1
|
Machado AE, Rezer P, Mancini G, Latini A, Moreira ELG. Short-term high-fat diet alters behavior, peripheral metabolism, and brain mitochondrial function in Swiss mice. AN ACAD BRAS CIENC 2024; 96:e20240880. [PMID: 39661818 DOI: 10.1590/0001-3765202420240880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 10/03/2024] [Indexed: 12/13/2024] Open
Abstract
Understanding the temporal dynamics of high-fat diets (HFD) effects on behavior and metabolism is crucial for comprehending their negative impact on organisms. This study investigated the short-term effects (15, 25, and 35 days) of HFD in Swiss mice. Our findings revealed distinct behavioral and metabolic changes throughout the treatment. After 15 days of HFD, mice exhibited impaired exploratory habituation and significant increases in visceral adipose mass, fasting glucose levels, and glucose intolerance. Extending the diet to 25 days intensified the metabolic effects, resulting in compromised acquisition of recognition memory, increased body mass gain, and elevated plasma total cholesterol and triglyceride levels. After 35 days of HFD, these effects were further intensified and accompanied by anxiogenic-like responses in the open field test. Additionally, we observed a positive correlation between metabolic changes and behavioral impairments alongside prefrontal cortex mitochondrial dysfunction. In conclusion, our study reveals the temporal dynamics of behavioral and metabolic changes induced by short-term HFD in Swiss mice, highlighting the relationship between metabolic dysfunction and behavioral impairments. These findings pave the way for future research to unravel the underlying mechanisms and develop strategies to counteract the detrimental effects of HFD on behavior and metabolism.
Collapse
Affiliation(s)
- Adriano Emanuel Machado
- Universidade Federal de Santa Catarina, Programa de Pós-Graduação em Neurociências, Campus Universitário, s/n, Córrego Grande, 88040-900 Florianópolis, SC, Brazil
| | - Peterson Rezer
- Universidade Federal de Santa Catarina, Programa de Pós-Graduação em Neurociências, Campus Universitário, s/n, Córrego Grande, 88040-900 Florianópolis, SC, Brazil
| | - Gianni Mancini
- Universidade Federal de Santa Catarina, Programa de Pós-Graduação em Neurociências, Campus Universitário, s/n, Córrego Grande, 88040-900 Florianópolis, SC, Brazil
| | - Alexandra Latini
- Universidade Federal de Santa Catarina, Centro de Ciências Biológicas, Departamento de Bioquímica, Laboratório de Bioenergética e Estresse Oxidativo - LABOX, Campus Universitário - Trindade, Rua da Prefeitura Universitária, s/n, Bairro Córrego Grande, 88037-000 Florianópolis, SC, Brazil
| | - Eduardo Luiz G Moreira
- Universidade Federal de Santa Catarina, Centro de Ciências Biológicas, Departamento de Ciências Fisiológicas, Campus Universitário, Rua da Prefeitura Universitária, s/n, Córrego Grande, 88037-000 Florianópolis, SC, Brazil
- Universidade Federal de Santa Catarina, Programa de Pós-Graduação em Neurociências, Campus Universitário, s/n, Córrego Grande, 88040-900 Florianópolis, SC, Brazil
| |
Collapse
|
2
|
Araujo APB, Vargas G, Hayashide LDS, Matias I, Andrade CBV, de Carvalho JJ, Gomes FCA, Diniz LP. Aging promotes an increase in mitochondrial fragmentation in astrocytes. Front Cell Neurosci 2024; 18:1496163. [PMID: 39703460 PMCID: PMC11655212 DOI: 10.3389/fncel.2024.1496163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 11/05/2024] [Indexed: 12/21/2024] Open
Abstract
Introduction Brain aging involves a complex interplay of cellular and molecular changes, including metabolic alterations and the accumulation of senescent cells. These changes frequently manifest as dysregulation in glucose metabolism and mitochondrial function, leading to reduced energy production, increased oxidative stress, and mitochondrial dysfunction-key contributors to age-related neurodegenerative diseases. Methods We conducted experiments on two models: young (3-4 months) and aged (over 18 months) mice, as well as cultures of senescent and control mouse astrocytes. Mitochondrial content and biogenesis were analyzed in astrocytes and neurons from aged and young animals. Cultured senescent astrocytes were examined for mitochondrial membrane potential and fragmentation. Quantitative PCR (qPCR) and immunocytochemistry were used to measure fusion- and fission-related protein levels. Additionally, transmission electron microscopy provided morphological data on mitochondria. Results Astrocytes and neurons from aged animals showed a significant reduction in mitochondrial content and a decrease in mitochondrial biogenesis. Senescent astrocytes in culture exhibited lower mitochondrial membrane potential and increased mitochondrial fragmentation. qPCR and immunocytochemistry analyses revealed a 68% increase in fusion-related proteins (mitofusin 1 and 2) and a 10-fold rise in DRP1, a key regulator of mitochondrial fission. Transmission electron microscopy showed reduced perimeter, area, and length-to-diameter ratio of mitochondria in astrocytes from aged mice, supported by elevated DRP1 phosphorylation in astrocytes of the cerebral cortex. Discussion Our findings provide novel evidence of increased mitochondrial fragmentation in astrocytes from aged animals. This study sheds light on mechanisms of astrocytic metabolic dysfunction and mitochondrial dysregulation in brain aging, highlighting mitochondrial fragmentation as a potential target for therapeutic interventions in age-related neurodegenerative diseases.
Collapse
Affiliation(s)
- Ana Paula Bergamo Araujo
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Gabriele Vargas
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Lívia de Sá Hayashide
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Isadora Matias
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Cherley Borba Vieira Andrade
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Departamento de Histologia e Embriologia, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Jorge José de Carvalho
- Departamento de Histologia e Embriologia, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Luan Pereira Diniz
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
3
|
Cui Y, Bai M, Gao S, Zhao H, Mei X. Zinc Ions Facilitate Metabolic Bioenergetic Recovery Post Spinal Cord Injury by Activating Microglial Mitophagy through the STAT3-FOXO3a-SOD2 Pathway. Free Radic Biol Med 2024:S0891-5849(24)01079-7. [PMID: 39613048 DOI: 10.1016/j.freeradbiomed.2024.11.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/21/2024] [Accepted: 11/24/2024] [Indexed: 12/01/2024]
Abstract
Spinal cord injury (SCI) is a devastating condition of the central nervous system (CNS) with high global rates of disability and mortality, and no effective cure currently available. Microglia play a critical role in the progression of SCI, and enhancing their metabolic function may facilitate tissue repair and recovery. Mitochondrial dysfunction is a key feature of metabolic impairment, with the regulation of autophagy being essential for maintaining mitochondrial homeostasis and cell survival. The transcription factor Forkhead box O3a (FOXO3a) is integral to cellular metabolism, mitochondrial dysfunction, and oxidative stress responses, yet its role in post-SCI microglial metabolism remains underexplored. In this study, single-cell RNA sequencing reveals the crucial involvement of the FOXO signaling pathway in zinc ion-mediated enhancement of microglial metabolism. Mechanistically, oxidative stress-induced reactive oxygen species (ROS) accumulation exacerbates metabolic dysfunction by promoting excessive mitochondrial fission and impairing mitophagy. Importantly, zinc ions induce the nuclear translocation of FOXO3a, leading to its activation as a transcription factor. This activation enhances mitochondrial autophagy and fusion processes, thereby restoring microglial metabolic capacity. Our findings suggest that the zinc ion regulation of the STAT3-FOXO3a-SOD2 axis is pivotal in modulating mitochondrial gene expression, which governs microglial energy homeostasis and improves the spinal cord microenvironment, potentially enhancing neuronal survival. These insights highlight a promising therapeutic target for SCI.
Collapse
Affiliation(s)
- Yang Cui
- Third Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning Province, 121000, China
| | - Mingyu Bai
- Third Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning Province, 121000, China
| | - Shuang Gao
- Liaoning Provincial Key Laboratory of Medical Tissue Engineering, Jinzhou, Liaoning Province, 121000, China
| | - Haosen Zhao
- Third Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning Province, 121000, China; Liaoning Provincial Key Laboratory of Medical Tissue Engineering, Jinzhou, Liaoning Province, 121000, China; Liaoning Provincial Clinical Research Center for Bone Tissue Engineering, Jinzhou, Liaoning Province, 121000, China; Liaoning Provincial Collaborative Innovation Center of Medical Testing and Drug Development, Jinzhou, Liaoning Province, 121000, China.
| | - Xifan Mei
- Third Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning Province, 121000, China; Liaoning Provincial Key Laboratory of Medical Tissue Engineering, Jinzhou, Liaoning Province, 121000, China; Liaoning Provincial Clinical Research Center for Bone Tissue Engineering, Jinzhou, Liaoning Province, 121000, China; Liaoning Provincial Collaborative Innovation Center of Medical Testing and Drug Development, Jinzhou, Liaoning Province, 121000, China.
| |
Collapse
|
4
|
Versini R, Baaden M, Cavellini L, Cohen MM, Taly A, Fuchs PFJ. Lys716 in the transmembrane domain of yeast mitofusin Fzo1 modulates anchoring and fusion. Structure 2024; 32:1997-2012.e7. [PMID: 39299234 DOI: 10.1016/j.str.2024.08.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 05/06/2024] [Accepted: 08/23/2024] [Indexed: 09/22/2024]
Abstract
Outer mitochondrial membrane fusion, a vital cellular process, is mediated by mitofusins. However, the underlying molecular mechanism remains elusive. We have performed extensive multiscale molecular dynamics simulations to predict a model of the transmembrane (TM) domain of the yeast mitofusin Fzo1. Coarse-grained simulations of the two TM domain helices, TM1 and TM2, reveal a stable interface, which is controlled by the charge status of residue Lys716. Atomistic replica-exchange simulations further tune our model, which is confirmed by a remarkable agreement with an independent AlphaFold2 (AF2) prediction of Fzo1 in complex with its fusion partner Ugo1. Furthermore, the presence of the TM domain destabilizes the membrane, even more if Lys716 is charged, which can be an asset for initiating fusion. The functional role of Lys716 was confirmed with yeast experiments, which show that mutating Lys716 to a hydrophobic residue prevents mitochondrial fusion.
Collapse
Affiliation(s)
- Raphaëlle Versini
- Laboratoire de Biochimie Théorique, CNRS, Université Paris Cité, 75005 Paris, France; Laboratoire des Biomolécules, LBM, Sorbonne Université, École normale supérieure, PSL University, CNRS, 75005 Paris, France
| | - Marc Baaden
- Laboratoire de Biochimie Théorique, CNRS, Université Paris Cité, 75005 Paris, France
| | - Laetitia Cavellini
- Laboratoire de Biologie Cellulaire et Moléculaire des Eucaryotes, Institut de Biologie Physico-Chimique, UMR 8226, CNRS, Sorbonne Université, Paris, France
| | - Mickaël M Cohen
- Laboratoire de Biologie Cellulaire et Moléculaire des Eucaryotes, Institut de Biologie Physico-Chimique, UMR 8226, CNRS, Sorbonne Université, Paris, France
| | - Antoine Taly
- Laboratoire de Biochimie Théorique, CNRS, Université Paris Cité, 75005 Paris, France.
| | - Patrick F J Fuchs
- Laboratoire des Biomolécules, LBM, Sorbonne Université, École normale supérieure, PSL University, CNRS, 75005 Paris, France; Université Paris Cité, 75006 Paris, France.
| |
Collapse
|
5
|
Park SY, Kim KY, Gwak DS, Shin SY, Jun DY, Kim YH. L-Cysteine mitigates ROS-induced apoptosis and neurocognitive deficits by protecting against endoplasmic reticulum stress and mitochondrial dysfunction in mouse neuronal cells. Biomed Pharmacother 2024; 180:117538. [PMID: 39393330 DOI: 10.1016/j.biopha.2024.117538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/30/2024] [Accepted: 10/04/2024] [Indexed: 10/13/2024] Open
Abstract
Oxidative stress and mitochondrial dysfunction play critical roles in neurodegenerative diseases. Glutathione (GSH), a key brain antioxidant, helps to neutralize reactive oxygen species (ROS) and maintain redox balance. We investigated the effectiveness of L-cysteine (L-Cys) in preventing apoptosis induced by the ROS generator 2,3-dimethoxy-1,4-naphthoquinone (DMNQ) in mouse hippocampal neuronal HT22 cells, as well as alleviating memory and cognitive impairments caused by the GSH synthesis inhibitor L-buthionine sulfoximine (BSO) in mice. DMNQ-induced apoptotic events in HT22 cells, including elevated cytosolic and mitochondrial ROS levels, DNA fragmentation, endoplasmic reticulum stress, and mitochondrial damage-mediated apoptotic pathways were dose-dependently abrogated by L-Cys (0.5-2 mM). The reduced intracellular GSH level, caused by DMNQ treatment, was restored by L-Cys cotreatment. Although L-Cys did not significantly restore GSH in the presence of BSO, it prevented DMNQ-induced ROS elevation, mitochondrial damage, and apoptosis. Furthermore, compared to N-acetylcysteine and GSH, L-Cys had higher 2,2-diphenyl-1-picrylhydrazyl and 2,2-azino-bis-3-ethylbenzothiazoline-6-sulphonic acid radical-scavenging activity. L-Cys also restored mitochondrial respiration capacity in DMNQ-treated HT22 cells by reversing mitochondrial fission-fusion dynamic balance. BSO administration (500 mg/kg/day) in mice led to neuronal deficits, including memory and cognitive impairments, which were effectively mitigated by oral L-Cys (15 or 30 mg/kg/day). L-Cys also reduced BSO-induced ROS levels in the mice hippocampus and cortex. These findings suggest that even though it does not contribute to intracellular GSH synthesis, exogenous L-Cys protects neuronal cells against oxidative stress-induced mitochondrial damage and apoptosis, by acting as a ROS scavenger, which is beneficial in ameliorating neurocognitive deficits caused by oxidative stress.
Collapse
Affiliation(s)
- Shin Young Park
- Laboratory of Immunobiology, School of Life Science, College of Natural Sciences, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea; AT-31 BIO Inc., Business Incubation Center, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea
| | - Ki Yun Kim
- Laboratory of Immunobiology, School of Life Science, College of Natural Sciences, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea; AT-31 BIO Inc., Business Incubation Center, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea
| | - Dong Seol Gwak
- Laboratory of Immunobiology, School of Life Science, College of Natural Sciences, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea
| | - Soon Young Shin
- Department of Biological Sciences, Sanghuh College of Life Sciences, Konkuk University, Seoul 05029, Republic of Korea
| | - Do Youn Jun
- AT-31 BIO Inc., Business Incubation Center, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea
| | - Young Ho Kim
- Laboratory of Immunobiology, School of Life Science, College of Natural Sciences, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea; AT-31 BIO Inc., Business Incubation Center, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea.
| |
Collapse
|
6
|
Weigele J, Zhang L, Franco A, Cartier E, Dorn GW. Sensory-Motor Neuropathy in Mfn2 T105M Knock-in Mice and Its Reversal by a Novel Piperine-Derived Mitofusin Activator. J Pharmacol Exp Ther 2024; 391:361-374. [PMID: 39284622 PMCID: PMC11493442 DOI: 10.1124/jpet.124.002258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 08/09/2024] [Indexed: 10/20/2024] Open
Abstract
Mitochondrial dysfunction is a hallmark of many genetic neurodegenerative diseases, but therapeutic options to reverse mitochondrial dysfunction are limited. While recent studies support the possibility of improving mitochondrial fusion/fission dynamics and motility to correct mitochondrial dysfunction and resulting neurodegeneration in Charcot-Marie-Tooth disease (CMT) and other neuropathies, the clinical utility of reported compounds and relevance of preclinical models are uncertain. Here, we describe motor and sensory neuron dysfunction characteristic of clinical CMT type 2 A in a CRISPR/Casp-engineered Mfn2 Thr105Met (T105M) mutant knock-in mouse. We further demonstrate that daily oral treatment with a novel mitofusin activator derived from the natural product piperine can reverse these neurologic phenotypes. Piperine derivative 8015 promoted mitochondrial fusion and motility in Mfn2-deficient cells in a mitofusin-dependent manner and reversed mitochondrial dysfunction in cultured fibroblasts and reprogrammed motor neurons from a human CMT2A patient carrying the MFN2 T105M mutation. Like previous mitofusin activators, 8015 exhibited stereospecific functionality, but the more active stereoisomer, 8015-P2, is unique in that it has subnanomolar potency and undergoes entero-hepatic recirculation which extends its in vivo half-life. Daily administration of 8015-P2 to Mfn2 T105M knock-in mice for 6 weeks normalized neuromuscular and sensory dysfunction and corrected histological/ultrastructural neurodegeneration and neurogenic myoatrophy. These studies describe a more clinically relevant mouse model of CMT2A and an improved mitofusin activator derived from piperine. We posit that 8015-P2 and other piperine derivatives may benefit CMT2A or other neurodegenerative conditions wherein mitochondrial dysdynamism plays a contributory role. SIGNIFICANCE STATEMENT: Mitochondrial dysfunction is widespread and broadly contributory in neurodegeneration, but difficult to target therapeutically. Here, we describe 8015-P2, a new small molecule mitofusin activator with ∼10-fold greater potency and improved in vivo pharmacokinetics versus comparators, and demonstrate its rapid reversal of sensory and motor neuron dysfunction in an Mfn2 T105M knock-in mouse model of Charcot-Marie-Tooth disease type 2 A. These findings further support the therapeutic approach of targeting mitochondrial dysdynamism in neurodegeneration.
