1
|
Yuan Y, Liu H, Dai Z, He C, Qin S, Su Z. From Physiology to Pathology of Astrocytes: Highlighting Their Potential as Therapeutic Targets for CNS Injury. Neurosci Bull 2025; 41:131-154. [PMID: 39080102 PMCID: PMC11748647 DOI: 10.1007/s12264-024-01258-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/29/2023] [Accepted: 03/15/2024] [Indexed: 01/19/2025] Open
Abstract
In the mammalian central nervous system (CNS), astrocytes are the ubiquitous glial cells that have complex morphological and molecular characteristics. These fascinating cells play essential neurosupportive and homeostatic roles in the healthy CNS and undergo morphological, molecular, and functional changes to adopt so-called 'reactive' states in response to CNS injury or disease. In recent years, interest in astrocyte research has increased dramatically and some new biological features and roles of astrocytes in physiological and pathological conditions have been discovered thanks to technological advances. Here, we will review and discuss the well-established and emerging astroglial biology and functions, with emphasis on their potential as therapeutic targets for CNS injury, including traumatic and ischemic injury. This review article will highlight the importance of astrocytes in the neuropathological process and repair of CNS injury.
Collapse
Affiliation(s)
- Yimin Yuan
- Institute of Neuroscience, Key Laboratory of Molecular Neurobiology of Ministry of Education and the Collaborative Innovation Center for Brain Science, Naval Medical University, Shanghai, 200433, China
- Department of Pain Medicine, School of Anesthesiology, Naval Medical University, Shanghai, 200433, China
| | - Hong Liu
- Institute of Neuroscience, Key Laboratory of Molecular Neurobiology of Ministry of Education and the Collaborative Innovation Center for Brain Science, Naval Medical University, Shanghai, 200433, China
| | - Ziwei Dai
- Institute of Neuroscience, Key Laboratory of Molecular Neurobiology of Ministry of Education and the Collaborative Innovation Center for Brain Science, Naval Medical University, Shanghai, 200433, China
| | - Cheng He
- Institute of Neuroscience, Key Laboratory of Molecular Neurobiology of Ministry of Education and the Collaborative Innovation Center for Brain Science, Naval Medical University, Shanghai, 200433, China
| | - Shangyao Qin
- Institute of Neuroscience, Key Laboratory of Molecular Neurobiology of Ministry of Education and the Collaborative Innovation Center for Brain Science, Naval Medical University, Shanghai, 200433, China.
| | - Zhida Su
- Institute of Neuroscience, Key Laboratory of Molecular Neurobiology of Ministry of Education and the Collaborative Innovation Center for Brain Science, Naval Medical University, Shanghai, 200433, China.
| |
Collapse
|
2
|
Vassal M, Martins F, Monteiro B, Tambaro S, Martinez-Murillo R, Rebelo S. Emerging Pro-neurogenic Therapeutic Strategies for Neurodegenerative Diseases: A Review of Pre-clinical and Clinical Research. Mol Neurobiol 2025; 62:46-76. [PMID: 38816676 PMCID: PMC11711580 DOI: 10.1007/s12035-024-04246-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/03/2024] [Accepted: 05/14/2024] [Indexed: 06/01/2024]
Abstract
The neuroscience community has largely accepted the notion that functional neurons can be generated from neural stem cells in the adult brain, especially in two brain regions: the subventricular zone of the lateral ventricles and the subgranular zone in the dentate gyrus of the hippocampus. However, impaired neurogenesis has been observed in some neurodegenerative diseases, particularly in Alzheimer's, Parkinson's, and Huntington's diseases, and also in Lewy Body dementia. Therefore, restoration of neurogenic function in neurodegenerative diseases emerges as a potential therapeutic strategy to counteract, or at least delay, disease progression. Considering this, the present study summarizes the different neuronal niches, provides a collection of the therapeutic potential of different pro-neurogenic strategies in pre-clinical and clinical research, providing details about their possible modes of action, to guide future research and clinical practice.
Collapse
Affiliation(s)
- Mariana Vassal
- Department of Medical Sciences, Institute of Biomedicine (iBiMED), University of Aveiro, Aveiro, Portugal
| | - Filipa Martins
- Department of Medical Sciences, Institute of Biomedicine (iBiMED), University of Aveiro, Aveiro, Portugal
| | - Bruno Monteiro
- Department of Medical Sciences, Institute of Biomedicine (iBiMED), University of Aveiro, Aveiro, Portugal
| | - Simone Tambaro
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Karolinska Institutet, Huddinge, Sweden
| | - Ricardo Martinez-Murillo
- Neurovascular Research Group, Department of Translational Neurobiology, Cajal Institute (CSIC), Madrid, Spain
| | - Sandra Rebelo
- Department of Medical Sciences, Institute of Biomedicine (iBiMED), University of Aveiro, Aveiro, Portugal.
| |
Collapse
|
3
|
Böck D, Wilhelm M, Mumenthaler J, Carpanese DF, Kulcsár PI, d'Aquin S, Cremonesi A, Rassi A, Häberle J, Patriarchi T, Schwank G. Base editing of Ptbp1 in neurons alleviates symptoms in a mouse model of Parkinson's disease. eLife 2024; 13:RP97180. [PMID: 39714464 DOI: 10.7554/elife.97180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/24/2024] Open
Abstract
Parkinson's disease (PD) is a multifactorial disease caused by irreversible progressive loss of dopaminergic neurons (DANs). Recent studies have reported the successful conversion of astrocytes into DANs by repressing polypyrimidine tract binding protein 1 (PTBP1), which led to the rescue of motor symptoms in a chemically-induced mouse model of PD. However, follow-up studies have questioned the validity of this astrocyte-to-DAN conversion model. Here, we devised an adenine base editing strategy to downregulate PTBP1 in astrocytes and neurons in a chemically-induced PD mouse model. While PTBP1 downregulation in astrocytes had no effect, PTBP1 downregulation in neurons of the striatum resulted in the expression of the DAN marker tyrosine hydroxylase (TH) in non-dividing neurons, which was associated with an increase in striatal dopamine concentrations and a rescue of forelimb akinesia and spontaneous rotations. Phenotypic analysis using multiplexed iterative immunofluorescence imaging further revealed that most of these TH-positive cells co-expressed the dopaminergic marker DAT and the pan-neuronal marker NEUN, with the majority of these triple-positive cells being classified as mature GABAergic neurons. Additional research is needed to fully elucidate the molecular mechanisms underlying the expression of the observed markers and understand how the formation of these cells contributes to the rescue of spontaneous motor behaviors. Nevertheless, our findings support a model where downregulation of neuronal, but not astrocytic, PTBP1 can mitigate symptoms in PD mice.
Collapse
Affiliation(s)
- Desiree Böck
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | - Maria Wilhelm
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | - Jonas Mumenthaler
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | | | - Peter I Kulcsár
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | - Simon d'Aquin
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | - Alessio Cremonesi
- Division of Clinical Chemistry and Biochemistry, University Children's Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Anahita Rassi
- Division of Clinical Chemistry and Biochemistry, University Children's Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Johannes Häberle
- Division of Metabolism and Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - Tommaso Patriarchi
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Gerald Schwank
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
4
|
Naffaa MM, Yin HH. A cholinergic signaling pathway underlying cortical circuit activation of quiescent neural stem cells in the lateral ventricle. Sci Signal 2024; 17:eadk8810. [PMID: 39316665 DOI: 10.1126/scisignal.adk8810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/15/2023] [Revised: 03/18/2024] [Accepted: 09/05/2024] [Indexed: 09/26/2024]
Abstract
Neural stem cells (NSCs) in the subventricular zone (SVZ) located along the lateral ventricles (LVs) of the mammalian brain continue to self-renew to produce new neurons after birth and into adulthood. Quiescent LV cells, which are situated close to the ependymal cells lining the LVs, are activated by choline acetyltransferase-positive (ChAT+) neurons within the subependymal (subep) region of the SVZ when these neurons are stimulated by projections from the anterior cingulate cortex (ACC). Here, we uncovered a signaling pathway activated by the ACC-subep-ChAT+ circuit responsible for the activation and proliferation of quiescent LV NSCs specifically in the ventral area of the SVZ. This circuit activated muscarinic M3 receptors on quiescent LV NSCs, which subsequently induced signaling mediated by the inositol 1,4,5-trisphosphate receptor type 1 (IP3R1). Downstream of IP3R1 activation, which would be expected to increase intracellular Ca2+, Ca2+-/calmodulin-dependent protein kinase II δ and the MAPK10 signaling pathway were stimulated and required for the proliferation of quiescent LV NSCs in the SVZ. These findings reveal the mechanisms that regulate quiescent LV NSCs and underscore the critical role of projections from the ACC in promoting their proliferative activity within the ventral SVZ.
Collapse
Affiliation(s)
- Moawiah M Naffaa
- Department of Psychology and Neuroscience, Duke University, Durham, NC 27710, USA
- Department of Cell Biology, Duke University, School of Medicine, Durham, NC 27710, USA
| | - Henry H Yin
- Department of Psychology and Neuroscience, Duke University, Durham, NC 27710, USA
- Department of Neurobiology, Duke University School of Medicine, Durham, NC 27710, USA
| |
Collapse
|
5
|
Alhadidi QM, Bahader GA, Arvola O, Kitchen P, Shah ZA, Salman MM. Astrocytes in functional recovery following central nervous system injuries. J Physiol 2024; 602:3069-3096. [PMID: 37702572 PMCID: PMC11421637 DOI: 10.1113/jp284197] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/29/2023] [Accepted: 08/07/2023] [Indexed: 09/14/2023] Open
Abstract
Astrocytes are increasingly recognised as partaking in complex homeostatic mechanisms critical for regulating neuronal plasticity following central nervous system (CNS) insults. Ischaemic stroke and traumatic brain injury are associated with high rates of disability and mortality. Depending on the context and type of injury, reactive astrocytes respond with diverse morphological, proliferative and functional changes collectively known as astrogliosis, which results in both pathogenic and protective effects. There is a large body of research on the negative consequences of astrogliosis following brain injuries. There is also growing interest in how astrogliosis might in some contexts be protective and help to limit the spread of the injury. However, little is known about how astrocytes contribute to the chronic functional recovery phase following traumatic and ischaemic brain insults. In this review, we explore the protective functions of astrocytes in various aspects of secondary brain injury such as oedema, inflammation and blood-brain barrier dysfunction. We also discuss the current knowledge on astrocyte contribution to tissue regeneration, including angiogenesis, neurogenesis, synaptogenesis, dendrogenesis and axogenesis. Finally, we discuss diverse astrocyte-related factors that, if selectively targeted, could form the basis of astrocyte-targeted therapeutic strategies to better address currently untreatable CNS disorders.
Collapse
Affiliation(s)
- Qasim M Alhadidi
- Department of Anesthesiology, Perioperative and Pain Medicine, School of Medicine, Stanford University, Stanford, CA, USA
- Department of Pharmacy, Al-Yarmok University College, Diyala, Iraq
| | - Ghaith A Bahader
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH, USA
| | - Oiva Arvola
- Division of Anaesthesiology, Jorvi Hospital, Department of Anaesthesiology, Intensive Care and Pain Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Stem Cells and Metabolism Research Program, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Philip Kitchen
- College of Health and Life Sciences, Aston University, Birmingham, UK
| | - Zahoor A Shah
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH, USA
| | - Mootaz M Salman
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
- Kavli Institute for NanoScience Discovery, University of Oxford, Oxford, UK
| |
Collapse
|
6
|
Jiao M, Wang C, Tang X, Dai C, Zhang N, Fan A, Qian Z, Liu S, Zhang F, Li B, Xu Y, Tan Z, Gong F, Lu Y, Zheng F. Active secretion of IL-33 from astrocytes is dependent on TMED10 and promotes central nervous system homeostasis. Brain Behav Immun 2024; 119:539-553. [PMID: 38663774 DOI: 10.1016/j.bbi.2024.04.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 10/10/2023] [Revised: 04/07/2024] [Accepted: 04/22/2024] [Indexed: 04/29/2024] Open
Abstract
Interleukin-33 (IL-33), secreted by astrocytes, regulates the synapse development in the spinal cord and hippocampus and suppresses autoimmune disease in the central nervous system (CNS). However, the mechanism of unconventional protein secretion of this cytokine remains unclear. In this study, we found that IFN-γ promotes the active secretion of IL-33 from astrocytes, and the active secretion of IL-33 from cytoplasm to extracellular space was dependent on interaction with transmembrane emp24 domain 10 (TMED10) via the IL-1 like cytokine domain in astrocytes. Knockout of Il-33 or its receptor St2 induced hippocampal astrocyte activation and depressive-like disorder in naive mice, as well as increased spinal cord astrocyte activation and polarization to a neurotoxic reactive subtype and aggravated passive experimental autoimmune encephalomyelitis (EAE). Our results have identified that IL-33 is actively secreted by astrocytes through the unconventional protein secretion pathway facilitated by TMED10 channels. This process helps maintain CNS homeostasis by inhibiting astrocyte activation.
Collapse
Affiliation(s)
- Mengya Jiao
- Department of Immunology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonostic Infectious Disease, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Chenchen Wang
- National Demonstration Center for Experimental Basic Medical Education, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xuhuan Tang
- Department of Immunology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonostic Infectious Disease, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Chan Dai
- Department of Immunology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonostic Infectious Disease, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Na Zhang
- Department of Immunology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonostic Infectious Disease, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Anqi Fan
- College of Life Science, Yangtze University, Jingzhou 434025, China
| | - Zhigang Qian
- Department of Immunology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonostic Infectious Disease, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Shiwang Liu
- Department of Immunology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonostic Infectious Disease, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Feng Zhang
- Department of Immunology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonostic Infectious Disease, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Bin Li
- Department of Immunology and Microbiology, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yong Xu
- National Demonstration Center for Experimental Basic Medical Education, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zheng Tan
- Department of Immunology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonostic Infectious Disease, Huazhong University of Science and Technology, Wuhan 430030, China; Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan 430030, China
| | - Feili Gong
- Department of Immunology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonostic Infectious Disease, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yisheng Lu
- Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| | - Fang Zheng
- Department of Immunology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonostic Infectious Disease, Huazhong University of Science and Technology, Wuhan 430030, China; Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan 430030, China.
| |
Collapse
|
7
|
Mourtzi T, Antoniou N, Dimitriou C, Gkaravelas P, Athanasopoulou G, Kostantzo PN, Stathi O, Theodorou E, Anesti M, Matsas R, Angelatou F, Kouroupi G, Kazanis I. Enhancement of endogenous midbrain neurogenesis by microneurotrophin BNN-20 after neural progenitor grafting in a mouse model of nigral degeneration. Neural Regen Res 2024; 19:1318-1324. [PMID: 37905881 PMCID: PMC11467940 DOI: 10.4103/1673-5374.385314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/23/2023] [Accepted: 08/28/2023] [Indexed: 11/02/2023] Open
Abstract
Abstract
JOURNAL/nrgr/04.03/01300535-202406000-00036/inline-graphic1/v/2023-10-30T152229Z/r/image-tiff
We have previously shown the neuroprotective and pro-neurogenic activity of microneurotrophin BNN-20 in the substantia nigra of the “weaver” mouse, a model of progressive nigrostriatal degeneration. Here, we extended our investigation in two clinically-relevant ways. First, we assessed the effects of BNN-20 on human induced pluripotent stem cell-derived neural progenitor cells and neurons derived from healthy and parkinsonian donors. Second, we assessed if BNN-20 can boost the outcome of mouse neural progenitor cell intranigral transplantations in weaver mice, at late stages of degeneration. We found that BNN-20 has limited direct effects on cultured human induced pluripotent stem cell-derived neural progenitor cells, marginally enhancing their differentiation towards neurons and partially reversing the pathological phenotype of dopaminergic neurons generated from parkinsonian donors. In agreement, we found no effects of BNN-20 on the mouse neural progenitor cells grafted in the substantia nigra of weaver mice. However, the graft strongly induced an endogenous neurogenic response throughout the midbrain, which was significantly enhanced by the administration of microneurotrophin BNN-20. Our results provide straightforward evidence of the existence of an endogenous midbrain neurogenic system that can be specifically strengthened by BNN-20. Interestingly, the lack of major similar activity on cultured human induced pluripotent stem cell-derived neural progenitors and their progeny reveals the in vivo specificity of the aforementioned pro-neurogenic effect.
