1
|
Liu J, Chen X, Liu J, Peng C, Wang F, Huang X, Li S, Liu Y, Shou W, Cao D, Li X. Prenatal Inflammatory Exposure Predisposes Offspring to Chronic Kidney Diseases Via the Activation of the eIF2α-ATF4 Pathway. Inflammation 2024:10.1007/s10753-024-02084-5. [PMID: 38913145 DOI: 10.1007/s10753-024-02084-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/15/2024] [Indexed: 06/25/2024]
Abstract
It has recently become more recognized that renal diseases in adults can originate from adverse intrauterine (maternal) environmental exposures. Previously, we found that prenatal lipopolysaccharide (LPS) exposure can result in chronic renal inflammation, which leads to renal damage in older offspring rats. To test whether prenatal inflammatory exposure predisposes offspring to renal damage, a mouse model of oral adenine consumption-induced chronic kidney disease (CKD) was applied to offspring from prenatal LPS-treated mothers (offspring-pLPS) and age-matched control offspring of prenatal saline-treated mothers (offspring-pSaline). We found that offspring-pLPS mice presented with more severe renal collagen deposition and renal dysfunction after 4 weeks of adenine consumption than sex- and treatment-matched offspring-pSaline controls. To illustrate the underlying molecular mechanism, we subjected offspring-pLPS and offspring-pSaline kidneys to genome-wide transcriptomic analysis. Bioinformatic analysis of the sequencing data, together with further experimental confirmation, revealed a strong activation of the PERK-eIF2α-ATF4-mediated unfolded protein response (UPR) in offspring-pLPS kidneys, which likely contributed to the CKD predisposition seen in offspring-pLPS mice. More importantly, the specific eIF2α-ATF4 signaling inhibitor ISIRB was able to prevent adenine-induced CKD in the offspring-pLPS mice. Our findings suggest that the eIF2α-ATF4-mediated UPR, but not PERK, is likely the major disease-causing pathway in prenatal inflammatory exposure-induced CKD predisposition. Our study also suggests that targeting this signaling pathway is a potentially promising approach for CKD treatment.
Collapse
Affiliation(s)
- Jie Liu
- Institute of Materia Medica and Department of Pharmaceutics, College of Pharmacy, Army Medical University, Chongqing, 400038, PR China
| | - Xin Chen
- Institute of Materia Medica and Department of Pharmaceutics, College of Pharmacy, Army Medical University, Chongqing, 400038, PR China
| | - Jie Liu
- Institute of Materia Medica and Department of Pharmaceutics, College of Pharmacy, Army Medical University, Chongqing, 400038, PR China
| | - Cuiping Peng
- Institute of Materia Medica and Department of Pharmaceutics, College of Pharmacy, Army Medical University, Chongqing, 400038, PR China
| | - Fangjie Wang
- State Key Laboratory of Trauma, Burns and Combined Injury, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Xiaoyong Huang
- Institute of Immunology, PLA, Army Medical University, Chongqing, China
| | - Shuhui Li
- Department of Clinical Biochemistry, College of Pharmacy, Army Medical University, Chongqing, China
| | - Ying Liu
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Weinian Shou
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Dayan Cao
- Institute of Materia Medica and Department of Pharmaceutics, College of Pharmacy, Army Medical University, Chongqing, 400038, PR China.
| | - Xiaohui Li
- Institute of Materia Medica and Department of Pharmaceutics, College of Pharmacy, Army Medical University, Chongqing, 400038, PR China.
| |
Collapse
|
2
|
Zhao YJ, Zhou C, Wei YY, Zhang SY, Mishra JS, Li HH, Lei W, Wang K, Kumar S, Zheng J. An Endogenous Aryl Hydrocarbon Receptor Ligand Induces Preeclampsia-like Phenotypes: Transcriptome, Phosphoproteome, and Cell Functions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.20.572271. [PMID: 38187714 PMCID: PMC10769228 DOI: 10.1101/2023.12.20.572271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Background Preeclampsia (PE) is one hypertensive disorder and a leading cause of maternal and fetal mortality and morbidity during human pregnancy. Aryl hydrocarbon receptor (AhR) is a transcription factor, which regulates vascular functions. Exogenous and endogenous AhR ligands can induce hypertension in animals. However, if dysregulation of endogenous AhR ligands contributes to the pathophysiology of PE remains elusive. Methods We measured AhR activities in human maternal and umbilical vein sera. We also applied physiological, cellular, and molecular approaches to dissect the role of endogenous AhR ligands in vascular functions during pregnancy using pregnant rats and primary human umbilical vein endothelial cells (HUVECs) as models. Results PE elevated AhR activities in human umbilical vein sera. Exposure of pregnant rats to an endogenous AhR ligand, 2-(1'H-indole-3'-carbonyl)-thiazole-4-carboxylic acid methyl ester (ITE) increased blood pressure and proteinuria, while decreased uteroplacental blood flow and reduced fetal and placental weights, all of which are hallmarks of PE. ITE dampened vascular growth and fetal sex-specifically altered immune cell infiltration in rat placentas. ITE also decreased cell proliferation and cell monolayer integrity in HUVECs in vitro . RNA sequencing analysis revealed that ITE dysregulated transcriptome in rat placentas and HUVECs in a fetal sex-specific manner. Bottom-up phosphoproteomics showed that ITE disrupted phosphoproteome in HUVECs. These ITE-dysregulated genes and phosphoproteins were enriched in biological functions and pathways which are highly relevant to diseases of heart, liver, and kidney, vascular functions, inflammation responses, cell death, and kinase inhibition. Conclusions Dysregulation of endogenous AhR ligands during pregnancy may lead to the development of PE with underlying impaired vascular functions, fetal sex-specific immune cell infiltration and transcriptome, and phosphoproteome. Thus, this study has provided a novel mechanism for the development of PE and potentially other forms of hypertensive pregnancies. These AhR ligand-activated genes and phosphoproteins might represent promising therapeutic and fetal sex-specific targets for PE-impaired vascular functions.
Collapse
|
3
|
Branda JIF, de Almeida-Pititto B, Bensenor I, Lotufo PA, Ferreira SRG. Associations of prematurity and low birth weight with blood pressure and kidney function in middle-aged participants of the Brazilian Longitudinal Study of Adult Health: ELSA-Brasil. J Nephrol 2023; 36:1373-1382. [PMID: 36646972 DOI: 10.1007/s40620-022-01549-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 12/03/2022] [Indexed: 01/18/2023]
Abstract
BACKGROUND An adverse intrauterine environment reflected by low birth weight (LBW) and prematurity may induce fetal programming that favors kidney dysfunction in adulthood. We examined the association of LBW and prematurity with blood pressure (BP) and kidney function markers in non-diabetic, middle-aged adults without kidney disease from the Brazilian Longitudinal Study of Adult Health (ELSA-Brasil). METHODS A cross-sectional analysis of 768 subjects aged 35-54 years was conducted. Comparisons were performed according to self-reported birth weight: LBW (< 2.5 kg) or normal birth weight (2.5-4.0 kg). Associations of LBW and prematurity with BP levels and kidney function markers "(estimated glomerular filtration rate [eGFR], albumin-creatinine ratio [ACR] and serum cystatin-C) were tested by multiple linear regression using adjustments based on Directed Acyclic Graphs. Propensity score matching was applied to control imbalances. RESULTS Mean age of participants was 45.5 ± 4.6 years and 56.8% were female; 64 (8.3%) participants reported LBW and 39 (5.0%) prematurity. The LBW group had higher systolic (p = 0.015) and diastolic BP (p = 0.014) and ACR values (p = 0.031) and lower eGFR (p = 0.015) than the normal birth weight group, but no group difference for cystatin-C was found. The preterm group had higher mean levels of systolic and diastolic BP, but no difference in kidney function markers was evident. In a regression model adjusted for sex, skin color and family history of hypertension, both systolic and diastolic BP levels were associated with LBW, but this association disappeared after adding for prematurity, which remained associated with BP (p = 0.017). Having applied a propensity score matching, LBW was associated with ACR values (p = 0.003), but not with eGFR or BP levels. CONCLUSION The study findings of independent associations of prematurity with higher BP levels, and of LBW with markers of kidney function in adulthood, support that early life events may predict risk for hypertension and kidney dysfunction in adulthood. The study design precluded the inferring of causality, and prospective studies are needed to further investigate this hypothesis.
Collapse
Affiliation(s)
- Julia Ines F Branda
- Department of Epidemiology, School of Public Health, University of São Paulo, Av. Dr. Arnaldo, 715, São Paulo, SP, 01246-904, Brazil
- Center of Clinical and Epidemiological Research at University of São Paulo, São Paulo, Brazil
| | - Bianca de Almeida-Pititto
- Department of Preventive Medicine, Federal University of São Paulo, São Paulo, Brazil
- Center of Clinical and Epidemiological Research at University of São Paulo, São Paulo, Brazil
| | - Isabela Bensenor
- Department of Internal Medicine, Medical School, University of São Paulo, São Paulo, Brazil
- Center of Clinical and Epidemiological Research at University of São Paulo, São Paulo, Brazil
| | - Paulo A Lotufo
- Department of Internal Medicine, Medical School, University of São Paulo, São Paulo, Brazil
- Center of Clinical and Epidemiological Research at University of São Paulo, São Paulo, Brazil
| | - Sandra Roberta G Ferreira
- Department of Epidemiology, School of Public Health, University of São Paulo, Av. Dr. Arnaldo, 715, São Paulo, SP, 01246-904, Brazil.
- Center of Clinical and Epidemiological Research at University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
4
|
Kondoh K, Akahori H, Muto Y, Terada T. Identification of Key Genes and Pathways Associated with Preeclampsia by a WGCNA and an Evolutionary Approach. Genes (Basel) 2022; 13:genes13112134. [PMID: 36421809 PMCID: PMC9690438 DOI: 10.3390/genes13112134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/04/2022] [Accepted: 11/09/2022] [Indexed: 11/18/2022] Open
Abstract
Preeclampsia (PE) is the serious obstetric-related disease characterized by newly onset hypertension and causes damage to the kidneys, brain, liver, and more. To investigate genes with key roles in PE’s pathogenesis and their contributions, we used a microarray dataset of normotensive and PE patients and conducted a weighted gene co-expression network analysis (WGCNA). Cyan and magenta modules that are highly enriched with differentially expressed genes (DEGs) were revealed. By using the molecular complex detection (MCODE) algorithm, we identified five significant clusters in the cyan module protein–protein interaction (PPI) network and nine significant clusters in the magenta module PPI network. Our analyses indicated that (i) human accelerated region (HAR) genes are enriched in the magenta-associated C6 cluster, and (ii) positive selection (PS) genes are enriched in the cyan-associated C3 and C5 clusters. We propose these enriched HAR and PS genes, i.e., EIF4E, EIF5, EIF3M, DDX17, SRSF11, PSPC1, SUMO1, CAPZA1, PSMD14, and MNAT1, including highly connected hub genes, HNRNPA1, RBMX, PRKDC, and RANBP2, as candidate key genes for PE’s pathogenesis. A further clarification of the functions of these PPI clusters and key enriched genes will contribute to the discovery of diagnostic biomarkers for PE and therapeutic intervention targets.
Collapse
Affiliation(s)
- Kuniyo Kondoh
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, 1-1, Yanagido, Gifu-City 501-1193, Gifu, Japan
- School of Nursing, Gifu University of Health Sciences, 2-92, Higashiuzura, Gifu-City 500-8281, Gifu, Japan
| | - Hiromichi Akahori
- Department of Functional Bioscience, Gifu University School of Medicine, 1-1, Yanagido, Gifu-City 501-1193, Gifu, Japan
| | - Yoshinori Muto
- Institute for Glyco-Core Research (iGCORE), Gifu University, 1-1 Yanagido, Gifu-City 501-1193, Gifu, Japan
| | - Tomoyoshi Terada
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, 1-1, Yanagido, Gifu-City 501-1193, Gifu, Japan
- Department of Functional Bioscience, Gifu University School of Medicine, 1-1, Yanagido, Gifu-City 501-1193, Gifu, Japan
- Correspondence: ; Tel.: +81-58-293-3241
| |
Collapse
|
5
|
Tang X, Sun M, Shen Q, Rao J, Yang X, Fang Y, Xiang T, Xue S, Sun L, Xu H. Protective role of endorepellin in renal developmental programming. Front Cell Dev Biol 2022; 10:929556. [PMID: 36330336 PMCID: PMC9624284 DOI: 10.3389/fcell.2022.929556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 09/29/2022] [Indexed: 11/18/2022] Open
Abstract
Adverse intrauterine and early postnatal environment cause reduced nephron endowment and subsequent hypertension, chronic kidney disease (CKD). Exploring modifiable approaches is particularly important to alleviate the global burden of CKD. Enhanced glomerular progenitor cell apoptosis is a major contributor to renal developmental programming. The differentially expressed protein perlecan, which we previously identified using proteomics, is an important extracellular matrix glycoprotein, and its domain V (endorepellin) can inhibit apoptosis through a paracrine form. In explanted mice embryonic metanephros, we found that endorepellin can rescue glomeruli-deficit phenotype resulting from malnutrition, and this protective effect was also verified in vivo using a renal developmental programming model which was given a low-protein diet during pregnancy. We further demonstrated that endorepellin significantly inhibited glomerular progenitor cell apoptosis which activates ERK1/2 phosphorylation. Our results show that endorepellin rescues the nephron number reduction in renal developmental programming, possibly through the inhibition of progenitor cell apoptosis via the ERK1/2 pathway.
