”, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Cristina Spina
- European Brain Research Institute (EBRI), Fondazione Rita Levi-Montalcini, Viale Regina Elena 295, 00161 Rome, Italy
- Department of Biology and Biotechnology “Charles Darwin”, University of Rome “Sapienza”, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Gabriele Caporali
- European Brain Research Institute (EBRI), Fondazione Rita Levi-Montalcini, Viale Regina Elena 295, 00161 Rome, Italy
- Department of Biology and Biotechnology “Charles Darwin”, University of Rome “Sapienza”, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Federico La Regina
- European Brain Research Institute (EBRI), Fondazione Rita Levi-Montalcini, Viale Regina Elena 295, 00161 Rome, Italy
| | - Beatrice Vignoli
- European Brain Research Institute (EBRI), Fondazione Rita Levi-Montalcini, Viale Regina Elena 295, 00161 Rome, Italy
- Department of Cellular, Computational and Integrative Biology – CIBIO, University of Trento, Via Sommarive 9, 38123 Povo TN, Italy
| | - Corinna Giorgi
- European Brain Research Institute (EBRI), Fondazione Rita Levi-Montalcini, Viale Regina Elena 295, 00161 Rome, Italy
- Institute of Molecular Biology and Pathology, National Research Council of Italy (IBPM-CNR), P.le Aldo Moro 5, 00185 Rome, Italy
| |
Collapse
|
2
|
Ahmad S, Christova T, Pye M, Narimatsu M, Song S, Wrana JL, Attisano L. Small Extracellular Vesicles Promote Axon Outgrowth by Engaging the Wnt-Planar Cell Polarity Pathway. Cells 2025; 14:56. [PMID: 39791757 PMCID: PMC11720052 DOI: 10.3390/cells14010056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 12/14/2024] [Accepted: 12/17/2024] [Indexed: 01/30/2025] Open
Abstract
In neurons, the acquisition of a polarized morphology is achieved upon the outgrowth of a single axon from one of several neurites. Small extracellular vesicles (sEVs), such as exosomes, from diverse sources are known to promote neurite outgrowth and thus may have therapeutic potential. However, the effect of fibroblast-derived exosomes on axon elongation in neurons of the central nervous system under growth-permissive conditions remains unclear. Here, we show that fibroblast-derived sEVs promote axon outgrowth and a polarized neuronal morphology in mouse primary embryonic cortical neurons. Mechanistically, we demonstrate that the sEV-induced increase in axon outgrowth requires endogenous Wnts and core PCP components including Prickle, Vangl, Frizzled, and Dishevelled. We demonstrate that sEVs are internalized by neurons, colocalize with Wnt7b, and induce relocalization of Vangl2 to the distal axon during axon outgrowth. In contrast, sEVs derived from neurons or astrocytes do not promote axon outgrowth, while sEVs from activated astrocytes inhibit elongation. Thus, our data reveal that fibroblast-derived sEVs promote axon elongation through the Wnt-PCP pathway in a manner that is dependent on endogenous Wnts.
Collapse
Affiliation(s)
- Samar Ahmad
- Department of Biochemistry, Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada; (S.A.); (T.C.); (S.S.)
| | - Tania Christova
- Department of Biochemistry, Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada; (S.A.); (T.C.); (S.S.)
| | - Melanie Pye
- Center for Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, Toronto, ON M5G 1X5, Canada; (M.P.); (M.N.); (J.L.W.)
| | - Masahiro Narimatsu
- Center for Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, Toronto, ON M5G 1X5, Canada; (M.P.); (M.N.); (J.L.W.)
| | - Siyuan Song
- Department of Biochemistry, Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada; (S.A.); (T.C.); (S.S.)
| | - Jeffrey L. Wrana
- Center for Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, Toronto, ON M5G 1X5, Canada; (M.P.); (M.N.); (J.L.W.)
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1X5, Canada
| | - Liliana Attisano
- Department of Biochemistry, Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada; (S.A.); (T.C.); (S.S.)
| |
Collapse
|
3
|
Nakagawa N. The neuronal Golgi in neural circuit formation and reorganization. Front Neural Circuits 2024; 18:1504422. [PMID: 39703196 PMCID: PMC11655203 DOI: 10.3389/fncir.2024.1504422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 11/20/2024] [Indexed: 12/21/2024] Open
Abstract
The Golgi apparatus is a central hub in the intracellular secretory pathway. By positioning in the specific intracellular region and transporting materials to spatially restricted compartments, the Golgi apparatus contributes to the cell polarity establishment and morphological specification in diverse cell types. In neurons, the Golgi apparatus mediates several essential steps of initial neural circuit formation during early brain development, such as axon-dendrite polarization, neuronal migration, primary dendrite specification, and dendritic arbor elaboration. Moreover, neuronal activity-dependent remodeling of the Golgi structure enables morphological changes in neurons, which provides the cellular basis of circuit reorganization during postnatal critical period. In this review, I summarize recent findings illustrating the unique Golgi positioning and its developmental dynamics in various types of neurons. I also discuss the upstream regulators for the Golgi positioning in neurons, and functional roles of the Golgi in neural circuit formation and reorganization. Elucidating how Golgi apparatus sculpts neuronal connectivity would deepen our understanding of the cellular/molecular basis of neural circuit development and plasticity.
Collapse
Affiliation(s)
- Naoki Nakagawa
- Laboratory of Mammalian Neural Circuits, National Institute of Genetics, Mishima, Japan
- Graduate Institute for Advanced Studies, SOKENDAI, Mishima, Japan
| |
Collapse
|
4
|
Wu XR, Li ZY, Yang L, Liu Y, Fei CJ, Deng YT, Liu WS, Wu BS, Dong Q, Feng JF, Cheng W, Yu JT. Large-scale exome sequencing identified 18 novel genes for neuroticism in 394,005 UK-based individuals. Nat Hum Behav 2024:10.1038/s41562-024-02045-w. [PMID: 39511343 DOI: 10.1038/s41562-024-02045-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 10/03/2024] [Indexed: 11/15/2024]
Abstract
Existing genetic studies of neuroticism have been largely limited to common variants. Here we performed a large-scale exome analysis of white British individuals from UK Biobank, revealing the role of coding variants in neuroticism. For rare variants, collapsing analysis uncovered 14 neuroticism-associated genes. Among these, 12 (PTPRE, BCL10, TRIM32, ANKRD12, ADGRB2, MON2, HIF1A, ITGB2, STK39, CAPNS2, OGFOD1 and KDM4B) were novel, and the remaining (MADD and TRPC4AP) showed convergent evidence with common variants. Heritability of rare coding variants was estimated to be up to 7.3% for neuroticism. For common variants, we identified 78 significant associations, implicating 6 unreported genes. We subsequently replicated these variants using meta-analysis across other four ancestries from UK Biobank and summary data from 23andMe sample. Furthermore, these variants had widespread impacts on neuropsychiatric disorders, cognitive abilities and brain structure. Our findings deepen the understanding of neuroticism's genetic architecture and provide potential targets for future mechanistic research.
Collapse
Affiliation(s)
- Xin-Rui Wu
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Ze-Yu Li
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Fudan University, Ministry of Education, Shanghai, China
| | - Liu Yang
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Ying Liu
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Chen-Jie Fei
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Yue-Ting Deng
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Wei-Shi Liu
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Bang-Sheng Wu
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Qiang Dong
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Jian-Feng Feng
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Fudan University, Ministry of Education, Shanghai, China
- Department of Computer Science, University of Warwick, Coventry, UK
| | - Wei Cheng
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China.
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China.
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Fudan University, Ministry of Education, Shanghai, China.
| | - Jin-Tai Yu
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China.
| |
Collapse
|
5
|
Vulić K, Amos G, Ruff T, Kasm R, Ihle SJ, Küchler J, Vörös J, Weaver S. Impact of microchannel width on axons for brain-on-chip applications. LAB ON A CHIP 2024; 24:5155-5166. [PMID: 39440578 PMCID: PMC11497309 DOI: 10.1039/d4lc00440j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 09/06/2024] [Indexed: 10/25/2024]
Abstract
Technologies for axon guidance for in vitro disease models and bottom up investigations are increasingly being used in neuroscience research. One of the most prevalent patterning methods is using polydimethylsiloxane (PDMS) microstructures due to compatibility with microscopy and electrophysiology which enables systematic tracking of axon development with precision and efficiency. Previous investigations of these guidance platforms have noted axons tend to follow edges and avoid sharp turns; however, the specific impact of spatial constraints remains only partially explored. We investigated the influence of microchannel width beyond a constriction point, as well as the number of available microchannels, on axon growth dynamics. Further, by manipulating the size of micron/submicron-sized PDMS tunnels we investigated the space restriction that prevents growth cone penetration showing that restrictions smaller than 350 nm were sufficient to exclude axons. This research offers insights into the interplay of spatial constraints, axon development, and neural behavior. The findings are important for designing in vitro platforms and in vivo neural interfaces for both fundamental neuroscience and translational applications in rapidly evolving neural implant technologies.
Collapse
Affiliation(s)
- Katarina Vulić
- Laboratory of Biosensors and Bioelectronics (LBB), ETH Zürich, 8092 Zürich, Switzerland.
| | - Giulia Amos
- Laboratory of Biosensors and Bioelectronics (LBB), ETH Zürich, 8092 Zürich, Switzerland.
| | - Tobias Ruff
- Laboratory of Biosensors and Bioelectronics (LBB), ETH Zürich, 8092 Zürich, Switzerland.
| | - Revan Kasm
- Laboratory of Biosensors and Bioelectronics (LBB), ETH Zürich, 8092 Zürich, Switzerland.
| | - Stephan J Ihle
- Laboratory of Biosensors and Bioelectronics (LBB), ETH Zürich, 8092 Zürich, Switzerland.
| | - Joël Küchler
- Laboratory of Biosensors and Bioelectronics (LBB), ETH Zürich, 8092 Zürich, Switzerland.
| | - János Vörös
- Laboratory of Biosensors and Bioelectronics (LBB), ETH Zürich, 8092 Zürich, Switzerland.
| | - Sean Weaver
- Laboratory of Biosensors and Bioelectronics (LBB), ETH Zürich, 8092 Zürich, Switzerland.
| |
Collapse
|
6
|
Crescioli C, Paronetto MP. The Emerging Role of Phosphodiesterase 5 Inhibition in Neurological Disorders: The State of the Art. Cells 2024; 13:1720. [PMID: 39451238 PMCID: PMC11506759 DOI: 10.3390/cells13201720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 10/13/2024] [Accepted: 10/15/2024] [Indexed: 10/26/2024] Open
Abstract
Growing evidence suggests that neuroinflammation is not just a consequence of neurodegeneration in pathologies such as Alzheimer's disease, Parkinson's disease, Huntington's disease or Amyotrophic lateral sclerosis, but it is rather a determinant factor, which plays a pivotal role in the onset and progression of these disorders. Neuroinflammation can affect cells and processes in the central nervous system (CNS) as well as immune cells, and might precede protein aggregation, which is a hallmark of the neurodegenerative process. Standard treatment methods are far from being able to counteract inflammation and delay neurodegeneration. Remarkably, phosphodiesterase 5 inhibitors (PDE5is), which represent potent vasoactive drugs used as a first-line treatment for erectile dysfunction (ED), display important anti-inflammatory effects through cyclic guanosine monophosphate (cGMP) level stabilization. Since PDE5 hydrolyzes cGMP, several studies positioned PDE5 as a therapeutic target, and more specifically, PDE5is as potential alternative strategies for the treatment of a variety of neurological disorders. Indeed, PDE5is can limit neuroinflammation and enhance synaptic plasticity, with beneficial effects on cognitive function and memory. The aim of this review is to provide an overview of some of the main processes underlying neuroinflammation and neurodegeneration which may be potential targets for PDE5is, focusing on sildenafil, the most extensively studied. Current strategies using PDEis for the treatment of neurodegenerative diseases will be summarized.
Collapse
Affiliation(s)
- Clara Crescioli
- Department of Movement, Human and Health Sciences, University of Rome Foro Italico, Piazza Lauro de Bosis, 6, 00135 Rome, Italy
| | - Maria Paola Paronetto
- Department of Movement, Human and Health Sciences, University of Rome Foro Italico, Piazza Lauro de Bosis, 6, 00135 Rome, Italy
- Laboratory of Molecular and Cellular Neurobiology, Fondazione Santa Lucia IRCCS, Via del Fosso di Fiorano, 64, 00143 Rome, Italy
| |
Collapse
|
7
|
Alsina FC, Lupan BM, Lin LJ, Musso CM, Mosti F, Newman CR, Wood LM, Suzuki A, Agostino M, Moore JK, Silver DL. The RNA-binding protein EIF4A3 promotes axon development by direct control of the cytoskeleton. Cell Rep 2024; 43:114666. [PMID: 39182224 PMCID: PMC11488691 DOI: 10.1016/j.celrep.2024.114666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 02/28/2024] [Accepted: 08/06/2024] [Indexed: 08/27/2024] Open
Abstract
The exon junction complex (EJC), nucleated by EIF4A3, is indispensable for mRNA fate and function throughout eukaryotes. We discover that EIF4A3 directly controls microtubules, independent of RNA, which is critical for neural wiring. While neuronal survival in the developing mouse cerebral cortex depends upon an intact EJC, axonal tract development requires only Eif4a3. Using human cortical organoids, we show that EIF4A3 disease mutations also impair neuronal growth, highlighting conserved functions relevant for neurodevelopmental pathology. Live imaging of growing neurons shows that EIF4A3 is essential for microtubule dynamics. Employing biochemistry and competition experiments, we demonstrate that EIF4A3 directly binds to microtubules, mutually exclusive of the EJC. Finally, in vitro reconstitution assays and rescue experiments demonstrate that EIF4A3 is sufficient to promote microtubule polymerization and that EIF4A3-microtubule association is a major contributor to axon growth. This reveals a fundamental mechanism by which neurons re-utilize core gene expression machinery to directly control the cytoskeleton.
Collapse
Affiliation(s)
- Fernando C Alsina
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA.
| | - Bianca M Lupan
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Lydia J Lin
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Camila M Musso
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Federica Mosti
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Carly R Newman
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Lisa M Wood
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Denver, CO, USA
| | - Aussie Suzuki
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin-Madison, Madison, WI, USA
| | - Mark Agostino
- Curtin Health Innovation Research Institute, Curtin Medical School, and Curtin Institute for Computation, Curtin University, Bentley, WA 6102, Australia
| | - Jeffrey K Moore
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Denver, CO, USA
| | - Debra L Silver
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA; Departments of Cell Biology and Neurobiology, Duke University Medical Center, Durham, NC 27710, USA; Duke Institute for Brain Sciences and Duke Regeneration Center, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
8
|
Lee SE, Lee GH. Effects of psoralidin on the expression of glutamate decarboxylases and inhibitory synapse development. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2024; 26:1106-1114. [PMID: 38753588 DOI: 10.1080/10286020.2024.2346297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 04/17/2024] [Accepted: 04/17/2024] [Indexed: 05/18/2024]
Abstract
Gamma-aminobutyric acid (GABA), a major inhibitory neurotransmitter required for excitation/inhibition balance is synthesized by the glutamic acid decarboxylases (GADs) in GABAergic neurons. The levels and activity of GADs are strongly correlated with GABA and neural transmission. Dysregulation of GADs and GABA is associated with various neurological disorders. The study used psoralidin, found in the seeds of Psoralea corylifolia, to investigate its effect on GAD levels and regulatory mechanisms in primary cortical neurons. Psoralidin reduced GAD67 through transcriptional regulation. The reduction was not mediated by the N-methyl-D-aspartate receptor. Additionally, psoralidin attenuated the formation of inhibitory synapses in primary hippocampal neurons.