Collapse
Affiliation(s)
- Theodora Mourtzi
- Laboratory of Developmental Biology, Department of Biology, University of Patras, Patras, Greece
| | - Nasia Antoniou
- Laboratory of Cellular and Molecular Neurobiology-Stem Cells, Hellenic Pasteur Institute, Athens, Greece
| | - Christina Dimitriou
- Laboratory of Developmental Biology, Department of Biology, University of Patras, Patras, Greece
| | - Panagiotis Gkaravelas
- Laboratory of Cellular and Molecular Neurobiology-Stem Cells, Hellenic Pasteur Institute, Athens, Greece
| | - Georgia Athanasopoulou
- Laboratory of Cellular and Molecular Neurobiology-Stem Cells, Hellenic Pasteur Institute, Athens, Greece
| | - Panagiota Nti Kostantzo
- Laboratory of Developmental Biology, Department of Biology, University of Patras, Patras, Greece
| | - Olga Stathi
- Laboratory of Developmental Biology, Department of Biology, University of Patras, Patras, Greece
| | - Efthymia Theodorou
- Laboratory of Developmental Biology, Department of Biology, University of Patras, Patras, Greece
| | - Maria Anesti
- Laboratory of Developmental Biology, Department of Biology, University of Patras, Patras, Greece
| | - Rebecca Matsas
- Laboratory of Cellular and Molecular Neurobiology-Stem Cells, Hellenic Pasteur Institute, Athens, Greece
| | - Fevronia Angelatou
- Department of Physiology, School of Medicine, University of Patras, Patras, Greece
| | - Georgia Kouroupi
- Laboratory of Cellular and Molecular Neurobiology-Stem Cells, Hellenic Pasteur Institute, Athens, Greece
| | - Ilias Kazanis
- Laboratory of Developmental Biology, Department of Biology, University of Patras, Patras, Greece
| |
Collapse
|
8
|
Tan Z, Qin S, Liu H, Huang X, Pu Y, He C, Yuan Y, Su Z. Small molecules reprogram reactive astrocytes into neuronal cells in the injured adult spinal cord. J Adv Res 2024; 59:111-127. [PMID: 37380102 PMCID: PMC11081968 DOI: 10.1016/j.jare.2023.06.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/24/2023] [Revised: 06/23/2023] [Accepted: 06/25/2023] [Indexed: 06/30/2023] Open
Abstract
INTRODUCTION Ectopic expression of transcription factor-mediated in vivo neuronal reprogramming provides promising strategy to compensate for neuronal loss, while its further clinical application may be hindered by delivery and safety concerns. As a novel and attractive alternative, small molecules may offer a non-viral and non-integrative chemical approach for reprogramming cell fates. Recent definitive evidences have shown that small molecules can convert non-neuronal cells into neurons in vitro. However, whether small molecules alone can induce neuronal reprogramming in vivo remains largely unknown. OBJECTIVES To identify chemical compounds that can induce in vivo neuronal reprogramming in the adult spinal cord. METHODS Immunocytochemistry, immunohistochemistry, qRT-PCR and fate-mapping are performed to analyze the role of small molecules in reprogramming astrocytes into neuronal cells in vitro and in vivo. RESULTS By screening, we identify a chemical cocktail with only two chemical compounds that can directly and rapidly reprogram cultured astrocytes into neuronal cells. Importantly, this chemical cocktail can also successfully trigger neuronal reprogramming in the injured adult spinal cord without introducing exogenous genetic factors. These chemically induced cells showed typical neuronal morphologies and neuron-specific marker expression and could become mature and survive for more than 12 months. Lineage tracing indicated that the chemical compound-converted neuronal cells mainly originated from post-injury spinal reactive astrocytes. CONCLUSION Our proof-of-principle study demonstrates that in vivo glia-to-neuron conversion can be manipulated in a chemical compound-based manner. Albeit our current chemical cocktail has a lowreprogramming efficiency, it will bring in vivo cell fate reprogramming closer to clinical application in brain and spinal cord repair. Future studies should focus on further refining our chemical cocktail and reprogramming approach to boost the reprogramming efficiency.
Collapse
Affiliation(s)
- Zijian Tan
- Institute of Neuroscience, Key Laboratory of Molecular Neurobiology of Ministry of Education and the Collaborative Innovation Center for Brain Science, Naval Medical University, Shanghai 200433, China
| | - Shangyao Qin
- Institute of Neuroscience, Key Laboratory of Molecular Neurobiology of Ministry of Education and the Collaborative Innovation Center for Brain Science, Naval Medical University, Shanghai 200433, China
| | - Hong Liu
- Institute of Neuroscience, Key Laboratory of Molecular Neurobiology of Ministry of Education and the Collaborative Innovation Center for Brain Science, Naval Medical University, Shanghai 200433, China
| | - Xiao Huang
- Institute of Neuroscience, Key Laboratory of Molecular Neurobiology of Ministry of Education and the Collaborative Innovation Center for Brain Science, Naval Medical University, Shanghai 200433, China
| | - Yingyan Pu
- Institute of Neuroscience, Key Laboratory of Molecular Neurobiology of Ministry of Education and the Collaborative Innovation Center for Brain Science, Naval Medical University, Shanghai 200433, China
| | - Cheng He
- Institute of Neuroscience, Key Laboratory of Molecular Neurobiology of Ministry of Education and the Collaborative Innovation Center for Brain Science, Naval Medical University, Shanghai 200433, China
| | - Yimin Yuan
- Institute of Neuroscience, Key Laboratory of Molecular Neurobiology of Ministry of Education and the Collaborative Innovation Center for Brain Science, Naval Medical University, Shanghai 200433, China.
| | - Zhida Su
- Institute of Neuroscience, Key Laboratory of Molecular Neurobiology of Ministry of Education and the Collaborative Innovation Center for Brain Science, Naval Medical University, Shanghai 200433, China.
| |
Collapse
|
9
|
Koupourtidou C, Schwarz V, Aliee H, Frerich S, Fischer-Sternjak J, Bocchi R, Simon-Ebert T, Bai X, Sirko S, Kirchhoff F, Dichgans M, Götz M, Theis FJ, Ninkovic J. Shared inflammatory glial cell signature after stab wound injury, revealed by spatial, temporal, and cell-type-specific profiling of the murine cerebral cortex. Nat Commun 2024; 15:2866. [PMID: 38570482 PMCID: PMC10991294 DOI: 10.1038/s41467-024-46625-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/03/2023] [Accepted: 02/29/2024] [Indexed: 04/05/2024] Open
Abstract
Traumatic brain injury leads to a highly orchestrated immune- and glial cell response partially responsible for long-lasting disability and the development of secondary neurodegenerative diseases. A holistic understanding of the mechanisms controlling the responses of specific cell types and their crosstalk is required to develop an efficient strategy for better regeneration. Here, we combine spatial and single-cell transcriptomics to chart the transcriptomic signature of the injured male murine cerebral cortex, and identify specific states of different glial cells contributing to this signature. Interestingly, distinct glial cells share a large fraction of injury-regulated genes, including inflammatory programs downstream of the innate immune-associated pathways Cxcr3 and Tlr1/2. Systemic manipulation of these pathways decreases the reactivity state of glial cells associated with poor regeneration. The functional relevance of the discovered shared signature of glial cells highlights the importance of our resource enabling comprehensive analysis of early events after brain injury.
Collapse
Affiliation(s)
- Christina Koupourtidou
- Chair of Cell Biology and Anatomy, Biomedical Center (BMC), Faculty of Medicine, LMU Munich, Planegg-Martinsried, Germany
- Graduate School of Systemic Neurosciences, LMU Munich, Munich, Germany
| | - Veronika Schwarz
- Chair of Cell Biology and Anatomy, Biomedical Center (BMC), Faculty of Medicine, LMU Munich, Planegg-Martinsried, Germany
- Graduate School of Systemic Neurosciences, LMU Munich, Munich, Germany
| | - Hananeh Aliee
- Institute of Computational Biology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
| | - Simon Frerich
- Graduate School of Systemic Neurosciences, LMU Munich, Munich, Germany
- Institute for Stroke and Dementia Research, LMU University Hospital, LMU Munich, Munich, Germany
| | - Judith Fischer-Sternjak
- Chair of Physiological Genomics, Biomedical Center (BMC), Faculty of Medicine, LMU Munich, Planegg-Martinsried, Germany
- Institute of Stem Cell Research, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
| | - Riccardo Bocchi
- Chair of Physiological Genomics, Biomedical Center (BMC), Faculty of Medicine, LMU Munich, Planegg-Martinsried, Germany
- Institute of Stem Cell Research, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
- Department of Basic Neurosciences, University of Geneva, Geneva, Switzerland
| | - Tatiana Simon-Ebert
- Chair of Physiological Genomics, Biomedical Center (BMC), Faculty of Medicine, LMU Munich, Planegg-Martinsried, Germany
- Institute of Stem Cell Research, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
| | - Xianshu Bai
- Molecular Physiology, Center for Integrative Physiology and Molecular Medicine, University of Saarland, Homburg, Germany
- Center for Gender-specific Biology and Medicine (CGBM), University of Saarland, Homburg, Germany
| | - Swetlana Sirko
- Chair of Physiological Genomics, Biomedical Center (BMC), Faculty of Medicine, LMU Munich, Planegg-Martinsried, Germany
- Institute of Stem Cell Research, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
| | - Frank Kirchhoff
- Molecular Physiology, Center for Integrative Physiology and Molecular Medicine, University of Saarland, Homburg, Germany
- Center for Gender-specific Biology and Medicine (CGBM), University of Saarland, Homburg, Germany
- Experimental Research Center for Normal and Pathological Aging, University of Medicine and Pharmacy of Craiova, 200349, Craiova, Romania
| | - Martin Dichgans
- Institute for Stroke and Dementia Research, LMU University Hospital, LMU Munich, Munich, Germany
- Munich Cluster for Systems Neurology SYNERGY, LMU Munich, Munich, Germany
- German Centre for Neurodegenerative Diseases, Munich, Germany
| | - Magdalena Götz
- Chair of Physiological Genomics, Biomedical Center (BMC), Faculty of Medicine, LMU Munich, Planegg-Martinsried, Germany
- Institute of Stem Cell Research, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
- Munich Cluster for Systems Neurology SYNERGY, LMU Munich, Munich, Germany
| | - Fabian J Theis
- Institute of Computational Biology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
- Department of Mathematics, Technical University of Munich, Munich, Germany
| | - Jovica Ninkovic
- Chair of Cell Biology and Anatomy, Biomedical Center (BMC), Faculty of Medicine, LMU Munich, Planegg-Martinsried, Germany.
- Institute of Stem Cell Research, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany.
- Munich Cluster for Systems Neurology SYNERGY, LMU Munich, Munich, Germany.
| |
Collapse
|
10
|
Forouzanfar F, Pourbagher-Shahri AM, Vafaee F, Sathyapalan T, Sahebkar A. Phytochemicals as Substances that Affect Astrogliosis and their Implications for the Management of Neurodegenerative Diseases. Curr Med Chem 2024; 31:5550-5566. [PMID: 37143267 DOI: 10.2174/0929867330666230504121523] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/02/2022] [Revised: 02/28/2023] [Accepted: 03/15/2023] [Indexed: 05/06/2023]
Abstract
Astrocytes are a multifunctional subset of glial cells that are important in maintaining the health and function of the central nervous system (CNS). Reactive astrocytes may release inflammatory mediators, chemokines, and cytokines, as well as neurotrophic factors. There may be neuroprotective (e.g., cytokines, like IL-6 and TGF-b) and neurotoxic effects (e.g., IL-1β and TNF-a) associated with these molecules. In response to CNS pathologies, astrocytes go to a state called astrogliosis which produces diverse and heterogenic functions specific to the pathology. Astrogliosis has been linked to the progression of many neurodegenerative disorders. Phytochemicals are a large group of compounds derived from natural herbs with health benefits. This review will summarize how several phytochemicals affect neurodegenerative diseases (e.g., Alzheimer's disease, Huntington's disease, amyotrophic lateral sclerosis, and Parkinson's disease) in basic medical and clinical studies and how they might affect astrogliosis in the process.
Collapse
Affiliation(s)
- Fatemeh Forouzanfar
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Mohammad Pourbagher-Shahri
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farzaneh Vafaee
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Thozhukat Sathyapalan
- Department of Academic Diabetes, Endocrinology and Metabolism, Hull York Medical School, University of Hull, Hull- HU3 2JZ, UK
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
11
|
Harry GJ. Microglia Colonization Associated with Angiogenesis and Neural Cell Development. ADVANCES IN NEUROBIOLOGY 2024; 37:163-178. [PMID: 39207692 DOI: 10.1007/978-3-031-55529-9_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 09/04/2024]
Abstract
The temporal and spatial pattern of microglia colonization of the nervous system implies a role in early stages of organ development including cell proliferation, differentiation, and neurovascularization. As microglia colonize and establish within the developing nervous system, they assume a neural-specific identity and contribute to key developmental events. Their association around blood vessels implicates them in development of the vascular system or vice versa. A similar association has been reported for neural cell proliferation and associated phenotypic shifts and for cell fate differentiation to neuronal or glial phenotypes. These processes are accomplished by phagocytic activities, cell-cell contact relationships, and secretion of various factors. This chapter will present data currently available from studies evaluating the dynamic and interactive nature of these processes throughout the progression of nervous system development.
Collapse
Affiliation(s)
- G Jean Harry
- Mechanistic Toxicology Branch, Division of Translational Toxicology, National Institute Environmental Health Sciences, Research Triangle Park, NC, USA.
| |
Collapse
|
12
|
Grochow T, Beck B, Rentería-Solís Z, Schares G, Maksimov P, Strube C, Raqué L, Kacza J, Daugschies A, Fietz SA. Reduced neural progenitor cell count and cortical neurogenesis in guinea pigs congenitally infected with Toxoplasma gondii. Commun Biol 2023; 6:1209. [PMID: 38012384 PMCID: PMC10682419 DOI: 10.1038/s42003-023-05576-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/17/2023] [Accepted: 11/13/2023] [Indexed: 11/29/2023] Open
Abstract
Toxoplasma (T.) gondii is an obligate intracellular parasite with a worldwide distribution. Congenital infection can lead to severe pathological alterations in the brain. To examine the effects of toxoplasmosis in the fetal brain, pregnant guinea pigs are infected with T. gondii oocysts on gestation day 23 and dissected 10, 17 and 25 days afterwards. We show the neocortex to represent a target region of T. gondii and the parasite to infect neural progenitor cells (NPCs), neurons and astrocytes in the fetal brain. Importantly, we observe a significant reduction in neuron number at end-neurogenesis and find a marked reduction in NPC count, indicating that impaired neurogenesis underlies the neuronal decrease in infected fetuses. Moreover, we observe focal microglioses to be associated with T. gondii in the fetal brain. Our findings expand the understanding of the pathophysiology of congenital toxoplasmosis, especially contributing to the development of cortical malformations.
Collapse
Affiliation(s)
- Thomas Grochow
- Institute of Veterinary Anatomy, Histology and Embryology, Faculty of Veterinary Medicine, Leipzig University, Leipzig, Germany
- Institute of Parasitology, Faculty of Veterinary Medicine, Leipzig University, Leipzig, Germany
| | - Britta Beck
- Institute of Veterinary Anatomy, Histology and Embryology, Faculty of Veterinary Medicine, Leipzig University, Leipzig, Germany
- Institute of Parasitology, Faculty of Veterinary Medicine, Leipzig University, Leipzig, Germany
| | - Zaida Rentería-Solís
- Institute of Parasitology, Faculty of Veterinary Medicine, Leipzig University, Leipzig, Germany
| | - Gereon Schares
- National Reference Laboratory for Toxoplasmosis, Institute of Epidemiology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Pavlo Maksimov
- National Reference Laboratory for Toxoplasmosis, Institute of Epidemiology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Christina Strube
- Institute for Parasitology, Centre for Infection Medicine, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Lisa Raqué
- Veterinary practice Raqué, Leipzig, Germany
| | - Johannes Kacza
- BioImaging Core Facility, Faculty of Veterinary Medicine, Leipzig University, Leipzig, Germany
| | - Arwid Daugschies
- Institute of Parasitology, Faculty of Veterinary Medicine, Leipzig University, Leipzig, Germany
| | - Simone A Fietz
- Institute of Veterinary Anatomy, Histology and Embryology, Faculty of Veterinary Medicine, Leipzig University, Leipzig, Germany.
| |
Collapse
|
13
|
Williamson MR, Le SP, Franzen RL, Donlan NA, Rosow JL, Nicot-Cartsonis MS, Cervantes A, Deneen B, Dunn AK, Jones TA, Drew MR. Subventricular zone cytogenesis provides trophic support for neural repair in a mouse model of stroke. Nat Commun 2023; 14:6341. [PMID: 37816732 PMCID: PMC10564905 DOI: 10.1038/s41467-023-42138-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/06/2023] [Accepted: 09/28/2023] [Indexed: 10/12/2023] Open
Abstract
Stroke enhances proliferation of neural precursor cells within the subventricular zone (SVZ) and induces ectopic migration of newborn cells towards the site of injury. Here, we characterize the identity of cells arising from the SVZ after stroke and uncover a mechanism through which they facilitate neural repair and functional recovery. With genetic lineage tracing, we show that SVZ-derived cells that migrate towards cortical photothrombotic stroke in mice are predominantly undifferentiated precursors. We find that ablation of neural precursor cells or conditional knockout of VEGF impairs neuronal and vascular reparative responses and worsens recovery. Replacement of VEGF is sufficient to induce neural repair and recovery. We also provide evidence that CXCL12 from peri-infarct vasculature signals to CXCR4-expressing cells arising from the SVZ to direct their ectopic migration. These results support a model in which vasculature surrounding the site of injury attracts cells from the SVZ, and these cells subsequently provide trophic support that drives neural repair and recovery.