Collapse
Affiliation(s)
- Jochen Weigele
- Department of Internal Medicine (Pharmacogenomics), Washington University School of Medicine (J.W., L.Z., A.F., E.C., G.W.D.) and Mitochondria in Motion, Inc. (J.W., L.Z.), St. Louis Missouri
| | - Lihong Zhang
- Department of Internal Medicine (Pharmacogenomics), Washington University School of Medicine (J.W., L.Z., A.F., E.C., G.W.D.) and Mitochondria in Motion, Inc. (J.W., L.Z.), St. Louis Missouri
| | - Antonietta Franco
- Department of Internal Medicine (Pharmacogenomics), Washington University School of Medicine (J.W., L.Z., A.F., E.C., G.W.D.) and Mitochondria in Motion, Inc. (J.W., L.Z.), St. Louis Missouri
| | - Etienne Cartier
- Department of Internal Medicine (Pharmacogenomics), Washington University School of Medicine (J.W., L.Z., A.F., E.C., G.W.D.) and Mitochondria in Motion, Inc. (J.W., L.Z.), St. Louis Missouri
| | - Gerald W Dorn
- Department of Internal Medicine (Pharmacogenomics), Washington University School of Medicine (J.W., L.Z., A.F., E.C., G.W.D.) and Mitochondria in Motion, Inc. (J.W., L.Z.), St. Louis Missouri
| |
Collapse
|
7
|
de Oliveira AP, Navarro CDC, Dias PRF, Arguello T, Walker BR, Bacman SR, Sousa LM, Castilho RF, Consonni SR, Moraes CT, Kobarg J. NEK10 kinase ablation affects mitochondrial morphology, function and protein phosphorylation status. Proteome Sci 2024; 22:8. [PMID: 39379991 PMCID: PMC11460017 DOI: 10.1186/s12953-024-00234-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 10/01/2024] [Indexed: 10/10/2024] Open
Abstract
BACKGROUND NEK10, a serine/threonine/tyrosine kinase belonging to the NEK (NIMA-related kinases) family, has been associated with diverse cellular processes. However, no specific target pathways have been identified. Our previous work knocking down NEK10 in HeLa cells suggested a functional association with mitochondria, as we observed altered mitochondrial morphology, mitochondrial oxygen consumption, mtDNA integrity, and reactive oxygen species levels. METHODS To better understand this association, we studied human HAP1 cells fully knockout for NEK10 and confirmed that NEK10 has an important role in mitochondrial homeostasis. We performed the study of mitochondrial respiration, mitochondrial morphology, mitochondrial mass, and mtDNA analysis. Additionally, we showed proteome and phosphoproteome data of crude mitochondrial fraction of Parental and NEK10 KO cells using liquid chromatography-mass spectrometry (LC-MS/MS). RESULTS In the absence of NEK10 several mitochondrial functions were disturbed. Moreover, proteome and phosphoproteome analyses of mitochondrial fractions showed that NEK10 alters the threonine phosphorylation status of several mitochondrial/endoplasmic reticulum components, including HSP60, NDUFB4, and TOM20. These changes impacted the steady-state levels of a larger group of proteins, preferentially involving respiratory complexes and autophagy pathways. CONCLUSION We concluded that NEK10 plays a key role in mitochondrial function, possibly by modulating the phosphorylation status of mitochondrial proteins.
Collapse
Affiliation(s)
- Andressa Peres de Oliveira
- Faculdade de Ciências Farmacêuticas, Universidade Estadual de Campinas, Rua Cândido Portinari, 200 Cidade Universitária Zeferino Vaz, Campinas, SP, CEP 13083-871, Brazil
- Department of Neurology, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Claudia D C Navarro
- Departamento de Patologia, Faculdade de Ciências Médicas, Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - Pedro Rafael F Dias
- Faculdade de Ciências Farmacêuticas, Universidade Estadual de Campinas, Rua Cândido Portinari, 200 Cidade Universitária Zeferino Vaz, Campinas, SP, CEP 13083-871, Brazil
| | - Tania Arguello
- Department of Neurology, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Brittni R Walker
- Department of Neurology, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Sandra R Bacman
- Department of Neurology, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Lizandra Maia Sousa
- Departamento de Bioquímica E Biologia Tecidual, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - Roger F Castilho
- Departamento de Patologia, Faculdade de Ciências Médicas, Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - Sílvio R Consonni
- Departamento de Bioquímica E Biologia Tecidual, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - Carlos T Moraes
- Department of Neurology, Miller School of Medicine, University of Miami, Miami, FL, USA.
| | - Jörg Kobarg
- Faculdade de Ciências Farmacêuticas, Universidade Estadual de Campinas, Rua Cândido Portinari, 200 Cidade Universitária Zeferino Vaz, Campinas, SP, CEP 13083-871, Brazil.
| |
Collapse
|
8
|
Su X, Li Q, Yang M, Zhang W, Liu X, Ba Y, Deng Q, Zhang Y, Han L, Huang H. Resveratrol protects against a high-fat diet-induced neuroinflammation by suppressing mitochondrial fission via targeting SIRT1/PGC-1α. Exp Neurol 2024; 380:114899. [PMID: 39059737 DOI: 10.1016/j.expneurol.2024.114899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 06/27/2024] [Accepted: 07/23/2024] [Indexed: 07/28/2024]
Abstract
Various health issues have emerged due to consuming high-fat diets (HFD), particularly the detrimental impact they have on mitochondrial dynamics and subsequet cognition functions. Specially, mitochondrial fission can serve as an upstream signal in the regulation of cortical inflammation and neural pyroptosis. Our study was designed to verify the existence of neuroinflammation in the pathogenesis of HFD-induced cognitive dysfunction and demonstrated that resveratrol (RSV) attenuated neural deficits via regulation of cortical mitochondrial fission. A total of 50 male Sprague Dawley rats were randomly divided into five groups: control (Cont, 26 weeks on normal rodent diet); high-fat diet (HFD); dietary adjustments (HFD + ND); resveratrol intervention (HFD + R); joint intervention (HFD + ND + R) for 26 weeks. The spatial learning and memory function, spine density, NLRP3 inflammasome associated protein, mRNA and protein expression involved in mitochondrial dynamics and SIRT1/PGC-1α signaling pathway in brain were measured. Furthermore, reactive oxygen species (ROS) accumulation and resultant mitochondrial membrane potential (MMP) alteration in PC12 cells exposed to palmitic acid (PA) or Drp1 inhibitor (Mdivi-1) were detected to reflect mitochondrial function. The findings suggested that prolonged treatment of RSV improved cognitive deficits and neuronal damage induced by HFD, potentially attributed to activation of the SIRT1/PGC-1α axis. We further indicated that the activation of the NLRP3 inflammasome in PA (200 μM) treated PC12 cells could be inhibited by Mdivi-1. More importantly, Mdivi-1 (10 μM) reduced intracellular ROS levels and enhanced MMP by reversing Drp1-mediated aberrant mitochondrial fission. To summarize, those results clearly indicated that a HFD inhibited the SIRT1/PGC-1α pathway, which contributed to an imbalance in mitochondrial dynamics and the onset of NLRP3-mediated pyroptosis. This effect was mitigated by the RSV possibly through triggering the SIRT1/PGC-1α axis, prevented aberrant mitochondrial fission and thus inhibited the activation of the NLRP3 inflammatory pathway.
Collapse
Affiliation(s)
- Xiao Su
- Department of Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, Henan province 450001, China; Environment and Health Innovation Team, College of Public Health, Zhengzhou University, Zhengzhou, Henan province 450001, China
| | - Qiong Li
- Department of Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, Henan province 450001, China; Environment and Health Innovation Team, College of Public Health, Zhengzhou University, Zhengzhou, Henan province 450001, China
| | - Mingzhi Yang
- Department of Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, Henan province 450001, China; Environment and Health Innovation Team, College of Public Health, Zhengzhou University, Zhengzhou, Henan province 450001, China
| | - Wenhui Zhang
- Department of Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, Henan province 450001, China; Environment and Health Innovation Team, College of Public Health, Zhengzhou University, Zhengzhou, Henan province 450001, China
| | - Xiaoxue Liu
- Department of Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, Henan province 450001, China; Environment and Health Innovation Team, College of Public Health, Zhengzhou University, Zhengzhou, Henan province 450001, China
| | - Yue Ba
- Department of Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, Henan province 450001, China; Environment and Health Innovation Team, College of Public Health, Zhengzhou University, Zhengzhou, Henan province 450001, China
| | - Qihong Deng
- Department of Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, Henan province 450001, China
| | - Yu Zhang
- State Key Laboratory of Microbial Technology, Qingdao, Shandong 266000, China; Institute of Marine Science and Technology, Shandong University, Qingdao, Shandong 266000, China; Shandong Engineering Research Center of Biomarker and Artificial Intelligence Application, Jinan, Shandong 250100, China
| | - Lin Han
- Institute of Marine Science and Technology, Shandong University, Qingdao, Shandong 266000, China; Shandong Engineering Research Center of Biomarker and Artificial Intelligence Application, Jinan, Shandong 250100, China
| | - Hui Huang
- Department of Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, Henan province 450001, China; Environment and Health Innovation Team, College of Public Health, Zhengzhou University, Zhengzhou, Henan province 450001, China.
| |
Collapse
|
9
|
Traa A, Keil A, AlOkda A, Jacob‐Tomas S, Tamez González AA, Zhu S, Rudich Z, Van Raamsdonk JM. Overexpression of mitochondrial fission or mitochondrial fusion genes enhances resilience and extends longevity. Aging Cell 2024; 23:e14262. [PMID: 38953684 PMCID: PMC11464124 DOI: 10.1111/acel.14262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 06/05/2024] [Accepted: 06/17/2024] [Indexed: 07/04/2024] Open
Abstract
The dynamicity of the mitochondrial network is crucial for meeting the ever-changing metabolic and energy needs of the cell. Mitochondrial fission promotes the degradation and distribution of mitochondria, while mitochondrial fusion maintains mitochondrial function through the complementation of mitochondrial components. Previously, we have reported that mitochondrial networks are tubular, interconnected, and well-organized in young, healthy C. elegans, but become fragmented and disorganized with advancing age and in models of age-associated neurodegenerative disease. In this work, we examine the effects of increasing mitochondrial fission or mitochondrial fusion capacity by ubiquitously overexpressing the mitochondrial fission gene drp-1 or the mitochondrial fusion genes fzo-1 and eat-3, individually or in combination. We then measured mitochondrial function, mitochondrial network morphology, physiologic rates, stress resistance, and lifespan. Surprisingly, we found that overexpression of either mitochondrial fission or fusion machinery both resulted in an increase in mitochondrial fragmentation. Similarly, both mitochondrial fission and mitochondrial fusion overexpression strains have extended lifespans and increased stress resistance, which in the case of the mitochondrial fusion overexpression strains appears to be at least partially due to the upregulation of multiple pathways of cellular resilience in these strains. Overall, our work demonstrates that increasing the expression of mitochondrial fission or fusion genes extends lifespan and improves biological resilience without promoting the maintenance of a youthful mitochondrial network morphology. This work highlights the importance of the mitochondria for both resilience and longevity.
Collapse
Affiliation(s)
- Annika Traa
- Department of Neurology and NeurosurgeryMcGill UniversityMontrealQuebecCanada
- Metabolic Disorders and Complications ProgramResearch Institute of the McGill University Health CentreMontrealQuebecCanada
- Brain Repair and Integrative Neuroscience ProgramResearch Institute of the McGill University Health CentreMontrealQuebecCanada
| | - Allison Keil
- Department of Neurology and NeurosurgeryMcGill UniversityMontrealQuebecCanada
- Metabolic Disorders and Complications ProgramResearch Institute of the McGill University Health CentreMontrealQuebecCanada
- Brain Repair and Integrative Neuroscience ProgramResearch Institute of the McGill University Health CentreMontrealQuebecCanada
| | - Abdelrahman AlOkda
- Department of Neurology and NeurosurgeryMcGill UniversityMontrealQuebecCanada
- Metabolic Disorders and Complications ProgramResearch Institute of the McGill University Health CentreMontrealQuebecCanada
- Brain Repair and Integrative Neuroscience ProgramResearch Institute of the McGill University Health CentreMontrealQuebecCanada
| | - Suleima Jacob‐Tomas
- Department of Neurology and NeurosurgeryMcGill UniversityMontrealQuebecCanada
- Metabolic Disorders and Complications ProgramResearch Institute of the McGill University Health CentreMontrealQuebecCanada
- Brain Repair and Integrative Neuroscience ProgramResearch Institute of the McGill University Health CentreMontrealQuebecCanada
| | - Aura A. Tamez González
- Department of Neurology and NeurosurgeryMcGill UniversityMontrealQuebecCanada
- Metabolic Disorders and Complications ProgramResearch Institute of the McGill University Health CentreMontrealQuebecCanada
- Brain Repair and Integrative Neuroscience ProgramResearch Institute of the McGill University Health CentreMontrealQuebecCanada
| | - Shusen Zhu
- Department of Neurology and NeurosurgeryMcGill UniversityMontrealQuebecCanada
- Metabolic Disorders and Complications ProgramResearch Institute of the McGill University Health CentreMontrealQuebecCanada
- Brain Repair and Integrative Neuroscience ProgramResearch Institute of the McGill University Health CentreMontrealQuebecCanada
| | - Zenith Rudich
- Department of Neurology and NeurosurgeryMcGill UniversityMontrealQuebecCanada
- Metabolic Disorders and Complications ProgramResearch Institute of the McGill University Health CentreMontrealQuebecCanada
- Brain Repair and Integrative Neuroscience ProgramResearch Institute of the McGill University Health CentreMontrealQuebecCanada
| | - Jeremy M. Van Raamsdonk
- Department of Neurology and NeurosurgeryMcGill UniversityMontrealQuebecCanada
- Metabolic Disorders and Complications ProgramResearch Institute of the McGill University Health CentreMontrealQuebecCanada
- Brain Repair and Integrative Neuroscience ProgramResearch Institute of the McGill University Health CentreMontrealQuebecCanada
- Division of Experimental Medicine, Department of MedicineMcGill UniversityMontrealQuebecCanada
| |
Collapse
|
10
|
Zaninello M, Baptista P, Duarte FV. Mitochondrial Dynamics and mRNA Translation: A Local Synaptic Tale. BIOLOGY 2024; 13:746. [PMID: 39336173 PMCID: PMC11428642 DOI: 10.3390/biology13090746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/17/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024]
Abstract
Mitochondria are dynamic organelles that can adjust and respond to different stimuli within a cell. This plastic ability allows them to effectively coordinate several cellular functions in cells and becomes particularly relevant in highly complex cells such as neurons. An imbalance in mitochondrial dynamics can disrupt mitochondrial function, leading to abnormal cellular function and ultimately to a range of diseases, including neurodegenerative disorders. Regulation of mRNA transport and local translation inside neurons is crucial for maintaining the proteome of distal mitochondria, which is vital for energy production and synaptic function. A significant portion of the axonal transcriptome is dedicated to mRNAs for mitochondrial proteins, emphasizing the importance of local translation in sustaining mitochondrial function in areas far from the cell body. In neurons, local translation and the regulation of mRNAs encoding mitochondrial-shaping proteins could be essential for synaptic plasticity and neuronal health. The dynamics of these mRNAs, including their transport and local translation, may influence the morphology and function of mitochondria, thereby affecting the overall energy status and responsiveness of synapses. Comprehending the mitochondria-related mRNA regulation and local translation, as well as its influence on mitochondrial morphology near the synapses will help to better understand neuronal physiology and neurological diseases where mitochondrial dysfunction and impaired synaptic plasticity play a central role.
Collapse
Affiliation(s)
- Marta Zaninello
- Institute for Genetics, University of Cologne, 50931 Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), 50931 Cologne, Germany
| | - Pedro Baptista
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
- Department of Life Sciences, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Filipe V Duarte
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
- Department of Life Sciences, University of Coimbra, 3004-504 Coimbra, Portugal
| |
Collapse
|
11
|
Farias HR, Ramos JMO, Griesang CT, Santos L, Junior OVR, Souza DG, Ferreira FS, Somacal S, Martins LAM, de Souza DOG, Moreira JCF, Wyse ATS, Guma FTCR, de Oliveira J. LDL Exposure Disrupts Mitochondrial Function and Dynamics in a Hippocampal Neuronal Cell Line. Mol Neurobiol 2024:10.1007/s12035-024-04476-y. [PMID: 39302616 DOI: 10.1007/s12035-024-04476-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 08/30/2024] [Indexed: 09/22/2024]
Abstract
Hypercholesterolemia has been associated with cognitive dysfunction and neurodegenerative diseases. Moreover, this metabolic condition disrupts the blood-brain barrier, allowing low-density lipoprotein (LDL) to enter the central nervous system. Thus, we investigated the effects of LDL exposure on mitochondrial function in a mouse hippocampal neuronal cell line (HT-22). HT-22 cells were exposed to human LDL (50 and 300 μg/mL) for 24 h. After this, intracellular lipid droplet (LD) content, cell viability, cell death, and mitochondrial parameters were assessed. We found that the higher LDL concentration increases LD content compared with control. Both concentrations increased the number of Annexin V-positive cells, indicating apoptosis. Moreover, in mitochondrial parameters, the LDL exposure on hippocampal neuronal cell line leads to a decrease in mitochondrial complexes I and II activities in both concentrations tested and a reduction in Mitotracker™ Red fluorescence and Mitotracker™ Red and Mitotracker™ Green ratio in the higher concentration, indicating mitochondrial impairment. The LDL incubation induces mitochondrial superoxide production and decreases superoxide dismutase activity in the lower concentration in HT-22 cells. Finally, LDL exposure increases the expression of genes associated with mitochondrial fusion (OPA1 and mitofusin 2) in the lower concentration. In conclusion, our findings suggest that LDL exposure induces mitochondrial dysfunction and modulates mitochondrial dynamics in the hippocampal neuronal cells.