Collapse
Affiliation(s)
- Xiaoshan Tang
- Department of Nephrology, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
- Shanghai Kidney Development and Pediatric Kidney Disease Research Center, Shanghai, China
| | - Manqing Sun
- Department of Nephrology, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
- Shanghai Kidney Development and Pediatric Kidney Disease Research Center, Shanghai, China
| | - Qian Shen
- Department of Nephrology, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
- Shanghai Kidney Development and Pediatric Kidney Disease Research Center, Shanghai, China
| | - Jia Rao
- Department of Nephrology, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
- Shanghai Kidney Development and Pediatric Kidney Disease Research Center, Shanghai, China
| | - Xue Yang
- Department of Nephrology, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
- Shanghai Kidney Development and Pediatric Kidney Disease Research Center, Shanghai, China
| | - Ye Fang
- Department of Nephrology, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
- Shanghai Kidney Development and Pediatric Kidney Disease Research Center, Shanghai, China
| | - Tianchao Xiang
- Department of Nephrology, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
- Shanghai Kidney Development and Pediatric Kidney Disease Research Center, Shanghai, China
| | - Shanshan Xue
- Department of Nephrology, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
- Shanghai Kidney Development and Pediatric Kidney Disease Research Center, Shanghai, China
| | - Lei Sun
- Institute of Developmental Biology and Molecular Medicine, Fudan University, Shanghai, China
| | - Hong Xu
- Department of Nephrology, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
- Shanghai Kidney Development and Pediatric Kidney Disease Research Center, Shanghai, China
- *Correspondence: Hong Xu,
| |
Collapse
|
6
|
Martínez-Montoro JI, Morales E, Cornejo-Pareja I, Tinahones FJ, Fernández-García JC. Obesity-related glomerulopathy: Current approaches and future perspectives. Obes Rev 2022; 23:e13450. [PMID: 35362662 PMCID: PMC9286698 DOI: 10.1111/obr.13450] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 03/08/2022] [Accepted: 03/09/2022] [Indexed: 12/20/2022]
Abstract
Obesity-related glomerulopathy (ORG) is a silent comorbidity which is increasing in incidence as the obesity epidemic escalates. ORG is associated with serious health consequences including chronic kidney disease, end-stage renal disease (ESRD), and increased mortality. Although the pathogenic mechanisms involved in the development of ORG are not fully understood, glomerular hemodynamic changes, renin-angiotensin-aldosterone system (RAAS) overactivation, insulin-resistance, inflammation and ectopic lipid accumulation seem to play a major role. Despite albuminuria being commonly used for the non-invasive evaluation of ORG, promising biomarkers of early kidney injury that are emerging, as well as new approaches with proteomics and metabolomics, might permit an earlier diagnosis of this disease. In addition, the assessment of ectopic kidney fat by renal imaging could be a useful tool to detect and evaluate the progression of ORG. Weight loss interventions appear to be effective in ORG, although large-scale trials are needed. RAAS blockade has a renoprotective effect in patients with ORG, but even so, a significant proportion of patients with ORG will eventually progress to ESRD despite therapeutic efforts. It is noteworthy that certain antidiabetic agents such as sodium-glucose cotransporter 2 inhibitors (SGLT2i) or glucagon-like peptide-1 receptor agonists (GLP-1 RAs) could be useful in the treatment of ORG through different pleiotropic effects. In this article, we review current approaches and future perspectives in the care and treatment of ORG.
Collapse
Affiliation(s)
- José Ignacio Martínez-Montoro
- Department of Endocrinology and Nutrition, Virgen de la Victoria University Hospital, Málaga, Spain.,Faculty of Medicine, University of Málaga, Málaga, Spain.,Instituto de Investigación Biomédica de Málaga-IBIMA, Málaga, Spain
| | - Enrique Morales
- Department of Nephrology, 12 de Octubre University Hospital, Madrid, Spain.,Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain.,Department of Medicine, Complutense University, Madrid, Spain
| | - Isabel Cornejo-Pareja
- Department of Endocrinology and Nutrition, Virgen de la Victoria University Hospital, Málaga, Spain.,Faculty of Medicine, University of Málaga, Málaga, Spain.,Instituto de Investigación Biomédica de Málaga-IBIMA, Málaga, Spain.,Centro de Investigación Biomédica en Red de la Fisiopatología de la Obesidad y la Nutrición (CIBERObn), Instituto de Salud Carlos III, Madrid, Spain
| | - Francisco J Tinahones
- Department of Endocrinology and Nutrition, Virgen de la Victoria University Hospital, Málaga, Spain.,Faculty of Medicine, University of Málaga, Málaga, Spain.,Instituto de Investigación Biomédica de Málaga-IBIMA, Málaga, Spain.,Centro de Investigación Biomédica en Red de la Fisiopatología de la Obesidad y la Nutrición (CIBERObn), Instituto de Salud Carlos III, Madrid, Spain
| | - José Carlos Fernández-García
- Faculty of Medicine, University of Málaga, Málaga, Spain.,Instituto de Investigación Biomédica de Málaga-IBIMA, Málaga, Spain.,Centro de Investigación Biomédica en Red de la Fisiopatología de la Obesidad y la Nutrición (CIBERObn), Instituto de Salud Carlos III, Madrid, Spain.,Department of Endocrinology and Nutrition, Regional University Hospital of Málaga, Málaga, Spain
| |
Collapse
|
7
|
Pedersen JN, Dalgård C, Möller S, Andersen LB, Birukov A, Andersen MS, Christesen HT. Early pregnancy vitamin D status is associated with blood pressure in children: an Odense Child Cohort study. Am J Clin Nutr 2022; 116:470-481. [PMID: 35511609 PMCID: PMC9348989 DOI: 10.1093/ajcn/nqac118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 04/27/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Blood pressure in childhood tracks into later life. Vitamin D status in adults is associated with blood pressure, but the impact of vitamin D status in pregnancy and childhood on blood pressure still needs investigation. OBJECTIVE We investigated whether fetal rather than current vitamin D status is associated with blood pressure in children. METHODS In a prospective observational study within the population-based Odense Child Cohort (OCC), we examined serum 25-hydroxyvitamin D2+3 [s-25(OH)D] in early and late pregnancy, cord blood, and at 5 y age, and the associations with systolic and diastolic blood pressure (SBP/DBP) in the 5-y-old children (n = 1,677). Multiple regression models were adjusted for maternal country of origin, parity, smoking during pregnancy, 5-y height, and weight. Two-stage mixed effect modeling was performed, integrating all s-25(OH)D data from pregnancy and cord blood. RESULTS The median (IQR) s-25(OH)D in early pregnancy, late pregnancy, the umbilical cord, and at 5 y was 65.5 (50.7-78.5), 78.5 (60.3- 95.8), 45.4 (31.1- 60.7), and 71.9 (54.6- 86.5) nmol/L, respectively. The mean ±SD 5-y SBP/DBP was 101.0/63.8 (7.1/5.9) mmHg. In adjusted analyses, a 10 nmol/L increase of s-25(OH)D in early pregnancy associated with a 0.3/0.2 mmHg lower SBP/DBP at 5 y (P < 0.05). Optimal s-25(OH)D (>75 nmol/L) in early pregnancy was associated with lower 5-y SBP and DBP, β (95% CI) -1.45 (-2.6, -0.3), and -0.97 (-1.9, -0.1), compared with reference s-25(OH)D (50-74.9 nmol/L). Two-stage analysis combining early pregnancy, late pregnancy, and cord s-25(OH)D data showed an inverse association with 5-y SBP and DBP for boys (P < 0.025) with significant sex-difference for DBP (Pinteraction = 0.004). No associations were found between s-25(OH)D and 5-y BP above the 90th percentile. CONCLUSION Early pregnancy s-25(OH)D concentrations, especially >75 nmol/L, were inversely associated with 5-y blood pressure in the offspring. A novel identified protective effect of optimal vitamin D levels in early pregnancy on offspring BP is suggested.
Collapse
Affiliation(s)
- Josefine N Pedersen
- Department of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark,Hans Christian Andersen Children's Hospital, Odense University Hospital, Odense, Denmark
| | - Christine Dalgård
- Department of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark,Clinical Pharmacology, Pharmacy and Environmental Medicine, Dept of Public Health, University of Southern Denmark, Odense, Denmark
| | - Sören Möller
- Department of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark,Open Patient data Explorative Network, Odense University Hospital, Odense, Denmark
| | - Louise B Andersen
- General Practice, Capital Region, Denmark,Department of Obstetrics and Gynecology, Odense University Hospital, Odense, Denmark
| | - Anna Birukov
- Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam-Rehbrücke, Nuthetal, Germany
| | - Marianne Skovsager Andersen
- Open Patient data Explorative Network, Odense University Hospital, Odense, Denmark,Department of Endocrinology, Odense University Hospital, University of Southern Denmark, Odense, Denmark
| | | |
Collapse
|
8
|
Gantenbein KV, Kanaka-Gantenbein C. Highlighting the trajectory from intrauterine growth restriction to future obesity. Front Endocrinol (Lausanne) 2022; 13:1041718. [PMID: 36440208 PMCID: PMC9691665 DOI: 10.3389/fendo.2022.1041718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 10/25/2022] [Indexed: 11/12/2022] Open
Abstract
During the last decades several lines of evidence reported the association of an adverse intrauterine environment, leading to intrauterine restriction, with future disease, such as obesity and metabolic syndrome, both leading to increased cardiovascular and cancer risk. The underlying explanation for this association has firstly been expressed by the Barker's hypothesis, the "thrifty phenotype hypothesis". According to this hypothesis, a fetus facing an adverse intrauterine environment adapts to this environment through a reprogramming of its endocrine-metabolic status, during the crucial window of developmental plasticity to save energy for survival, providing less energy and nutrients to the organs that are not essential for survival. This theory evolved to the concept of the developmental origin of health and disease (DOHaD). Thus, in the setting of an adverse, f. ex. protein restricted intrauterine environment, while the energy is mainly directed to the brain, the peripheral organs, f.ex. the muscles and the liver undergo an adaptation that is expressed through insulin resistance. The adaptation at the hepatic level predisposes to future dyslipidemia, the modifications at the vascular level to endothelial damage and future hypertension and, overall, through the insulin resistance to the development of metabolic syndrome. All these adaptations are suggested to take place through epigenetic modifications of the expression of genes without change of their amino-acid sequence. The epigenetic modifications leading to future obesity and cardiovascular risk are thought to induce appetite dysregulation, promoting food intake and adipogenesis, facilitating obesity development. The epigenetic modifications may even persist into the next generation even though the subsequent generation has not been exposed to an adverse intrauterine environment, a notion defined as the "transgenerational transfer of environmental information". As a consequence, if the increased public health burden and costs of non-communicable chronic diseases such as obesity, hypertension, metabolic syndrome and type 2 diabetes have to be minimized, special attention should be laid to the healthy lifestyle habits of women of reproductive age, including healthy diet and physical activity to be established long before any pregnancy takes place in order to provide the best conditions for both somatic and mental health of future generations.
Collapse
Affiliation(s)
| | - Christina Kanaka-Gantenbein
- Division of Endocrinology, Diabetes and Metabolism, First Department of Pediatrics Medical School, National and Kapodistrian University of Athens, Aghia Sophia Children’s Hospital, Athens, Greece
- *Correspondence: Christina Kanaka-Gantenbein, ,
| |
Collapse
|
9
|
Assessment of nephron number and single-nephron glomerular filtration rate in a clinical setting. Hypertens Res 2021; 44:605-617. [PMID: 33526913 DOI: 10.1038/s41440-020-00612-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 12/02/2020] [Accepted: 12/08/2020] [Indexed: 01/31/2023]
Abstract
Total nephron counts vary widely between individuals and may affect susceptibility to certain diseases, including hypertension and chronic kidney disease. Detailed analyses of whole kidneys collected from autopsy patients remain the only method for accurately counting nephrons in humans, with no equivalent option in living subjects. Current technological advances have enabled estimations of nephron numbers in vivo, particularly the use of total nephron number and whole-kidney glomerular filtration rate to estimate the mean single-nephron glomerular filtration rate. The use of this method would allow physicians to detect dynamic changes in filtration function at the single-nephron level rather than to simply count the number of nephrons that appear to be functioning. Currently available methods for estimating total nephron number in clinical practice have the potential to overcome limitations associated with autopsy analyses and may therefore pave the way for new therapeutic interventions and improved clinical outcomes.
Collapse
|
10
|
Arterial hypertension and cystatin C during neonatal physiologic dehydration. J Hum Hypertens 2021; 36:554-560. [PMID: 33935283 DOI: 10.1038/s41371-021-00541-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 03/27/2021] [Accepted: 04/14/2021] [Indexed: 11/09/2022]
Abstract
A reduced nephron number may play a role in the pathogenesis of arterial hypertension (AH), and it is well recognized that individual nephron endowment is widely variable. However, nephrons count is technically impossible in vivo. Based on the observation that subjects with a reduced nephron mass exhibit an increase in renal functional biomarkers during acute dehydration, we hypothesized that cystatin C concentration during neonatal physiological dehydration could identify subjects with reduced nephron endowment. This is a prospective, observational, cohort study enrolling healthy, caucasian, term neonates born after an uneventful pregnancy. Two groups of newborns were compared: neonates born to fathers on antihypertensive treatment (HF) versus those born to proven normotensive fathers older than 40 years of age (NF). Enrolled newborns underwent cystatin C determination at the time of newborn screening. Forty newborns with HF and 80 with NF were enrolled. No differences in baseline characteristics were observed between the two groups except for the number of hypertensive grandparents higher among newborns to HF (47.8% vs. 21.1%; p: 0.001). Cystatin C was significantly higher in newborns with HF (1.62 ± 0.30 mg/L vs 1.41 ± 0.27 mg/L; p < 0.001). Linear regression analysis corrected for confounders confirmed that paternal hypertension was the only variable significantly associated with high cystatin C level during post-natal dehydration. Besides offering new insights on the pathogenesis of familial hypertension, our results support the specific role of nephron endowment and suggest the possibility of identifying subjects at risk for reduced nephron endowment as early as at birth.