Collapse
Affiliation(s)
- Michael R Williamson
- Institute for Neuroscience, University of Texas at Austin, Austin, TX, USA.
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, USA.
| | - Stephanie P Le
- Department of Psychology, University of Texas at Austin, Austin, TX, USA
| | - Ronald L Franzen
- Department of Psychology, University of Texas at Austin, Austin, TX, USA
- School of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Nicole A Donlan
- Department of Psychology, University of Texas at Austin, Austin, TX, USA
| | - Jill L Rosow
- Department of Psychology, University of Texas at Austin, Austin, TX, USA
| | | | - Alexis Cervantes
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, USA
- Center for Cancer Neuroscience and Department of Neurosurgery, Baylor College of Medicine, Houston, TX, USA
| | - Benjamin Deneen
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, USA
- Center for Cancer Neuroscience and Department of Neurosurgery, Baylor College of Medicine, Houston, TX, USA
| | - Andrew K Dunn
- Institute for Neuroscience, University of Texas at Austin, Austin, TX, USA
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, USA
| | - Theresa A Jones
- Institute for Neuroscience, University of Texas at Austin, Austin, TX, USA
- Department of Psychology, University of Texas at Austin, Austin, TX, USA
| | - Michael R Drew
- Institute for Neuroscience, University of Texas at Austin, Austin, TX, USA
- Center for Learning and Memory and Department of Neuroscience, University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
14
|
de Paiva IHR, da Silva RS, Mendonça IP, Duarte-Silva E, Botelho de Souza JR, Peixoto CA. Fructooligosaccharide (FOS) and Galactooligosaccharide (GOS) Improve Neuroinflammation and Cognition By Up-regulating IRS/PI3K/AKT Signaling Pathway in Diet-induced Obese Mice. J Neuroimmune Pharmacol 2023; 18:427-447. [PMID: 37382830 DOI: 10.1007/s11481-023-10069-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/06/2023] [Accepted: 05/12/2023] [Indexed: 06/30/2023]
Abstract
Increasing evidence has indicated that prebiotics as an alternative treatment for neuropsychiatric diseases. This study evaluated the prebiotics Fructooligosaccharides (FOS) and Galactooligosaccharides (GOS) on the modulation of neuroinflammation and cognition in an experimental model of mice high-fat diet fed. Initially, mice were distributed in the following groups: (A) control standard diet (n = 15) and (B) HFD for 18 weeks (n = 30). In the 13th week, the mice were later divided into the following experimental groups: (A) Control (n = 15); (B) HFD (n = 14); and (C) HFD + Prebiotics (n = 14). From the 13th week, the HFD + Prebiotics group received a high-fat diet and a combination of FOS and GOS. In the 18th week, all animals performed the T-maze and Barnes Maze, and were later euthanized. Biochemical and molecular analyzes were performed to assess neuroinflammation, neurogenesis, synaptic plasticity, and intestinal inflammation. Mice fed HFD had higher blood glucose, triglyceridemia, cholesterolemia, and higher serum IL-1β associated with impaired learning and memory. These obese mice also showed activation of microglia and astrocytes and significant immunoreactivity of neuroinflammatory and apoptosis markers, such as TNF-α, COX-2, and Caspase-3, in addition to lower expression of neurogenesis and synaptic plasticity markers, such as NeuN, KI-67, CREB-p, and BDNF. FOS and GOS treatment significantly improved the biochemistry profile and decreased serum IL-1β levels. Treatment with FOS and GOS also reduced TNF-α, COX-2, Caspase-3, Iba-1, and GFAP-positive cells in the dentate gyrus, decreasing neuroinflammation and neuronal death caused by chronic HFD consumption. In addition, FOS and GOS promoted synaptic plasticity by increasing NeuN, p-CREB, BDNF, and KI-67, restoring spatial learning ability and memory. Moreover, FOS and GOS on HFD modulated the insulin pathway, which was proved by up-regulating IRS/PI3K/AKT signaling pathway, followed by a decreasing Aβ plate and Tau phosphorylation. Furthermore, the prebiotic intervention reshaped the HFD-induced imbalanced gut microbiota by modulating the composition of the bacterial community, markedly increasing Bacteroidetes. In addition, prebiotics decreased intestinal inflammation and leaky gut. In conclusion, FOS and GOS significantly modulated the gut microbiota and IRS/PI3K/AKT signaling pathway, decreased neuroinflammation, and promoted neuroplasticity improving spatial learning and memory. Schematic summarizing of the pathways by FOS and GOS improves memory and learning through the gut-brain axis. FOS and GOS improve the microbial profile, reducing intestinal inflammation and leaky gut in the distal colon. Specifically, the administration of FOS and GOS decreases the expression of TLR4, TNF-α, IL-1β, and MMP9 and increases the expression of occludin and IL-10. Prebiotics inhibit neuroinflammation, neuronal apoptosis, and reactive gliosis in the hippocampus but restore synaptic plasticity, neuronal proliferation, and neurogenesis.
Collapse
Affiliation(s)
- Igor Henrique Rodrigues de Paiva
- Laboratório de Ultraestrutura, Instituto Aggeu Magalhães, FIOCRUZ, Av. Moraes Rego s/n, Recife, CEP, 50670-420, Brazil.
- Postgraduate Program in Biological Sciences/Center of Biosciences, Federal University of Pernambuco (UFPE), Recife, PE, Brazil.
| | - Rodrigo Soares da Silva
- Laboratório de Ultraestrutura, Instituto Aggeu Magalhães, FIOCRUZ, Av. Moraes Rego s/n, Recife, CEP, 50670-420, Brazil
| | - Ingrid Prata Mendonça
- Laboratório de Ultraestrutura, Instituto Aggeu Magalhães, FIOCRUZ, Av. Moraes Rego s/n, Recife, CEP, 50670-420, Brazil
- Postgraduate Program in Biological Sciences/Center of Biosciences, Federal University of Pernambuco (UFPE), Recife, PE, Brazil
| | - Eduardo Duarte-Silva
- Laboratório de Ultraestrutura, Instituto Aggeu Magalhães, FIOCRUZ, Av. Moraes Rego s/n, Recife, CEP, 50670-420, Brazil
- Postgraduate Program in Biosciences and Biotechnology for Health (PPGBBS), Oswaldo Cruz Foundation (FIOCRUZ-PE)/Aggeu Magalhães Institute (IAM), Recife, PE, Brazil
| | | | - Christina Alves Peixoto
- Laboratório de Ultraestrutura, Instituto Aggeu Magalhães, FIOCRUZ, Av. Moraes Rego s/n, Recife, CEP, 50670-420, Brazil.
- Institute of Science and Technology On Neuroimmunomodulation (INCT-NIM), Rio de Janeiro, Brazil.
| |
Collapse
|
15
|
Jiang A, Handley RR, Lehnert K, Snell RG. From Pathogenesis to Therapeutics: A Review of 150 Years of Huntington's Disease Research. Int J Mol Sci 2023; 24:13021. [PMID: 37629202 PMCID: PMC10455900 DOI: 10.3390/ijms241613021] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/28/2023] [Revised: 08/15/2023] [Accepted: 08/18/2023] [Indexed: 08/27/2023] Open
Abstract
Huntington's disease (HD) is a debilitating neurodegenerative genetic disorder caused by an expanded polyglutamine-coding (CAG) trinucleotide repeat in the huntingtin (HTT) gene. HD behaves as a highly penetrant dominant disorder likely acting through a toxic gain of function by the mutant huntingtin protein. Widespread cellular degeneration of the medium spiny neurons of the caudate nucleus and putamen are responsible for the onset of symptomology that encompasses motor, cognitive, and behavioural abnormalities. Over the past 150 years of HD research since George Huntington published his description, a plethora of pathogenic mechanisms have been proposed with key themes including excitotoxicity, dopaminergic imbalance, mitochondrial dysfunction, metabolic defects, disruption of proteostasis, transcriptional dysregulation, and neuroinflammation. Despite the identification and characterisation of the causative gene and mutation and significant advances in our understanding of the cellular pathology in recent years, a disease-modifying intervention has not yet been clinically approved. This review includes an overview of Huntington's disease, from its genetic aetiology to clinical presentation and its pathogenic manifestation. An updated view of molecular mechanisms and the latest therapeutic developments will also be discussed.
Collapse
Affiliation(s)
- Andrew Jiang
- Applied Translational Genetics Group, Centre for Brain Research, School of Biological Sciences, The University of Auckland, Auckland 1010, New Zealand; (R.R.H.); (K.L.); (R.G.S.)
| | | | | | | |
Collapse
|
16
|
Fu XD, Mobley WC. Therapeutic Potential of PTB Inhibition Through Converting Glial Cells to Neurons in the Brain. Annu Rev Neurosci 2023; 46:145-165. [PMID: 37428606 DOI: 10.1146/annurev-neuro-083022-113120] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 07/12/2023]
Abstract
Cell replacement therapy represents a promising approach for treating neurodegenerative diseases. Contrary to the common addition strategy to generate new neurons from glia by overexpressing a lineage-specific transcription factor(s), a recent study introduced a subtraction strategy by depleting a single RNA-binding protein, Ptbp1, to convert astroglia to neurons not only in vitro but also in the brain. Given its simplicity, multiple groups have attempted to validate and extend this attractive approach but have met with difficulty in lineage tracing newly induced neurons from mature astrocytes, raising the possibility of neuronal leakage as an alternative explanation for apparent astrocyte-to-neuron conversion. This review focuses on the debate over this critical issue. Importantly, multiple lines of evidence suggest that Ptbp1 depletion can convert a selective subpopulation of glial cells into neurons and, via this and other mechanisms, reverse deficits in a Parkinson's disease model, emphasizing the importance of future efforts in exploring this therapeutic strategy.
Collapse
Affiliation(s)
- Xiang-Dong Fu
- Westlake Laboratory of Life Sciences and Biomedicine, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China;
| | - William C Mobley
- Department of Neuroscience, University of California, San Diego, La Jolla, California, USA;
| |
Collapse
|
17
|
Yang JL, Fan H, Fu FF, Guo BL, Huang Y, Sun L, Wang WT, Xing JL, Hu XT, Ding YQ, Zhang K, Hu YZ, Wang YZ. Transient neurogenesis in ischemic cortex from Sox2 + astrocytes. Neural Regen Res 2023; 18:1521-1526. [PMID: 36571357 PMCID: PMC10075105 DOI: 10.4103/1673-5374.357910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/19/2022] Open
Abstract
The adult cortex has long been regarded as non-neurogenic. Whether injury can induce neurogenesis in the adult cortex is still controversial. Here, we report that focal ischemia stimulates a transient wave of local neurogenesis. Using 5'-bromo-2'-deoxyuridine labeling, we demonstrated a rapid generation of doublecortin-positive neuroblasts that died quickly in mouse cerebral cortex following ischemia. Nestin-CreER-based cell ablation and fate mapping showed a small contribution of neuroblasts by subventricular zone neural stem cells. Using a mini-photothrombotic ischemia mouse model and retrovirus expressing green fluorescent protein labeling, we observed maturation of locally generated new neurons. Furthermore, fate tracing analyses using PDGFRα-, GFAP-, and Sox2-CreER mice showed a transient wave of neuroblast generation in mild ischemic cortex and identified that Sox2-positive astrocytes were the major neurogenic cells in adult cortex. In addition, a similar upregulation of Sox2 and appearance of neuroblasts were observed in the focal ischemic cortex of Macaca mulatta. Our findings demonstrated a transient neurogenic response of Sox2-positive astrocytes in ischemic cortex, which suggests the possibility of inducing neuronal regeneration by amplifying this intrinsic response in the future.
Collapse
Affiliation(s)
- Jia-Lei Yang
- Department of Neurobiology and Institute of Neurosciences, School of Basic Medicine, Fourth Military Medical University, Xi'an, Shaanxi Province; China National Clinical Research Center for Neurological Diseases, Department of Neurology, Beijing Tiantan Hospital, Beijing, China
| | - Hong Fan
- Department of Neurobiology and Institute of Neurosciences, School of Basic Medicine, Fourth Military Medical University; Department of Neurology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Fan-Fan Fu
- Department of Neurobiology and Institute of Neurosciences, School of Basic Medicine, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Bao-Lin Guo
- Department of Neurobiology and Institute of Neurosciences, School of Basic Medicine, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Ying Huang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institute of Brain Science, Fudan University, Shanghai, China
| | - Li Sun
- Department of Neurobiology and Institute of Neurosciences, School of Basic Medicine, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Wen-Ting Wang
- Department of Neurobiology and Institute of Neurosciences, School of Basic Medicine, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Jun-Ling Xing
- Department of Neurobiology and Institute of Neurosciences, School of Basic Medicine, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Xin-Tian Hu
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan Province, China
| | - Yu-Qiang Ding
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institute of Brain Science, Fudan University, Shanghai, China
| | - Kun Zhang
- Department of Neurobiology and Institute of Neurosciences, School of Basic Medicine, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Ying-Zhou Hu
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan Province, China
| | - Ya-Zhou Wang
- Department of Neurobiology and Institute of Neurosciences, School of Basic Medicine, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| |
Collapse
|
18
|
Vangansewinkel T, Lemmens S, Tiane A, Geurts N, Dooley D, Vanmierlo T, Pejler G, Hendrix S. Therapeutic administration of mouse mast cell protease 6 improves functional recovery after traumatic spinal cord injury in mice by promoting remyelination and reducing glial scar formation. FASEB J 2023; 37:e22939. [PMID: 37130013 DOI: 10.1096/fj.202201942rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/26/2022] [Revised: 04/06/2023] [Accepted: 04/14/2023] [Indexed: 05/03/2023]
Abstract
Traumatic spinal cord injury (SCI) most often leads to permanent paralysis due to the inability of axons to regenerate in the adult mammalian central nervous system (CNS). In the past, we have shown that mast cells (MCs) improve the functional outcome after SCI by suppressing scar tissue formation at the lesion site via mouse mast cell protease 6 (mMCP6). In this study, we investigated whether recombinant mMCP6 can be used therapeutically to improve the functional outcome after SCI. Therefore, we applied mMCP6 locally via an intrathecal catheter in the subacute phase after a spinal cord hemisection injury in mice. Our findings showed that hind limb motor function was significantly improved in mice that received recombinant mMCP6 compared with the vehicle-treated group. In contrast to our previous findings in mMCP6 knockout mice, the lesion size and expression levels of the scar components fibronectin, laminin, and axon-growth-inhibitory chondroitin sulfate proteoglycans were not affected by the treatment with recombinant mMCP6. Surprisingly, no difference in infiltration of CD4+ T cells and reactivity of Iba-1+ microglia/macrophages at the lesion site was observed between the mMCP6-treated mice and control mice. Additionally, local protein levels of the pro- and anti-inflammatory mediators IL-1β, IL-2, IL-4, IL-6, IL-10, TNF-α, IFNγ, and MCP-1 were comparable between the two treatment groups, indicating that locally applied mMCP6 did not affect inflammatory processes after injury. However, the increase in locomotor performance in mMCP6-treated mice was accompanied by reduced demyelination and astrogliosis in the perilesional area after SCI. Consistently, we found that TNF-α/IL-1β-astrocyte activation was decreased and that oligodendrocyte precursor cell (OPC) differentiation was increased after recombinant mMCP6 treatment in vitro. Mechanistically, this suggests effects of mMCP6 on reducing astrogliosis and improving (re)myelination in the spinal cord after injury. In conclusion, these data show for the first time that recombinant mMCP6 is therapeutically active in enhancing recovery after SCI.
