1
|
Duan H, Wang W, Li S, Li H, Khan GJ, Ma Y, Liu F, Zhai K, Hu H, Wei Z. The potential mechanism of
Isodon suzhouensis against COVID-19 via EGFR/TLR4 pathways. FOOD SCIENCE AND HUMAN WELLNESS 2024; 13:3245-3255. [DOI: 10.26599/fshw.2023.9250011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
2
|
Wu W, Fu Y, Li H, Xiang Y, Zeng Y, Cai J, Dong Z. GALNT3 in Ischemia-Reperfusion Injury of the Kidney. J Am Soc Nephrol 2024:00001751-990000000-00463. [PMID: 39446490 DOI: 10.1681/asn.0000000530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 10/16/2024] [Indexed: 10/26/2024] Open
Abstract
Key Points
N-acetylgalactosaminyltransferase-3 (GALNT3) was downregulated in both ischemic AKI and cisplatin nephrotoxicity.GALNT3 played a protective role in renal tubular cells, and its downregulation contributed to AKI.Mechanistically, GALNT3 protected kidney tubular cells at least partially through O-glycosylation of EGF receptor.
Background
Damages to subcellular organelles, such as mitochondria and endoplasmic reticulum, are well recognized in tubular cell injury and death in AKI. However, the changes and involvement of Golgi apparatus are much less known. In this study, we report the regulation and role of N-acetylgalactosaminyltransferase-3 (GALNT3), a key enzyme for protein glycosylation in Golgi apparatus, in AKI.
Methods
AKI was induced in mice by renal ischemia–reperfusion injury or cisplatin. In vitro, rat kidney proximal tubular cells were subjected to hypoxia/reoxygenation (H/R) injury. To determine the role of GALNT3, its specific inhibitor T3inh-1 was tested in mice, and the effects of GALNT3 overexpression as well as knockdown were examined in the rat renal proximal tubular cells. EGF receptor (EGFR) activation was induced by recombinant EGF or by overexpressing EGFR.
Results
GALNT3 was significantly decreased in both in vivo and in vitro models of AKI induced by renal ischemia–reperfusion injury and cisplatin. T3Inh-1, a specific GALNT3 inhibitor, exacerbated ischemic AKI and suppressed tubular cell proliferation in mice. Moreover, knockdown of GALNT3 increased apoptosis during H/R treatment in rat renal proximal tubular cells, whereas overexpression of GALNT3 attenuated H/R-induced apoptosis, further supporting a protective role of GALNT3. Mechanistically, GALNT3 contributed to O-glycosylation of EGFR and associated EGFR signaling. Activation or overexpression of EGFR suppressed the proapoptotic effect of GALNT3 knockdown in H/R-treated rat renal proximal tubular cells.
Conclusions
GALNT3 protected kidney tubular cells in AKI at least partially through O-glycosylation of EGFR.
Collapse
Affiliation(s)
- Wenwen Wu
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, Second Xiangya Hospital at Central South University, Changsha, China
| | - Ying Fu
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, Second Xiangya Hospital at Central South University, Changsha, China
| | - Honglin Li
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, Second Xiangya Hospital at Central South University, Changsha, China
| | - Yu Xiang
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, Second Xiangya Hospital at Central South University, Changsha, China
| | - Yuqing Zeng
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, Second Xiangya Hospital at Central South University, Changsha, China
| | - Juan Cai
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, Second Xiangya Hospital at Central South University, Changsha, China
| | - Zheng Dong
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, Second Xiangya Hospital at Central South University, Changsha, China
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, Georgia
- Research Department, Charlie Norwood VA Medical Center, Augusta, Georgia
| |
Collapse
|
3
|
Zhu X, Meng X, Du X, Zhao C, Ma X, Wen Y, Zhang S, Hou B, Cai W, Du B, Han Z, Xu F, Qiu L, Sun H. Vaccarin suppresses diabetic nephropathy through inhibiting the EGFR/ERK1/2 signaling pathway. Acta Biochim Biophys Sin (Shanghai) 2024. [PMID: 39205643 DOI: 10.3724/abbs.2024141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
Diabetic nephropathy (DN) is recognized as one of the primary causes of chronic kidney disease and end-stage renal disease. Vaccarin (VAC) confers favorable effects on cardiovascular and metabolic diseases, including type 2 diabetes mellitus (T2DM). Nonetheless, the potential role and mechanism of VAC in the etiology of DN have yet to be completely elucidated. In this study, a classical mouse model of T2DM is experimentally induced via a high-fat diet (HFD)/streptozocin (STZ) regimen. Renal histological changes are assessed via H&E staining. Masson staining and immunohistochemistry (IHC) are employed to assess renal fibrosis. RT-PCR is utilized to quantify the mRNA levels of renal fibrosis, oxidative stress and inflammation markers. The levels of malondialdehyde (MDA) and reactive oxygen species (ROS), as well as the content of glutathione peroxidase (GSH-Px), are measured. The protein expressions of collagen I, TGF-β1, α-SMA, E-cadherin, Nrf2, catalase, SOD3, SOD2, SOD1, p-ERK, p-EGFR (Y845), p-EGFR (Y1173), p-NFκB P65, t-ERK, t-EGFR and t-NFκB P65 are detected by western blot analysis. Our results reveal that VAC has a beneficial effect on DN mice by improving renal function and mitigating histological damage. This is achieved through its inhibition of renal fibrosis, inflammatory cytokine overproduction, and ROS generation. Moreover, VAC treatment effectively suppresses the process of epithelial-mesenchymal transition (EMT), a crucial characteristic of renal fibrosis, in high glucose (HG)-induced HK-2 cells. Network pharmacology analysis and molecular docking identify epidermal growth factor receptor (EGFR) as a potential target for VAC. Amino acid site mutations reveal that Lys-879, Ile-918, and Ala-920 of EGFR may mediate the direct binding of VAC to EGFR. In support of these findings, VAC reduces the phosphorylation levels of both EGFR and its downstream mediator, extracellular signal-regulated kinase 1/2 (ERK1/2), in diabetic kidneys and HG-treated HK-2 cells. Notably, blocking either EGFR or ERK1/2 yields renal benefits similar to those observed with VAC treatment. Therefore, this study reveals that VAC attenuates renal damage via inactivation of the EGFR/ERK1/2 signaling axis in T2DM patients.
Collapse
Affiliation(s)
- Xuexue Zhu
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China
| | - Xinyu Meng
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China
| | - Xinyao Du
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China
| | - Chenyang Zhao
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China
| | - Xinyu Ma
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China
| | - Yuanyuan Wen
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China
| | - Shijie Zhang
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China
| | - Bao Hou
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China
| | - Weiwei Cai
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China
| | - Bin Du
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China
| | - Zhijun Han
- Department of Clinical Research Center, Jiangnan University Medical Center, Wuxi 214001, China
| | - Fei Xu
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China
| | - Liying Qiu
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China
| | - Haijian Sun
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
4
|
Guo C, Wang W, Dong Y, Han Y. Identification of key immune-related genes and potential therapeutic drugs in diabetic nephropathy based on machine learning algorithms. BMC Med Genomics 2024; 17:220. [PMID: 39187837 PMCID: PMC11348758 DOI: 10.1186/s12920-024-01995-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 08/19/2024] [Indexed: 08/28/2024] Open
Abstract
BACKGROUND Diabetic nephropathy (DN) is a major contributor to chronic kidney disease. This study aims to identify immune biomarkers and potential therapeutic drugs in DN. METHODS We analyzed two DN microarray datasets (GSE96804 and GSE30528) for differentially expressed genes (DEGs) using the Limma package, overlapping them with immune-related genes from ImmPort and InnateDB. LASSO regression, SVM-RFE, and random forest analysis identified four hub genes (EGF, PLTP, RGS2, PTGDS) as proficient predictors of DN. The model achieved an AUC of 0.995 and was validated on GSE142025. Single-cell RNA data (GSE183276) revealed increased hub gene expression in epithelial cells. CIBERSORT analysis showed differences in immune cell proportions between DN patients and controls, with the hub genes correlating positively with neutrophil infiltration. Molecular docking identified potential drugs: cysteamine, eltrombopag, and DMSO. And qPCR and western blot assays were used to confirm the expressions of the four hub genes. RESULTS Analysis found 95 and 88 distinctively expressed immune genes in the two DN datasets, with 14 consistently differentially expressed immune-related genes. After machine learning algorithms, EGF, PLTP, RGS2, PTGDS were identified as the immune-related hub genes associated with DN. In addition, the mRNA and protein levels of them were obviously elevated in HK-2 cells treated with glucose for 24 h, as well as their mRNA expressions in kidney tissues of mice with DN. CONCLUSION This study identified 4 hub immune-related genes (EGF, PLTP, RGS2, PTGDS), as well as their expression profiles and the correlation with immune cell infiltration in DN.
Collapse
Affiliation(s)
- Chang Guo
- The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Nangang District, Harbin, 10086, China.
| | - Wei Wang
- The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Nangang District, Harbin, 10086, China
| | - Ying Dong
- The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Nangang District, Harbin, 10086, China
| | - Yubing Han
- The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Nangang District, Harbin, 10086, China
| |
Collapse
|
5
|
Pant K, Richard S, Peixoto E, Baral S, Yang R, Ren Y, Masyuk TV, LaRusso NF, Gradilone SA. Cholangiocyte ciliary defects induce sustained epidermal growth factor receptor signaling. Hepatology 2024:01515467-990000000-01003. [PMID: 39186465 DOI: 10.1097/hep.0000000000001055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 07/29/2024] [Indexed: 08/28/2024]
Abstract
BACKGROUND AND AIMS The primary cilium, an organelle that protrudes from cell surfaces, is essential for sensing extracellular signals. With disturbed cellular communication and chronic liver pathologies, this organelle's dysfunctions have been linked to disorders, including polycystic liver disease and cholangiocarcinoma. The goal of this study was to elucidate the relationship between primary cilia and the crucial regulator of cellular proliferation, the epidermal growth factor receptor (EGFR) signaling pathway, which has been associated with various clinical conditions. APPROACH AND RESULTS The study identified aberrant EGFR signaling pathways in cholangiocytes lacking functional primary cilia using liver-specific intraflagellar transport 88 knockout mice, a Pkhd1 mutant rat model, and human cell lines that did not have functional cilia. Cilia-deficient cholangiocytes showed persistent EGFR activation because of impaired receptor degradation, in contrast to their normal counterparts, where EGFR localization to the cilia promotes appropriate signaling. Using histone deacetylase 6 inhibitors to restore primary cilia accelerates EGFR degradation, thereby reducing maladaptive signaling. Importantly, experimental intervention with the histone deacetylase 6 inhibitor tubastatin A in an orthotopic rat model moved EGFR to cilia and reduced ERK phosphorylation. Concurrent administration of EGFR and histone deacetylase 6 inhibitors in cholangiocarcinoma and polycystic liver disease cells demonstrated synergistic antiproliferative effects, which were associated with the restoration of functioning primary cilia. CONCLUSIONS This study's findings shed light on ciliary function and robust EGFR signaling with slower receptor turnover. We could use therapies that restore the function of primary cilia to treat EGFR-driven diseases in polycystic liver disease and cholangiocarcinoma.
Collapse
Affiliation(s)
- Kishor Pant
- The Hormel Institute, University of Minnesota, Austin, Minnesota, USA
| | - Seth Richard
- The Hormel Institute, University of Minnesota, Austin, Minnesota, USA
| | | | - Subheksha Baral
- The Hormel Institute, University of Minnesota, Austin, Minnesota, USA
| | - Rendong Yang
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Yanan Ren
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Tatyana V Masyuk
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Mayo Clinic College of Medicine and Science, Rochester, Minnesota, USA
| | - Nicholas F LaRusso
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Mayo Clinic College of Medicine and Science, Rochester, Minnesota, USA
| | - Sergio A Gradilone
- The Hormel Institute, University of Minnesota, Austin, Minnesota, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
6
|
Tawengi M, Al-Dali Y, Tawengi A, Benter IF, Akhtar S. Targeting the epidermal growth factor receptor (EGFR/ErbB) for the potential treatment of renal pathologies. Front Pharmacol 2024; 15:1394997. [PMID: 39234105 PMCID: PMC11373609 DOI: 10.3389/fphar.2024.1394997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 07/29/2024] [Indexed: 09/06/2024] Open
Abstract
Epidermal growth factor receptor (EGFR), which is referred to as ErbB1/HER1, is the prototype of the EGFR family of receptor tyrosine kinases which also comprises ErbB2 (Neu, HER2), ErbB3 (HER3), and ErbB4 (HER4). EGFR, along with other ErbBs, is expressed in the kidney tubules and is physiologically involved in nephrogenesis and tissue repair, mainly following acute kidney injury. However, its sustained activation is linked to several kidney pathologies, including diabetic nephropathy, hypertensive nephropathy, glomerulonephritis, chronic kidney disease, and renal fibrosis. This review aims to provide a summary of the recent findings regarding the consequences of EGFR activation in several key renal pathologies. We also discuss the potential interplay between EGFR and the reno-protective angiotensin-(1-7) (Ang-(1-7), a heptapeptide member of the renin-angiotensin-aldosterone system that counter-regulates the actions of angiotensin II. Ang-(1-7)-mediated inhibition of EGFR transactivation might represent a potential mechanism of action for its renoprotection. Our review suggests that there is a significant body of evidence supporting the potential inhibition of EGFR/ErbB, and/or administration of Ang-(1-7), as potential novel therapeutic strategies in the treatment of renal pathologies. Thus, EGFR inhibitors such as Gefitinib and Erlinotib that have an acceptable safety profile and have been clinically used in cancer chemotherapy since their FDA approval in the early 2000s, might be considered for repurposing in the treatment of renal pathologies.
Collapse
Affiliation(s)
- Mohamed Tawengi
- College of Medicine, QU Health, Qatar University, Doha, Qatar
| | - Yazan Al-Dali
- College of Medicine, QU Health, Qatar University, Doha, Qatar
| | | | - Ibrahim F Benter
- Faculty of Pharmacy, Final International University, Kyrenia, Cyprus
| | - Saghir Akhtar
- College of Medicine, QU Health, Qatar University, Doha, Qatar
| |
Collapse
|
7
|
Yin Y, Zhang K, Qi Y, Li S, Sun Y, Luo M, Fan J, Zhu B, Yu Z, Yang J, Li F, Xu W, Dong L. Renal toxicity of Aconitum plants? A study based on a new mass spectrometry scanning strategy and computer virtual screening. PHYTOCHEMICAL ANALYSIS : PCA 2024; 35:1399-1417. [PMID: 38837823 DOI: 10.1002/pca.3372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 03/06/2024] [Accepted: 04/20/2024] [Indexed: 06/07/2024]
Abstract
BACKGROUND Radix Aconiti Lateralis (Fuzi), a mono-herbal preparation of Aconitum herbs in the genus Aconitum, is commonly used in traditional Chinese medicine (TCM) to treat critical illnesses. The curative effect of Fuzi is remarkable. However, the toxic effects of Fuzi are still a key clinical focus, and the substances inducing nephrotoxicity are still unclear. Therefore, this study proposes a research model combining "in vitro and in vivo component mining-virtual multi-target screening-active component prediction-literature verification" to screen potential nephrotoxic substances rapidly. METHOD The UHPLC-Q-Exactive-Orbitrap MS analysis method was used for the correlation analysis of Fuzi's in vitro-in vivo chemical substance groups. On this basis, the key targets of nephrotoxicity were screened by combining online disease databases and a protein-protein interaction (PPI) network. The computer screening technique was used to verify the binding mode and affinity of Fuzi's components with nephrotoxic targets. Finally, the potential material basis of Fuzi-induced nephrotoxicity was screened. RESULTS Eighty-one Fuzi components were identified. Among them, 35 components were absorbed into the blood. Based on the network biology method, 21 important chemical components and three potential key targets were screened. Computer virtual screening revealed that mesaconine, benzoylaconine, aconitine, deoxyaconitine, hypaconitine, benzoylhypaconine, benzoylmesaconine, and hypaconitine may be potential nephrotoxic substances of Fuzi. CONCLUSIONS Fuzi may interact with multiple components and targets in the process of inducing nephrotoxicity. In the future, experiments can be designed to explore further. This study provides a reference for screening Fuzi nephrotoxic components and has certain significance for the safe use of Fuzi.
Collapse
Affiliation(s)
- Yihui Yin
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Kai Zhang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Yunpeng Qi
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Siyuan Li
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Yixuan Sun
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Min Luo
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Jiali Fan
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Bo Zhu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Zhiying Yu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Jie Yang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Fei Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Wenjuan Xu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Ling Dong
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
8
|
Saranya G, Viswanathan P. Identification of renal protective gut microbiome derived-metabolites in diabetic chronic kidney disease: An integrated approach using network pharmacology and molecular docking. Saudi J Biol Sci 2024; 31:104028. [PMID: 38854894 PMCID: PMC11154206 DOI: 10.1016/j.sjbs.2024.104028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/14/2024] [Accepted: 05/19/2024] [Indexed: 06/11/2024] Open
Abstract
Metabolites from the gut microbiota define molecules in the gut-kidney cross talks. However, the mechanistic pathway by which the kidneys actively sense gut metabolites and their impact on diabetic chronic kidney disease (DCKD) remains unclear. This study is an attempt to investigate the gut microbiome metabolites, their host targeting genes, and their mechanistic action against DCKD. Gut microbiome, metabolites, and host targets were extracted from the gutMgene database and metabolites from the PubChem database. DCKD targets were identified from DisGeNET, GeneCard, NCBI, and OMIM databases. Computational examination such as protein-protein interaction networks, enrichment pathway, identification of metabolites for potential targets using molecular docking, hubgene-microbes-metabolite-samplesource-substrate (HMMSS) network architecture were executed using Network analyst, ShinyGo, GeneMania, Cytoscape, Autodock tools. There were 574 microbial metabolites, 2861 DCKD targets, and 222 microbes targeting host genes. After screening, we obtained 27 final targets, which are used for computational examination. From enrichment analysis, we found NF-ΚB1, AKT1, EGFR, JUN, and RELA as the main regulators in the DCKD development through mitogen activated protein kinase (MAPK) pathway signalling. The (HMMSS) network analysis found F.prausnitzi, B.adolescentis, and B.distasonis probiotic bacteria that are found in the intestinal epithelium, colonic region, metabolize the substrates like tryptophan, other unknown substrates might have direct interaction with the NF-kB1 and epidermal growth factor receptor (EGFR) targets. On docking of these target proteins with 3- Indole propionic acid (IPA) showed high binding energy affinity of -5.9 kcal/mol and -7.4kcal/mol. From this study we identified, the 3 IPA produced by F. prausnitzi A2-165 was found to have renal sensing properties inhibiting MAPK/NF-KB1 inflammatory pathway and would be useful in treating CKD in diabetics.