Collapse
Affiliation(s)
- Hémelin Resende Farias
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande Do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Jessica Marques Obelar Ramos
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande Do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Caroline Tainá Griesang
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande Do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Lucas Santos
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande Do Sul (UFRGS), Porto Alegre, RS, Brazil
- Programa de Pós-Graduação em Biologia Celular e Molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Osmar Vieira Ramires Junior
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande Do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Debora Guerini Souza
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande Do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Fernanda Silva Ferreira
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande Do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Sabrina Somacal
- Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Leo Anderson Meira Martins
- Programa de Pós-Graduação em Fisiologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Diogo Onofre Gomes de Souza
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande Do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - José Cláudio Fonseca Moreira
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande Do Sul (UFRGS), Porto Alegre, RS, Brazil
- Programa de Pós-Graduação em Biologia Celular e Molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Angela T S Wyse
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande Do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Fátima Theresinha Costa Rodrigues Guma
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande Do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Jade de Oliveira
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande Do Sul (UFRGS), Porto Alegre, RS, Brazil.
| |
Collapse
|
12
|
Gujarati NA, Frimpong BO, Zaidi M, Bronstein R, Revelo MP, Haley JD, Kravets I, Guo Y, Mallipattu SK. Podocyte-specific KLF6 primes proximal tubule CaMK1D signaling to attenuate diabetic kidney disease. Nat Commun 2024; 15:8038. [PMID: 39271683 PMCID: PMC11399446 DOI: 10.1038/s41467-024-52306-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 09/02/2024] [Indexed: 09/15/2024] Open
Abstract
Diabetic kidney disease (DKD) is the main cause of chronic kidney disease worldwide. While injury to the podocytes, visceral epithelial cells that comprise the glomerular filtration barrier, drives albuminuria, proximal tubule (PT) dysfunction is the critical mediator of DKD progression. Here, we report that the podocyte-specific induction of human KLF6, a zinc-finger binding transcription factor, attenuates podocyte loss, PT dysfunction, and eventual interstitial fibrosis in a male murine model of DKD. Utilizing combination of snRNA-seq, snATAC-seq, and tandem mass spectrometry, we demonstrate that podocyte-specific KLF6 triggers the release of secretory ApoJ to activate calcium/calmodulin dependent protein kinase 1D (CaMK1D) signaling in neighboring PT cells. CaMK1D is enriched in the first segment of the PT, proximal to the podocytes, and is critical to attenuating mitochondrial fission and restoring mitochondrial function under diabetic conditions. Targeting podocyte-PT signaling by enhancing ApoJ-CaMK1D might be a key therapeutic strategy in attenuating the progression of DKD.
Collapse
Affiliation(s)
- Nehaben A Gujarati
- Division of Nephrology and Hypertension, Department of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Bismark O Frimpong
- Division of Nephrology and Hypertension, Department of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Malaika Zaidi
- Division of Nephrology and Hypertension, Department of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Robert Bronstein
- Division of Nephrology and Hypertension, Department of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Monica P Revelo
- Department of Pathology, University of Utah, Salt Lake City, UT, USA
| | - John D Haley
- Department of Pharmacology, Stony Brook University, Stony Brook, NY, USA
| | - Igor Kravets
- Division of Endocrinology, Department of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Yiqing Guo
- Division of Nephrology and Hypertension, Department of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Sandeep K Mallipattu
- Division of Nephrology and Hypertension, Department of Medicine, Stony Brook University, Stony Brook, NY, USA.
- Renal Section, Northport VA Medical Center, Northport, NY, USA.
| |
Collapse
|
13
|
Song JY, Jia Y, Han H, Yang XH, Zhang J, Zhang Q, Wang SS, Wang CY, Chen L, Zhang M. Increased expression of SLC25A18 is associated with Alzheimer's disease and is involved in Aβ42-induced mitochondrial dysfunction and apoptosis in neuronal cells. Mitochondrion 2024; 78:101918. [PMID: 38871013 DOI: 10.1016/j.mito.2024.101918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 06/03/2024] [Accepted: 06/11/2024] [Indexed: 06/15/2024]
Abstract
Alzheimer's disease (AD) is currently one of the most serious public health concerns in the world. However, the best approach to treat AD has yet to be discovered, implying that we must continue to work hard to find new AD target genes. In this study, we further analysed Gene Expression Omnibus (GEO) data and discovered that the expression of the Mitochondria glutamate carrier SLC25A18 is associated with AD by screening the differentially expressed genes in different regions of the brains of Alzheimer's disease patients. To verify the expression of SLC25A18 during Alzheimer's disease development, we analysed animal models (5×FAD transgenic AD animal model, chemically induced AD animal model, natural ageing animal model), and the results showed that the expression of SLC25A18 was increased in animal models of AD. Further investigation of the different regions found that SLC25A18 expression was elevated in the EC, TeA, and CA3, and expressed in neurons. Next, We found that Aβ42 treatment elevated SLC25A18 expression in Neuro 2A cells. Reducing SLC25A18 expression attenuated mitochondrial dysfunction and neuronal apoptosis caused by Aβ42. Overexpression of SLC25A18 increased ATP and intracellular superoxide anions but decreased mitochondrial membrane potential. The results indicate that SLC25A18 affects mitochondrial function and neuronal apoptosis, and is related to AD, which makes it a potential target for treating brain dysfunction.
Collapse
Affiliation(s)
- Jia-Yi Song
- Department of Pharmacology, Basic College of Medicine, Jilin University, Changchun, Jilin Province, China; Department of General Practice, The First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Yong Jia
- School of nursing, Jilin University, Changchun, Jilin Province, China
| | - Hao Han
- Department of Pharmacology, Basic College of Medicine, Jilin University, Changchun, Jilin Province, China
| | - Xue-Han Yang
- Department of Pharmacology, Basic College of Medicine, Jilin University, Changchun, Jilin Province, China
| | - Jing Zhang
- Department of Pharmacology, Basic College of Medicine, Jilin University, Changchun, Jilin Province, China
| | - Qiang Zhang
- Department of Pharmacology, Basic College of Medicine, Jilin University, Changchun, Jilin Province, China
| | - Su-Shan Wang
- Department of Pharmacology, Basic College of Medicine, Jilin University, Changchun, Jilin Province, China
| | - Chun-Yan Wang
- Department of General Practice, The First Hospital of Jilin University, Changchun, Jilin Province, China.
| | - Li Chen
- Department of Pharmacology, Basic College of Medicine, Jilin University, Changchun, Jilin Province, China.
| | - Ming Zhang
- Department of Pharmacology, Basic College of Medicine, Jilin University, Changchun, Jilin Province, China.
| |
Collapse
|
14
|
Jones EJ, Skinner BM, Parker A, Baldwin LR, Greenman J, Carding SR, Funnell SGP. An in vitro multi-organ microphysiological system (MPS) to investigate the gut-to-brain translocation of neurotoxins. BIOMICROFLUIDICS 2024; 18:054105. [PMID: 39280192 PMCID: PMC11401645 DOI: 10.1063/5.0200459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 08/19/2024] [Indexed: 09/18/2024]
Abstract
The death of dopamine-producing neurons in the substantia nigra in the base of the brain is a defining pathological feature in the development of Parkinson's disease (PD). PD is, however, a multi-systemic disease, also affecting the peripheral nervous system and gastrointestinal tract (GIT) that interact via the gut-brain axis (GBA). Our dual-flow GIT-brain microphysiological system (MPS) was modified to investigate the gut-to-brain translocation of the neurotoxin trigger of PD, 1-methyl-4-phenylpyridinium (MPP+), and its impact on key GIT and brain cells that contribute to the GBA. The modular GIT-brain MPS in combination with quantitative and morphometric image analysis methods reproduces cell specific neurotoxin-induced dopaminergic cytotoxicity and mitochondria-toxicity with the drug having no detrimental impact on the viability or integrity of cellular membranes of GIT-derived colonic epithelial cells. Our findings demonstrate the utility and capability of the GIT-brain MPS for measuring neuronal responses and its suitability for identifying compounds or molecules produced in the GIT that can exacerbate or protect against neuronal inflammation and cell death.
Collapse
Affiliation(s)
- Emily J Jones
- Food, Microbiome and Health Research Programme, Quadram Institute, Norwich, United Kingdom
| | - Benjamin M Skinner
- School of Life Sciences, University of Essex, Colchester, United Kingdom
| | - Aimee Parker
- Food, Microbiome and Health Research Programme, Quadram Institute, Norwich, United Kingdom
| | - Lydia R Baldwin
- Centre of Biomedical Sciences, Hull York Medical School, University of Hull, Hull, United Kingdom
| | - John Greenman
- Centre of Biomedical Sciences, Hull York Medical School, University of Hull, Hull, United Kingdom
| | | | | |
Collapse
|
15
|
Zerillo L, Polvere I, Stilo R, Vito P, Rinaldi M, Zotti T, Costagliola C. Diverse effects of synthetic glucocorticoid species on cell viability and stress response of neuroblastoma cells. Neuroscience 2024; 554:1-10. [PMID: 39002754 DOI: 10.1016/j.neuroscience.2024.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 06/07/2024] [Accepted: 07/07/2024] [Indexed: 07/15/2024]
Abstract
Glucocorticoids (GCs) are widely used as powerful anti-inflammatory and immunosuppressive therapeutics in multiple pathological conditions. However, compelling evidence indicates that they might promote neurodegeneration by altering mitochondrial homeostatic processes. Although the effect of dexamethasone on cell survival and homeostasis has been widely investigated, the effect of other glucocorticoids needs to be explored in more detail. In this report, we have compared the neurotoxicity induced by dexamethasone, prednisolone, betamethasone, and hydrocortisone in cultured neuroblastoma cells, through the analysis of several parameters such as cell viability, ER stress, oxidative stress, and mitochondrial fusion and fission markers. Interestingly, we have found that synthetic glucocorticoids may impact neuronal viability by affecting different cellular responses, suggesting that their therapeutic use should be consciously decided after careful consideration of benefits and detrimental effects.
Collapse
Affiliation(s)
- Lucrezia Zerillo
- Department of Science and Technology, University of Sannio, Benevento, 82100, Italy; Genus Biotech, University of Sannio, Benevento, 82100, Italy
| | | | - Romania Stilo
- Department of Science and Technology, University of Sannio, Benevento, 82100, Italy
| | - Pasquale Vito
- Department of Science and Technology, University of Sannio, Benevento, 82100, Italy; Genus Biotech, University of Sannio, Benevento, 82100, Italy
| | - Michele Rinaldi
- Department of Neurosciences and Reproductive and Odontostomatological Sciences, University of Naples "Federico II", Naples, 80131, Italy.
| | - Tiziana Zotti
- Department of Science and Technology, University of Sannio, Benevento, 82100, Italy.
| | - Ciro Costagliola
- Department of Neurosciences and Reproductive and Odontostomatological Sciences, University of Naples "Federico II", Naples, 80131, Italy
| |
Collapse
|
16
|
Ward C, Schlichtholz B. Post-Acute Sequelae and Mitochondrial Aberration in SARS-CoV-2 Infection. Int J Mol Sci 2024; 25:9050. [PMID: 39201736 PMCID: PMC11354507 DOI: 10.3390/ijms25169050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/29/2024] [Accepted: 08/16/2024] [Indexed: 09/03/2024] Open
Abstract
This review investigates links between post-acute sequelae of SARS-CoV-2 infection (PASC), post-infection viral persistence, mitochondrial involvement and aberrant innate immune response and cellular metabolism during SARS-CoV-2 infection. Advancement of proteomic and metabolomic studies now allows deeper investigation of alterations to cellular metabolism, autophagic processes and mitochondrial dysfunction caused by SARS-CoV-2 infection, while computational biology and machine learning have advanced methodologies of predicting virus-host gene and protein interactions. Particular focus is given to the interaction between viral genes and proteins with mitochondrial function and that of the innate immune system. Finally, the authors hypothesise that viral persistence may be a function of mitochondrial involvement in the sequestration of viral genetic material. While further work is necessary to understand the mechanisms definitively, a number of studies now point to the resolution of questions regarding the pathogenesis of PASC.
Collapse
Affiliation(s)
| | - Beata Schlichtholz
- Department of Biochemistry, Gdańsk University of Medicine, 80-210 Gdańsk, Poland;
| |
Collapse
|
17
|
Pasqualotto BA, Nelson A, Deheshi S, Sheldon CA, Vogl AW, Rintoul GL. Impaired mitochondrial morphological plasticity and failure of mitophagy associated with the G11778A mutation of LHON. Biochem Biophys Res Commun 2024; 721:150119. [PMID: 38768545 DOI: 10.1016/j.bbrc.2024.150119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/07/2024] [Accepted: 05/13/2024] [Indexed: 05/22/2024]
Abstract
Mitochondrial dynamics were examined in human dermal fibroblasts biopsied from a confirmed Leber's Hereditary Optic Neuropathy (LHON) patient with a homoplasmic G11778A mutation of the mitochondrial genome. Expression of the G11778A mutation did not impart any discernible difference in mitochondrial network morphology using widefield fluorescence microscopy. However, at the ultrastructural level, cells expressing this mutation exhibited an impairment of mitochondrial morphological plasticity when forced to utilize oxidative phosphorylation (OXPHOS) by transition to glucose-free, galactose-containing media. LHON fibroblasts also displayed a transient increase in mitophagy upon transition to galactose media. These results provide new insights into the consequences of the G11778A mutation of LHON and the pathological mechanisms underlying this disease.
Collapse
Affiliation(s)
- Bryce A Pasqualotto
- Centre for Cell Biology, Development, and Disease, and the Department of Biological Sciences, Simon Fraser University, Canada
| | - Alexa Nelson
- Centre for Cell Biology, Development, and Disease, and the Department of Biological Sciences, Simon Fraser University, Canada
| | - Samineh Deheshi
- Centre for Cell Biology, Development, and Disease, and the Department of Biological Sciences, Simon Fraser University, Canada
| | - Claire A Sheldon
- Department of Ophthalmology and Visual Sciences, University of British Columbia, Canada
| | - A Wayne Vogl
- Life Sciences Institute and the Department of Cellular & Physiological Sciences, University of British Columbia, Canada
| | - Gordon L Rintoul
- Centre for Cell Biology, Development, and Disease, and the Department of Biological Sciences, Simon Fraser University, Canada.
| |
Collapse
|
18
|
Fernandes S, Revanna J, Pratt J, Hayes N, Marchetto MC, Gage FH. Modeling Alzheimer's disease using human cell derived brain organoids and 3D models. Front Neurosci 2024; 18:1434945. [PMID: 39156632 PMCID: PMC11328153 DOI: 10.3389/fnins.2024.1434945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 07/10/2024] [Indexed: 08/20/2024] Open
Abstract
Age-related neurodegenerative diseases, like Alzheimer's disease (AD), are challenging diseases for those affected with no cure and limited treatment options. Functional, human derived brain tissues that represent the diverse genetic background and cellular subtypes contributing to sporadic AD (sAD) are limited. Human stem cell derived brain organoids recapitulate some features of human brain cytoarchitecture and AD-like pathology, providing a tool for illuminating the relationship between AD pathology and neural cell dysregulation leading to cognitive decline. In this review, we explore current strategies for implementing brain organoids in the study of AD as well as the challenges associated with investigating age-related brain diseases using organoid models.
Collapse
Affiliation(s)
- Sarah Fernandes
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA, United States
- Department of Biological Sciences, University of California, San Diego, La Jolla, CA, United States
| | - Jasmin Revanna
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA, United States
- Department of Biological Sciences, University of California, San Diego, La Jolla, CA, United States
| | - Joshua Pratt
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA, United States
- Department of Biology, San Diego State University, San Diego, CA, United States
| | - Nicholas Hayes
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA, United States
- Department of Biological Sciences, California State University, San Marcos, CA, United States
| | - Maria C. Marchetto
- Department of Anthropology, Center for Academic Research and Training in Anthropogeny (CARTA), University of California, San Diego, La Jolla, CA, United States
| | - Fred H. Gage
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA, United States
| |
Collapse
|
19
|
Ramazi S, Dadzadi M, Darvazi M, Seddigh N, Allahverdi A. Protein modification in neurodegenerative diseases. MedComm (Beijing) 2024; 5:e674. [PMID: 39105197 PMCID: PMC11298556 DOI: 10.1002/mco2.674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 07/02/2024] [Accepted: 07/08/2024] [Indexed: 08/07/2024] Open
Abstract
Posttranslational modifications play a crucial role in governing cellular functions and protein behavior. Researchers have implicated dysregulated posttranslational modifications in protein misfolding, which results in cytotoxicity, particularly in neurodegenerative diseases such as Alzheimer disease, Parkinson disease, and Huntington disease. These aberrant posttranslational modifications cause proteins to gather in certain parts of the brain that are linked to the development of the diseases. This leads to neuronal dysfunction and the start of neurodegenerative disease symptoms. Cognitive decline and neurological impairments commonly manifest in neurodegenerative disease patients, underscoring the urgency of comprehending the posttranslational modifications' impact on protein function for targeted therapeutic interventions. This review elucidates the critical link between neurodegenerative diseases and specific posttranslational modifications, focusing on Tau, APP, α-synuclein, Huntingtin protein, Parkin, DJ-1, and Drp1. By delineating the prominent aberrant posttranslational modifications within Alzheimer disease, Parkinson disease, and Huntington disease, the review underscores the significance of understanding the interplay among these modifications. Emphasizing 10 key abnormal posttranslational modifications, this study aims to provide a comprehensive framework for investigating neurodegenerative diseases holistically. The insights presented herein shed light on potential therapeutic avenues aimed at modulating posttranslational modifications to mitigate protein aggregation and retard neurodegenerative disease progression.
Collapse
Affiliation(s)
- Shahin Ramazi
- Department of BiophysicsFaculty of Biological SciencesTarbiat Modares UniversityTehranIran
| | - Maedeh Dadzadi
- Department of BiotechnologyFaculty of Advanced Science and TechnologyTehran Medical SciencesIslamic Azad UniversityTehranIran
| | - Mona Darvazi
- Department of BiophysicsFaculty of Biological SciencesTarbiat Modares UniversityTehranIran
| | - Nasrin Seddigh
- Department of BiochemistryFaculty of Advanced Science and TechnologyTehran Medical SciencesIslamic Azad UniversityTehranIran
| | - Abdollah Allahverdi
- Department of BiophysicsFaculty of Biological SciencesTarbiat Modares UniversityTehranIran
| |
Collapse
|
20
|
Xu Z, Li J, Su B, Gao H, Ren M, Lin Y, Shen H. A role of ROS-dependent defects in mitochondrial dynamic and autophagy in carbon black nanoparticle-mediated myocardial cell damage. Free Radic Biol Med 2024; 220:249-261. [PMID: 38697491 DOI: 10.1016/j.freeradbiomed.2024.04.241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/04/2024] [Accepted: 04/29/2024] [Indexed: 05/05/2024]
Abstract
Carbon black nanoparticles (CBNPs) are widely distributed in the environment and are increasingly recognized as a contributor in the development of cardiovascular disease. A variety of cardiac injuries and diseases result from structural and functional damage to cardiomyocytes. This study explored the mechanisms of CBNPs-mediated myocardial toxicity. CBNPs were given to mice through intra-tracheal instillation and it was demonstrated that the particles can be taken up into the cardiac tissue. Exposure to CBNPs induced cardiomyocyte inflammation and apoptosis. In combination with in vitro experiments, we showed that CBNPs increased the ROS and induced mitochondria fragmentation. Functionally, CBNPs-exposed cardiomyocyte exhibited depolarization of the mitochondrial membrane potential, release of cytochrome c, and activation of pro-apoptotic BAX, thereby initiating programmed cell death. On the other hand, CBNPs impaired autophagy, leading to the inadequate removal of dysfunctional mitochondria. The excess accumulation of damaged mitochondria further stimulated NF-κB activation and triggered the NLRP3 inflammasome pathway. Both the antioxidant N-acetylcysteine and the autophagy activator rapamycin were effective to attenuate the damage of CBNPs on cardiomyocytes. Taken together, this study elucidated the potential mechanism underlying CBNPs-induced myocardial injury and provided a scientific reference for the evaluation and prevention of the CBNPs-related heart risk.