Collapse
Affiliation(s)
- Seong-Eun Lee
- College of Pharmacy, Chosun University, Gwangju, South Korea
| | - Gum Hwa Lee
- College of Pharmacy, Chosun University, Gwangju, South Korea
| |
Collapse
|
9
|
Ahmad S, Attisano L. Wnt5a Promotes Axon Elongation in Coordination with the Wnt-Planar Cell Polarity Pathway. Cells 2024; 13:1268. [PMID: 39120298 PMCID: PMC11312420 DOI: 10.3390/cells13151268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/24/2024] [Accepted: 07/25/2024] [Indexed: 08/10/2024] Open
Abstract
The establishment of neuronal polarity, involving axon specification and outgrowth, is critical to achieve the proper morphology of neurons, which is important for neuronal connectivity and cognitive functions. Extracellular factors, such as Wnts, modulate diverse aspects of neuronal morphology. In particular, non-canonical Wnt5a exhibits differential effects on neurite outgrowth depending upon the context. Thus, the role of Wnt5a in axon outgrowth and neuronal polarization is not completely understood. In this study, we demonstrate that Wnt5a, but not Wnt3a, promotes axon outgrowth in dissociated mouse embryonic cortical neurons and does so in coordination with the core PCP components, Prickle and Vangl. Unexpectedly, exogenous Wnt5a-induced axon outgrowth was dependent on endogenous, neuronal Wnts, as the chemical inhibition of Porcupine using the IWP2- and siRNA-mediated knockdown of either Porcupine or Wntless inhibited Wnt5a-induced elongation. Importantly, delayed treatment with IWP2 did not block Wnt5a-induced elongation, suggesting that endogenous Wnts and Wnt5a act during specific timeframes of neuronal polarization. Wnt5a in fibroblast-conditioned media can associate with small extracellular vesicles (sEVs), and we also show that these Wnt5a-containing sEVs are primarily responsible for inducing axon elongation.
Collapse
Affiliation(s)
| | - Liliana Attisano
- Department of Biochemistry, Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada;
| |
Collapse
|
10
|
Wojnacki J, Quassollo G, Bordenave MD, Unsain N, Martínez GF, Szalai AM, Pertz O, Gundersen GG, Bartolini F, Stefani FD, Cáceres A, Bisbal M. Dual spatio-temporal regulation of axon growth and microtubule dynamics by RhoA signaling pathways. J Cell Sci 2024; 137:jcs261970. [PMID: 38910449 DOI: 10.1242/jcs.261970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 06/17/2024] [Indexed: 06/25/2024] Open
Abstract
RhoA plays a crucial role in neuronal polarization, where its action restraining axon outgrowth has been thoroughly studied. We now report that RhoA has not only an inhibitory but also a stimulatory effect on axon development depending on when and where exerts its action and the downstream effectors involved. In cultured hippocampal neurons, FRET imaging revealed that RhoA activity selectively localized in growth cones of undifferentiated neurites, whereas in developing axons it displayed a biphasic pattern, being low in nascent axons and high in elongating ones. RhoA-Rho kinase (ROCK) signaling prevented axon initiation but had no effect on elongation, whereas formin inhibition reduced axon extension without significantly altering initial outgrowth. In addition, RhoA-mDia signaling promoted axon elongation by stimulating growth cone microtubule stability and assembly, as opposed to RhoA-ROCK signaling, which restrained growth cone microtubule assembly and protrusion.
Collapse
Affiliation(s)
- José Wojnacki
- Instituto de Investigación Médica Mercedes y Martín Ferreyra (INIMEC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Córdoba, Córdoba 5016, Argentina
| | - Gonzalo Quassollo
- Instituto de Investigación Médica Mercedes y Martín Ferreyra (INIMEC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Córdoba, Córdoba 5016, Argentina
| | - Martín D Bordenave
- Centro de Investigaciones en Bionanociencias (CIBION), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2390, Ciudad Autónoma de Buenos Aires C1425FQD, Argentina
| | - Nicolás Unsain
- Instituto de Investigación Médica Mercedes y Martín Ferreyra (INIMEC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Córdoba, Córdoba 5016, Argentina
- Instituto Universitario Ciencias Biomédicas de Córdoba (IUCBC), Córdoba 5016, Argentina
| | - Gaby F Martínez
- Instituto de Investigación Médica Mercedes y Martín Ferreyra (INIMEC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Córdoba, Córdoba 5016, Argentina
| | - Alan M Szalai
- Centro de Investigaciones en Bionanociencias (CIBION), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2390, Ciudad Autónoma de Buenos Aires C1425FQD, Argentina
| | - Olivier Pertz
- Institute of Cell Biology, University of Bern, Baltzerstrasse 4, Bern 3012, Switzerland
| | - Gregg G Gundersen
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Francesca Bartolini
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Fernando D Stefani
- Centro de Investigaciones en Bionanociencias (CIBION), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2390, Ciudad Autónoma de Buenos Aires C1425FQD, Argentina
- Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Güiraldes 2620, Ciudad Autónoma de Buenos Aires C1428EHA, Argentina
| | - Alfredo Cáceres
- Centro Investigación Medicina Traslacional Severo R Amuchástegui (CIMETSA), Instituto Universitario Ciencias Biomédicas Córdoba (IUCBC), Av. Naciones Unidas 440, Córdoba 5016, Argentina
| | - Mariano Bisbal
- Instituto de Investigación Médica Mercedes y Martín Ferreyra (INIMEC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Córdoba, Córdoba 5016, Argentina
- Instituto Universitario Ciencias Biomédicas de Córdoba (IUCBC), Córdoba 5016, Argentina
| |
Collapse
|
11
|
Martin CG, Bent JS, Hill T, Topalidou I, Singhvi A. Epithelial UNC-23 limits mechanical stress to maintain glia-neuron architecture in C. elegans. Dev Cell 2024; 59:1668-1688.e7. [PMID: 38670103 PMCID: PMC11233253 DOI: 10.1016/j.devcel.2024.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/23/2023] [Accepted: 04/03/2024] [Indexed: 04/28/2024]
Abstract
For an organ to maintain correct architecture and function, its diverse cellular components must coordinate their size and shape. Although cell-intrinsic mechanisms driving homotypic cell-cell coordination are known, it is unclear how cell shape is regulated across heterotypic cells. We find that epithelial cells maintain the shape of neighboring sense-organ glia-neuron units in adult Caenorhabditis elegans (C. elegans). Hsp co-chaperone UNC-23/BAG2 prevents epithelial cell shape from deforming, and its loss causes head epithelia to stretch aberrantly during animal movement. In the sense-organ glia, amphid sheath (AMsh), this causes progressive fibroblast growth factor receptor (FGFR)-dependent disruption of the glial apical cytoskeleton. Resultant glial cell shape alteration causes concomitant shape change in glia-associated neuron endings. Epithelial UNC-23 maintenance of glia-neuron shape is specific both spatially, within a defined anatomical zone, and temporally, in a developmentally critical period. As all molecular components uncovered are broadly conserved across central and peripheral nervous systems, we posit that epithelia may similarly regulate glia-neuron architecture cross-species.
Collapse
Affiliation(s)
- Cecilia G Martin
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - James S Bent
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Tyler Hill
- Department of Biology, Brandeis University, Waltham, MA 02454, USA
| | - Irini Topalidou
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Aakanksha Singhvi
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA; Department of Biological Structure, University of Washington School of Medicine, Seattle, WA 98195, USA.
| |
Collapse
|
12
|
Zhang Y, Kunii M, Taniguchi M, Yoshimura SI, Harada A. Rab6-Mediated Polarized Transport of Synaptic Vesicle Precursors Is Essential for the Establishment of Neuronal Polarity and Brain Formation. J Neurosci 2024; 44:e2334232024. [PMID: 38830762 PMCID: PMC11223463 DOI: 10.1523/jneurosci.2334-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 05/13/2024] [Accepted: 05/26/2024] [Indexed: 06/05/2024] Open
Abstract
Neurons are highly polarized cells that are composed of a single axon and multiple dendrites. Axon-dendrite polarity is essential for proper tissue formation and brain functions. Intracellular protein transport plays an important role in the establishment of neuronal polarity. However, the regulatory mechanism of polarized transport remains unclear. Here, we show that Rab6, a small GTPase that acts on the regulation of intracellular vesicular trafficking, plays key roles in neuronal polarization and brain development. Central nervous system-specific Rab6a/b double knock-out (Rab6 DKO) mice of both sexes exhibit severe dysplasia of the neocortex and the cerebellum. In the Rab6 DKO neocortex, impaired axonal extension of neurons results in hypoplasia of the intermediate zone. In vitro, deletion of Rab6a and Rab6b in cultured neurons from both sexes causes the abnormal accumulation of synaptic vesicle precursors (SVPs) adjacent to the Golgi apparatus, which leads to defects in axonal extension and the loss of axon-dendrite polarity. Moreover, Rab6 DKO causes significant expansion of lysosomes in the soma in neurons. Overall, our results reveal that Rab6-mediated polarized transport of SVPs is crucial for neuronal polarization and subsequent brain formation.
Collapse
Affiliation(s)
- Yu Zhang
- Departments of Cell Biology, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Masataka Kunii
- Departments of Cell Biology, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Manabu Taniguchi
- Anatomy and Neuroscience, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Shin-Ichiro Yoshimura
- Departments of Cell Biology, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Akihiro Harada
- Departments of Cell Biology, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| |
Collapse
|
13
|
Park SJ, An SY, An YJ, Kim KS, Kim H, Cho JH, Lee YC. Promotion of neurite outgrowth by 3,5,7,3',4'-pentamethoxyflavone is mediated through ERK signaling pathway in Neuro2a cells. J Nat Med 2024; 78:599-607. [PMID: 38662302 DOI: 10.1007/s11418-024-01809-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 03/26/2024] [Indexed: 04/26/2024]
Abstract
In this study, the effects of 3,5,7,3',4'-pentamethoxyflavone (KP1), a major bioactive ingredient isolated from the Kaempferia parviflora rhizomes, on a neurite outgrowth in Neuro2a cells and its mechanism have been investigated. KP1 increased concentration-dependently the percentage of neurite-bearing cells. KP1 showed a remarkable capability to elicit neurite outgrowth in Neuro2a cells, as evidenced by morphological alterations and immunostaining using anti-class III β-tubulin and anti-NeuN antibodies. KP1 also displayed a higher neurogenic activity than retinoic acid (RA), a promoter of neurite outgrowth in Neuro2a cells. KP1 treatment caused significant elevation in phosphorylation of extracellular signal-regulated kinase (ERK), p38 mitogen-activated protein kinase (p38 MAPK) and glycogen synthase kinase-3β (GSK-3β). However, KP1-triggered neurite outgrowth was markedly inhibited by treatment with the ERK inhibitor U0126, whereas p38 MAPK inhibitor SB203580 and GSK-3β inhibitor SB216763 did not influence KP1-induced neurite outgrowth. These results demonstrate that KP1 elicits neurite outgrowth and triggers cell differentiation of Neuro2a cells through ERK signal pathway.
Collapse
Affiliation(s)
- Shin-Ji Park
- Department of Medicinal Biotechnology, College of Health Sciences, Dong-A University, Busan, 604-714, South Korea
| | - So-Young An
- Department of Medicinal Biotechnology, College of Health Sciences, Dong-A University, Busan, 604-714, South Korea
| | - Yeon Jin An
- Department of Medicinal Biotechnology, College of Health Sciences, Dong-A University, Busan, 604-714, South Korea
| | - Kyoung-Sook Kim
- Department of Medicinal Biotechnology, College of Health Sciences, Dong-A University, Busan, 604-714, South Korea
| | - Hyunju Kim
- Department of Medicinal Biotechnology, College of Health Sciences, Dong-A University, Busan, 604-714, South Korea
| | - Jong Hyun Cho
- Department of Medicinal Biotechnology, College of Health Sciences, Dong-A University, Busan, 604-714, South Korea.
| | - Young-Choon Lee
- Department of Medicinal Biotechnology, College of Health Sciences, Dong-A University, Busan, 604-714, South Korea.
| |
Collapse
|
14
|
Mendoza CS, Plowinske CR, Montgomery AC, Quinones GB, Banker G, Bentley M. Kinesin Regulation in the Proximal Axon is Essential for Dendrite-selective Transport. Mol Biol Cell 2024; 35:ar81. [PMID: 38598291 PMCID: PMC11238084 DOI: 10.1091/mbc.e23-11-0457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 04/02/2024] [Accepted: 04/05/2024] [Indexed: 04/12/2024] Open
Abstract
Neurons are polarized and typically extend multiple dendrites and one axon. To maintain polarity, vesicles carrying dendritic proteins are arrested upon entering the axon. To determine whether kinesin regulation is required for terminating anterograde axonal transport, we overexpressed the dendrite-selective kinesin KIF13A. This caused mistargeting of dendrite-selective vesicles to the axon and a loss of dendritic polarity. Polarity was not disrupted if the kinase MARK2/Par1b was coexpressed. MARK2/Par1b is concentrated in the proximal axon, where it maintains dendritic polarity-likely by phosphorylating S1371 of KIF13A, which lies in a canonical 14-3-3 binding motif. We probed for interactions of KIF13A with 14-3-3 isoforms and found that 14-3-3β and 14-3-3ζ bound KIF13A. Disruption of MARK2 or 14-3-3 activity by small molecule inhibitors caused a loss of dendritic polarity. These data show that kinesin regulation is integral for dendrite-selective transport. We propose a new model in which KIF13A that moves dendrite-selective vesicles in the proximal axon is phosphorylated by MARK2. Phosphorylated KIF13A is then recognized by 14-3-3, which causes dissociation of KIF13A from the vesicle and termination of transport. These findings define a new paradigm for the regulation of vesicle transport by localized kinesin tail phosphorylation, to restrict dendrite-selective vesicles from entering the axon.