Collapse
Affiliation(s)
- G.R. Saranya
- Renal Research Lab, Pearl Research Park, School of Bioscience and Technology, Vellore Institute of Technology, Vellore 632 014, Tamil Nadu, India
| | - Pragasam Viswanathan
- Renal Research Lab, Pearl Research Park, School of Bioscience and Technology, Vellore Institute of Technology, Vellore 632 014, Tamil Nadu, India
| |
Collapse
|
9
|
Zhang P, Zhang X, Lang J, Wu S, Sun Y, Wang P, Qiu S, Huang X, Ren G, Liu K, Du X, Xiao S, Wang Z, Weng Y, Zhang Y, Zhou H, Tu W, Zhang C, Yi J. Epidermal growth factor receptor‑targeted antibody nimotuzumab combined with chemoradiotherapy improves survival in patients with locally advanced head and neck squamous cell carcinoma: a propensity score matching real-world study. MedComm (Beijing) 2024; 5:e608. [PMID: 38962426 PMCID: PMC11220178 DOI: 10.1002/mco2.608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 05/06/2024] [Accepted: 05/17/2024] [Indexed: 07/05/2024] Open
Abstract
Patients with locally advanced head and neck squamous cell carcinoma (LA-HNSCC) have poor survival outcomes. The real-world efficacy of nimotuzumab plus intensity modulated radiotherapy (IMRT)-based chemoradiotherapy in patients with LA-HNSCC remains unclear. A total of 25,442 HNSCC patients were screened, and 612 patients were matched by propensity score matching (PSM) (1:1). PSM was utilized to balance known confounding factors. Patients who completed at least five doses of nimotuzumab were identified as study group. The primary end point was 3-year overall survival (OS) rate. Log-rank test examined the difference between two survival curves and Cloglog transformation test was performed to compare survival at a fixed time point. The median follow-up time was 54.2 (95% confidence interval [CI]: 52.7-55.9) months. The study group was associated with improved OS (hazard ratio [HR] = 0.75, 95% CI: 0.57-0.99, p = 0.038) and progression-free survival (PFS) (HR = 0.74, 95% CI: 0.58-0.96, p = 0.021). Subgroup analysis revealed that aged 50-60 year, IV, N2, radiotherapy dose ≥ 60 Gy, without previous surgery, and neoadjuvant therapy have a trend of survival benefit with nimotuzumab. Nimotuzumab showed favorable safety, only 0.2% had nimotuzumab-related severe adverse events. Our study indicated the nimotuzumab plus chemoradiotherapy provides survival benefits and safety for LA-HNSCC patients in an IMRT era.
Collapse
Affiliation(s)
- Peng Zhang
- Department of Radiation Oncology, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for CancerSichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of ChinaChengduChina
| | - Xinxin Zhang
- Senior Department of Otolaryngology‐Head & Neck Surgerythe Sixth Medical Center of PLA General Hospital, National Clinical Research Center for Otolaryngologic DiseasesBeijingChina
| | - Jinyi Lang
- Department of Radiation Oncology, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for CancerSichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of ChinaChengduChina
| | - Shaoxiong Wu
- Department of Radiation Oncology, State Key Laboratory of Oncology in South ChinaSun Yat‐sen University Cancer CenterGuangzhouChina
| | - Yan Sun
- Department of Radiation OncologyBeijing Cancer HospitalBeijingChina
| | - Peiguo Wang
- Department of Radiation OncologyTianjin Medical University Cancer Institute & HospitalTianjinChina
| | - Sufang Qiu
- Department of Radiation Head and Neck OncologyFujian Cancer HospitalFuzhouChina
| | - Xiaodong Huang
- Department of Radiation OncologyNational Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Guoxin Ren
- Department of Oral and Maxillofacial Tumor SurgeryShanghai Ninth People's Hospital, Shanghai Jiaotong University School of MedicineShanghaiChina
| | - Kun Liu
- Senior Department of Otolaryngology‐Head & Neck Surgerythe Sixth Medical Center of PLA General Hospital, National Clinical Research Center for Otolaryngologic DiseasesBeijingChina
| | - Xiaojing Du
- Department of Radiation Oncology, State Key Laboratory of Oncology in South ChinaSun Yat‐sen University Cancer CenterGuangzhouChina
| | - Shaowen Xiao
- Department of Radiation OncologyBeijing Cancer HospitalBeijingChina
| | - Zhongqiu Wang
- Department of Radiation OncologyTianjin Medical University Cancer Institute & HospitalTianjinChina
| | - Youliang Weng
- Department of Radiation Head and Neck OncologyFujian Cancer HospitalFuzhouChina
| | - Ye Zhang
- Department of Radiation OncologyNational Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Hang Zhou
- Department of Radiation Oncology, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for CancerSichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of ChinaChengduChina
| | - Wenyong Tu
- Department of Oral and Maxillofacial Tumor SurgeryShanghai Ninth People's Hospital, Shanghai Jiaotong University School of MedicineShanghaiChina
| | - Chenping Zhang
- Department of Oral and Maxillofacial Tumor SurgeryShanghai Ninth People's Hospital, Shanghai Jiaotong University School of MedicineShanghaiChina
| | - Junlin Yi
- Department of Radiation OncologyNational Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| |
Collapse
|
10
|
Ono K, Maeshima A, Nagayama I, Kubo T, Yagisawa T, Nagata D. Urinary Epidermal Growth Factor Level as a Noninvasive Indicator of Tubular Repair in Patients with Acute Kidney Injury. Diagnostics (Basel) 2024; 14:947. [PMID: 38732362 PMCID: PMC11083164 DOI: 10.3390/diagnostics14090947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/28/2024] [Accepted: 04/28/2024] [Indexed: 05/13/2024] Open
Abstract
Epidermal growth factor (EGF), an essential factor for the proliferation and survival of renal tubular cells, is expressed by distal tubules and normally excreted via urine. Previous studies in rats demonstrated that acute tubular injury reduces urinary EGF levels. However, it is unclear whether urinary EGF is a suitable monitoring marker of tubular repair status after acute kidney injury (AKI) in humans. To address this question, we measured serum and urinary EGF in patients with AKI (n = 99) using ELISA and investigated whether urinary EGF levels were associated with the severity of tubular injury and renal prognosis. Urinary EGF was abundant in healthy controls but showed a significant decrease in AKI patients (14,522 ± 2190 pg/mL vs. 3201 ± 459.7 pg/mL, p < 0.05). The urinary EGF level in patients with renal AKI was notably lower than that in patients with pre-renal AKI. Furthermore, the urinary EGF level in patients with AKI stage 3 was significantly lower than that in patients with AKI stage 1. Urinary EGF levels were negatively correlated with urinary β-2MG and serum creatinine levels but positively correlated with hemoglobin levels and eGFR. Urinary EGF was not significantly correlated with urinary NAG, α-1MG, L-FABP, NGAL, KIM-1, or urinary protein concentrations. No significant correlation was observed between serum and urinary EGF levels, suggesting that urinary EGF is derived from the renal tubules rather than the blood. In living renal transplantation donors, the urinary EGF/Cr ratio was approximately half the preoperative urinary EGF/Cr ratio after unilateral nephrectomy. Collectively, these data suggest that urinary EGF is a suitable noninvasive indicator of not only the volume of functional normal renal tubules but also the status of tubular repair after AKI.
Collapse
Affiliation(s)
- Kazutoshi Ono
- Division of Nephrology, Department of Internal Medicine, Jichi Medical University, Shimotsuke 329-0498, Japan
| | - Akito Maeshima
- Department of Nephrology and Hypertension, Saitama Medical Center, Saitama Medical University, Kawagoe 350-8550, Japan
| | - Izumi Nagayama
- Department of Nephrology and Hypertension, Saitama Medical Center, Saitama Medical University, Kawagoe 350-8550, Japan
| | - Taro Kubo
- Department of Renal Surgery and Transplantation, Jichi Medical University, Shimotsuke 329-0498, Japan
| | - Takashi Yagisawa
- Department of Renal Surgery and Transplantation, Jichi Medical University, Shimotsuke 329-0498, Japan
| | - Daisuke Nagata
- Division of Nephrology, Department of Internal Medicine, Jichi Medical University, Shimotsuke 329-0498, Japan
| |
Collapse
|
11
|
Roccatello D, Lan HY, Sciascia S, Sethi S, Fornoni A, Glassock R. From inflammation to renal fibrosis: A one-way road in autoimmunity? Autoimmun Rev 2024; 23:103466. [PMID: 37848157 DOI: 10.1016/j.autrev.2023.103466] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 10/13/2023] [Indexed: 10/19/2023]
Abstract
Renal fibrosis is now recognized as a main determinant of renal pathology to include chronic kidney disease. Deposition of pathological matrix in the walls of glomerular capillaries, the interstitial space, and around arterioles predicts and contributes to the functional demise of the nephron and its surrounding vasculature. The recent identification of the major cell populations of fibroblast precursors in the kidney interstitium such as pericytes and tissue-resident mesenchymal stem cells, or bone-marrow-derived macrophages, and in the glomerulus such as podocytes, parietal epithelial and mesangial cells, has enabled the study of the fibrogenic process thought the lens of involved immunological pathways. Besides, a growing body of evidence is supporting the role of the lymphatic system in modulating the immunological response potentially leading to inflammation and ultimately renal damage. These notions have moved our understanding of renal fibrosis to be recognized as a clinical entity and new main player in autoimmunity, impacting directly the management of patients.
Collapse
Affiliation(s)
- Dario Roccatello
- University Center of Excellence on Nephrologic, Rheumatologic and Rare Diseases (ERK-net, ERN-Reconnect and RITA-ERN Member) with Nephrology and Dialysis Unit and Center of Immuno-Rheumatology and Rare Diseases (CMID), Coordinating Center of the Interregional Network for Rare Diseases of Piedmont and Aosta Valley (North-West Italy), San Giovanni Bosco Hub Hospital, ASL Città di Torino and Department of Clinical and Biological Sciences of the University of Turin, Turin, Italy.
| | - Hui-Yao Lan
- Department of Medicine & Therapeutics, and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China; Guangdong-Hong Kong Joint Laboratory on Immunological and Genetic Kidney Diseases,Guangdong Academy of Medical Sciences, Guangdong Provincial People's Hospital, Guangzhou, China
| | - Savino Sciascia
- University Center of Excellence on Nephrologic, Rheumatologic and Rare Diseases (ERK-net, ERN-Reconnect and RITA-ERN Member) with Nephrology and Dialysis Unit and Center of Immuno-Rheumatology and Rare Diseases (CMID), Coordinating Center of the Interregional Network for Rare Diseases of Piedmont and Aosta Valley (North-West Italy), San Giovanni Bosco Hub Hospital, ASL Città di Torino and Department of Clinical and Biological Sciences of the University of Turin, Turin, Italy
| | - Sanjeev Sethi
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Alessia Fornoni
- Peggy and Harold Katz Family Drug Discovery Center, Katz Family Division of Nephrology and Hypertension, Department of Medicine, Miller School of Medicine, University of Miami, Miami, USA
| | - Richard Glassock
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| |
Collapse
|
12
|
Forsse JS, Peterson MN, Papadakis Z, Taylor JK, Hess BW, Schwedock N, Allison DC, Griggs JO, Wilson RL, Grandjean PW. The Effect of Acute Aerobic Exercise on Biomarkers of Renal Health and Filtration in Moderate-CKD. RESEARCH QUARTERLY FOR EXERCISE AND SPORT 2024; 95:1-9. [PMID: 36608287 DOI: 10.1080/02701367.2022.2130131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 09/20/2022] [Indexed: 06/17/2023]
Abstract
Purpose: Efficacy of exercise to improve renal health and filtration remains understudied in adults with moderate-stages (stages G3a-b) of chronic kidney disease (CKD). Acute exercise may contribute clinically relevant information for exercise-related augmentation of renal health and filtration in CKD. Urine epidermal growth factor (uEGF) and cystatin C (CyC) are proposed to be more direct biomarkers of renal health and filtration. This study aimed to determine the influence of continuous moderate-intensity exercise (CMIE) and high-intensity interval exercise (HIIE) on traditional and novel biomarkers of renal health and filtration in moderate-stages of CKD. Methods: Twenty CKD participants completed 30 minutes of both CMIE and HIIE. Blood and urine samples were obtained pre, 1-hour, and 24-hours post-exercise. Traditional-serum creatinine (sCr) urine creatinine, novel-uEGF, uEGF ratio (uEGFr), and CyC. Estimates of glomerular filtration rate (eGFR)-modification of diet in renal disease (MDRD) and the CKD-Epidemiology (CKD-EPI)-responses were compared pre, 1 hr, and 24 hr post-exercise. Results: Relative to pre-exercise measures, uEGF remained unchanged in both exercise conditions. However, uEGFr was 5.4% greater 24-hours after HIIE (P = .05), while uEGFr remained unchanged with CMIE. sCr decreased 6 to 19% 1-hour post-exercise in both conditions (P = .009). On average renal filtration increased in eGFR-MDRD (7.2 ± 2.0 ml/min/1.73 m2) (P = .007) and eGFR-CKD-EPI (8.6 ± 2.3 ml/min/1.73 m2) 1-hour post-exercise (P = .009). Conclusion: By clinical estimates, renal filtration in CKD was not normalized but transiently improved regardless of exercise condition, with HIIE eliciting transient improvements in renal health.
Collapse
|
13
|
Zhou M, Lin B, Wu P, Ke Y, Huang S, Zhang F, Hei X, Mao Z, Li X, Wan P, Chen T, Yang H, Huang D. SOX9 Induces Orbital Fibroblast Activation in Thyroid Eye Disease Via MAPK/ERK1/2 Pathway. Invest Ophthalmol Vis Sci 2024; 65:25. [PMID: 38345552 PMCID: PMC10866156 DOI: 10.1167/iovs.65.2.25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 12/12/2023] [Indexed: 02/15/2024] Open
Abstract
Purpose To evaluate the expression of sry-box transcription factor 9 (SOX9) in orbital fibroblasts (OFs) of thyroid eye disease (TED) and to find its potential role and underlying mechanism in orbital fibrosis. Methods OFs were cultured from orbital connective tissues obtained from patients with TED (n = 10) and healthy controls (n = 6). SOX9 was depleted by small interfering RNA or overexpressed through lentivirus transduction in OFs. Fibroblast contractile activity was measured by collagen gel contraction assay and proliferation was examined by EdU assay. Transcriptomic changes were assessed by RNA sequencing. Results The mRNA and protein levels of SOX9 were significantly higher in OFs cultured from patients with TED than those from healthy controls. Extracellular matrix-related genes were down-regulated by SOX9 knockdown and up-regulated by SOX9 overexpression in TED-OFs. SOX9 knockdown significantly decrease the contraction and the antiapoptotic ability of OFs, whereas the overexpression of SOX9 increased the ability of transformation, migration, and proliferation of OFs. SOX9 knockdown suppressed the expression of phosphorylated ERK1/2, whereas its overexpression showed the opposite effect. Epidermal growth factor receptor (EGFR) is one of the notably down-regulated genes screened out by RNA sequencing. Chromatin immunoprecipitation-qPCR demonstrated SOX9 binding to the EGFR promoter. Conclusions A high expression of SOX9 was found in TED-OFs. SOX9 can activate OFs via MAPK/ERK1/2 signaling pathway, which in turn promotes proliferation and differentiation of OFs. EGFR was a downstream target gene of SOX9. SOX9/EGFR can be considered as therapeutic targets for the treatment of orbital fibrosis in TED.
Collapse
Affiliation(s)
- Min Zhou
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, Guangdong Province, China
| | - Bingying Lin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, Guangdong Province, China
| | - Pengsen Wu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, Guangdong Province, China
| | - Yu Ke
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, Guangdong Province, China
| | - Siyu Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, Guangdong Province, China
| | - Fan Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, Guangdong Province, China
| | - Xiangqing Hei
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, Guangdong Province, China
| | - Zhen Mao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, Guangdong Province, China
| | - Xingyi Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, Guangdong Province, China
| | - Pengxia Wan
- Department of Ophthalmology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Tingting Chen
- Department of Ophthalmology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Huasheng Yang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, Guangdong Province, China
| | - Danping Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, Guangdong Province, China
| |
Collapse
|
14
|
Tao M, Shi Y, Chen H, Li J, Wang Y, Ma X, Du L, Wang Y, Yang X, Hu Y, Zhou X, Zhong Q, Yan D, Qiu A, Zhuang S, Liu N. The disruptor of telomeric silencing 1-like (DOT1L) promotes peritoneal fibrosis through the upregulation and activation of protein tyrosine kinases. MOLECULAR BIOMEDICINE 2024; 5:3. [PMID: 38172378 PMCID: PMC10764708 DOI: 10.1186/s43556-023-00161-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 11/27/2023] [Indexed: 01/05/2024] Open
Abstract
The disruptor of telomeric silencing 1-like (DOT1L), a specific histone methyltransferase that catalyzed methylation of histone H3 on lysine 79, was associated with the pathogenesis of many diseases, but its role in peritoneal fibrosis remained unexplored. Here, we examined the role of DOT1L in the expression and activation of protein tyrosine kinases and development of peritoneal fibrosis. We found that a significant rise of DOT1L expression in the fibrotic peritoneum tissues from long-term PD patients and mice. Inhibition of DOT1L significantly attenuated the profibrotic phenotypic differentiation of mesothelial cells and macrophages, and alleviated peritoneal fibrosis. Mechanistically, RNA sequencing and proteomic analysis indicated that DOT1L was mainly involved in the processes of protein tyrosine kinase binding and extracellular matrix structural constituent in the peritoneum. Chromatin immunoprecipitation (ChIP) showed that intranuclear DOT1L guided H3K79me2 to upregulate EGFR in mesothelial cells and JAK3 in macrophages. Immunoprecipitation and immunofluorescence showed that extranuclear DOT1L could interact with EGFR and JAK3, and maintain the activated signaling pathways. In summary, DOT1L promoted the expression and activation of tyrosine kinases (EGFR in mesothelial cells and JAK3 in macrophages), promoting cells differentiate into profibrotic phenotype and thus peritoneal fibrosis. We provide the novel mechanism of dialysis-related peritoneal fibrosis (PF) and the new targets for clinical drug development. DOT1L inhibitor had the PF therapeutic potential.
