1
|
Dave F, Herrera K, Lockley A, van de Weijer LL, Henderson S, Sofela AA, Hook L, Adams CL, Ercolano E, Hilton DA, Maze EA, Kurian KM, Ammoun S, Hanemann CO. Targeting MERTK on tumour cells and macrophages: a potential intervention for sporadic and NF2-related meningioma and schwannoma tumours. Oncogene 2024; 43:3049-3061. [PMID: 39179860 PMCID: PMC11458476 DOI: 10.1038/s41388-024-03131-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 08/06/2024] [Accepted: 08/08/2024] [Indexed: 08/26/2024]
Abstract
Meningioma and schwannoma are common tumours of the nervous system. They occur sporadically or as part of the hereditary NF2-related schwannomatosis syndrome. There is an unmet need for new effective drug treatments for both tumour types. In this paper, we demonstrate overexpression/activation of TAM (TYRO3/AXL/MERTK) receptors (TAMs) and overexpression/release of ligand GAS6 in patient-derived meningioma tumour cells and tissue. For the first time, we reveal the formation of MERTK/TYRO3 heterocomplexes in meningioma and schwannoma tissue. We demonstrate the dependence of AXL and TYRO3 expression on MERTK in both tumour types, as well as interdependency of MERTK and AXL expression in meningioma. We show that MERTK and AXL contribute to increased proliferation and survival of meningioma and schwannoma cells, which we inhibited in vitro using the MERTK/FLT3 inhibitor UNC2025 and the AXL inhibitor BGB324. UNC2025 was effective in both tumour types with superior efficacy over BGB324. Finally, we found that TAMs are expressed by tumour-associated macrophages in meningioma and schwannoma tumours and that UNC2025 strongly depleted macrophages in both tumour types.
Collapse
Affiliation(s)
- Foram Dave
- University of Plymouth, Faculty of Health, The John Bull Building, Plymouth Science Park, Research Way, Plymouth, PL6 8BU, UK
| | - Kevin Herrera
- University of Plymouth, Faculty of Health, The John Bull Building, Plymouth Science Park, Research Way, Plymouth, PL6 8BU, UK
| | - Alex Lockley
- University of Plymouth, Faculty of Health, The John Bull Building, Plymouth Science Park, Research Way, Plymouth, PL6 8BU, UK
| | - Laurien L van de Weijer
- University of Plymouth, Faculty of Health, The John Bull Building, Plymouth Science Park, Research Way, Plymouth, PL6 8BU, UK
| | - Summer Henderson
- University of Plymouth, Faculty of Health, The John Bull Building, Plymouth Science Park, Research Way, Plymouth, PL6 8BU, UK
| | - Agbolahan A Sofela
- University of Plymouth, Faculty of Health, The John Bull Building, Plymouth Science Park, Research Way, Plymouth, PL6 8BU, UK
| | - Laura Hook
- University of Plymouth, Faculty of Health, The John Bull Building, Plymouth Science Park, Research Way, Plymouth, PL6 8BU, UK
| | - Claire L Adams
- University of Plymouth, Faculty of Health, The John Bull Building, Plymouth Science Park, Research Way, Plymouth, PL6 8BU, UK
| | - Emanuela Ercolano
- University of Plymouth, Faculty of Health, The John Bull Building, Plymouth Science Park, Research Way, Plymouth, PL6 8BU, UK
| | - David A Hilton
- Department of Cellular and Anatomical Pathology, University Hospitals Plymouth NHS Trust, Derriford, Plymouth, PL6 8DH, UK
| | - Emmanuel A Maze
- University of Plymouth, Faculty of Health, The John Bull Building, Plymouth Science Park, Research Way, Plymouth, PL6 8BU, UK
| | - Kathreena M Kurian
- University of Bristol Medical School & North Bristol Trust, Southmead Hospital, Bristol, BS1 0NB UK, Bristol, BS1 0NB, UK
| | - Sylwia Ammoun
- University of Plymouth, Faculty of Health, The John Bull Building, Plymouth Science Park, Research Way, Plymouth, PL6 8BU, UK.
| | - C Oliver Hanemann
- University of Plymouth, Faculty of Health, The John Bull Building, Plymouth Science Park, Research Way, Plymouth, PL6 8BU, UK.
| |
Collapse
|
2
|
Vlashi R, Sun F, Zheng C, Zhang X, Liu J, Chen G. The molecular biology of NF2/Merlin on tumorigenesis and development. FASEB J 2024; 38:e23809. [PMID: 38967126 DOI: 10.1096/fj.202400019rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 06/22/2024] [Accepted: 06/26/2024] [Indexed: 07/06/2024]
Abstract
The neurofibromatosis type 2 (NF2) gene, known for encoding the tumor suppressor protein Merlin, is central to the study of tumorigenesis and associated cellular processes. This review comprehensively examines the multifaceted role of NF2/Merlin, detailing its structural characteristics, functional diversity, and involvement in various signaling pathways such as Wnt/β-catenin, Hippo, TGF-β, RTKs, mTOR, Notch, and Hedgehog. These pathways are crucial for cellular growth, proliferation, and differentiation. NF2 mutations are specifically linked to the development of schwannomas, meningiomas, and ependymomas, although the precise mechanisms of tumor formation in these specific cell types remain unclear. Additionally, the review explores Merlin's role in embryogenesis, highlighting the severe developmental defects and embryonic lethality caused by NF2 deficiency. The potential therapeutic strategies targeting these genetic aberrations are also discussed, emphasizing inhibitors of mTOR, HDAC, and VEGF as promising avenues for treatment. This synthesis of current knowledge underscores the necessity for ongoing research to elucidate the detailed mechanisms of NF2/Merlin and develop effective therapeutic strategies, ultimately aiming to improve the prognosis and quality of life for individuals with NF2 mutations.