Collapse
Affiliation(s)
- Zehua Xu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory & State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, 361102, PR China.
| | - Jing Li
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory & State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, 361102, PR China.
| | - Bowen Su
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory & State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, 361102, PR China
| | - Hongying Gao
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory & State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, 361102, PR China
| | - Miaomiao Ren
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory & State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, 361102, PR China
| | - Yi Lin
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory & State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, 361102, PR China.
| | - Heqing Shen
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory & State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, 361102, PR China; Department of Obstetrics, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, 361003, PR China.
| |
Collapse
|
21
|
Tang Z, Peng Y, Jiang Y, Wang L, Guo M, Chen Z, Luo C, Zhang T, Xiao Y, Ni R, Qi X. Gastrodin ameliorates synaptic impairment, mitochondrial dysfunction and oxidative stress in N2a/APP cells. Biochem Biophys Res Commun 2024; 719:150127. [PMID: 38761634 DOI: 10.1016/j.bbrc.2024.150127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/06/2024] [Accepted: 05/13/2024] [Indexed: 05/20/2024]
Abstract
Alzheimer's disease is characterized by abnormal β-amyloid and tau accumulation, mitochondrial dysfunction, oxidative stress, and synaptic dysfunction. Here, we aimed to assess the mechanisms and signalling pathways in the neuroprotective effect of gastrodin, a phenolic glycoside, on murine neuroblastoma N2a cells expressing human Swedish mutant APP (N2a/APP). We found that gastrodin increased the levels of presynaptic-SNAP, synaptophysin, and postsynaptic-PSD95 and reduced phospho-tau Ser396, APP and Aβ1-42 levels in N2a/APP cells. Gastrodin treatment reduced reactive oxygen species generation, lipid peroxidation, mitochondrial fragmentation and DNA oxidation; restored mitochondrial membrane potential and intracellular ATP production. Upregulated phospho-GSK-3β and reduced phospho-ERK and phospho-JNK were involved in the protective effect of gastrodin. In conclusion, we demonstrated the neuroprotective effect of gastrodin in the N2a/APP cell line by ameliorating the impairment on synaptic and mitochondrial function, reducing tau phosphorylation, Aβ1-42 levels as well as reactive oxygen species generation. These results provide new mechanistic insights into the potential effect of gastrodin in the treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Zhi Tang
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education and Key Laboratory of Medical Molecular Biology of Guizhou Province, Guizhou Medical University, Guiyang, China; Basic Medical College, Guizhou Medical University, Guiyang, China
| | - Yaqian Peng
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education and Key Laboratory of Medical Molecular Biology of Guizhou Province, Guizhou Medical University, Guiyang, China; Basic Medical College, Guizhou Medical University, Guiyang, China
| | - Yi Jiang
- Department of Pathology, Affiliated Hospital of Traditional Chinese Medicine of Guangzhou Medical University, Guangzhou, China
| | - Li Wang
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education and Key Laboratory of Medical Molecular Biology of Guizhou Province, Guizhou Medical University, Guiyang, China; Basic Medical College, Guizhou Medical University, Guiyang, China
| | - Min Guo
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education and Key Laboratory of Medical Molecular Biology of Guizhou Province, Guizhou Medical University, Guiyang, China; Basic Medical College, Guizhou Medical University, Guiyang, China
| | - Zhuyi Chen
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education and Key Laboratory of Medical Molecular Biology of Guizhou Province, Guizhou Medical University, Guiyang, China; Basic Medical College, Guizhou Medical University, Guiyang, China
| | - Chao Luo
- Basic Medical College, Guizhou Medical University, Guiyang, China
| | - Ting Zhang
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education and Key Laboratory of Medical Molecular Biology of Guizhou Province, Guizhou Medical University, Guiyang, China; Basic Medical College, Guizhou Medical University, Guiyang, China
| | - Yan Xiao
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education and Key Laboratory of Medical Molecular Biology of Guizhou Province, Guizhou Medical University, Guiyang, China; Basic Medical College, Guizhou Medical University, Guiyang, China
| | - Ruiqing Ni
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland; Institute for Biomedical Engineering, ETH Zurich and University of Zurich, Zurich, Switzerland.
| | - Xiaolan Qi
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education and Key Laboratory of Medical Molecular Biology of Guizhou Province, Guizhou Medical University, Guiyang, China; Basic Medical College, Guizhou Medical University, Guiyang, China.
| |
Collapse
|
22
|
Sword J, Fomitcheva IV, Kirov SA. Spreading depolarization causes reversible neuronal mitochondria fragmentation and swelling in healthy, normally perfused neocortex. J Cereb Blood Flow Metab 2024:271678X241257887. [PMID: 39053498 PMCID: PMC11574936 DOI: 10.1177/0271678x241257887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 03/28/2024] [Accepted: 05/12/2024] [Indexed: 07/27/2024]
Abstract
Mitochondrial function is tightly linked to morphology, and fragmentation of dendritic mitochondria during noxious conditions suggests loss of function. In the normoxic cortex, spreading depolarization (SD) is a phenomenon underlying migraine aura. It is unknown whether mitochondria structure is affected by normoxic SD. In vivo two-photon imaging followed by quantitative serial section electron microscopy (ssEM) was used to monitor dendritic mitochondria in the normoxic cortex of urethane-anesthetized mature male and female mice during and after SD initiated by focal KCl microinjection. Structural dynamics of dendrites and their mitochondria were visualized by transfecting excitatory, glutamatergic neurons of the somatosensory cortex with bicistronic AAV, which induced tdTomoto labeling in neuronal cytoplasm and mitochondria labeling with roGFP. Normoxic SD triggered rapidly reversible fragmentation of dendritic mitochondria alongside dendritic beading; however, mitochondria took significantly longer to recover. Several rounds of SD resulted in transient mitochondrial fragmentation and dendritic beading without accumulating injury, as both recovered. SsEM corroborated normoxic SD-elicited dendritic and mitochondrial swelling and transformation of the filamentous mitochondrial network into shorter, swollen tubular, and globular structures. Our results revealed normoxic SD-induced disruption of the dendritic mitochondrial structure that might impact mitochondrial bioenergetics during migraine with aura.
Collapse
Affiliation(s)
- Jeremy Sword
- Dept. of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| | - Ioulia V Fomitcheva
- Dept. of Neurosurgery, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| | - Sergei A Kirov
- Dept. of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
- Dept. of Neurosurgery, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| |
Collapse
|
23
|
Jiang Y, Zhou Y, Xie Y, Zhou J, Cai M, Tang J, Liu F, Ma J, Liu H. Functional magnetic resonance imaging alternations in suicide attempts individuals and their association with gene expression. Neuroimage Clin 2024; 43:103645. [PMID: 39059208 PMCID: PMC11326948 DOI: 10.1016/j.nicl.2024.103645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/29/2024] [Accepted: 07/19/2024] [Indexed: 07/28/2024]
Abstract
BACKGROUND Functional Magnetic Resonance Imaging (fMRI) has shown brain activity alterations in individuals with a history of attempted suicide (SA) who are diagnosed with depression disorder (DD) or bipolar disorder (BD). However, patterns of spontaneous brain activity and their genetic correlations need further investigation. METHODS A voxel-based meta-analysis of 19 studies including 26 datasets, involving 742 patients with a history of SA and 978 controls (both nonsuicidal patients and healthy controls) was conducted. We examined fMRI changes in SA patients and analyzed the association between these changes and gene expression profiles using data from the Allen Human Brain Atlas by partial least squares regression analysis. RESULTS SA patients demonstrated increased spontaneous brain activity in several brain regions including the bilateral inferior temporal gyrus, hippocampus, fusiform gyrus, and right insula, and decreased activity in areas like the bilateral paracentral lobule and inferior frontal gyrus. Additionally, 5,077 genes were identified, exhibiting expression patterns associated with SA-related fMRI alterations. Functional enrichment analyses demonstrated that these SA-related genes were enriched for biological functions including glutamatergic synapse and mitochondrial structure. Concurrently, specific expression analyses showed that these genes were specifically expressed in the brain tissue, in neurons cells, and during early developmental periods. CONCLUSION Our findings suggest a neurobiological basis for fMRI abnormalities in SA patients with DD or BD, potentially guiding future genetic and therapeutic research.
Collapse
Affiliation(s)
- Yurong Jiang
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging & Tianjin Institute of Radiology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Yujing Zhou
- Department of Radiology, The First Affiliated Hospital of Dalian Medical University, 116000 Dalian, Liaoning, China
| | - Yingying Xie
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging & Tianjin Institute of Radiology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Junzi Zhou
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging & Tianjin Institute of Radiology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Mengjing Cai
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging & Tianjin Institute of Radiology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Jie Tang
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging & Tianjin Institute of Radiology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Feng Liu
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging & Tianjin Institute of Radiology, Tianjin Medical University General Hospital, Tianjin 300052, China.
| | - Juanwei Ma
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging & Tianjin Institute of Radiology, Tianjin Medical University General Hospital, Tianjin 300052, China.
| | - Huaigui Liu
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging & Tianjin Institute of Radiology, Tianjin Medical University General Hospital, Tianjin 300052, China.
| |
Collapse
|
24
|
Traa A, Tamez González AA, Van Raamsdonk JM. Developmental disruption of the mitochondrial fission gene drp-1 extends the longevity of daf-2 insulin/IGF-1 receptor mutant. GeroScience 2024:10.1007/s11357-024-01276-z. [PMID: 39028454 DOI: 10.1007/s11357-024-01276-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 06/27/2024] [Indexed: 07/20/2024] Open
Abstract
The dynamic nature of the mitochondrial network is regulated by mitochondrial fission and fusion, allowing for re-organization of mitochondria to adapt to the cell's ever-changing needs. As organisms age, mitochondrial fission and fusion become dysregulated and mitochondrial networks become increasingly fragmented. Modulation of mitochondrial dynamics has been shown to affect longevity in fungi, yeast, Drosophila and C. elegans. Disruption of the mitochondrial fission gene drp-1 drastically increases the already long lifespan of daf-2 insulin/IGF-1 signaling (IIS) mutants. In this work, we determined the conditions required for drp-1 disruption to extend daf-2 longevity and explored the molecular mechanisms involved. We found that knockdown of drp-1 during development is sufficient to extend daf-2 lifespan, while tissue-specific knockdown of drp-1 in neurons, intestine or muscle failed to increase daf-2 longevity. Disruption of other genes involved in mitochondrial fission also increased daf-2 lifespan as did treatment with RNA interference clones that decrease mitochondrial fragmentation. In exploring potential mechanisms involved, we found that deletion of drp-1 increases resistance to chronic stresses. In addition, we found that disruption of drp-1 increased mitochondrial and peroxisomal connectedness in daf-2 worms, increased oxidative phosphorylation and ATP levels, and increased mitophagy in daf-2 worms, but did not affect their ROS levels, food consumption or mitochondrial membrane potential. Disruption of mitophagy through RNA interference targeting pink-1 decreased the lifespan of daf-2;drp-1 worms suggesting that increased mitophagy contributes to their extended lifespan. Overall, this work defined the conditions under which drp-1 disruption increases daf-2 lifespan and has identified multiple changes in daf-2;drp-1 mutants that may contribute to their lifespan extension.
Collapse
Affiliation(s)
- Annika Traa
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
- Metabolic Disorders and Complications Program, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
- Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Aura A Tamez González
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
- Metabolic Disorders and Complications Program, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
- Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Jeremy M Van Raamsdonk
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada.
- Metabolic Disorders and Complications Program, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada.
- Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada.
- Division of Experimental Medicine, Department of Medicine, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
25
|
Vădineanu S, Pelt DM, Dzyubachyk O, Batenburg KJ. Reducing Manual Annotation Costs for Cell Segmentation by Upgrading Low-Quality Annotations. J Imaging 2024; 10:172. [PMID: 39057743 PMCID: PMC11278254 DOI: 10.3390/jimaging10070172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/11/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
Deep-learning algorithms for cell segmentation typically require large data sets with high-quality annotations to be trained with. However, the annotation cost for obtaining such sets may prove to be prohibitively expensive. Our work aims to reduce the time necessary to create high-quality annotations of cell images by using a relatively small well-annotated data set for training a convolutional neural network to upgrade lower-quality annotations, produced at lower annotation costs. We investigate the performance of our solution when upgrading the annotation quality for labels affected by three types of annotation error: omission, inclusion, and bias. We observe that our method can upgrade annotations affected by high error levels from 0.3 to 0.9 Dice similarity with the ground-truth annotations. We also show that a relatively small well-annotated set enlarged with samples with upgraded annotations can be used to train better-performing cell segmentation networks compared to training only on the well-annotated set. Moreover, we present a use case where our solution can be successfully employed to increase the quality of the predictions of a segmentation network trained on just 10 annotated samples.
Collapse
Affiliation(s)
- Serban Vădineanu
- Leiden Institute of Advanced Computer Science, Leiden University, 2311 EZ Leiden, The Netherlands; (D.M.P.); (K.J.B.)
| | - Daniël M. Pelt
- Leiden Institute of Advanced Computer Science, Leiden University, 2311 EZ Leiden, The Netherlands; (D.M.P.); (K.J.B.)
| | - Oleh Dzyubachyk
- The Division of Image Processing, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands;
| | - Kees Joost Batenburg
- Leiden Institute of Advanced Computer Science, Leiden University, 2311 EZ Leiden, The Netherlands; (D.M.P.); (K.J.B.)
| |
Collapse
|
26
|
Park J, Won J, Yang E, Seo J, Cho J, Seong JB, Yeo HG, Kim K, Kim YG, Kim M, Jeon CY, Lim KS, Lee DS, Lee Y. Peroxiredoxin 1 inhibits streptozotocin-induced Alzheimer's disease-like pathology in hippocampal neuronal cells via the blocking of Ca 2+/Calpain/Cdk5-mediated mitochondrial fragmentation. Sci Rep 2024; 14:15642. [PMID: 38977865 PMCID: PMC11231305 DOI: 10.1038/s41598-024-66256-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 07/01/2024] [Indexed: 07/10/2024] Open
Abstract
Oxidative stress plays an essential role in the progression of Alzheimer's disease (AD), the most common age-related neurodegenerative disorder. Streptozotocin (STZ)-induced abnormal brain insulin signaling and oxidative stress play crucial roles in the progression of Alzheimer's disease (AD)-like pathology. Peroxiredoxins (Prxs) are associated with protection from neuronal death induced by oxidative stress. However, the molecular mechanisms underlying Prxs on STZ-induced progression of AD in the hippocampal neurons are not yet fully understood. Here, we evaluated whether Peroxiredoxin 1 (Prx1) affects STZ-induced AD-like pathology and cellular toxicity. Prx1 expression was increased by STZ treatment in the hippocampus cell line, HT-22 cells. We evaluated whether Prx1 affects STZ-induced HT-22 cells using overexpression. Prx1 successfully protected the forms of STZ-induced AD-like pathology, such as neuronal apoptosis, synaptic loss, and tau phosphorylation. Moreover, Prx1 suppressed the STZ-induced increase of mitochondrial dysfunction and fragmentation by down-regulating Drp1 phosphorylation and mitochondrial location. Prx1 plays a role in an upstream signal pathway of Drp1 phosphorylation, cyclin-dependent kinase 5 (Cdk5) by inhibiting the STZ-induced conversion of p35 to p25. We found that STZ-induced of intracellular Ca2+ accumulation was an important modulator of AD-like pathology progression by regulating Ca2+-mediated Calpain activation, and Prx1 down-regulated STZ-induced intracellular Ca2+ accumulation and Ca2+-mediated Calpain activation. Finally, we identified that Prx1 antioxidant capacity affected Ca2+/Calpain/Cdk5-mediated AD-like pathology progress. Therefore, these findings demonstrated that Prx1 is a key factor in STZ-induced hippocampal neuronal death through inhibition of Ca2+/Calpain/Cdk5-mediated mitochondrial dysfunction by protecting against oxidative stress.
Collapse
Affiliation(s)
- Junghyung Park
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Republic of Korea
| | - Jinyoung Won
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Republic of Korea
| | - Eunyeoung Yang
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Republic of Korea
- Department of Life Science, University of Seoul, Seoul, Republic of Korea
| | - Jincheol Seo
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Republic of Korea
| | - Jiyeon Cho
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Republic of Korea
| | - Jung Bae Seong
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Republic of Korea
| | - Hyeon-Gu Yeo
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Republic of Korea
- KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Keonwoo Kim
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Republic of Korea
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu, Republic of Korea
| | - Yu Gyeong Kim
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Republic of Korea
- KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Minji Kim
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Republic of Korea
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Chang-Yeop Jeon
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Republic of Korea
| | - Kyung Seob Lim
- Futuristic Animal Resource & Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Republic of Korea
| | - Dong-Seok Lee
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu, Republic of Korea.
| | - Youngjeon Lee
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Republic of Korea.
- KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, Republic of Korea.
| |
Collapse
|
27
|
Teixeira P, Galland R, Chevrollier A. Super-resolution microscopies, technological breakthrough to decipher mitochondrial structure and dynamic. Semin Cell Dev Biol 2024; 159-160:38-51. [PMID: 38310707 DOI: 10.1016/j.semcdb.2024.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/08/2024] [Accepted: 01/25/2024] [Indexed: 02/06/2024]
Abstract
Mitochondria are complex organelles with an outer membrane enveloping a second inner membrane that creates a vast matrix space partitioned by pockets or cristae that join the peripheral inner membrane with several thin junctions. Several micrometres long, mitochondria are generally close to 300 nm in diameter, with membrane layers separated by a few tens of nanometres. Ultrastructural data from electron microscopy revealed the structure of these mitochondria, while conventional optical microscopy revealed their extraordinary dynamics through fusion, fission, and migration processes but its limited resolution power restricted the possibility to go further. By overcoming the limits of light diffraction, Super-Resolution Microscopy (SRM) now offers the potential to establish the links between the ultrastructure and remodelling of mitochondrial membranes, leading to major advances in our understanding of mitochondria's structure-function. Here we review the contributions of SRM imaging to our understanding of the relationship between mitochondrial structure and function. What are the hopes for these new imaging approaches which are particularly important for mitochondrial pathologies?
Collapse
Affiliation(s)
- Pauline Teixeira
- Univ. Angers, INSERM, CNRS, MITOVASC, Equipe MITOLAB, SFR ICAT, F-49000 Angers, France
| | - Rémi Galland
- Univ. Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, F-33000 Bordeaux, France
| | - Arnaud Chevrollier
- Univ. Angers, INSERM, CNRS, MITOVASC, Equipe MITOLAB, SFR ICAT, F-49000 Angers, France.
| |
Collapse
|
28
|
Greiner TU, Koh A, Peris E, Bergentall M, Johansson MEV, Hansson GC, Drucker DJ, Bäckhed F. GLP-1R signaling modulates colonic energy metabolism, goblet cell number and survival in the absence of gut microbiota. Mol Metab 2024; 83:101924. [PMID: 38521185 PMCID: PMC11002751 DOI: 10.1016/j.molmet.2024.101924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/11/2024] [Accepted: 03/18/2024] [Indexed: 03/25/2024] Open
Abstract
OBJECTIVES Gut microbiota increases energy availability through fermentation of dietary fibers to short-chain fatty acids in conventionally raised mice. Energy deficiency in germ-free (GF) mice increases glucagon-like peptide-1 (GLP-1) levels, which slows intestinal transit. To further analyze the role of GLP-1-mediated signaling in this model of energy deficiency, we re-derived mice lacking GLP-1 receptor (GLP-1R KO) as GF. METHODS GLP-1R KO mice were rederived as GF through hysterectomy and monitored for 30 weeks. Mice were subjected to rescue experiments either through feeding an energy-rich diet or colonization with a normal cecal microbiota. Histology and intestinal function were assessed at different ages. Intestinal organoids were assessed to investigate stemness. RESULTS Unexpectedly, 25% of GF GLP-1R KO mice died before 20 weeks of age, associated with enlarged ceca, increased cecal water content, increased colonic expression of apical ion transporters, reduced number of goblet cells and loss of colonic epithelial integrity. Colonocytes from GLP-1R KO mice were energy-deprived and exhibited increased ER-stress; mitochondrial fragmentation, increased oxygen levels and loss of stemness. Restoring colonic energy levels either by feeding a Western-style diet or colonization with a normal gut microbiota normalized gut phenotypes and prevented lethality. CONCLUSIONS Our findings reveal a heretofore unrecognized role for GLP-1R signaling in the maintenance of colonic physiology and survival during energy deprivation.
Collapse
Affiliation(s)
- Thomas U Greiner
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, Sweden
| | - Ara Koh
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, Sweden; Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673 South Korea
| | - Eduard Peris
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, Sweden
| | - Mattias Bergentall
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, Sweden
| | - Malin E V Johansson
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Sweden
| | - Gunnar C Hansson
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Sweden
| | - Daniel J Drucker
- Department of Medicine, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, University of Toronto, Toronto ON, Canada
| | - Fredrik Bäckhed
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, Sweden; Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health Sciences, University of Copenhagen, Denmark; Region Västra Götaland, Sahlgrenska University Hospital, Department of Clinical Physiology, Gothenburg, Sweden.
| |
Collapse
|
29
|
Malik S, Chakraborty D, Agnihotri P, Sharma A, Biswas S. Mitochondrial functioning in Rheumatoid arthritis modulated by estrogen: Evidence-based insight into the sex-based influence on mitochondria and disease. Mitochondrion 2024; 76:101854. [PMID: 38403096 DOI: 10.1016/j.mito.2024.101854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 02/12/2024] [Accepted: 02/22/2024] [Indexed: 02/27/2024]
Abstract
Alteration of immune response and synovium microvasculature in Rheumatoid arthritis (RA) progression has been suggested to be associated with mitochondrial functioning. Mitochondria, with maternally inherited DNA, exhibit differential response to the female hormone estrogen. Various epidemiological evidence has also shown the prominence of RA in the female population, depicting the role of estrogen in modulating the pathogenesis of RA. As estrogen regulates the expression of differential proteins and associated signaling pathways of RA, its influence on mitochondrial functioning seems evident. Thus, in this review, the studies related to mitochondria and their relation with estrogen and Rheumatoid arthritis were retrieved. We analyzed the different mitochondrial activities that are altered in RA and the possibility of their estrogenic control. The study expands to in silico analysis, revealing the differential mitochondrial proteins expressed in RA and examining these proteins as potential estrogenic targets. It was found that ALDH2, CASP3, and SOD2 are the major mitochondrial proteins involved in RA progression and are also potent estradiol targets. The analysis establishes the role of mitochondrial proteins in RA progression, which were found to be direct or indirect targets of estrogen, depicting its potential for regulating mitochondrial functions in RA.
Collapse
Affiliation(s)
- Swati Malik
- Department of Integrative and Functional Biology, CSIR - Institute of Genomics and Integrative Biology, Mall Road, Delhi 110007, India; AcSIR - Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh 201002, India
| | - Debolina Chakraborty
- Department of Integrative and Functional Biology, CSIR - Institute of Genomics and Integrative Biology, Mall Road, Delhi 110007, India; AcSIR - Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh 201002, India
| | - Prachi Agnihotri
- Department of Integrative and Functional Biology, CSIR - Institute of Genomics and Integrative Biology, Mall Road, Delhi 110007, India; AcSIR - Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh 201002, India
| | - Alankrita Sharma
- Department of Integrative and Functional Biology, CSIR - Institute of Genomics and Integrative Biology, Mall Road, Delhi 110007, India
| | - Sagarika Biswas
- Department of Integrative and Functional Biology, CSIR - Institute of Genomics and Integrative Biology, Mall Road, Delhi 110007, India; AcSIR - Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh 201002, India.
| |
Collapse
|
30
|
Zhang T, Chu Y, Wang Y, Wang Y, Wang J, Ji X, Zhang G, Shi G, Cui R, Kang Y. Testosterone deficiency worsens mitochondrial dysfunction in APP/PS1 mice. Front Aging Neurosci 2024; 16:1390915. [PMID: 38752208 PMCID: PMC11094339 DOI: 10.3389/fnagi.2024.1390915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 04/12/2024] [Indexed: 05/18/2024] Open
Abstract
Background Recent studies show testosterone (T) deficiency worsens cognitive impairment in Alzheimer's disease (AD) patients. Mitochondrial dysfunction, as an early event of AD, is becoming critical hallmark of AD pathogenesis. However, currently, whether T deficiency exacerbates mitochondrial dysfunction of men with AD remains unclear. Objective The purpose of this study is to explore the effects of T deficiency on mitochondrial dysfunction of male AD mouse models and its potential mechanisms. Methods Alzheimer's disease animal model with T deficiency was performed by castration to 3-month-old male APP/PS1 mice. Hippocampal mitochondrial function of mice was analyzed by spectrophotometry and flow cytometry. The gene expression levels related to mitochondrial biogenesis and mitochondrial dynamics were determined through quantitative real-time PCR (qPCR) and western blot analysis. SH-SY5Y cells treated with flutamide, T and/or H2O2 were processed for analyzing the potential mechanisms of T on mitochondrial dysfunction. Results Testosterone deficiency significantly aggravated the cognitive deficits and hippocampal pathologic damage of male APP/PS1 mice. These effects were consistent with exacerbated mitochondrial dysfunction by gonadectomy to male APP/PS1 mice, reflected by further increase in oxidative damage and decrease in mitochondrial membrane potential, complex IV activity and ATP levels. More importantly, T deficiency induced the exacerbation of compromised mitochondrial homeostasis in male APP/PS1 mice by exerting detrimental effects on mitochondrial biogenesis and mitochondrial dynamics at mRNA and protein level, leading to more defective mitochondria accumulated in the hippocampus. In vitro studies using SH-SY5Y cells validated T's protective effects on the H2O2-induced mitochondrial dysfunction, mitochondrial biogenesis impairment, and mitochondrial dynamics imbalance. Administering androgen receptor (AR) antagonist flutamide weakened the beneficial effects of T pretreatment on H2O2-treated SH-SY5Y cells, demonstrating a critical role of classical AR pathway in maintaining mitochondrial function. Conclusion Testosterone deficiency exacerbates hippocampal mitochondrial dysfunction of male APP/PS1 mice by accumulating more defective mitochondria. Thus, appropriate T levels in the early stage of AD might be beneficial in delaying AD pathology by improving mitochondrial biogenesis and mitochondrial dynamics.
Collapse
Affiliation(s)
- Tianyun Zhang
- Postdoctoral Research Station of Biology, Hebei Medical University, Shijiazhuang, China
- Laboratory of Neurobiology, Hebei Medical University, Shijiazhuang, China
| | - Yun Chu
- Laboratory of Neurobiology, Hebei Medical University, Shijiazhuang, China
| | - Yue Wang
- Laboratory of Neurobiology, Hebei Medical University, Shijiazhuang, China
| | - Yu Wang
- Postdoctoral Research Station of Biology, Hebei Medical University, Shijiazhuang, China
- Laboratory of Neurobiology, Hebei Medical University, Shijiazhuang, China
| | - Jinyang Wang
- Laboratory of Neurobiology, Hebei Medical University, Shijiazhuang, China
- Department of Neurology, Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xiaoming Ji
- Laboratory of Neurobiology, Hebei Medical University, Shijiazhuang, China
- Neuroscience Research Center, Hebei Medical University, Shijiazhuang, China
| | - Guoliang Zhang
- Neuroscience Research Center, Hebei Medical University, Shijiazhuang, China
| | - Geming Shi
- Laboratory of Neurobiology, Hebei Medical University, Shijiazhuang, China
- Neuroscience Research Center, Hebei Medical University, Shijiazhuang, China
| | - Rui Cui
- Neuroscience Research Center, Hebei Medical University, Shijiazhuang, China
| | - Yunxiao Kang
- Laboratory of Neurobiology, Hebei Medical University, Shijiazhuang, China
- Neuroscience Research Center, Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
31
|
Chandra PK, Panner Selvam MK, Castorena-Gonzalez JA, Rutkai I, Sikka SC, Mostany R, Busija DW. Fibrinogen in mice cerebral microvessels induces blood-brain barrier dysregulation with aging via a dynamin-related protein 1-dependent pathway. GeroScience 2024; 46:395-415. [PMID: 37897653 PMCID: PMC10828490 DOI: 10.1007/s11357-023-00988-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 10/14/2023] [Indexed: 10/30/2023] Open
Abstract
We previously reported evidence that oxidative stress during aging leads to adverse protein profile changes of brain cortical microvessels (MVs: end arterioles, capillaries, and venules) that affect mRNA/protein stability, basement membrane integrity, and ATP synthesis capacity in mice. As an extension of our previous study, we also found that proteins which comprise the blood-brain barrier (BBB) and regulate mitochondrial quality control were also significantly decreased in the mice's cortical MVs with aging. Interestingly, the neuroinflammatory protein fibrinogen (Fgn) was increased in mice brain MVs, which corresponds with clinical reports indicating that the plasma Fgn concentration increased progressively with aging. In this study, protein-protein interaction network analysis indicated that high expression of Fgn is linked with downregulated expression of both BBB- and mitochondrial fission/fusion-related proteins in mice cortical MVs with aging. To investigate the mechanism of Fgn action, we observed that 2 mg/mL or higher concentration of human plasma Fgn changed cell morphology, induced cytotoxicity, and increased BBB permeability in primary human brain microvascular endothelial cells (HBMECs). The BBB tight junction proteins were significantly decreased with increasing concentration of human plasma Fgn in primary HBMECs. Similarly, the expression of phosphorylated dynamin-related protein 1 (pDRP1) and other mitochondrial fission/fusion-related proteins were also significantly reduced in Fgn-treated HBMECs. Interestingly, DRP1 knockdown by shRNA(h) resulted in the reduction of both BBB- and mitochondrial fission/fusion-related proteins in HBMECs. Our results suggest that elevated Fgn downregulates DRP1, leading to mitochondrial-dependent endothelial and BBB dysfunction in the brain microvasculature.
Collapse
Affiliation(s)
- Partha K Chandra
- Department of Pharmacology, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA, 70112, USA.
- Tulane Brain Institute, Tulane University, 200 Flower Hall, 6823 St. Charles Avenue, New Orleans, LA, 70118, USA.
| | - Manesh Kumar Panner Selvam
- Department of Urology, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA, 70112, USA
| | - Jorge A Castorena-Gonzalez
- Department of Pharmacology, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA, 70112, USA
| | - Ibolya Rutkai
- Department of Pharmacology, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA, 70112, USA
- Tulane Brain Institute, Tulane University, 200 Flower Hall, 6823 St. Charles Avenue, New Orleans, LA, 70118, USA
| | - Suresh C Sikka
- Department of Urology, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA, 70112, USA
| | - Ricardo Mostany
- Department of Pharmacology, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA, 70112, USA
- Tulane Brain Institute, Tulane University, 200 Flower Hall, 6823 St. Charles Avenue, New Orleans, LA, 70118, USA
| | - David W Busija
- Department of Pharmacology, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA, 70112, USA
- Tulane Brain Institute, Tulane University, 200 Flower Hall, 6823 St. Charles Avenue, New Orleans, LA, 70118, USA
| |
Collapse
|
32
|
Han X, Huang S, Zhuang Z, Zhang X, Xie M, Lou N, Hua M, Zhuang X, Yu S, Chen S. Phosphatidate phosphatase Lipin1 involves in diabetic encephalopathy pathogenesis via regulating synaptic mitochondrial dynamics. Redox Biol 2024; 69:102996. [PMID: 38103341 PMCID: PMC10770635 DOI: 10.1016/j.redox.2023.102996] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023] Open
Abstract
Diabetic encephalopathy (DE) is a common central nervous system complication of diabetes mellitus without effective therapy currently. Recent studies have highlighted synaptic mitochondrial damages as a possible pathological basis for DE, but the underlying mechanisms remain unclear. Our previous work has revealed that phosphatidate phosphatase Lipin1, a critical enzyme involved with phospholipid synthesis, is closely related to the pathogenesis of DE. Here, we demonstrate that Lipin1 is significantly down-regulated in rat hippocampus of DE. Knock-down of Lipin1 within hippocampus of normal rats induces dysregulation of homeostasis in synaptic mitochondrial dynamics with an increase of mitochondrial fission and a decrease of fusion, then causes synaptic mitochondrial dysfunction, synaptic plasticity deficits as well as cognitive impairments, similar to that observed in response to chronic hyperglycemia exposure. In contrast, an up-regulation of Lipin1 within hippocampus in the DE model ameliorates this cascade of dysfunction. We also find that the effect of Lipin1 that regulating mitochondrial dynamics results from maintaining appropriate phospholipid components in the mitochondrial membrane. In conclusion, alterations in hippocampal Lipin1 contribute to hippocampal synaptic mitochondrial dysfunction and cognitive deficits observed in DE. Targeting Lipin1 might be a potential therapeutic strategy for the clinical treatment of DE.
Collapse
Affiliation(s)
- Xiaolin Han
- Depratment of Endocrinology and Metabolism, The Second Hospital of Shandong University, Jinan, 250033, China
| | - Shan Huang
- Depratment of Endocrinology and Metabolism, The Second Hospital of Shandong University, Jinan, 250033, China
| | - Ziyun Zhuang
- Depratment of Endocrinology and Metabolism, The Second Hospital of Shandong University, Jinan, 250033, China; Department of Endocrinology and Metabolism, First People's Hospital of Jinan, Jinan, 250011, China
| | - Xiaochen Zhang
- Depratment of Endocrinology and Metabolism, The Second Hospital of Shandong University, Jinan, 250033, China; Department of Clinical Medicine, Heze Medical College, Heze, 274009, China
| | - Min Xie
- Department of Endocrinology and Metabolism, Binzhou Medical University Hospital, Binzhou, 256603, China
| | - Nengjun Lou
- Depratment of Endocrinology and Metabolism, The Second Hospital of Shandong University, Jinan, 250033, China; Multidisciplinary Innovation Center for Nephrology of the Second Hospital of Shandong University, Jinan, 250033, China
| | - Mengyu Hua
- Depratment of Endocrinology and Metabolism, The Second Hospital of Shandong University, Jinan, 250033, China
| | - Xianghua Zhuang
- Depratment of Endocrinology and Metabolism, The Second Hospital of Shandong University, Jinan, 250033, China; Multidisciplinary Innovation Center for Nephrology of the Second Hospital of Shandong University, Jinan, 250033, China.
| | - Shuyan Yu
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China.
| | - Shihong Chen
- Depratment of Endocrinology and Metabolism, The Second Hospital of Shandong University, Jinan, 250033, China; Multidisciplinary Innovation Center for Nephrology of the Second Hospital of Shandong University, Jinan, 250033, China.
| |
Collapse
|
33
|
Sword J, Fomitcheva IV, Kirov SA. Spreading depolarization causes reversible neuronal mitochondria fragmentation and swelling in healthy, normally perfused neocortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.22.576364. [PMID: 38328069 PMCID: PMC10849532 DOI: 10.1101/2024.01.22.576364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Mitochondrial function is tightly linked to their morphology, and fragmentation of dendritic mitochondria during noxious conditions suggests loss of function. In the normoxic cortex, spreading depolarization (SD) is a phenomenon underlying migraine aura. It is unknown whether mitochondria structure is affected by normoxic SD. In vivo two-photon imaging followed by quantitative serial section electron microscopy (ssEM) was used to monitor dendritic mitochondria in the normoxic cortex of urethane-anesthetized mature male and female mice during and after SD initiated by focal KCl microinjection. Structural dynamics of dendrites and their mitochondria were visualized by transfecting excitatory, glutamatergic neurons of the somatosensory cortex with bicistronic AAV, which induced tdTomoto labeling in neuronal cytoplasm and mitochondria labeling with roGFP. Normoxic SD triggered a rapid fragmentation of dendritic mitochondria alongside dendritic beading, both reversible; however, mitochondria took significantly longer to recover. Several rounds of SD resulted in transient mitochondrial fragmentation and dendritic beading without accumulating injury, as both recovered. SsEM corroborated normoxic SD-elicited dendritic and mitochondrial swelling and transformation of the filamentous mitochondrial network into shorter, swollen tubular and globular structures. Our results revealed normoxic SD-induced disruption of the dendritic mitochondrial structure that might impact mitochondrial bioenergetics during migraine with aura.