Collapse
Affiliation(s)
- Min Tao
- Department of Nephrology, Pudong New District, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120, China
| | - Yingfeng Shi
- Department of Nephrology, Pudong New District, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120, China
| | - Hui Chen
- Department of Nephrology, Pudong New District, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120, China
| | - Jinqing Li
- Department of Nephrology, Pudong New District, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120, China
| | - Yi Wang
- Department of Nephrology, Pudong New District, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120, China
| | - Xiaoyan Ma
- Department of Nephrology, Pudong New District, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120, China
| | - Lin Du
- Department of Nephrology, Pudong New District, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120, China
| | - Yishu Wang
- Department of Nephrology, Pudong New District, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120, China
| | - Xinyu Yang
- Department of Nephrology, Pudong New District, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120, China
| | - Yan Hu
- Department of Nephrology, Pudong New District, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120, China
| | - Xun Zhou
- Department of Nephrology, Pudong New District, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120, China
| | - Qin Zhong
- Department of Nephrology, Pudong New District, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120, China
| | - Danying Yan
- Department of Nephrology, Pudong New District, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120, China
| | - Andong Qiu
- Shanghai Key Laboratory of Maternal and Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity & Infant Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Shougang Zhuang
- Department of Nephrology, Pudong New District, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120, China
- Department of Medicine, Rhode Island Hospital and Alpert Medical School, Brown University, Providence, RI, USA
| | - Na Liu
- Department of Nephrology, Pudong New District, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120, China.
| |
Collapse
|
15
|
Tan X, Tao Q, Yin S, Fu G, Wang C, Xiang F, Hu H, Zhang S, Wang Z, Li D. A single administration of FGF2 after renal ischemia-reperfusion injury alleviates post-injury interstitial fibrosis. Nephrol Dial Transplant 2023; 38:2537-2549. [PMID: 37243325 DOI: 10.1093/ndt/gfad114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Indexed: 05/28/2023] Open
Abstract
BACKGROUND Despite lack of clinical therapy in acute kidney injury (AKI) or its progression to chronic kidney disease (CKD), administration of growth factors shows great potential in the treatment of renal repair and further fibrosis. At an early phase of AKI, administration of exogenous fibroblast growth factor 2 (FGF2) protects against renal injury by inhibition of mitochondrial damage and inflammatory response. Here, we investigated whether this treatment attenuates the long-term renal interstitial fibrosis induced by ischemia-reperfusion (I/R) injury. METHODS Unilateral renal I/R with contralateral nephrectomy was utilized as an in vivo model for AKI and subsequent CKD. Rats were randomly divided into four groups: Sham-operation group, I/R group, I/R-FGF2 group and FGF2-3D group. These groups were monitored for up to 2 months. Serum creatinine, inflammatory response and renal histopathology changes were detected to evaluate the role of FGF2 in AKI and followed renal interstitial fibrosis. Moreover, the expression of vimentin, α-SMA, CD31 and CD34 were examined. RESULTS Two months after I/R injury, the severity of renal interstitial fibrosis was significantly attenuated in both of I/R-FGF2 group and FGF2-3D group, compared with the I/R group. The protective effects of FGF2 administration were associated with the reduction of high-mobility group box 1 (HMGB1)-mediated inflammatory response, the inhibition of transforming growth factor beta (TGF-β1)/Smads signaling-induced epithelial-mesenchymal transition and the maintenance of peritubular capillary structure. CONCLUSIONS A single dose of exogenous FGF2 administration 1 h or 3 days after reperfusion inhibited renal fibrogenesis and thus blocked the transition of AKI to CKD. Our findings provided novel insight into the role of FGF signaling in AKI-to-CKD progression and underscored the potential of FGF-based therapy for this devastating disease.
Collapse
Affiliation(s)
- Xiaohua Tan
- Department of Pathology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
| | - Qianyu Tao
- Department of Pharmacy, Beilun District People's Hospital, Ningbo, Zhejiang, China
| | - Shulan Yin
- Department of Pathology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
| | - Guangming Fu
- Department of Pathology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Chengqin Wang
- Department of Pathology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
- Department of Pathology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Fenggang Xiang
- Department of Pathology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
- Department of Pathology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Haiqi Hu
- Department of Pharmacy, Jinhua Hospital of Zhejiang University, Jinhua, Zhejiang, China
| | - Sudan Zhang
- Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
| | - Zheng Wang
- Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
- Department of Reproductive Medicine, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Dequan Li
- Trauma Surgery & Emergency Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Intelligent Treatment and Life Support for Critical Diseases of Zhejiang Province, Wenzhou, Zhejiang, China
| |
Collapse
|
16
|
Forsse JS, Richardson KA, Torres R, Lowry C, Taylor JK, Beeson CL, Ward J, Dhillon A, Niceler B, Ismaeel A, Koutakis P. Exploring an Unknown Corner of a Well-Known Topic: HIIE Influence on Renal Health and Filtration in Healthy Individuals Free of Cardiometabolic Diseases. Sports (Basel) 2023; 11:210. [PMID: 37999427 PMCID: PMC10675315 DOI: 10.3390/sports11110210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 10/18/2023] [Accepted: 10/26/2023] [Indexed: 11/25/2023] Open
Abstract
Aerobic exercise, specifically high-intensity interval exercise (HIIE), and its effects on renal health and filtration (RHF) are not well understood. Several studies support incorporating contemporary biomarkers serum cystatin C (CyC) and urine epidermal growth factor (uEGF) to combat the volatility of serum creatinine (sCr). Using these biomarkers, we examined the acute influences HIIE has on RHF to determine if there is a ceiling effect in healthy populations. The purpose was to determine the influence of an acute bout of HIIE on RHF. Thirty-six participants (n = 22 males; n = 14 females; age 37.6 ± 12.4 years.; BF% 19.2 ± 7.1%; VO2max 41.8 + 7.4 mL/kg/min) completed 30 min of HIIE on a treadmill (80% and 40% of VO2reserve in 3:2 min ratio). Blood and urine samples were obtained under standardized conditions before, 1 h, and 24 h post-exercise. CyC, sCR, uEGF, urine creatinine (uCr), uCr/uEGF ratio, and multiple estimates of glomerular filtration rate (eGFR) Modification of Diet in Renal Disease (MDRD) and CKD-EPI equations were used. The analysis employed paired sample t-tests and repeated measures ANOVAs. CyC, uEGF, uCr, and uCr/uEGF ratio concentrations were not altered between timepoints. sCr increased 1 h post-exercise (p > 0.002) but not at 24 h post-exercise. eGFR decreased in the MDRD and CKD-EPI equations at 1 h (p > 0.012) with no changes at 24 h post-exercise. CyC and sCr/CyC demonstrated no significant changes. CyC and uEGF are not altered by acute HIIE. The results demonstrate a potential ceiling effect in contemporary and traditional biomarkers of RHF, indicating improvements in RHF may be isolated to populations with reduced kidney function.
Collapse
Affiliation(s)
- Jeffrey S. Forsse
- Integrated Laboratory of Exercise, Nutrition, and Renal Vascular Research, Department of Health, Human Performance, and Recreation, Baylor University, Waco, TX 76706, USA; (K.A.R.); (R.T.); (C.L.); (C.L.B.); (J.W.); (A.D.); (B.N.)
| | - Kathleen A. Richardson
- Integrated Laboratory of Exercise, Nutrition, and Renal Vascular Research, Department of Health, Human Performance, and Recreation, Baylor University, Waco, TX 76706, USA; (K.A.R.); (R.T.); (C.L.); (C.L.B.); (J.W.); (A.D.); (B.N.)
| | - Ricardo Torres
- Integrated Laboratory of Exercise, Nutrition, and Renal Vascular Research, Department of Health, Human Performance, and Recreation, Baylor University, Waco, TX 76706, USA; (K.A.R.); (R.T.); (C.L.); (C.L.B.); (J.W.); (A.D.); (B.N.)
| | - Catherine Lowry
- Integrated Laboratory of Exercise, Nutrition, and Renal Vascular Research, Department of Health, Human Performance, and Recreation, Baylor University, Waco, TX 76706, USA; (K.A.R.); (R.T.); (C.L.); (C.L.B.); (J.W.); (A.D.); (B.N.)
- Department of Health and Exercise Science, Colorado State University, Fort Collins, CO 80011, USA
| | - James Kyle Taylor
- Medical & Clinical Laboratory Sciences, Auburn University—Montgomery, Montgomery, AL 36124, USA;
| | - Cassidy L. Beeson
- Integrated Laboratory of Exercise, Nutrition, and Renal Vascular Research, Department of Health, Human Performance, and Recreation, Baylor University, Waco, TX 76706, USA; (K.A.R.); (R.T.); (C.L.); (C.L.B.); (J.W.); (A.D.); (B.N.)
| | - Jacob Ward
- Integrated Laboratory of Exercise, Nutrition, and Renal Vascular Research, Department of Health, Human Performance, and Recreation, Baylor University, Waco, TX 76706, USA; (K.A.R.); (R.T.); (C.L.); (C.L.B.); (J.W.); (A.D.); (B.N.)
- Southern Illinois University Medical School, Lindegren Hall, 600 Agriculture Dr #132, Carbondale, IL 62901, USA
| | - Anurag Dhillon
- Integrated Laboratory of Exercise, Nutrition, and Renal Vascular Research, Department of Health, Human Performance, and Recreation, Baylor University, Waco, TX 76706, USA; (K.A.R.); (R.T.); (C.L.); (C.L.B.); (J.W.); (A.D.); (B.N.)
- Health Science Center, San Antonio Joe R and Teresa Lozano Long School of Medicine, The University of Texas, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA
| | - Brock Niceler
- Integrated Laboratory of Exercise, Nutrition, and Renal Vascular Research, Department of Health, Human Performance, and Recreation, Baylor University, Waco, TX 76706, USA; (K.A.R.); (R.T.); (C.L.); (C.L.B.); (J.W.); (A.D.); (B.N.)
- Waco Family Medicine, Waco, TX 76707, USA
| | - Ahmed Ismaeel
- Department of Physiology, University of Kentucky, 780 Rose Street, MS508, Lexington, KY 40536, USA;
- Clinical Muscle Biology Lab, Baylor University, Waco, TX 76706, USA;
| | | |
Collapse
|
17
|
Li T, Liu TC, Liu N, Li MJ, Zhang M. Urinary exosome proteins PAK6 and EGFR as noninvasive diagnostic biomarkers of diabetic nephropathy. BMC Nephrol 2023; 24:291. [PMID: 37789280 PMCID: PMC10548700 DOI: 10.1186/s12882-023-03343-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 09/21/2023] [Indexed: 10/05/2023] Open
Abstract
OBJECTIVE The actin cytoskeleton plays an essential role in maintaining podocyte functions. However, whether the urinary exosome proteins related to the regulation of the actin cytoskeleton are changed in diabetic nephropathy (DN) is still unknown. This study was to investigate the possibility that related proteins can be applied as diagnostic biomarkers for DN. METHODS Urinary exosomes were obtained from 144 participants (Discovery phase: n = 72; Validation phase: n = 72) by size exclusion chromatography methods. Proteomic analysis of urinary exosome by LC-MS/MS. Western blot and ELISA were applied to validate the selected urinary exosome proteins. The clinical value of selected urinary exosome proteins was evaluated using correlation and receiver operating characteristic curve analyses. RESULTS Fifteen urinary proteins related to the regulation of the actin cytoskeleton were identified in urinary exosomes. Three upregulated proteins were selected, including Serine/threonine-protein kinase PAK6 (PAK6), Epidermal growth factor receptor (EGFR), and SHC-transforming protein 1(SHC1). The expression level of PAK6 and EGFR was negatively correlated with estimated glomerular filtration rate and positively correlated with serum creatinine levels. For diagnosing DN in the discovery phase: the area under curve (AUC) of PAK6 was 0.903, EGFR was 0.842, and the combination of two proteins was 0.912. These better performances were also observed in the validation phase (For PAK6: AUC = 0.829; For EGFR: AUC = 0.797; For PAK6 + EGFR: AUC = 0.897). CONCLUSIONS Urinary exosome proteins PAK6 and EGFR may be promising and noninvasive biomarkers for diagnosing DN.
Collapse
Affiliation(s)
- Tao Li
- Clinical Laboratory Medicine, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
- Beijing Key Laboratory of Urinary Cellular Molecular Diagnostics, Beijing, 100038, China
| | - Tian Ci Liu
- Clinical Laboratory Medicine, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
- Beijing Key Laboratory of Urinary Cellular Molecular Diagnostics, Beijing, 100038, China
| | - Na Liu
- Clinical Laboratory Medicine, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
- Beijing Key Laboratory of Urinary Cellular Molecular Diagnostics, Beijing, 100038, China
| | - Meng Jie Li
- Clinical Laboratory Medicine, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
- Beijing Key Laboratory of Urinary Cellular Molecular Diagnostics, Beijing, 100038, China
| | - Man Zhang
- Clinical Laboratory Medicine, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China.
- Beijing Key Laboratory of Urinary Cellular Molecular Diagnostics, Beijing, 100038, China.
| |
Collapse
|
18
|
Harskamp LR, Perez-Gomez MV, Heida JE, Engels GE, van Goor H, van den Heuvel MC, Streets AJ, Ong ACM, Ortiz A, Gansevoort RT. The association of urinary epidermal growth factors with ADPKD disease severity and progression. Nephrol Dial Transplant 2023; 38:2266-2275. [PMID: 36914219 PMCID: PMC10539218 DOI: 10.1093/ndt/gfad050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Indexed: 03/14/2023] Open
Abstract
BACKGROUND The epidermal growth factor receptor (EGFR) pathway is involved in kidney tissue repair and growth. Preclinical interventional data and scarce human data have suggested a role for this pathway in the pathophysiology of autosomal dominant polycystic kidney disease (ADPKD), while other data have suggested that its activation is causally linked to repair of damaged kidney tissue. We hypothesize that urinary EGFR ligands, as a reflection of EGFR activity, are associated with kidney function decline in ADPKD in the context of tissue repair following injury, and as the disease progresses as a sign of insufficient repair. METHODS In the present study, we measured the EGFR ligands, EGF and heparin binding-EGF (HB-EGF), in 24-h urine samples of 301 ADPKD patients and 72 age- and sex-matched living kidney donors to dissect the role of the EGFR pathway in ADPKD. During a median follow-up of 2.5 years, the association of urinary EGFR ligand excretion with annual change in estimated glomerular filtration rate (eGFR) and height-adjusted total kidney volume in ADPKD patients was analyzed using mixed-models methods, and the expression of three closely related EGFR family receptors in ADPKD kidney tissue was investigated by immunohistochemistry. Additionally, the effect of reducing renal mass (after kidney donation), was assessed to investigate whether urinary EGF matches this reduction and thus reflects the amount of remaining healthy kidney tissue. RESULTS At baseline, urinary HB-EGF did not differ between ADPKD patients and healthy controls (P = .6), whereas a lower urinary EGF excretion was observed in ADPKD patients [18.6 (11.8-27.8)] compared with healthy controls [51.0 (34.9-65.4) μg/24 h, P < .001]. Urinary EGF was positively associated with baseline eGFR (R = 0.54, P < .001) and a lower EGF was strongly associated with a more rapid GFR decline, even when adjusted for ADPKD severity markers (β = 1.96, P < .001), whereas HB-EGF was not. Expression of the EGFR, but not other EGFR-related receptors, was observed in renal cysts but was absent in non-ADPKD kidney tissue. Finally, unilateral nephrectomy resulted in a decrease of 46.4 (-63.3 to -17.6) % in urinary EGF excretion, alongside a decrease of 35.2 ± 7.2% in eGFR and 36.8 ± 6.9% in measured GFR (mGFR), whereas maximal mGFR (measured after dopamine induced hyperperfusion) decreased by 46.1 ± 7.8% (all P < .001). CONCLUSIONS Our data suggest that lower urinary EGF excretion may be a valuable novel predictor for kidney function decline in patients with ADPKD.