Collapse
Affiliation(s)
- Rexhina Vlashi
- College of Life Science and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Fuju Sun
- College of Life Science and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Chenggong Zheng
- College of Life Science and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Xingen Zhang
- Department of Orthopedics, Jiaxing Key Laboratory for Minimally Invasive Surgery in Orthopaedics & Skeletal Regenerative Medicine, Zhejiang Rongjun Hospital, Jiaxing, China
| | - Jie Liu
- Department of Cancer Center, Jiaxing Hospital of Traditional Chinese Medicine, Jiaxing, China
| | - Guiqian Chen
- College of Life Science and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, China
| |
Collapse
|
3
|
Yuan R, Wang B, Wang Y, Liu P. Gene Therapy for Neurofibromatosis Type 2-Related Schwannomatosis: Recent Progress, Challenges, and Future Directions. Oncol Ther 2024; 12:257-276. [PMID: 38760612 PMCID: PMC11187037 DOI: 10.1007/s40487-024-00279-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 04/30/2024] [Indexed: 05/19/2024] Open
Abstract
Neurofibromatosis type 2 (NF2)-related schwannomatosis is a rare autosomal dominant monogenic disorder caused by mutations in the NF2 gene. The hallmarks of NF2-related schwannomatosis are bilateral vestibular schwannomas (VS). The current treatment options for NF2-related schwannomatosis, such as observation with serial imaging, surgery, radiotherapy, and pharmacotherapies, have shown limited effectiveness and serious complications. Therefore, there is a critical demand for novel effective treatments. Gene therapy, which has made significant advancements in treating genetic diseases, holds promise for the treatment of this disease. This review covers the genetic pathogenesis of NF2-related schwannomatosis, the latest progress in gene therapy strategies, current challenges, and future directions of gene therapy for NF2-related schwannomatosis.
Collapse
Affiliation(s)
- Ruofei Yuan
- Department of Neurosurgery, Beijing Tian Tan Hospital, Capital Medical University, No. 119 South Fourth Ring West Road, Fengtai District, Beijing, 100070, China
| | - Bo Wang
- Department of Neurosurgery, Beijing Tian Tan Hospital, Capital Medical University, No. 119 South Fourth Ring West Road, Fengtai District, Beijing, 100070, China
| | - Ying Wang
- Department of Neural Reconstruction, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Pinan Liu
- Department of Neurosurgery, Beijing Tian Tan Hospital, Capital Medical University, No. 119 South Fourth Ring West Road, Fengtai District, Beijing, 100070, China.
- Department of Neural Reconstruction, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.
| |
Collapse
|
4
|
Lu S, Yin Z, Chen J, Wu L, Sun Y, Gao X, Huang P, Jordan JT, Plotkin SR, Xu L. Integrating Ataxia Evaluation into Tumor-Induced Hearing Loss Model to Comprehensively Study NF2-Related Schwannomatosis. Cancers (Basel) 2024; 16:1961. [PMID: 38893082 PMCID: PMC11171041 DOI: 10.3390/cancers16111961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/15/2024] [Accepted: 05/20/2024] [Indexed: 06/21/2024] Open
Abstract
NF2-related Schwannomatosis (NF2-SWN) is a disease that needs new solutions. The hallmark of NF2-SWN, a dominantly inherited neoplasia syndrome, is bilateral vestibular schwannomas (VSs), which progressively enlarge, leading to sensorineural hearing loss, tinnitus, facial weakness, and pain that translates to social impairment and clinical depression. Standard treatments for growing VSs include surgery and radiation therapy (RT); however, both carry the risk of further nerve damage that can result in deafness and facial palsy. The resultant suffering and debility, in combination with the paucity of therapeutic options, make the effective treatment of NF2-SWN a major unmet medical need. A better understanding of these mechanisms is essential to developing novel therapeutic targets to control tumor growth and improve patients' quality of life. Previously, we developed the first orthotopic cerebellopontine angle mouse model of VSs, which faithfully mimics tumor-induced hearing loss. In this model, we observed that mice exhibit symptoms of ataxia and vestibular dysfunction. Therefore, we further developed a panel of five tests suitable for the mouse VS model and investigated how tumor growth and treatment affect gait, coordination, and motor function. Using this panel of ataxia tests, we demonstrated that both ataxia and motor function deteriorated concomitantly with tumor progression. We further demonstrated that (i) treatment with anti-VEGF resulted in tumor size reduction, mitigated ataxia, and improved rotarod performance; (ii) treatment with crizotinib stabilized tumor growth and led to improvements in both ataxia and rotarod performance; and (iii) treatment with losartan did not impact tumor growth nor ameliorate ataxia or motor function. Our studies demonstrated that these methods, paired with hearing tests, enable a comprehensive evaluation of tumor-induced neurological deficits and facilitate the assessment of the effectiveness of novel therapeutics to improve NF2 treatments.