Collapse
|
11
|
Prenatal alcohol exposure affects renal function in overweight schoolchildren: birth cohort analysis. Pediatr Nephrol 2020; 35:695-702. [PMID: 31820144 DOI: 10.1007/s00467-019-04429-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 11/13/2019] [Accepted: 11/19/2019] [Indexed: 10/25/2022]
Abstract
BACKGROUND Prenatal ethanol exposure has been shown to reduce nephron endowment in animal models, but the effect of alcohol during human pregnancy on postnatal kidney function has not been explored. We aim to investigate the potential association of maternal alcohol consumption during pregnancy with the offspring renal function, considering potential confounding by intrauterine growth and children's current nutritional status. METHODS Prospective longitudinal study in a random sample of 1093 children from a population-based birth cohort. Anthropometrics and estimated glomerular filtration rate (eGFR) were assessed at 7 years of age. Multiple linear regression models were fitted, adjusting for child's gender, age, birthweight, and maternal age, education, prepregnancy nutritional status, and smoking. RESULTS Thirteen percent of mothers consumed alcohol during pregnancy. At 7 years of age, eGFR was significantly lower in children with prenatal alcohol exposure (134 ± 17 vs.138 ± 16 mL/min/1.73m2, p = 0.014). The effect was dose dependent and only present in overweight and obese children, among whom adjusted eGFR was -6.6(-12.0 to -1.1)mL/min/1.73m2 and -11.1(-21.3 to -1.2)mL/min/1.73m2 in those exposed to ≤ 40 g and to > 40 g of alcohol per week, respectively, compared to no consumption (ptrend = 0.002). CONCLUSIONS Prenatal alcohol exposure has a dose-dependent adverse effect on renal function at school age in overweight and obese children.
Collapse
|
12
|
Abstract
PURPOSE OF REVIEW This review will focus on the long-term outcomes in offspring exposed to in utero hyperglycemia and gestational diabetes (GDM), including obesity, adiposity, glucose metabolism, hypertension, hyperlipidemia, nonalcoholic fatty liver disease, and puberty. RECENT FINDINGS There is evidence, mostly from observational studies, that offspring of GDM mothers have increased risk of obesity, increased adiposity, disorders of glucose metabolism (insulin resistance and type 2 diabetes), and hypertension. In contrast, evidence from the two intervention studies of treatment of mild GDM and childhood measures of BMI, adiposity, and glucose tolerance do not demonstrate that GDM treatment significantly reduces adverse childhood metabolic outcomes. Thus, more evidence is needed to understand the impact of maternal GDM on offspring's adiposity, glucose metabolism, lipid metabolism, risk of fatty liver disease, and pubertal onset. Offspring of GDM mothers may have increased risk for metabolic and cardiovascular complications. Targeting this group for intervention studies to prevent obesity and disorders of glucose metabolism is one potential strategy to prevent adverse metabolic health outcomes.
Collapse
Affiliation(s)
- Monica E Bianco
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Division of Endocrinology, Ann & Robert H. Lurie Children's Hospital of Chicago, 225 E. Chicago Avenue, Box 54, Chicago, IL, 60611, USA
| | - Jami L Josefson
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
- Division of Endocrinology, Ann & Robert H. Lurie Children's Hospital of Chicago, 225 E. Chicago Avenue, Box 54, Chicago, IL, 60611, USA.
| |
Collapse
|
13
|
Miranda JO, Cerqueira RJ, Barros H, Areias JC. Maternal Diabetes Mellitus as a Risk Factor for High Blood Pressure in Late Childhood. Hypertension 2019; 73:e1-e7. [PMID: 30571550 DOI: 10.1161/hypertensionaha.118.11761] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Intrauterine fetal conditions can have lifelong cardiovascular effects. The impact of maternal diabetes mellitus on children's cardiovascular profile is not well established. The goal of this study was to explore the association between maternal diabetes mellitus and offspring's blood pressure (BP) ≤10 years of age. Generation XXI is a prospective birth cohort, which enrolled 8301 mother-offspring pairs, including 586 (7.1%) children of diabetic mothers. The associations between maternal diabetes mellitus and BP at 4, 7, and 10 years of age was modeled using linear regression. A mixed-effects model was built to assess differences in BP variation over time. Path analysis was used to quantify effects of potential mediators. Maternal diabetes mellitus was associated with higher BP in offspring at the age of 10 (systolic: β, 1.48; 95% CI, 0.36-2.59; and diastolic: β, 0.86; 95% CI, 0.05-1.71). This association was independent of maternal perinatal characteristics, and it was mediated by child's body mass index and, to a lesser extent, by gestational age, type of birth, and birth weight (indirect effect proportion, 73%). No significant differences in BP were found at 4 and 7 years of age. Longitudinal analysis showed an accelerated systolic BP increase on maternal diabetes mellitus group (β, 1.16; 95% CI, 0.03-2.28). These finding were especially relevant in males, suggesting sex differences in the mechanisms of BP prenatal programing. Our results provide further evidence that maternal diabetes mellitus is associated with high BP late in childhood, demonstrating a significant role of child's body mass in the pathway of this association.
Collapse
Affiliation(s)
- Joana Oliveira Miranda
- From the Departamento de Cardiologia Pediátrica (J.O.M., J.C.A.), Centro Hospitalar São João, Porto, Portugal.,Departamento de Cirurgia e Fisiologia (J.O.M., R.J.C.), Faculdade de Medicina da Universidade do Porto, Portugal.,Unidade de Investigação Cardiovascular (J.O.M., R.J.C.), Universidade do Porto, Portugal
| | - Rui João Cerqueira
- Departamento de Cirurgia Cardiotorácica (R.J.C.), Centro Hospitalar São João, Porto, Portugal.,Departamento de Cirurgia e Fisiologia (J.O.M., R.J.C.), Faculdade de Medicina da Universidade do Porto, Portugal.,Unidade de Investigação Cardiovascular (J.O.M., R.J.C.), Universidade do Porto, Portugal
| | - Henrique Barros
- Departamento de Ciências da Saúde Pública e Forenses e Educação Médica (H.B.), Faculdade de Medicina da Universidade do Porto, Portugal.,EPIUnit - Instituto de Saúde Pública (H.B.), Universidade do Porto, Portugal
| | - José Carlos Areias
- From the Departamento de Cardiologia Pediátrica (J.O.M., J.C.A.), Centro Hospitalar São João, Porto, Portugal.,Departamento de Ginecologia-Obstetrícia e Pediatria (J.C.A.), Faculdade de Medicina da Universidade do Porto, Portugal
| |
Collapse
|
14
|
Maternal Metformin Treatment Improves Developmental and Metabolic Traits of IUGR Fetuses. Biomolecules 2019; 9:biom9050166. [PMID: 31035702 PMCID: PMC6572102 DOI: 10.3390/biom9050166] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 04/20/2019] [Accepted: 04/23/2019] [Indexed: 12/16/2022] Open
Abstract
Metformin is an anti-hyperglycemic drug widely used for the treatment of insulin resistance and glucose intolerance and is currently considered for preventing large-for-gestational-age (LGA) offspring in pregnant women affected by obesity or diabetes. Our hypothesis was the opposite—metformin may be used for improving the development of offspring affected by intrauterine growth restriction (IUGR) and preventing the appearance of small-for-gestational-age (SGA) neonates in non-obese and non-diabetic but malnourished pregnancies. The current study, performed in a swine preclinical model of IUGR by undernutrition, showed that fetuses in the treated group showed no significant increases in body-weight, but showed a significantly higher weight of the brain, the total thoracic and abdominal viscera, the liver, the kidneys, the spleen, and the adrenal glands. Maternal metformin treatment was also related to significant increases in the fetal plasma concentration of parameters indicative of glycemic (glucose and fructosamine) and lipid profiles (triglycerides). Overall, these results suggest a protective effect of the treatment on the developmental competence of the fetuses. These findings may be of high value for human medicine in case of maternal malnutrition, since metformin is a cheap drug easily available, but also in case of placental deficiency, since metformin seems to improve placental development and function.
Collapse
|
15
|
Sun D, Chen K, Wang J, Zhou L, Zeng C. In-utero cold stress causes elevation of blood pressure via impaired vascular dopamine D1 receptor in offspring. Clin Exp Hypertens 2019; 42:99-104. [PMID: 30698033 DOI: 10.1080/10641963.2019.1571603] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Dongdong Sun
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, P.R. China
- Chongqing Institute of Cardiology, Chongqing, P.R. China
| | - Ken Chen
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, P.R. China
- Chongqing Institute of Cardiology, Chongqing, P.R. China
- Department of Cardiology, Chengdu Military General Hospital, Chengdu, Sichuan, P.R. China
| | - Jialiang Wang
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, P.R. China
- Chongqing Institute of Cardiology, Chongqing, P.R. China
| | - Lin Zhou
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, P.R. China
- Chongqing Institute of Cardiology, Chongqing, P.R. China
| | - Chunyu Zeng
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, P.R. China
- Chongqing Institute of Cardiology, Chongqing, P.R. China
| |
Collapse
|
16
|
Vieira LD, Farias JS, de Queiroz DB, Cabral EV, Lima-Filho MM, Sant'Helena BR, Aires RS, Ribeiro VS, Santos-Rocha J, Xavier FE, Paixão AD. Oxidative stress induced by prenatal LPS leads to endothelial dysfunction and renal haemodynamic changes through angiotensin II/NADPH oxidase pathway: Prevention by early treatment with α-tocopherol. Biochim Biophys Acta Mol Basis Dis 2018; 1864:3577-3587. [DOI: 10.1016/j.bbadis.2018.09.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 09/04/2018] [Accepted: 09/17/2018] [Indexed: 11/16/2022]
|
17
|
Cogollos L, Garcia-Contreras C, Vazquez-Gomez M, Astiz S, Sanchez-Sanchez R, Gomez-Fidalgo E, Ovilo C, Isabel B, Gonzalez-Bulnes A. Effects of fetal genotype and sex on developmental response to maternal malnutrition. Reprod Fertil Dev 2018; 29:1155-1168. [PMID: 27184893 DOI: 10.1071/rd15385] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Accepted: 03/15/2016] [Indexed: 11/23/2022] Open
Abstract
The present study aimed to determine whether developmental patterns, adiposity level and fatty-acid composition of fetuses exposed to maternal malnutrition are driven by their sex or their genotype, or both, as these may modulate the adaptive response to the intrauterine environment independently of the maternal genotype. We used a single maternal genotype (purebred Iberian (IB) sows), which was inseminated with heterospermic semen (obtained by mixing semen from Iberian and Large White (LW) boars), to obtain four different subsets of fetuses (male and female, purebred (IB×IB) and crossbred (IB×LW)) in Iberian purebred sows. Analysis of fetal phenotypes indicated a better adaptive response of the female offspring, which was modulated by their genotype. When faced with prenatal undernutrition, females prioritised the growth of vital organs (brain, liver, lungs, kidneys and intestine) at the expense of bone and muscle. Moreover, the analysis of fat composition showed a higher availability of essential fatty acids in the female sex than in their male counterparts and also in the Iberian genotype than in crossbred fetuses. These results are of high translational value for understanding ethnic differences in prenatal programming of postnatal health and disease status, and show evidence that prenatal development and metabolic traits are primarily determined by fetal sex and strongly modulated by fetal genotype.
Collapse
Affiliation(s)
- Laura Cogollos
- Department of Animal Reproduction, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Avda. Puerta de Hierro s/n, 28040 Madrid, Spain
| | | | - Marta Vazquez-Gomez
- Faculty of Veterinary Sciences, UCM, Avda. Puerta de Hierro s/n, 28040 Madrid, Spain
| | - Susana Astiz
- Department of Animal Reproduction, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Avda. Puerta de Hierro s/n, 28040 Madrid, Spain
| | - Raul Sanchez-Sanchez
- Department of Animal Reproduction, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Avda. Puerta de Hierro s/n, 28040 Madrid, Spain
| | - Ernesto Gomez-Fidalgo
- Department of Animal Reproduction, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Avda. Puerta de Hierro s/n, 28040 Madrid, Spain
| | - Cristina Ovilo
- Department of Animal Genetics, INIA, Ctra. De A Coruña Km. 7, 28040 Madrid, Spain
| | - Beatriz Isabel
- Faculty of Veterinary Sciences, UCM, Avda. Puerta de Hierro s/n, 28040 Madrid, Spain
| | - Antonio Gonzalez-Bulnes
- Department of Animal Reproduction, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Avda. Puerta de Hierro s/n, 28040 Madrid, Spain
| |
Collapse
|
18
|
Seuss H, Janka R, Prümmer M, Cavallaro A, Hammon R, Theis R, Sandmair M, Amann K, Bäuerle T, Uder M, Hammon M. Development and Evaluation of a Semi-automated Segmentation Tool and a Modified Ellipsoid Formula for Volumetric Analysis of the Kidney in Non-contrast T2-Weighted MR Images. J Digit Imaging 2018; 30:244-254. [PMID: 28025731 DOI: 10.1007/s10278-016-9936-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Volumetric analysis of the kidney parenchyma provides additional information for the detection and monitoring of various renal diseases. Therefore the purposes of the study were to develop and evaluate a semi-automated segmentation tool and a modified ellipsoid formula for volumetric analysis of the kidney in non-contrast T2-weighted magnetic resonance (MR)-images. Three readers performed semi-automated segmentation of the total kidney volume (TKV) in axial, non-contrast-enhanced T2-weighted MR-images of 24 healthy volunteers (48 kidneys) twice. A semi-automated threshold-based segmentation tool was developed to segment the kidney parenchyma. Furthermore, the three readers measured renal dimensions (length, width, depth) and applied different formulas to calculate the TKV. Manual segmentation served as a reference volume. Volumes of the different methods were compared and time required was recorded. There was no significant difference between the semi-automatically and manually segmented TKV (p = 0.31). The difference in mean volumes was 0.3 ml (95% confidence interval (CI), -10.1 to 10.7 ml). Semi-automated segmentation was significantly faster than manual segmentation, with a mean difference = 188 s (220 vs. 408 s); p < 0.05. Volumes did not differ significantly comparing the results of different readers. Calculation of TKV with a modified ellipsoid formula (ellipsoid volume × 0.85) did not differ significantly from the reference volume; however, the mean error was three times higher (difference of mean volumes -0.1 ml; CI -31.1 to 30.9 ml; p = 0.95). Applying the modified ellipsoid formula was the fastest way to get an estimation of the renal volume (41 s). Semi-automated segmentation and volumetric analysis of the kidney in native T2-weighted MR data delivers accurate and reproducible results and was significantly faster than manual segmentation. Applying a modified ellipsoid formula quickly provides an accurate kidney volume.