Collapse
Affiliation(s)
- Tim Vangansewinkel
- Cardio and Organ Systems, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
- VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, Leuven, Belgium
| | - Stefanie Lemmens
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Assia Tiane
- Department of Neuroscience, Faculty of Medicine and Life Sciences, Biomedical Research Institute, Hasselt University, Hasselt, Belgium
- Department Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
- University MS Center (UMSC) Hasselt-Pelt, Hasselt, Belgium
| | - Nathalie Geurts
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Dearbhaile Dooley
- School of Medicine, Health Sciences Centre, University College Dublin, Belfield, Ireland
- UCD Conway Institute of Biomolecular & Biomedical Research University College Dublin, Belfield, Ireland
| | - Tim Vanmierlo
- Department of Neuroscience, Faculty of Medicine and Life Sciences, Biomedical Research Institute, Hasselt University, Hasselt, Belgium
- Department Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
- University MS Center (UMSC) Hasselt-Pelt, Hasselt, Belgium
| | - Gunnar Pejler
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Sven Hendrix
- Institute for Translational Medicine, Medical School Hamburg, Hamburg, Germany
| |
Collapse
|
19
|
Li L, Li X, Han R, Wu M, Ma Y, Chen Y, Zhang H, Li Y. Therapeutic Potential of Chinese Medicine for Endogenous Neurogenesis: A Promising Candidate for Stroke Treatment. Pharmaceuticals (Basel) 2023; 16:ph16050706. [PMID: 37242489 DOI: 10.3390/ph16050706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/20/2022] [Revised: 04/26/2023] [Accepted: 05/03/2023] [Indexed: 05/28/2023] Open
Abstract
Strokes are a leading cause of morbidity and mortality in adults worldwide. Extensive preclinical studies have shown that neural-stem-cell-based treatments have great therapeutic potential for stroke. Several studies have confirmed that the effective components of traditional Chinese medicine can protect and maintain the survival, proliferation, and differentiation of endogenous neural stem cells through different targets and mechanisms. Therefore, the use of Chinese medicines to activate and promote endogenous nerve regeneration and repair is a potential treatment option for stroke patients. Here, we summarize the current knowledge regarding neural stem cell strategies for ischemic strokes and the potential effects of these Chinese medicines on neuronal regeneration.
Collapse
Affiliation(s)
- Lin Li
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Tianjin University of Traditional Chinese Medicine, Ministry of Education, Tianjin 301617, China
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xiao Li
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Tianjin University of Traditional Chinese Medicine, Ministry of Education, Tianjin 301617, China
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Rui Han
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Tianjin University of Traditional Chinese Medicine, Ministry of Education, Tianjin 301617, China
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Meirong Wu
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Tianjin University of Traditional Chinese Medicine, Ministry of Education, Tianjin 301617, China
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yaolei Ma
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Tianjin University of Traditional Chinese Medicine, Ministry of Education, Tianjin 301617, China
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yuzhao Chen
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Tianjin University of Traditional Chinese Medicine, Ministry of Education, Tianjin 301617, China
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Han Zhang
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Tianjin University of Traditional Chinese Medicine, Ministry of Education, Tianjin 301617, China
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yue Li
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Tianjin University of Traditional Chinese Medicine, Ministry of Education, Tianjin 301617, China
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| |
Collapse
|
20
|
Simpson Ragdale H, Clements M, Tang W, Deltcheva E, Andreassi C, Lai AG, Chang WH, Pandrea M, Andrew I, Game L, Uddin I, Ellis M, Enver T, Riccio A, Marguerat S, Parrinello S. Injury primes mutation-bearing astrocytes for dedifferentiation in later life. Curr Biol 2023; 33:1082-1098.e8. [PMID: 36841240 PMCID: PMC10615847 DOI: 10.1016/j.cub.2023.02.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/08/2022] [Revised: 12/08/2022] [Accepted: 02/02/2023] [Indexed: 02/26/2023]
Abstract
Despite their latent neurogenic potential, most normal parenchymal astrocytes fail to dedifferentiate to neural stem cells in response to injury. In contrast, aberrant lineage plasticity is a hallmark of gliomas, and this suggests that tumor suppressors may constrain astrocyte dedifferentiation. Here, we show that p53, one of the most commonly inactivated tumor suppressors in glioma, is a gatekeeper of astrocyte fate. In the context of stab-wound injury, p53 loss destabilized the identity of astrocytes, priming them to dedifferentiate in later life. This resulted from persistent and age-exacerbated neuroinflammation at the injury site and EGFR activation in periwound astrocytes. Mechanistically, dedifferentiation was driven by the synergistic upregulation of mTOR signaling downstream of p53 loss and EGFR, which reinstates stemness programs via increased translation of neurodevelopmental transcription factors. Thus, our findings suggest that first-hit mutations remove the barriers to injury-induced dedifferentiation by sensitizing somatic cells to inflammatory signals, with implications for tumorigenesis.
Collapse
Affiliation(s)
- Holly Simpson Ragdale
- Samantha Dickson Brain Cancer Unit, UCL Cancer Institute, University College London, London WC1E 6DD, UK
| | - Melanie Clements
- Samantha Dickson Brain Cancer Unit, UCL Cancer Institute, University College London, London WC1E 6DD, UK
| | - Wenhao Tang
- MRC London Institute of Medical Sciences, Du Cane Road, London W12 0NN, UK; Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Du Cane Road, London W12 0NN, UK
| | - Elitza Deltcheva
- UCL Cancer Institute, University College London, London WC1E 6DD, UK
| | - Catia Andreassi
- UCL Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
| | - Alvina G Lai
- Institute of Health Informatics, University College London, London NW1 2DA, UK
| | - Wai Hoong Chang
- Institute of Health Informatics, University College London, London NW1 2DA, UK
| | - Maria Pandrea
- Samantha Dickson Brain Cancer Unit, UCL Cancer Institute, University College London, London WC1E 6DD, UK
| | - Ivan Andrew
- MRC London Institute of Medical Sciences, Du Cane Road, London W12 0NN, UK; Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Du Cane Road, London W12 0NN, UK
| | - Laurence Game
- MRC London Institute of Medical Sciences, Du Cane Road, London W12 0NN, UK; Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Du Cane Road, London W12 0NN, UK
| | - Imran Uddin
- CRUK City of London Centre Single Cell Genomics Facility, UCL Cancer Institute, University College London, London WC1E 6DD, UK; Genomics Translational Technology Platform, UCL Cancer Institute, University College London, London WC1E 6DD, UK
| | - Michael Ellis
- Samantha Dickson Brain Cancer Unit, UCL Cancer Institute, University College London, London WC1E 6DD, UK
| | - Tariq Enver
- UCL Cancer Institute, University College London, London WC1E 6DD, UK
| | - Antonella Riccio
- UCL Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
| | - Samuel Marguerat
- MRC London Institute of Medical Sciences, Du Cane Road, London W12 0NN, UK; Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Du Cane Road, London W12 0NN, UK.
| | - Simona Parrinello
- Samantha Dickson Brain Cancer Unit, UCL Cancer Institute, University College London, London WC1E 6DD, UK.
| |
Collapse
|
21
|
Neuronal and tumourigenic boundaries of glioblastoma plasticity. Trends Cancer 2023; 9:223-236. [PMID: 36460606 DOI: 10.1016/j.trecan.2022.10.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/08/2022] [Revised: 10/19/2022] [Accepted: 10/21/2022] [Indexed: 12/03/2022]
Abstract
Glioblastoma (GBM) remains the most lethal primary brain cancer largely due to recurrence of treatment-resistant disease. Current therapies are ultimately ineffective as GBM tumour cells adapt their identity to escape treatment. Recent advances in single-cell epigenetics and transcriptomics highlight heterogeneous cell populations in GBM tumours originating from unique cancerous genetic aberrations. However, they also suggest that tumour cells conserve molecular properties of parent neuronal cells, with their permissive epigenetic profiles enabling them to morph along a finite number of reprogramming routes to evade treatment. Here, we review the known tumourigenic, neurodevelopmental and brain-injury boundaries of GBM plasticity, and propose that effective treatment of GBM requires the addition of therapeutics that restrain GBM plasticity.
Collapse
|
22
|
Wahedi A, Soondram C, Murphy AE, Skene N, Rahman S. Transcriptomic analyses reveal neuronal specificity of Leigh syndrome associated genes. J Inherit Metab Dis 2023; 46:243-260. [PMID: 36502462 DOI: 10.1002/jimd.12578] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 08/15/2022] [Revised: 11/09/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022]
Abstract
Leigh syndrome is a rare, inherited, complex neurometabolic disorder with genetic and clinical heterogeneity. Features present in affected patients range from classical stepwise developmental regression to ataxia, seizures, tremor, and occasionally psychiatric manifestations. Currently, more than 100 monogenic causes of Leigh syndrome have been identified, yet the pathophysiology remains unknown. Here, we sought to determine the cellular specificity within the brain of all genes currently associated with Leigh syndrome. Further, we aimed to investigate potential genetic commonalities between Leigh syndrome and other disorders with overlapping clinical features. Enrichment of our target genes within the brain was evaluated with co-expression (CoExp) network analyses constructed using existing UK Brain Expression Consortium data. To determine the cellular specificity of the Leigh associated genes, we employed expression weighted cell type enrichment (EWCE) analysis of single-cell RNA-Seq data. Finally, CoExp network modules demonstrating enrichment of Leigh syndrome associated genes were then utilised for synaptic gene ontology analysis and heritability analysis. CoExp network analyses revealed that Leigh syndrome associated genes exhibit the highest levels of expression in brain regions most affected on MRI in affected patients. EWCE revealed significant enrichment of target genes in hippocampal and somatosensory pyramidal neurons and interneurons of the brain. Analysis of CoExp modules enriched with our target genes revealed preferential association with pre-synaptic structures. Heritability studies suggested some common enrichment between Leigh syndrome and Parkinson disease and epilepsy. Our findings suggest a primary mitochondrial dysfunction as the underlying basis of Leigh syndrome, with associated genes primarily expressed in neuronal cells.
Collapse
Affiliation(s)
- Azizia Wahedi
- Mitochondrial Research Group, Genetics and Genomic Medicine Department, UCL Great Ormond Street Institute of Child Health, London, UK
- Medical Sciences Division, University of Oxford, Oxford, UK
| | - Chandika Soondram
- Mitochondrial Research Group, Genetics and Genomic Medicine Department, UCL Great Ormond Street Institute of Child Health, London, UK
- Department of Biochemistry, University College London, London, UK
| | - Alan E Murphy
- UK Dementia Research Institute at Imperial College London, London, UK
- Department of Brain Sciences, Imperial College London, London, UK
| | - Nathan Skene
- UK Dementia Research Institute at Imperial College London, London, UK
- Department of Brain Sciences, Imperial College London, London, UK
| | - Shamima Rahman
- Mitochondrial Research Group, Genetics and Genomic Medicine Department, UCL Great Ormond Street Institute of Child Health, London, UK
- Metabolic Unit, Great Ormond Street Hospital, London, UK
| |
Collapse
|
23
|
Shi RX, Liu C, Xu YJ, Wang YY, He BD, He XC, Du HZ, Hu B, Jiao J, Liu CM, Teng ZQ. The Role and Mechanism of Transglutaminase 2 in Regulating Hippocampal Neurogenesis after Traumatic Brain Injury. Cells 2023; 12:cells12040558. [PMID: 36831225 PMCID: PMC9954100 DOI: 10.3390/cells12040558] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/28/2022] [Revised: 01/03/2023] [Accepted: 02/06/2023] [Indexed: 02/12/2023] Open
Abstract
Traumatic brain injury usually results in neuronal loss and cognitive deficits. Promoting endogenous neurogenesis has been considered as a viable treatment option to improve functional recovery after TBI. However, neural stem/progenitor cells (NSPCs) in neurogenic regions are often unable to migrate and differentiate into mature neurons at the injury site. Transglutaminase 2 (TGM2) has been identified as a crucial component of neurogenic niche, and significantly dysregulated after TBI. Therefore, we speculate that TGM2 may play an important role in neurogenesis after TBI, and strategies targeting TGM2 to promote endogenous neural regeneration may be applied in TBI therapy. Using a tamoxifen-induced Tgm2 conditional knockout mouse line and a mouse model of stab wound injury, we investigated the role and mechanism of TGM2 in regulating hippocampal neurogenesis after TBI. We found that Tgm2 was highly expressed in adult NSPCs and up-regulated after TBI. Conditional deletion of Tgm2 resulted in the impaired proliferation and differentiation of NSPCs, while Tgm2 overexpression enhanced the abilities of self-renewal, proliferation, differentiation, and migration of NSPCs after TBI. Importantly, injection of lentivirus overexpressing TGM2 significantly promoted hippocampal neurogenesis after TBI. Therefore, TGM2 is a key regulator of hippocampal neurogenesis and a pivotal therapeutic target for intervention following TBI.
Collapse
Affiliation(s)
- Ruo-Xi Shi
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100408, China
| | - Cong Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Ya-Jie Xu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Ying-Ying Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100408, China
| | - Bao-Dong He
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100408, China
| | - Xuan-Cheng He
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Hong-Zhen Du
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Baoyang Hu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100408, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Jianwei Jiao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100408, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Chang-Mei Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100408, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- Correspondence: (C.-M.L.); (Z.-Q.T.)
| | - Zhao-Qian Teng
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100408, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- Correspondence: (C.-M.L.); (Z.-Q.T.)
| |
Collapse
|
24
|
Duzan A, Reinken D, McGomery TL, Ferencz NM, Plummer JM, Basti MM. Endocannabinoids are potential inhibitors of glioblastoma multiforme proliferation. JOURNAL OF INTEGRATIVE MEDICINE 2023; 21:120-129. [PMID: 36805391 DOI: 10.1016/j.joim.2023.01.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 03/21/2022] [Accepted: 09/14/2022] [Indexed: 02/04/2023]
Abstract
Globally, it is evident that glioblastoma multiforme (GBM) is an aggressive malignant cancer with a high mortality rate and no effective treatment options. Glioblastoma is classified as the stage-four progression of a glioma tumor, and its diagnosis results in a shortened life expectancy. Treatment options for GBM include chemotherapy, immunotherapy, surgical intervention, and conventional pharmacotherapy; however, at best, they extend the patient's life by a maximum of 5 years. GBMs are considered incurable due to their high recurrence rate, despite various aggressive therapeutic approaches which can have many serious adverse effects. Ceramides, classified as endocannabinoids, offer a promising novel therapeutic approach for GBM. Endocannabinoids may enhance the apoptosis of GBM cells but have no effect on normal healthy neural cells. Cannabinoids promote atypical protein kinase C, deactivate fatty acid amide hydrolase enzymes, and activate transient receptor potential vanilloid 1 (TRPV1) and TRPV2 to induce pro-apoptotic signaling pathways without increasing endogenous cannabinoids. In previous in vivo studies, endocannabinoids, chemically classified as amide formations of oleic and palmitic acids, have been shown to increase the pro-apoptotic activity of human cancer cells and inhibit cell migration and angiogenesis. This review focuses on the biological synthesis and pharmacology of endogenous cannabinoids for the enhancement of cancer cell apoptosis, which have potential as a novel therapy for GBM. Please cite this article as: Duzan A, Reinken D, McGomery TL, Ferencz N, Plummer JM, Basti MM. Endocannabinoids are potential inhibitors of glioblastoma multiforme proliferation. J Integr Med. 2023; Epub ahead of print.
Collapse
Affiliation(s)
- Ashraf Duzan
- School of Pharmacy, Wingate University, Wingate, NC 28174, USA; Applied Science and Technology Department, North Carolina State University of Agriculture and Technology, Greensboro, NC 27411, USA.
| | - Desiree Reinken
- College of Nursing, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | | | | | - Jacob M Plummer
- Collage of Arts and Science, Department of Chemistry and Physics, Wingate University, Wingate, NC 28174, USA
| | - Mufeed M Basti
- Applied Science and Technology Department, North Carolina State University of Agriculture and Technology, Greensboro, NC 27411, USA.
| |
Collapse
|
25
|
Völkner M, Wagner F, Kurth T, Sykes AM, Del Toro Runzer C, Ebner LJA, Kavak C, Alexaki VI, Cimalla P, Mehner M, Koch E, Karl MO. Modeling inducible neuropathologies of the retina with differential phenotypes in organoids. Front Cell Neurosci 2023; 17:1106287. [PMID: 37213216 PMCID: PMC10196395 DOI: 10.3389/fncel.2023.1106287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/23/2022] [Accepted: 04/06/2023] [Indexed: 05/23/2023] Open
Abstract
Neurodegenerative diseases remain incompletely understood and therapies are needed. Stem cell-derived organoid models facilitate fundamental and translational medicine research. However, to which extent differential neuronal and glial pathologic processes can be reproduced in current systems is still unclear. Here, we tested 16 different chemical, physical, and cell functional manipulations in mouse retina organoids to further explore this. Some of the treatments induce differential phenotypes, indicating that organoids are competent to reproduce distinct pathologic processes. Notably, mouse retina organoids even reproduce a complex pathology phenotype with combined photoreceptor neurodegeneration and glial pathologies upon combined (not single) application of HBEGF and TNF, two factors previously associated with neurodegenerative diseases. Pharmacological inhibitors for MAPK signaling completely prevent photoreceptor and glial pathologies, while inhibitors for Rho/ROCK, NFkB, and CDK4 differentially affect them. In conclusion, mouse retina organoids facilitate reproduction of distinct and complex pathologies, mechanistic access, insights for further organoid optimization, and modeling of differential phenotypes for future applications in fundamental and translational medicine research.