Collapse
Affiliation(s)
- Laura R Harskamp
- Department of Nephrology, University Medical Center of Groningen, University of Groningen, Groningen, The Netherlands
| | | | - Judith E Heida
- Department of Nephrology, University Medical Center of Groningen, University of Groningen, Groningen, The Netherlands
| | | | - Harry van Goor
- Department of Pathology and Medical Biology, University Medical Center of Groningen, University of Groningen, Groningen, The Netherlands
| | - Marius C van den Heuvel
- Department of Pathology and Medical Biology, University Medical Center of Groningen, University of Groningen, Groningen, The Netherlands
| | - Andrew J Streets
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield Medical School, Kidney Genetics Group, Academic Nephrology Unit, Sheffield, UK
| | - Albert C M Ong
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield Medical School, Kidney Genetics Group, Academic Nephrology Unit, Sheffield, UK
| | - Alberto Ortiz
- Department of Nephrology, Fundación Jiménez Díaz University Hospital and IIS-FJD, Madrid, Spain
| | - Ron T Gansevoort
- Department of Nephrology, University Medical Center of Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
19
|
Zeng J, Liang L, Chen R, Li C, Pan L, Wen M, Lv D, Liu M, Xu Z, Huang H. Fraxin represses NF-κB pathway via inhibiting the activation of epidermal growth factor receptor to ameliorate diabetic renal tubulointerstitial fibrosis. Eur J Pharmacol 2023; 955:175915. [PMID: 37467841 DOI: 10.1016/j.ejphar.2023.175915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 07/13/2023] [Accepted: 07/14/2023] [Indexed: 07/21/2023]
Abstract
Renal tubulointerstitial fibrosis (RIF), featured by epithelial-to-mesenchymal-transition (EMT) of renal tubular epithelial cells and collagen deposition in the renal interstitial region, is the main pathological change of diabetic nephropathy (DN). Fraxin, the main active component of Fraxinus rhynchophylla Hance with anti-inflammatory activity, has been demonstrated to ameliorate glomerulosclerosis. However, the regulatory role of Fraxin on diabetic RIF remains unclear. In this study, we investigated the renal protective benefits of Fraxin against diabetic RIF and elucidated its mechanisms. In vitro, Fraxin inhibited the abnormal expression of EMT-related markers and proinflammatory cytokines, improved cellular morphology, and subsequently reduced the extracellular matrix (ECM) production in high glucose (HG)-induced NRK-52E cells. In vivo, Fraxin effectively ameliorated renal function, inhibited the abnormal expression of EMT-related markers and proinflammatory cytokines, and reduced ECM deposition in renal tubule interstitium in db/db mice. Notably, Fraxin could directly bind to epidermal growth factor receptor (EGFR), which contributed to the inhibition of EGFR phosphorylation and counteracted the activation of c-Src/NF-κB pathway, eventually ameliorating RIF. Thus, Fraxin may be a potential drug candidate for treating DN.
Collapse
Affiliation(s)
- Jingran Zeng
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Liyin Liang
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Rui Chen
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Chuting Li
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Linjie Pan
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Min Wen
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Dongxin Lv
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Min Liu
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
| | - Zhanchi Xu
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China.
| | - Heqing Huang
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China.
| |
Collapse
|
20
|
Huang X, Wang X, Li L, Wang Q, Xu W, Wu W, Xie X, Diao Y. MiR133b-mediated inhibition of EGFR-PTK pathway promotes rAAV2 transduction by facilitating intracellular trafficking and augmenting second-strand synthesis. J Cell Mol Med 2023; 27:2714-2729. [PMID: 37469226 PMCID: PMC10494303 DOI: 10.1111/jcmm.17858] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 07/07/2023] [Accepted: 07/10/2023] [Indexed: 07/21/2023] Open
Abstract
Recombinant adeno-associated virus (rAAV) is an extremely attractive vector in the in vivo delivery of gene therapy as it is safe and its genome is simple. However, challenges including low permissiveness to specific cells and restricted tissue specificity have hindered its clinical application. Based on the previous studies, epidermal growth factor receptor-protein tyrosine kinase (EGFR-PTK) negatively regulated rAAV transduction, and EGFR-positive cells were hardly permissive to rAAV transduction. We constructed a novel rAAV-miRNA133b vector, which co-expressed miRNA133b and transgene, and investigated its in vivo and in vitro transduction efficiency. Confocal microscopy, live-cell imaging, pharmacological reagents and labelled virion tracking were used to analyse the effect of miRNA133b on rAAV2 transduction and the underlying mechanisms. The results demonstrated that miRNA133b could promote rAAV2 transduction and the effects were limited to EGFR-positive cells. The increased transduction was found to be a direct result of decreased rAAV particles degradation in the cytoplasm and enhanced second-strand synthesis. ss-rAAV2-miRNA133b vector specifically increased rAAV2 transduction in EGFR-positive cells or tissues, while ss-rAAV2-Fluc-miRNA133b exerted an antitumor effect. rAAV-miRNA133b vector might emerge as a promising platform for delivering various transgene to treat EGFR-positive cell-related diseases, such as non-small-cell lung cancer.
Collapse
Affiliation(s)
- Xiaoping Huang
- College of Chemical Engineering and Materials SciencesQuanzhou Normal UniversityQuanzhouChina
- School of MedicineHuaqiao UniversityQuanzhouChina
| | - Xiao Wang
- School of MedicineHuaqiao UniversityQuanzhouChina
| | - Ling Li
- School of MedicineHuaqiao UniversityQuanzhouChina
| | - Qizhao Wang
- School of MedicineHuaqiao UniversityQuanzhouChina
| | - Wentao Xu
- College of Chemical Engineering and Materials SciencesQuanzhou Normal UniversityQuanzhouChina
| | - Wenlin Wu
- College of Chemical Engineering and Materials SciencesQuanzhou Normal UniversityQuanzhouChina
| | - Xiaolan Xie
- College of Chemical Engineering and Materials SciencesQuanzhou Normal UniversityQuanzhouChina
| | - Yong Diao
- School of MedicineHuaqiao UniversityQuanzhouChina
| |
Collapse
|
21
|
Lake BB, Menon R, Winfree S, Hu Q, Melo Ferreira R, Kalhor K, Barwinska D, Otto EA, Ferkowicz M, Diep D, Plongthongkum N, Knoten A, Urata S, Mariani LH, Naik AS, Eddy S, Zhang B, Wu Y, Salamon D, Williams JC, Wang X, Balderrama KS, Hoover PJ, Murray E, Marshall JL, Noel T, Vijayan A, Hartman A, Chen F, Waikar SS, Rosas SE, Wilson FP, Palevsky PM, Kiryluk K, Sedor JR, Toto RD, Parikh CR, Kim EH, Satija R, Greka A, Macosko EZ, Kharchenko PV, Gaut JP, Hodgin JB, Eadon MT, Dagher PC, El-Achkar TM, Zhang K, Kretzler M, Jain S. An atlas of healthy and injured cell states and niches in the human kidney. Nature 2023; 619:585-594. [PMID: 37468583 PMCID: PMC10356613 DOI: 10.1038/s41586-023-05769-3] [Citation(s) in RCA: 192] [Impact Index Per Article: 96.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 01/30/2023] [Indexed: 07/21/2023]
Abstract
Understanding kidney disease relies on defining the complexity of cell types and states, their associated molecular profiles and interactions within tissue neighbourhoods1. Here we applied multiple single-cell and single-nucleus assays (>400,000 nuclei or cells) and spatial imaging technologies to a broad spectrum of healthy reference kidneys (45 donors) and diseased kidneys (48 patients). This has provided a high-resolution cellular atlas of 51 main cell types, which include rare and previously undescribed cell populations. The multi-omic approach provides detailed transcriptomic profiles, regulatory factors and spatial localizations spanning the entire kidney. We also define 28 cellular states across nephron segments and interstitium that were altered in kidney injury, encompassing cycling, adaptive (successful or maladaptive repair), transitioning and degenerative states. Molecular signatures permitted the localization of these states within injury neighbourhoods using spatial transcriptomics, while large-scale 3D imaging analysis (around 1.2 million neighbourhoods) provided corresponding linkages to active immune responses. These analyses defined biological pathways that are relevant to injury time-course and niches, including signatures underlying epithelial repair that predicted maladaptive states associated with a decline in kidney function. This integrated multimodal spatial cell atlas of healthy and diseased human kidneys represents a comprehensive benchmark of cellular states, neighbourhoods, outcome-associated signatures and publicly available interactive visualizations.
Collapse
Affiliation(s)
- Blue B Lake
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
- San Diego Institute of Science, Altos Labs, San Diego, CA, USA
| | - Rajasree Menon
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Seth Winfree
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Qiwen Hu
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Ricardo Melo Ferreira
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Kian Kalhor
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Daria Barwinska
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Edgar A Otto
- Department of Internal Medicine, Division of Nephrology, University of Michigan, Ann Arbor, MI, USA
| | - Michael Ferkowicz
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Dinh Diep
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
- San Diego Institute of Science, Altos Labs, San Diego, CA, USA
| | - Nongluk Plongthongkum
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Amanda Knoten
- Department of Medicine, Washington University School of Medicine, St Louis, MO, USA
| | - Sarah Urata
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Laura H Mariani
- Department of Internal Medicine, Division of Nephrology, University of Michigan, Ann Arbor, MI, USA
| | - Abhijit S Naik
- Department of Internal Medicine, Division of Nephrology, University of Michigan, Ann Arbor, MI, USA
| | - Sean Eddy
- Department of Internal Medicine, Division of Nephrology, University of Michigan, Ann Arbor, MI, USA
| | - Bo Zhang
- Department of Medicine, Washington University School of Medicine, St Louis, MO, USA
| | - Yan Wu
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
- San Diego Institute of Science, Altos Labs, San Diego, CA, USA
| | - Diane Salamon
- Department of Medicine, Washington University School of Medicine, St Louis, MO, USA
| | - James C Williams
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Xin Wang
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | | | - Paul J Hoover
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Evan Murray
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | | | - Teia Noel
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Anitha Vijayan
- Department of Medicine, Washington University School of Medicine, St Louis, MO, USA
| | | | - Fei Chen
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Sushrut S Waikar
- Section of Nephrology, Boston University School of Medicine and Boston Medical Center, Boston, MA, USA
| | - Sylvia E Rosas
- Kidney and Hypertension Unit, Joslin Diabetes Center, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Francis P Wilson
- Department of Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Paul M Palevsky
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | | | - John R Sedor
- Lerner Research and Glickman Urology and Kidney Institutes, Cleveland Clinic, Cleveland, OH, USA
| | - Robert D Toto
- Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, USA
| | - Chirag R Parikh
- Division of Nephrology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Eric H Kim
- Department of Surgery, Washington University School of Medicine, St Louis, MO, USA
| | | | - Anna Greka
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | | | - Peter V Kharchenko
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- San Diego Institute of Science, Altos Labs, San Diego, CA, USA
| | - Joseph P Gaut
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
| | - Jeffrey B Hodgin
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Michael T Eadon
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA.
| | - Pierre C Dagher
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA.
| | - Tarek M El-Achkar
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA.
| | - Kun Zhang
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA.
- San Diego Institute of Science, Altos Labs, San Diego, CA, USA.
| | - Matthias Kretzler
- Department of Internal Medicine, Division of Nephrology, University of Michigan, Ann Arbor, MI, USA.
| | - Sanjay Jain
- Department of Medicine, Washington University School of Medicine, St Louis, MO, USA.
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA.
| |
Collapse
|
22
|
Yue J, Huang R, Lan Z, Xiao B, Luo Z. Abnormal glycosylation in glioma: related changes in biology, biomarkers and targeted therapy. Biomark Res 2023; 11:54. [PMID: 37231524 DOI: 10.1186/s40364-023-00491-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 04/26/2023] [Indexed: 05/27/2023] Open
Abstract
Glioma is a rapidly growing and aggressive primary malignant tumor of the central nervous system that can diffusely invade the brain tissue around, and the prognosis of patients is not significantly improved by traditional treatments. One of the most general posttranslational modifications of proteins is glycosylation, and the abnormal distribution of this modification in gliomas may shed light on how it affects biological behaviors of glioma cells, including proliferation, migration, and invasion, which may be produced by regulating protein function, cell-matrix and cell‒cell interactions, and affecting receptor downstream pathways. In this paper, from the perspective of regulating protein glycosylation changes and abnormal expression of glycosylation-related proteins (such as glycosyltransferases in gliomas), we summarize how glycosylation may play a crucial role in the discovery of novel biomarkers and new targeted treatment options for gliomas. Overall, the mechanistic basis of abnormal glycosylation affecting glioma progression remains to be more widely and deeply explored, which not only helps to inspire researchers to further explore related diagnostic and prognostic markers but also provides ideas for discovering effective treatment strategies and improving glioma patient survival and prognosis.
Collapse
Affiliation(s)
- Juan Yue
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, 87 Xiangya road of Kaifu district, 410008, Changsha, Hunan, China
| | - Roujie Huang
- Department of Obstetrics and Gynecology, Peking Union Medical College, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Shuaifuyuan No. 1, Dongcheng District, 100730, Beijing, China
| | - Zehao Lan
- Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Bo Xiao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, 87 Xiangya road of Kaifu district, 410008, Changsha, Hunan, China
- Clinical Research Center for Epileptic disease of Hunan Province, Central South University, 410008, Changsha, Hunan, P.R. China
| | - Zhaohui Luo
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, 87 Xiangya road of Kaifu district, 410008, Changsha, Hunan, China.
- Clinical Research Center for Epileptic disease of Hunan Province, Central South University, 410008, Changsha, Hunan, P.R. China.
| |
Collapse
|
23
|
Maas SL, Donners MMPC, van der Vorst EPC. ADAM10 and ADAM17, Major Regulators of Chronic Kidney Disease Induced Atherosclerosis? Int J Mol Sci 2023; 24:ijms24087309. [PMID: 37108478 PMCID: PMC10139114 DOI: 10.3390/ijms24087309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/06/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Chronic kidney disease (CKD) is a major health problem, affecting millions of people worldwide, in particular hypertensive and diabetic patients. CKD patients suffer from significantly increased cardiovascular disease (CVD) morbidity and mortality, mainly due to accelerated atherosclerosis development. Indeed, CKD not only affects the kidneys, in which injury and maladaptive repair processes lead to local inflammation and fibrosis, but also causes systemic inflammation and altered mineral bone metabolism leading to vascular dysfunction, calcification, and thus, accelerated atherosclerosis. Although CKD and CVD individually have been extensively studied, relatively little research has studied the link between both diseases. This narrative review focuses on the role of a disintegrin and metalloproteases (ADAM) 10 and ADAM17 in CKD and CVD and will for the first time shed light on their role in CKD-induced CVD. By cleaving cell surface molecules, these enzymes regulate not only cellular sensitivity to their micro-environment (in case of receptor cleavage), but also release soluble ectodomains that can exert agonistic or antagonistic functions, both locally and systemically. Although the cell-specific roles of ADAM10 and ADAM17 in CVD, and to a lesser extent in CKD, have been explored, their impact on CKD-induced CVD is likely, yet remains to be elucidated.
Collapse
Affiliation(s)
- Sanne L Maas
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, 52074 Aachen, Germany
- Aachen-Maastricht Institute for CardioRenal Disease (AMICARE), RWTH Aachen University, 52074 Aachen, Germany
| | - Marjo M P C Donners
- Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre, 6229 ER Maastricht, The Netherlands
| | - Emiel P C van der Vorst
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, 52074 Aachen, Germany
- Aachen-Maastricht Institute for CardioRenal Disease (AMICARE), RWTH Aachen University, 52074 Aachen, Germany
- Interdisciplinary Center for Clinical Research (IZKF), RWTH Aachen University, 52074 Aachen, Germany
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University Munich (LMU), 80336 Munich, Germany
| |
Collapse
|
24
|
Mapuskar KA, Vasquez Martinez G, Pulliam CF, Petronek MS, Steinbach EJ, Monga V, Furqan M, Jetton JG, Saunders DP, Pearce A, Davidson S, Pitre L, Dunlap NE, Fairbanks R, Lee CM, Mott SL, Bodeker KL, Cl H, Buatti JM, Anderson CM, Beardsley RA, Holmlund JT, Zepeda-Orozco D, Spitz DR, Allen BG. Avasopasem manganese (GC4419) protects against cisplatin-induced chronic kidney disease: An exploratory analysis of renal metrics from a randomized phase 2b clinical trial in head and neck cancer patients. Redox Biol 2023; 60:102599. [PMID: 36640725 PMCID: PMC9852651 DOI: 10.1016/j.redox.2022.102599] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 12/29/2022] [Accepted: 12/30/2022] [Indexed: 01/04/2023] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) patients treated with high-dose cisplatin concurrently with radiotherapy (hdCis-RT) commonly suffer kidney injury leading to acute and chronic kidney disease (AKD and CKD, respectively). We conducted a retrospective analysis of renal function and kidney injury-related plasma biomarkers in a subset of HNSCC subjects receiving hdCis-RT in a double-blinded, placebo-controlled clinical trial (NCT02508389) evaluating the superoxide dismutase mimetic, avasopasem manganese (AVA), an investigational new drug. We found that 90 mg AVA treatment prevented a significant reduction in estimated glomerular filtration rate (eGFR) three months as well as six and twelve months after treatment compared to 30 mg AVA and placebo. Moreover, AVA treatment may have allowed renal repair in the first 22 days following cisplatin treatment as evidenced by an increase in epithelial growth factor (EGF), known to aid in renal recovery. An upward trend was also observed in plasma iron homeostasis proteins including total iron (Fe-blood) and iron saturation (Fe-saturation) in the 90 mg AVA group versus placebo. These data support the hypothesis that treatment with 90 mg AVA mitigates cisplatin-induced CKD by inhibiting hdCis-induced renal changes and promoting renal recovery.