Collapse
Affiliation(s)
- Hannes Seuss
- Department of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Maximiliansplatz 1, 91054, Erlangen, Germany
| | - Rolf Janka
- Department of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Maximiliansplatz 1, 91054, Erlangen, Germany
| | - Marcus Prümmer
- Chimaera GmbH, Am Weichselgarten 7, 91058, Erlangen, Germany
| | - Alexander Cavallaro
- Department of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Maximiliansplatz 1, 91054, Erlangen, Germany
| | - Rebecca Hammon
- Department of Neurology, Klinikum Nuremberg, Breslauer Str. 201, 90471, Nuremberg, Germany
| | - Ragnar Theis
- Department of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Maximiliansplatz 1, 91054, Erlangen, Germany
| | - Martin Sandmair
- Department of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Maximiliansplatz 1, 91054, Erlangen, Germany
| | - Kerstin Amann
- Department of Nephropathology, University Hospital Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Krankenhausstr. 8-10, 91054, Erlangen, Germany
| | - Tobias Bäuerle
- Department of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Maximiliansplatz 1, 91054, Erlangen, Germany
| | - Michael Uder
- Department of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Maximiliansplatz 1, 91054, Erlangen, Germany
| | - Matthias Hammon
- Department of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Maximiliansplatz 1, 91054, Erlangen, Germany.
| |
Collapse
|
19
|
Ye Z, Lu X, Deng Y, Wang X, Zheng S, Ren H, Zhang M, Chen T, Jose PA, Yang J, Zeng C. In Utero Exposure to Fine Particulate Matter Causes Hypertension Due to Impaired Renal Dopamine D1 Receptor in Offspring. Cell Physiol Biochem 2018; 46:148-159. [PMID: 29614490 PMCID: PMC6437669 DOI: 10.1159/000488418] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Accepted: 01/23/2018] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND/AIMS Adverse environment in utero can modulate adult phenotypes including blood pressure. Fine particulate matter (PM2.5) exposure in utero causes hypertension in the offspring, but the exact mechanisms are not clear. Renal dopamine D1 receptor (D1R), regulated by G protein-coupled receptor kinase type 4 (GRK4), plays an important role in the regulation of renal sodium transport and blood pressure. In this present study, we determined if renal D1R dysfunction is involved in PM2.5-induced hypertension in the offspring. METHODS Pregnant Sprague-Dawley rats were given an oropharyngeal drip of PM2.5 (1.0 mg/kg) at gestation day 8, 10, and 12. The blood pressure, 24-hour sodium excretion, and urine volume were measured in the offspring. The expression levels of GRK4 and D1R were determined by immunoblotting. The phosphorylation of D1R was investigated using immunoprecipitation. Plasma malondialdehyde and superoxide dismutase levels were also measured in the offspring. RESULTS As compared with saline-treated dams, offspring of PM2.5-treated dams had increased blood pressure, impaired sodium excretion, and reduced D1R-mediated natriuresis and diuresis, accompanied by decreased renal D1R expression and GRK4 expression. The impaired renal D1R function and increased GRK4 expression could be caused by increased reactive oxidative stress (ROS) induced by PM2.5 exposure. Administration of tempol, a redox-cycling nitroxide, for 4 weeks in the offspring of PM2.5-treated dam normalized the decreased renal D1R expression and increased renal D1R phosphorylation and GRK4 expression. Furthermore, tempol normalized the increased renal expression of c-Myc, a transcription factor that regulates GRK4 expression. CONCLUSIONS In utero exposure to PM2.5 increases ROS and GRK4 expression, impairs D1R-mediated sodium excretion, and increases blood pressure in the offspring. These studies suggest that normalization of D1R function may be a target for the prevention and treatment of the hypertension in offspring of mothers exposed to PM2.5 during pregnancy.
Collapse
Affiliation(s)
- Zhengmeng Ye
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, China.,Chongqing Institute of Cardiology & Chongqing Key Laboratory for Hypertension Research, Chongqing, China
| | - Xi Lu
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, China.,Chongqing Institute of Cardiology & Chongqing Key Laboratory for Hypertension Research, Chongqing, China
| | - Yi Deng
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, China.,Chongqing Institute of Cardiology & Chongqing Key Laboratory for Hypertension Research, Chongqing, China
| | - Xinquan Wang
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, China.,Chongqing Institute of Cardiology & Chongqing Key Laboratory for Hypertension Research, Chongqing, China
| | - Shuo Zheng
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, China.,Chongqing Institute of Cardiology & Chongqing Key Laboratory for Hypertension Research, Chongqing, China
| | - Hongmei Ren
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, China.,Chongqing Institute of Cardiology & Chongqing Key Laboratory for Hypertension Research, Chongqing, China
| | - Miao Zhang
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, China.,Chongqing Institute of Cardiology & Chongqing Key Laboratory for Hypertension Research, Chongqing, China
| | - Tingting Chen
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, China.,Chongqing Institute of Cardiology & Chongqing Key Laboratory for Hypertension Research, Chongqing, China
| | - Pedro A Jose
- Division of Renal Disease & Hypertension, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia, USA
| | - Jian Yang
- Department of Clinical Nutrition, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Chunyu Zeng
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, China.,Chongqing Institute of Cardiology & Chongqing Key Laboratory for Hypertension Research, Chongqing, China
| |
Collapse
|
20
|
|
21
|
Changes in renal hemodynamics of undernourished fetuses appear earlier than IUGR evidences. J Dev Orig Health Dis 2018; 9:338-343. [PMID: 29374502 DOI: 10.1017/s204017441800003x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The present study used a sheep model of intrauterine growth restriction, combining maternal undernutrition and twinning, to determine possible markers of early damage to the fetal kidney. The occurrence of early deviations in fetal hemodynamics which may be indicative of changes in blood perfusion was assessed by Doppler ultrasonography. A total of 24 sheep divided in two groups were fed with the same standard grain-based diet but fulfilling either their daily maintenance requirements for pregnancy (control group; n=12, six singleton and six twin pregnancies) or only the 50% of such quantity (food-restricted group; n=12; four singleton and eight twin pregnancies). All the fetuses were assessed by both B-mode and Doppler ultrasonography at Day 115 of pregnancy. Fetal blood supply was affected by maternal undernutrition, although there were still no evidences of brain-sparing excepting in fetuses at greatest challenge (twins in underfed pregnancies). However, there were early changes in the blood supply to the kidneys of underfed fetuses and underfed twins evidenced decreases in kidney size.
Collapse
|
22
|
Ainsworth HC, Langefeld CD, Freedman BI. Genetic epidemiology in kidney disease. Nephrol Dial Transplant 2017; 32:ii159-ii169. [PMID: 28201750 DOI: 10.1093/ndt/gfw270] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2016] [Accepted: 06/04/2016] [Indexed: 12/20/2022] Open
Abstract
Familial aggregation of chronic kidney disease and its component phenotypes-reduced glomerular filtration rate, proteinuria and renal histologic changes-has long been recognized. Rates of severe kidney disease are also known to differ markedly between populations based on ancestry. These epidemiologic observations support the existence of nephropathy susceptibility genes. Several molecular genetic technologies are now available to identify causative loci. The present article summarizes available strategies useful for identifying nephropathy susceptibility genes, including candidate gene association, family-based linkage, genome-wide association and admixture mapping (mapping by admixture linkage disequilibrium) approaches. Examples of loci detected using these techniques are provided. Epigenetic studies and future directions are also discussed. The identification of nephropathy susceptibility genes, coupled with modifiable environmental triggers impacting their function, is likely to improve risk prediction and transform care. Development of novel therapies to prevent progression of kidney disease will follow.
Collapse
Affiliation(s)
- Hannah C Ainsworth
- Department of Biostatistical Sciences, Division of Public Health Sciences, Wake Forest School of Medicine, Winston-Salem, NC, USA
- Center for Public Health Genomics, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Carl D Langefeld
- Department of Biostatistical Sciences, Division of Public Health Sciences, Wake Forest School of Medicine, Winston-Salem, NC, USA
- Center for Public Health Genomics, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Barry I Freedman
- Center for Public Health Genomics, Wake Forest School of Medicine, Winston-Salem, NC, USA
- Department of Internal Medicine, Section on Nephrology, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC, USA
| |
Collapse
|
23
|
Di Daniele N, Noce A, Vidiri MF, Moriconi E, Marrone G, Annicchiarico-Petruzzelli M, D’Urso G, Tesauro M, Rovella V, De Lorenzo A. Impact of Mediterranean diet on metabolic syndrome, cancer and longevity. Oncotarget 2017; 8:8947-8979. [PMID: 27894098 PMCID: PMC5352455 DOI: 10.18632/oncotarget.13553] [Citation(s) in RCA: 201] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 11/07/2016] [Indexed: 02/07/2023] Open
Abstract
Obesity symbolizes a major public health problem. Overweight and obesity are associated to the occurrence of the metabolic syndrome and to adipose tissue dysfunction. The adipose tissue is metabolically active and an endocrine organ, whose dysregulation causes a low-grade inflammatory state and ectopic fat depositions. The Mediterranean Diet represents a possible therapy for metabolic syndrome, preventing adiposopathy or "sick fat" formation.The Mediterranean Diet exerts protective effects in elderly subjects with and without baseline of chronic diseases. Recent studies have demonstrated a relationship between cancer and obesity. In the US, diet represents amount 30-35% of death causes related to cancer. Currently, the cancer is the second cause of death after cardiovascular diseases worldwide. Furthermore, populations living in the Mediterranean area have a decreased incidence of cancer compared with populations living in Northern Europe or the US, likely due to healthier dietary habits. The bioactive food components have a potential preventive action on cancer. The aims of this review are to evaluate the impact of Mediterranean Diet on onset, progression and regression of metabolic syndrome, cancer and on longevity.
Collapse
Affiliation(s)
- Nicola Di Daniele
- Department of Systems Medicine, Hypertension and Nephrology Unit, University of Rome “Tor Vergata”, Italy
| | - Annalisa Noce
- Department of Systems Medicine, Hypertension and Nephrology Unit, University of Rome “Tor Vergata”, Italy
| | - Maria Francesca Vidiri
- Department of Biomedicine and Prevention, Division of Clinical Nutrition and Nutrigenomic, University of Rome “Tor Vergata”, Italy
| | - Eleonora Moriconi
- Department of Biomedicine and Prevention, Division of Clinical Nutrition and Nutrigenomic, University of Rome “Tor Vergata”, Italy
| | - Giulia Marrone
- Department of Systems Medicine, Hypertension and Nephrology Unit, University of Rome “Tor Vergata”, Italy
| | | | - Gabriele D’Urso
- Department of Systems Medicine, Hypertension and Nephrology Unit, University of Rome “Tor Vergata”, Italy
| | - Manfredi Tesauro
- Department of Systems Medicine, Hypertension and Nephrology Unit, University of Rome “Tor Vergata”, Italy
| | - Valentina Rovella
- Department of Systems Medicine, Hypertension and Nephrology Unit, University of Rome “Tor Vergata”, Italy
| | - Antonino De Lorenzo
- Department of Biomedicine and Prevention, Division of Clinical Nutrition and Nutrigenomic, University of Rome “Tor Vergata”, Italy
| |
Collapse
|
24
|
Okabayashi Y, Tsuboi N, Sasaki T, Haruhara K, Kanzaki G, Koike K, Miyazaki Y, Kawamura T, Ogura M, Yokoo T. Glomerulopathy Associated With Moderate Obesity. Kidney Int Rep 2016; 1:250-255. [PMID: 29142929 PMCID: PMC5678835 DOI: 10.1016/j.ekir.2016.08.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Revised: 07/17/2016] [Accepted: 08/07/2016] [Indexed: 11/26/2022] Open
Abstract
INTRODUCTION Obesity-related glomerulopathy is an established secondary glomerular disease that may occur in obese individuals with a body mass index (BMI) of ≥30 kg/m2. However, patients with moderate obesity (BMI ≤ 30 kg/m2) may also develop this disease. METHODS A total of 20 patients with grade 1 obesity (25 ≤ BMI < 30 kg/m2) with persistent proteinuria, without evidence of other renal diseases, were analyzed retrospectively. These patients were compared with 20 patients with grade 2 or higher obesity (BMI ≥ 30 kg/m2) with persistent proteinuria. Biopsies of 31 kidney transplant donors as healthy controls were used to compare histologic parameters. RESULTS Similar to the grade 2 or higher obesity group, the grade 1 obesity group had a male predominance (85%) and showed a high incidence of hypertension (80%). Urinary protein excretion and renal outcome parameters were comparable between the groups. Patients with grade 1 obesity showed typical histologic features of obesity-related glomerulopathy: low glomerular density with glomerulomegaly. The glomerular density and mean glomerular volume in the grade 1 group, the grade 2 or higher group, and the kidney transplant donors with grade 1 obesity were 1.6 ± 0.8 versus 1.4 ± 0.6 versus 3.0 ± 1.1 (per mm2) and 6.1 ± 2.1 versus 6.4 ± 1.6 versus 2.9 ± 0.8 (×106 μm3), respectively. DISCUSSION A glomerulopathy similar to obesity-related glomerulopathy can occur in moderately obese individuals. Renal factor(s), such as low glomerular density, may thus underlie susceptibility to this disease entity as well as BMI.