Collapse
Affiliation(s)
- Christina S. Mendoza
- Department of Biological Sciences and the Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180
| | - Cameron R. Plowinske
- Department of Biological Sciences and the Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180
| | - Andrew C. Montgomery
- Department of Biological Sciences and the Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180
| | - Geraldine B. Quinones
- Department of Biological Sciences and the Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180
| | - Gary Banker
- Jungers Center for Neurosciences Research, Oregon Health & Science University, Portland, Oregon 97239
| | - Marvin Bentley
- Department of Biological Sciences and the Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180
| |
Collapse
|
15
|
Chuma S, Kiyosue K, Akiyama T, Kinoshita M, Shimazaki Y, Uchiyama S, Sotoma S, Okabe K, Harada Y. Implication of thermal signaling in neuronal differentiation revealed by manipulation and measurement of intracellular temperature. Nat Commun 2024; 15:3473. [PMID: 38724563 PMCID: PMC11082174 DOI: 10.1038/s41467-024-47542-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 03/28/2024] [Indexed: 05/12/2024] Open
Abstract
Neuronal differentiation-the development of neurons from neural stem cells-involves neurite outgrowth and is a key process during the development and regeneration of neural functions. In addition to various chemical signaling mechanisms, it has been suggested that thermal stimuli induce neuronal differentiation. However, the function of physiological subcellular thermogenesis during neuronal differentiation remains unknown. Here we create methods to manipulate and observe local intracellular temperature, and investigate the effects of noninvasive temperature changes on neuronal differentiation using neuron-like PC12 cells. Using quantitative heating with an infrared laser, we find an increase in local temperature (especially in the nucleus) facilitates neurite outgrowth. Intracellular thermometry reveals that neuronal differentiation is accompanied by intracellular thermogenesis associated with transcription and translation. Suppression of intracellular temperature increase during neuronal differentiation inhibits neurite outgrowth. Furthermore, spontaneous intracellular temperature elevation is involved in neurite outgrowth of primary mouse cortical neurons. These results offer a model for understanding neuronal differentiation induced by intracellular thermal signaling.
Collapse
Affiliation(s)
- Shunsuke Chuma
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
- Graduate School of Science, Osaka University, 1-1 Machikaneyamacho, Toyonaka, Osaka, 560-0043, Japan
| | - Kazuyuki Kiyosue
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31 Midorigaoka, Ikeda, Osaka, 563-8577, Japan
| | - Taishu Akiyama
- Graduate School of Biostudies, Kyoto University, Yoshida-Konoecho, Sakyo-Ku, Kyoto, Kyoto, 606-8501, Japan
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida-Honmachi, Sakyo-Ku, Kyoto, Kyoto, 606-8501, Japan
| | - Masaki Kinoshita
- Graduate School of Biostudies, Kyoto University, Yoshida-Konoecho, Sakyo-Ku, Kyoto, Kyoto, 606-8501, Japan
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida-Honmachi, Sakyo-Ku, Kyoto, Kyoto, 606-8501, Japan
| | - Yukiho Shimazaki
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
- Graduate School of Science, Osaka University, 1-1 Machikaneyamacho, Toyonaka, Osaka, 560-0043, Japan
| | - Seiichi Uchiyama
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-0033, Japan
| | - Shingo Sotoma
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Kohki Okabe
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-0033, Japan.
- JST, PRESTO, 4-8-1 Honcho, Kawaguchi, Saitama, 332-0012, Japan.
| | - Yoshie Harada
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka, 565-0871, Japan.
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida-Honmachi, Sakyo-Ku, Kyoto, Kyoto, 606-8501, Japan.
- Center for Quantum Information and Quantum Biology, Osaka University, 1-2 Machikaneyamacho, Toyonaka, Osaka, 560-0043, Japan.
- Premium Research Institute for Human Metaverse Medicine (WPI-PRIMe), Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
16
|
Di Meo D, Kundu T, Ravindran P, Shah B, Püschel AW. Pip5k1γ regulates axon formation by limiting Rap1 activity. Life Sci Alliance 2024; 7:e202302383. [PMID: 38438249 PMCID: PMC10912816 DOI: 10.26508/lsa.202302383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 02/26/2024] [Accepted: 02/26/2024] [Indexed: 03/06/2024] Open
Abstract
During their differentiation, neurons establish a highly polarized morphology by forming axons and dendrites. Cortical and hippocampal neurons initially extend several short neurites that all have the potential to become an axon. One of these neurites is then selected as the axon by a combination of positive and negative feedback signals that promote axon formation and prevent the remaining neurites from developing into axons. Here, we show that Pip5k1γ is required for the formation of a single axon as a negative feedback signal that regulates C3G and Rap1 through the generation of phosphatidylinositol-4,5-bisphosphate (PI(4,5)P2). Impairing the function of Pip5k1γ results in a hyper-activation of the Fyn/C3G/Rap1 pathway, which induces the formation of supernumerary axons. Application of a hyper-osmotic shock to modulate membrane tension has a similar effect, increasing Rap1 activity and inducing the formation of supernumerary axons. In both cases, the induction of supernumerary axons can be reverted by expressing constitutively active Pip5k. Our results show that PI(4,5)P2-dependent membrane properties limit the activity of C3G and Rap1 to ensure the extension of a single axon.
Collapse
Affiliation(s)
- Danila Di Meo
- Institut für Integrative Zellbiologie und Physiologie, Universität Münster, Münster, Germany
- Cells-in-Motion Interfaculty Center, University of Münster, Münster, Germany
| | - Trisha Kundu
- Institut für Integrative Zellbiologie und Physiologie, Universität Münster, Münster, Germany
- Cells-in-Motion Interfaculty Center, University of Münster, Münster, Germany
| | - Priyadarshini Ravindran
- Institut für Integrative Zellbiologie und Physiologie, Universität Münster, Münster, Germany
| | - Bhavin Shah
- Institut für Integrative Zellbiologie und Physiologie, Universität Münster, Münster, Germany
| | - Andreas W Püschel
- Institut für Integrative Zellbiologie und Physiologie, Universität Münster, Münster, Germany
- Cells-in-Motion Interfaculty Center, University of Münster, Münster, Germany
| |
Collapse
|
17
|
Okabe M, Sato T, Takahashi M, Honjo A, Okawa M, Ishida M, Kukimoto-Niino M, Shirouzu M, Miyamoto Y, Yamauchi J. Autism Spectrum Disorder- and/or Intellectual Disability-Associated Semaphorin-5A Exploits the Mechanism by Which Dock5 Signalosome Molecules Control Cell Shape. Curr Issues Mol Biol 2024; 46:3092-3107. [PMID: 38666924 PMCID: PMC11049140 DOI: 10.3390/cimb46040194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/27/2024] [Accepted: 03/27/2024] [Indexed: 04/28/2024] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder that includes autism, Asperger's syndrome, and pervasive developmental disorder. Individuals with ASD may exhibit difficulties in social interactions, communication challenges, repetitive behaviors, and restricted interests. While genetic mutations in individuals with ASD can either activate or inactivate the activities of the gene product, impacting neuronal morphogenesis and causing symptoms, the underlying mechanism remains to be fully established. Herein, for the first time, we report that genetically conserved Rac1 guanine-nucleotide exchange factor (GEF) Dock5 signalosome molecules control process elongation in the N1E-115 cell line, a model line capable of achieving neuronal morphological changes. The increased elongation phenotypes observed in ASD and intellectual disability (ID)-associated Semaphorin-5A (Sema5A) Arg676-to-Cys [p.R676C] were also mediated by Dock5 signalosome molecules. Indeed, knockdown of Dock5 using clustered regularly interspaced short palindromic repeat (CRISPR)/CasRx-based guide(g)RNA specifically recovered the mutated Sema5A-induced increase in process elongation in cells. Knockdown of Elmo2, an adaptor molecule of Dock5, also exhibited similar recovery. Comparable results were obtained when transfecting the interaction region of Dock5 with Elmo2. The activation of c-Jun N-terminal kinase (JNK), one of the primary signal transduction molecules underlying process elongation, was ameliorated by either their knockdown or transfection. These results suggest that the Dock5 signalosome comprises abnormal signaling involved in the process elongation induced by ASD- and ID-associated Sema5A. These molecules could be added to the list of potential therapeutic target molecules for abnormal neuronal morphogenesis in ASD at the molecular and cellular levels.
Collapse
Affiliation(s)
- Miyu Okabe
- Laboratory of Molecular Neurology, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan; (M.O.); (Y.M.)
| | - Takanari Sato
- Laboratory of Molecular Neurology, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan; (M.O.); (Y.M.)
| | - Mikito Takahashi
- Laboratory of Molecular Neurology, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan; (M.O.); (Y.M.)
| | - Asahi Honjo
- Laboratory of Molecular Neurology, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan; (M.O.); (Y.M.)
| | - Maho Okawa
- Laboratory of Molecular Neurology, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan; (M.O.); (Y.M.)
| | - Miki Ishida
- Laboratory of Molecular Neurology, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan; (M.O.); (Y.M.)
| | - Mutsuko Kukimoto-Niino
- Laboratory for Protein Functional and Structural Biology, Center for Biosystems Dynamics Research, RIKEN, Yokohama 230-0045, Japan; (M.K.-N.); (M.S.)
| | - Mikako Shirouzu
- Laboratory for Protein Functional and Structural Biology, Center for Biosystems Dynamics Research, RIKEN, Yokohama 230-0045, Japan; (M.K.-N.); (M.S.)
| | - Yuki Miyamoto
- Laboratory of Molecular Neurology, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan; (M.O.); (Y.M.)
- Laboratory of Molecular Pharmacology, National Research Institute for Child Health and Development, Tokyo 157-8535, Japan
| | - Junji Yamauchi
- Laboratory of Molecular Neurology, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan; (M.O.); (Y.M.)
- Laboratory for Protein Functional and Structural Biology, Center for Biosystems Dynamics Research, RIKEN, Yokohama 230-0045, Japan; (M.K.-N.); (M.S.)
- Diabetic Neuropathy Project, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| |
Collapse
|
18
|
Karalis V, Wood D, Teaney NA, Sahin M. The role of TSC1 and TSC2 proteins in neuronal axons. Mol Psychiatry 2024; 29:1165-1178. [PMID: 38212374 DOI: 10.1038/s41380-023-02402-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 12/20/2023] [Accepted: 12/22/2023] [Indexed: 01/13/2024]
Abstract
Tuberous Sclerosis Complex 1 and 2 proteins, TSC1 and TSC2 respectively, participate in a multiprotein complex with a crucial role for the proper development and function of the nervous system. This complex primarily acts as an inhibitor of the mechanistic target of rapamycin (mTOR) kinase, and mutations in either TSC1 or TSC2 cause a neurodevelopmental disorder called Tuberous Sclerosis Complex (TSC). Neurological manifestations of TSC include brain lesions, epilepsy, autism, and intellectual disability. On the cellular level, the TSC/mTOR signaling axis regulates multiple anabolic and catabolic processes, but it is not clear how these processes contribute to specific neurologic phenotypes. Hence, several studies have aimed to elucidate the role of this signaling pathway in neurons. Of particular interest are axons, as axonal defects are associated with severe neurocognitive impairments. Here, we review findings regarding the role of the TSC1/2 protein complex in axons. Specifically, we will discuss how TSC1/2 canonical and non-canonical functions contribute to the formation and integrity of axonal structure and function.
Collapse
Affiliation(s)
- Vasiliki Karalis
- Rosamund Stone Zander Translational Neuroscience Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- FM Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Delaney Wood
- FM Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, 02115, USA
- Human Neuron Core, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Nicole A Teaney
- Rosamund Stone Zander Translational Neuroscience Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- FM Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Mustafa Sahin
- Rosamund Stone Zander Translational Neuroscience Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA.
- FM Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, 02115, USA.
- Human Neuron Core, Boston Children's Hospital, Boston, MA, 02115, USA.
| |
Collapse
|
19
|
Staii C. Nonlinear Growth Dynamics of Neuronal Cells Cultured on Directional Surfaces. Biomimetics (Basel) 2024; 9:203. [PMID: 38667214 PMCID: PMC11048115 DOI: 10.3390/biomimetics9040203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/20/2024] [Accepted: 03/25/2024] [Indexed: 04/28/2024] Open
Abstract
During the development of the nervous system, neuronal cells extend axons and dendrites that form complex neuronal networks, which are essential for transmitting and processing information. Understanding the physical processes that underlie the formation of neuronal networks is essential for gaining a deeper insight into higher-order brain functions such as sensory processing, learning, and memory. In the process of creating networks, axons travel towards other recipient neurons, directed by a combination of internal and external cues that include genetic instructions, biochemical signals, as well as external mechanical and geometrical stimuli. Although there have been significant recent advances, the basic principles governing axonal growth, collective dynamics, and the development of neuronal networks remain poorly understood. In this paper, we present a detailed analysis of nonlinear dynamics for axonal growth on surfaces with periodic geometrical patterns. We show that axonal growth on these surfaces is described by nonlinear Langevin equations with speed-dependent deterministic terms and gaussian stochastic noise. This theoretical model yields a comprehensive description of axonal growth at both intermediate and long time scales (tens of hours after cell plating), and predicts key dynamical parameters, such as speed and angular correlation functions, axonal mean squared lengths, and diffusion (cell motility) coefficients. We use this model to perform simulations of axonal trajectories on the growth surfaces, in turn demonstrating very good agreement between simulated growth and the experimental results. These results provide important insights into the current understanding of the dynamical behavior of neurons, the self-wiring of the nervous system, as well as for designing innovative biomimetic neural network models.
Collapse
Affiliation(s)
- Cristian Staii
- Department of Physics and Astronomy, Tufts University, Medford, MA 02155, USA
| |
Collapse
|
20
|
Fukatsu S, Okawa M, Okabe M, Cho M, Isogai M, Yokoi T, Shirai R, Oizumi H, Yamamoto M, Ohbuchi K, Miyamoto Y, Yamauchi J. Modulating Golgi Stress Signaling Ameliorates Cell Morphological Phenotypes Induced by CHMP2B with Frontotemporal Dementia-Associated p.Asp148Tyr. Curr Issues Mol Biol 2024; 46:1398-1412. [PMID: 38392208 PMCID: PMC10888485 DOI: 10.3390/cimb46020090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/30/2024] [Accepted: 02/04/2024] [Indexed: 02/24/2024] Open
Abstract
Some charged multivesicular body protein 2B (CHMP2B) mutations are associated with autosomal-dominant neurodegenerative frontotemporal dementia and/or amyotrophic lateral sclerosis type 7 (FTDALS7). The main aim of this study is to clarify the relationship between the expression of mutated CHMP2B protein displaying FTD symptoms and defective neuronal differentiation. First, we illustrate that the expression of CHMP2B with the Asp148Tyr (D148Y) mutation, which preferentially displays FTD phenotypes, blunts neurite process elongation in rat primary cortical neurons. Similar results were observed in the N1E-115 cell line, a model that undergoes neurite elongation. Second, these effects were also accompanied by changes in neuronal differentiation marker protein expression. Third, wild-type CHMP2B protein was indeed localized in the endosomal sorting complexes required to transport (ESCRT)-like structures throughout the cytoplasm. In contrast, CHMP2B with the D148Y mutation exhibited aggregation-like structures and accumulated in the Golgi body. Fourth, among currently known Golgi stress regulators, the expression levels of Hsp47, which has protective effects on the Golgi body, were decreased in cells expressing CHMP2B with the D148Y mutation. Fifth, Arf4, another Golgi stress-signaling molecule, was increased in mutant-expressing cells. Finally, when transfecting Hsp47 or knocking down Arf4 with small interfering (si)RNA, cellular phenotypes in mutant-expressing cells were recovered. These results suggest that CHMP2B with the D148Y mutation, acting through Golgi stress signaling, is negatively involved in the regulation of neuronal cell morphological differentiation, providing evidence that a molecule controlling Golgi stress may be one of the potential FTD therapeutic targets at the molecular and cellular levels.