Collapse
Affiliation(s)
- Manuela Völkner
- Technische Universität Dresden, Center for Regenerative Therapies Dresden (CRTD), Dresden, Germany
- German Center for Neurodegenerative Diseases (DZNE), Dresden, Germany
| | - Felix Wagner
- Technische Universität Dresden, Center for Regenerative Therapies Dresden (CRTD), Dresden, Germany
- German Center for Neurodegenerative Diseases (DZNE), Dresden, Germany
| | - Thomas Kurth
- Technische Universität Dresden, Center for Molecular and Cellular Bioengineering (CMCB), Technology Platform Core Facility Electron Microscopy and Histology, Dresden, Germany
| | - Alex M. Sykes
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | | | - Lynn J. A. Ebner
- German Center for Neurodegenerative Diseases (DZNE), Dresden, Germany
| | - Cagri Kavak
- German Center for Neurodegenerative Diseases (DZNE), Dresden, Germany
| | - Vasileia Ismini Alexaki
- Technische Universität Dresden, Institute of Clinical Chemistry and Laboratory Medicine, University Clinic Carl Gustav Carus, Dresden, Germany
| | - Peter Cimalla
- Technische Universität Dresden, Carl Gustav Carus Faculty of Medicine, Department of Anesthesiology and Intensive Care Medicine, Clinical Sensoring and Monitoring, Dresden, Germany
| | - Mirko Mehner
- Technische Universität Dresden, Carl Gustav Carus Faculty of Medicine, Department of Anesthesiology and Intensive Care Medicine, Clinical Sensoring and Monitoring, Dresden, Germany
| | - Edmund Koch
- Technische Universität Dresden, Carl Gustav Carus Faculty of Medicine, Department of Anesthesiology and Intensive Care Medicine, Clinical Sensoring and Monitoring, Dresden, Germany
| | - Mike O. Karl
- Technische Universität Dresden, Center for Regenerative Therapies Dresden (CRTD), Dresden, Germany
- German Center for Neurodegenerative Diseases (DZNE), Dresden, Germany
- *Correspondence: Mike O. Karl, ,
| |
Collapse
|
26
|
Wu Y, Tang Z, Zhang J, Wang Y, Liu S. Restoration of spinal cord injury: From endogenous repairing process to cellular therapy. Front Cell Neurosci 2022; 16:1077441. [PMID: 36523818 PMCID: PMC9744968 DOI: 10.3389/fncel.2022.1077441] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/23/2022] [Accepted: 11/08/2022] [Indexed: 09/26/2023] Open
Abstract
Spinal cord injury (SCI) disrupts neurological pathways and impacts sensory, motor, and autonomic nerve function. There is no effective treatment for SCI currently. Numerous endogenous cells, including astrocytes, macrophages/microglia, and oligodendrocyte, are involved in the histological healing process following SCI. By interfering with cells during the SCI repair process, some advancements in the therapy of SCI have been realized. Nevertheless, the endogenous cell types engaged in SCI repair and the current difficulties these cells confront in the therapy of SCI are poorly defined, and the mechanisms underlying them are little understood. In order to better understand SCI and create new therapeutic strategies and enhance the clinical translation of SCI repair, we have comprehensively listed the endogenous cells involved in SCI repair and summarized the six most common mechanisms involved in SCI repair, including limiting the inflammatory response, protecting the spared spinal cord, enhancing myelination, facilitating neovascularization, producing neurotrophic factors, and differentiating into neural/colloidal cell lines.
Collapse
Affiliation(s)
| | | | | | | | - Shengwen Liu
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
27
|
Miranda-Negrón Y, García-Arrarás JE. Radial glia and radial glia-like cells: Their role in neurogenesis and regeneration. Front Neurosci 2022; 16:1006037. [PMID: 36466166 PMCID: PMC9708897 DOI: 10.3389/fnins.2022.1006037] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/28/2022] [Accepted: 10/21/2022] [Indexed: 01/25/2024] Open
Abstract
Radial glia is a cell type traditionally associated with the developing nervous system, particularly with the formation of cortical layers in the mammalian brain. Nonetheless, some of these cells, or closely related types, called radial glia-like cells are found in adult central nervous system structures, functioning as neurogenic progenitors in normal homeostatic maintenance and in response to injury. The heterogeneity of radial glia-like cells is nowadays being probed with molecular tools, primarily by the expression of specific genes that define cell types. Similar markers have identified radial glia-like cells in the nervous system of non-vertebrate organisms. In this review, we focus on adult radial glia-like cells in neurogenic processes during homeostasis and in response to injury. We highlight our results using a non-vertebrate model system, the echinoderm Holothuria glaberrima where we have described a radial glia-like cell that plays a prominent role in the regeneration of the holothurian central nervous system.
Collapse
Affiliation(s)
| | - José E. García-Arrarás
- Department of Biology, College of Natural Sciences, University of Puerto Rico, San Juan, Puerto Rico
| |
Collapse
|
28
|
Expression level of the reprogramming factor NeuroD1 is critical for neuronal conversion efficiency from different cell types. Sci Rep 2022; 12:17980. [PMID: 36289433 PMCID: PMC9606360 DOI: 10.1038/s41598-022-22802-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/20/2022] [Accepted: 10/19/2022] [Indexed: 01/24/2023] Open
Abstract
Several transcription factors, including NeuroD1, have been shown to act as neuronal reprogramming factors (RFs) that induce neuronal conversion from somatic cells. However, it remains unexplored whether expression levels of RFs in the original cells affect reprogramming efficiency. Here, we show that the neuronal reprogramming efficiency from two distinct glial cell types, microglia and astrocytes, is substantially dependent on the expression level of NeuroD1: low expression failed to induce neuronal reprogramming, whereas elevated NeuroD1 expression dramatically improved reprogramming efficiency in both cell types. Moreover, even under conditions where NeuroD1 expression was too low to induce effective conversion by itself, combined expression of three RFs (Ascl1, Brn2, and NeuroD1) facilitated the breaking down of cellular barriers, inducing neuronal reprogramming. Thus, our results suggest that a sufficiently high expression level of RFs, or alternatively their combinatorial expression, is the key to achieving efficient neuronal reprogramming from different cells.
Collapse
|
29
|
Savya SP, Li F, Lam S, Wellman SM, Stieger KC, Chen K, Eles JR, Kozai TDY. In vivo spatiotemporal dynamics of astrocyte reactivity following neural electrode implantation. Biomaterials 2022; 289:121784. [PMID: 36103781 PMCID: PMC10231871 DOI: 10.1016/j.biomaterials.2022.121784] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/27/2022] [Revised: 08/24/2022] [Accepted: 08/29/2022] [Indexed: 11/02/2022]
Abstract
Brain computer interfaces (BCIs), including penetrating microelectrode arrays, enable both recording and stimulation of neural cells. However, device implantation inevitably causes injury to brain tissue and induces a foreign body response, leading to reduced recording performance and stimulation efficacy. Astrocytes in the healthy brain play multiple roles including regulating energy metabolism, homeostatic balance, transmission of neural signals, and neurovascular coupling. Following an insult to the brain, they are activated and gather around the site of injury. These reactive astrocytes have been regarded as one of the main contributors to the formation of a glial scar which affects the performance of microelectrode arrays. This study investigates the dynamics of astrocytes within the first 2 weeks after implantation of an intracortical microelectrode into the mouse brain using two-photon microscopy. From our observation astrocytes are highly dynamic during this period, exhibiting patterns of process extension, soma migration, morphological activation, and device encapsulation that are spatiotemporally distinct from other glial cells, such as microglia or oligodendrocyte precursor cells. This detailed characterization of astrocyte reactivity will help to better understand the tissue response to intracortical devices and lead to the development of more effective intervention strategies to improve the functional performance of neural interfacing technology.
Collapse
Affiliation(s)
- Sajishnu P Savya
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA; Northwestern University, USA
| | - Fan Li
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA; Center for Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, USA; Computational Modeling & Simulation PhD Program, University of Pittsburgh, Pittsburgh, PA, USA
| | - Stephanie Lam
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA; Center for Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, USA
| | - Steven M Wellman
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA; Center for Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kevin C Stieger
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA; Center for Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, USA
| | - Keying Chen
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA; Center for Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, USA
| | - James R Eles
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA; Center for Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, USA
| | - Takashi D Y Kozai
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA; Center for Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, USA; Center for Neuroscience, University of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA; McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA; NeuroTech Center, University of Pittsburgh Brain Institute, Pittsburgh, PA, USA.
| |
Collapse
|
30
|
Yuan Y, Liu L, Du Y, Fan R, Zhang R, Zhou N. p-hydroxy benzaldehyde revitalizes the microenvironment of peri-infarct cortex in rats after cerebral ischemia-reperfusion. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 105:154379. [PMID: 35987017 DOI: 10.1016/j.phymed.2022.154379] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 05/27/2022] [Revised: 07/21/2022] [Accepted: 08/02/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND The formation of glial scar around the ischemic core following cerebral blood interruption exerts a protective effect in the subacute phase but impedes neurorepair in the chronic phase. Therefore, the present study aimed to explore whether p-hydroxy benzaldehyde (p-HBA), a phenolic compound isolated from Gastrodia elata Blume, can cut the Gordian knot of glial scar and promote brain repair after cerebral ischemia. METHODS The effects of p-HBA on neurorepair were evaluated using a rat model of transient middle cerebral artery occlusion (tMCAO). The motor functions were evaluated by neurobehavioral tests, the pathophysiological processes in the peri-infarct cortex (PIC) were detected by viral-based lineage tracking or immunofluorescence staining, and the putative signaling pathway was analyzed by western blot. RESULTS Administration of p-HBA in the acute stage after stroke onset alleviated the motor impairment in tMCAO rats in a time-dependent manner. The corresponding cellular events were inhibition of astrogliosis, facilitating the conversion of reactive astrocytes (RAs) into neurons, and prompting angiogenesis in PIC, thereby protecting the structure of the neurovascular unit (NVU). One of the underlying molecular mechanisms is the activation of the neurogenic switch of the Wnt/β-catenin signaling pathway. Notably, p-HBA only promotes astrocyte-to-neuron conversion in the PIC, and only partial RAs were converted to neurons. This pattern of conversion ensures that the brain structure remains unaltered, and the beneficial role of glial scarring is preserved during the subacute phase after ischemia. CONCLUSIONS These results provided a potential approach to address the dilemma of glial scarring after brain injury, i.e., the pharmacological promotion of astrocyte-to-neuron conversion in the PIC without interfering with normal brain tissue, which mitigates but does not eliminate the glial scar. Subsequently, the neuron rescue-unfriendly environment is switched to a beneficial reconstruction milieu in PIC, which is conducive to neurorepair. Moreover, p-HBA could be a candidate for pharmacological intervention.
Collapse
Affiliation(s)
- Yajin Yuan
- College of Chinese Materia Medica and Yunnan Key Laboratory of Southern Medicinal Utilization, Yunnan University of Chinese Medicine, 1076 Yuhua Rd, Chenggong City, Kunming, Yunnan 650500, China
| | - Lijun Liu
- College of Chinese Materia Medica and Yunnan Key Laboratory of Southern Medicinal Utilization, Yunnan University of Chinese Medicine, 1076 Yuhua Rd, Chenggong City, Kunming, Yunnan 650500, China
| | - Yao Du
- College of Chinese Materia Medica and Yunnan Key Laboratory of Southern Medicinal Utilization, Yunnan University of Chinese Medicine, 1076 Yuhua Rd, Chenggong City, Kunming, Yunnan 650500, China
| | - Ruoxi Fan
- College of Chinese Materia Medica and Yunnan Key Laboratory of Southern Medicinal Utilization, Yunnan University of Chinese Medicine, 1076 Yuhua Rd, Chenggong City, Kunming, Yunnan 650500, China
| | - Rongping Zhang
- College of Chinese Materia Medica and Yunnan Key Laboratory of Southern Medicinal Utilization, Yunnan University of Chinese Medicine, 1076 Yuhua Rd, Chenggong City, Kunming, Yunnan 650500, China
| | - Ningna Zhou
- College of Chinese Materia Medica and Yunnan Key Laboratory of Southern Medicinal Utilization, Yunnan University of Chinese Medicine, 1076 Yuhua Rd, Chenggong City, Kunming, Yunnan 650500, China.
| |
Collapse
|
31
|
IRES-mediated Wnt2 translation in apoptotic neurons triggers astrocyte dedifferentiation. NPJ Regen Med 2022; 7:42. [PMID: 36056026 PMCID: PMC9440034 DOI: 10.1038/s41536-022-00248-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/29/2021] [Accepted: 08/08/2022] [Indexed: 11/30/2022] Open
Abstract
Reactive astrogliosis usually bears some properties of neural progenitors. How injury triggers astrocyte dedifferentiation remains largely unclear. Here, we report that ischemia induces rapid up-regulation of Wnt2 protein in apoptotic neurons and activation of canonical Wnt signaling in reactive astrocytes in mice, primates and human. Local delivery of Wnt2 shRNA abolished the dedifferentiation of astrocytes while over-expressing Wnt2 promoted progenitor marker expression and neurogenesis. Both the activation of Wnt signaling and dedifferentiation of astrocytes was compromised in ischemic caspase-3−/− cortex. Over-expressing stabilized β-catenin not only facilitated neurogenesis but also promoted functional recovery in ischemic caspase-3−/− mice. Further analysis showed that apoptotic neurons up-regulated Wnt2 protein via internal ribosome entry site (IRES)-mediated translation. Knocking down death associated protein 5 (DAP5), a key protein in IRES-mediated protein translation, significantly diminished Wnt activation and astrocyte dedifferentiation. Our data demonstrated an apoptosis-initiated Wnt-activating mechanism which triggers astrocytic dedifferentiation and facilitates neuronal regeneration.
Collapse
|
32
|
Webster SE, Spitsbergen JB, Linn DM, Webster MK, Otteson D, Cooley-Themm C, Linn CL. Transcriptome Changes in Retinal Pigment Epithelium Post-PNU-282987 Treatment Associated with Adult Retinal Neurogenesis in Mice. J Mol Neurosci 2022; 72:1990-2010. [PMID: 35867327 DOI: 10.1007/s12031-022-02049-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/02/2022] [Accepted: 07/12/2022] [Indexed: 10/17/2022]
Abstract
PNU-282987, a selective alpha7 nicotinic acetylcholine receptor agonist, has previously been shown to have both neurogenic and broad regenerative effects in the adult murine retina. The objective of this study was to assay the molecular mechanism by which PNU-282987 promotes the production of Muller-derived progenitor cells through signaling via the resident retinal pigment epithelium. These Muller-derived progenitor cells generate a myriad of differentiated neurons throughout the retina that have previously been characterized by morphology. Herein, we demonstrate that topical application of PNU-282987 stimulates production of functional neurons as measured by electroretinograms. Further, we examine the mechanism of how this phenomenon occurs through activation of this atypical receptor using a transcriptomic approach isolated retinal pigment epithelium activated by PNU-282987 and in whole retina. We provide evidence that PNU-282987 causes a bi-modal signaling event in which early activation primes the retina with an inflammatory response and developmental signaling cues, followed by an inhibition of gliotic mechanisms and a decrease in the immune response, ending with upregulation of genes associated with specific retinal neuron generation. Taken together, these data provide evidence that PNU-282987 activates the retinal pigment epithelium to signal to Muller glia to produce Muller-derived progenitor cells, which can differentiate into new, functional neurons in adult mice. These data not only increase our understanding of how adult mammalian retinal regeneration can occur, but also provide therapeutic promise for treating functional vision loss.