Collapse
Affiliation(s)
- Yusuke Okabayashi
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Nobuo Tsuboi
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Takaya Sasaki
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Kotaro Haruhara
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Go Kanzaki
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Kentaro Koike
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Yoichi Miyazaki
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Tetsuya Kawamura
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Makoto Ogura
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Takashi Yokoo
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| |
Collapse
|
25
|
Chowdhury SS, Lecomte V, Erlich JH, Maloney CA, Morris MJ. Paternal High Fat Diet in Rats Leads to Renal Accumulation of Lipid and Tubular Changes in Adult Offspring. Nutrients 2016; 8:E521. [PMID: 27563922 PMCID: PMC5037508 DOI: 10.3390/nu8090521] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 08/16/2016] [Accepted: 08/17/2016] [Indexed: 12/28/2022] Open
Abstract
Along with diabetes and obesity, chronic kidney disease (CKD) is increasing across the globe. Although some data support an effect of maternal obesity on offspring kidney, the impact of paternal obesity is unknown; thus, we have studied the effect of paternal obesity prior to conception. Male Sprague Dawley rats were fed chow diet or high fat diet (HFD) for 13-14 weeks before mating with chow-fed females. Male offspring were weaned onto chow and killed at 27 weeks for renal gene expression and histology. Fathers on HFD were 30% heavier than Controls at mating. At 27 weeks of age offspring of obese fathers weighed 10% less; kidney triglyceride content was significantly increased (5.35 ± 0.84 vs. 2.99 ± 0.47 μg/mg, p < 0.05, n = 8 litters per group. Histological analysis of the kidney demonstrated signs of tubule damage, with significantly greater loss of brush border, and increased cell sloughing in offspring of obese compared to Control fathers. Acat1, involved in entry of fatty acid for beta-oxidation, was significantly upregulated, possibly to counteract increased triglyceride storage. However other genes involved in lipid metabolism, inflammation and kidney injury showed no changes. Paternal obesity was associated with renal triglyceride accumulation and histological changes in tubules, suggesting a mild renal insult in offspring, who may be at risk of developing CKD.
Collapse
Affiliation(s)
- Sabiha S Chowdhury
- School of Medical Sciences, University of New South Wales, Sydney 2052, NSW, Australia.
| | - Virginie Lecomte
- School of Medical Sciences, University of New South Wales, Sydney 2052, NSW, Australia.
| | - Jonathan H Erlich
- Prince of Wales Clinical School, University of New South Wales, Sydney 2052, NSW, Australia.
- Department of Nephrology, Prince of Wales Hospital, Randwick 2031, NSW, Australia.
| | - Christopher A Maloney
- School of Medical Sciences, University of New South Wales, Sydney 2052, NSW, Australia.
| | - Margaret J Morris
- School of Medical Sciences, University of New South Wales, Sydney 2052, NSW, Australia.
| |
Collapse
|
26
|
Tain YL, Sheen JM, Yu HR, Chen CC, Tiao MM, Hsu CN, Lin YJ, Kuo KC, Huang LT. Maternal Melatonin Therapy Rescues Prenatal Dexamethasone and Postnatal High-Fat Diet Induced Programmed Hypertension in Male Rat Offspring. Front Physiol 2015; 6:377. [PMID: 26696906 PMCID: PMC4675845 DOI: 10.3389/fphys.2015.00377] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 11/23/2015] [Indexed: 12/30/2022] Open
Abstract
Prenatal dexamethasone (DEX) exposure and high-fat (HF) intake are linked to hypertension. We examined whether maternal melatonin therapy prevents programmed hypertension synergistically induced by prenatal DEX plus postnatal HF in adult offspring. We also examined whether DEX and melatonin causes renal programming using next-generation RNA sequencing (NGS) technology. Pregnant Sprague-Dawley rats received intraperitoneal dexamethasone (0.1 mg/kg) or vehicle from gestational day 16 to 22. In the melatonin-treatment groups (M), rats received 0.01% melatonin in drinking water during their entire pregnancy and lactation. Male offspring were assigned to five groups: control, DEX, HF, DEX+HF, and DEX+HF+M. Male offspring in the HF group were fed a HF diet from weaning to 4 months of age. Prenatal DEX and postnatal HF diet synergistically induced programmed hypertension in adult offspring, which melatonin prevented. Maternal melatonin treatment modified over 3000 renal transcripts in the developing offspring kidney. Our NGS data indicate that PPAR signaling and fatty acid metabolism are two significantly regulated pathways. In addition, maternal melatonin therapy elicits longstanding alterations on renal programming, including regulation of the melatonin signaling pathway and upregulation of Agtr1b and Mas1 expression in the renin-angiotensin system (RAS), to protect male offspring against programmed hypertension. Postnatal HF aggravates prenatal DEX induced programmed hypertension in adult offspring, which melatonin prevented. The protective effects of melatonin on programmed hypertension is associated with regulation of the RAS and melatonin receptors. The long-term effects of maternal melatonin therapy on renal transcriptome require further clarification.
Collapse
Affiliation(s)
- You-Lin Tain
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University, College of Medicine Kaohsiung, Taiwan ; Center for Translational Research in Biomedical Sciences, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University, College of Medicine Kaohsiung, Taiwan
| | - Jiunn-Ming Sheen
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University, College of Medicine Kaohsiung, Taiwan
| | - Hong-Ren Yu
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University, College of Medicine Kaohsiung, Taiwan
| | - Chih-Cheng Chen
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University, College of Medicine Kaohsiung, Taiwan
| | - Mao-Meng Tiao
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University, College of Medicine Kaohsiung, Taiwan
| | - Chien-Ning Hsu
- Department of Pharmacy, Kaohsiung Chang Gung Memorial Hospital Kaohsiung, Taiwan ; School of Pharmacy, Kaohsiung Medical University Kaohsiung, Taiwan
| | - Yu-Ju Lin
- Department of Obstetrics and Gynecology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University, College of Medicine Kaohsiung, Taiwan
| | - Kuang-Che Kuo
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University, College of Medicine Kaohsiung, Taiwan
| | - Li-Tung Huang
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University, College of Medicine Kaohsiung, Taiwan ; Department of Traditional Chinese Medicine, Chang Gung University Linkou, Taiwan
| |
Collapse
|
27
|
Gonzalez-Bulnes A, Torres-Rovira L, Astiz S, Ovilo C, Sanchez-Sanchez R, Gomez-Fidalgo E, Perez-Solana M, Martin-Lluch M, Garcia-Contreras C, Vazquez-Gomez M. Fetal Sex Modulates Developmental Response to Maternal Malnutrition. PLoS One 2015; 10:e0142158. [PMID: 26544862 PMCID: PMC4636307 DOI: 10.1371/journal.pone.0142158] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 10/19/2015] [Indexed: 12/24/2022] Open
Abstract
The incidence of obesity and metabolic diseases is dramatically high in rapidly developing countries. Causes have been related to intrinsic ethnic features with development of a thrifty genotype for adapting to food scarcity, prenatal programming by undernutrition, and postnatal exposure to obesogenic lifestyle. Observational studies in humans and experimental studies in animal models evidence that the adaptive responses of the offspring may be modulated by their sex. In the contemporary context of world globalization, the new question arising is the existence and extent of sex-related differences in developmental and metabolic traits in case of mixed-race. Hence, in the current study, using a swine model, we compared male and female fetuses that were crossbred from mothers with thrifty genotype and fathers without thrifty genotype. Female conceptuses evidence stronger protective strategies for their adequate growth and postnatal survival. In brief, both male and female fetuses developed a brain-sparing effect but female fetuses were still able to maintain the development of other viscerae than the brain (mainly liver, intestine and kidneys) at the expense of carcass development. Furthermore, these morphometric differences were reinforced by differences in nutrient availability (glucose and cholesterol) favoring female fetuses with severe developmental predicament. These findings set the basis for further studies aiming to increase the knowledge on the interaction between genetic and environmental factors in the determination of adult phenotype
Collapse
|
28
|
Neymeyer H, Labes R, Reverte V, Saez F, Stroh T, Dathe C, Hohberger S, Zeisberg M, Müller GA, Salazar J, Bachmann S, Paliege A. Activation of annexin A1 signalling in renal fibroblasts exerts antifibrotic effects. Acta Physiol (Oxf) 2015; 215:144-58. [PMID: 26332853 DOI: 10.1111/apha.12586] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 04/22/2015] [Accepted: 08/25/2015] [Indexed: 12/11/2022]
Abstract
AIM The anti-inflammatory protein annexin A1 (AnxA1) and its formyl peptide receptor 2 (FPR2) have protective effects in organ fibrosis. Their role in chronic kidney disease (CKD) has not yet been elucidated. Our aim was to characterize the AnxA1/FPR2 system in models of renal fibrosis. METHODS Rats were treated with angiotensin receptor antagonist during the nephrogenic period (ARAnp) to induce late-onset hypertensive nephropathy and fibrosis. Localization and regulation of AnxA1 and FPR2 were studied by quantitative real-time PCR and double labelling immunofluorescence. Biological effects of AnxA1 were studied in cultured renal fibroblasts from AnxA1(-/-) and wild-type mice. RESULTS Angiotensin receptor antagonist during the nephrogenic period kidneys displayed matrix foci containing CD73(+) fibroblasts, alpha-smooth muscle actin (a-SMA)(+) myofibroblasts and CD68(+) macrophages. TGF-β and AnxA1 mRNAs were ~threefold higher than in controls. AnxA1 was localized to macrophages and fibroblasts; myofibroblasts were negative. FPR2 was localized to fibroblasts, myofibroblasts, macrophages and endothelial cells. AnxA1 and FPR2 immunoreactive signals were increased in the foci, with fibroblasts and macrophages expressing both proteins. AnxA1(-/-) fibroblasts revealed higher α-SMA (sevenfold) and collagen 1A1 (Col1A1; 144-fold) mRNA levels than controls. Treatment of murine WT fibroblasts with TGF-β (22.5 ng mL 24 h(-1)) increased mRNA levels of α-SMA (9.3-fold) and Col1A1 (fourfold). These increases were greatly attenuated upon overexpression of AnxA1 (1.5- and 1.7-fold, respectively; P < 0.05). Human fibroblasts reacted similarly when receiving the FPR2 inhibitor WRW4. CONCLUSION Our results demonstrate that AnxA1 and FPR2 are abundantly expressed in the renal interstitium and modulate fibroblast phenotype and extracellular matrix synthesis activity.
Collapse
Affiliation(s)
- H. Neymeyer
- Department of Anatomy; Charité Universitätsmedizin Berlin; Berlin Germany
| | - R. Labes
- Department of Anatomy; Charité Universitätsmedizin Berlin; Berlin Germany
| | - V. Reverte
- Department of Physiology; School of Medicine; University of Murcia; Murcia Spain
| | - F. Saez
- Department of Physiology; School of Medicine; University of Murcia; Murcia Spain
| | - T. Stroh
- Department of Medicine; Charité Universitätsmedizin Berlin; Berlin Germany
| | - C. Dathe
- Department of Anatomy; Charité Universitätsmedizin Berlin; Berlin Germany
| | - S. Hohberger
- Department of Anatomy; Charité Universitätsmedizin Berlin; Berlin Germany
| | - M. Zeisberg
- Department of Nephrology and Rheumatology; Göttingen University Medical Center; Göttingen Germany
| | - G. A. Müller
- Department of Nephrology and Rheumatology; Göttingen University Medical Center; Göttingen Germany
| | - J. Salazar
- Department of Physiology; School of Medicine; University of Murcia; Murcia Spain
| | - S. Bachmann
- Department of Anatomy; Charité Universitätsmedizin Berlin; Berlin Germany
| | - A. Paliege
- Department of Anatomy; Charité Universitätsmedizin Berlin; Berlin Germany
- Department of Nephrology; Charité Universitätsmedizin Berlin; Berlin Germany
| |
Collapse
|
29
|
Morgado J, Sanches B, Anjos R, Coelho C. Programming of Essential Hypertension: What Pediatric Cardiologists Need to Know. Pediatr Cardiol 2015; 36:1327-37. [PMID: 26015087 DOI: 10.1007/s00246-015-1204-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 05/14/2015] [Indexed: 01/11/2023]
Abstract
Hypertension is recognized as one of the major contributing factors to cardiovascular disease, but its etiology remains incompletely understood. Known genetic and environmental influences can only explain a small part of the variability in cardiovascular disease risk. The missing heritability is currently one of the most important challenges in blood pressure and hypertension genetics. Recently, some promising approaches have emerged that move beyond the DNA sequence and focus on identification of blood pressure genes regulated by epigenetic mechanisms such as DNA methylation, histone modification and microRNAs. This review summarizes information on gene-environmental interactions that lead toward the developmental programming of hypertension with specific reference to epigenetics and provides pediatricians and pediatric cardiologists with a more complete understanding of its pathogenesis.