Collapse
Affiliation(s)
- Shoya Fukatsu
- Laboratory of Molecular Neurology, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan
| | - Maho Okawa
- Laboratory of Molecular Neurology, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan
| | - Miyu Okabe
- Laboratory of Molecular Neurology, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan
| | - Mizuka Cho
- Laboratory of Molecular Neurology, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan
| | - Mikinori Isogai
- Laboratory of Molecular Neurology, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan
| | - Takanori Yokoi
- Laboratory of Molecular Neurology, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan
| | - Remina Shirai
- Laboratory of Molecular Neurology, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan
| | - Hiroaki Oizumi
- Tsumura Research Laboratories, Tsumura & Co., Inashiki 200-1192, Japan
| | - Masahiro Yamamoto
- Tsumura Research Laboratories, Tsumura & Co., Inashiki 200-1192, Japan
| | - Katsuya Ohbuchi
- Tsumura Research Laboratories, Tsumura & Co., Inashiki 200-1192, Japan
| | - Yuki Miyamoto
- Laboratory of Molecular Neurology, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan
- Laboratory of Molecular Pharmacology, National Research Institute for Child Health and Development, Setagaya, Tokyo 157-8535, Japan
| | - Junji Yamauchi
- Laboratory of Molecular Neurology, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan
- Laboratory of Molecular Pharmacology, National Research Institute for Child Health and Development, Setagaya, Tokyo 157-8535, Japan
- Diabetic Neuropathy Project, Tokyo Metropolitan Institute of Medical Science, Setagaya, Tokyo 156-8506, Japan
| |
Collapse
|
21
|
Ruiz-Reig N, Hakanen J, Tissir F. Connecting neurodevelopment to neurodegeneration: a spotlight on the role of kinesin superfamily protein 2A (KIF2A). Neural Regen Res 2024; 19:375-379. [PMID: 37488893 PMCID: PMC10503618 DOI: 10.4103/1673-5374.375298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/10/2023] [Accepted: 04/18/2023] [Indexed: 07/26/2023] Open
Abstract
Microtubules play a central role in cytoskeletal changes during neuronal development and maintenance. Microtubule dynamics is essential to polarity and shape transitions underlying neural cell division, differentiation, motility, and maturation. Kinesin superfamily protein 2A is a member of human kinesin 13 gene family of proteins that depolymerize and destabilize microtubules. In dividing cells, kinesin superfamily protein 2A is involved in mitotic progression, spindle assembly, and chromosome segregation. In postmitotic neurons, it is required for axon/dendrite specification and extension, neuronal migration, connectivity, and survival. Humans with kinesin superfamily protein 2A mutations suffer from a variety of malformations of cortical development, epilepsy, autism spectrum disorder, and neurodegeneration. In this review, we discuss how kinesin superfamily protein 2A regulates neuronal development and function, and how its deregulation causes neurodevelopmental and neurological disorders.
Collapse
Affiliation(s)
- Nuria Ruiz-Reig
- Université catholique de Louvain, Institute of neuroscience, Brussels, Belgium
| | - Janne Hakanen
- Université catholique de Louvain, Institute of neuroscience, Brussels, Belgium
| | - Fadel Tissir
- Université catholique de Louvain, Institute of neuroscience, Brussels, Belgium
- College of Health and Life Sciences, Hamad Bin Khalifa University (HBKU), Doha, Qatar
| |
Collapse
|
22
|
Rahman M, Nguyen TM, Lee GJ, Kim B, Park MK, Lee CH. Unraveling the Role of Ras Homolog Enriched in Brain (Rheb1 and Rheb2): Bridging Neuronal Dynamics and Cancer Pathogenesis through Mechanistic Target of Rapamycin Signaling. Int J Mol Sci 2024; 25:1489. [PMID: 38338768 PMCID: PMC10855792 DOI: 10.3390/ijms25031489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/14/2024] [Accepted: 01/17/2024] [Indexed: 02/12/2024] Open
Abstract
Ras homolog enriched in brain (Rheb1 and Rheb2), small GTPases, play a crucial role in regulating neuronal activity and have gained attention for their implications in cancer development, particularly in breast cancer. This study delves into the intricate connection between the multifaceted functions of Rheb1 in neurons and cancer, with a specific focus on the mTOR pathway. It aims to elucidate Rheb1's involvement in pivotal cellular processes such as proliferation, apoptosis resistance, migration, invasion, metastasis, and inflammatory responses while acknowledging that Rheb2 has not been extensively studied. Despite the recognized associations, a comprehensive understanding of the intricate interplay between Rheb1 and Rheb2 and their roles in both nerve and cancer remains elusive. This review consolidates current knowledge regarding the impact of Rheb1 on cancer hallmarks and explores the potential of Rheb1 as a therapeutic target in cancer treatment. It emphasizes the necessity for a deeper comprehension of the molecular mechanisms underlying Rheb1-mediated oncogenic processes, underscoring the existing gaps in our understanding. Additionally, the review highlights the exploration of Rheb1 inhibitors as a promising avenue for cancer therapy. By shedding light on the complicated roles between Rheb1/Rheb2 and cancer, this study provides valuable insights to the scientific community. These insights are instrumental in guiding the identification of novel targets and advancing the development of effective therapeutic strategies for treating cancer.
Collapse
Affiliation(s)
- Mostafizur Rahman
- College of Pharmacy, Dongguk University, Seoul 04620, Republic of Korea; (M.R.); (G.J.L.)
| | - Tuan Minh Nguyen
- College of Pharmacy, Dongguk University, Seoul 04620, Republic of Korea; (M.R.); (G.J.L.)
| | - Gi Jeong Lee
- College of Pharmacy, Dongguk University, Seoul 04620, Republic of Korea; (M.R.); (G.J.L.)
| | - Boram Kim
- College of Pharmacy, Dongguk University, Seoul 04620, Republic of Korea; (M.R.); (G.J.L.)
| | - Mi Kyung Park
- Department of BioHealthcare, Hwasung Medi-Science University, Hwaseong-si 18274, Republic of Korea
| | - Chang Hoon Lee
- College of Pharmacy, Dongguk University, Seoul 04620, Republic of Korea; (M.R.); (G.J.L.)
| |
Collapse
|
23
|
Okabe M, Miyamoto Y, Ikoma Y, Takahashi M, Shirai R, Kukimoto-Niino M, Shirouzu M, Yamauchi J. RhoG-Binding Domain of Elmo1 Ameliorates Excessive Process Elongation Induced by Autism Spectrum Disorder-Associated Sema5A. PATHOPHYSIOLOGY 2023; 30:548-566. [PMID: 38133141 PMCID: PMC10745971 DOI: 10.3390/pathophysiology30040040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/21/2023] [Accepted: 11/23/2023] [Indexed: 12/23/2023] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder that includes autism, Asperger's syndrome, and pervasive developmental disorder. ASD is characterized by poor interpersonal relationships and strong attachment. The correlations between activated or inactivated gene products, which occur as a result of genetic mutations affecting neurons in ASD patients, and ASD symptoms are now of critical concern. Here, for the first time, we describe the process in which that the respective ASD-associated mutations (Arg676-to-Cys [R676C] and Ser951-to-Cys [S951C]) of semaphorin-5A (Sema5A) localize Sema5A proteins themselves around the plasma membrane in the N1E-115 cell line, a model line that can achieve neuronal morphological differentiation. The expression of each mutated construct resulted in the promotion of excessive elongation of neurite-like processes with increased differentiation protein markers; R676C was more effective than S951C. The differentiated phenotypes were very partially neutralized by an antibody, against Plexin-B3 as the specific Sema5A receptor, suggesting that the effects of Sema5A act in an autocrine manner. R676C greatly increased the activation of c-Jun N-terminal kinase (JNK), one of the signaling molecules underlying process elongation. In contrast, the blocking of JNK signaling, by a chemical JNK inhibitor or an inhibitory construct of the interaction of RhoG with Elmo1 as JNK upstream signaling molecules, recovered the excessive process elongation. These results suggest that ASD-associated mutations of Sema5A, acting through the JNK signaling cascade, lead to excessive differentiated phenotypes, and the inhibition of JNK signaling recovers them, revealing possible therapeutic targets for recovering the potential molecular and cellular phenotypes underlying certain ASD symptoms.
Collapse
Affiliation(s)
- Miyu Okabe
- Laboratory of Molecular Neurology, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan (Y.M.); (R.S.)
| | - Yuki Miyamoto
- Laboratory of Molecular Neurology, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan (Y.M.); (R.S.)
- Laboratory of Molecular Pharmacology, National Research Institute for Child Health and Development, Tokyo 157-8535, Japan
| | - Yuta Ikoma
- Laboratory of Molecular Neurology, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan (Y.M.); (R.S.)
| | - Mikito Takahashi
- Laboratory of Molecular Neurology, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan (Y.M.); (R.S.)
| | - Remina Shirai
- Laboratory of Molecular Neurology, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan (Y.M.); (R.S.)
| | - Mutsuko Kukimoto-Niino
- Laboratory for Protein Functional and Structural Biology, Center for Biosystems Dynamics Research, RIKEN, Yokohama 230-0045, Japan (M.S.)
| | - Mikako Shirouzu
- Laboratory for Protein Functional and Structural Biology, Center for Biosystems Dynamics Research, RIKEN, Yokohama 230-0045, Japan (M.S.)
| | - Junji Yamauchi
- Laboratory of Molecular Neurology, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan (Y.M.); (R.S.)
- Laboratory of Molecular Pharmacology, National Research Institute for Child Health and Development, Tokyo 157-8535, Japan
- Diabetic Neuropathy Project, Tokyo Metropolitan Institute of Medical Science,Tokyo 156-8506, Japan
| |
Collapse
|
24
|
Wu Y, Huang X, Tan Z, Zang J, Peng M, He N, Zhang T, Mai H, Xu A, Lu D. FUS-mediated HypEVs: Neuroprotective effects against ischemic stroke. Bioact Mater 2023; 29:196-213. [PMID: 37621770 PMCID: PMC10444975 DOI: 10.1016/j.bioactmat.2023.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 06/02/2023] [Accepted: 07/05/2023] [Indexed: 08/26/2023] Open
Abstract
Few studies have investigated the properties and protein composition of small extracellular vesicles (sEVs) derived from neurons under hypoxic conditions. Presently, the extent of the involvement of these plentiful sEVs in the onset and progression of ischemic stroke remains an unresolved question. Our study systematically identified the characteristics of sEVs derived from neurons under hypoxic conditions (HypEVs) by physical characterization, sEV absorption, proteomics and transcriptomics analysis. The effects of HypEVs on neurites, cell survival, and neuron structure were assessed in vitro and in vivo by neural complexity tests, magnetic resonance imaging (MRI), Golgi staining, and Western blotting of synaptic plasticity-related proteins and apoptotic proteins. Knockdown of Fused in Sarcoma (FUS) small interfering RNA (siRNA) was used to validate FUS-mediated HypEV neuroprotection and mitochondrial mRNA release. Hypoxia promoted the secretion of sEVs, and HypEVs were more easily taken up and utilized by recipient cells. The MRI results illustrated that the cerebral infarction volume was reduced by 45% with the application of HypEVs, in comparison to the non- HypEV treatment group. Mechanistically, the FUS protein is necessary for the uptake and neuroprotection of HypEVs against ischemic stroke as well as carrying a large amount of mitochondrial mRNA in HypEVs. However, FUS knockdown attenuated the neuroprotective rescue capabilities of HypEVs. Our comprehensive dataset clearly illustrates that FUS-mediated HypEVs deliver exceptional neuroprotective effects against ischemic stroke, primarily through the maintenance of neurite integrity and the reduction of mitochondria-associated apoptosis.
Collapse
Affiliation(s)
- Yousheng Wu
- Department of Neurology and Stroke Center, The First Affiliated Hospital of Jinan University, Guangzhou, China
- Clinical Neuroscience Institute, The First Affiliated Hospital of Jinan University, Guangzhou, China
- Key Lab of Guangzhou Basic and Translational Research of Pan-vascular Diseases, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Xiaoxiong Huang
- Department of Neurology and Stroke Center, The First Affiliated Hospital of Jinan University, Guangzhou, China
- Clinical Neuroscience Institute, The First Affiliated Hospital of Jinan University, Guangzhou, China
- Department of Neurology and Stroke Center, The Central Hospital of Shaoyang, Hunan, China
| | - Zefeng Tan
- Department of Neurology, The First People's Hospital of Foshan, Guangdong, China
| | - Jiankun Zang
- Department of Neurology and Stroke Center, The First Affiliated Hospital of Jinan University, Guangzhou, China
- Clinical Neuroscience Institute, The First Affiliated Hospital of Jinan University, Guangzhou, China
- Key Lab of Guangzhou Basic and Translational Research of Pan-vascular Diseases, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Min Peng
- Department of Neurology and Stroke Center, The First Affiliated Hospital of Jinan University, Guangzhou, China
- Clinical Neuroscience Institute, The First Affiliated Hospital of Jinan University, Guangzhou, China
- Key Lab of Guangzhou Basic and Translational Research of Pan-vascular Diseases, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Niu He
- Department of Neurology and Stroke Center, The First Affiliated Hospital of Jinan University, Guangzhou, China
- Key Lab of Guangzhou Basic and Translational Research of Pan-vascular Diseases, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Tao Zhang
- Department of Cardiology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Hongcheng Mai
- Department of Neurology and Stroke Center, The First Affiliated Hospital of Jinan University, Guangzhou, China
- Clinical Neuroscience Institute, The First Affiliated Hospital of Jinan University, Guangzhou, China
- Munich Medical Research School (MMRS), Ludwig-Maximilians University Munich, Munich, Germany
- Insititute for Tissue Engineering and Regenerative Medicine (iTERM), Helmholtz Zentrum München, Neuherberg, Germany
| | - Anding Xu
- Department of Neurology and Stroke Center, The First Affiliated Hospital of Jinan University, Guangzhou, China
- Clinical Neuroscience Institute, The First Affiliated Hospital of Jinan University, Guangzhou, China
- Key Lab of Guangzhou Basic and Translational Research of Pan-vascular Diseases, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Dan Lu
- Department of Neurology and Stroke Center, The First Affiliated Hospital of Jinan University, Guangzhou, China
- Clinical Neuroscience Institute, The First Affiliated Hospital of Jinan University, Guangzhou, China
- Key Lab of Guangzhou Basic and Translational Research of Pan-vascular Diseases, The First Affiliated Hospital of Jinan University, Guangzhou, China
| |
Collapse
|
25
|
Bai F, Bertram R, Karamched BR. A mathematical study of the efficacy of possible negative feedback pathways involved in neuronal polarization. J Theor Biol 2023; 571:111561. [PMID: 37331648 DOI: 10.1016/j.jtbi.2023.111561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/29/2023] [Accepted: 06/11/2023] [Indexed: 06/20/2023]
Abstract
Neuronal polarization, a process wherein nascent neurons develop a single long axon and multiple short dendrites, can occur within in vitro cell cultures without environmental cues. This is an apparently random process in which one of several short processes, called neurites, grows to become long, while the others remain short. In this study, we propose a minimum model for neurite growth, which involves bistability and random excitations reflecting actin waves. Positive feedback is needed to produce the bistability, while negative feedback is required to ensure that no more than one neurite wins the winner-takes-all contest. By applying the negative feedback to different aspects of the neurite growth process, we demonstrate that targeting the negative feedback to the excitation amplitude results in the most persistent polarization. Also, we demonstrate that there are optimal ranges of values for the neurite count, and for the excitation rate and amplitude that best maintain the polarization. Finally, we show that a previously published model for neuronal polarization based on competition for limited resources shares key features with our best-performing minimal model: bistability and negative feedback targeted to the size of random excitations.