Collapse
Affiliation(s)
- Simeng Lu
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Zhenzhen Yin
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Jie Chen
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- Department of Oral and Maxillofacial Surgery, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Limeng Wu
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- Department of Stomatology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100073, China
| | - Yao Sun
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin Clinical Research for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
| | - Xing Gao
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- Department of Oral and Maxillofacial Surgery, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Peigen Huang
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Justin T. Jordan
- Stephen E. and Catherine Pappas Center for Neuro-Oncology, Department of Neurology and Cancer Center, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Scott R. Plotkin
- Stephen E. and Catherine Pappas Center for Neuro-Oncology, Department of Neurology and Cancer Center, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Lei Xu
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
5
|
Zhou W, Jiang Y, Xu Q, Chen L, Qiao H, Wang YX, Lai JC, Zhong D, Zhang Y, Li W, Du Y, Wang X, Lei J, Dong G, Guan X, Ma S, Kang P, Yuan L, Zhang M, Tok JBH, Li D, Bao Z, Jia W. Soft and stretchable organic bioelectronics for continuous intraoperative neurophysiological monitoring during microsurgery. Nat Biomed Eng 2023; 7:1270-1281. [PMID: 37537304 DOI: 10.1038/s41551-023-01069-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 06/23/2023] [Indexed: 08/05/2023]
Abstract
In microneurosurgery, it is crucial to maintain the structural and functional integrity of the nerve through continuous intraoperative identification of neural anatomy. To this end, here we report the development of a translatable system leveraging soft and stretchable organic-electronic materials for continuous intraoperative neurophysiological monitoring. The system uses conducting polymer electrodes with low impedance and low modulus to record near-field action potentials continuously during microsurgeries, offers higher signal-to-noise ratios and reduced invasiveness when compared with handheld clinical probes for intraoperative neurophysiological monitoring and can be multiplexed, allowing for the precise localization of the target nerve in the absence of anatomical landmarks. Compared with commercial metal electrodes, the neurophysiological monitoring system allowed for enhanced post-operative prognoses after tumour-resection surgeries in rats. Continuous recording of near-field action potentials during microsurgeries may allow for the precise identification of neural anatomy through the entire procedure.
Collapse
Affiliation(s)
- Wenjianlong Zhou
- Department of Neurosurgery, Beijing Tiantan Hospital, National Center for Neurological Disorders, Capital Medical University, Beijing, China
| | - Yuanwen Jiang
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
| | - Qin Xu
- Department of Neurosurgery, Beijing Tiantan Hospital, National Center for Neurological Disorders, Capital Medical University, Beijing, China
| | - Liangpeng Chen
- Department of Neurosurgery, Beijing Tiantan Hospital, National Center for Neurological Disorders, Capital Medical University, Beijing, China
| | - Hui Qiao
- Department of Neurophysiology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Yi-Xuan Wang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, China
| | - Jian-Cheng Lai
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
| | - Donglai Zhong
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
| | - Yuan Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, National Center for Neurological Disorders, Capital Medical University, Beijing, China
| | - Weining Li
- Department of Electronic Engineering, Tsinghua University, Beijing, China
| | - Yanru Du
- Department of Pathology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xuecheng Wang
- Department of Electronic Engineering, Tsinghua University, Beijing, China
| | - Jiaxin Lei
- Department of Electronic Engineering, Tsinghua University, Beijing, China
| | - Gehong Dong
- Department of Pathology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xiudong Guan
- Department of Neurosurgery, Beijing Tiantan Hospital, National Center for Neurological Disorders, Capital Medical University, Beijing, China
| | - Shunchang Ma
- Department of Neurosurgery, Beijing Tiantan Hospital, National Center for Neurological Disorders, Capital Medical University, Beijing, China
- Department of Neurotomy, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Peng Kang
- Department of Neurosurgery, Beijing Tiantan Hospital, National Center for Neurological Disorders, Capital Medical University, Beijing, China
| | - Linhao Yuan
- Department of Neurosurgery, Beijing Tiantan Hospital, National Center for Neurological Disorders, Capital Medical University, Beijing, China
| | - Milin Zhang
- Department of Electronic Engineering, Tsinghua University, Beijing, China
| | - Jeffrey B-H Tok
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
| | - Deling Li
- Department of Neurosurgery, Beijing Tiantan Hospital, National Center for Neurological Disorders, Capital Medical University, Beijing, China.
- China National Clinical Research Center for Neurological Diseases (NCRC-ND), Beijing, China.
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.
| | - Zhenan Bao
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA.
| | - Wang Jia
- Department of Neurosurgery, Beijing Tiantan Hospital, National Center for Neurological Disorders, Capital Medical University, Beijing, China.
- Department of Neurotomy, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.
- China National Clinical Research Center for Neurological Diseases (NCRC-ND), Beijing, China.
| |
Collapse
|
6
|
Ghalavand MA, Asghari A, Farhadi M, Taghizadeh-Hesary F, Garshasbi M, Falah M. The genetic landscape and possible therapeutics of neurofibromatosis type 2. Cancer Cell Int 2023; 23:99. [PMID: 37217995 DOI: 10.1186/s12935-023-02940-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 05/07/2023] [Indexed: 05/24/2023] Open
Abstract
Neurofibromatosis type 2 (NF2) is a genetic condition marked by the development of multiple benign tumors in the nervous system. The most common tumors associated with NF2 are bilateral vestibular schwannoma, meningioma, and ependymoma. The clinical manifestations of NF2 depend on the site of involvement. Vestibular schwannoma can present with hearing loss, dizziness, and tinnitus, while spinal tumor leads to debilitating pain, muscle weakness, or paresthesias. Clinical diagnosis of NF2 is based on the Manchester criteria, which have been updated in the last decade. NF2 is caused by loss-of-function mutations in the NF2 gene on chromosome 22, leading the merlin protein to malfunction. Over half of NF2 patients have de novo mutations, and half of this group are mosaic. NF2 can be managed by surgery, stereotactic radiosurgery, monoclonal antibody bevacizumab, and close observation. However, the nature of multiple tumors and the necessity of multiple surgeries over the lifetime, inoperable tumors like meningiomatosis with infiltration of the sinus or in the area of the lower cranial nerves, the complications caused by the operation, the malignancies induced by radiotherapy, and inefficiency of cytotoxic chemotherapy due to the benign nature of NF-related tumors have led a march toward exploring targeted therapies. Recent advances in genetics and molecular biology have allowed identifying and targeting of underlying pathways in the pathogenesis of NF2. In this review, we explain the clinicopathological characteristics of NF2, its genetic and molecular background, and the current knowledge and challenges of implementing genetics to develop efficient therapies.