Collapse
|
34
|
Einenkel AM, Salameh A. Selective vulnerability of hippocampal CA1 and CA3 pyramidal cells: What are possible pathomechanisms and should more attention be paid to the CA3 region in future studies? J Neurosci Res 2024; 102:e25276. [PMID: 38284845 DOI: 10.1002/jnr.25276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 06/22/2023] [Accepted: 10/29/2023] [Indexed: 01/30/2024]
Abstract
Transient ischemia and reperfusion selectively damage neurons in brain, with hippocampal pyramidal cells being particularly vulnerable. Even within hippocampus, heterogeneous susceptibility is evident, with higher vulnerability of CA1 versus CA3 neurons described for several decades. Therefore, numerous studies have focused exclusively on CA1. Pediatric cardiac surgery is increasingly focusing on studies of hippocampal structures, and a negative impact of cardiopulmonary bypass on the hippocampus cannot be denied. Recent studies show a shift in selective vulnerability from neurons of CA1 to CA3. This review shows that cell damage is increased in CA3, sometimes stronger than in CA1, depending on several factors (method, species, age, observation period). Despite a highly variable pattern, several markers illustrate greater damage to CA3 neurons than previously assumed. Nevertheless, the underlying cellular mechanisms have not been fully deciphered to date. The complexity is reflected in possible pathomechanisms discussed here, with numerous factors (NMDA, kainate and AMPA receptors, intrinsic oxidative stress potential and various radicals, AKT isoforms, differences in vascular architecture, ratio of pro- and anti-apoptotic Bcl-2 factors, vulnerability of interneurons, mitochondrial dysregulation) contributing to either enhanced CA1 or CA3 vulnerability. Furthermore, differences in expressed genome, proteome, metabolome, and transcriptome in CA1 and CA3 appear to influence differential behavior after damaging stimuli, thus metabolomics-, transcriptomics-, and proteomics-based analyses represent a viable option to identify pathways of selective vulnerability in hippocampal neurons. These results emphasize that future studies should focus on the CA3 field in addition to CA1, especially with regard to improving therapeutic strategies after ischemic/hypoxic brain injury.
Collapse
Affiliation(s)
- Anne-Marie Einenkel
- Clinic for Pediatric Cardiology, University of Leipzig, Heart Centre, Leipzig, Germany
| | - Aida Salameh
- Clinic for Pediatric Cardiology, University of Leipzig, Heart Centre, Leipzig, Germany
| |
Collapse
|
35
|
Nir Sade A, Levy G, Schokoroy Trangle S, Elad Sfadia G, Bar E, Ophir O, Fischer I, Rokach M, Atzmon A, Parnas H, Rosenberg T, Marco A, Elroy Stein O, Barak B. Neuronal Gtf2i deletion alters mitochondrial and autophagic properties. Commun Biol 2023; 6:1269. [PMID: 38097729 PMCID: PMC10721858 DOI: 10.1038/s42003-023-05612-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 11/20/2023] [Indexed: 12/17/2023] Open
Abstract
Gtf2i encodes the general transcription factor II-I (TFII-I), with peak expression during pre-natal and early post-natal brain development stages. Because these stages are critical for proper brain development, we studied at the single-cell level the consequences of Gtf2i's deletion from excitatory neurons, specifically on mitochondria. Here we show that Gtf2i's deletion resulted in abnormal morphology, disrupted mRNA related to mitochondrial fission and fusion, and altered autophagy/mitophagy protein expression. These changes align with elevated reactive oxygen species levels, illuminating Gtf2i's importance in neurons mitochondrial function. Similar mitochondrial issues were demonstrated by Gtf2i heterozygous model, mirroring the human condition in Williams syndrome (WS), and by hemizygous neuronal Gtf2i deletion model, indicating Gtf2i's dosage-sensitive role in mitochondrial regulation. Clinically relevant, we observed altered transcript levels related to mitochondria, hypoxia, and autophagy in frontal cortex tissue from WS individuals. Our study reveals mitochondrial and autophagy-related deficits shedding light on WS and other Gtf2i-related disorders.
Collapse
Affiliation(s)
- Ariel Nir Sade
- The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Gilad Levy
- The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Sari Schokoroy Trangle
- The School of Psychological Sciences, Faculty of Social Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Galit Elad Sfadia
- The School of Psychological Sciences, Faculty of Social Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Ela Bar
- The School of Psychological Sciences, Faculty of Social Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Omer Ophir
- The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Inbar Fischer
- The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - May Rokach
- The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Andrea Atzmon
- The Shmunis School of Biomedicine & Cancer Research, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Hadar Parnas
- Neuro-Epigenetics Laboratory, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Tali Rosenberg
- Neuro-Epigenetics Laboratory, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Asaf Marco
- Neuro-Epigenetics Laboratory, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Orna Elroy Stein
- The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- The Shmunis School of Biomedicine & Cancer Research, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Boaz Barak
- The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.
- The School of Psychological Sciences, Faculty of Social Sciences, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
36
|
Gomez-Deza J, Slavutsky AL, Nebiyou M, Le Pichon CE. Local production of reactive oxygen species drives vincristine-induced axon degeneration. Cell Death Dis 2023; 14:807. [PMID: 38065950 PMCID: PMC10709426 DOI: 10.1038/s41419-023-06227-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 08/27/2023] [Accepted: 10/18/2023] [Indexed: 12/18/2023]
Abstract
Neurological side effects arising from chemotherapy, such as severe pain and cognitive impairment, are a major concern for cancer patients. These major side effects can lead to reduction or termination of chemotherapy medication in patients, negatively impacting their prognoses. With cancer survival rates improving dramatically, addressing side effects of cancer treatment has become pressing. Here, we use iPSC-derived human neurons to investigate the molecular mechanisms that lead to neurotoxicity induced by vincristine, a common chemotherapeutic used to treat solid tumors. Our results uncover a novel mechanism by which vincristine causes a local increase in mitochondrial proteins that produce reactive oxygen species (ROS) in the axon. Vincristine triggers a cascade of axon pathology, causing mitochondrial dysfunction that leads to elevated axonal ROS levels and SARM1-dependent axon degeneration. Importantly, we show that the neurotoxic effect of increased axonal ROS can be mitigated by the small molecule mitochondrial division inhibitor 1 (mdivi-1) and antioxidants glutathione and mitoquinone, identifying a novel therapeutic avenue to treat the neurological effects of chemotherapy.
Collapse
Affiliation(s)
- Jorge Gomez-Deza
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Anastasia L Slavutsky
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Matthew Nebiyou
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Claire E Le Pichon
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
37
|
Gamage YI, Pan J. Elucidating the Influence of Lipid Composition on Bilayer Perturbations Induced by the N-terminal Region of the Huntingtin Protein. BIOPHYSICA 2023; 3:582-597. [PMID: 38737720 PMCID: PMC11087071 DOI: 10.3390/biophysica3040040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
Understanding the membrane interactions of the N-terminal 17 residues of the huntingtin protein (HttN) is essential for unraveling its role in cellular processes and its impact on huntingtin misfolding. In this study, we used atomic force microscopy (AFM) to examine the effects of lipid specificity in mediating bilayer perturbations induced by HttN. Across various lipid environments, the peptide consistently induced bilayer disruptions in the form of holes. Notably, our results unveiled that cholesterol enhanced bilayer perturbation induced by HttN, while phosphatidylethanolamine (PE) lipids suppressed hole formation. Furthermore, anionic phosphatidylglycerol (PG) and cardiolipin lipids, along with cholesterol at high concentrations, promoted the formation of double-bilayer patches. This unique structure suggests that the synergy among HttN, anionic lipids, and cholesterol can enhance bilayer fusion, potentially by facilitating lipid intermixing between adjacent bilayers. Additionally, our AFM-based force spectroscopy revealed that HttN enhanced the mechanical stability of lipid bilayers, as evidenced by an elevated bilayer puncture force. These findings illuminate the complex interplay between HttN and lipid membranes and provide useful insights into the role of lipid composition in modulating membrane interactions with the huntingtin protein.
Collapse
Affiliation(s)
| | - Jianjun Pan
- Department of Physics, University of South Florida, Tampa, FL 33620
| |
Collapse
|
38
|
Schmidt S, Stautner C, Vu DT, Heinz A, Regensburger M, Karayel O, Trümbach D, Artati A, Kaltenhäuser S, Nassef MZ, Hembach S, Steinert L, Winner B, Jürgen W, Jastroch M, Luecken MD, Theis FJ, Westmeyer GG, Adamski J, Mann M, Hiller K, Giesert F, Vogt Weisenhorn DM, Wurst W. A reversible state of hypometabolism in a human cellular model of sporadic Parkinson's disease. Nat Commun 2023; 14:7674. [PMID: 37996418 PMCID: PMC10667251 DOI: 10.1038/s41467-023-42862-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 10/23/2023] [Indexed: 11/25/2023] Open
Abstract
Sporadic Parkinson's Disease (sPD) is a progressive neurodegenerative disorder caused by multiple genetic and environmental factors. Mitochondrial dysfunction is one contributing factor, but its role at different stages of disease progression is not fully understood. Here, we showed that neural precursor cells and dopaminergic neurons derived from induced pluripotent stem cells (hiPSCs) from sPD patients exhibited a hypometabolism. Further analysis based on transcriptomics, proteomics, and metabolomics identified the citric acid cycle, specifically the α-ketoglutarate dehydrogenase complex (OGDHC), as bottleneck in sPD metabolism. A follow-up study of the patients approximately 10 years after initial biopsy demonstrated a correlation between OGDHC activity in our cellular model and the disease progression. In addition, the alterations in cellular metabolism observed in our cellular model were restored by interfering with the enhanced SHH signal transduction in sPD. Thus, inhibiting overactive SHH signaling may have potential as neuroprotective therapy during early stages of sPD.
Collapse
Affiliation(s)
- Sebastian Schmidt
- Institute of Developmental Genetics, Helmholtz Zentrum München, Neuherberg, Germany.
- Munich Institute of Biomedical Engineering, Department of Chemistry, Technical University of Munich, Munich, Germany.
| | - Constantin Stautner
- Institute of Developmental Genetics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Duc Tung Vu
- Department for Proteomics and Signal Transduction, Max-Planck Institute of Biochemistry, Martinsried, Germany
| | - Alexander Heinz
- Department of Bioinformatics and Biochemistry and Braunschweig Integrated Center of Systems Biology (BRICS), Technische Universität Braunschweig, Braunschweig, Germany
| | - Martin Regensburger
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Ozge Karayel
- Department for Proteomics and Signal Transduction, Max-Planck Institute of Biochemistry, Martinsried, Germany
| | - Dietrich Trümbach
- Institute of Developmental Genetics, Helmholtz Zentrum München, Neuherberg, Germany
- Institute of Metabolism and Cell Death, Helmholtz Zentrum München, Neuherberg, Germany
| | - Anna Artati
- Research Unit Molecular Endocrinology and Metabolism, Helmholtz Zentrum München, Neuherberg, Germany
| | - Sabine Kaltenhäuser
- Department of Bioinformatics and Biochemistry and Braunschweig Integrated Center of Systems Biology (BRICS), Technische Universität Braunschweig, Braunschweig, Germany
| | - Mohamed Zakaria Nassef
- Department of Bioinformatics and Biochemistry and Braunschweig Integrated Center of Systems Biology (BRICS), Technische Universität Braunschweig, Braunschweig, Germany
| | - Sina Hembach
- Institute of Developmental Genetics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Letyfee Steinert
- Institute of Developmental Genetics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Beate Winner
- Department of Stem Cell Biology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Winkler Jürgen
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Martin Jastroch
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Malte D Luecken
- Institute of Computational Biology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Fabian J Theis
- Institute of Computational Biology, Helmholtz Zentrum München, Neuherberg, Germany
- Department of Mathematics, Technische Universität München, Garching bei München, Germany
| | - Gil Gregor Westmeyer
- Munich Institute of Biomedical Engineering, Department of Chemistry, Technical University of Munich, Munich, Germany
- Institute for Synthetic Biomedicine, Helmholtz Zentrum München, Neuherberg, Germany
| | - Jerzy Adamski
- Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Matthias Mann
- Department for Proteomics and Signal Transduction, Max-Planck Institute of Biochemistry, Martinsried, Germany
- NNF Center for Protein Research, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Karsten Hiller
- Department of Bioinformatics and Biochemistry and Braunschweig Integrated Center of Systems Biology (BRICS), Technische Universität Braunschweig, Braunschweig, Germany
| | - Florian Giesert
- Institute of Developmental Genetics, Helmholtz Zentrum München, Neuherberg, Germany
| | | | - Wolfgang Wurst
- Institute of Developmental Genetics, Helmholtz Zentrum München, Neuherberg, Germany.
- Chair of Developmental Genetics, Munich School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany.
- Munich Cluster of Systems Neurology (SyNergy), Munich, Germany.
- German Center for Neurodegenerative Diseases (DZNE) site Munich, Munich, Germany.
| |
Collapse
|
39
|
An X, Ma X, Liu H, Song J, Wei T, Zhang R, Zhan X, Li H, Zhou J. Inhibition of PDGFRβ alleviates endothelial cell apoptotic injury caused by DRP-1 overexpression and mitochondria fusion failure after mitophagy. Cell Death Dis 2023; 14:756. [PMID: 37980402 PMCID: PMC10657461 DOI: 10.1038/s41419-023-06272-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 10/23/2023] [Accepted: 11/03/2023] [Indexed: 11/20/2023]
Abstract
Kawasaki disease (KD), described as "mucocutaneous lymph node syndrome", affects infants and toddlers. Patients with KD suffer from an inflammatory cascade leading to vasculitis with a predilection for coronary arteries. While the symptoms and pathogenesis of KD have received more and more attention, the precise mechanisms are still debated. Researches show that endothelial dysfunction process in KD leads to arterial damage and affect clinical outcome. In this study, we constructed a Candida albicans water soluble fraction (CAWS)-induced KD murine model and penetrated investigating the mechanisms behind endothelial dysfunction. CAWS-induced mice presented remarkably elevated vascular endothelial cell growth factor (VEGF) levels. Abundant expression of VEGF was documented in all vessels that showed edema from acute KD. It has been reported that Platelet-derived growth factor (PDGF) co-expression normalizes VEGF-induced aberrant angiogenesis. Hyperexpression of PDGFRβ was induced in the thickened medial layer and vascular endothelium of KD mice. Masitinib (Mas) is an oral tyrosine kinase inhibitor of numerous targets, which can selectively target PDGFR signaling. We set out to explore whether Mas could regulate coronary pathology in KD. Mas administration significantly reduced the VEGF-induced endothelial cells migration. NOX4 was activated in vascular endothelial cells to produce more ROS. Mitochondrial dysregulated fission and mitophagy caused by DRP-1 overexpression precipitated the arterial endothelial cells injury. Here, mitophagy seemed to work as the driving force of DRP-1/Bak/BNIP3-dependent endothelial cells apoptosis. In summary, how mitophagy is regulated by DRP-1 under pathologic status is critical and complex, which may contribute to the development of specific therapeutic interventions in cardiovascular diseases patients, for example Masatinib, the inhibitor of PDGFRβ. FACTS AND QUESTIONS: Kawasaki disease causing systemic vasculitis, affects infants and toddlers. Coronary artery injury remains the major causes of morbidity and mortality. DRP-1 overexpression induces DRP-1/Bak/BNIP3-dependent endothelial cells apoptosis. PDGFRβ was high-expressed in the thickened medial layer of CAWS-induced KD mice. Inhibition of PDGFRβ signaling alleviates arterial endothelial cells injury.
Collapse
Affiliation(s)
- Xiaohong An
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
- Yunnan Characteristic Plant Extraction Laboratory, Yunnan Yunke Characteristic Plant Extraction Laboratory Co., Ltd, Kunming, 650106, China
| | - Xiao Ma
- Yunnan Characteristic Plant Extraction Laboratory, Yunnan Yunke Characteristic Plant Extraction Laboratory Co., Ltd, Kunming, 650106, China
| | - Heng Liu
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, Dali University, Dali, 671000, China
| | - Jing Song
- Laboratory Animal Center, Xiamen University, Xiamen, 361102, China
| | - Tiange Wei
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Rongzhan Zhang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Xiao Zhan
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Hongyang Li
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, 210042, China.
| | - Jia Zhou
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China.
| |
Collapse
|
40
|
Martinez A, Lamaizon CM, Valls C, Llambi F, Leal N, Fitzgerald P, Guy C, Kamiński MM, Inestrosa NC, van Zundert B, Cancino GI, Dulcey AE, Zanlungo S, Marugan JJ, Hetz C, Green DR, Alvarez AR. c-Abl Phosphorylates MFN2 to Regulate Mitochondrial Morphology in Cells under Endoplasmic Reticulum and Oxidative Stress, Impacting Cell Survival and Neurodegeneration. Antioxidants (Basel) 2023; 12:2007. [PMID: 38001860 PMCID: PMC10669615 DOI: 10.3390/antiox12112007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/17/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023] Open
Abstract
The endoplasmic reticulum is a subcellular organelle key in the control of synthesis, folding, and sorting of proteins. Under endoplasmic reticulum stress, an adaptative unfolded protein response is activated; however, if this activation is prolonged, cells can undergo cell death, in part due to oxidative stress and mitochondrial fragmentation. Here, we report that endoplasmic reticulum stress activates c-Abl tyrosine kinase, inducing its translocation to mitochondria. We found that endoplasmic reticulum stress-activated c-Abl interacts with and phosphorylates the mitochondrial fusion protein MFN2, resulting in mitochondrial fragmentation and apoptosis. Moreover, the pharmacological or genetic inhibition of c-Abl prevents MFN2 phosphorylation, mitochondrial fragmentation, and apoptosis in cells under endoplasmic reticulum stress. Finally, in the amyotrophic lateral sclerosis mouse model, where endoplasmic reticulum and oxidative stress has been linked to neuronal cell death, we demonstrated that the administration of c-Abl inhibitor neurotinib delays the onset of symptoms. Our results uncovered a function of c-Abl in the crosstalk between endoplasmic reticulum stress and mitochondrial dynamics via MFN2 phosphorylation.