Collapse
Affiliation(s)
- Joana Morgado
- Pediatrics Department, Hospital do Espírito Santo de Évora, Largo Senhor da Pobreza, 7000-811, Évora, Portugal.
| | - Bruno Sanches
- Pediatrics Department, Hospital Garcia de Orta, Almada, Portugal
| | - Rui Anjos
- Pediatric Cardiology Department, Hospital Santa Cruz, Lisbon, Portugal
| | - Constança Coelho
- Genetics Laboratory, Environmental Health Institute, Lisbon Medical School, Lisbon, Portugal
| |
Collapse
|
30
|
Wang X, Wang J, Luo H, Chen C, Pei F, Cai Y, Yang X, Wang N, Fu J, Xu Z, Zhou L, Zeng C. Prenatal lipopolysaccharide exposure causes mesenteric vascular dysfunction through the nitric oxide and cyclic guanosine monophosphate pathway in offspring. Free Radic Biol Med 2015; 86:322-30. [PMID: 26073126 DOI: 10.1016/j.freeradbiomed.2015.05.040] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 05/03/2015] [Accepted: 05/26/2015] [Indexed: 01/21/2023]
Abstract
Cardiovascular diseases, such as hypertension, could be programmed in fetal life. Prenatal lipopolysaccharide (LPS) exposure in utero results in increased blood pressure in offspring, but the vascular mechanisms involved are unclear. Pregnant Sprague-Dawley rats were intraperitoneally injected with LPS (0.79mg/kg) or saline (0.5ml) on gestation days 8, 10, and 12. The offspring of LPS-treated dams had higher blood pressure and decreased acetylcholine (ACh)-induced relaxation and increased phenylephrine (PE)-induced contraction in endothelium-intact mesenteric arteries. Endothelium removal significantly enhanced the PE-induced contraction in offspring of control but not LPS-treated dams. The arteries pretreated with l-NAME to inhibit nitric oxide synthase (eNOS) in the endothelium or ODQ to inhibit cGMP production in the vascular smooth muscle had attenuated ACh-induced relaxation but augmented PE-induced contraction to a larger extent in arteries from offspring of control than those from LPS-treated dams. In addition, the endothelium-independent relaxation caused by sodium nitroprusside was also decreased in arteries from offspring of LPS-treated dams. The functional results were accompanied by a reduction in the expressions of eNOS and soluble guanylate cyclase (sGC) and production of NO and cGMP in arteries from offspring of LPS-treated dams. Furthermore, LPS-treated dam's offspring arteries had increased oxidative stress and decreased antioxidant capacity. Three-week treatment with TEMPOL, a reactive oxygen species (ROS) scavenger, normalized the alterations in the levels of ROS, eNOS, and sGC, as well as in the production of NO and cGMP and vascular function in the arteries of the offspring of LPS-treated dams. In conclusion, prenatal LPS exposure programs vascular dysfunction of mesenteric arteries through increased oxidative stress and impaired NO-cGMP signaling pathway.
Collapse
Affiliation(s)
- Xinquan Wang
- Department of Cardiology, Daping Hospital, The Third Military Medical University, People's Republic of China; Chongqing Institute of Cardiology, Chongqing, People's Republic of China
| | - Jialiang Wang
- Department of Cardiology, Daping Hospital, The Third Military Medical University, People's Republic of China; Chongqing Institute of Cardiology, Chongqing, People's Republic of China
| | - Hao Luo
- Department of Cardiology, Daping Hospital, The Third Military Medical University, People's Republic of China; Chongqing Institute of Cardiology, Chongqing, People's Republic of China
| | - Caiyu Chen
- Department of Cardiology, Daping Hospital, The Third Military Medical University, People's Republic of China; Chongqing Institute of Cardiology, Chongqing, People's Republic of China
| | - Fang Pei
- Department of Cardiology, Daping Hospital, The Third Military Medical University, People's Republic of China; Chongqing Institute of Cardiology, Chongqing, People's Republic of China
| | - Yue Cai
- Department of Cardiology, Daping Hospital, The Third Military Medical University, People's Republic of China; Chongqing Institute of Cardiology, Chongqing, People's Republic of China
| | - Xiaoli Yang
- Department of Cardiology, Daping Hospital, The Third Military Medical University, People's Republic of China; Chongqing Institute of Cardiology, Chongqing, People's Republic of China
| | - Na Wang
- Department of Cardiology, Daping Hospital, The Third Military Medical University, People's Republic of China; Chongqing Institute of Cardiology, Chongqing, People's Republic of China
| | - Jinjuan Fu
- Department of Cardiology, Daping Hospital, The Third Military Medical University, People's Republic of China; Chongqing Institute of Cardiology, Chongqing, People's Republic of China
| | - Zaichen Xu
- Department of Cardiology, Daping Hospital, The Third Military Medical University, People's Republic of China; Chongqing Institute of Cardiology, Chongqing, People's Republic of China
| | - Lin Zhou
- Department of Cardiology, Daping Hospital, The Third Military Medical University, People's Republic of China; Chongqing Institute of Cardiology, Chongqing, People's Republic of China.
| | - Chunyu Zeng
- Department of Cardiology, Daping Hospital, The Third Military Medical University, People's Republic of China; Chongqing Institute of Cardiology, Chongqing, People's Republic of China.
| |
Collapse
|
31
|
Hepatic IGF1 DNA methylation is influenced by gender but not by intrauterine growth restriction in the young lamb. J Dev Orig Health Dis 2015; 6:558-72. [DOI: 10.1017/s2040174415001415] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Intrauterine growth restriction (IUGR) and postnatal catch-up growth confer an increased risk of adult-onset disease. Overnourishment of adolescent ewes generates IUGR in ∼50% of lambs, which subsequently exhibit increased fractional growth rates. We investigated putative epigenetic changes underlying this early postnatal phenotype by quantifying gene-specific methylation at cytosine:guanine (CpG) dinucleotides. Hepatic DNA/RNA was extracted from IUGR [eight male (M)/nine female (F)] and normal birth weight (12 M/9 F) lambs. Polymerase chain reaction was performed using primers targeting CpG islands in 10 genes: insulin, growth hormone, insulin-like growth factor (IGF)1, IGF2, H19, insulin receptor, growth hormone receptor, IGF receptors 1 and 2, and the glucocorticoid receptor. Using pyrosequencing, methylation status was determined by quantifying cytosine:thymine ratios at 57 CpG sites. Messenger RNA (mRNA) expression of IGF system genes and plasma IGF1/insulin were determined. DNA methylation was independent of IUGR status but sexual dimorphism in IGF1 methylation was evident (M<F, P=0.008). IGF1 mRNA:18S and plasma IGF1 were M>F (both P<0.001). IGF1 mRNA expression correlated negatively with IGF1 methylation (r=−0.507, P=0.002) and positively with plasma IGF1 (r=0.884, P<0.001). Carcass and empty body weights were greater in males (P=0.002–0.014) and this gender difference in early body conformation was mirrored by sexual dimorphism in hepatic IGF1 DNA methylation, mRNA expression and plasma IGF1 concentrations.
Collapse
|
32
|
Kanzaki G, Tsuboi N, Haruhara K, Koike K, Ogura M, Shimizu A, Yokoo T. Factors associated with a vicious cycle involving a low nephron number, hypertension and chronic kidney disease. Hypertens Res 2015; 38:633-41. [PMID: 26084263 DOI: 10.1038/hr.2015.67] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 03/23/2015] [Accepted: 03/26/2015] [Indexed: 12/15/2022]
Abstract
It has been reported that there is substantial variation in the nephron number between individuals. Previous studies using autopsy kidneys have demonstrated that a low nephron number, in relation to a low birth weight, may result in hypertension (HTN) and/or chronic kidney disease (CKD). However, recent studies have revealed that the association between a low nephron number and HTN is not a universal finding. This observation indicates that a low nephron number is unlikely to be the sole factor contributing to an elevated blood pressure. In addition to the nephron number, various genetic and congenital factors may contribute to increased susceptibility to HTN and/or CKD in a complex manner. Acquired factors, including aging, obesity and related metabolic abnormalities, and various causes of renal injury, may additionally promote further nephron loss. Such a vicious cycle may induce HTN and/or CKD via the common mechanisms of renal hemodynamic maladaptation.
Collapse
Affiliation(s)
- Go Kanzaki
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Nobuo Tsuboi
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Kotaro Haruhara
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Kentaro Koike
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Makoto Ogura
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Akira Shimizu
- Department of Analytic Human Pathology, Nippon Medical School, Tokyo, Japan
| | - Takashi Yokoo
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| |
Collapse
|
33
|
Tang LL, Zhang LY, Lao LJ, Hu QY, Gu WZ, Fu LC, Du LZ. Epigenetics of Notch1 regulation in pulmonary microvascular rarefaction following extrauterine growth restriction. Respir Res 2015; 16:66. [PMID: 26040933 PMCID: PMC4486133 DOI: 10.1186/s12931-015-0226-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2015] [Accepted: 05/27/2015] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Extrauterine growth restriction (EUGR) plays an important role in the developmental origin of adult cardiovascular diseases. In an EUGR rat model, we reported an elevated pulmonary arterial pressure in adults and genome-wide epigenetic modifications in pulmonary vascular endothelial cells (PVECs). However, the underlying mechanism of the early nutritional insult that results in pulmonary vascular consequences later in life remains unclear. METHODS A rat model was used to investigate the physiological and structural effect of EUGR on early pulmonary vasculature by evaluating right ventricular systolic pressure and pulmonary vascular density in male rats. Epigenetic modifications of the Notch1 gene in PVECs were evaluated. RESULTS EUGR decreased pulmonary vascular density with no significant impact on right ventricular systolic pressure at 3 weeks. Decreased transcription of Notch1 was observed both at 3 and 9 weeks, in association with decreased downstream target gene, Hes-1. Chromatin immunoprecipitation and bisulfite sequencing were performed to analyze the epigenetic modifications of the Notch1 gene promoter in PVECs. EUGR caused a significantly increased H3K27me3 in the proximal Notch1 gene promoter, and increased methylation of single CpG sites in the distal Notch1 gene promoter, both at 3 and 9 weeks. CONCLUSIONS We conclude that EUGR results in decreased pulmonary vascular growth in association with decreased Notch1 in PVECs. This may be mediated by increased CpG methylation and H3K27me3 in the Notch1 gene promoter region.
Collapse
Affiliation(s)
- Li-Li Tang
- Department of Neonatology, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310051, People's Republic of China.
| | - Li-Yan Zhang
- Department of Neonatology, The Children's Hospital of Fuzhou, Fujian Medical University, Fuzhou, 350004, People's Republic of China.
| | - Lin-Jiang Lao
- Department of Neonatology, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310051, People's Republic of China.
| | - Qiong-Yao Hu
- Department of Neonatology, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310051, People's Republic of China.
| | - Wei-Zhong Gu
- Department of Pathology, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310051, People's Republic of China.
| | - Lin-Chen Fu
- Department of Neonatology, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310051, People's Republic of China.
| | - Li-Zhong Du
- Department of Neonatology, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310051, People's Republic of China.
| |
Collapse
|
34
|
Maternal fructose-intake-induced renal programming in adult male offspring. J Nutr Biochem 2015; 26:642-50. [DOI: 10.1016/j.jnutbio.2014.12.017] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 12/05/2014] [Accepted: 12/22/2014] [Indexed: 12/17/2022]
|
35
|
Miyashita S, Murotsuki J, Muromoto J, Ozawa K, Yaegashi N, Hasegawa H, Kanai H. Measurement of internal diameter changes and pulse wave velocity in fetal descending aorta using the ultrasonic phased-tracking method in normal and growth-restricted fetuses. ULTRASOUND IN MEDICINE & BIOLOGY 2015; 41:1311-1319. [PMID: 25727918 DOI: 10.1016/j.ultrasmedbio.2014.12.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Revised: 12/07/2014] [Accepted: 12/11/2014] [Indexed: 06/04/2023]
Abstract
Phased tracking (PT) is an ultrasound-based technique that enables precise measurement of a target velocity. The aims of this study were to use PT to evaluate arterial pulse waveform, pulse wave velocity and fetal pulse pressure in normal and growth-restricted fetuses. One hundred fetuses with normal development and 15 fetuses with growth restriction were analyzed. Ultrasonic raw radiofrequency signals were captured from a direction perpendicular to the vascular axis at the fetal diaphragmatic level for the difference in internal dimensions (DID), or simultaneously from different directions for the pulse wave velocity. Pulsatile movement of the proximal and distal intima of the vessels was analyzed using PT. The fetal DID exhibited no significant changes in growth-restricted fetuses. Pulse wave velocity (3.8 ± 0.32 m/s vs. 2.2 ± 0.069 m/s, p < 0.001) and estimated pulse pressure (6.9 ± 0.90 kPa vs. 2.5 ± 0.18 kPa, p < 0.001) were significantly elevated in growth-restricted fetuses. Assessment of DID and pulse wave velocity of the descending aorta using PT is a feasible, non-invasive approach to evaluation of fetal hemodynamics.