Collapse
Affiliation(s)
- Mohammad Amin Ghalavand
- ENT and Head and Neck Research Center and Department, The Five Senses Health Institute, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Alimohamad Asghari
- ENT and Head and Neck Research Center and Department, The Five Senses Health Institute, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Skull Base Research Center, The Five Senses Health Institute, Hazrat Rasoul Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Farhadi
- ENT and Head and Neck Research Center and Department, The Five Senses Health Institute, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Farzad Taghizadeh-Hesary
- ENT and Head and Neck Research Center and Department, The Five Senses Health Institute, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Radiation Oncology Department, Iran University of Medical Sciences, Tehran, Iran
| | - Masoud Garshasbi
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Masoumeh Falah
- ENT and Head and Neck Research Center and Department, The Five Senses Health Institute, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
7
|
Zhu N, Yang R, Wang X, Yuan L, Li X, Wei F, Zhang L. The Hippo signaling pathway: from multiple signals to the hallmarks of cancers. Acta Biochim Biophys Sin (Shanghai) 2023. [PMID: 36942989 DOI: 10.3724/abbs.2023035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023] Open
Abstract
Evolutionarily conserved, the Hippo signaling pathway is critical in regulating organ size and tissue homeostasis. The activity of this pathway is tightly regulated under normal circumstances, since its physical function is precisely maintained to control the rate of cell proliferation. Failure of maintenance leads to a variety of tumors. Our understanding of the mechanism of Hippo dysregulation and tumorigenesis is becoming increasingly precise, relying on the emergence of upstream inhibitor or activator and the connection linking Hippo target genes, mutations, and related signaling pathways with phenotypes. In this review, we summarize recent reports on the signaling network of the Hippo pathway in tumorigenesis and progression by exploring its critical mechanisms in cancer biology and potential targeting in cancer therapy.
Collapse
Affiliation(s)
- Ning Zhu
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
- Sheng Yushou Center of Cell Biology and Immunology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ruizeng Yang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Xiaodong Wang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Liang Yuan
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Xiaoyu Li
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Fang Wei
- Sheng Yushou Center of Cell Biology and Immunology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lei Zhang
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
- Sheng Yushou Center of Cell Biology and Immunology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
- School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Hangzhou 310024, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| |
Collapse
|
8
|
Vasan V, Dullea JT, Devarajan A, Ali M, Rutland JW, Gill CM, Kinoshita Y, McBride RB, Gliedman P, Bederson J, Donovan M, Sebra R, Umphlett M, Shrivastava RK. NF2 mutations are associated with resistance to radiation therapy for grade 2 and grade 3 recurrent meningiomas. J Neurooncol 2023; 161:309-316. [PMID: 36436149 DOI: 10.1007/s11060-022-04197-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 11/11/2022] [Indexed: 11/28/2022]
Abstract
PURPOSE High grade meningiomas have a prognosis characterized by elevated recurrence rates and radiation resistance. Recent work has highlighted the importance of genomics in meningioma prognostication. This study aimed to assess the relationship between the most common meningioma genomic alteration (NF2) and response to postoperative radiation therapy (RT). METHODS From an institutional tissue bank, grade 2 and 3 recurrent meningiomas with both > 30 days of post-surgical follow-up and linked targeted next-generation sequencing were identified. Time to radiographic recurrence was determined with retrospective review. The adjusted hazard of recurrence was estimated using Cox-regression for patients treated with postoperative RT stratified by NF2 mutational status. RESULTS Of 53 atypical and anaplastic meningiomas (29 NF2 wild-type, 24 NF2 mutant), 19 patients underwent postoperative RT. When stratified by NF2 wild-type, postoperative RT in NF2 wild-type patients was associated with a 78% reduction in the risk of recurrence (HR 0.216; 95%CI 0.068-0.682; p = 0.009). When stratified by NF2 mutation, there was a non-significant increase in the risk of recurrence for NF2 mutant patients who received postoperative RT compared to those who did not (HR 2.43; 95%CI 0.88-6.73, p = 0.087). CONCLUSION This study demonstrated a protective effect of postoperative RT in NF2 wild-type patients with recurrent high grade meningiomas. Further, postoperative RT may be associated with no improvement and perhaps an accelerated time to recurrence in NF2 mutant tumors. These differences in recurrence rates provide evidence that NF2 may be a valuable prognostic marker in treatment decisions regarding postoperative RT. Further prospective studies are needed to validate this relationship.
Collapse
Affiliation(s)
- Vikram Vasan
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY, USA. .,Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, 1468 Madison Avenue, Floor 8, New York, NY, 10129, USA.
| | - Jonathan T Dullea
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alex Devarajan
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Muhammad Ali
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - John W Rutland
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Corey M Gill
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, 1468 Madison Avenue, Floor 8, New York, NY, 10129, USA
| | - Yayoi Kinoshita
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Russell B McBride
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,The Institute for Translational Epidemiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Paul Gliedman
- Department of Radiation Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Joshua Bederson
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Michael Donovan
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Robert Sebra
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Sema4, A Mount Sinai Venture, Stamford, CT, USA
| | - Melissa Umphlett
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Raj K Shrivastava
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
9
|
Fu M, Hu Y, Lan T, Guan KL, Luo T, Luo M. The Hippo signalling pathway and its implications in human health and diseases. Signal Transduct Target Ther 2022; 7:376. [PMID: 36347846 PMCID: PMC9643504 DOI: 10.1038/s41392-022-01191-9] [Citation(s) in RCA: 181] [Impact Index Per Article: 60.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 09/09/2022] [Accepted: 09/09/2022] [Indexed: 11/11/2022] Open
Abstract
As an evolutionarily conserved signalling network, the Hippo pathway plays a crucial role in the regulation of numerous biological processes. Thus, substantial efforts have been made to understand the upstream signals that influence the activity of the Hippo pathway, as well as its physiological functions, such as cell proliferation and differentiation, organ growth, embryogenesis, and tissue regeneration/wound healing. However, dysregulation of the Hippo pathway can cause a variety of diseases, including cancer, eye diseases, cardiac diseases, pulmonary diseases, renal diseases, hepatic diseases, and immune dysfunction. Therefore, therapeutic strategies that target dysregulated Hippo components might be promising approaches for the treatment of a wide spectrum of diseases. Here, we review the key components and upstream signals of the Hippo pathway, as well as the critical physiological functions controlled by the Hippo pathway. Additionally, diseases associated with alterations in the Hippo pathway and potential therapies targeting Hippo components will be discussed.