Collapse
Affiliation(s)
- Alexis Martinez
- Cell Signaling Laboratory, Department of Cell and Molecular Biology, Biological Sciences Faculty, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
- Basal Center for Aging and Regeneration, Pontificia Universidad Católica de Chile (CARE UC), Santiago 8331150, Chile
| | - Cristian M. Lamaizon
- Cell Signaling Laboratory, Department of Cell and Molecular Biology, Biological Sciences Faculty, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
- Millennium Institute on Immunology and Immunotherapy, Biological Sciences Faculty, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Cristian Valls
- Cell Signaling Laboratory, Department of Cell and Molecular Biology, Biological Sciences Faculty, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Fabien Llambi
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Nancy Leal
- Cell Signaling Laboratory, Department of Cell and Molecular Biology, Biological Sciences Faculty, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Patrick Fitzgerald
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Cliff Guy
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Marcin M. Kamiński
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Nibaldo C. Inestrosa
- Basal Center for Aging and Regeneration, Pontificia Universidad Católica de Chile (CARE UC), Santiago 8331150, Chile
- Center of Excellence in Biomedicine of Magallanes (CEBIMA), University of Magallanes, Punta Arenas 6210427, Chile
| | - Brigitte van Zundert
- Basal Center for Aging and Regeneration, Pontificia Universidad Católica de Chile (CARE UC), Santiago 8331150, Chile
- Institute of Biomedical Sciences, Faculty of Medicine & Faculty of Life Sciences, Universidad Andres Bello, Santiago 8370146, Chile
- Department of Neurology, University of Massachusetts Chan Medical School (UMMS), Worcester, MA 01655, USA
| | - Gonzalo I. Cancino
- Laboratory of Neurobiology, Department of Cell and Molecular Biology, Biological Sciences Faculty, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Andrés E. Dulcey
- Early Translation Branch, National Center for Advancing Translational Sciences (NCATS), NIH, 9800 Medical Center Drive, Rockville, MD 20850, USA
| | - Silvana Zanlungo
- Department of Gastroenterology, Faculty of Medicine, Pontificia Universidad Católica de Chile, Av. Libertador Bernardo O’Higgins 340, Santiago 8331150, Chile
| | - Juan J. Marugan
- Early Translation Branch, National Center for Advancing Translational Sciences (NCATS), NIH, 9800 Medical Center Drive, Rockville, MD 20850, USA
| | - Claudio Hetz
- Biomedical Neuroscience Institute (BNI), Faculty of Medicine, University of Chile, Santiago 8330015, Chile
- Center for Geroscience, Brain Health and Metabolism (GERO), Santiago 8380453, Chile
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago 8330015, Chile
- The Buck Institute for Research in Aging, Novato, CA 94945, USA
| | - Douglas R. Green
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Alejandra R. Alvarez
- Cell Signaling Laboratory, Department of Cell and Molecular Biology, Biological Sciences Faculty, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
- Basal Center for Aging and Regeneration, Pontificia Universidad Católica de Chile (CARE UC), Santiago 8331150, Chile
- Millennium Institute on Immunology and Immunotherapy, Biological Sciences Faculty, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| |
Collapse
|
41
|
Yao S, Pang M, Wang Y, Wang X, Lin Y, Lv Y, Xie Z, Hou J, Du C, Qiu Y, Guan Y, Liu B, Wang J, Xiang AP, Rong L. Mesenchymal stem cell attenuates spinal cord injury by inhibiting mitochondrial quality control-associated neuronal ferroptosis. Redox Biol 2023; 67:102871. [PMID: 37699320 PMCID: PMC10506061 DOI: 10.1016/j.redox.2023.102871] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 08/31/2023] [Indexed: 09/14/2023] Open
Abstract
Ferroptosis is a newly discovered form of iron-dependent oxidative cell death and drives the loss of neurons in spinal cord injury (SCI). Mitochondrial damage is a critical contributor to neuronal death, while mitochondrial quality control (MQC) is an essential process for maintaining mitochondrial homeostasis to promote neuronal survival. However, the role of MQC in neuronal ferroptosis has not been clearly elucidated. Here, we further demonstrate that neurons primarily suffer from ferroptosis in SCI at the single-cell RNA sequencing level. Mechanistically, disordered MQC aggravates ferroptosis through excessive mitochondrial fission and mitophagy. Furthermore, mesenchymal stem cells (MSCs)-mediated mitochondrial transfer restores neuronal mitochondria pool and inhibits ferroptosis through mitochondrial fusion by intercellular tunneling nanotubes. Collectively, these results not only suggest that neuronal ferroptosis is regulated in an MQC-dependent manner, but also fulfill the molecular mechanism by which MSCs attenuate neuronal ferroptosis at the subcellular organelle level. More importantly, it provides a promising clinical translation strategy based on stem cell-mediated mitochondrial therapy for mitochondria-related central nervous system disorders.
Collapse
Affiliation(s)
- Senyu Yao
- Department of Spine Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China; Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, 510275, China; National Medical Products Administration (NMPA) Key Laboratory for Quality Research and Evaluation of Cell Products, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China; Guangdong Engineering Technology Research Center of Minimally Invasive Spine Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China
| | - Mao Pang
- Department of Spine Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China; National Medical Products Administration (NMPA) Key Laboratory for Quality Research and Evaluation of Cell Products, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China; Guangdong Engineering Technology Research Center of Minimally Invasive Spine Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China
| | - Yanheng Wang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Xiaokang Wang
- Department of Spine Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China; National Medical Products Administration (NMPA) Key Laboratory for Quality Research and Evaluation of Cell Products, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China; Guangdong Engineering Technology Research Center of Minimally Invasive Spine Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China
| | - Yaobang Lin
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Yanyan Lv
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Ziqi Xie
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Jianfeng Hou
- Department of Joint and Trauma Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Cong Du
- National Medical Products Administration (NMPA) Key Laboratory for Quality Research and Evaluation of Cell Products, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China; Cell-Gene Therapy Translational Medicine Research Center, The Third Affiliated Hospital of Sun Yat-Sen University, 510630, Guangzhou, China
| | - Yuan Qiu
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Yuanjun Guan
- Core Facility of Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Bin Liu
- Department of Spine Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China; National Medical Products Administration (NMPA) Key Laboratory for Quality Research and Evaluation of Cell Products, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China; Guangdong Engineering Technology Research Center of Minimally Invasive Spine Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China.
| | - Jiancheng Wang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, 510275, China; Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China; Department of Hematology, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, China.
| | - Andy Peng Xiang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, 510275, China; Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510275, China; Center for Precision Medicine, Sun Yat-Sen University, Guangzhou, 510275, China.
| | - Limin Rong
- Department of Spine Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China; National Medical Products Administration (NMPA) Key Laboratory for Quality Research and Evaluation of Cell Products, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China; Guangdong Engineering Technology Research Center of Minimally Invasive Spine Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China.
| |
Collapse
|
42
|
Genin EC, Abou-Ali M, Paquis-Flucklinger V. Mitochondria, a Key Target in Amyotrophic Lateral Sclerosis Pathogenesis. Genes (Basel) 2023; 14:1981. [PMID: 38002924 PMCID: PMC10671245 DOI: 10.3390/genes14111981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/19/2023] [Accepted: 10/21/2023] [Indexed: 11/26/2023] Open
Abstract
Mitochondrial dysfunction occurs in numerous neurodegenerative diseases, particularly amyotrophic lateral sclerosis (ALS), where it contributes to motor neuron (MN) death. Of all the factors involved in ALS, mitochondria have been considered as a major player, as secondary mitochondrial dysfunction has been found in various models and patients. Abnormal mitochondrial morphology, defects in mitochondrial dynamics, altered activities of respiratory chain enzymes and increased production of reactive oxygen species have been described. Moreover, the identification of CHCHD10 variants in ALS patients was the first genetic evidence that a mitochondrial defect may be a primary cause of MN damage and directly links mitochondrial dysfunction to the pathogenesis of ALS. In this review, we focus on the role of mitochondria in ALS and highlight the pathogenic variants of ALS genes associated with impaired mitochondrial functions. The multiple pathways demonstrated in ALS pathogenesis suggest that all converge to a common endpoint leading to MN loss. This may explain the disappointing results obtained with treatments targeting a single pathological process. Fighting against mitochondrial dysfunction appears to be a promising avenue for developing combined therapies in the future.
Collapse
Affiliation(s)
- Emmanuelle C. Genin
- Institute for Research on Cancer and Aging, Nice (IRCAN), Université Côte d’Azur, Inserm U1081, CNRS UMR7284, Centre Hospitalier Universitaire (CHU) de Nice, 06200 Nice, France; (M.A.-A.); (V.P.-F.)
| | | | | |
Collapse
|
43
|
Shah W, Zhao Q, Wang S, Zhang M, Ma H, Guan Y, Zhang Y, Liu Y, Zhu C, Wang S, Zhang X, Dong J, Ma H. Polydatin improves vascular endothelial function by maintaining mitochondrial homeostasis under high glucose conditions. Sci Rep 2023; 13:16550. [PMID: 37783713 PMCID: PMC10545827 DOI: 10.1038/s41598-023-43786-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 09/28/2023] [Indexed: 10/04/2023] Open
Abstract
Previous studies have shown that polydatin (Poly) confer cardioprotective effects. However, its underlying mechanisms remain elusive. This study showed that Poly (10 µM) treatment reversed the high glucose (HG)-induced decrease in acetylcholine-elicited vasodilation in aortas. Poly also improved the acetylcholine-induced vasodilation of aortic vessels isolated from diabetic rats. Meanwhile, Poly ameliorated the morphological damage of the thoracic aorta and improved the viability of HUVECs under HG conditions. Furthermore, analysis of the vasoprotective effect of Poly under HG conditions by transmission electron microscopy, Western blotting, and qPCR revealed that Poly improved endothelial pyroptosis through the NLRP3/Caspase/1-IL-1β pathway, enhanced dynamin-related protein 1-mediated mitochondrial fission, and increased the mitochondrial membrane potential under HG conditions. In conclusion, Poly restored acetylcholine-induced vasodilation impaired by HG incubation, which was associated with reduced oxidation, inflammation, and pyroptosis, the recovery of the mitochondrial membrane potential and maintenance of mitochondrial dynamic homeostasis of endothelial cells in the aortas.
Collapse
Affiliation(s)
- Wahid Shah
- Department of Physiology, Hebei Medical University, Shijiazhuang, 050017, Hebei, China
| | - Qiyue Zhao
- Department of Physiology, Hebei Medical University, Shijiazhuang, 050017, Hebei, China
| | - Sen Wang
- Department of Physiology, Hebei Medical University, Shijiazhuang, 050017, Hebei, China
| | - Miaomiao Zhang
- Department of Physiology, Hebei Medical University, Shijiazhuang, 050017, Hebei, China
| | - Hongyu Ma
- Department of Physiology, Hebei Medical University, Shijiazhuang, 050017, Hebei, China
| | - Yue Guan
- Department of Physiology, Hebei Medical University, Shijiazhuang, 050017, Hebei, China
| | - Yi Zhang
- Department of Physiology, Hebei Medical University, Shijiazhuang, 050017, Hebei, China
- Hebei Collaborative Innovation Center for Cardio-Cerebrovascular Disease, Shijiazhuang, 050017, Hebei, China
| | - Yan Liu
- Department of Endocrinology, The Third Hospital of Hebei Medical University, Ziqiang Road 139, Shijiazhuang, 050051, Hebei, China
| | - Chunhua Zhu
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China
| | - Sheng Wang
- Department of Physiology, Hebei Medical University, Shijiazhuang, 050017, Hebei, China
- Hebei Collaborative Innovation Center for Cardio-Cerebrovascular Disease, Shijiazhuang, 050017, Hebei, China
- Key Laboratory of Neurophysiology of Hebei Province, Shijiazhuang, 050017, Hebei, China
| | - Xiangjian Zhang
- Hebei Collaborative Innovation Center for Cardio-Cerebrovascular Disease, Shijiazhuang, 050017, Hebei, China
| | - Jinghui Dong
- Department of Physiology, Hebei Medical University, Shijiazhuang, 050017, Hebei, China.
| | - Huijie Ma
- Department of Physiology, Hebei Medical University, Shijiazhuang, 050017, Hebei, China.
- Hebei Collaborative Innovation Center for Cardio-Cerebrovascular Disease, Shijiazhuang, 050017, Hebei, China.
- Key Laboratory of Neurophysiology of Hebei Province, Shijiazhuang, 050017, Hebei, China.
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, 050017, Hebei, China.
| |
Collapse
|
44
|
Ježek P, Jabůrek M, Holendová B, Engstová H, Dlasková A. Mitochondrial Cristae Morphology Reflecting Metabolism, Superoxide Formation, Redox Homeostasis, and Pathology. Antioxid Redox Signal 2023; 39:635-683. [PMID: 36793196 PMCID: PMC10615093 DOI: 10.1089/ars.2022.0173] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 02/08/2023] [Accepted: 02/09/2023] [Indexed: 02/17/2023]
Abstract
Significance: Mitochondrial (mt) reticulum network in the cell possesses amazing ultramorphology of parallel lamellar cristae, formed by the invaginated inner mitochondrial membrane. Its non-invaginated part, the inner boundary membrane (IBM) forms a cylindrical sandwich with the outer mitochondrial membrane (OMM). Crista membranes (CMs) meet IBM at crista junctions (CJs) of mt cristae organizing system (MICOS) complexes connected to OMM sorting and assembly machinery (SAM). Cristae dimensions, shape, and CJs have characteristic patterns for different metabolic regimes, physiological and pathological situations. Recent Advances: Cristae-shaping proteins were characterized, namely rows of ATP-synthase dimers forming the crista lamella edges, MICOS subunits, optic atrophy 1 (OPA1) isoforms and mitochondrial genome maintenance 1 (MGM1) filaments, prohibitins, and others. Detailed cristae ultramorphology changes were imaged by focused-ion beam/scanning electron microscopy. Dynamics of crista lamellae and mobile CJs were demonstrated by nanoscopy in living cells. With tBID-induced apoptosis a single entirely fused cristae reticulum was observed in a mitochondrial spheroid. Critical Issues: The mobility and composition of MICOS, OPA1, and ATP-synthase dimeric rows regulated by post-translational modifications might be exclusively responsible for cristae morphology changes, but ion fluxes across CM and resulting osmotic forces might be also involved. Inevitably, cristae ultramorphology should reflect also mitochondrial redox homeostasis, but details are unknown. Disordered cristae typically reflect higher superoxide formation. Future Directions: To link redox homeostasis to cristae ultramorphology and define markers, recent progress will help in uncovering mechanisms involved in proton-coupled electron transfer via the respiratory chain and in regulation of cristae architecture, leading to structural determination of superoxide formation sites and cristae ultramorphology changes in diseases. Antioxid. Redox Signal. 39, 635-683.
Collapse
Affiliation(s)
- Petr Ježek
- Department No. 75, Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Martin Jabůrek
- Department No. 75, Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Blanka Holendová
- Department No. 75, Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Hana Engstová
- Department No. 75, Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Andrea Dlasková
- Department No. 75, Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| |
Collapse
|
45
|
Longhitano L, Distefano A, Amorini AM, Orlando L, Giallongo S, Tibullo D, Lazzarino G, Nicolosi A, Alanazi AM, Saoca C, Macaione V, Aguennouz M, Salomone F, Tropea E, Barbagallo IA, Volti GL, Lazzarino G. (+)-Lipoic Acid Reduces Lipotoxicity and Regulates Mitochondrial Homeostasis and Energy Balance in an In Vitro Model of Liver Steatosis. Int J Mol Sci 2023; 24:14491. [PMID: 37833939 PMCID: PMC10572323 DOI: 10.3390/ijms241914491] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/19/2023] [Accepted: 09/20/2023] [Indexed: 10/15/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is characterized by the accumulation of lipids within hepatocytes, which compromises liver functionality following mitochondrial dysfunction and increased production of reactive oxygen species (ROS). Lipoic acid is one of the prosthetic groups of the pyruvate dehydrogenase complex also known for its ability to confer protection from oxidative damage because of its antioxidant properties. In this study, we aimed to investigate the effects of lipoic acid on lipotoxicity and mitochondrial dynamics in an in vitro model of liver steatosis. HepG2 cells were treated with palmitic acid and oleic acid (1:2) to induce steatosis, without and with 1 and 5 µM lipoic acid. Following treatments, cell proliferation and lipid droplets accumulation were evaluated. Mitochondrial functions were assessed through the evaluation of membrane potential, MitoTracker Red staining, expression of genes of the mitochondrial quality control, and analysis of energy metabolism by HPLC and Seahorse. We showed that lipoic acid treatment restored membrane potential to values comparable to control cells, as well as protected cells from mitochondrial fragmentation following PA:OA treatment. Furthermore, our data showed that lipoic acid was able to determine an increase in the expression of mitochondrial fusion genes and a decrease in mitochondrial fission genes, as well as to restore the bioenergetics of cells after treatment with palmitic acid and oleic acid. In conclusion, our data suggest that lipoic acid reduces lipotoxicity and improves mitochondrial functions in an in vitro model of steatosis, thus providing a potentially valuable pharmacological tool for NAFLD treatment.