Collapse
Affiliation(s)
- K A Mapuskar
- University of Iowa Hospitals and Clinics, Free Radical and Radiation Biology Program, Department of Radiation Oncology, Iowa City, IA, USA
| | - G Vasquez Martinez
- Kidney and Urinary Tract Center, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - C F Pulliam
- University of Iowa Hospitals and Clinics, Free Radical and Radiation Biology Program, Department of Radiation Oncology, Iowa City, IA, USA
| | - M S Petronek
- University of Iowa Hospitals and Clinics, Free Radical and Radiation Biology Program, Department of Radiation Oncology, Iowa City, IA, USA
| | - E J Steinbach
- The University of Iowa Stead Family Department of Pediatrics, Iowa City, IA, USA
| | - V Monga
- University of Iowa Hospitals and Clinics, Department of Internal Medicine, Iowa City, IA, USA
| | - M Furqan
- University of Iowa Hospitals and Clinics, Department of Internal Medicine, Iowa City, IA, USA
| | - J G Jetton
- Medical College of Wisconsin, Department of Pediatrics, Milwaukee, WI, USA
| | - D P Saunders
- Northeast Cancer Centre, Health Sciences North, Northern Ontario School of Medicine, Sudbury, Canada
| | - A Pearce
- Northeast Cancer Centre, Health Sciences North, Northern Ontario School of Medicine, Sudbury, Canada
| | - S Davidson
- Northeast Cancer Centre, Health Sciences North, Northern Ontario School of Medicine, Sudbury, Canada
| | - L Pitre
- Northeast Cancer Centre, Health Sciences North, Northern Ontario School of Medicine, Sudbury, Canada
| | - N E Dunlap
- University of Louisville, School of Medicine, Louisville, KY, 40202, USA
| | | | - C M Lee
- Cancer Care Northwest, Spokane, WA, USA
| | - S L Mott
- University of Iowa Holden Comprehensive Cancer Center, Iowa City, IA, USA
| | - K L Bodeker
- University of Iowa Hospitals and Clinics, Free Radical and Radiation Biology Program, Department of Radiation Oncology, Iowa City, IA, USA
| | - Huang Cl
- University of Iowa Carver College of Medicine, Department of Internal Medicine, Iowa City, IA, USA
| | - J M Buatti
- University of Iowa Hospitals and Clinics, Free Radical and Radiation Biology Program, Department of Radiation Oncology, Iowa City, IA, USA
| | - C M Anderson
- University of Iowa Hospitals and Clinics, Free Radical and Radiation Biology Program, Department of Radiation Oncology, Iowa City, IA, USA
| | | | | | - D Zepeda-Orozco
- Kidney and Urinary Tract Center, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA; Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA
| | - D R Spitz
- University of Iowa Hospitals and Clinics, Free Radical and Radiation Biology Program, Department of Radiation Oncology, Iowa City, IA, USA.
| | - B G Allen
- University of Iowa Hospitals and Clinics, Free Radical and Radiation Biology Program, Department of Radiation Oncology, Iowa City, IA, USA.
| |
Collapse
|
25
|
Shoykhet M, Dervishi O, Menauer P, Hiermaier M, Moztarzadeh S, Osterloh C, Ludwig RJ, Williams T, Gerull B, Kääb S, Clauss S, Schüttler D, Waschke J, Yeruva S. EGFR inhibition leads to enhanced desmosome assembly and cardiomyocyte cohesion via ROCK activation. JCI Insight 2023; 8:163763. [PMID: 36795511 PMCID: PMC10070108 DOI: 10.1172/jci.insight.163763] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 02/15/2023] [Indexed: 02/17/2023] Open
Abstract
Arrhythmogenic cardiomyopathy (AC) is a familial heart disease partly caused by impaired desmosome turnover. Thus, stabilization of desmosome integrity may provide new treatment options. Desmosomes, apart from cellular cohesion, provide the structural framework of a signaling hub. Here, we investigated the role of the epidermal growth factor receptor (EGFR) in cardiomyocyte cohesion. We inhibited EGFR under physiological and pathophysiological conditions using the murine plakoglobin-KO AC model, in which EGFR was upregulated. EGFR inhibition enhanced cardiomyocyte cohesion. Immunoprecipitation showed an interaction of EGFR and desmoglein 2 (DSG2). Immunostaining and atomic force microscopy (AFM) revealed enhanced DSG2 localization and binding at cell borders upon EGFR inhibition. Enhanced area composita length and desmosome assembly were observed upon EGFR inhibition, confirmed by enhanced DSG2 and desmoplakin (DP) recruitment to cell borders. PamGene Kinase assay performed in HL-1 cardiomyocytes treated with erlotinib, an EGFR inhibitor, revealed upregulation of Rho-associated protein kinase (ROCK). Erlotinib-mediated desmosome assembly and cardiomyocyte cohesion were abolished upon ROCK inhibition. Thus, inhibiting EGFR and, thereby, stabilizing desmosome integrity via ROCK might provide treatment options for AC.
Collapse
Affiliation(s)
- Maria Shoykhet
- Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, Ludwig Maximilian University (LMU), Munich, Germany
| | - Orsela Dervishi
- Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, Ludwig Maximilian University (LMU), Munich, Germany
| | - Philipp Menauer
- Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, Ludwig Maximilian University (LMU), Munich, Germany
| | - Matthias Hiermaier
- Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, Ludwig Maximilian University (LMU), Munich, Germany
| | - Sina Moztarzadeh
- Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, Ludwig Maximilian University (LMU), Munich, Germany
| | - Colin Osterloh
- Lübeck Institute of Experimental Dermatology and Center for Research on Inflammation of the Skin, University of Lübeck, Lübeck, Germany
| | - Ralf J Ludwig
- Lübeck Institute of Experimental Dermatology and Center for Research on Inflammation of the Skin, University of Lübeck, Lübeck, Germany
| | - Tatjana Williams
- Comprehensive Heart Failure Center and Department of Medicine I, University Hospital Würzburg, Würzburg, Germany
| | - Brenda Gerull
- Comprehensive Heart Failure Center and Department of Medicine I, University Hospital Würzburg, Würzburg, Germany
| | - Stefan Kääb
- Medizinische Klinik und Poliklinik I, LMU Hospital, LMU, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich, Munich Heart Alliance (MHA), Munich, Germany
- Interfaculty Center for Endocrine and Cardiovascular Disease Network Modeling and Clinical Transfer (ICONLMU), LMU Munich, Munich, Germany
| | - Sebastian Clauss
- Medizinische Klinik und Poliklinik I, LMU Hospital, LMU, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich, Munich Heart Alliance (MHA), Munich, Germany
- Interfaculty Center for Endocrine and Cardiovascular Disease Network Modeling and Clinical Transfer (ICONLMU), LMU Munich, Munich, Germany
- Institute of Surgical Research at the Walter-Brendel-Centre of Experimental Medicine, LMU Hospital, LMU, Munich, Germany
| | - Dominik Schüttler
- Medizinische Klinik und Poliklinik I, LMU Hospital, LMU, Munich, Germany
- Interfaculty Center for Endocrine and Cardiovascular Disease Network Modeling and Clinical Transfer (ICONLMU), LMU Munich, Munich, Germany
- Institute of Surgical Research at the Walter-Brendel-Centre of Experimental Medicine, LMU Hospital, LMU, Munich, Germany
| | - Jens Waschke
- Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, Ludwig Maximilian University (LMU), Munich, Germany
| | - Sunil Yeruva
- Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, Ludwig Maximilian University (LMU), Munich, Germany
| |
Collapse
|
26
|
Shi Y, Tao M, Chen H, Ma X, Wang Y, Hu Y, Zhou X, Li J, Cui B, Qiu A, Zhuang S, Liu N. Ubiquitin-specific protease 11 promotes partial epithelial-to-mesenchymal transition by deubiquitinating the epidermal growth factor receptor during kidney fibrosis. Kidney Int 2023; 103:544-564. [PMID: 36581018 DOI: 10.1016/j.kint.2022.11.027] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 11/17/2022] [Indexed: 12/27/2022]
Abstract
The aberrant expression of ubiquitin-specific protease 11 (USP11) is believed to be related to tumor progression. However, few studies have reported the biological function and clinical importance of USP11 in kidney fibrosis. Here, we demonstrated USP11 was highly upregulated in the kidneys from patients with chronic kidney disease and correlated positively with fibrotic lesion but negatively with kidney function. Conditional USP11 deletion or pharmacologic inhibition with Mitoxantrone attenuated pathological lesions and improved kidney function in both hyperuricemic nephropathy (HN)- and folic acid (FA)-induced mouse models of kidney fibrosis. Mechanistically, by RNA sequencing, USP11 was found to be involved in nuclear gene transcription of the epidermal growth factor receptor (EGFR). USP11 co-immunoprecipitated and co-stained with extra-nuclear EGFR and deubiquitinated and protected EGFR from proteasome-dependent degradation. Genetic or pharmacological depletion of USP11 facilitated EGFR degradation and abated augmentation of TGF-β1 and downstream signaling. This consequently alleviated the partial epithelial-mesenchymal transition, G2/M arrest and aberrant secretome of profibrogenic and proinflammatory factors in uric acid-stimulated tubular epithelial cells. Moreover, USP11 deletion had anti-fibrotic and anti-inflammatory kidney effects in the murine HN and FA models. Thus, our study provides evidence supporting USP11 as a promising target for minimizing kidney fibrosis and that inhibition of USP11 has potential to be an effective strategy for patients with chronic kidney disease.
Collapse
Affiliation(s)
- Yingfeng Shi
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Min Tao
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Hui Chen
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xiaoyan Ma
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yi Wang
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yan Hu
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xun Zhou
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jinqing Li
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Binbin Cui
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Andong Qiu
- School of Life Science and Technology, Advanced Institute of Translational Medicine, Tongji University, Shanghai, China
| | - Shougang Zhuang
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China; Department of Medicine, Rhode Island Hospital and Alpert Medical School, Brown University, Providence, Rhode Island, USA
| | - Na Liu
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.
| |
Collapse
|
27
|
Proficient Novel Biomarkers Guide Early Detection of Acute Kidney Injury: A Review. Diseases 2022; 11:diseases11010008. [PMID: 36648873 PMCID: PMC9844481 DOI: 10.3390/diseases11010008] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 11/12/2022] [Accepted: 11/30/2022] [Indexed: 01/03/2023] Open
Abstract
The definition of acute kidney injury (AKI), despite improvements in criteria, continues to be based on the level of serum creatinine and urinary output that do not specifically indicate tubular function or injury, or glomerular function or injury that is not significant enough to warrant acute hospitalization of the patient. Finding novel biomarkers of AKI has become a major focus nowadays in nephrology to overcome the further complications of end stage renal disease (ESRD). Many compounds, such as KIM 1, IL 18, NGAL, uromodulin, calprotectin, vanin 1, galactin 3, platelet-derived growth factor (PDGF), urinary Na+/H+ exchanger isoform 3 (NHE3), retinol binding protein (RBP) and Cystatin C, are released from the renal tubules and thus any alterations in tubular function can be detected by measuring these parameters in urine. Additionally, glomerular injury can be detected by measuring immunoglobulin G, nephrin, podocalyxin, podocin, transferrin, netrin-1, pyruvate kinase M2, etc. in urine. These novel biomarkers will be useful for timing the initial insult and assessing the duration of AKI. According to available research, these biomarkers could be applied to assess the onset of AKI, distinguishing between kidney injury and dysfunction, directing the management of AKI, and enhancing disease diagnosis. Therefore, we intend to present recent developments in our understanding of significant biomarkers implicated in various aspects of renal damage. Numerous biomarkers are implicated in various pathophysiological processes that follow renal injury, and can improve prognosis and risk classification.
Collapse
|
28
|
Li H, Dixon EE, Wu H, Humphreys BD. Comprehensive single-cell transcriptional profiling defines shared and unique epithelial injury responses during kidney fibrosis. Cell Metab 2022; 34:1977-1998.e9. [PMID: 36265491 PMCID: PMC9742301 DOI: 10.1016/j.cmet.2022.09.026] [Citation(s) in RCA: 88] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 07/19/2022] [Accepted: 09/28/2022] [Indexed: 01/12/2023]
Abstract
The underlying cellular events driving kidney fibrogenesis and metabolic dysfunction are incompletely understood. Here, we employed single-cell combinatorial indexing RNA sequencing to analyze 24 mouse kidneys from two fibrosis models. We profiled 309,666 cells in one experiment, representing 50 cell types/states encompassing epithelial, endothelial, immune, and stromal populations. Single-cell analysis identified diverse injury states of the proximal tubule, including two distinct early-phase populations with dysregulated lipid and amino acid metabolism, respectively. Lipid metabolism was defective in the chronic phase but was transiently activated in the very early stages of ischemia-induced injury, where we discovered increased lipid deposition and increased fatty acid β-oxidation. Perilipin 2 was identified as a surface marker of intracellular lipid droplets, and its knockdown in vitro disrupted cell energy state maintenance during lipid accumulation. Surveying epithelial cells across nephron segments identified shared and unique injury responses. Stromal cells exhibited high heterogeneity and contributed to fibrogenesis by epithelial-stromal crosstalk.
Collapse
Affiliation(s)
- Haikuo Li
- Division of Nephrology, Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Eryn E Dixon
- Division of Nephrology, Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Haojia Wu
- Division of Nephrology, Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Benjamin D Humphreys
- Division of Nephrology, Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA; Department of Developmental Biology, Washington University in St. Louis, St. Louis, MO, USA.
| |
Collapse
|
29
|
Klocke J, Kim SJ, Skopnik CM, Hinze C, Boltengagen A, Metzke D, Grothgar E, Prskalo L, Wagner L, Freund P, Görlich N, Muench F, Schmidt-Ott KM, Mashreghi MF, Kocks C, Eckardt KU, Rajewsky N, Enghard P. Urinary single-cell sequencing captures kidney injury and repair processes in human acute kidney injury. Kidney Int 2022; 102:1359-1370. [PMID: 36049643 DOI: 10.1016/j.kint.2022.07.032] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 07/06/2022] [Accepted: 07/27/2022] [Indexed: 01/12/2023]
Abstract
Acute kidney injury (AKI) is a major health issue, the outcome of which depends primarily on damage and reparative processes of tubular epithelial cells. Mechanisms underlying AKI remain incompletely understood, specific therapies are lacking and monitoring the course of AKI in clinical routine is confined to measuring urine output and plasma levels of filtration markers. Here we demonstrate feasibility and potential of a novel approach to assess the cellular and molecular dynamics of AKI by establishing a robust urine-to-single cell RNA sequencing (scRNAseq) pipeline for excreted kidney cells via flow cytometry sorting. We analyzed 42,608 single cell transcriptomes of 40 urine samples from 32 patients with AKI and compared our data with reference material from human AKI post-mortem biopsies and published mouse data. We demonstrate that tubular epithelial cells transcriptomes mirror kidney pathology and reflect distinct injury and repair processes, including oxidative stress, inflammation, and tissue rearrangement. We also describe an AKI-specific abundant urinary excretion of adaptive progenitor-like cells. Thus, single cell transcriptomics of kidney cells excreted in urine provides noninvasive, unprecedented insight into cellular processes underlying AKI, thereby opening novel opportunities for target identification, AKI sub-categorization, and monitoring of natural disease course and interventions.
Collapse
Affiliation(s)
- Jan Klocke
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin, Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; Deutsches Rheuma-Forschungszentrum, an Institute of the Leibniz Foundation, Berlin, Germany.
| | - Seung Joon Kim
- Systems Biology of Gene-Regulatory Elements, Berlin Institute for Medical Systems Biology (BIMSB), Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Christopher M Skopnik
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin, Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; Deutsches Rheuma-Forschungszentrum, an Institute of the Leibniz Foundation, Berlin, Germany
| | - Christian Hinze
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin, Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; Molecular and Translational Kidney Research, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany; Department of Nephrology and Hypertension, Hannover Medical School, Hannover, Germany
| | - Anastasiya Boltengagen
- Systems Biology of Gene-Regulatory Elements, Berlin Institute for Medical Systems Biology (BIMSB), Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Diana Metzke
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin, Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; Deutsches Rheuma-Forschungszentrum, an Institute of the Leibniz Foundation, Berlin, Germany
| | - Emil Grothgar
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin, Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; Deutsches Rheuma-Forschungszentrum, an Institute of the Leibniz Foundation, Berlin, Germany
| | - Luka Prskalo
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin, Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; Deutsches Rheuma-Forschungszentrum, an Institute of the Leibniz Foundation, Berlin, Germany
| | - Leonie Wagner
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin, Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; Deutsches Rheuma-Forschungszentrum, an Institute of the Leibniz Foundation, Berlin, Germany
| | - Paul Freund
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin, Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; Deutsches Rheuma-Forschungszentrum, an Institute of the Leibniz Foundation, Berlin, Germany
| | - Nina Görlich
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin, Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; Deutsches Rheuma-Forschungszentrum, an Institute of the Leibniz Foundation, Berlin, Germany
| | - Frédéric Muench
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin, Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Kai M Schmidt-Ott
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin, Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; Molecular and Translational Kidney Research, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany; Department of Nephrology and Hypertension, Hannover Medical School, Hannover, Germany
| | - Mir-Farzin Mashreghi
- Therapeutic Gene Regulation, Deutsches Rheuma-Forschungszentrum, an Institute of the Leibniz Foundation, Berlin, Germany
| | - Christine Kocks
- Systems Biology of Gene-Regulatory Elements, Berlin Institute for Medical Systems Biology (BIMSB), Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Kai-Uwe Eckardt
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin, Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Nikolaus Rajewsky
- Systems Biology of Gene-Regulatory Elements, Berlin Institute for Medical Systems Biology (BIMSB), Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Philipp Enghard
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin, Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; Deutsches Rheuma-Forschungszentrum, an Institute of the Leibniz Foundation, Berlin, Germany
| |
Collapse
|
30
|
Scurt FG, Bose K, Hammoud B, Brandt S, Bernhardt A, Gross C, Mertens PR, Chatzikyrkou C. Old known and possible new biomarkers of ANCA-associated vasculitis. J Autoimmun 2022; 133:102953. [PMID: 36410262 DOI: 10.1016/j.jaut.2022.102953] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 11/06/2022] [Accepted: 11/06/2022] [Indexed: 11/19/2022]
Abstract
Antineutrophil cytoplasm antibody (ANCA)-associated vasculitis (AAV) comprises a group of multisystem disorders involving severe, systemic, small-vessel vasculitis with short- and long term serious and life-threating complications. Despite the simplification of treatment, fundamental aspects concerning assessment of its efficacy and its adaptation to encountered complications or to the relapsing/remitting/subclinical disease course remain still unknown. The pathogenesis of AAV is complex and unique, and despite the progress achieved in the last years, much has not to be learnt. Foremost, there is still no accurate marker enabling us to monitoring disease and guide therapy. Therefore, the disease management relays often on clinical judgment and follows a" trial and error approach". In the recent years, an increasing number of new molecules s have been explored and used for this purpose including genomics, B- and T-cell subpopulations, complement system factors, cytokines, metabolomics, biospectroscopy and components of our microbiome. The aim of this review is to discuss both the role of known historical and clinically established biomarkers of AAV, as well as to highlight potential new ones, which could be used for timely diagnosis and monitoring of this devastating disease, with the goal to improve the effectiveness and ameliorate the complications of its demanding therapy.