Collapse
Affiliation(s)
- Minyang Fu
- Breast Disease Center, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, South of Renmin Road, 610041, Chengdu, China
| | - Yuan Hu
- Department of Pediatric Nephrology Nursing, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, 610041, Chengdu, China
| | - Tianxia Lan
- Breast Disease Center, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, South of Renmin Road, 610041, Chengdu, China
| | - Kun-Liang Guan
- Department of Pharmacology and Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
| | - Ting Luo
- Breast Disease Center, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, South of Renmin Road, 610041, Chengdu, China.
| | - Min Luo
- Breast Disease Center, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, South of Renmin Road, 610041, Chengdu, China.
| |
Collapse
|
10
|
Yin L, Sun Y, Cao Q, Yang T, Li W, Zhu Y, Liu T, Li B. Two giant connected retroperitoneal schwannomas: a rare case report. J Int Med Res 2022; 50:3000605221119423. [PMID: 36036264 PMCID: PMC9434686 DOI: 10.1177/03000605221119423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Schwannoma is a type of tumor originating from Schwann cells of peripheral
nerves. In this study, we report a rare case of two giant connected
retroperitoneal schwannomas. The patient presented to our department with a
1-day history of abdominal pain and without other symptoms. There were no
abnormalities in the patient’s tumor markers. Abdominal plain computed
tomography (CT) revealed two (combined) retroperitoneal masses appearing as soft
tissue-density shadows with uneven internal density, cystic low-density shadows,
and patchy calcification shadows. The larger mass measured approximately
12.0 cm × 12.3 cm in size. The tumors were completely excised by a reasonable
surgical approach while the surrounding organs closely related to the tumor were
preserved. Postoperative pathology confirmed that the tumors were benign
schwannomas. In the 18-month follow-up, the patient had no recurrences and was
asymptomatic. We summarize the diagnosis and treatment of two rare combined
giant retroperitoneal schwannomas in a single patient. Laparotomy for the
management of retroperitoneal giant schwannomas may be safe and effective.
Collapse
Affiliation(s)
- Liquan Yin
- Department of Rehabilitation Medicine, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Yao Sun
- Department of General Surgery, The Second Hospital of Jilin University, Changchun Jilin, China
| | - Qian Cao
- Department of Education, The Second Hospital of Jilin University, Changchun Jilin, China
| | - Tao Yang
- Department of General Surgery, The Second Hospital of Jilin University, Changchun Jilin, China
| | - Wei Li
- Department of General Surgery, The Second Hospital of Jilin University, Changchun Jilin, China
| | - Yuecheng Zhu
- Department of General Surgery, The Second Hospital of Jilin University, Changchun Jilin, China
| | - Tongjun Liu
- Department of General Surgery, The Second Hospital of Jilin University, Changchun Jilin, China
| | - Bo Li
- Department of Rehabilitation Medicine, China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
11
|
Zhao F, Chen Y, Li SW, Zhang J, Zhang S, Zhao XB, Yang ZJ, Wang B, He QY, Wang LM, Xu L, Liu PN. Novel patient-derived xenograft and cell line models for therapeutic screening in NF2-associated schwannoma. J Pathol 2022; 257:620-634. [PMID: 35394061 DOI: 10.1002/path.5908] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 03/30/2022] [Accepted: 04/05/2022] [Indexed: 11/06/2022]
Abstract
Treatment of schwannomas in patients with neurofibromatosis type 2 (NF2) is extremely unsatisfactory, and innovative therapeutic approaches are urgently needed. However, the lack of clinically relevant NF2-associated schwannoma models has severely hampered drug discovery in this rare disease. Here, we report the first establishment and characterization of patient-derived xenograft (PDX) and cell line models of NF2-associated schwannoma, which recapitulate the morphological and histopathological features of patient tumors, retain patient NF2 mutations, and maintain gene expression profiles resembling patient tumor profiles with the preservation of multiple key signaling pathways commonly dysregulated in human schwannomas. Using gene expression profiling, we identified elevated PI3K/AKT/mTOR networks in human NF2-associated vestibular schwannomas. Using high-throughput screening of 157 inhibitors targeting the PI3K/AKT/mTOR pathways in vitro, we identified a dozen inhibitors (such as BEZ235, LY2090314, and AZD8055) with significant growth-suppressive effects. Interestingly, we observed that three cell lines displayed differential therapeutic responses to PI3K/AKT/mTOR inhibitors. Furthermore, we demonstrated two orally bioavailable inhibitors AZD8055 and PQR309 suppressed NF2-associated schwannoma growth both in vitro and in vivo. In conclusion, our novel patient-derived models of NF2-associated schwannoma closely mimic the phenotypes and genotypes of patient tumors, making them reliable preclinical tools for testing novel personalized therapies. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Fu Zhao
- Department of Neural Reconstruction, Beijing Key Laboratory of Central Nervous System Injury, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yang Chen
- Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Shi-Wei Li
- Department of Neural Reconstruction, Beijing Key Laboratory of Central Nervous System Injury, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jing Zhang
- Department of Neural Reconstruction, Beijing Key Laboratory of Central Nervous System Injury, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Shun Zhang
- Department of Neural Reconstruction, Beijing Key Laboratory of Central Nervous System Injury, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Xiao-Bin Zhao
- Department of Nuclear Medicine, Beijing Tian Tan Hospital, Capital Medical University, Beijing, China
| | - Zhi-Jun Yang
- Department of Neural Reconstruction, Beijing Key Laboratory of Central Nervous System Injury, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Bo Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Qi-Yang He
- Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Lei-Ming Wang
- Departments of Pathology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Lei Xu
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Pi-Nan Liu
- Department of Neural Reconstruction, Beijing Key Laboratory of Central Nervous System Injury, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
12
|
Chang LS, Oblinger JL, Smith AE, Ferrer M, Angus SP, Hawley E, Petrilli AM, Beauchamp RL, Riecken LB, Erdin S, Poi M, Huang J, Bessler WK, Zhang X, Guha R, Thomas C, Burns SS, Gilbert TSK, Jiang L, Li X, Lu Q, Yuan J, He Y, Dixon SAH, Masters A, Jones DR, Yates CW, Haggarty SJ, La Rosa S, Welling DB, Stemmer-Rachamimov AO, Plotkin SR, Gusella JF, Guinney J, Morrison H, Ramesh V, Fernandez-Valle C, Johnson GL, Blakeley JO, Clapp DW. Brigatinib causes tumor shrinkage in both NF2-deficient meningioma and schwannoma through inhibition of multiple tyrosine kinases but not ALK. PLoS One 2021; 16:e0252048. [PMID: 34264955 PMCID: PMC8282008 DOI: 10.1371/journal.pone.0252048] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 05/07/2021] [Indexed: 12/21/2022] Open
Abstract
Neurofibromatosis Type 2 (NF2) is an autosomal dominant genetic syndrome caused by mutations in the NF2 tumor suppressor gene resulting in multiple schwannomas and meningiomas. There are no FDA approved therapies for these tumors and their relentless progression results in high rates of morbidity and mortality. Through a combination of high throughput screens, preclinical in vivo modeling, and evaluation of the kinome en masse, we identified actionable drug targets and efficacious experimental therapeutics for the treatment of NF2 related schwannomas and meningiomas. These efforts identified brigatinib (ALUNBRIG®), an FDA-approved inhibitor of multiple tyrosine kinases including ALK, to be a potent inhibitor of tumor growth in established NF2 deficient xenograft meningiomas and a genetically engineered murine model of spontaneous NF2 schwannomas. Surprisingly, neither meningioma nor schwannoma cells express ALK. Instead, we demonstrate that brigatinib inhibited multiple tyrosine kinases, including EphA2, Fer and focal adhesion kinase 1 (FAK1). These data demonstrate the power of the de novo unbiased approach for drug discovery and represents a major step forward in the advancement of therapeutics for the treatment of NF2 related malignancies.
Collapse
Affiliation(s)
- Long-Sheng Chang
- The Research Institute at Nationwide Children’s Hospital and Department of Pediatrics, Center for Childhood Cancer and Blood Diseases, The Ohio State University College of Medicine, Columbus, Ohio, United States of America
| | - Janet L. Oblinger
- The Research Institute at Nationwide Children’s Hospital and Department of Pediatrics, Center for Childhood Cancer and Blood Diseases, The Ohio State University College of Medicine, Columbus, Ohio, United States of America
| | - Abbi E. Smith
- Department of Pediatrics, Indiana University, School of Medicine, Indianapolis, Indiana, United States of America
| | - Marc Ferrer
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Steven P. Angus
- Department of Pediatrics, Indiana University, School of Medicine, Indianapolis, Indiana, United States of America
- University of North Carolina School of Medicine, Chapel Hill, North Carolina, United States of America
| | - Eric Hawley
- Department of Pediatrics, Indiana University, School of Medicine, Indianapolis, Indiana, United States of America
| | - Alejandra M. Petrilli
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Lake Nona-Orlando, Florida, United States of America
| | - Roberta L. Beauchamp
- Massachusetts General Hospital and Department of Neurology, Center for Genomic Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
| | | | - Serkan Erdin
- Massachusetts General Hospital and Department of Neurology, Center for Genomic Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Ming Poi
- Division of Pharmacy Practice and Science, The Ohio State University College of Pharmacy, Columbus, Ohio, United States of America
| | - Jie Huang
- The Research Institute at Nationwide Children’s Hospital and Department of Pediatrics, Center for Childhood Cancer and Blood Diseases, The Ohio State University College of Medicine, Columbus, Ohio, United States of America
| | - Waylan K. Bessler
- Department of Pediatrics, Indiana University, School of Medicine, Indianapolis, Indiana, United States of America
| | - Xiaohu Zhang
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Rajarshi Guha
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Craig Thomas
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Sarah S. Burns
- The Research Institute at Nationwide Children’s Hospital and Department of Pediatrics, Center for Childhood Cancer and Blood Diseases, The Ohio State University College of Medicine, Columbus, Ohio, United States of America
| | - Thomas S. K. Gilbert
- University of North Carolina School of Medicine, Chapel Hill, North Carolina, United States of America
| | - Li Jiang
- Department of Pediatrics, Indiana University, School of Medicine, Indianapolis, Indiana, United States of America
| | - Xiaohong Li
- Department of Pediatrics, Indiana University, School of Medicine, Indianapolis, Indiana, United States of America
| | - Qingbo Lu
- Department of Pediatrics, Indiana University, School of Medicine, Indianapolis, Indiana, United States of America
| | - Jin Yuan
- Department of Pediatrics, Indiana University, School of Medicine, Indianapolis, Indiana, United States of America
| | - Yongzheng He
- Department of Pediatrics, Indiana University, School of Medicine, Indianapolis, Indiana, United States of America
| | - Shelley A. H. Dixon
- Department of Pediatrics, Indiana University, School of Medicine, Indianapolis, Indiana, United States of America
| | - Andrea Masters
- Department of Pediatrics, Indiana University, School of Medicine, Indianapolis, Indiana, United States of America
| | - David R. Jones
- Department of Pediatrics, Indiana University, School of Medicine, Indianapolis, Indiana, United States of America
| | - Charles W. Yates
- Department of Otolaryngology and Head/Neck Surgery, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Stephen J. Haggarty