Collapse
Affiliation(s)
- Fan Bai
- Department of Mathematics, Florida State University, Tallahassee FL 32306, United States
| | - Richard Bertram
- Department of Mathematics, Florida State University, Tallahassee FL 32306, United States; Program in Molecular Biophysics, Florida State University, Tallahassee FL 32306, United States; Program in Neuroscience, Florida State University, Tallahassee FL 32306, United States
| | - Bhargav R Karamched
- Department of Mathematics, Florida State University, Tallahassee FL 32306, United States; Program in Molecular Biophysics, Florida State University, Tallahassee FL 32306, United States; Program in Neuroscience, Florida State University, Tallahassee FL 32306, United States.
| |
Collapse
|
26
|
Shirai R, Cho M, Isogai M, Fukatsu S, Okabe M, Okawa M, Miyamoto Y, Torii T, Yamauchi J. FTD/ALS Type 7-Associated Thr104Asn Mutation of CHMP2B Blunts Neuronal Process Elongation, and Is Recovered by Knockdown of Arf4, the Golgi Stress Regulator. Neurol Int 2023; 15:980-993. [PMID: 37606396 PMCID: PMC10443297 DOI: 10.3390/neurolint15030063] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/03/2023] [Accepted: 08/10/2023] [Indexed: 08/23/2023] Open
Abstract
Frontotemporal dementia and/or amyotrophic lateral sclerosis type 7 (FTD/ALS7) is an autosomal dominant neurodegenerative disorder characterized by the onset of FTD and/or ALS, mainly in adulthood. Patients with some types of mutations, including the Thr104Asn (T104N) mutation of charged multivesicular body protein 2B (CHMP2B), have predominantly ALS phenotypes, whereas patients with other mutations have predominantly FTD phenotypes. A few mutations result in patients having both phenotypes approximately equally; however, the reason why phenotypes differ depending on the position of the mutation is unknown. CHMP2B comprises one part of the endosomal sorting complexes required for transport (ESCRT), specifically ESCRT-III, in the cytoplasm. We describe here, for the first time, that CHMP2B with the T104N mutation inhibits neuronal process elongation in the N1E-115 cell line, a model line undergoing neuronal differentiation. This inhibitory phenotype was accompanied by changes in marker protein expression. Of note, CHMP2B with the T104N mutation, but not the wild-type form, was preferentially accumulated in the Golgi body. Of the four major Golgi stress signaling pathways currently known, the pathway through Arf4, the small GTPase, was specifically upregulated in cells expressing CHMP2B with the T104N mutation. Conversely, knockdown of Arf4 with the cognate small interfering (si)RNA recovered the neuronal process elongation inhibited by the T104N mutation. These results suggest that the T104N mutation of CHMP2B inhibits morphological differentiation by triggering Golgi stress signaling, revealing a possible therapeutic molecular target for recovering potential molecular and cellular phenotypes underlying FTD/ALS7.
Collapse
Affiliation(s)
- Remina Shirai
- Laboratory of Molecular Neurology, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan; (R.S.); (Y.M.)
| | - Mizuka Cho
- Laboratory of Molecular Neurology, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan; (R.S.); (Y.M.)
| | - Mikinori Isogai
- Laboratory of Molecular Neurology, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan; (R.S.); (Y.M.)
| | - Shoya Fukatsu
- Laboratory of Molecular Neurology, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan; (R.S.); (Y.M.)
| | - Miyu Okabe
- Laboratory of Molecular Neurology, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan; (R.S.); (Y.M.)
| | - Maho Okawa
- Laboratory of Molecular Neurology, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan; (R.S.); (Y.M.)
| | - Yuki Miyamoto
- Laboratory of Molecular Neurology, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan; (R.S.); (Y.M.)
- Department of Pharmacology, National Research Institute for Child Health and Development, Tokyo 157-8535, Japan
| | - Tomohiro Torii
- Laboratory of Ion Channel Pathophysiology, Doshisha University Graduate School of Brain Science, Kyoto 610-0394, Japan;
| | - Junji Yamauchi
- Laboratory of Molecular Neurology, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan; (R.S.); (Y.M.)
- Department of Pharmacology, National Research Institute for Child Health and Development, Tokyo 157-8535, Japan
- Diabetic Neuropathy Project, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| |
Collapse
|
27
|
Pessoa ALS, Quesada AA, Nóbrega PR, Viana APO, de Oliveira KT, Figueiredo T, Santos S, Kok F. Neuropsychological Characterization of Autosomal Recessive Intellectual Developmental Disorder 59 Associated with IMPA1 (MRT59). Brain Sci 2023; 13:1048. [PMID: 37508980 PMCID: PMC10377093 DOI: 10.3390/brainsci13071048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/05/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023] Open
Abstract
Biallelic loss of function of IMPA1 causes autosomal recessive intellectual developmental disorder 59 (MRT59, OMIM #617323). MRT59 has been reported to present with significant intellectual disability and disruptive behavior, but little is known about the neurocognitive pattern of those patients. Thus, the aims of this study were: (1) to assess the cognitive profile of these patients, and (2) to evaluate their functional dependence levels. Eighteen adults, aged 37 to 89 years, participated in this study: nine MRT59 patients, five heterozygous carriers and four non-carrier family members. All of them were from a consanguineous family living in Northeast Brazil. All IMPA1 patients had the (c.489_493dupGGGCT) pathogenic variant in homozygosis. For cognitive assessment, the WASI battery was applied in nine MRT59 patients and compared to heterozygous carriers and non-carrier family members. Functional dependence was evaluated using the functional independence measure (FIM). Patients showed moderate to severe intellectual disability and severe functional disabilities. Heterozygous carriers did not differ from non-carriers. MRT59 patients should be followed up by health professionals in an interdisciplinary way to understand their cognitive disabilities and functional needs properly.
Collapse
Affiliation(s)
- Andre Luiz Santos Pessoa
- Albert Sabin Children's Hospital, Fortaleza 60410-794, Brazil
- Faculty of Medicine, State University of Ceará (UECE), Fortaleza 60714-903, Brazil
| | - Andrea Amaro Quesada
- The Edson Queiroz Foundation, University of Fortaleza (UNIFOR), Fortaleza 60811-905, Brazil
| | - Paulo Ribeiro Nóbrega
- Hospital Universitário Walter Cantídio-UFC, Fortaleza 60430-372, Brazil
- Faculty of Medicine, Centro Universitário Christus, Fortaleza 60160-230, Brazil
| | | | | | - Thalita Figueiredo
- Faculty of Medicine, Federal University of Alagoas (UFAL), Maceio 57200-000, Brazil
| | - Silvana Santos
- State University of Paraíba (UEPB), Campina Grande 58429-500, Brazil
| | - Fernando Kok
- Department of Neurology, University of São Paulo (USP), São Paulo 05508-220, Brazil
| |
Collapse
|
28
|
Gu X, Jia C, Wang J. Advances in Understanding the Molecular Mechanisms of Neuronal Polarity. Mol Neurobiol 2023; 60:2851-2870. [PMID: 36738353 DOI: 10.1007/s12035-023-03242-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 01/22/2023] [Indexed: 02/05/2023]
Abstract
The establishment and maintenance of neuronal polarity are important for neural development and function. Abnormal neuronal polarity establishment commonly leads to a variety of neurodevelopmental disorders. Over the past three decades, with the continuous development and improvement of biological research methods and techniques, we have made tremendous progress in the understanding of the molecular mechanisms of neuronal polarity establishment. The activity of positive and negative feedback signals and actin waves are both essential in this process. They drive the directional transport and aggregation of key molecules of neuronal polarity, promote the spatiotemporal regulation of ordered and coordinated interactions of actin filaments and microtubules, stimulate the specialization and growth of axons, and inhibit the formation of multiple axons. In this review, we focus on recent advances in these areas, in particular the important findings about neuronal polarity in two classical models, in vitro primary hippocampal/cortical neurons and in vivo cortical pyramidal neurons, and discuss our current understanding of neuronal polarity..
Collapse
Affiliation(s)
- Xi Gu
- Fujian Key Laboratory for Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China.
| | - Chunhong Jia
- Department of Pediatrics, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| | - Junhao Wang
- Fujian Key Laboratory for Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| |
Collapse
|
29
|
Fukawa M, Shirai R, Torii T, Nakata K, Fukatsu S, Sato T, Homma K, Miyamoto Y, Yamauchi J. Extracellular HSPA5 is autocrinally involved in the regulation of neuronal process elongation. Biochem Biophys Res Commun 2023; 664:50-58. [PMID: 37137223 DOI: 10.1016/j.bbrc.2023.04.102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 04/15/2023] [Accepted: 04/27/2023] [Indexed: 05/05/2023]
Abstract
The molecular mechanisms by which neuronal processes grow are extremely complicated, involving fine-tuned regulation of extracellular and intracellular signals. It remains to be elucidated which molecules are contained in the regulation. Herein, we report for the first time that heat shock protein family A member 5 (HSPA5, also called immunoglobulin heavy chain binding endoplasmic reticulum [ER] protein [BiP]) is secreted from mouse primary dorsal neuronal ganglion (DRG) cells or neuronal cell line N1E-115, a frequently used neuronal differentiation model. Supporting these results, HSPA5 protein was co-localized not only with ER antigen KDEL but also with intracellular vesicles such as Rab11-positive secretory vesicles. Unexpectedly, addition of HSPA5 inhibited elongation of neuronal processes, whereas neutralization of extracellular HSPA5 with the antibodies elongated processes, characterizing extracellular HSPA5 as a negative regulator of neuronal differentiation. Treatment of cells with neutralizing antibodies for low-density lipoprotein receptor (LDLR) did not have significant effects on process elongation, whereas LDLR-related protein 1 (LRP1) antibodies promoted differentiation, implying that LRP1 may act as a receptor candidate for HSPA5. Interestingly, extracellular HSPA5 was greatly decreased following treatment with tunicamycin, an ER stress inducer, illustrating that the ability to form neuronal processes could be preserved, even under stress. These results suggest that neuronal HSPA5 itself is secreted to contribute to inhibitory effects on neuronal cell morphological differentiation and can be included on the list of extracellular signaling molecules negatively controlling differentiation.
Collapse
Affiliation(s)
- Miku Fukawa
- Laboratory of Molecular Neurology, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, 192-0392, Japan
| | - Remina Shirai
- Laboratory of Molecular Neurology, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, 192-0392, Japan
| | - Tomohiro Torii
- Laboratory of Ion Channel Pathophysiology, Doshisha University Graduate School of Brain Science, Kyotanabe, Kyoto, 610-0394, Japan
| | - Kenta Nakata
- Laboratory of Molecular Neurology, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, 192-0392, Japan
| | - Shoya Fukatsu
- Laboratory of Molecular Neurology, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, 192-0392, Japan
| | - Takanari Sato
- Laboratory of Molecular Neurology, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, 192-0392, Japan
| | - Keiichi Homma
- Department of Life Science and Informatics, Maebashi Institute of Technology, Maebashi, Gunma, 371-0816, Japan
| | - Yuki Miyamoto
- Laboratory of Molecular Neurology, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, 192-0392, Japan; Department of Pharmacology, National Research Institute for Child Health and Development, Setagaya, Tokyo, 157-8535, Japan
| | - Junji Yamauchi
- Department of Pharmacology, National Research Institute for Child Health and Development, Setagaya, Tokyo, 157-8535, Japan; Diabetic Neuropathy Project, Tokyo Metropolitan Institute of Medical Science, Setagaya, Tokyo, 156-8506, Japan.
| |
Collapse
|
30
|
Song Z, Mao H, Liu J, Sun W, Wu S, Lu X, Jin C, Yang J. Lanthanum Chloride Induces Axon Abnormality Through LKB1-MARK2 and LKB1-STK25-GM130 Signaling Pathways. Cell Mol Neurobiol 2023; 43:1181-1196. [PMID: 35661286 DOI: 10.1007/s10571-022-01237-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 05/23/2022] [Indexed: 11/24/2022]
Abstract
Lanthanum (La) is a natural rare-earth element that can damage the central nervous system and impair learning and memory. However, its neurotoxic mechanism remains unclear. In this study, adult female rats were divided into 4 groups and given distilled water solution containing 0%, 0.125%, 0.25%, and 0.5% LaCl3, respectively, and this was done from conception to the end of the location. Their offspring rats were used to establish animal models to investigate LaCl3 neurotoxicity. Primary neurons cultured in vitro were treated with LaCl3 and infected with LKB1 overexpression lentivirus. The results showed that LaCl3 exposure resulted in abnormal axons in the hippocampus and primary cultured neurons. LaCl3 reduced the expression of LKB1, p-LKB1, STRAD and MO25 proteins, and directly or indirectly affected the expression of LKB1, leading to decreased activity of LKB1-MARK2 and LKB1-STK25-GM130 pathways. This study indicated that LaCl3 exposure could interfere with the normal effects of LKB1 in the brain and downregulate LKB1-MARK2 and LKB1-STK25-GM130 signaling pathways, resulting in abnormal axon in offspring rats.