Collapse
Affiliation(s)
- Susumu Miyashita
- Department of Advanced Fetal and Developmental Medicine, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan; Department of Maternal and Fetal Medicine, Miyagi Children's Hospital, Sendai, Miyagi, Japan.
| | - Jun Murotsuki
- Department of Advanced Fetal and Developmental Medicine, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan; Department of Maternal and Fetal Medicine, Miyagi Children's Hospital, Sendai, Miyagi, Japan
| | - Jin Muromoto
- Department of Advanced Fetal and Developmental Medicine, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan; Department of Maternal and Fetal Medicine, Miyagi Children's Hospital, Sendai, Miyagi, Japan
| | - Katsusuke Ozawa
- Department of Advanced Fetal and Developmental Medicine, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan; Department of Maternal and Fetal Medicine, Miyagi Children's Hospital, Sendai, Miyagi, Japan
| | - Nobuo Yaegashi
- Department of Obstetrics and Gynecology, Tohoku University, Sendai, Miyagi, Japan
| | - Hideyuki Hasegawa
- Department of Electronic Engineering, Tohoku University Graduate School of Engineering, Sendai, Miyagi, Japan
| | - Hiroshi Kanai
- Department of Electronic Engineering, Tohoku University Graduate School of Engineering, Sendai, Miyagi, Japan
| |
Collapse
|
36
|
Hu W, Jin X, Gu J, Zhang P, Yu Q, Yin G, Lu Y, Xiao H, Chen Y, Zhang D. Risk factor panels associated with hypertension in obstructive sleep apnea patients with different body mass indexes. ACTA ACUST UNITED AC 2015; 9:382-9. [DOI: 10.1016/j.jash.2015.01.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Revised: 01/29/2015] [Accepted: 01/30/2015] [Indexed: 01/20/2023]
|
37
|
Maternal dietary protein supplement confers long-term sex-specific beneficial consequences of obesity resistance and glucose tolerance to the offspring in Brandt's voles. Comp Biochem Physiol A Mol Integr Physiol 2015; 182:38-44. [DOI: 10.1016/j.cbpa.2014.12.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 12/01/2014] [Accepted: 12/01/2014] [Indexed: 11/17/2022]
|
38
|
Transcriptome analysis in rat kidneys: importance of genes involved in programmed hypertension. Int J Mol Sci 2015; 16:4744-58. [PMID: 25739086 PMCID: PMC4394446 DOI: 10.3390/ijms16034744] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Revised: 02/09/2015] [Accepted: 02/17/2015] [Indexed: 12/30/2022] Open
Abstract
Suboptimal conditions in pregnancy can elicit long-term effects on the health of offspring. The most common outcome is programmed hypertension. We examined whether there are common genes and pathways in the kidney are responsible for generating programmed hypertension among three different models using next generation RNA sequencing (RNA-Seq) technology. Pregnant Sprague-Dawley rats received dexamethasone (DEX, 0.1 mg/kg) from gestational day 16 to 22, 60% high-fructose (HF) diet, or NG-nitro-l-arginine-methyester (l-NAME, 60 mg/kg/day) to conduct DEX, HF, or l-NAME model respectively. All three models elicited programmed hypertension in adult male offspring. We observed five shared genes (Bcl6, Dmrtc1c, Egr1, Inmt, and Olr1668) among three different models. The identified differential genes (DEGs) that are related to regulation of blood pressure included Aqp2, Ptgs1, Eph2x, Hba-a2, Apln, Guca2b, Hmox1, and Npy. RNA-Seq identified genes in arachidonic acid metabolism are potentially gatekeeper genes contributing to programmed hypertension. In addition, HF and DEX increased expression and activity of soluble epoxide hydrolase (Ephx2 gene encoding protein). Conclusively, the DEGs in arachidonic acid metabolism are potentially gatekeeper genes in programmed hypertension. The roles of DEGs identified by the RNA-Seq in this study deserve further clarification, to develop the potential interventions in the prevention of programmed hypertension.
Collapse
|
39
|
Wang X, Luo H, Chen C, Chen K, Wang J, Cai Y, Zheng S, Yang X, Zhou L, Jose PA, Zeng C. Prenatal lipopolysaccharide exposure results in dysfunction of the renal dopamine D1 receptor in offspring. Free Radic Biol Med 2014; 76:242-50. [PMID: 25236748 PMCID: PMC6873924 DOI: 10.1016/j.freeradbiomed.2014.08.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 07/23/2014] [Accepted: 08/11/2014] [Indexed: 12/31/2022]
Abstract
Adverse environment in early life can modulate the adult phenotype, including blood pressure. Lipopolysaccharide (LPS) exposure in utero results in increased blood pressure in the offspring, but the exact mechanisms are not clear. Studies have shown that the renal dopamine D1 receptor (D1R) plays an important role in maintaining sodium homeostasis and normal blood pressure; dysfunction of D1R is associated with oxidative stress and hypertension. In this study, we determined if dysfunction of the renal D1R is involved in fetal-programmed hypertension, and if oxidative stress contributes to this process. Pregnant Sprague-Dawley (SD) rats were intraperitoneally injected with LPS (0.79 mg/kg) or saline at gestation days 8, 10, and 12. As compared with saline-injected (control) dams, offspring of LPS-treated dams had increased blood pressure, decreased renal sodium excretion, and increased markers of oxidative stress. In addition, offspring of LPS-treated dams had decreased renal D1R expression, increased D1R phosphorylation, and G protein-coupled receptor kinase type 2 (GRK2) and type 4 (GRK4) protein expression, and impaired D1R-mediated natriuresis and diuresis. All of the findings in the offspring of LPS-treated dams were normalized after treatment with TEMPOL, an oxygen free radical scavenger. In conclusion, prenatal LPS exposure, via an increase in oxidative stress, impairs renal D1R function and leads to hypertension in the offspring. Normalization of renal D1R function by amelioration of oxidative stress may be a therapeutic target of fetal programming of hypertension.
Collapse
Affiliation(s)
- Xinquan Wang
- Department of Cardiology, Daping Hospital, The Third Military Medical University, People's Republic of China; Chongqing Institute of Cardiology, Chongqing, People's Republic of China
| | - Hao Luo
- Department of Cardiology, Daping Hospital, The Third Military Medical University, People's Republic of China; Chongqing Institute of Cardiology, Chongqing, People's Republic of China
| | - Caiyu Chen
- Department of Cardiology, Daping Hospital, The Third Military Medical University, People's Republic of China; Chongqing Institute of Cardiology, Chongqing, People's Republic of China
| | - Ken Chen
- Department of Cardiology, Daping Hospital, The Third Military Medical University, People's Republic of China; Chongqing Institute of Cardiology, Chongqing, People's Republic of China
| | - Jialiang Wang
- Department of Cardiology, Daping Hospital, The Third Military Medical University, People's Republic of China; Chongqing Institute of Cardiology, Chongqing, People's Republic of China
| | - Yue Cai
- Department of Cardiology, Daping Hospital, The Third Military Medical University, People's Republic of China; Chongqing Institute of Cardiology, Chongqing, People's Republic of China
| | - Shuo Zheng
- Department of Cardiology, Daping Hospital, The Third Military Medical University, People's Republic of China; Chongqing Institute of Cardiology, Chongqing, People's Republic of China
| | - Xiaoli Yang
- Department of Cardiology, Daping Hospital, The Third Military Medical University, People's Republic of China; Chongqing Institute of Cardiology, Chongqing, People's Republic of China
| | - Lin Zhou
- Department of Cardiology, Daping Hospital, The Third Military Medical University, People's Republic of China; Chongqing Institute of Cardiology, Chongqing, People's Republic of China.
| | - Pedro A Jose
- Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA; Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Chunyu Zeng
- Department of Cardiology, Daping Hospital, The Third Military Medical University, People's Republic of China; Chongqing Institute of Cardiology, Chongqing, People's Republic of China.
| |
Collapse
|
40
|
Transcriptional regulation of programmed hypertension by melatonin: an epigenetic perspective. Int J Mol Sci 2014; 15:18484-95. [PMID: 25318052 PMCID: PMC4227227 DOI: 10.3390/ijms151018484] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2014] [Revised: 09/04/2014] [Accepted: 09/25/2014] [Indexed: 01/02/2023] Open
Abstract
Melatonin is an endogenously produced indoleamine and secreted by the pineal gland. Melatonin has pleiotropic bioactivities and is involved in epigenetic regulation. Suboptimal conditions during maternal and perinatal phases can elicit epigenetic regulation of genes for nephrogenesis and reset physiological responses to develop programmed hypertension. This review discusses the early utility of melatonin to prevent programmed hypertension in later life by epigenetic regulation in the kidney, with an emphasis on: (1) the role of melatonin in epigenetic regulation; (2) the beneficial effects of melatonin on programmed hypertension; (3) epigenetic regulation of maternal melatonin therapy in different developmental windows of offspring kidneys analyzed by whole-genome RNA next-generation sequencing; and (4) current blocks in the application of melatonin in preventing programmed hypertension.
Collapse
|
41
|
Tain YL, Leu S, Wu KLH, Lee WC, Chan JYH. Melatonin prevents maternal fructose intake-induced programmed hypertension in the offspring: roles of nitric oxide and arachidonic acid metabolites. J Pineal Res 2014; 57:80-9. [PMID: 24867192 DOI: 10.1111/jpi.12145] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Accepted: 05/23/2014] [Indexed: 12/25/2022]
Abstract
Fructose intake has increased globally and is linked to hypertension. Melatonin was reported to prevent hypertension development. In this study, we examined whether maternal high fructose (HF) intake causes programmed hypertension and whether melatonin therapy confers protection against the process, with a focus on the link to epigenetic changes in the kidney using next-generation RNA sequencing (NGS) technology. Pregnant Sprague-Dawley rats received regular chow or chow supplemented with HF (60% diet by weight) alone or with additional 0.01% melatonin in drinking water during the whole period of pregnancy and lactation. Male offspring were assigned to four groups: control, HF, control + melatonin (M), and HF + M. Maternal HF caused increases in blood pressure (BP) in the 12-wk-old offspring. Melatonin therapy blunted the HF-induced programmed hypertension and increased nitric oxide (NO) level in the kidney. The identified differential expressed gene (DEGs) that are related to regulation of BP included Ephx2, Col1a2, Gucy1a3, Npr3, Aqp2, Hba-a2, and Ptgs1. Of which, melatonin therapy inhibited expression and activity of soluble epoxide hydrolase (SEH, Ephx2 gene encoding protein). In addition, we found genes in arachidonic acid metabolism were potentially involved in the HF-induced programmed hypertension and were affected by melatonin therapy. Together, our data suggest that the beneficial effects of melatonin are attributed to its ability to increase NO level in the kidney, epigenetic regulation of genes related to BP control, and inhibition of SEH expression. The roles of DEGs by the NGS in long-term epigenetic changes in the adult offspring kidney require further clarification.
Collapse
Affiliation(s)
- You-Lin Tain
- Department of Pediatrics, College of Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University, Kaohsiung, Taiwan; Center for Translational Research in Biomedical Sciences, College of Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University, Kaohsiung, Taiwan
| | | | | | | | | |
Collapse
|
42
|
Horan MK, McGowan CA, Gibney ER, Donnelly JM, McAuliffe FM. Maternal low glycaemic index diet, fat intake and postprandial glucose influences neonatal adiposity--secondary analysis from the ROLO study. Nutr J 2014; 13:78. [PMID: 25084967 PMCID: PMC4124499 DOI: 10.1186/1475-2891-13-78] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 07/08/2014] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND The in utero environment is known to affect fetal development however many of the mechanisms by which this occurs remain unknown. The aim of this study was to examine the association between maternal dietary macronutrient intake and lifestyle throughout pregnancy and neonatal weight and adiposity. METHODS This was an analysis of 542 mother and infant pairs from the ROLO study (Randomised cOntrol trial of LOw glycaemic index diet versus no dietary intervention to prevent recurrence of fetal macrosomia). Food diaries as well as food frequency and lifestyle and physical activity questionnaires were completed during pregnancy. Maternal anthropometry was measured throughout pregnancy and neonatal anthropometry was measured at birth. RESULTS Multiple linear regression analysis revealed the main maternal factor associated with increased birth weight was greater gestational weight gain R2adj 23.3% (F = 11.547, p < 0.001). The main maternal factor associated with increased birth length was non-smoking status R2adj 27.8% (F = 6.193, p < 0.001). Neonatal central adiposity (determined using waist:length ratio) was negatively associated with maternal age, and positively associated with the following parameters: smoking status, maternal pre-pregnancy arm circumference, percentage energy from saturated fat in late pregnancy, postprandial glucose at 28 weeks gestation and membership of the control group with a positive trend towards association with trimester 2 glycaemic load R2adj 38.1% (F = 8.000, p < 0.001). CONCLUSIONS Several maternal diet and lifestyle factors were associated with neonatal anthropometry . Low glycaemic index dietary intervention in pregnancy was found to have a beneficial effect on neonatal central adiposity. Additionally, central adiposity was positively associated with maternal dietary fat intake and postprandial glucose highlighting the important role of healthy diet in pregnancy in promoting normal neonatal adiposity. TRIAL REGISTRATION Current Controlled Trials ISRCTN54392969.