Collapse
Affiliation(s)
- Sarah E Webster
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI, USA
| | - Jake B Spitsbergen
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI, USA
| | - David M Linn
- Department of Biomedical Sciences, Grand Valley State University, Grand Rapids, MI, USA
| | - Mark K Webster
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI, USA
| | - Deborah Otteson
- University of Houston College of Optometry, Houston, TX, USA
| | - Cynthia Cooley-Themm
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI, USA
| | - Cindy L Linn
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI, USA.
| |
Collapse
|
33
|
Hou Y, Luo D, Hou Y, Luan J, Zhan J, Chen Z, E S, Xu L, Lin D. Bu Shen Huo Xue decoction promotes functional recovery in spinal cord injury mice by improving the microenvironment to promote axonal regeneration. Chin Med 2022; 17:85. [PMID: 35820953 PMCID: PMC9277908 DOI: 10.1186/s13020-022-00639-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/10/2022] [Accepted: 06/28/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Bu-Shen-Huo-Xue (BSHX) decoction has been used in the postoperative rehabilitation of patients with spinal cord injury in China. In the present study, we aim to reveal the bioactive compounds in BSHX decoction and comprehensively explore the effects of BSHX decoction and the underlying mechanism in spinal cord injury recovery. METHODS The main chemical constituents in BSHX decoction were determined by UPLC-MS/MS. SCI mice were induced by a pneumatic impact device at T9-T10 level of the vertebra, and treated with BSHX decoction. Basso-Beattie-Bresnahan (BBB) score, footprint analysis, hematoxylin-eosin (H&E) staining, Nissl staining and a series of immunofluorescence staining were performed to investigate the functional recovery, glial scar formation and axon regeneration after BSHX treatment. Immunofluorescent staining of bromodeoxyuridine (BrdU), neuronal nuclei (NeuN) and glial fibrillary acidic protein (GFAP) was performed to evaluate the effect of BSHX decoction on neural stem cells (NSCs) proliferation and differentiation. RESULTS We found that the main compounds in BSHX decoction were Gallic acid, 3,4-Dihydroxybenzaldehyde, (+)-Catechin, Paeoniflorin, Rosmarinic acid, and Diosmetin. BSHX decoction improved the pathological findings in SCI mice through invigorating blood circulation and cleaning blood stasis in the lesion site. In addition, it reduced tissue damage and neuron loss by inhibiting astrocytes activation, and promoting the polarization of microglia towards M2 phenotype. The functional recovery test revealed that BSHX treatment improved the motor function recovery post SCI. CONCLUSIONS Our study provided evidence that BSHX treatment could improve the microenvironment of the injured spinal cord to promote axonal regeneration and functional recovery in SCI mice.
Collapse
Affiliation(s)
- Yonghui Hou
- Department of Orthopedic Surgery, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, No. 111 Dade Road, Guangzhou, 510120, Guangdong, People's Republic of China.,Guangzhou University of Chinese Medicine, No. 12, Jichang Road, Baiyun District, Guangzhou, 510405, Guangdong, People's Republic of China.,Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, People's Republic of China
| | - Dan Luo
- Department of Orthopedic Surgery, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, No. 111 Dade Road, Guangzhou, 510120, Guangdong, People's Republic of China.,Guangzhou University of Chinese Medicine, No. 12, Jichang Road, Baiyun District, Guangzhou, 510405, Guangdong, People's Republic of China.,Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, People's Republic of China
| | - Yu Hou
- Department of Orthopedic Surgery, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, No. 111 Dade Road, Guangzhou, 510120, Guangdong, People's Republic of China.,Guangzhou University of Chinese Medicine, No. 12, Jichang Road, Baiyun District, Guangzhou, 510405, Guangdong, People's Republic of China.,Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, People's Republic of China
| | - Jiyao Luan
- Department of Orthopedic Surgery, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, No. 111 Dade Road, Guangzhou, 510120, Guangdong, People's Republic of China.,Guangzhou University of Chinese Medicine, No. 12, Jichang Road, Baiyun District, Guangzhou, 510405, Guangdong, People's Republic of China.,Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, People's Republic of China
| | - Jiheng Zhan
- Department of Orthopedic Surgery, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, No. 111 Dade Road, Guangzhou, 510120, Guangdong, People's Republic of China.,Guangzhou University of Chinese Medicine, No. 12, Jichang Road, Baiyun District, Guangzhou, 510405, Guangdong, People's Republic of China.,Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, People's Republic of China
| | - Zepeng Chen
- Department of Orthopedic Surgery, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, No. 111 Dade Road, Guangzhou, 510120, Guangdong, People's Republic of China.,Guangzhou University of Chinese Medicine, No. 12, Jichang Road, Baiyun District, Guangzhou, 510405, Guangdong, People's Republic of China.,Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, People's Republic of China
| | - Shunmei E
- Guangzhou University of Chinese Medicine, No. 12, Jichang Road, Baiyun District, Guangzhou, 510405, Guangdong, People's Republic of China.,Department of Laboratory Medicine, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou Higher Education Mega Center, 55 Neihuan Xi Road, Panyu District, Guangzhou, 510120, Guangdong, People's Republic of China
| | - Liangliang Xu
- Guangzhou University of Chinese Medicine, No. 12, Jichang Road, Baiyun District, Guangzhou, 510405, Guangdong, People's Republic of China. .,Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, People's Republic of China. .,Key Laboratory of Orthopaedics & Traumatology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, People's Republic of China.
| | - Dingkun Lin
- Department of Orthopedic Surgery, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, No. 111 Dade Road, Guangzhou, 510120, Guangdong, People's Republic of China. .,Guangzhou University of Chinese Medicine, No. 12, Jichang Road, Baiyun District, Guangzhou, 510405, Guangdong, People's Republic of China.
| |
Collapse
|
34
|
Enhancement of Neuroglial Extracellular Matrix Formation and Physiological Activity of Dopaminergic Neural Cocultures by Macromolecular Crowding. Cells 2022; 11:cells11142131. [PMID: 35883574 PMCID: PMC9317039 DOI: 10.3390/cells11142131] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/13/2022] [Revised: 06/28/2022] [Accepted: 07/01/2022] [Indexed: 02/06/2023] Open
Abstract
The neuroglial extracellular matrix (ECM) provides critical support and physiological cues for the proper growth, differentiation, and function of neuronal cells in the brain. However, in most in vitro settings that study neural physiology, cells are grown as monolayers on stiff surfaces that maximize adhesion and proliferation, and, therefore, they lack the physiological cues that ECM in native neuronal tissues provides. Macromolecular crowding (MMC) is a biophysical phenomenon based on the principle of excluded volume that can be harnessed to induce native ECM deposition by cells in culture. Here, we show that MMC using two species of Ficoll with vitamin C supplementation significantly boosts deposition of relevant brain ECM by cultured human astrocytes. Dopaminergic neurons cocultured on this astrocyte–ECM bed prepared under MMC treatment showed longer and denser neuronal extensions, a higher number of pre ad post synaptic contacts, and increased physiological activity, as evidenced by higher frequency calcium oscillation, compared to standard coculture conditions. When the pharmacological activity of various compounds was tested on MMC-treated cocultures, their responses were enhanced, and for apomorphine, a D2-receptor agonist, it was inverted in comparison to control cell culture conditions, thus emulating responses observed in in vivo settings. These results indicate that macromolecular crowding can harness the ECM-building potential of human astrocytes in vitro forming an ultra-flat 3D microenvironment that makes neural cultures more physiological and pharmacological relevant.
Collapse
|
35
|
Romero-Morales AI, Robertson GL, Rastogi A, Rasmussen ML, Temuri H, McElroy GS, Chakrabarty RP, Hsu L, Almonacid PM, Millis BA, Chandel NS, Cartailler JP, Gama V. Human iPSC-derived cerebral organoids model features of Leigh syndrome and reveal abnormal corticogenesis. Development 2022; 149:275911. [PMID: 35792828 PMCID: PMC9357378 DOI: 10.1242/dev.199914] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/17/2021] [Accepted: 05/18/2022] [Indexed: 01/12/2023]
Abstract
Leigh syndrome (LS) is a rare, inherited neurometabolic disorder that presents with bilateral brain lesions caused by defects in the mitochondrial respiratory chain and associated nuclear-encoded proteins. We generated human induced pluripotent stem cells (iPSCs) from three LS patient-derived fibroblast lines. Using whole-exome and mitochondrial sequencing, we identified unreported mutations in pyruvate dehydrogenase (GM0372, PDH; GM13411, MT-ATP6/PDH) and dihydrolipoyl dehydrogenase (GM01503, DLD). These LS patient-derived iPSC lines were viable and capable of differentiating into progenitor populations, but we identified several abnormalities in three-dimensional differentiation models of brain development. LS patient-derived cerebral organoids showed defects in neural epithelial bud generation, size and cortical architecture at 100 days. The double mutant MT-ATP6/PDH line produced organoid neural precursor cells with abnormal mitochondrial morphology, characterized by fragmentation and disorganization, and showed an increased generation of astrocytes. These studies aim to provide a comprehensive phenotypic characterization of available patient-derived cell lines that can be used to study Leigh syndrome.
Collapse
Affiliation(s)
| | - Gabriella L. Robertson
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Anuj Rastogi
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Megan L. Rasmussen
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Hoor Temuri
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Gregory Scott McElroy
- Feinberg School of Medicine, Department of Medicine, Division of Pulmonary and Critical Care Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Ram Prosad Chakrabarty
- Feinberg School of Medicine, Department of Medicine, Division of Pulmonary and Critical Care Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Lawrence Hsu
- Creative Data Solutions, Vanderbilt Center for Stem Cell Biology,Vanderbilt University,Nashville, TN 37232, USA
| | | | - Bryan A. Millis
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232, USA,Vanderbilt Biophotonics Center,Vanderbilt University, Nashville, TN 37232, USA
| | - Navdeep S. Chandel
- Feinberg School of Medicine, Department of Medicine, Division of Pulmonary and Critical Care Medicine, Northwestern University, Chicago, IL 60611, USA,Feinberg School of Medicine, Department of Biochemistry and Molecular Genetics, Northwestern University, Chicago, IL 60611, USA
| | - Jean-Philippe Cartailler
- Creative Data Solutions, Vanderbilt Center for Stem Cell Biology,Vanderbilt University,Nashville, TN 37232, USA
| | - Vivian Gama
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232, USA,Creative Data Solutions, Vanderbilt Center for Stem Cell Biology,Vanderbilt University,Nashville, TN 37232, USA,Vanderbilt Brain Institute,Vanderbilt University,Nashville, TN 37232, USA,Author for correspondence ()
| |
Collapse
|
36
|
Chen W, Zheng Q, Huang Q, Ma S, Li M. Repressing PTBP1 fails to convert reactive astrocytes to dopaminergic neurons in a 6-hydroxydopamine mouse model of Parkinson's disease. eLife 2022; 11:e75636. [PMID: 35535997 PMCID: PMC9208759 DOI: 10.7554/elife.75636] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/19/2021] [Accepted: 05/06/2022] [Indexed: 11/16/2022] Open
Abstract
Lineage reprogramming of resident glial cells to dopaminergic neurons (DAns) is an attractive prospect of the cell-replacement therapy for Parkinson's disease (PD). However, it is unclear whether repressing polypyrimidine tract binding protein 1 (PTBP1) could efficiently convert astrocyte to DAns in the substantia nigra and striatum. Although reporter-positive DAns were observed in both groups after delivering the adeno-associated virus (AAV) expressing a reporter with shRNA or CRISPR-CasRx to repress astroglial PTBP1, the possibility of AAV leaking into endogenous DAns could not be excluded without using a reliable lineage-tracing method. By adopting stringent lineage-tracing strategy, two other studies show that either knockdown or genetic deletion of quiescent astroglial PTBP1 fails to obtain induced DAns under physiological condition. However, the role of reactive astrocytes might be underestimated because upon brain injury, reactive astrocyte can acquire certain stem cell hallmarks that may facilitate the lineage conversion process. Therefore, whether reactive astrocytes could be genuinely converted to DAns after PTBP1 repression in a PD model needs further validation. In this study, we used Aldh1l1-CreERT2-mediated specific astrocyte-lineage-tracing method to investigate whether reactive astrocytes could be converted to DAns in a 6-hydroxydopamine (6-OHDA) mouse model of PD. However, we found that no astrocyte-originated DAn was generated after effective and persistent knockdown of astroglial PTBP1 either in the substantia nigra or in striatum, while AAV 'leakage' to nearby neurons was easily observed. Our results confirm that repressing PTBP1 does not convert astrocytes to DAns, regardless of physiological or PD-related pathological conditions.
Collapse
Affiliation(s)
- Weizhao Chen
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen UniversityGuangzhouChina
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen UniversityGuangzhouChina
| | - Qiongping Zheng
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen UniversityGuangzhouChina
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen UniversityGuangzhouChina
| | - Qiaoying Huang
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen UniversityGuangzhouChina
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen UniversityGuangzhouChina
| | - Shanshan Ma
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen UniversityGuangzhouChina
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen UniversityGuangzhouChina
| | - Mingtao Li
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen UniversityGuangzhouChina
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen UniversityGuangzhouChina
| |
Collapse
|
37
|
Liu X, Li C, Li J, Xie L, Hong Z, Zheng K, Zhao X, Yang A, Xu X, Tao H, Qiu M, Yang J. EGF signaling promotes the lineage conversion of astrocytes into oligodendrocytes. Mol Med 2022; 28:50. [PMID: 35508991 PMCID: PMC9066914 DOI: 10.1186/s10020-022-00478-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/09/2022] [Accepted: 04/18/2022] [Indexed: 12/15/2022] Open
Abstract
Background The conversion of astrocytes activated by nerve injuries to oligodendrocytes is not only beneficial to axonal remyelination, but also helpful for reversal of glial scar. Recent studies have shown that pathological niche promoted the Sox10-mediated astrocytic transdifferentiation to oligodendrocytes. The extracellular factors underlying the cell fate switching are not known. Methods Astrocytes were obtained from mouse spinal cord dissociation culture and purified by differential adherent properties. The lineage conversion of astrocytes into oligodendrocyte lineage cells was carried out by Sox10-expressing virus infection both in vitro and in vivo, meanwhile, epidermal growth factor (EGF) and epidermal growth factor receptor (EGFR) inhibitor Gefitinib were adopted to investigate the function of EGF signaling in this fate transition process. Pharmacological inhibition analyses were performed to examine the pathway connecting the EGF with the expression of oligodendrogenic genes and cell fate transdifferentiation. Results EGF treatment facilitated the Sox10-induced transformation of astrocytes to O4+ induced oligodendrocyte precursor cells (iOPCs) in vitro. The transdifferentiation of astrocytes to iOPCs went through two distinct but interconnected processes: (1) dedifferentiation of astrocytes to astrocyte precursor cells (APCs); (2) transformation of APCs to iOPCs, EGF signaling was involved in both processes. And EGF triggered astrocytes to express oligodendrogenic genes Olig1 and Olig2 by activating extracellular signal-regulated kinase 1 and 2 (Erk1/2) pathway. In addition, we discovered that EGF can enhance astrocyte transdifferentiation in injured spinal cord tissues. Conclusions These findings provide strong evidence that EGF facilitates the transdifferentiation of astrocytes to oligodendrocytes, and suggest that targeting the EGF-EGFR-Erk1/2 signaling axis may represent a novel therapeutic strategy for myelin repair in injured central nervous system (CNS) tissues. Supplementary Information The online version contains supplementary material available at 10.1186/s10020-022-00478-5.