Collapse
Affiliation(s)
- Zeli Song
- Department of Toxicology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang, 110122, People's Republic of China
| | - Haoyue Mao
- Department of Toxicology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang, 110122, People's Republic of China
| | - Jinxuan Liu
- Department of Toxicology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang, 110122, People's Republic of China
| | - Wenchang Sun
- Department of Toxicology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang, 110122, People's Republic of China
| | - Shengwen Wu
- Department of Toxicology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang, 110122, People's Republic of China
| | - Xiaobo Lu
- Department of Toxicology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang, 110122, People's Republic of China
| | - Cuihong Jin
- Department of Toxicology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang, 110122, People's Republic of China
| | - Jinghua Yang
- Department of Toxicology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang, 110122, People's Republic of China.
| |
Collapse
|
31
|
Urrutia PJ, González-Billault C. A Role for Second Messengers in Axodendritic Neuronal Polarity. J Neurosci 2023; 43:2037-2052. [PMID: 36948585 PMCID: PMC10039749 DOI: 10.1523/jneurosci.1065-19.2023] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 02/07/2023] [Accepted: 02/10/2023] [Indexed: 03/24/2023] Open
Abstract
Neuronal polarization is a complex molecular process regulated by intrinsic and extrinsic mechanisms. Nerve cells integrate multiple extracellular cues to generate intracellular messengers that ultimately control cell morphology, metabolism, and gene expression. Therefore, second messengers' local concentration and temporal regulation are crucial elements for acquiring a polarized morphology in neurons. This review article summarizes the main findings and current understanding of how Ca2+, IP3, cAMP, cGMP, and hydrogen peroxide control different aspects of neuronal polarization, and highlights questions that still need to be resolved to fully understand the fascinating cellular processes involved in axodendritic polarization.
Collapse
Affiliation(s)
- Pamela J Urrutia
- Department of Biology, Faculty of Sciences, Universidad de Chile, Santiago, Chile 7800003
- School of Medical Technology, Faculty of Medicine and Science, Universidad San Sebastián, Santiago, Chile 7510157
| | - Christian González-Billault
- Department of Biology, Faculty of Sciences, Universidad de Chile, Santiago, Chile 7800003
- Department of Neurosciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile 8380453
- Geroscience Center for Brain Health and Metabolism, Santiago, Chile 7800003
- Buck Institute for Research on Aging, Novato, California 94945
| |
Collapse
|
32
|
Kounoupa Z, Tivodar S, Theodorakis K, Kyriakis D, Denaxa M, Karagogeos D. Rac1 and Rac3 GTPases and TPC2 are required for axonal outgrowth and migration of cortical interneurons. J Cell Sci 2023; 136:286920. [PMID: 36744839 DOI: 10.1242/jcs.260373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 01/31/2023] [Indexed: 02/07/2023] Open
Abstract
Rho GTPases, among them Rac1 and Rac3, are major transducers of extracellular signals and are involved in multiple cellular processes. In cortical interneurons, the neurons that control the balance between excitation and inhibition of cortical circuits, Rac1 and Rac3 are essential for their development. Ablation of both leads to a severe reduction in the numbers of mature interneurons found in the murine cortex, which is partially due to abnormal cell cycle progression of interneuron precursors and defective formation of growth cones in young neurons. Here, we present new evidence that upon Rac1 and Rac3 ablation, centrosome, Golgi complex and lysosome positioning is significantly perturbed, thus affecting both interneuron migration and axon growth. Moreover, for the first time, we provide evidence of altered expression and localization of the two-pore channel 2 (TPC2) voltage-gated ion channel that mediates Ca2+ release. Pharmacological inhibition of TPC2 negatively affected axonal growth and migration of interneurons. Our data, taken together, suggest that TPC2 contributes to the severe phenotype in axon growth initiation, extension and interneuron migration in the absence of Rac1 and Rac3.
Collapse
Affiliation(s)
- Zouzana Kounoupa
- Institute of Molecular Biology and Biotechnology (IMBB, FORTH), Heraklion 71110, Greece.,Department of Basic Science, Faculty of Medicine, University of Crete, Heraklion 71110, Greece
| | - Simona Tivodar
- Institute of Molecular Biology and Biotechnology (IMBB, FORTH), Heraklion 71110, Greece.,Department of Basic Science, Faculty of Medicine, University of Crete, Heraklion 71110, Greece
| | - Kostas Theodorakis
- Institute of Molecular Biology and Biotechnology (IMBB, FORTH), Heraklion 71110, Greece.,Department of Basic Science, Faculty of Medicine, University of Crete, Heraklion 71110, Greece
| | - Dimitrios Kyriakis
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, L-4365 Esch-sur-Alzette, Luxembourg
| | - Myrto Denaxa
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Centre 'Al. Fleming', Vari, 16672, Greece
| | - Domna Karagogeos
- Institute of Molecular Biology and Biotechnology (IMBB, FORTH), Heraklion 71110, Greece.,Department of Basic Science, Faculty of Medicine, University of Crete, Heraklion 71110, Greece
| |
Collapse
|
33
|
Rierola M, Trushina NI, Holtmannspötter M, Kurre R, Bakota L. Lattice light-sheet microscopy and evaluation of dendritic transport in cultured hippocampal tissue reveal high variability in mobility of the KIF1A motor domain and entry into dendritic spines. Brain Res Bull 2023; 194:13-22. [PMID: 36626968 DOI: 10.1016/j.brainresbull.2022.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 12/15/2022] [Accepted: 12/27/2022] [Indexed: 01/09/2023]
Abstract
The unique morphology of neurons consists of a long axon and a highly variable arbour of dendritic processes, which assort neuronal cells into the main classes. The dendritic tree serves as the main domain for receiving synaptic input. Therefore, to maintain the structure and to be able to plastically change according to the incoming stimuli, molecules and organelles need to be readily available. This is achieved mainly via bi-directional transport of cargo along the microtubule lattices. Analysis of dendritic transport is lagging behind the investigation of axonal transport. Moreover, addressing transport mechanisms in tissue environment is very challenging and, therefore, rare. We employed high-speed volumetric lattice light-sheet microscopy and single particle tracking of truncated KIF1A motor protein lacking the cargo-binding domain. We focused our analysis on dendritic processes of CA1 pyramidal neurons in cultured hippocampal tissue. Analysis of individual trajectories revealed detailed information about stalling and high variability in movement and speed, and biased directionality of KIF1A. Furthermore, we could also observe KIF1A shortly entering into dendritic spines. We provide a workflow to analyse variations in the speed and direction of motor protein movement in dendrites that are either intrinsic properties of the motor domain or depend on the structure and modification of the microtubule trails.
Collapse
Affiliation(s)
- Marina Rierola
- Department of Neurobiology, Osnabrück University, Osnabrück, Germany
| | | | - Michael Holtmannspötter
- Integrated Bioimaging Facility iBiOs, Center for Cellular Nanoanalytics, Osnabrück University, Osnabrück, Germany
| | - Rainer Kurre
- Integrated Bioimaging Facility iBiOs, Center for Cellular Nanoanalytics, Osnabrück University, Osnabrück, Germany
| | - Lidia Bakota
- Department of Neurobiology, Osnabrück University, Osnabrück, Germany.
| |
Collapse
|
34
|
Desprez F, Ung DC, Vourc’h P, Jeanne M, Laumonnier F. Contribution of the dihydropyrimidinase-like proteins family in synaptic physiology and in neurodevelopmental disorders. Front Neurosci 2023; 17:1154446. [PMID: 37144098 PMCID: PMC10153444 DOI: 10.3389/fnins.2023.1154446] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 03/15/2023] [Indexed: 05/06/2023] Open
Abstract
The dihydropyrimidinase-like (DPYSL) proteins, also designated as the collapsin response mediators (CRMP) proteins, constitute a family of five cytosolic phosphoproteins abundantly expressed in the developing nervous system but down-regulated in the adult mouse brain. The DPYSL proteins were initially identified as effectors of semaphorin 3A (Sema3A) signaling and consequently involved in regulation of growth cone collapse in young developing neurons. To date, it has been established that DPYSL proteins mediate signals for numerous intracellular/extracellular pathways and play major roles in variety of cellular process including cell migration, neurite extension, axonal guidance, dendritic spine development and synaptic plasticity through their phosphorylation status. The roles of DPYSL proteins at early stages of brain development have been described in the past years, particularly for DPYSL2 and DPYSL5 proteins. The recent characterization of pathogenic genetic variants in DPYSL2 and in DPYSL5 human genes associated with intellectual disability and brain malformations, such as agenesis of the corpus callosum and cerebellar dysplasia, highlighted the pivotal role of these actors in the fundamental processes of brain formation and organization. In this review, we sought to establish a detailed update on the knowledge regarding the functions of DPYSL genes and proteins in brain and to highlight their involvement in synaptic processing in later stages of neurodevelopment, as well as their particular contribution in human neurodevelopmental disorders (NDDs), such as autism spectrum disorders (ASD) and intellectual disability (ID).
Collapse
Affiliation(s)
| | - Dévina C. Ung
- UMR1253, iBrain, Inserm, University of Tours, Tours, France
| | - Patrick Vourc’h
- UMR1253, iBrain, Inserm, University of Tours, Tours, France
- Service de Génétique, Centre Hospitalier Régional Universitaire, Tours, France
- Laboratoire de Biochimie et de Biologie Moléculaire, Centre Hospitalier Régional Universitaire, Tours, France
| | - Médéric Jeanne
- UMR1253, iBrain, Inserm, University of Tours, Tours, France
- Service de Génétique, Centre Hospitalier Régional Universitaire, Tours, France
| | - Frédéric Laumonnier
- UMR1253, iBrain, Inserm, University of Tours, Tours, France
- Service de Génétique, Centre Hospitalier Régional Universitaire, Tours, France
- *Correspondence: Frédéric Laumonnier,
| |
Collapse
|
35
|
Razmara P, Pyle GG. Impact of Copper Nanoparticles and Copper Ions on Transcripts Involved in Neural Repair Mechanisms in Rainbow Trout Olfactory Mucosa. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2023; 84:18-31. [PMID: 36525054 DOI: 10.1007/s00244-022-00969-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 11/22/2022] [Indexed: 06/17/2023]
Abstract
Olfactory mucosa is well known for its lifelong ability for regeneration. Regeneration of neurons and regrowth of severed axons are the most common neural repair mechanisms in olfactory mucosa. Nonetheless, exposure to neurotoxic contaminants, such as copper nanoparticles (CuNPs) and copper ions (Cu2+), may alter the reparative capacity of olfactory mucosa. Here, using RNA-sequencing, we investigated the molecular basis of neural repair mechanisms that were affected by CuNPs and Cu2+ in rainbow trout olfactory mucosa. The transcript profile of olfactory mucosa suggested that regeneration of neurons was inhibited by CuNPs. Exposure to CuNPs reduced the transcript abundances of pro-inflammatory proteins which are required to initiate neuroregeneration. Moreover, the transcript of genes encoding regeneration promoters, including canonical Wnt/β-catenin signaling proteins and developmental transcription factors, were downregulated in the CuNP-treated fish. The mRNA levels of genes regulating axonal regrowth, including the growth-promoting signals secreted from olfactory ensheathing cells, were mainly increased in the CuNP treatment. However, the reduced transcript abundances of a few cell adhesion molecules and neural polarity genes may restrict axonogenesis in the CuNP-exposed olfactory mucosa. In the Cu2+-treated olfactory mucosa, both neural repair strategies were initiated at the transcript level. The stimulation of repair mechanisms can lead to the recovery of Cu2+-induced olfactory dysfunction. These results indicated CuNPs and Cu2+ differentially affected the neural repair mechanism in olfactory mucosa. Exposure to CuNP had greater effects on the expression of genes involved in olfactory repair mechanisms relative to Cu2+ and dysregulated the transcripts associated with stem cell proliferation and neural reconstitution.
Collapse
Affiliation(s)
- Parastoo Razmara
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB, Canada.
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada.
| | - Gregory G Pyle
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB, Canada
| |
Collapse
|
36
|
Endoplasmic Reticulum Stress Signaling and Neuronal Cell Death. Int J Mol Sci 2022; 23:ijms232315186. [PMID: 36499512 PMCID: PMC9740965 DOI: 10.3390/ijms232315186] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/27/2022] [Accepted: 11/30/2022] [Indexed: 12/07/2022] Open
Abstract
Besides protein processing, the endoplasmic reticulum (ER) has several other functions such as lipid synthesis, the transfer of molecules to other cellular compartments, and the regulation of Ca2+ homeostasis. Before leaving the organelle, proteins must be folded and post-translationally modified. Protein folding and revision require molecular chaperones and a favorable ER environment. When in stressful situations, ER luminal conditions or chaperone capacity are altered, and the cell activates signaling cascades to restore a favorable folding environment triggering the so-called unfolded protein response (UPR) that can lead to autophagy to preserve cell integrity. However, when the UPR is disrupted or insufficient, cell death occurs. This review examines the links between UPR signaling, cell-protective responses, and death following ER stress with a particular focus on those mechanisms that operate in neurons.
Collapse
|
37
|
Matino L, Mariano A, Ausilio C, Garg R, Cohen-Karni T, Santoro F. Modulation of Early Stage Neuronal Outgrowth through Out-of-Plane Graphene. NANO LETTERS 2022; 22:8633-8640. [PMID: 36301701 DOI: 10.1021/acs.nanolett.2c03171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The correct wiring of a neural network requires neuron to integrate an incredible repertoire of cues found in their extracellular environment. The astonishing efficiency of this process plays a pivotal role in the correct wiring of the brain during development and axon regeneration. Biologically inspired micro- and nanostructured substrates have been shown to regulate axonal outgrowth. In parallel, several studies investigated graphene's potential as a conductive neural interface, able to enhance cell adhesion, neurite sprouting and outgrowth. Here, we engineered a 3D single- to few-layer fuzzy graphene morphology (3DFG), 3DFG on a collapsed Si nanowire (SiNW) mesh template (NT-3DFGc), and 3DFG on a noncollapsed SiNW mesh template (NT-3DFGnc) as neural-instructive materials. The micrometric protruding features of the NWs templates dictated neuronal growth cone establishment, as well as influencing axon elongation and branching. Furthermore, neurons-to-graphene coupling was investigated with comprehensive view of integrin-mediated contact adhesion points and plasma membrane curvature processes.