Collapse
Affiliation(s)
- Florian G Scurt
- University Clinic for Nephrology and Hypertension, Diabetology and Endocrinology, University Hospital Magdeburg, Otto-von-Guericke University Magdeburg, Germany.
| | - K Bose
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Magdeburg, Otto-von-Guericke University Magdeburg, Germany
| | - Ben Hammoud
- University Clinic for Nephrology and Hypertension, Diabetology and Endocrinology, University Hospital Magdeburg, Otto-von-Guericke University Magdeburg, Germany
| | - S Brandt
- University Clinic for Nephrology and Hypertension, Diabetology and Endocrinology, University Hospital Magdeburg, Otto-von-Guericke University Magdeburg, Germany
| | - A Bernhardt
- University Clinic for Nephrology and Hypertension, Diabetology and Endocrinology, University Hospital Magdeburg, Otto-von-Guericke University Magdeburg, Germany
| | - C Gross
- University Clinic for Nephrology and Hypertension, Diabetology and Endocrinology, University Hospital Magdeburg, Otto-von-Guericke University Magdeburg, Germany
| | - Peter R Mertens
- University Clinic for Nephrology and Hypertension, Diabetology and Endocrinology, University Hospital Magdeburg, Otto-von-Guericke University Magdeburg, Germany
| | | |
Collapse
|
31
|
Harris RC. The Role of the Epidermal Growth Factor Receptor in Diabetic Kidney Disease. Cells 2022; 11:3416. [PMID: 36359813 PMCID: PMC9656309 DOI: 10.3390/cells11213416] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/11/2022] [Accepted: 10/13/2022] [Indexed: 08/02/2023] Open
Abstract
The epidermal growth factor receptor (EGFR) is expressed in numerous cell types in the adult mammalian kidney and is activated by a family of EGF-like ligands. EGFR activation has been implicated in a variety of physiologic and pathophysiologic functions. There is increasing evidence that aberrant EGFR activation is a mediator of progressive kidney injury in diabetic kidney disease. This review will highlight recent studies indicating its potential role and mechanisms of injury of both glomerular and tubular cells in development and progression of diabetic kidney disease.
Collapse
Affiliation(s)
- Raymond C. Harris
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt Center for Kidney Disease, Vanderbilt University Medical Center, Nashville, TN 37232, USA; ; Tel.: +1-615-202-9426
- Tennessee and Veterans Affairs, Nashville, TN 37232, USA
| |
Collapse
|
32
|
Zheng Q, Reid G, Eccles MR, Stayner C. Non-coding RNAs as potential biomarkers and therapeutic targets in polycystic kidney disease. Front Physiol 2022; 13:1006427. [PMID: 36203940 PMCID: PMC9531119 DOI: 10.3389/fphys.2022.1006427] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 08/31/2022] [Indexed: 11/17/2022] Open
Abstract
Polycystic kidney disease (PKD) is a significant cause of end-stage kidney failure and there are few effective drugs for treating this inherited condition. Numerous aberrantly expressed non-coding RNAs (ncRNAs), particularly microRNAs (miRNAs), may contribute to PKD pathogenesis by participating in multiple intracellular and intercellular functions through post-transcriptional regulation of protein-encoding genes. Insights into the mechanisms of miRNAs and other ncRNAs in the development of PKD may provide novel therapeutic strategies. In this review, we discuss the current knowledge about the roles of dysregulated miRNAs and other ncRNAs in PKD. These roles involve multiple aspects of cellular function including mitochondrial metabolism, proliferation, cell death, fibrosis and cell-to-cell communication. We also summarize the potential application of miRNAs as biomarkers or therapeutic targets in PKD, and briefly describe strategies to overcome the challenges of delivering RNA to the kidney, providing a better understanding of the fundamental advances in utilizing miRNAs and other non-coding RNAs to treat PKD.
Collapse
Affiliation(s)
| | | | | | - Cherie Stayner
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| |
Collapse
|
33
|
Forsse JS, Buckley D, Ismaeel A, Richardson KA, Oliver A, Koutakis P. Effect of Age and Acute-Moderate Intensity Exercise on Biomarkers of Renal Health and Filtration. BIOLOGY 2022; 11:527. [PMID: 35453726 PMCID: PMC9029611 DOI: 10.3390/biology11040527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 03/24/2022] [Accepted: 03/25/2022] [Indexed: 06/14/2023]
Abstract
Aerobic exercise elicits a multitude of physiological improvements in both healthy and diseased populations. However, acute changes in renal health and filtration with aerobic exercise remain difficult to quantify by traditional biomarkers to estimate glomerular filtration rate (eGFR). This study aimed to determine if an acute bout of moderate-intensity aerobic exercise transiently improves non-traditional biomarkers when compared to traditional biomarkers of renal health and filtration in individuals without cardiometabolic diseases. Thirty-nine participants (n = 18 men; n = 21 women; age 32.5 + 12.6 yr; height 171.1 + 11.4 cm; weight 78.7 + 15.6 kg; BMI 27.1 + 5.8) completed a single bout of moderate-intensity (50-60% HRR) aerobic exercise. Blood and urine samples were collected and compared before and post-exercise. Serum creatinine, urine epidermal growth factor (uEGF), uEGF/urine creatinine ratio (uEGFR), and cystatin C (CyC) were measured. In addition, eGFR-MDRD and the CKD-epidemiology equations were used to analyze renal clearance. Relative to pre-exercise measures: serum creatinine (p = 0.26), uEGF (p = 0.35), and uEGFR (p = 0.09) remained unchanged, whereas cystatin C (p = 0.00) significantly increased post-exercise. CyC eGFR was the only estimator of renal filtration to significantly change (p = 0.04). In conclusion, CyC is the only biomarker of renal health and filtration to significantly increase after aerobic exercise. Further investigation focused on sampling time and exercise-intensity is needed to solidify the current understanding of renal health and filtration.
Collapse
Affiliation(s)
- Jeffrey S. Forsse
- Department of Health Human Performance and Recreation, Baylor University, Waco, TX 76706, USA;
- Kinesiology Department, Stephen F. Austin State University, Nacogdoches, TX 75962, USA; (D.B.); (A.O.)
| | - David Buckley
- Kinesiology Department, Stephen F. Austin State University, Nacogdoches, TX 75962, USA; (D.B.); (A.O.)
- Integrative Immunology Laboratory, University of Texas Arlington, Arlington, TX 76019, USA
| | - Ahmed Ismaeel
- Clinical Muscle Biology Lab, Baylor University, Waco, TX 76706, USA;
| | - Kathleen A. Richardson
- Department of Health Human Performance and Recreation, Baylor University, Waco, TX 76706, USA;
| | - Autumn Oliver
- Kinesiology Department, Stephen F. Austin State University, Nacogdoches, TX 75962, USA; (D.B.); (A.O.)
- Edward Via College of Osteopathic Medicine, University of Louisiana Monroe, Monroe, LA 71203, USA
| | | |
Collapse
|
34
|
Matrix Metalloproteinase-10 in Kidney Injury Repair and Disease. Int J Mol Sci 2022; 23:ijms23042131. [PMID: 35216251 PMCID: PMC8877639 DOI: 10.3390/ijms23042131] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 02/08/2022] [Accepted: 02/10/2022] [Indexed: 12/13/2022] Open
Abstract
Matrix metalloproteinase-10 (MMP-10) is a zinc-dependent endopeptidase with the ability to degrade a broad spectrum of extracellular matrices and other protein substrates. The expression of MMP-10 is induced in acute kidney injury (AKI) and chronic kidney disease (CKD), as well as in renal cell carcinoma (RCC). During the different stages of kidney injury, MMP-10 may exert distinct functions by cleaving various bioactive substrates including heparin-binding epidermal growth factor (HB-EGF), zonula occludens-1 (ZO-1), and pro-MMP-1, -7, -8, -9, -10, -13. Functionally, MMP-10 is reno-protective in AKI by promoting HB-EGF-mediated tubular repair and regeneration, whereas it aggravates podocyte dysfunction and proteinuria by disrupting glomerular filtration integrity via degrading ZO-1. MMP-10 is also involved in cancerous invasion and emerges as a promising therapeutic target in patients with RCC. As a secreted protein, MMP-10 could be detected in the circulation and presents an inverse correlation with renal function. Due to the structural similarities between MMP-10 and the other MMPs, development of specific inhibitors targeting MMP-10 is challenging. In this review, we summarize our current understanding of the role of MMP-10 in kidney diseases and discuss the potential mechanisms of its actions.
Collapse
|
35
|
Son B, Kim TR, Park JH, Yun SI, Choi H, Choi JW, Jeon C, Park HO. SAMiRNA Targeting Amphiregulin Alleviate Total-Body-Irradiation-Induced Renal Fibrosis. Radiat Res 2022; 197:471-479. [PMID: 35148406 DOI: 10.1667/rade-21-00220.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 01/05/2022] [Indexed: 11/12/2022]
Abstract
Fibrosis is a serious unintended side effect of radiation therapy. In this study, we aimed to investigate whether amphiregulin (AREG) plays a critical role in fibrosis development after total-body irradiation (TBI). We found that the expression of AREG and fibrotic markers, such as α-smooth muscle actin (α-SMA) and collagen type I alpha 1 (COL1α1), was elevated in the kidneys of 6 Gy TBI mice. Expression of AREG and α-SMA was mainly elevated in the proximal and distal tubules of the kidney in response to TBI, which was confirmed by immunofluorescence staining. Knockdown of Areg mRNA using self-assembled-micelle inhibitory RNA (SAMiRNA) significantly reduced the expression of fibrotic markers, including α-SMA and COL1α1, and inflammatory regulators. Finally, intravenous injections of SAMiRNA targeting mouse Areg mRNA (SAMiRNA-mAREG) diminished radiation-induced collagen accumulation in the renal cortex and medulla. Taken together, the results of the present study suggest that blocking of AREG signaling via SAMiRNA-mAREG treatment could be a promising therapeutic approach to alleviate radiation-induced kidney fibrosis.
Collapse
Affiliation(s)
- Beomseok Son
- siRNAgen Therapeutics, Daejeon 34302, Republic of Korea
| | - Tae Rim Kim
- siRNAgen Therapeutics, Daejeon 34302, Republic of Korea
| | - Jun Hong Park
- siRNAgen Therapeutics, Daejeon 34302, Republic of Korea
| | - Sung-Il Yun
- siRNAgen Therapeutics, Daejeon 34302, Republic of Korea
| | - Hanjoo Choi
- siRNAgen Therapeutics, Daejeon 34302, Republic of Korea
| | - Ji Woo Choi
- siRNAgen Therapeutics, Daejeon 34302, Republic of Korea
| | | | - Han-Oh Park
- siRNAgen Therapeutics, Daejeon 34302, Republic of Korea
| |
Collapse
|
36
|
Zeve D, Stas E, de Sousa Casal J, Mannam P, Qi W, Yin X, Dubois S, Shah MS, Syverson EP, Hafner S, Karp JM, Carlone DL, Ordovas-Montanes J, Breault DT. Robust differentiation of human enteroendocrine cells from intestinal stem cells. Nat Commun 2022; 13:261. [PMID: 35017529 PMCID: PMC8752608 DOI: 10.1038/s41467-021-27901-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 12/16/2021] [Indexed: 02/02/2023] Open
Abstract
Enteroendocrine (EE) cells are the most abundant hormone-producing cells in humans and are critical regulators of energy homeostasis and gastrointestinal function. Challenges in converting human intestinal stem cells (ISCs) into functional EE cells, ex vivo, have limited progress in elucidating their role in disease pathogenesis and in harnessing their therapeutic potential. To address this, we employed small molecule targeting of the endocannabinoid receptor signaling pathway, JNK, and FOXO1, known to mediate endodermal development and/or hormone production, together with directed differentiation of human ISCs from the duodenum and rectum. We observed marked induction of EE cell differentiation and gut-derived expression and secretion of SST, 5HT, GIP, CCK, GLP-1 and PYY upon treatment with various combinations of three small molecules: rimonabant, SP600125 and AS1842856. Robust differentiation strategies capable of driving human EE cell differentiation is a critical step towards understanding these essential cells and the development of cell-based therapeutics.
Collapse
Affiliation(s)
- Daniel Zeve
- grid.2515.30000 0004 0378 8438Division of Endocrinology, Boston Children’s Hospital, Boston, MA 02115 USA ,grid.38142.3c000000041936754XDepartment of Pediatrics, Harvard Medical School, Boston, MA 02115 USA
| | - Eric Stas
- grid.2515.30000 0004 0378 8438Division of Endocrinology, Boston Children’s Hospital, Boston, MA 02115 USA
| | - Joshua de Sousa Casal
- grid.2515.30000 0004 0378 8438Division of Gastroenterology, Hepatology, and Nutrition, Boston Children’s Hospital, Boston, MA 02115 USA ,grid.38142.3c000000041936754XProgram in Immunology, Harvard Medical School, Boston, MA 02115 USA ,grid.66859.340000 0004 0546 1623Broad Institute of MIT and Harvard, Cambridge, MA 02142 USA
| | - Prabhath Mannam
- grid.2515.30000 0004 0378 8438Division of Endocrinology, Boston Children’s Hospital, Boston, MA 02115 USA
| | - Wanshu Qi
- grid.2515.30000 0004 0378 8438Division of Endocrinology, Boston Children’s Hospital, Boston, MA 02115 USA
| | - Xiaolei Yin
- grid.116068.80000 0001 2341 2786David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139 USA ,grid.38142.3c000000041936754XCenter for Nanomedicine and Division of Engineering in Medicine, Department of Anesthesiology, Perioperative, and Pain Medicine, Brigham and Women’s Hospital, Harvard Medical School, Harvard-MIT Division of Health Sciences and Technology, Boston, MA 02115 USA ,grid.24516.340000000123704535Present Address: Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Sarah Dubois
- grid.2515.30000 0004 0378 8438Division of Endocrinology, Boston Children’s Hospital, Boston, MA 02115 USA ,grid.416498.60000 0001 0021 3995School of Arts and Sciences, MCPHS University, Boston, MA 02115 USA
| | - Manasvi S. Shah
- grid.2515.30000 0004 0378 8438Division of Endocrinology, Boston Children’s Hospital, Boston, MA 02115 USA ,grid.38142.3c000000041936754XDepartment of Pediatrics, Harvard Medical School, Boston, MA 02115 USA
| | - Erin P. Syverson
- grid.38142.3c000000041936754XDepartment of Pediatrics, Harvard Medical School, Boston, MA 02115 USA ,grid.2515.30000 0004 0378 8438Division of Gastroenterology, Hepatology, and Nutrition, Boston Children’s Hospital, Boston, MA 02115 USA
| | - Sophie Hafner
- grid.2515.30000 0004 0378 8438Division of Endocrinology, Boston Children’s Hospital, Boston, MA 02115 USA
| | - Jeffrey M. Karp
- grid.66859.340000 0004 0546 1623Broad Institute of MIT and Harvard, Cambridge, MA 02142 USA ,grid.38142.3c000000041936754XCenter for Nanomedicine and Division of Engineering in Medicine, Department of Anesthesiology, Perioperative, and Pain Medicine, Brigham and Women’s Hospital, Harvard Medical School, Harvard-MIT Division of Health Sciences and Technology, Boston, MA 02115 USA ,grid.511171.2Harvard Stem Cell Institute, 7 Divinity Avenue, Cambridge, MA 02138 USA
| | - Diana L. Carlone
- grid.2515.30000 0004 0378 8438Division of Endocrinology, Boston Children’s Hospital, Boston, MA 02115 USA ,grid.38142.3c000000041936754XDepartment of Pediatrics, Harvard Medical School, Boston, MA 02115 USA ,grid.511171.2Harvard Stem Cell Institute, 7 Divinity Avenue, Cambridge, MA 02138 USA
| | - Jose Ordovas-Montanes
- grid.2515.30000 0004 0378 8438Division of Gastroenterology, Hepatology, and Nutrition, Boston Children’s Hospital, Boston, MA 02115 USA ,grid.38142.3c000000041936754XProgram in Immunology, Harvard Medical School, Boston, MA 02115 USA ,grid.66859.340000 0004 0546 1623Broad Institute of MIT and Harvard, Cambridge, MA 02142 USA ,grid.511171.2Harvard Stem Cell Institute, 7 Divinity Avenue, Cambridge, MA 02138 USA
| | - David T. Breault
- grid.2515.30000 0004 0378 8438Division of Endocrinology, Boston Children’s Hospital, Boston, MA 02115 USA ,grid.38142.3c000000041936754XDepartment of Pediatrics, Harvard Medical School, Boston, MA 02115 USA ,grid.511171.2Harvard Stem Cell Institute, 7 Divinity Avenue, Cambridge, MA 02138 USA
| |
Collapse
|
37
|
Sun Y, Cai H, Ge J, Shao F, Huang Z, Ding Z, Dong L, Chen J, Zhang J, Zang Y. Tubule-derived INHBB promotes interstitial fibroblast activation and renal fibrosis. J Pathol 2022; 256:25-37. [PMID: 34543458 DOI: 10.1002/path.5798] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 08/23/2021] [Accepted: 09/16/2021] [Indexed: 01/15/2023]
Abstract
Upstream stimuli for myofibroblast activation are of considerable interest for understanding the mechanisms underlying renal fibrosis. Activin B, a member of the TGF-β family, exists as a homodimer of inhibin subunit beta B (INHBB), but its role in renal fibrosis remains unknown. We found that INHBB expression was significantly increased in various renal fibrosis models and human chronic kidney disease specimens with renal fibrosis. Notably, the increase of INHBB occurred mainly in the tubular epithelial cells (TECs). In vivo, inhibiting INHBB blocked the activation of interstitial fibroblasts and ameliorated the renal fibrosis induced by unilateral ureteral obstruction or ischemia-reperfusion injury, while ectopic expression of INHBB in the TECs was able to activate interstitial fibroblasts and initiate interstitial fibrosis. In vitro, overexpression of INHBB in TECs led to the secretion of activin B, thereby promoting the proliferation and activation of interstitial fibroblasts through activin B/Smad signaling. Furthermore, inhibition of activin B/Smad signaling attenuated the fibrotic response caused by tubular INHBB. Mechanistically, the upregulation of INHBB depended on the transcription factor Sox9 in the injured TECs. Clinical analyses also identified a positive correlation between Sox9 and INHBB expression in human specimens, suggesting the Sox9/INHBB axis as a positive regulator of renal fibrosis. In conclusion, tubule-derived INHBB is implicated in the pathogenesis of renal fibrosis by activating the surrounding fibroblasts in a paracrine manner, thereby exhibiting as a potential therapeutic target. © 2021 The Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Yanyan Sun
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, PR China
| | - Huimin Cai
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, PR China
| | - Jia Ge
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, PR China
| | - Fang Shao
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, PR China
| | - Zhen Huang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, PR China
| | - Zhi Ding
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, PR China
| | - Lei Dong
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, PR China
| | - Jiangning Chen
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, PR China
- State Key Laboratory of Analytical Chemistry for Life Sciences and Collaborative Innovation Center of Chemistry for Life Sciences, Nanjing University, Nanjing, PR China
| | - Junfeng Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, PR China
| | - Yuhui Zang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, PR China
| |
Collapse
|
38
|
Tziastoudi M, Cholevas C, Theoharides TC, Stefanidis I. Meta-Analysis and Bioinformatics Detection of Susceptibility Genes in Diabetic Nephropathy. Int J Mol Sci 2021; 23:ijms23010020. [PMID: 35008447 PMCID: PMC8744540 DOI: 10.3390/ijms23010020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 12/15/2021] [Accepted: 12/18/2021] [Indexed: 11/16/2022] Open
Abstract
The latest meta-analysis of genome-wide linkage studies (GWLS) identified nine cytogenetic locations suggestive of a linkage with diabetic nephropathy (DN) due to type 1 diabetes mellitus (T1DM) and seven locations due to type 2 diabetes mellitus (T2DM). In order to gain biological insight about the functional role of the genes located in these regions and to prioritize the most significant genetic loci for further research, we conducted a gene ontology analysis with an over representation test for the functional annotation of the protein coding genes. Protein analysis through evolutionary relationships (PANTHER) version 16.0 software and Cytoscape with the relevant plugins were used for the gene ontology analysis, and the overrepresentation test and STRING database were used for the construction of the protein network. The findings of the over-representation test highlight the contribution of immune related molecules like immunoglobulins, cytokines, and chemokines with regard to the most overrepresented protein classes, whereas the most enriched signaling pathways include the VEGF signaling pathway, the Cadherin pathway, the Wnt pathway, the angiogenesis pathway, the p38 MAPK pathway, and the EGF receptor signaling pathway. The common section of T1DM and T2DM results include the significant over representation of immune related molecules, and the Cadherin and Wnt signaling pathways that could constitute potential therapeutic targets for the treatment of DN, irrespective of the type of diabetes.