Collapse
Affiliation(s)
- Lucia Longhitano
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (L.L.); (A.D.); (A.M.A.); (L.O.); (S.G.); (D.T.); (G.L.); (E.T.); (I.A.B.)
| | - Alfio Distefano
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (L.L.); (A.D.); (A.M.A.); (L.O.); (S.G.); (D.T.); (G.L.); (E.T.); (I.A.B.)
| | - Angela Maria Amorini
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (L.L.); (A.D.); (A.M.A.); (L.O.); (S.G.); (D.T.); (G.L.); (E.T.); (I.A.B.)
| | - Laura Orlando
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (L.L.); (A.D.); (A.M.A.); (L.O.); (S.G.); (D.T.); (G.L.); (E.T.); (I.A.B.)
| | - Sebastiano Giallongo
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (L.L.); (A.D.); (A.M.A.); (L.O.); (S.G.); (D.T.); (G.L.); (E.T.); (I.A.B.)
| | - Daniele Tibullo
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (L.L.); (A.D.); (A.M.A.); (L.O.); (S.G.); (D.T.); (G.L.); (E.T.); (I.A.B.)
| | - Giuseppe Lazzarino
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (L.L.); (A.D.); (A.M.A.); (L.O.); (S.G.); (D.T.); (G.L.); (E.T.); (I.A.B.)
| | - Anna Nicolosi
- Hospital Pharmacy Unit, Ospedale Cannizzaro, 95125 Catania, Italy;
| | - Amer M. Alanazi
- Pharmaceutical Biotechnology Laboratory, Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Concetta Saoca
- Department Clinical and Experimental Medicine, University of Messina, Via Consolare Valeria 1, 98125 Messina, Italy; (C.S.); (V.M.); (M.A.)
| | - Vincenzo Macaione
- Department Clinical and Experimental Medicine, University of Messina, Via Consolare Valeria 1, 98125 Messina, Italy; (C.S.); (V.M.); (M.A.)
| | - M’hammed Aguennouz
- Department Clinical and Experimental Medicine, University of Messina, Via Consolare Valeria 1, 98125 Messina, Italy; (C.S.); (V.M.); (M.A.)
| | - Federico Salomone
- Division of Gastroenterology, Ospedale di Acireale, Azienda Sanitaria Provinciale di Catania, 95024 Catania, Italy;
| | - Emanuela Tropea
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (L.L.); (A.D.); (A.M.A.); (L.O.); (S.G.); (D.T.); (G.L.); (E.T.); (I.A.B.)
| | - Ignazio Alberto Barbagallo
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (L.L.); (A.D.); (A.M.A.); (L.O.); (S.G.); (D.T.); (G.L.); (E.T.); (I.A.B.)
| | - Giovanni Li Volti
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (L.L.); (A.D.); (A.M.A.); (L.O.); (S.G.); (D.T.); (G.L.); (E.T.); (I.A.B.)
| | - Giacomo Lazzarino
- Departmental Faculty of Medicine and Surgery, UniCamillus-Saint Camillus International University of Health Sciences, Via di Sant’Alessandro 8, 00131 Rome, Italy;
| |
Collapse
|
46
|
Bang BR, Miki H, Kang YJ. Mitochondrial PGAM5-Drp1 signaling regulates the metabolic reprogramming of macrophages and regulates the induction of inflammatory responses. Front Immunol 2023; 14:1243548. [PMID: 37771598 PMCID: PMC10523165 DOI: 10.3389/fimmu.2023.1243548] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 08/28/2023] [Indexed: 09/30/2023] Open
Abstract
Macrophages play a critical role in the regulation of inflammation and tissue homeostasis. In addition to their vital functions for cell survival and physiology, mitochondria play a crucial role in innate immunity as a platform for the induction of inflammatory responses by regulating cell signaling and dynamics. Dynamin-related protein 1 (Drp1) plays a role in the induction of inflammatory responses and the subsequent development of various diseases. PGAM5 (phosphoglycerate mutase member 5) is a mitochondrial outer membrane phosphatase that dephosphorylates its substrate, Drp1. Previous studies showed that PGAM5 regulates the phosphorylation of Drp1 for the activation of NKT cells and T cells. However, it is not clear how PGAM5 regulates Drp1 activity for the induction of inflammation in macrophages. Here, we demonstrate that PGAM5 activity regulates the dephosphorylation of Drp1 in macrophages, leading to the induction of proinflammatory responses in macrophages. In TLR signaling, PGAM5 regulates the expression and production of inflammatory cytokines by regulating the activation of downstream signaling pathways, including the NF-κB and MAPK pathways. Upon LPS stimulation, PGAM5 interacts with Drp1 to form a complex, leading to the production of mtROS. Furthermore, PGAM5-Drp1 signaling promotes the polarization of macrophages toward a proinflammatory phenotype. Our study further demonstrates that PGAM5-Drp1 signaling promotes metabolic reprogramming by upregulating glycolysis and mitochondrial metabolism in macrophages. Altogether, PGAM5 signaling is a linker between alterations in Drp1-mediated mitochondrial dynamics and inflammatory responses in macrophages and may be a target for the treatment of inflammatory diseases.
Collapse
Affiliation(s)
- Bo-Ram Bang
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA, United States
| | - Haruka Miki
- Division of Immune Regulation, La Jolla Institute for Immunology, La Jolla, CA, United States
- Department of Rheumatology, Institute of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Young Jun Kang
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA, United States
- Molecular Medicine Research Institute, Sunnyvale, CA, United States
| |
Collapse
|
47
|
Wood EH, Kreymerman A, Kowal T, Buickians D, Sun Y, Muscat S, Mercola M, Moshfeghi DM, Goldberg JL. Cellular and subcellular optogenetic approaches towards neuroprotection and vision restoration. Prog Retin Eye Res 2023; 96:101153. [PMID: 36503723 PMCID: PMC10247900 DOI: 10.1016/j.preteyeres.2022.101153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 11/27/2022] [Accepted: 11/28/2022] [Indexed: 12/13/2022]
Abstract
Optogenetics is defined as the combination of genetic and optical methods to induce or inhibit well-defined events in isolated cells, tissues, or animals. While optogenetics within ophthalmology has been primarily applied towards treating inherited retinal disease, there are a myriad of other applications that hold great promise for a variety of eye diseases including cellular regeneration, modulation of mitochondria and metabolism, regulation of intraocular pressure, and pain control. Supported by primary data from the authors' work with in vitro and in vivo applications, we introduce a novel approach to metabolic regulation, Opsins to Restore Cellular ATP (ORCA). We review the fundamental constructs for ophthalmic optogenetics, present current therapeutic approaches and clinical trials, and discuss the future of subcellular and signaling pathway applications for neuroprotection and vision restoration.
Collapse
Affiliation(s)
- Edward H Wood
- Spencer Center for Vision Research, Byers Eye Institute, Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA, USA; Stanford Cardiovascular Institute, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Alexander Kreymerman
- Spencer Center for Vision Research, Byers Eye Institute, Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA, USA; Stanford Cardiovascular Institute, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Tia Kowal
- Spencer Center for Vision Research, Byers Eye Institute, Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA, USA
| | - David Buickians
- Spencer Center for Vision Research, Byers Eye Institute, Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Yang Sun
- Spencer Center for Vision Research, Byers Eye Institute, Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Stephanie Muscat
- Spencer Center for Vision Research, Byers Eye Institute, Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Mark Mercola
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Darius M Moshfeghi
- Spencer Center for Vision Research, Byers Eye Institute, Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Jeffrey L Goldberg
- Spencer Center for Vision Research, Byers Eye Institute, Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA, USA.
| |
Collapse
|
48
|
Wang S, Wang Y, Zhu H, Chen M, Zhang L. Gambogic Acid Inhibits Gastric Cancer Cell Proliferation through Necroptosis. Can J Gastroenterol Hepatol 2023; 2023:7532367. [PMID: 37588664 PMCID: PMC10427235 DOI: 10.1155/2023/7532367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 06/06/2023] [Accepted: 07/05/2023] [Indexed: 08/18/2023] Open
Abstract
Gambogic acid (GA) is a natural xanthonoid secreted by Garcinia hanburyi tree. It possesses anti-cancer activity in various types of cancers. In gastric cancer, it inhibits cell proliferation through increasing apoptosis. However, whether necroptosis is involved in the GA-induced proliferation inhibited in gastric cancer is unknown. In the present study, we found that RIPK1 specific inhibitor necrostatin-1 (Nec-1) attenuated GA-induced proliferation inhibition. GA treatment increased the phosphorylation of necroptosis-related proteins, RIPK1, RIPK3, and MLKL, and their interactions to form the necrosome complex. The effector protein Drp-1 was dephosphorylated by GA treatment. Inhibition of necroptosis by different inhibitors and PGAM5 knockdown attenuated GA-induced cell death in gastric cancer cell lines, thereby attenuating GA-caused cell proliferation inhibition. All the data supported the conclusion that GA could inhibit gastric cancer cell proliferation by inducing necroptosis.
Collapse
Affiliation(s)
- Shujun Wang
- Department of Gastroenterology, Affiliated Cixi People's Hospital, Wenzhou Medical University, Ningbo, Zhejiang 315300, China
| | - Yiping Wang
- Department of Gastroenterology, Affiliated Cixi People's Hospital, Wenzhou Medical University, Ningbo, Zhejiang 315300, China
| | - Hui Zhu
- Department of Gastroenterology, Affiliated Cixi People's Hospital, Wenzhou Medical University, Ningbo, Zhejiang 315300, China
| | - Miaohui Chen
- Department of Gastroenterology, Affiliated Cixi People's Hospital, Wenzhou Medical University, Ningbo, Zhejiang 315300, China
| | - Liang Zhang
- Department of Gastroenterology, Affiliated Cixi People's Hospital, Wenzhou Medical University, Ningbo, Zhejiang 315300, China
| |
Collapse
|
49
|
Flannagan K, Stopperan JA, Hauger BM, Troutwine BR, Lysaker CR, Strope TA, Csikos Drummond V, Gilmore CA, Swerdlow NA, Draper JM, Gouvion CM, Vivian JL, Haeri M, Swerdlow RH, Wilkins HM. Cell type and sex specific mitochondrial phenotypes in iPSC derived models of Alzheimer's disease. Front Mol Neurosci 2023; 16:1201015. [PMID: 37614699 PMCID: PMC10442646 DOI: 10.3389/fnmol.2023.1201015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 07/26/2023] [Indexed: 08/25/2023] Open
Abstract
Introduction Mitochondrial dysfunction is observed in Alzheimer's disease (AD). Altered mitochondrial respiration, cytochrome oxidase (COX) Vmax, and mitophagy are observed in human subjects and animal models of AD. Models derived from induced pluripotent stem cells (iPSCs) may not recapitulate these phenotypes after reprogramming from differentiated adult cells. Methods We examined mitochondrial function across iPSC derived models including cerebral organoids, forebrain neurons, and astrocytes. iPSCs were reprogrammed from fibroblasts either from the University of Kansas Alzheimer's Disease Research Center (KU ADRC) cohort or purchased from WiCell. A total of four non-demented and four sporadic AD iPSC lines were examined. Models were subjected to mitochondrial respiration analysis using Seahorse XF technology, spectrophotometric cytochrome oxidase (COX) Vmax assays, fluorescent assays to determine mitochondrial mass, mitochondrial membrane potential, calcium, mitochondrial dynamics, and mitophagy levels. AD pathological hallmarks were also measured. Results iPSC derived neurons and cerebral organoids showed reduced COX Vmax in AD subjects with more profound defects in the female cohort. These results were not observed in astrocytes. iPSC derived neurons and astrocytes from AD subjects had reduced mitochondrial respiration parameters with increased glycolytic flux. iPSC derived neurons and astrocytes from AD subjects showed sex dependent effects on mitochondrial membrane potential, mitochondrial superoxide production, and mitochondrial calcium. iPSC derived neurons from AD subjects had reduced mitochondrial localization in lysosomes with sex dependent effects on mitochondrial mass, while iPSC derived astrocytes from female AD subjects had increased mitochondrial localization to lysosomes. Both iPSC derived neurons and astrocytes from AD subjects showed altered mitochondrial dynamics. iPSC derived neurons had increased secreted Aβ, and sex dependent effects on total APP protein expression. iPSC derived astrocytes showed sex dependent changes in GFAP expression in AD derived cells. Conclusion Overall, iPSC derived models from AD subjects show mitochondrial phenotypes and AD pathological hallmarks in a cell type and sex dependent manner. These results highlight the importance of sex as a biological variable in cell culture studies.
Collapse
Affiliation(s)
- Kaitlin Flannagan
- University of Kansas Alzheimer's Disease Research Center, University of Kansas Medical Center, Kansas City, KS, United States
| | - Julia A. Stopperan
- University of Kansas Alzheimer's Disease Research Center, University of Kansas Medical Center, Kansas City, KS, United States
| | - Brittany M. Hauger
- University of Kansas Alzheimer's Disease Research Center, University of Kansas Medical Center, Kansas City, KS, United States
| | - Benjamin R. Troutwine
- University of Kansas Alzheimer's Disease Research Center, University of Kansas Medical Center, Kansas City, KS, United States
| | - Colton R. Lysaker
- University of Kansas Alzheimer's Disease Research Center, University of Kansas Medical Center, Kansas City, KS, United States
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, United States
| | - Taylor A. Strope
- University of Kansas Alzheimer's Disease Research Center, University of Kansas Medical Center, Kansas City, KS, United States
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, United States
| | - Vivien Csikos Drummond
- University of Kansas Alzheimer's Disease Research Center, University of Kansas Medical Center, Kansas City, KS, United States
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, United States
| | - Caleb A. Gilmore
- University of Kansas Alzheimer's Disease Research Center, University of Kansas Medical Center, Kansas City, KS, United States
| | - Natalie A. Swerdlow
- University of Kansas Alzheimer's Disease Research Center, University of Kansas Medical Center, Kansas City, KS, United States
| | - Julia M. Draper
- Transgenic and Gene Targeting Facility, University of Kansas Medical Center, Kansas City, KS, United States
| | - Cynthia M. Gouvion
- University of Kansas Alzheimer's Disease Research Center, University of Kansas Medical Center, Kansas City, KS, United States
| | - Jay L. Vivian
- Transgenic and Gene Targeting Facility, University of Kansas Medical Center, Kansas City, KS, United States
- Department of Pediatrics, University of Kansas Missouri-Kansas City School of Medicine, Kansas City, KS, United States
- Institute for Reproduction and Perinatal Research, University of Kansas Medical Center, Kansas City, KS, United States
- Department of Pathology & Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, United States
| | - Mohammad Haeri
- University of Kansas Alzheimer's Disease Research Center, University of Kansas Medical Center, Kansas City, KS, United States
- Department of Pathology & Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, United States
| | - Russell H. Swerdlow
- University of Kansas Alzheimer's Disease Research Center, University of Kansas Medical Center, Kansas City, KS, United States
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, United States
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS, United States
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS, United States
| | - Heather M. Wilkins
- University of Kansas Alzheimer's Disease Research Center, University of Kansas Medical Center, Kansas City, KS, United States
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, United States
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS, United States
| |
Collapse
|
50
|
Ren X, Zhou H, Sun Y, Fu H, Ran Y, Yang B, Yang F, Bjorklund M, Xu S. MIRO-1 interacts with VDAC-1 to regulate mitochondrial membrane potential in Caenorhabditis elegans. EMBO Rep 2023; 24:e56297. [PMID: 37306041 PMCID: PMC10398670 DOI: 10.15252/embr.202256297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 05/11/2023] [Accepted: 05/25/2023] [Indexed: 06/13/2023] Open
Abstract
Precise regulation of mitochondrial fusion and fission is essential for cellular activity and animal development. Imbalances between these processes can lead to fragmentation and loss of normal membrane potential in individual mitochondria. In this study, we show that MIRO-1 is stochastically elevated in individual fragmented mitochondria and is required for maintaining mitochondrial membrane potential. We further observe a higher level of membrane potential in fragmented mitochondria in fzo-1 mutants and wounded animals. Moreover, MIRO-1 interacts with VDAC-1, a crucial mitochondrial ion channel located in the outer mitochondrial membrane, and this interaction depends on the residues E473 of MIRO-1 and K163 of VDAC-1. The E473G point mutation disrupts their interaction, resulting in a reduction of the mitochondrial membrane potential. Our findings suggest that MIRO-1 regulates membrane potential and maintains mitochondrial activity and animal health by interacting with VDAC-1. This study provides insight into the mechanisms underlying the stochastic maintenance of membrane potential in fragmented mitochondria.
Collapse
Affiliation(s)
- Xuecong Ren
- Center for Stem Cell and Regenerative Medicine and Department of Burns and Wound Repair of the Second Affiliated HospitalThe Zhejiang University‐University of Edinburgh Institute, Zhejiang University School of MedicineHangzhouChina
| | - Hengda Zhou
- Center for Stem Cell and Regenerative Medicine and Department of Burns and Wound Repair of the Second Affiliated HospitalThe Zhejiang University‐University of Edinburgh Institute, Zhejiang University School of MedicineHangzhouChina
- International Biomedicine‐X Research Center of the Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Yujie Sun
- Center for Stem Cell and Regenerative Medicine and Department of Burns and Wound Repair of the Second Affiliated HospitalThe Zhejiang University‐University of Edinburgh Institute, Zhejiang University School of MedicineHangzhouChina
- International Biomedicine‐X Research Center of the Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Hongying Fu
- Center for Stem Cell and Regenerative Medicine and Department of Burns and Wound Repair of the Second Affiliated HospitalThe Zhejiang University‐University of Edinburgh Institute, Zhejiang University School of MedicineHangzhouChina
| | - Yu Ran
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell BiologyLife Sciences Institute, Zhejiang UniversityHangzhouChina
| | - Bing Yang
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell BiologyLife Sciences Institute, Zhejiang UniversityHangzhouChina
| | - Fan Yang
- Department of Biophysics and Kidney Disease Center of the First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Mikael Bjorklund
- Centre for Cellular Biology and SignallingZhejiang University‐University of Edinburgh InstituteHainingChina
- School of MedicineZhejiang UniversityHangzhouChina
| | - Suhong Xu
- Center for Stem Cell and Regenerative Medicine and Department of Burns and Wound Repair of the Second Affiliated HospitalThe Zhejiang University‐University of Edinburgh Institute, Zhejiang University School of MedicineHangzhouChina
- International Biomedicine‐X Research Center of the Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Department of Reproductive Endocrinology, Women's HospitalZhejiang University School of MedicineHangzhouChina
| |
Collapse
|