Collapse
Affiliation(s)
- Mary K Horan
- UCD Obstetrics and Gynaecology, School of Medicine and Medical Science, University College Dublin, National Maternity Hospital, Dublin 2, Ireland
| | - Ciara A McGowan
- UCD Obstetrics and Gynaecology, School of Medicine and Medical Science, University College Dublin, National Maternity Hospital, Dublin 2, Ireland
| | - Eileen R Gibney
- Science Centre – South, University College Dublin School Of Agriculture & Food Science, Belfield, Dublin 4, Ireland
| | - Jean M Donnelly
- UCD Obstetrics and Gynaecology, School of Medicine and Medical Science, University College Dublin, National Maternity Hospital, Dublin 2, Ireland
| | - Fionnuala M McAuliffe
- UCD Obstetrics and Gynaecology, School of Medicine and Medical Science, University College Dublin, National Maternity Hospital, Dublin 2, Ireland
| |
Collapse
|
43
|
Dunford LJ, Sinclair KD, Kwong WY, Sturrock C, Clifford BL, Giles TC, Gardner DS. Maternal protein-energy malnutrition during early pregnancy in sheep impacts the fetal ornithine cycle to reduce fetal kidney microvascular development. FASEB J 2014; 28:4880-92. [PMID: 25077559 PMCID: PMC4216596 DOI: 10.1096/fj.14-255364] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
This paper identifies a common nutritional pathway relating maternal through to fetal protein-energy malnutrition (PEM) and compromised fetal kidney development. Thirty-one twin-bearing sheep were fed either a control (n=15) or low-protein diet (n=16, 17 vs. 8.7 g crude protein/MJ metabolizable energy) from d 0 to 65 gestation (term, ∼145 d). Effects on the maternal and fetal nutritional environment were characterized by sampling blood and amniotic fluid. Kidney development was characterized by histology, immunohistochemistry, vascular corrosion casts, and molecular biology. PEM had little measureable effect on maternal and fetal macronutrient balance (glucose, total protein, total amino acids, and lactate were unaffected) or on fetal growth. PEM decreased maternal and fetal urea concentration, which blunted fetal ornithine availability and affected fetal hepatic polyamine production. For the first time in a large animal model, we associated these nutritional effects with reduced micro- but not macrovascular development in the fetal kidney. Maternal PEM specifically impacts the fetal ornithine cycle, affecting cellular polyamine metabolism and microvascular development of the fetal kidney, effects that likely underpin programming of kidney development and function by a maternal low protein diet.—Dunford, L. J., Sinclair, K. D., Kwong, W. Y., Sturrock, C., Clifford, B. L., Giles, T. C., Gardner, D. S.. Maternal protein-energy malnutrition during early pregnancy in sheep impacts the fetal ornithine cycle to reduce fetal kidney microvascular development.
Collapse
Affiliation(s)
| | | | | | | | | | - Tom C Giles
- Advanced Data Analysis Centre, University of Nottingham, Sutton Bonington Campus, Loughborough, UK
| | | |
Collapse
|
44
|
Tain YL, Huang LT. Restoration of asymmetric dimethylarginine-nitric oxide balance to prevent the development of hypertension. Int J Mol Sci 2014; 15:11773-82. [PMID: 24992596 PMCID: PMC4139813 DOI: 10.3390/ijms150711773] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Revised: 06/24/2014] [Accepted: 06/27/2014] [Indexed: 12/27/2022] Open
Abstract
Despite the use of extensive antihypertensive therapy in patients with hypertension, little attention has been paid to early identification and intervention of individuals at risk for developing hypertension. The imbalance between nitric oxide (NO) and reactive oxygen species (ROS) resulting in oxidative stress has been implicated in the pathophysiology of hypertension. NO deficiency can precede the development of hypertension. Asymmetric dimethylarginine (ADMA) can inhibit nitric oxide synthase (NOS) and regulate local NO/ROS balance. Emerging evidence supports the hypothesis that ADMA-induced NO–ROS imbalance is involved in the development and progression of hypertension. Thus, this review summarizes recent experimental approaches to restore ADMA–NO balance in order to prevent the development of hypertension. Since hypertension might originate in early life, we also discuss the putative role of the ADMA–NO pathway in programmed hypertension. Better understanding of manipulations of the ADMA–NO pathway prior to hypertension in favor of NO will pave the way for the development of more effective medicine for the treatment prehypertension and programmed hypertension. However, more studies are needed to confirm the clinical benefit of these interventions.
Collapse
Affiliation(s)
- You-Lin Tain
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 833, Taiwan.
| | - Li-Tung Huang
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 833, Taiwan.
| |
Collapse
|
45
|
Bechtel-Walz W, Huber TB. Chromatin dynamics in kidney development and function. Cell Tissue Res 2014; 356:601-8. [PMID: 24817101 DOI: 10.1007/s00441-014-1884-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Accepted: 03/27/2014] [Indexed: 10/25/2022]
Abstract
Epigenetic mechanisms are fundamental key features of developing cells connecting developmental regulatory factors to chromatin modification. Changes in the environment during renal development can have long-lasting effects on the permanent tissue structure and the level of expression of important functional genes. These changes are believed to contribute to kidney disease occurrence and progression. Although the mechanisms of early patterning and cell fate have been well described for renal development, little is known about associated epigenetic modifications and their impact on how genes interact to specify the renal epithelial cells of nephrons and how this specification is relevant to maintaining normal renal function. A better understanding of the renal cell-specific epigenetic modifications and the interaction of different cell types to form this highly complex organ will not only help to better understand developmental defects and early loss of kidney function in children, but also help to understand and improve chronic disease progression, cell regeneration and renal aging.
Collapse
Affiliation(s)
- Wibke Bechtel-Walz
- Renal Division, University Hospital Freiburg, Breisacher Str. 66, 79106, Freiburg, Germany,
| | | |
Collapse
|
46
|
Tsuboi N, Kanzaki G, Koike K, Kawamura T, Ogura M, Yokoo T. Clinicopathological assessment of the nephron number. Clin Kidney J 2014; 7:107-14. [PMID: 25852857 PMCID: PMC4377791 DOI: 10.1093/ckj/sfu018] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2014] [Accepted: 02/14/2014] [Indexed: 02/06/2023] Open
Abstract
Recent studies have demonstrated much larger variability in the total number of nephrons in normal populations than previously suspected. In addition, it has been suggested that individuals with a low nephron number may have an increased lifetime risk of hypertension or renal insufficiency, emphasizing the importance of evaluating the nephron number in each individual. In view of the fact that all previous reports of the nephron number were based on analyses of autopsy kidneys, the identification of surrogate markers detectable in living subjects is needed in order to enhance understanding of the clinical significance of this parameter. In this review, we summarize the clinicopathological factors and findings indicating a reduction in the nephron number, focusing particularly on those found at the time of a preserved renal function.
Collapse
Affiliation(s)
- Nobuo Tsuboi
- Division of Nephrology and Hypertension, Department of Internal Medicine , The Jikei University School of Medicine , Tokyo , Japan
| | - Go Kanzaki
- Division of Nephrology and Hypertension, Department of Internal Medicine , The Jikei University School of Medicine , Tokyo , Japan
| | - Kentaro Koike
- Division of Nephrology and Hypertension, Department of Internal Medicine , The Jikei University School of Medicine , Tokyo , Japan
| | - Tetsuya Kawamura
- Division of Nephrology and Hypertension, Department of Internal Medicine , The Jikei University School of Medicine , Tokyo , Japan
| | - Makoto Ogura
- Division of Nephrology and Hypertension, Department of Internal Medicine , The Jikei University School of Medicine , Tokyo , Japan
| | - Takashi Yokoo
- Division of Nephrology and Hypertension, Department of Internal Medicine , The Jikei University School of Medicine , Tokyo , Japan
| |
Collapse
|
47
|
Rutkowski B, Czarniak P, Krol E, Szczesniak P, Zdrojewski T. Overweight, obesity, hypertension and albuminuria in Polish adolescents--results of the Sopkard 15 study. Nephrol Dial Transplant 2013; 28 Suppl 4:iv204-11. [DOI: 10.1093/ndt/gft328] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
|
48
|
Gray C, Al-Dujaili EA, Sparrow AJ, Gardiner SM, Craigon J, Welham SJ, Gardner DS. Excess maternal salt intake produces sex-specific hypertension in offspring: putative roles for kidney and gastrointestinal sodium handling. PLoS One 2013; 8:e72682. [PMID: 23991143 PMCID: PMC3749995 DOI: 10.1371/journal.pone.0072682] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Accepted: 07/17/2013] [Indexed: 12/21/2022] Open
Abstract
Hypertension is common and contributes, via cardiovascular disease, towards a large proportion of adult deaths in the Western World. High salt intake leads to high blood pressure, even when occurring prior to birth – a mechanism purported to reside in altered kidney development and later function. Using a combination of in vitro and in vivo approaches we tested whether increased maternal salt intake influences fetal kidney development to render the adult individual more susceptible to salt retention and hypertension. We found that salt-loaded pregnant rat dams were hypernatraemic at day 20 gestation (147±5 vs. 128±5 mmoles/L). Increased extracellular salt impeded murine kidney development in vitro, but had little effect in vivo. Kidneys of the adult offspring had few structural or functional abnormalities, but male and female offspring were hypernatraemic (166±4 vs. 149±2 mmoles/L), with a marked increase in plasma corticosterone (e.g. male offspring; 11.9 [9.3–14.8] vs. 2.8 [2.0–8.3] nmol/L median [IQR]). Furthermore, adult male, but not female, offspring had higher mean arterial blood pressure (effect size, +16 [9–21] mm Hg; mean [95% C.I.]. With no clear indication that the kidneys of salt-exposed offspring retained more sodium per se, we conducted a preliminary investigation of their gastrointestinal electrolyte handling and found increased expression of proximal colon solute carrier family 9 (sodium/hydrogen exchanger), member 3 (SLC9A3) together with altered faecal characteristics and electrolyte handling, relative to control offspring. On the basis of these data we suggest that excess salt exposure, via maternal diet, at a vulnerable period of brain and gut development in the rat neonate lays the foundation for sustained increases in blood pressure later in life. Hence, our evidence further supports the argument that excess dietary salt should be avoided per se, particularly in the range of foods consumed by physiologically immature young.
Collapse
Affiliation(s)
- Clint Gray
- School of Veterinary Medicine and Science, University of Nottingham, Nottingham, United Kingdom
- * E-mail: (CG); (SW); (DG)
| | | | | | - Sheila M. Gardiner
- School of Biomedical Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Jim Craigon
- School of Biosciences, University of Nottingham, Nottingham, United Kingdom
| | - Simon J.M. Welham
- School of Biosciences, University of Nottingham, Nottingham, United Kingdom
- * E-mail: (CG); (SW); (DG)
| | - David S. Gardner
- School of Veterinary Medicine and Science, University of Nottingham, Nottingham, United Kingdom
- * E-mail: (CG); (SW); (DG)
| |
Collapse
|
49
|
Özyilmaz A, de Jong PE, Gansevoort RT. Screening for chronic kidney disease can be of help to prevent atherosclerotic end-organ damage. Nephrol Dial Transplant 2013; 27:4046-52. [PMID: 23144071 DOI: 10.1093/ndt/gfs438] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Atherosclerotic damage to the kidney is one of the most prevalent causes of chronic kidney disease and ultimately kidney failure. It frequently coincides with atherosclerotic damage to the heart, the brain and the lower extremities. In fact, the severity of the damage in the various end organs runs in parallel. As damage to the kidney is easy to measure by monitoring albuminuria and eGFR, and as the early phases of kidney damage frequently precede the alarming symptomatology in the heart, brain and peripheral vasculature, we argue that the nephrologist should consider taking the lead in better organizing early detection and management of CKD. The nephrologist can guide the general practitioner and general health care workers to offer better preventive care to the subjects at risk of progressive atherosclerotic end-organ damage.
Collapse
|
50
|
Scheven L, Halbesma N, de Jong PE, de Zeeuw D, Bakker SJL, Gansevoort RT. Predictors of progression in albuminuria in the general population: results from the PREVEND cohort. PLoS One 2013; 8:e61119. [PMID: 23723966 PMCID: PMC3664562 DOI: 10.1371/journal.pone.0061119] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Accepted: 03/06/2013] [Indexed: 12/21/2022] Open
Abstract
Background Urinary albumin excretion is known to be independently associated with progression of renal and cardiovascular disease. The aim of this study was to identify predictors for progression in albuminuria in the general population. Methods Data were used of the first 4 screening rounds of a community-based prospective cohort study (PREVEND). Included were 5,825 subjects that at baseline had no known renal disease or macroalbuminuria. Subjects were defined as having progressive albuminuria when they belonged to the quintile of subjects with highest absolute increase in urinary albumin excretion per year and a urinary albumin excretion during the last screening in which they participated of ≥150 mg/24 h. Change in urinary albumin excretion per year was calculated as last available urinary albumin excretion minus baseline UAE divided by follow-up time. Results During 9.3 years follow-up 132 subjects had progressive albuminuria. These subjects were significantly older, more often of male gender and had a worse cardiovascular risk profile. In a multivariable model, testing baseline values, significant predictors of progressive albuminuria were male gender (OR 2.23; p<0.001), age (OR 1.03; p<0.001), BMI (OR 1.06; p = 0.02) and baseline albuminuria (OR 5.71; p<0.001). Based on these findings a risk score was made to estimate a subject's risk for progressive albuminuria. Conclusion A high baseline albuminuria is by far the most important predictor of progressive albuminuria. Thus, screening for baseline albuminuria will be more important than screening for cardiovascular risk factors in order to identify subjects at risk for progressive albuminuria.
Collapse
Affiliation(s)
- Lieneke Scheven
- Division of Nephrology, Dept. Internal Medicine, University Medical Center Groningen (UMCG), University of Groningen, Groningen, The Netherlands
| | - Nynke Halbesma
- Dept. of Clinical Epidemiology, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | - Paul E. de Jong
- Division of Nephrology, Dept. Internal Medicine, University Medical Center Groningen (UMCG), University of Groningen, Groningen, The Netherlands
| | - Dick de Zeeuw
- Dept of Clinical Pharmacology, University Medical Center Groningen (UMCG), University of Groningen, Groningen, The Netherlands
| | - Stephan J. L. Bakker
- Division of Nephrology, Dept. Internal Medicine, University Medical Center Groningen (UMCG), University of Groningen, Groningen, The Netherlands
| | - Ron T. Gansevoort
- Division of Nephrology, Dept. Internal Medicine, University Medical Center Groningen (UMCG), University of Groningen, Groningen, The Netherlands
- * E-mail:
| |
Collapse
|