Collapse
Affiliation(s)
- Maria Tziastoudi
- Department of Nephrology, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41500 Larisa, Greece;
- Correspondence: ; Tel.: +30-2413501667; Fax: +30-2413501015
| | - Christos Cholevas
- First Department of Ophthalmology, Faculty of Health Sciences, Aristotle University of Thessaloniki School of Medicine, AHEPA Hospital, 54636 Thessaloniki, Greece;
| | | | - Ioannis Stefanidis
- Department of Nephrology, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41500 Larisa, Greece;
| |
Collapse
|
39
|
Kibler KV, Szczerba M, Lake D, Roeder AJ, Rahman M, Hogue BG, Roy Wong LY, Perlman S, Li Y, Jacobs BL. Intranasal immunization with a vaccinia virus vaccine vector expressing pre-fusion stabilized SARS-CoV-2 spike fully protected mice against lethal challenge with the heavily mutated mouse-adapted SARS2-N501Y MA30 strain of SARS-CoV-2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021. [PMID: 34909775 DOI: 10.1101/2021.07.28.454201] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2023]
Abstract
The Omicron SARS-CoV-2 variant has been designated a variant of concern because its spike protein is heavily mutated. In particular, Omicron spike is mutated at 5 positions (K417, N440, E484, Q493 and N501) that have been associated with escape from neutralizing antibodies induced by either infection with or immunization against the early Washington strain of SARS-CoV-2. The mouse-adapted strain of SARS-CoV-2, SARS2-N501Y MA30 , contains a spike that is also heavily mutated, with mutations at 4 of the 5 positions in Omicron spike associated with neutralizing antibody escape (K417, E484, Q493 and N501). In this manuscript we show that intranasal immunization with a pre-fusion stabilized Washington strain spike, expressed from a highly attenuated, replication-competent vaccinia virus construct, NYVAC-KC, fully protected mice against disease and death from SARS2-N501Y MA30 . Similarly, immunization by scarification on the skin fully protected against death, but not from mild disease. This data demonstrates that Washington strain spike, when expressed from a highly attenuated, replication-competent poxvirus, administered without parenteral injection can fully protect against the heavily mutated mouse-adapted SARS2-N501Y MA30 .
Collapse
Affiliation(s)
- Karen V Kibler
- Biodesign Center for Immunotherapy, Vaccines and Virotherapy, Arizona State University, Tempe, AZ, USA
| | - Mateusz Szczerba
- Biodesign Center for Immunotherapy, Vaccines and Virotherapy, Arizona State University, Tempe, AZ, USA
| | - Douglas Lake
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Alexa J Roeder
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Masmudur Rahman
- Biodesign Center for Immunotherapy, Vaccines and Virotherapy, Arizona State University, Tempe, AZ, USA
| | - Brenda G Hogue
- Biodesign Center for Immunotherapy, Vaccines and Virotherapy, Arizona State University, Tempe, AZ, USA
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Lok-Yin Roy Wong
- Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa, USA
| | - Stanley Perlman
- Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa, USA
- Department of Pediatrics, University of Iowa, Iowa City, Iowa, USA
| | - Yize Li
- Biodesign Center for Immunotherapy, Vaccines and Virotherapy, Arizona State University, Tempe, AZ, USA
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Bertram L Jacobs
- Biodesign Center for Immunotherapy, Vaccines and Virotherapy, Arizona State University, Tempe, AZ, USA
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
| |
Collapse
|
40
|
Dong K, Zhang C, Tian X, Coman D, Hyder F, Ma M, Somlo S. Renal plasticity revealed through reversal of polycystic kidney disease in mice. Nat Genet 2021; 53:1649-1663. [PMID: 34635846 PMCID: PMC9278957 DOI: 10.1038/s41588-021-00946-4] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 08/30/2021] [Indexed: 02/07/2023]
Abstract
Initiation of cyst formation in autosomal dominant polycystic kidney disease (ADPKD) occurs when kidney tubule cells are rendered null for either PKD1 or PKD2 by somatic 'second hit' mutations. Subsequent cyst progression remodels the organ through changes in tubule cell shape, proliferation and secretion. The kidney develops inflammation and fibrosis. We constructed a mouse model in which adult inactivation of either Pkd gene can be followed by reactivation of the gene at a later time. Using this model, we show that re-expression of Pkd genes in cystic kidneys results in rapid reversal of ADPKD. Cyst cell proliferation is reduced, autophagy is activated and cystic tubules with expanded lumina lined by squamoid cells revert to normal lumina lined by cuboidal cells. Increases in inflammation, extracellular matrix deposition and myofibroblast activation are reversed, and the kidneys become smaller. We conclude that phenotypic features of ADPKD are reversible and that the kidney has an unexpected capacity for plasticity controlled at least in part by ADPKD gene function.
Collapse
Affiliation(s)
- Ke Dong
- Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Chao Zhang
- Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Xin Tian
- Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Daniel Coman
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut, USA
| | - Fahmeed Hyder
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut, USA,Department of Biomedical Engineering, Yale School of Medicine, New Haven, Connecticut, USA
| | - Ming Ma
- Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Stefan Somlo
- Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, USA,Department of Genetics, Yale School of Medicine, New Haven, Connecticut, USA.,
| |
Collapse
|
41
|
Shraim BA, Moursi MO, Benter IF, Habib AM, Akhtar S. The Role of Epidermal Growth Factor Receptor Family of Receptor Tyrosine Kinases in Mediating Diabetes-Induced Cardiovascular Complications. Front Pharmacol 2021; 12:701390. [PMID: 34408653 PMCID: PMC8365470 DOI: 10.3389/fphar.2021.701390] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 07/14/2021] [Indexed: 12/15/2022] Open
Abstract
Diabetes mellitus is a major debilitating disease whose global incidence is progressively increasing with currently over 463 million adult sufferers and this figure will likely reach over 700 million by the year 2045. It is the complications of diabetes such as cardiovascular, renal, neuronal and ocular dysfunction that lead to increased patient morbidity and mortality. Of these, cardiovascular complications that can result in stroke and cardiomyopathies are 2- to 5-fold more likely in diabetes but the underlying mechanisms involved in their development are not fully understood. Emerging research suggests that members of the Epidermal Growth Factor Receptor (EGFR/ErbB/HER) family of tyrosine kinases can have a dual role in that they are beneficially required for normal development and physiological functioning of the cardiovascular system (CVS) as well as in salvage pathways following acute cardiac ischemia/reperfusion injury but their chronic dysregulation may also be intricately involved in mediating diabetes-induced cardiovascular pathologies. Here we review the evidence for EGFR/ErbB/HER receptors in mediating these dual roles in the CVS and also discuss their potential interplay with the Renin-Angiotensin-Aldosterone System heptapeptide, Angiotensin-(1-7), as well the arachidonic acid metabolite, 20-HETE (20-hydroxy-5, 8, 11, 14-eicosatetraenoic acid). A greater understanding of the multi-faceted roles of EGFR/ErbB/HER family of tyrosine kinases and their interplay with other key modulators of cardiovascular function could facilitate the development of novel therapeutic strategies for treating diabetes-induced cardiovascular complications.
Collapse
Affiliation(s)
- Bara A Shraim
- College of Medicine, QU Health, Qatar University, Doha, Qatar.,Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, Doha, Qatar
| | - Moaz O Moursi
- College of Medicine, QU Health, Qatar University, Doha, Qatar.,Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, Doha, Qatar
| | - Ibrahim F Benter
- Faculty of Medicine, Eastern Mediterranean University, Famagusta, North Cyprus
| | - Abdella M Habib
- College of Medicine, QU Health, Qatar University, Doha, Qatar.,Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, Doha, Qatar
| | - Saghir Akhtar
- College of Medicine, QU Health, Qatar University, Doha, Qatar.,Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, Doha, Qatar
| |
Collapse
|
42
|
Abstract
Matrix metalloproteinases (MMPs) and a disintegrin and metalloproteinases (ADAMs) belong to the metzincin family of zinc-containing multidomain molecules, and can act as soluble or membrane-bound proteases. These enzymes inactivate or activate other soluble or membrane-expressed mediator molecules, which enables them to control developmental processes, tissue remodelling, inflammatory responses and proliferative signalling pathways. The dysregulation of MMPs and ADAMs has long been recognized in acute kidney injury and in chronic kidney disease, and genetic targeting of selected MMPs and ADAMs in different mouse models of kidney disease showed that they can have detrimental and protective roles. In particular, MMP-2, MMP-7, MMP-9, ADAM10 and ADAM17 have been shown to have a mainly profibrotic effect and might therefore represent therapeutic targets. Each of these proteases has been associated with a different profibrotic pathway that involves tissue remodelling, Wnt-β-catenin signalling, stem cell factor-c-kit signalling, IL-6 trans-signalling or epidermal growth factor receptor (EGFR) signalling. Broad-spectrum metalloproteinase inhibitors have been used to treat fibrotic kidney diseases experimentally but more targeted approaches have since been developed, including inhibitory antibodies, to avoid the toxic side effects initially observed with broad-spectrum inhibitors. These advances not only provide a solid foundation for additional preclinical studies but also encourage further translation into clinical research.
Collapse
|
43
|
Pronobis MI, Zheng S, Singh SP, Goldman JA, Poss KD. In vivo proximity labeling identifies cardiomyocyte protein networks during zebrafish heart regeneration. eLife 2021; 10:e66079. [PMID: 33764296 PMCID: PMC8034980 DOI: 10.7554/elife.66079] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 03/25/2021] [Indexed: 01/04/2023] Open
Abstract
Strategies have not been available until recently to uncover interacting protein networks specific to key cell types, their subcellular compartments, and their major regulators during complex in vivo events. Here, we apply BioID2 proximity labeling to capture protein networks acting within cardiomyocytes during a key model of innate heart regeneration in zebrafish. Transgenic zebrafish expressing a promiscuous BirA2 localized to the entire myocardial cell or membrane compartment were generated, each identifying distinct proteomes in adult cardiomyocytes that became altered during regeneration. BioID2 profiling for interactors with ErbB2, a co-receptor for the cardiomyocyte mitogen Nrg1, implicated Rho A as a target of ErbB2 signaling in cardiomyocytes. Blockade of Rho A during heart regeneration, or during cardiogenic stimulation by the mitogenic influences Nrg1, Vegfaa, or vitamin D, disrupted muscle creation. Our findings reveal proximity labeling as a useful resource to interrogate cell proteomes and signaling networks during tissue regeneration in zebrafish.
Collapse
Affiliation(s)
- Mira I Pronobis
- Department of Cell Biology, Duke University Medical CenterDurhamUnited States
- Regeneration Next, Duke UniversityDurhamUnited States
| | - Susan Zheng
- Department of Cell Biology, Duke University Medical CenterDurhamUnited States
| | | | - Joseph A Goldman
- Department of Biological Chemistry and Pharmacology, The Ohio State University Medical CenterColumbusUnited States
| | - Kenneth D Poss
- Department of Cell Biology, Duke University Medical CenterDurhamUnited States
- Regeneration Next, Duke UniversityDurhamUnited States
| |
Collapse
|
44
|
Erb-b2 Receptor Tyrosine Kinase 2 (ERBB2) Promotes ATG12-Dependent Autophagy Contributing to Treatment Resistance of Breast Cancer Cells. Cancers (Basel) 2021; 13:cancers13051038. [PMID: 33801244 PMCID: PMC7958130 DOI: 10.3390/cancers13051038] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 02/22/2021] [Accepted: 02/24/2021] [Indexed: 12/19/2022] Open
Abstract
Simple Summary Expression of the tyrosine kinase receptor ERBB2 in cancer cells leads to drug resistance. Autophagy, a “self-eating” process inside the cell, is a mechanism for drug resistance in cancer cells. It has been shown that ERBB2 activation leads to increased autophagy in breast cancer cells, but the underlying mechanisms remains unclear. In this study, we demonstrated that ERBB2 promotes autophagy by increasing the protein levels of the autophagy gene ATG12 (autophagy-related 12), contributing to the resistance of breast cancer cells to chemotherapy drugs or ERBB2-targeted antibody treatments. We further showed that ATG12 expression in breast tumors containing ERBB2 correlated with a worse patient survival outcome. Finally, lapatinib is an inhibitor for both EGFR and ERBB2 tyrosine kinases in the EGFR protein family and promotes autophagy in cells containing only EGFR but inhibits autophagy in cells containing only ERBB2. Taken together, this suggests that ERBB2 promotes autophagy through upregulation of ATG12. Abstract The epidermal growth factor receptor (EGFR) family member erb-b2 receptor tyrosine kinase 2 (ERBB2) is overexpressed in many types of cancers leading to (radio- and chemotherapy) treatment resistance, whereas the underlying mechanisms are still unclear. Autophagy is known to contribute to cancer treatment resistance. In this study, we demonstrate that ERBB2 increases the expression of different autophagy genes including ATG12 (autophagy-related 12) and promotes ATG12-dependent autophagy. We clarify that lapatinib, a dual inhibitor for EGFR and ERBB2, promoted autophagy in cells expressing only EGFR but inhibited autophagy in cells expressing only ERBB2. Furthermore, breast cancer database analysis of 35 genes in the canonical autophagy pathway shows that the upregulation of ATG12 and MAP1LC3B is associated with a low relapse-free survival probability of patients with ERBB2-positive breast tumors following treatments. Downregulation of ERBB2 or ATG12 increased cell death induced by chemotherapy drugs in ERBB2-positive breast cancer cells, whereas upregulation of ERBB2 or ATG12 decreased the cell death in ERBB2-negative breast cancer cells. Finally, ERBB2 antibody treatment led to reduced expression of ATG12 and autophagy inhibition increasing drug or starvation-induced cell death in ERBB2-positive breast cancer cells. Taken together, this study provides a novel approach for the treatment of ERBB2-positive breast cancer by targeting ATG12-dependent autophagy.