Collapse
Affiliation(s)
- Laura Matino
- Tissue Electronics, Istituto Italiano di Tecnologia, Naples 80125, Italy
- Dipartimento di Ingegneria Chimica, dei Materiali e delle Produzioni Industriali, DICMAPI, Università "Federico II", Naples 80125, Italy
| | - Anna Mariano
- Tissue Electronics, Istituto Italiano di Tecnologia, Naples 80125, Italy
| | - Chiara Ausilio
- Tissue Electronics, Istituto Italiano di Tecnologia, Naples 80125, Italy
| | - Raghav Garg
- Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Tzahi Cohen-Karni
- Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Francesca Santoro
- Tissue Electronics, Istituto Italiano di Tecnologia, Naples 80125, Italy
- Faculty of Electrical Engineering and IT, RWTH Aachen 52074, Germany
- Institute for Biological Information Processing-Bioelectronics, IBI-3, Forschungszentrum Juelich 52428, Germany
| |
Collapse
|
38
|
Burute M, Jansen KI, Mihajlovic M, Vermonden T, Kapitein LC. Local changes in microtubule network mobility instruct neuronal polarization and axon specification. SCIENCE ADVANCES 2022; 8:eabo2343. [PMID: 36332030 PMCID: PMC9635826 DOI: 10.1126/sciadv.abo2343] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
The polarization of neurons into axons and dendrites depends on extracellular cues, intracellular signaling, cytoskeletal rearrangements, and polarized transport, but the interplay between these processes during polarization remains unresolved. Here, we show that axon specification is determined by differences in microtubule network mobility between neurites, regulated by Rho guanosine triphosphatases (GTPases) and extracellular cues. In developing neurons, retrograde microtubule flow prevents the entry of the axon-selective motor protein Kinesin-1 into most neurites. Using inducible assays to control microtubule network flow, we demonstrate that local inhibition of microtubule mobility is sufficient to guide Kinesin-1 into a specific neurite, whereas long-term global inhibition induces the formation of multiple axons. We furthermore show that extracellular mechanical cues and intracellular Rho GTPase signaling control the local differences in microtubule network flow. These results reveal a novel cytoskeletal mechanism for neuronal polarization.
Collapse
Affiliation(s)
- Mithila Burute
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, Netherlands
| | - Klara I. Jansen
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, Netherlands
| | - Marko Mihajlovic
- Department of Pharmaceutical Sciences, Utrecht Institute for Pharmaceutical Sciences (UIPS), Science for Life, Utrecht University, Universiteitsweg 99, 3508 TB Utrecht, Netherlands
| | - Tina Vermonden
- Department of Pharmaceutical Sciences, Utrecht Institute for Pharmaceutical Sciences (UIPS), Science for Life, Utrecht University, Universiteitsweg 99, 3508 TB Utrecht, Netherlands
| | - Lukas C. Kapitein
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, Netherlands
| |
Collapse
|
39
|
Schelski M, Bradke F. Microtubule retrograde flow retains neuronal polarization in a fluctuating state. SCIENCE ADVANCES 2022; 8:eabo2336. [PMID: 36332023 PMCID: PMC9635824 DOI: 10.1126/sciadv.abo2336] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 09/19/2022] [Indexed: 06/16/2023]
Abstract
In developing vertebrate neurons, a neurite is formed by more than a hundred microtubules. While individual microtubules are dynamic, the microtubule array has been regarded as stationary. Using live-cell imaging of neurons in culture or in brain slices, combined with photoconversion techniques and pharmacological manipulations, we uncovered that the microtubule array flows retrogradely within neurites to the soma. This flow drives cycles of microtubule density, a hallmark of the fluctuating state before axon formation, thereby inhibiting neurite growth. The motor protein dynein fuels this process. Shortly after axon formation, microtubule retrograde flow slows down in the axon, reducing microtubule density cycles and enabling axon extension. Thus, keeping neurites short is an active process. Microtubule retrograde flow is a previously unknown type of cytoskeletal dynamics, which changes the hitherto axon-centric view of neuronal polarization.
Collapse
Affiliation(s)
- Max Schelski
- Axon Growth and Regeneration Group, German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1, Building 99, 53127 Bonn, Germany
- International Max Planck Research School for Brain and Behavior, University of Bonn, Bonn, Germany
| | - Frank Bradke
- Axon Growth and Regeneration Group, German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1, Building 99, 53127 Bonn, Germany
| |
Collapse
|
40
|
Feng JH, Li L, Lv XY, Xiong F, Hu XL, Wang H. Protective Effects of 4-Trifluoromethyl-( E)-cinnamoyl]- L-4- F-phenylalanine Acid against Chronic Cerebral Hypoperfusion Injury through Promoting Brain-Derived Neurotrophic Factor-Mediated Neurogenesis. ACS Chem Neurosci 2022; 13:3057-3067. [PMID: 36245095 DOI: 10.1021/acschemneuro.2c00417] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Vascular dementia (VaD), one of the major consequences after stroke, is the second reason for the cognitive decline in aged people. Chronic cerebral hypoperfusion (CCH) is considered as the main cause for cognitive impairment in VaD patients. In our previous study, a synthetic compound, 4-trifluoromethyl-(E)-cinnamoyl]-L-4-F-phenylalanine acid (AE-18), has been proven to decrease infarct volume and to recover the insufficient blood supply after ischemia-reperfusion in rats, which was reminded that AE-18 may possess the ameliorative effect in CCH. In this study, the bilateral common carotid artery occlusion was performed to establish the CCH model in rats to evaluate the effect and mechanisms of AE-18 in CCH. Results showed that AE-18 (5 and 10 mg/kg, i.g.) could recover the learning and memory and increase the number of neurons in the hippocampus, which may be attributed to its neurogenesis effects and its recovery of cerebral blood flow in CCH rats. In addition, the in vitro studies showed that AE-18 promoted neuronal proliferation, induced differentiation of Neuro-2a cells into a neuron-like morphology, and accelerated the establishment of axon-dendrite polarization of primary hippocampal neurons through upregulating brain-derived neurotrophic factor via the PI3K/Akt/CREB pathway. In conclusion, AE-18 is a promising candidate for the treatment of cognitive decline after CCH injury by restoring blood supply to the brain and promoting neurogenesis in the hippocampus.
Collapse
Affiliation(s)
- Jia-Hao Feng
- State Key Laboratory of Natural Medicines, Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Lun Li
- State Key Laboratory of Natural Medicines, Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Xian-Yu Lv
- State Key Laboratory of Natural Medicines, Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Fei Xiong
- State Key Laboratory of Bioelectronics, Jiangsu Laboratory for Biomaterials and Devices, Southeast University, Nanjing 210009, People's Republic of China
| | - Xiao-Long Hu
- State Key Laboratory of Natural Medicines, Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Hao Wang
- State Key Laboratory of Natural Medicines, Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| |
Collapse
|
41
|
Purushotham SS, Reddy NMN, D'Souza MN, Choudhury NR, Ganguly A, Gopalakrishna N, Muddashetty R, Clement JP. A perspective on molecular signalling dysfunction, its clinical relevance and therapeutics in autism spectrum disorder. Exp Brain Res 2022; 240:2525-2567. [PMID: 36063192 DOI: 10.1007/s00221-022-06448-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 08/18/2022] [Indexed: 11/29/2022]
Abstract
Intellectual disability (ID) and autism spectrum disorder (ASD) are neurodevelopmental disorders that have become a primary clinical and social concern, with a prevalence of 2-3% in the population. Neuronal function and behaviour undergo significant malleability during the critical period of development that is found to be impaired in ID/ASD. Human genome sequencing studies have revealed many genetic variations associated with ASD/ID that are further verified by many approaches, including many mouse and other models. These models have facilitated the identification of fundamental mechanisms underlying the pathogenesis of ASD/ID, and several studies have proposed converging molecular pathways in ASD/ID. However, linking the mechanisms of the pathogenic genes and their molecular characteristics that lead to ID/ASD has progressed slowly, hampering the development of potential therapeutic strategies. This review discusses the possibility of recognising the common molecular causes for most ASD/ID based on studies from the available models that may enable a better therapeutic strategy to treat ID/ASD. We also reviewed the potential biomarkers to detect ASD/ID at early stages that may aid in diagnosis and initiating medical treatment, the concerns with drug failure in clinical trials, and developing therapeutic strategies that can be applied beyond a particular mutation associated with ASD/ID.
Collapse
Affiliation(s)
- Sushmitha S Purushotham
- Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, 560064, India
| | - Neeharika M N Reddy
- Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, 560064, India
| | - Michelle Ninochka D'Souza
- Centre for Brain Research, Indian Institute of Science Campus, CV Raman Avenue, Bangalore, 560 012, India.,The University of Trans-Disciplinary Health Sciences and Technology (TDU), Bangalore, 560064, India
| | - Nilpawan Roy Choudhury
- Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, 560064, India
| | - Anusa Ganguly
- Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, 560064, India
| | - Niharika Gopalakrishna
- Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, 560064, India
| | - Ravi Muddashetty
- Centre for Brain Research, Indian Institute of Science Campus, CV Raman Avenue, Bangalore, 560 012, India.,The University of Trans-Disciplinary Health Sciences and Technology (TDU), Bangalore, 560064, India
| | - James P Clement
- Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, 560064, India.
| |
Collapse
|
42
|
Hansen J, Siddiq MM, Yadaw AS, Tolentino RE, Rabinovich V, Jayaraman G, Jain MR, Liu T, Li H, Xiong Y, Goldfarb J, Iyengar R. Whole cell response to receptor stimulation involves many deep and distributed subcellular biochemical processes. J Biol Chem 2022; 298:102325. [PMID: 35926710 PMCID: PMC9520007 DOI: 10.1016/j.jbc.2022.102325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 07/26/2022] [Accepted: 07/27/2022] [Indexed: 11/28/2022] Open
Abstract
Neurite outgrowth is an integrated whole cell response triggered by the cannabinoid-1 receptor. We sought to identify the many different biochemical pathways that contribute to this whole cell response. To understand underlying mechanisms, we identified subcellular processes (SCPs) composed of one or more biochemical pathways and their interactions required for this response. Differentially expressed genes and proteins were obtained from bulk transcriptomics and proteomic analysis of extracts from cells stimulated with a cannabinoid-1 receptor agonist. We used these differentially expressed genes and proteins to build networks of interacting SCPs by combining the expression data with prior pathway knowledge. From these SCP networks, we identified additional genes that when ablated, experimentally validated the SCP involvement in neurite outgrowth. Our experiments and informatics modeling allowed us to identify diverse SCPs such as those involved in pyrimidine metabolism, lipid biosynthesis, and mRNA splicing and stability, along with more predictable SCPs such as membrane vesicle transport and microtubule dynamics. We find that SCPs required for neurite outgrowth are widely distributed among many biochemical pathways required for constitutive cellular functions, several of which are termed ‘deep’, since they are distal to signaling pathways and the key SCPs directly involved in extension of the neurite. In contrast, ‘proximal’ SCPs are involved in microtubule growth and membrane vesicle transport dynamics required for neurite outgrowth. From these bioinformatics and dynamical models based on experimental data, we conclude that receptor-mediated regulation of subcellular functions for neurite outgrowth is both distributed, that is, involves many different biochemical pathways, and deep.
Collapse
Affiliation(s)
- Jens Hansen
- Department of Pharmacological Sciences and Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Mustafa M Siddiq
- Department of Pharmacological Sciences and Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Arjun Singh Yadaw
- Department of Pharmacological Sciences and Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Rosa E Tolentino
- Department of Pharmacological Sciences and Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Vera Rabinovich
- Department of Pharmacological Sciences and Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Gomathi Jayaraman
- Department of Pharmacological Sciences and Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Mohit Raja Jain
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers University, New Jersey Medical School, Newark, NY, 07103, United States
| | - Tong Liu
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers University, New Jersey Medical School, Newark, NY, 07103, United States
| | - Hong Li
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers University, New Jersey Medical School, Newark, NY, 07103, United States
| | - Yuguang Xiong
- Department of Pharmacological Sciences and Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Joseph Goldfarb
- Department of Pharmacological Sciences and Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Ravi Iyengar
- Department of Pharmacological Sciences and Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States.
| |
Collapse
|
43
|
Ka M, Kim HG, Kim WY. WDR5-HOTTIP Histone Modifying Complex Regulates Neural Migration and Dendrite Polarity of Pyramidal Neurons via Reelin Signaling. Mol Neurobiol 2022; 59:5104-5120. [PMID: 35672601 PMCID: PMC9378496 DOI: 10.1007/s12035-022-02905-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 05/26/2022] [Indexed: 11/26/2022]
Abstract
WD-repeat domain 5 (WDR5), a core component of histone methyltransferase complexes, is associated with Kabuki syndrome and Kleefstra syndrome that feature intellectual disability and neurodevelopmental delay. Despite its critical status in gene regulation and neurological disorders, the role of WDR5 in neural development is unknown. Here we show that WDR5 is required for normal neuronal placement and dendrite polarization in the developing cerebral cortex. WDR5 knockdown led to defects in both entry into the bipolar transition of pyramidal neurons within the intermediate zone and radial migration into cortical layers. Moreover, WDR5 deficiency disrupted apical and basal polarity of cortical dendrites. Aberrant dendritic spines and synapses accompanied the dendrite polarity phenotype. WDR5 deficiency reduced expression of reelin signaling receptors, ApoER and VdldR, which were associated with abnormal H3K4 methylation and H4 acetylation on their promoter regions. Finally, an lncRNA, HOTTIP, was found to be a partner of WDR5 to regulate dendritic polarity and reelin signaling via histone modification. Our results demonstrate a novel role for WDR5 in neuronal development and provide mechanistic insights into the neuropathology associated with histone methyltransferase dysfunction.
Collapse
Affiliation(s)
- Minhan Ka
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, KRICT, Daejeon, 34114, Republic of Korea
| | - Hyung-Goo Kim
- Neurological Disorders Research Center, Qatar Biomedical Research Institute, Hamid Bin Khalifa University, Doha, Qatar
| | - Woo-Yang Kim
- Department of Biological Sciences, Kent State University, Kent, OH, 44242, USA.
| |
Collapse
|
44
|
Huang B, He Y, Rofaani E, Liang F, Huang X, Shi J, Wang L, Yamada A, Peng J, Chen Y. Automatic differentiation of human induced pluripotent stem cells toward synchronous neural networks on an arrayed monolayer of nanofiber membrane. Acta Biomater 2022; 150:168-180. [PMID: 35907558 DOI: 10.1016/j.actbio.2022.07.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 07/01/2022] [Accepted: 07/21/2022] [Indexed: 11/01/2022]
Abstract
Automatic differentiation of human-induced pluripotent stem cells (hiPSCs) facilitates the generation of cortical neural networks and studies of brain functions. Here, we present a method of directed differentiation of hiPSCs with a substrate made of a honeycomb microframe and a monolayer of crosslinked gelatin nanofibers in the form of an array of nanofiber membranes. Neural precursor cells (NPCs) were firstly derived from hiPSCs and then placed on the nanofiber membranes for automatically controlled neural differentiation over a long period. Due to the strong modulation of the substrate stiffness and permeability, most cells were found in the center area of the honeycomb compartments, giving rise to regular and inter-connected cortical neural clusters. More importantly, the neural activities of the clusters were synchronized proving the reliability of the method. Our results showed that the self-organization, as well as the neural activities of differentiating neural cells, were more efficient in the nanofiber membrane compared to the types of the substrate such as glass and nanofiber-covered glass. In addition to the inherent advantages such as manpower saving and fewer risks of contamination and human error, automatic differentiation avoided undesired shaking which might have critical effects on the formation of synchronous neural clusters. STATEMENT OF SIGNIFICANCE: : Synchronization of cortical neural activities is essential for information processing and human cognition. By automated differentiation of human induced pluripotent stem cells on arrayed monolayer of nanofiber membrane, synchronous neural clusters could be formed. Such an approach would allow creating a variety of neural networks with regular and interconnected clusters for systematic studies of human cortical functions.