Collapse
Affiliation(s)
- Xinyu Liu
- College of Life Sciences, Zhejiang University, Hangzhou, 310058, China.,College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China.,Key Laboratory of Organ Development and Regeneration of Zhejiang Province, Hangzhou, 311121, China
| | - Conghui Li
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China.,Key Laboratory of Organ Development and Regeneration of Zhejiang Province, Hangzhou, 311121, China
| | - Jiao Li
- Department of Eugenics and Genetics, Maternal and Child Health Care Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530003, China
| | - Lesi Xie
- Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Zeng Hong
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China.,Key Laboratory of Organ Development and Regeneration of Zhejiang Province, Hangzhou, 311121, China
| | - Kang Zheng
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China.,Key Laboratory of Organ Development and Regeneration of Zhejiang Province, Hangzhou, 311121, China
| | - Xiaofeng Zhao
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China.,Key Laboratory of Organ Development and Regeneration of Zhejiang Province, Hangzhou, 311121, China
| | - Aifen Yang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China.,Key Laboratory of Organ Development and Regeneration of Zhejiang Province, Hangzhou, 311121, China
| | - Xiaofeng Xu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China.,Key Laboratory of Organ Development and Regeneration of Zhejiang Province, Hangzhou, 311121, China
| | - Huaping Tao
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China.,Key Laboratory of Organ Development and Regeneration of Zhejiang Province, Hangzhou, 311121, China
| | - Mengsheng Qiu
- College of Life Sciences, Zhejiang University, Hangzhou, 310058, China. .,College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China. .,Key Laboratory of Organ Development and Regeneration of Zhejiang Province, Hangzhou, 311121, China.
| | - Junlin Yang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China. .,Key Laboratory of Organ Development and Regeneration of Zhejiang Province, Hangzhou, 311121, China.
| |
Collapse
|
38
|
Lazic A, Balint V, Stanisavljevic Ninkovic D, Peric M, Stevanovic M. Reactive and Senescent Astroglial Phenotypes as Hallmarks of Brain Pathologies. Int J Mol Sci 2022; 23:ijms23094995. [PMID: 35563385 PMCID: PMC9100382 DOI: 10.3390/ijms23094995] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/31/2022] [Revised: 04/23/2022] [Accepted: 04/27/2022] [Indexed: 02/06/2023] Open
Abstract
Astrocytes, as the most abundant glial cells in the central nervous system, are tightly integrated into neural networks and participate in numerous aspects of brain physiology and pathology. They are the main homeostatic cells in the central nervous system, and the loss of astrocyte physiological functions and/or gain of pro-inflammatory functions, due to their reactivation or cellular senescence, can have profound impacts on the surrounding microenvironment with pathological outcomes. Although the importance of astrocytes is generally recognized, and both senescence and reactive astrogliosis have been extensively reviewed independently, there are only a few comparative overviews of these complex processes. In this review, we summarize the latest data regarding astrocyte reactivation and senescence, and outline similarities and differences between these phenotypes from morphological, functional, and molecular points of view. A special focus has been given to neurodegenerative diseases, where these phenotypic alternations of astrocytes are significantly implicated. We also summarize current perspectives regarding new advances in model systems based on astrocytes as well as data pointing to these glial cells as potential therapeutic targets.
Collapse
Affiliation(s)
- Andrijana Lazic
- Laboratory for Human Molecular Genetics, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia; (V.B.); (D.S.N.); (M.P.); (M.S.)
- Correspondence:
| | - Vanda Balint
- Laboratory for Human Molecular Genetics, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia; (V.B.); (D.S.N.); (M.P.); (M.S.)
| | - Danijela Stanisavljevic Ninkovic
- Laboratory for Human Molecular Genetics, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia; (V.B.); (D.S.N.); (M.P.); (M.S.)
| | - Mina Peric
- Laboratory for Human Molecular Genetics, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia; (V.B.); (D.S.N.); (M.P.); (M.S.)
| | - Milena Stevanovic
- Laboratory for Human Molecular Genetics, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia; (V.B.); (D.S.N.); (M.P.); (M.S.)
- Faculty of Biology, University of Belgrade, Studentski trg 16, 11000 Belgrade, Serbia
- Serbian Academy of Sciences and Arts, Kneza Mihaila 35, 11001 Belgrade, Serbia
| |
Collapse
|
39
|
Generation of a Pure Culture of Neuron-like Cells with a Glutamatergic Phenotype from Mouse Astrocytes. Biomedicines 2022; 10:biomedicines10040928. [PMID: 35453678 PMCID: PMC9031297 DOI: 10.3390/biomedicines10040928] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/19/2022] [Revised: 04/09/2022] [Accepted: 04/12/2022] [Indexed: 12/04/2022] Open
Abstract
Astrocyte-to-neuron reprogramming is a promising therapeutic approach for treatment of neurodegenerative diseases. The use of small molecules as an alternative to the virus-mediated ectopic expression of lineage-specific transcription factors negates the tumorigenic risk associated with viral genetic manipulation and uncontrolled differentiation of stem cells. However, because previously developed methods for small-molecule reprogramming of astrocytes to neurons are multistep, complex, and lengthy, their applications in biomedicine, including clinical treatment, are limited. Therefore, our objective in this study was to develop a novel chemical-based approach to the cellular reprogramming of astrocytes into neurons with high efficiency and low complexity. To accomplish that, we used C8-D1a, a mouse astrocyte cell line, to assess the role of small molecules in reprogramming protocols that otherwise suffer from inconsistencies caused by variations in donor of the primary cell. We developed a new protocol by which a chemical mixture formulated with Y26732, DAPT, RepSox, CHIR99021, ruxolitinib, and SAG rapidly and efficiently induced the neural reprogramming of astrocytes in four days, with a conversion efficiency of 82 ± 6%. Upon exposure to the maturation medium, those reprogrammed cells acquired a glutaminergic phenotype over the next eleven days. We also demonstrated the neuronal functionality of the induced cells by confirming KCL-induced calcium flux.
Collapse
|
40
|
Palazzo I, Todd LJ, Hoang TV, Reh TA, Blackshaw S, Fischer AJ. NFkB-signaling promotes glial reactivity and suppresses Müller glia-mediated neuron regeneration in the mammalian retina. Glia 2022; 70:1380-1401. [PMID: 35388544 DOI: 10.1002/glia.24181] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/10/2021] [Revised: 03/28/2022] [Accepted: 03/29/2022] [Indexed: 12/25/2022]
Abstract
Müller glia (MG) in mammalian retinas are incapable of regenerating neurons after damage, whereas the MG in lower vertebrates regenerate functional neurons. Identification of cell signaling pathways and gene regulatory networks that regulate MG-mediated regeneration is key to harnessing the regenerative potential of MG. Here, we study how NFkB-signaling influences glial responses to damage and reprogramming of MG into neurons in the rodent retina. We find activation of NFkB and dynamic expression of NFkB-associated genes in MG after damage, however damage-induced NFkB activation is inhibited by microglia ablation. Knockout of NFkB in MG suppressed the accumulation of immune cells after damage. Inhibition of NFkB following NMDA-damage significantly enhanced the reprogramming of Ascl1-overexpressing MG into neuron-like cells. scRNA-seq of retinal glia following inhibition of NFkB reveals coordination with signaling via TGFβ2 and suppression of NFI and Id transcription factors. Inhibition of Smad3 signal transducer or Id transcription factors increased numbers of neuron-like cells produced by Ascl1-overexpressing MG. We conclude that NFkB is a key signaling hub that is activated in MG after damage, mediates the accumulation of immune cells, and suppresses the neurogenic potential of MG.
Collapse
Affiliation(s)
- Isabella Palazzo
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Levi J Todd
- Department of Biological Structure, College of Medicine, University of Washington, Seattle, Washington, USA
| | - Thanh V Hoang
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Thomas A Reh
- Department of Biological Structure, College of Medicine, University of Washington, Seattle, Washington, USA
| | - Seth Blackshaw
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Andy J Fischer
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
41
|
Xu Y, Liu Z, Xu S, Li C, Li M, Cao S, Sun Y, Dai H, Guo Y, Chen X, Liang W. Scientific Evidences of Calorie Restriction and Intermittent Fasting for Neuroprotection in Traumatic Brain Injury Animal Models: A Review of the Literature. Nutrients 2022; 14:1431. [PMID: 35406044 PMCID: PMC9002547 DOI: 10.3390/nu14071431] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/04/2022] [Revised: 03/28/2022] [Accepted: 03/28/2022] [Indexed: 12/11/2022] Open
Abstract
It has widely been accepted that food restriction (FR) without malnutrition has multiple health benefits. Various calorie restriction (CR) and intermittent fasting (IF) regimens have recently been reported to exert neuroprotective effects in traumatic brain injury (TBI) through variable mechanisms. However, the evidence connecting CR or IF to neuroprotection in TBI as well as current issues remaining in this research field have yet to be reviewed in literature. The objective of our review was therefore to weigh the evidence that suggests the connection between CR/IF with recovery promotion following TBI. Medline, Google Scholar and Web of Science were searched from inception to 25 February 2022. An overwhelming number of results generated suggest that several types of CR/IF play a promising role in promoting post-TBI recovery. This recovery is believed to be achieved by alleviating mitochondrial dysfunction, promoting hippocampal neurogenesis, inhibiting glial cell responses, shaping neural cell plasticity, as well as targeting apoptosis and autophagy. Further, we represent our views on the current issues and provide thoughts on the future direction of this research field.
Collapse
Affiliation(s)
- Yang Xu
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610041, China; (Y.X.); (S.X.); (C.L.); (Y.S.)
| | - Zejie Liu
- Department of Forensic Pathology and Forensic Clinical Medicine, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610041, China; (Z.L.); (H.D.)
| | - Shuting Xu
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610041, China; (Y.X.); (S.X.); (C.L.); (Y.S.)
| | - Chengxian Li
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610041, China; (Y.X.); (S.X.); (C.L.); (Y.S.)
| | - Manrui Li
- Department of Forensic Genetics, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610041, China; (M.L.); (S.C.)
| | - Shuqiang Cao
- Department of Forensic Genetics, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610041, China; (M.L.); (S.C.)
| | - Yuwen Sun
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610041, China; (Y.X.); (S.X.); (C.L.); (Y.S.)
| | - Hao Dai
- Department of Forensic Pathology and Forensic Clinical Medicine, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610041, China; (Z.L.); (H.D.)
| | - Yadong Guo
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha 410013, China;
| | - Xiameng Chen
- Department of Forensic Pathology and Forensic Clinical Medicine, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610041, China; (Z.L.); (H.D.)
| | - Weibo Liang
- Department of Forensic Genetics, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610041, China; (M.L.); (S.C.)
| |
Collapse
|
42
|
A single factor elicits multilineage reprogramming of astrocytes in the adult mouse striatum. Proc Natl Acad Sci U S A 2022; 119:e2107339119. [PMID: 35254903 PMCID: PMC8931246 DOI: 10.1073/pnas.2107339119] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/03/2023] Open
Abstract
Outside the neurogenic niches, the adult brain lacks multipotent progenitor cells. In this study, we performed a series of in vivo screens and reveal that a single factor can induce resident brain astrocytes to become induced neural progenitor cells (iNPCs), which then generate neurons, astrocytes, and oligodendrocytes. Such a conclusion is supported by single-cell RNA sequencing and multiple lineage-tracing experiments. Our discovery of iNPCs is fundamentally important for regenerative medicine since neural injuries or degeneration often lead to loss/dysfunction of all three neural lineages. Our findings also provide insights into cell plasticity in the adult mammalian brain, which has largely lost the regenerative capacity. Astrocytes in the adult brain show cellular plasticity; however, whether they have the potential to generate multiple lineages remains unclear. Here, we perform in vivo screens and identify DLX2 as a transcription factor that can unleash the multipotentiality of adult resident astrocytes. Genetic lineage tracing and time-course analyses reveal that DLX2 enables astrocytes to rapidly become ASCL1+ neural progenitor cells, which give rise to neurons, astrocytes, and oligodendrocytes in the adult mouse striatum. Single-cell transcriptomics and pseudotime trajectories further confirm a neural stem cell-like behavior of reprogrammed astrocytes, transitioning from quiescence to activation, proliferation, and neurogenesis. Gene regulatory networks and mouse genetics identify and confirm key nodes mediating DLX2-dependent fate reprogramming. These include activation of endogenous DLX family transcription factors and suppression of Notch signaling. Such reprogramming-induced multipotency of resident glial cells may be exploited for neural regeneration.
Collapse
|
43
|
Karvelas N, Bennett S, Politis G, Kouris NI, Kole C. Advances in stem cell therapy in Alzheimer's disease: a comprehensive clinical trial review. Stem Cell Investig 2022; 9:2. [PMID: 35280344 PMCID: PMC8898169 DOI: 10.21037/sci-2021-063] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/11/2021] [Accepted: 01/27/2022] [Indexed: 07/30/2023]
Abstract
Alzheimer's disease (AD) is the most common type of dementia responsible for more than 121,499 deaths from AD in 2019 making AD the sixth-leading cause in the United States. AD is a progressive neurodegenerative disorder characterized by decline of memory, behavioral impairments that affects a person's ability to function independently ultimately leading to death. The current pressing need for a treatment for (AD) and advances in the field of cell therapy, has rendered stem cell therapeutics a promising field of research. Despite advancements in stem cell technology, confirmed by encouraging pre-clinical utilization of stem cells in AD animal models, the number of clinical trials evaluating the efficacy of stem cell therapy is limited, with the results of many ongoing clinical trials on cell therapy for AD still pending. Mesenchymal stem cells (MSCs) have been the main focus in these studies, reporting encouraging results concerning safety profile, however their efficacy remains unproven. In the current article we review the latest advances regarding different sources of stem cell therapy and present a comprehensive list of every available clinical trial in national and international registries. Finally, we discuss drawbacks arising from AD pathology and technical limitations that hinder the transition of stem cell technology from bench to bedside. Our findings emphasize the need to increase clinical trials towards uncovering the mode of action and the underlying therapeutic mechanisms of transplanted cells as well as the molecular mechanisms controlling regeneration and neuronal microenvironment.
Collapse
Affiliation(s)
- Nikolaos Karvelas
- Faculty of Medicine, National and Kapodistrian University of Athens, Athina, Greece
| | | | - Georgios Politis
- Faculty of Medicine, National and Kapodistrian University of Athens, Athina, Greece
| | | | - Christo Kole
- Faculty of Medicine, National and Kapodistrian University of Athens, Athina, Greece
| |
Collapse
|
44
|
Glioblastoma Microenvironment and Cellular Interactions. Cancers (Basel) 2022; 14:cancers14041092. [PMID: 35205842 PMCID: PMC8870579 DOI: 10.3390/cancers14041092] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/05/2022] [Revised: 01/31/2022] [Accepted: 02/16/2022] [Indexed: 12/11/2022] Open
Abstract
Simple Summary This paper summarizes the crosstalk between tumor/non-tumor cells and other elements of the glioblastoma (GB) microenvironment. In tumor pathology, glial cells result in the highest number of cancers, and GB is considered the most lethal tumor of the central nervous system (CNS). The tumor microenvironment (TME) is a complex peritumoral hallo composed of tumor cells and several non-tumor cells (e.g., nervous cells, stem cells, fibroblasts, vascular and immune cells), which might be a key factor for the ineffective treatment since the microenvironment modulates the biologic status of the tumor with the increase in its evasion capacity. A deeper understanding of cell–cell interactions in the TME and with the tumor cells could be the basis for a more efficient therapy. Abstract The central nervous system (CNS) represents a complex network of different cells, such as neurons, glial cells, and blood vessels. In tumor pathology, glial cells result in the highest number of cancers, and glioblastoma (GB) is considered the most lethal tumor in this region. The development of GB leads to the infiltration of healthy tissue through the interaction between all the elements of the brain network. This results in a GB microenvironment, a complex peritumoral hallo composed of tumor cells and several non-tumor cells (e.g., nervous cells, stem cells, fibroblasts, vascular and immune cells), which might be the principal factor for the ineffective treatment due to the fact that the microenvironment modulates the biologic status of the tumor with the increase in its evasion capacity. Crosstalk between glioma cells and the brain microenvironment finally inhibits the beneficial action of molecular pathways, favoring the development and invasion of the tumor and its increasing resistance to treatment. A deeper understanding of cell–cell interactions in the tumor microenvironment (TME) and with the tumor cells could be the basis for a more efficient therapy.
Collapse
|
45
|
mdka Expression Is Associated with Quiescent Neural Stem Cells during Constitutive and Reactive Neurogenesis in the Adult Zebrafish Telencephalon. Brain Sci 2022; 12:brainsci12020284. [PMID: 35204047 PMCID: PMC8870249 DOI: 10.3390/brainsci12020284] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/18/2022] [Revised: 02/09/2022] [Accepted: 02/16/2022] [Indexed: 12/27/2022] Open
Abstract
In contrast to mammals, adult zebrafish display an extraordinary capacity to heal injuries and repair damage in the central nervous system. Pivotal for the regenerative capacity of the zebrafish brain at adult stages is the precise control of neural stem cell (NSC) behavior and the maintenance of the stem cell pool. The gene mdka, a member of a small family of heparin binding growth factors, was previously shown to be involved in regeneration in the zebrafish retina, heart, and fin. Here, we investigated the expression pattern of the gene mdka and its paralogue mdkb in the zebrafish adult telencephalon under constitutive and regenerative conditions. Our findings show that only mdka expression is specifically restricted to the telencephalic ventricle, a stem cell niche of the zebrafish telencephalon. In this brain region, mdka is particularly expressed in the quiescent stem cells. Interestingly, after brain injury, mdka expression remains restricted to the resting stem cell, which might suggest a role of mdka in regulating stem cell quiescence.