Collapse
|
45
|
Sheng L, Bayliss G, Zhuang S. Epidermal Growth Factor Receptor: A Potential Therapeutic Target for Diabetic Kidney Disease. Front Pharmacol 2021; 11:598910. [PMID: 33574751 PMCID: PMC7870700 DOI: 10.3389/fphar.2020.598910] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 11/30/2020] [Indexed: 12/11/2022] Open
Abstract
Diabetic kidney disease (DKD) is a leading cause of end-stage renal disease worldwide and the major cause of renal failure among patients on hemodialysis. Numerous studies have demonstrated that transient activation of epidermal growth factor receptor (EGFR) pathway is required for promoting kidney recovery from acute injury whereas its persistent activation is involved in the progression of various chronic kidney diseases including DKD. EGFR-mediated pathogenesis of DKD is involved in hemodynamic alteration, metabolic disturbance, inflammatory response and parenchymal cellular dysfunction. Therapeutic intervention of this receptor has been available in the oncology setting. Targeting EGFR might also hold a therapeutic potential for DKD. Here we review the functional role of EGFR in the development of DKD, mechanisms involved and the perspective about use of EGFR inhibitors as a treatment for DKD.
Collapse
Affiliation(s)
- Lili Sheng
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - George Bayliss
- Department of Medicine, Rhode Island Hospital and Alpert Medical School, Brown University, Providence, RI, United States
| | - Shougang Zhuang
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.,Department of Medicine, Rhode Island Hospital and Alpert Medical School, Brown University, Providence, RI, United States
| |
Collapse
|
46
|
Gonçalves JG, Canale D, de Bragança AC, Seguro AC, Shimizu MHM, Volpini RA. The Blockade of TACE-Dependent EGF Receptor Activation by Losartan-Erlotinib Combination Attenuates Renal Fibrosis Formation in 5/6-Nephrectomized Rats Under Vitamin D Deficiency. Front Med (Lausanne) 2021; 7:609158. [PMID: 33469545 PMCID: PMC7813781 DOI: 10.3389/fmed.2020.609158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 12/03/2020] [Indexed: 11/23/2022] Open
Abstract
Chronic kidney disease (CKD) has been considered a major public health issue. In addition to cardiovascular diseases and infections, hypovitaminosis D has been considered a non-traditional aggravating factor for CKD progression. Interstitial fibrosis is a hallmark of CKD strongly correlated with deterioration of renal function. Transforming growth factor β (TGF-β) is the major regulatory profibrotic cytokine in CKD. Many injurious stimuli converge on the TGF-β pathway, which has context-dependent pleiotropic effects and interacts with several related renal fibrosis formation (RFF) pathways. Epidermal growth factor receptor (EGFR) is critically involved in CKD progression, exerting a pathogenic role in RFF associated with TGF-β-related fibrogenesis. Among others, EGFR pathway can be activated by a disintegrin and a metalloproteinase known as tumor necrosis factor α-converting enzyme (TACE). Currently no effective therapy is available to completely arrest RFF and slow the progression of CKD. Therefore, we investigated the effects of a double treatment with losartan potassium (L), an AT1R antagonist, and the tyrosine kinase inhibitor erlotinib (E) on the alternative pathway of RFF related to TACE-dependent EGFR activation in 5/6-nephrectomized rats under vitamin D deficiency (D). During the 90-day protocol, male Wistar rats under D, were submitted to 5/6 nephrectomy (N) on day 30 and randomized into four groups: N+D, no treatment; N+D+L, received losartan (50 mg/kg/day); N+D+E, received erlotinib (6 mg/kg/day); N+D+L+E received losartan+erlotinib treatment. N+D+L+E data demonstrated that the double treatment with losartan+erlotinib not only blocked the TACE-dependent EGF receptor activation but also prevented the expression of TGF-β, protecting against RFF. This renoprotection by losartan+erlotinib was corroborated by a lower expression of ECM proteins and markers of phenotypic alteration as well as a lesser inflammatory cell infiltrate. Although erlotinib alone has been emerging as a renoprotective drug, its association with losartan should be considered as a potential therapeutic strategy on the modulation of RFF.
Collapse
Affiliation(s)
- Janaína Garcia Gonçalves
- Laboratorio de Investigacao Medica 12, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Daniele Canale
- Laboratorio de Investigacao Medica 12, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Ana Carolina de Bragança
- Laboratorio de Investigacao Medica 12, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Antonio Carlos Seguro
- Laboratorio de Investigacao Medica 12, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | | | - Rildo Aparecido Volpini
- Laboratorio de Investigacao Medica 12, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
47
|
Sun Y, Deng M, Ke X, Lei X, Ju H, Liu Z, Bai X. Epidermal Growth Factor Protects Against High Glucose-Induced Podocyte Injury Possibly via Modulation of Autophagy and PI3K/AKT/mTOR Signaling Pathway Through DNA Methylation. Diabetes Metab Syndr Obes 2021; 14:2255-2268. [PMID: 34045875 PMCID: PMC8149214 DOI: 10.2147/dmso.s299562] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 04/23/2021] [Indexed: 01/03/2023] Open
Abstract
AIM Diabetic nephropathy (DN) is a serious health problem worldwide. Epidermal growth factor (EGF) has suggested as a potential biomarker for the progression of chronic kidney disease. In this study, we examined the effects of EGF on the high glucose (HG)-induced podocyte injury and explored the underlying molecular mechanisms. METHODS The cell proliferation, toxicity, and cell apoptosis of podocytes were determined by CCK-8 assay, lactate dehydrogenase release assay, and flow cytometry, respectively, and protein levels in the podocytes were determined by Western blot assay. Mechanistically, DNA methylation analysis, bioinformatic analysis, methylation‑specific PCR and quantitative real-time PCR were used to analyze functional pathways in differentially methylated genes and the expression of the key methylated genes in the podocytes after different interventions. RESULTS EGF treatment significantly increased the protein expression level of LC3 and decreased the protein level of P62 in HG-stimulated podocytes, which was attenuated by autophagy inhibitor, 3-methyladenine. EGF increased the cell proliferation and the protein expression levels of nephrin and synaptopodin, but reduced cell toxicity and cell apoptosis and protein expression level of cleaved caspase-3, which was partially antagonized by 3-methyladenine. DNA methylation expression profiles revealed the differential hypermethylation sites and hypomethylation sites among podocytes treated with normal glucose, HG and HG+EGF. GO enrichment analysis showed that DNA methylation was significantly enriched in negative regulation of phosphorylation, cell-cell junction and GTPase binding. KEGG pathway analysis showed that these genes were mainly enriched in PI3K-Akt, Hippo and autophagy pathways. Further validation studies revealed that six hub genes (ITGB1, GRB2, FN1, ITGB3, FZD10 and FGFR1) may be associated with the protective effects of EGF on the HG-induced podocyte injury. CONCLUSION In summary, our results demonstrated that EGF exerted protective effects on HG-induced podocytes injury via enhancing cell proliferation and inhibiting cell apoptosis. Further mechanistic studies implied that EGF-mediated protective effects in HG-stimulated podocytes may be associated with modulation of autophagy and PI3K/AKT/mTOR signaling pathway.
Collapse
Affiliation(s)
- Yan Sun
- Department of Endocrinology, Southern University of Science and Technology Hospital, Shenzhen, People’s Republic of China
| | - Ming Deng
- Department of Cardiology, Fuwai Hospital, Chinese Academy of Medical Sciences, Shenzhen Sun Yat-Sen Cardiovascular Hospital, Shenzhen, 518057, People’s Republic of China
| | - Xiao Ke
- Department of Cardiology, Fuwai Hospital, Chinese Academy of Medical Sciences, Shenzhen Sun Yat-Sen Cardiovascular Hospital, Shenzhen, 518057, People’s Republic of China
| | - Xiangyang Lei
- Department of Endocrinology, Affiliated Longhua People’s Hospital, Southern Medical University, Longhua People’s Hospital, Shenzhen, People’s Republic of China
| | - Hao Ju
- Department of Endocrinology, Affiliated Longhua People’s Hospital, Southern Medical University, Longhua People’s Hospital, Shenzhen, People’s Republic of China
| | - Zhiming Liu
- Department of Endocrinology, Affiliated Longhua People’s Hospital, Southern Medical University, Longhua People’s Hospital, Shenzhen, People’s Republic of China
| | - Xiaosu Bai
- Department of Endocrinology, Affiliated Longhua People’s Hospital, Southern Medical University, Longhua People’s Hospital, Shenzhen, People’s Republic of China
- Department of General Practice; Affiliated Longhua People’s Hospital, Southern Medical University, Longhua People’s Hospital, Shenzhen, People’s Republic of China
- Correspondence: Xiaosu Bai Affiliated Longhua People’s Hospital, Southern Medical University, Longhua People’s Hospital, No. 2, Jianshe East Road, Bao’an District, Shenzhen, 518109, People’s Republic of ChinaTel +86-755-27741585 Email
| |
Collapse
|
48
|
Zhang C, Balbo B, Ma M, Zhao J, Tian X, Kluger Y, Somlo S. Cyclin-Dependent Kinase 1 Activity Is a Driver of Cyst Growth in Polycystic Kidney Disease. J Am Soc Nephrol 2021; 32:41-51. [PMID: 33046531 PMCID: PMC7894654 DOI: 10.1681/asn.2020040511] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 09/03/2020] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Mutations in PKD1 and PKD2, which encode the transmembrane proteins polycystin-1 and polycystin-2, respectively, cause autosomal dominant polycystic kidney disease (ADPKD). Polycystins are expressed in the primary cilium, and disrupting cilia structure significantly slows ADPKD progression following inactivation of polycystins. The cellular mechanisms of polycystin- and cilia-dependent cyst progression in ADPKD remain incompletely understood. METHODS Unbiased transcriptional profiling in an adult-onset Pkd2 mouse model before cysts formed revealed significant differentially expressed genes (DEGs) in Pkd2 single-knockout kidneys, which were used to identify candidate pathways dysregulated in kidneys destined to form cysts. In vivo studies validated the role of the candidate pathway in the progression of ADPKD. Wild-type and Pkd2/Ift88 double-knockout mice that are protected from cyst growth served as controls. RESULTS The RNASeq data identified cell proliferation as the most dysregulated pathway, with 15 of 241 DEGs related to cell cycle functions. Cdk1 appeared as a central component in this analysis. Cdk1 expression was similarly dysregulated in Pkd1 models of ADPKD, and conditional inactivation of Cdk1 with Pkd1 markedly improved the cystic phenotype and kidney function compared with inactivation of Pkd1 alone. The Pkd1/Cdk1 double knockout blocked cyst cell proliferation that otherwise accompanied Pkd1 inactivation alone. CONCLUSIONS Dysregulation of Cdk1 is an early driver of cyst cell proliferation in ADPKD due to Pkd1 inactivation. Selective targeting of cyst cell proliferation is an effective means of slowing ADPKD progression caused by inactivation of Pkd1.
Collapse
Affiliation(s)
- Chao Zhang
- Department of Internal Medicine, Yale University, New Haven, Connecticut
| | - Bruno Balbo
- Department of Internal Medicine, Yale University, New Haven, Connecticut
| | - Ming Ma
- Department of Internal Medicine, Yale University, New Haven, Connecticut
| | - Jun Zhao
- Department of Pathology, Yale University, New Haven, Connecticut,Interdepartmental Program in Computational Biology and Bioinformatics, Yale University, New Haven, Connecticut
| | - Xin Tian
- Department of Internal Medicine, Yale University, New Haven, Connecticut
| | - Yuval Kluger
- Department of Pathology, Yale University, New Haven, Connecticut,Interdepartmental Program in Computational Biology and Bioinformatics, Yale University, New Haven, Connecticut,Program in Applied Mathematics, Yale University, New Haven, Connecticut
| | - Stefan Somlo
- Department of Internal Medicine, Yale University, New Haven, Connecticut,Department of Genetics, Yale University, New Haven, Connecticut
| |
Collapse
|
49
|
Colombo M, Asadi Shehni A, Thoma I, McGurnaghan SJ, Blackbourn LAK, Wilkinson H, Collier A, Patrick AW, Petrie JR, McKeigue PM, Saldova R, Colhoun HM. Quantitative levels of serum N-glycans in type 1 diabetes and their association with kidney disease. Glycobiology 2020; 31:613-623. [PMID: 33245334 DOI: 10.1093/glycob/cwaa106] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/30/2020] [Accepted: 11/07/2020] [Indexed: 12/14/2022] Open
Abstract
We investigated associations of quantitative levels of N-glycans with hemoglobin A1c (HbA1c), renal function and renal function decline in type 1 diabetes. We measured 46 total N-glycan peaks (GPs) on 1565 serum samples from the Scottish Diabetes Research Network Type 1 Bioresource Study (SDRNT1BIO) and a pool of healthy donors. Quantitation of absolute abundance of each GP used 2AB-labeled mannose-3 as a standard. We studied cross-sectional associations of GPs and derived measures with HbA1c, albumin/creatinine ratio (ACR) and estimated glomerular filtration rate (eGFR), and prospective associations with incident albuminuria and final eGFR. All GPs were 1.4 to 3.2 times more abundant in SDRTN1BIO than in the healthy samples. Absolute levels of all GPs were slightly higher with higher HbA1c, with strongest associations for triantennary trigalactosylated disialylated, triantennary trigalactosylated trisialylated structures with core or outer arm fucose, and tetraantennary tetragalactosylated trisialylated glycans. Most GPs showed increased abundance with worsening ACR. Lower eGFR was associated with higher absolute GP levels, most significantly with biantennary digalactosylated disialylated glycans with and without bisect, triantennary trigalactosylated trisialylated glycans with and without outer arm fucose, and core fucosylated biantennary monogalactosylated monosialylated glycans. Although several GPs were inversely associated prospectively with final eGFR, cross-validated multivariable models did not improve prediction beyond clinical covariates. Elevated HbA1c is associated with an altered N-glycan profile in type 1 diabetes. Although we could not establish GPs to be prognostic of future renal function decline independently of HbA1c, further studies to evaluate their impact in the pathogenesis of diabetic kidney disease are warranted.
Collapse
Affiliation(s)
- Marco Colombo
- Independent conultant, Via Palestro 16/B, 23900, Lecco, Italy
| | - Akram Asadi Shehni
- NIBRT GlycoScience Group, National Institute for Bioprocessing Research and Training, Fosters Avenue, Mount Merrion, Blackrock, Co. Dublin, A94 X099, Ireland
| | - Ioanna Thoma
- MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road South, Edinburgh EH4 2XU, UK
| | - Stuart J McGurnaghan
- MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road South, Edinburgh EH4 2XU, UK
| | - Luke A K Blackbourn
- MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road South, Edinburgh EH4 2XU, UK
| | - Hayden Wilkinson
- NIBRT GlycoScience Group, National Institute for Bioprocessing Research and Training, Fosters Avenue, Mount Merrion, Blackrock, Co. Dublin, A94 X099, Ireland
| | - Andrew Collier
- School of Health and Life Sciences, Glasgow Caledonian University, Cowcaddens Road, Glasgow G4 0B4, UK
| | - Alan W Patrick
- Royal Infirmary of Edinburgh, NHS Lothian, Old Dalkeith Road, Edinburgh EH16 4SA, UK
| | - John R Petrie
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, 126 University Place, Glasgow G12 8TA, UK
| | - Paul M McKeigue
- Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Teviot Place, Edinburgh EH8 9AG, UK
| | - Radka Saldova
- NIBRT GlycoScience Group, National Institute for Bioprocessing Research and Training, Fosters Avenue, Mount Merrion, Blackrock, Co. Dublin, A94 X099, Ireland.,UCD School of Medicine, College of Health and Agricultural Science, University College Dublin, Belfield, Dublin 4, Dublin D04 V1W8, Ireland
| | - Helen M Colhoun
- MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road South, Edinburgh EH4 2XU, UK.,Public Health, NHS Fife, Hayfield Road, Kirkcaldy KY2 5AH, UK
| | | |
Collapse
|
50
|
Chen X, Yu C, Hou X, Li J, Li T, Qiu A, Liu N, Zhuang S. Histone deacetylase 6 inhibition mitigates renal fibrosis by suppressing TGF-β and EGFR signaling pathways in obstructive nephropathy. Am J Physiol Renal Physiol 2020; 319:F1003-F1014. [PMID: 33103445 DOI: 10.1152/ajprenal.00261.2020] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
We have recently shown that histone deacetylase 6 (HDAC6) is critically involved in the pathogenesis of acute kidney injury. Its role in renal fibrosis, however, remains unclear. In this study, we examined the effect of ricolinostat (ACY-1215), a selective inhibitor of HDAC6, on the development of renal fibrosis in a murine model induced by unilateral ureteral obstruction (UUO). HDAC6 was highly expressed in the kidney following UUO injury, which was coincident with deposition of collagen fibrils and expression of α-smooth muscle actin, fibronectin, and collagen type III. Administration of ACY-1215 reduced these fibrotic changes and inhibited UUO-induced expression of transforming growth factor-β1 and phosphorylation of Smad3 while increasing expression of Smad7. ACY-1215 treatment also suppressed phosphorylation of epidermal growth factor receptor (EGFR) and several signaling molecules associated with renal fibrogenesis, including AKT, STAT3, and NF-κB in the injured kidney. Furthermore, ACY-1215 was effective in inhibiting dedifferentiation of renal fibroblasts to myofibroblasts and the fibrotic change of renal tubular epithelial cells in culture. Collectively, these results indicate that HDAC6 inhibition can attenuate development of renal fibrosis by suppression of transforming growth factor-β1 and EGFR signaling and suggest that HDAC6 would be a potential therapeutic target for the treatment of renal fibrosis.
Collapse
Affiliation(s)
- Xingying Chen
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Chao Yu
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xiying Hou
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jialu Li
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Tingting Li
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Andong Qiu
- School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Na Liu
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Shougang Zhuang
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.,Department of Medicine, Rhode Island Hospital and Alpert Medical School, Brown University, Providence, Rhode Island
| |
Collapse
|