Collapse
Affiliation(s)
- Boxin Huang
- PASTEUR, Département de chimie, École normale supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| | - Yong He
- PASTEUR, Département de chimie, École normale supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| | - Elrade Rofaani
- PASTEUR, Département de chimie, École normale supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| | - Feng Liang
- PASTEUR, Département de chimie, École normale supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| | - Xiaochen Huang
- PASTEUR, Département de chimie, École normale supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| | - Jian Shi
- MesoBioTech, 231 Rue Saint-Honoré, 75001, Paris, France
| | - Li Wang
- MesoBioTech, 231 Rue Saint-Honoré, 75001, Paris, France
| | - Ayako Yamada
- PASTEUR, Département de chimie, École normale supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| | - Juan Peng
- PASTEUR, Département de chimie, École normale supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France.
| | - Yong Chen
- PASTEUR, Département de chimie, École normale supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France.
| |
Collapse
|
45
|
Khan TA, Guo A, Martin J, Te Chien C, Liu T, Szczurkowska J, Shelly M. Directed mechanisms for apical dendrite development during neuronal polarization. Dev Biol 2022; 490:110-116. [PMID: 35809631 DOI: 10.1016/j.ydbio.2022.07.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 06/09/2022] [Accepted: 07/01/2022] [Indexed: 12/18/2022]
Abstract
The development of the dendrite and the axon during neuronal polarization underlies the directed flow of information in the brain. Seminal studies on axon development have dominated the mechanistic analysis of neuronal polarization. These studies, many originating from examinations in cultured hippocampal and cortical neurons in vitro, have established a prevalent view that axon formation precedes and is necessary for neuronal polarization. There is also in vivo evidence supporting this view. Nevertheless, the establishment of bipolar polarity and the leading edge, and apical dendrite development in pyramidal neurons in vivo occur when axon formation is prevented. Furthermore, recent mounting evidence suggest that directed mechanisms might mediate bipolar polarity/leading process and subsequent apical dendrite development. In the presence of spatially directed extracellular cues in the developing brain, these events may operate independently of axon forming events. In this perspective we summarize evidence in support of these evolving views in neuronal polarization and highlight recent findings on dedicated mechanisms acting in apical dendrite development.
Collapse
Affiliation(s)
- Tamor A Khan
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY, 11794-5230, USA
| | - Alan Guo
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY, 11794-5230, USA
| | - Jacqueline Martin
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY, 11794-5230, USA
| | - Chia Te Chien
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY, 11794-5230, USA
| | - Tianrui Liu
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY, 11794-5230, USA
| | - Joanna Szczurkowska
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY, 11794-5230, USA
| | - Maya Shelly
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY, 11794-5230, USA.
| |
Collapse
|
46
|
Hyun SA, Ko MY, Jang S, Lee BS, Rho J, Kim KK, Kim WY, Ka M. Bisphenol-A impairs synaptic formation and function by RGS4-mediated negative regulation of BDNF/NTRK2 signaling in the cerebral cortex. Dis Model Mech 2022; 15:276081. [PMID: 35781563 PMCID: PMC9346518 DOI: 10.1242/dmm.049177] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 06/06/2022] [Indexed: 12/02/2022] Open
Abstract
Bisphenol-A (BPA) is a representative endocrine disruptor, widely used in a variety of products including plastics, medical equipment and receipts. Hence, most people are exposed to BPA via the skin, digestive system or inhalation in everyday life. Furthermore, BPA crosses the blood–brain barrier and is linked to multiple neurological dysfunctions found in neurodegenerative and neuropsychological disorders. However, the mechanisms underlying BPA-associated neurological dysfunctions remain poorly understood. Here, we report that BPA exposure alters synapse morphology and function in the cerebral cortex. Cortical pyramidal neurons treated with BPA showed reduced size and number of dendrites and spines. The density of excitatory synapses was also decreased by BPA treatment. More importantly, we found that BPA disrupted normal synaptic transmission and cognitive behavior. RGS4 and its downstream BDNF/NTRK2 pathway appeared to mediate the effect of BPA on synaptic and neurological function. Our findings provide molecular mechanistic insights into anatomical and physiological neurotoxic consequences related to a potent endocrine modifier. Summary: Bisphenol-A (BPA) disrupts normal synaptic transmission and cognitive behavior in mice. Rgs4 transcription factor and its downstream BDNF/NTRK2 pathway appear to mediate the effect of BPA on synaptic and neurological function.
Collapse
Affiliation(s)
- Sung-Ae Hyun
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, KRICT, Daejeon 34114, Republic of Korea.,Department of Biochemistry, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Moon Yi Ko
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, KRICT, Daejeon 34114, Republic of Korea.,Department of Biological Sciences, Kent State University, Kent, OH 44242, USA
| | - Sumi Jang
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, KRICT, Daejeon 34114, Republic of Korea
| | - Byoung-Seok Lee
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, KRICT, Daejeon 34114, Republic of Korea
| | - Jaerang Rho
- Department of Microbiology and Molecular Biology, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Kee K Kim
- Department of Microbiology and Molecular Biology, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Woo-Yang Kim
- Department of Biological Sciences, Kent State University, Kent, OH 44242, USA
| | - Minhan Ka
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, KRICT, Daejeon 34114, Republic of Korea
| |
Collapse
|
47
|
Grignard J, Lamamy V, Vermersch E, Delagrange P, Stephan JP, Dorval T, Fages F. Mathematical modeling of the microtubule detyrosination/tyrosination cycle for cell-based drug screening design. PLoS Comput Biol 2022; 18:e1010236. [PMID: 35759459 PMCID: PMC9236252 DOI: 10.1371/journal.pcbi.1010236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 05/20/2022] [Indexed: 11/18/2022] Open
Abstract
Microtubules and their post-translational modifications are involved in major cellular processes. In severe diseases such as neurodegenerative disorders, tyrosinated tubulin and tyrosinated microtubules are in lower concentration. We present here a mechanistic mathematical model of the microtubule tyrosination cycle combining computational modeling and high-content image analyses to understand the key kinetic parameters governing the tyrosination status in different cellular models. That mathematical model is parameterized, firstly, for neuronal cells using kinetic values taken from the literature, and, secondly, for proliferative cells, by a change of two parameter values obtained, and shown minimal, by a continuous optimization procedure based on temporal logic constraints to formalize experimental high-content imaging data. In both cases, the mathematical models explain the inability to increase the tyrosination status by activating the Tubulin Tyrosine Ligase enzyme. The tyrosinated tubulin is indeed the product of a chain of two reactions in the cycle: the detyrosinated microtubule depolymerization followed by its tyrosination. The tyrosination status at equilibrium is thus limited by both reaction rates and activating the tyrosination reaction alone is not effective. Our computational model also predicts the effect of inhibiting the Tubulin Carboxy Peptidase enzyme which we have experimentally validated in MEF cellular model. Furthermore, the model predicts that the activation of two particular kinetic parameters, the tyrosination and detyrosinated microtubule depolymerization rate constants, in synergy, should suffice to enable an increase of the tyrosination status in living cells.
Collapse
Affiliation(s)
- Jeremy Grignard
- Pole of Activity Data Sciences and Data Management, Institut de Recherches Servier (IdRS), Croissy-sur-Seine, France
- * E-mail: (JG); (TD); (FF)
| | - Véronique Lamamy
- Pole of Activity Cellular Sciences, Institut de Recherches Servier (IdRS), Croissy-sur-Seine, France
| | - Eva Vermersch
- Pole of Activity Cellular Sciences, Institut de Recherches Servier (IdRS), Croissy-sur-Seine, France
| | - Philippe Delagrange
- Therapeutic Area Neuropsychiatry and Immunoinflammation, Institut de Recherches Servier (IdRS), Croissy-sur-Seine, France
| | - Jean-Philippe Stephan
- In Vitro Pharmacology Unit, Institut de Recherches Servier (IdRS), Croissy-sur-Seine, France
| | - Thierry Dorval
- Pole of Activity Data Sciences and Data Management, Institut de Recherches Servier (IdRS), Croissy-sur-Seine, France
- * E-mail: (JG); (TD); (FF)
| | - François Fages
- Team Project Lifeware, Institut National de Recherche en Informatique et Automatique, Inria Saclay, Palaiseau, France
- * E-mail: (JG); (TD); (FF)
| |
Collapse
|
48
|
Le LTM, Drakulic S, Nyengaard JR, Golas MM, Sander B. Structural Organization of Human Full-Length PAR3 and the aPKC-PAR6 Complex. Mol Biotechnol 2022; 64:1319-1327. [PMID: 35610404 PMCID: PMC9573856 DOI: 10.1007/s12033-022-00504-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 04/29/2022] [Indexed: 11/24/2022]
Abstract
The tripartite partition defect (PAR) polarity complex, which includes the proteins PAR3, atypical protein kinase C (aPKC), and PAR6, is a major regulator of cellular polarity. It is highly conserved and expressed in various tissues. Its largest component, PAR3, controls protein–protein interactions of the PAR complex with a variety of interaction partners, and PAR3 self-association is critical for the formation of filament-like structures. However, little is known about the structure of the PAR complex. Here, we purified non-filamentous PAR3 and the aPKC–PAR6 complex and characterized them by single-particle electron microscopy (EM). We expressed and purified an oligomerization-deficient form of PAR3, PAR3V13D,D70K, and the active aPKC–PAR6 dimer. For PAR3, engineering at two positions is sufficient to form stable single particles with a maximum dimension of 20 nm. aPKC–PAR6 forms a complex with a maximum dimension of 13.5 nm that contains single copies of aPKC. Thus, the data present a basis for further high-resolution studies of PAR proteins and PAR complex formation.
Collapse
Affiliation(s)
- Le T M Le
- Core Center for Molecular Morphology, Section for Stereology and Microscopy, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Pathology, Aarhus University Hospital, Aarhus, Denmark
- The Hormel Institute, University of Minnesota, Austin, MN, USA
| | - Srdja Drakulic
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Jens R Nyengaard
- Core Center for Molecular Morphology, Section for Stereology and Microscopy, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Centre for Stochastic Geometry and Advanced Bioimaging, Aarhus University, Wilhelm Meyers Allé 3, Building 1233/1234, 8000, Aarhus C, Denmark
| | - Monika M Golas
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Human Genetics, Faculty of Medicine, University of Augsburg, Stenglinstrasse 2, 86156, Augsburg, Germany
| | - Bjoern Sander
- Centre for Stochastic Geometry and Advanced Bioimaging, Aarhus University, Wilhelm Meyers Allé 3, Building 1233/1234, 8000, Aarhus C, Denmark.
- Institute of Pathology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.
| |
Collapse
|
49
|
Higgs VE, Das RM. Establishing neuronal polarity: microtubule regulation during neurite initiation. OXFORD OPEN NEUROSCIENCE 2022; 1:kvac007. [PMID: 38596701 PMCID: PMC10913830 DOI: 10.1093/oons/kvac007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/25/2022] [Accepted: 05/02/2022] [Indexed: 04/11/2024]
Abstract
The initiation of nascent projections, or neurites, from the neuronal cell body is the first stage in the formation of axons and dendrites, and thus a critical step in the establishment of neuronal architecture and nervous system development. Neurite formation relies on the polarized remodelling of microtubules, which dynamically direct and reinforce cell shape, and provide tracks for cargo transport and force generation. Within neurons, microtubule behaviour and structure are tightly controlled by an array of regulatory factors. Although microtubule regulation in the later stages of axon development is relatively well understood, how microtubules are regulated during neurite initiation is rarely examined. Here, we discuss how factors that direct microtubule growth, remodelling, stability and positioning influence neurite formation. In addition, we consider microtubule organization by the centrosome and modulation by the actin and intermediate filament networks to provide an up-to-date picture of this vital stage in neuronal development.
Collapse
Affiliation(s)
- Victoria E Higgs
- Division of Molecular and Cellular Function, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Raman M Das
- Division of Molecular and Cellular Function, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| |
Collapse
|
50
|
Segi N, Ozaki T, Suzuki Y, Ouchida J, Imagama S, Kadomatsu K, Sakamoto K. Close association of polarization and LC3, a marker of autophagy, in axon determination in mouse hippocampal neurons. Exp Neurol 2022; 354:114112. [PMID: 35568188 DOI: 10.1016/j.expneurol.2022.114112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 04/28/2022] [Accepted: 05/06/2022] [Indexed: 11/04/2022]
Abstract
The autophagy-lysosome pathway is a cellular clearance system for intracellular organelles, macromolecules and microorganisms. It is indispensable for cells not only to maintain their homeostasis but also to achieve more active cellular processes such as differentiation. Therefore, impairment or disruption of the autophagy-lysosome pathway leads to a wide spectrum of human diseases, ranging from several types of neurodegenerative diseases to malignancies. In elongating axons, autophagy preferentially occurs at growth cones, and disruption of autophagy is closely associated with incapacity for axonal regeneration after injury in the central nervous system. However, the roles of autophagy in developing neurons remain elusive. In particular, whether autophagy is involved in axon-dendrite determination is largely unclear. Using primary cultured mouse embryonic hippocampal neurons, we here showed the polarized distribution of autophagosomes among minor processes of neurons at stage 2. Time-lapse observation of neurons from GFP-LC3 transgenic mice demonstrated that an "LC3 surge"-i.e., a rapid accumulation of autophagic marker LC3 that continues for several hours in one minor process-proceeded the differentiation of neurons into axons. In addition, pharmacological activation and inhibition of autophagy by trehalose and bafilomycin, respectively, accelerated and delayed axonal determination. Taken together, our findings revealed the close association between LC3, a marker of autophagy, and axon determination in developing neurons.
Collapse
Affiliation(s)
- Naoki Segi
- Departments of Biochemistry, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan; Departments of Orthopedics, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Tomoya Ozaki
- Departments of Biochemistry, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Yuji Suzuki
- Departments of Biochemistry, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Jun Ouchida
- Departments of Biochemistry, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan; Departments of Orthopedics, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Shiro Imagama
- Departments of Orthopedics, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Kenji Kadomatsu
- Departments of Biochemistry, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan; Institute for Glyco-core Research (iGCORE), Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan.
| | - Kazuma Sakamoto
- Departments of Biochemistry, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan; Institute for Glyco-core Research (iGCORE), Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan.
| |
Collapse
|