- Massachusetts General Hospital and Department of Neurology, Center for Genomic Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Salvatore La Rosa
- Children’s Tumor Foundation, New York, New York, United States of America
| | - D. Bradley Welling
- Department of Otolaryngology, Massachusetts Eye and Ear Infirmary, Massachusetts General Hospital and Harvard University, Boston, Massachusetts, United States of America
| | - Anat O. Stemmer-Rachamimov
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Scott R. Plotkin
- Massachusetts General Hospital and Department of Neurology, Center for Genomic Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
| | - James F. Gusella
- Center for Genomic Medicine, Massachusetts General Hospital and Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Justin Guinney
- Sage Bionetworks, Seattle, Washington, United States of America
| | - Helen Morrison
- Leibniz Institute on Aging–Fritz-Lipmann Institute (FLI), Jena, Germany
| | - Vijaya Ramesh
- Massachusetts General Hospital and Department of Neurology, Center for Genomic Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Cristina Fernandez-Valle
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Lake Nona-Orlando, Florida, United States of America
| | - Gary L. Johnson
- University of North Carolina School of Medicine, Chapel Hill, North Carolina, United States of America
| | - Jaishri O. Blakeley
- Departments of Neurology, Neurosurgery and Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - D. Wade Clapp
- Department of Pediatrics, Indiana University, School of Medicine, Indianapolis, Indiana, United States of America
| | | |
Collapse
|
13
|
Wu L, Vasilijic S, Sun Y, Chen J, Landegger LD, Zhang Y, Zhou W, Ren J, Early S, Yin Z, Ho WW, Zhang N, Gao X, Lee GY, Datta M, Sagers JE, Brown A, Muzikansky A, Stemmer-Rachamimov A, Zhang L, Plotkin SR, Jain RK, Stankovic KM, Xu L. Losartan prevents tumor-induced hearing loss and augments radiation efficacy in NF2 schwannoma rodent models. Sci Transl Med 2021; 13:eabd4816. [PMID: 34261799 PMCID: PMC8409338 DOI: 10.1126/scitranslmed.abd4816] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 12/10/2020] [Accepted: 05/20/2021] [Indexed: 12/14/2022]
Abstract
Hearing loss is one of the most common symptoms of neurofibromatosis type 2 (NF2) caused by vestibular schwannomas (VSs). Fibrosis in the VS tumor microenvironment (TME) is associated with hearing loss in patients with NF2. We hypothesized that reducing the fibrosis using losartan, an FDA-approved antihypertensive drug that blocks fibrotic and inflammatory signaling, could improve hearing. Using NF2 mouse models, we found that losartan treatment normalized the TME by (i) reducing neuroinflammatory IL-6/STAT3 signaling and preventing hearing loss, (ii) normalizing tumor vasculature and alleviating neuro-edema, and (iii) increasing oxygen delivery and enhancing efficacy of radiation therapy. In preparation to translate these exciting findings into the clinic, we used patient samples and data and demonstrated that IL-6/STAT3 signaling inversely associated with hearing function, that elevated production of tumor-derived IL-6 was associated with reduced viability of cochlear sensory cells and neurons in ex vivo organotypic cochlear cultures, and that patients receiving angiotensin receptor blockers have no progression in VS-induced hearing loss compared with patients on other or no antihypertensives based on a retrospective analysis of patients with VS and hypertension. Our study provides the rationale and critical data for a prospective clinical trial of losartan in patients with VS.
Collapse
Affiliation(s)
- Limeng Wu
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Sasa Vasilijic
- Eaton-Peabody Laboratories and Department of Otolaryngology, Head and Neck Surgery, Massachusetts Eye and Ear and Harvard Medical School, Boston, MA 02114, USA
| | - Yao Sun
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Jie Chen
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Lukas D Landegger
- Eaton-Peabody Laboratories and Department of Otolaryngology, Head and Neck Surgery, Massachusetts Eye and Ear and Harvard Medical School, Boston, MA 02114, USA
| | - Yanling Zhang
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Wenjianlong Zhou
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Jun Ren
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Samuel Early
- Eaton-Peabody Laboratories and Department of Otolaryngology, Head and Neck Surgery, Massachusetts Eye and Ear and Harvard Medical School, Boston, MA 02114, USA
- Division of Otolaryngology, Head and Neck Surgery, Department of Surgery, UC San Diego Medical Center, San Diego, CA 92103, USA
| | - Zhenzhen Yin
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - William W Ho
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Na Zhang
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- Department of Otolaryngology, Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing 100730, China
| | - Xing Gao
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Grace Y Lee
- St. Mark's School, Southborough, MA 01772, USA
| | - Meenal Datta
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Jessica E Sagers
- Eaton-Peabody Laboratories and Department of Otolaryngology, Head and Neck Surgery, Massachusetts Eye and Ear and Harvard Medical School, Boston, MA 02114, USA
| | - Alyssa Brown
- Eaton-Peabody Laboratories and Department of Otolaryngology, Head and Neck Surgery, Massachusetts Eye and Ear and Harvard Medical School, Boston, MA 02114, USA
| | - Alona Muzikansky
- Division of Biostatistics, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | | | - Luo Zhang
- Department of Otolaryngology, Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing 100730, China
| | - Scott R Plotkin
- Department of Neurology and Cancer Center, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Rakesh K Jain
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Konstantina M Stankovic
- Eaton-Peabody Laboratories and Department of Otolaryngology, Head and Neck Surgery, Massachusetts Eye and Ear and Harvard Medical School, Boston, MA 02114, USA.