Collapse
|
46
|
Sanchez-Gonzalez R, Koupourtidou C, Lepko T, Zambusi A, Novoselc KT, Durovic T, Aschenbroich S, Schwarz V, Breunig CT, Straka H, Huttner HB, Irmler M, Beckers J, Wurst W, Zwergal A, Schauer T, Straub T, Czopka T, Trümbach D, Götz M, Stricker SH, Ninkovic J. Innate Immune Pathways Promote Oligodendrocyte Progenitor Cell Recruitment to the Injury Site in Adult Zebrafish Brain. Cells 2022; 11:520. [PMID: 35159329 PMCID: PMC8834209 DOI: 10.3390/cells11030520] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/26/2021] [Revised: 01/18/2022] [Accepted: 01/18/2022] [Indexed: 01/13/2023] Open
Abstract
The oligodendrocyte progenitors (OPCs) are at the front of the glial reaction to the traumatic brain injury. However, regulatory pathways steering the OPC reaction as well as the role of reactive OPCs remain largely unknown. Here, we compared a long-lasting, exacerbated reaction of OPCs to the adult zebrafish brain injury with a timely restricted OPC activation to identify the specific molecular mechanisms regulating OPC reactivity and their contribution to regeneration. We demonstrated that the influx of the cerebrospinal fluid into the brain parenchyma after injury simultaneously activates the toll-like receptor 2 (Tlr2) and the chemokine receptor 3 (Cxcr3) innate immunity pathways, leading to increased OPC proliferation and thereby exacerbated glial reactivity. These pathways were critical for long-lasting OPC accumulation even after the ablation of microglia and infiltrating monocytes. Importantly, interference with the Tlr1/2 and Cxcr3 pathways after injury alleviated reactive gliosis, increased new neuron recruitment, and improved tissue restoration.
Collapse
Affiliation(s)
- Rosario Sanchez-Gonzalez
- Institute of Stem Cell Research, Helmholtz Center Munich, 85764 Oberschleißheim, Germany; (R.S.-G.); (C.K.); (T.L.); (A.Z.); (K.T.N.); (T.D.); (S.A.); (V.S.); (M.G.)
- Department Biology II, University of Munich, 80539 München, Germany;
| | - Christina Koupourtidou
- Institute of Stem Cell Research, Helmholtz Center Munich, 85764 Oberschleißheim, Germany; (R.S.-G.); (C.K.); (T.L.); (A.Z.); (K.T.N.); (T.D.); (S.A.); (V.S.); (M.G.)
- Biomedical Center (BMC), Division of Cell Biology and Anatomy, Faculty of Medicine, LMU Munich, 80539 München, Germany
- Graduate School Systemic Neurosciences, LMU, 80539 Munich, Germany
| | - Tjasa Lepko
- Institute of Stem Cell Research, Helmholtz Center Munich, 85764 Oberschleißheim, Germany; (R.S.-G.); (C.K.); (T.L.); (A.Z.); (K.T.N.); (T.D.); (S.A.); (V.S.); (M.G.)
- Biomedical Center (BMC), Division of Cell Biology and Anatomy, Faculty of Medicine, LMU Munich, 80539 München, Germany
- Graduate School Systemic Neurosciences, LMU, 80539 Munich, Germany
| | - Alessandro Zambusi
- Institute of Stem Cell Research, Helmholtz Center Munich, 85764 Oberschleißheim, Germany; (R.S.-G.); (C.K.); (T.L.); (A.Z.); (K.T.N.); (T.D.); (S.A.); (V.S.); (M.G.)
- Biomedical Center (BMC), Division of Cell Biology and Anatomy, Faculty of Medicine, LMU Munich, 80539 München, Germany
- Graduate School Systemic Neurosciences, LMU, 80539 Munich, Germany
| | - Klara Tereza Novoselc
- Institute of Stem Cell Research, Helmholtz Center Munich, 85764 Oberschleißheim, Germany; (R.S.-G.); (C.K.); (T.L.); (A.Z.); (K.T.N.); (T.D.); (S.A.); (V.S.); (M.G.)
- Biomedical Center (BMC), Division of Cell Biology and Anatomy, Faculty of Medicine, LMU Munich, 80539 München, Germany
- Graduate School Systemic Neurosciences, LMU, 80539 Munich, Germany
| | - Tamara Durovic
- Institute of Stem Cell Research, Helmholtz Center Munich, 85764 Oberschleißheim, Germany; (R.S.-G.); (C.K.); (T.L.); (A.Z.); (K.T.N.); (T.D.); (S.A.); (V.S.); (M.G.)
- Biomedical Center (BMC), Division of Cell Biology and Anatomy, Faculty of Medicine, LMU Munich, 80539 München, Germany
- Graduate School Systemic Neurosciences, LMU, 80539 Munich, Germany
| | - Sven Aschenbroich
- Institute of Stem Cell Research, Helmholtz Center Munich, 85764 Oberschleißheim, Germany; (R.S.-G.); (C.K.); (T.L.); (A.Z.); (K.T.N.); (T.D.); (S.A.); (V.S.); (M.G.)
- Biomedical Center (BMC), Division of Cell Biology and Anatomy, Faculty of Medicine, LMU Munich, 80539 München, Germany
- Graduate School Systemic Neurosciences, LMU, 80539 Munich, Germany
| | - Veronika Schwarz
- Institute of Stem Cell Research, Helmholtz Center Munich, 85764 Oberschleißheim, Germany; (R.S.-G.); (C.K.); (T.L.); (A.Z.); (K.T.N.); (T.D.); (S.A.); (V.S.); (M.G.)
- Biomedical Center (BMC), Division of Cell Biology and Anatomy, Faculty of Medicine, LMU Munich, 80539 München, Germany
- Graduate School Systemic Neurosciences, LMU, 80539 Munich, Germany
| | - Christopher T. Breunig
- Reprogramming and Regeneration, Biomedical Center (BMC), Physiological Genomics, Faculty of Medicine, LMU Munich, 80539 München, Germany; (C.T.B.); (S.H.S.)
- Epigenetic Engineering, Institute of Stem Cell Research, Helmholtz Center Munich, 85764 Oberschleißheim, Germany
| | - Hans Straka
- Department Biology II, University of Munich, 80539 München, Germany;
| | - Hagen B. Huttner
- Department of Neurology, Justus-Liebig-University Giessen, Klinikstrasse 33, 35392 Giessen, Germany;
| | - Martin Irmler
- Institute of Experimental Genetics, Helmholtz Center Munich, 85764 Oberschleißheim, Germany; (M.I.); (J.B.)
| | - Johannes Beckers
- Institute of Experimental Genetics, Helmholtz Center Munich, 85764 Oberschleißheim, Germany; (M.I.); (J.B.)
- German Center for Diabetes Research (DZD e.V.), 85764 Neuherberg, Germany
- Chair of Experimental Genetics, School of Life Sciences Weihenstephan, Technical University Munich, 80333 München, Germany
| | - Wolfgang Wurst
- Institute of Developmental Genetics, Helmholtz Center Munich, 85764 Oberschleißheim, Germany; (W.W.); (D.T.)
- Munich Cluster for Systems Neurology SYNERGY, LMU, 80539 Munich, Germany
- Chair of Developmental Genetics c/o Helmholtz Zentrum München, School of Life Sciences Weihenstephan, Technical University Munich, 80333 München, Germany
- German Center for Neurodegenerative Diseases (DZNE), Site Munich, 80539 Munich, Germany
| | - Andreas Zwergal
- Department of Neurology, Ludwig-Maximilians University, Campus Grosshadern, 81377 Munich, Germany;
| | - Tamas Schauer
- Biomedical Center (BMC), Bioinformatic Core Facility, Faculty of Medicine, LMU Munich, 80539 München, Germany; (T.S.); (T.S.)
| | - Tobias Straub
- Biomedical Center (BMC), Bioinformatic Core Facility, Faculty of Medicine, LMU Munich, 80539 München, Germany; (T.S.); (T.S.)
| | - Tim Czopka
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH8 9YL, UK;
| | - Dietrich Trümbach
- Institute of Developmental Genetics, Helmholtz Center Munich, 85764 Oberschleißheim, Germany; (W.W.); (D.T.)
| | - Magdalena Götz
- Institute of Stem Cell Research, Helmholtz Center Munich, 85764 Oberschleißheim, Germany; (R.S.-G.); (C.K.); (T.L.); (A.Z.); (K.T.N.); (T.D.); (S.A.); (V.S.); (M.G.)
- Munich Cluster for Systems Neurology SYNERGY, LMU, 80539 Munich, Germany
- Biomedical Center (BMC), Division of Physiological Genomics, Faculty of Medicine, LMU Munich, 80539 München, Germany
| | - Stefan H. Stricker
- Reprogramming and Regeneration, Biomedical Center (BMC), Physiological Genomics, Faculty of Medicine, LMU Munich, 80539 München, Germany; (C.T.B.); (S.H.S.)
- Epigenetic Engineering, Institute of Stem Cell Research, Helmholtz Center Munich, 85764 Oberschleißheim, Germany
| | - Jovica Ninkovic
- Institute of Stem Cell Research, Helmholtz Center Munich, 85764 Oberschleißheim, Germany; (R.S.-G.); (C.K.); (T.L.); (A.Z.); (K.T.N.); (T.D.); (S.A.); (V.S.); (M.G.)
- Biomedical Center (BMC), Division of Cell Biology and Anatomy, Faculty of Medicine, LMU Munich, 80539 München, Germany
- Munich Cluster for Systems Neurology SYNERGY, LMU, 80539 Munich, Germany
| |
Collapse
|
47
|
Sun B, Wang M, Hoerder-Suabedissen A, Xu C, Packer AM, Szele FG. Intravital Imaging of the Murine Subventricular Zone with Three Photon Microscopy. Cereb Cortex 2022; 32:3057-3067. [PMID: 35029646 PMCID: PMC9290563 DOI: 10.1093/cercor/bhab400] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/16/2020] [Revised: 11/04/2021] [Accepted: 11/05/2021] [Indexed: 01/21/2023] Open
Abstract
The mouse subventricular zone (SVZ) produces neurons throughout life. It is useful for mechanism discovery and is relevant for regeneration. However, the SVZ is deep, significantly restricting live imaging since current methods do not extend beyond a few hundred microns. We developed and adapted three-photon microscopy (3PM) for non-invasive deep brain imaging in live mice, but its utility in imaging the SVZ niche was unknown. Here, with fluorescent dyes and genetic labeling, we show successful 3PM imaging in the whole SVZ, extending to a maximum depth of 1.5 mm ventral to the dura mater. 3PM imaging distinguished multiple SVZ cell types in postnatal and juvenile mice. We also detected fine processes on neural stem cells interacting with the vasculature. Previous live imaging removed overlying cortical tissue or lowered lenses into the brain, which could cause inflammation and alter neurogenesis. We found that neither astrocytes nor microglia become activated in the SVZ, suggesting 3PM does not induce major damage in the niche. Thus, we show for the first time 3PM imaging of the SVZ in live mice. This strategy could be useful for intravital visualization of cell dynamics, molecular, and pathological perturbation and regenerative events.
Collapse
Affiliation(s)
| | | | | | - Chris Xu
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY 14853, USA
| | - Adam M Packer
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, UK
| | - Francis G Szele
- Address correspondence to Adam M. Packer, Department of Physiology, Anatomy and Genetics, University of Oxford, Sherrington Building, South Parks Road, Oxford OX1 3PT, UK. and Francis G. Szele, Department of Physiology, Anatomy and Genetics, University of Oxford, Sherrington Building, South Parks Road, Oxford OX1 3PT, UK.
| |
Collapse
|
48
|
Zheng K, Huang H, Yang J, Qiu M. Origin, molecular specification and stemness of astrocytes. Dev Neurobiol 2022; 82:149-159. [DOI: 10.1002/dneu.22863] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/03/2021] [Revised: 10/08/2021] [Accepted: 11/09/2021] [Indexed: 11/08/2022]
Affiliation(s)
- Kang Zheng
- Institute of Developmental and Regenerative Biology, College of Life Sciences Hangzhou Normal University Hangzhou 311121 China
| | - Hao Huang
- Institute of Developmental and Regenerative Biology, College of Life Sciences Hangzhou Normal University Hangzhou 311121 China
| | - Junlin Yang
- Institute of Developmental and Regenerative Biology, College of Life Sciences Hangzhou Normal University Hangzhou 311121 China
| | - Mengsheng Qiu
- Institute of Developmental and Regenerative Biology, College of Life Sciences Hangzhou Normal University Hangzhou 311121 China
| |
Collapse
|
49
|
Tang JJ, Huang LF, Deng JL, Wang YM, Guo C, Peng XN, Liu Z, Gao JM. Cognitive enhancement and neuroprotective effects of OABL, a sesquiterpene lactone in 5xFAD Alzheimer's disease mice model. Redox Biol 2022; 50:102229. [PMID: 35026701 PMCID: PMC8760418 DOI: 10.1016/j.redox.2022.102229] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/17/2021] [Revised: 12/30/2021] [Accepted: 01/05/2022] [Indexed: 12/13/2022] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease in which oxidative stress and neuroinflammation were demonstrated to be associated with neuronal loss and cognitive deficits. However, there are still no specific treatments that can prevent the progression of AD. In this study, a screening of anti-inflammatory hits from 4207 natural compounds of two different molecular libraries indicated 1,6-O,O-diacetylbritannilactone (OABL), a 1,10-seco-eudesmane sesquiterpene lactone isolated from the herb Inula britannica L., exhibited strong anti-inflammatory activity in vitro as well as favorable BBB penetration property. OABL reduced LPS-induced neuroinflammation in BV-2 microglial cells as assessed by effects on the levels of inflammatory mediators including NO, PGE2, TNF-α, iNOS, and COX-2, as well as the translocation of NF-κB. Besides, OABL also exhibited pronounced neuroprotective effects against oxytosis and ferroptosis in the rat pheochromocytoma PC12 cell line. For in vivo research, OABL (20 mg/kg B.W., i.p.) for 21 d attenuated the impairments in cognitive function observed in 6-month-old 5xFAD mice, as assessed with the Morris water maze test. OABL restored neuronal damage and postsynaptic density protein 95 (PSD95) expression in the hippocampus. OABL also significantly reduced the accumulation of amyloid plaques, the Aβ expression, the phosphorylation of Tau protein, and the expression of BACE1 in AD mice brain. In addition, OABL attenuated the overactivation of microglia and astrocytes by suppressing the expressions of inflammatory cytokines, and increased glutathione (GSH) and reduced malondialdehyde (MDA) and super oxide dismutase (SOD) levels in the 5xFAD mice brain. In conclusion, these results highlight the beneficial effects of the natural product OABL as a novel treatment with potential application for drug discovery in AD due to its pharmacological profile.
Collapse
Affiliation(s)
- Jiang-Jiang Tang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, Shaanxi, PR China.
| | - Lan-Fang Huang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, Shaanxi, PR China
| | - Jia-Le Deng
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, Shaanxi, PR China
| | - Yi-Meng Wang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, Shaanxi, PR China
| | - Cong Guo
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, Shaanxi, PR China
| | - Xiao-Na Peng
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, Shaanxi, PR China
| | - Zhigang Liu
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi, PR China.
| | - Jin-Ming Gao
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, Shaanxi, PR China.
| |
Collapse
|
50
|
Abstract
AbstractStroke is the most frequent cause of secondary epilepsy in the elderly. The incidence of cerebral stroke is increasing with the extension of life expectancy, and the prevalence of post-stroke epilepsy (PSE) is rising. There are various seizure types after stroke, and the occurrence of epilepsy is closely related to the type and location of stroke. Moreover, the clinical treatment of post-stroke epilepsy is difficult, which increases the risk of disability and death, and affects the prognosis and quality of life of patients. Now seizure and epilepsy after stroke is more and more get the attention of the medical profession, has been more and more researchers have devoted to seizures after stroke and PSE clinical and basic research, and hope to get a scientific and unified guideline, to give timely and effective treatment, but the exact pathophysiologic mechanism has not yet formed a unified conclusion. It has been found that ion channels, neurotransmitters, proliferation of glial cells, genetics and other factors are involved in the occurrence and development of PSE. In this review, we discuss the pathogenesis of early-onset epileptic seizures and late-onset epilepsy after stroke, in order to provide a basis for clinicians to understand the disease, and expect to provide ideas for future exploration.
Collapse
|