| | - Lei Xu
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
14
|
Jiang W, Takeshita N, Maeda T, Sogi C, Oyanagi T, Kimura S, Yoshida M, Sasaki K, Ito A, Takano-Yamamoto T. Connective tissue growth factor promotes chemotaxis of preosteoblasts through integrin α5 and Ras during tensile force-induced intramembranous osteogenesis. Sci Rep 2021; 11:2368. [PMID: 33504916 PMCID: PMC7841149 DOI: 10.1038/s41598-021-82246-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 01/18/2021] [Indexed: 02/07/2023] Open
Abstract
In vertebrates, new bone formation via intramembranous osteogenesis is a critical biological event for development, remodeling, and fracture healing of bones. Chemotaxis of osteoblast lineage cells is an essential cellular process in new bone formation. Connective tissue growth factor (CTGF) is known to exert chemotactic properties on various cells; however, details of CTGF function in the chemotaxis of osteoblast lineage cells and underlying molecular biological mechanisms have not been clarified. The aim of the present study was to evaluate the chemotactic properties of CTGF and its underlying mechanisms during active bone formation through intramembranous osteogenesis. In our mouse tensile force-induced bone formation model, preosteoblasts were aggregated at the osteogenic front of calvarial bones. CTGF was expressed at the osteogenic front, and functional inhibition of CTGF using a neutralizing antibody suppressed the aggregation of preosteoblasts. In vitro experiments using μ-slide chemotaxis chambers showed that a gradient of CTGF induced chemotaxis of preosteoblastic MC3T3-E1 cells, while a neutralizing integrin α5 antibody and a Ras inhibitor inhibited the CTGF-induced chemotaxis of MC3T3-E1 cells. These findings suggest that the CTGF-integrin α5-Ras axis is an essential molecular mechanism to promote chemotaxis of preosteoblasts during new bone formation through intramembranous osteogenesis.
Collapse
Affiliation(s)
- Wei Jiang
- Division of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Tohoku University, Sendai, Miyagi, 980-8575, Japan
| | - Nobuo Takeshita
- Division of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Tohoku University, Sendai, Miyagi, 980-8575, Japan
| | - Toshihiro Maeda
- Division of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Tohoku University, Sendai, Miyagi, 980-8575, Japan
| | - Chisumi Sogi
- Department of Pediatrics, Graduate School of Medicine, Tohoku University, Sendai, Miyagi, 980-8574, Japan
| | - Toshihito Oyanagi
- Division of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Tohoku University, Sendai, Miyagi, 980-8575, Japan
| | - Seiji Kimura
- Division of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Tohoku University, Sendai, Miyagi, 980-8575, Japan
| | - Michiko Yoshida
- Division of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Tohoku University, Sendai, Miyagi, 980-8575, Japan
| | - Kiyo Sasaki
- Division of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Tohoku University, Sendai, Miyagi, 980-8575, Japan
| | - Arata Ito
- Division of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Tohoku University, Sendai, Miyagi, 980-8575, Japan
| | - Teruko Takano-Yamamoto
- Division of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Tohoku University, Sendai, Miyagi, 980-8575, Japan. .,Department of Biomaterials and Bioengineering, Faculty of Dental Medicine, Hokkaido University, Sapporo, Hokkaido, 060-8586, Japan.
| |
Collapse
|
15
|
Cui Y, Ma L, Schacke S, Yin JC, Hsueh YP, Jin H, Morrison H. Merlin cooperates with neurofibromin and Spred1 to suppress the Ras-Erk pathway. Hum Mol Genet 2020; 29:3793-3806. [PMID: 33331896 DOI: 10.1093/hmg/ddaa263] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 12/07/2020] [Accepted: 12/07/2020] [Indexed: 12/22/2022] Open
Abstract
The Ras-Erk pathway is frequently overactivated in human tumors. Neurofibromatosis types 1 and 2 (NF1, NF2) are characterized by multiple tumors of Schwann cell origin. The NF1 tumor suppressor neurofibromin is a principal Ras-GAP accelerating Ras inactivation, whereas the NF2 tumor suppressor merlin is a scaffold protein coordinating multiple signaling pathways. We have previously reported that merlin interacts with Ras and p120RasGAP. Here, we show that merlin can also interact with the neurofibromin/Spred1 complex via merlin-binding sites present on both proteins. Further, merlin can directly bind to the Ras-binding domain (RBD) and the kinase domain (KiD) of Raf1. As the third component of the neurofibromin/Spred1 complex, merlin cannot increase the Ras-GAP activity; rather, it blocks Ras binding to Raf1 by functioning as a 'selective Ras barrier'. Merlin-deficient Schwann cells require the Ras-Erk pathway activity for proliferation. Accordingly, suppression of the Ras-Erk pathway likely contributes to merlin's tumor suppressor activity. Taken together, our results, and studies by others, support targeting or co-targeting of this pathway as a therapy for NF2 inactivation-related tumors.
Collapse
Affiliation(s)
- Yan Cui
- Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), 07745 Jena, Germany
| | - Lin Ma
- Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), 07745 Jena, Germany.,College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Stephan Schacke
- Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), 07745 Jena, Germany
| | - Jiani C Yin
- Laura and Isaac Perlmutter Cancer Center, NYU Langone Health, New York, NY 10016, USA
| | - Yi-Ping Hsueh
- Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan
| | - Hongchuan Jin
- Laboratory of Cancer Biology, Key Laboratory of Biotherapy, Sir Run Run Shaw Hospital, Medical School of Zhejiang University, Hangzhou 310016, China
| | - Helen Morrison
- Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), 07745 Jena, Germany.,Faculty of Biological Sciences, Friedrich Schiller University Jena, 07743, Germany
| |
Collapse
|
16
|
Ren Y, Chari DA, Vasilijic S, Welling DB, Stankovic KM. New developments in neurofibromatosis type 2 and vestibular schwannoma. Neurooncol Adv 2020; 3:vdaa153. [PMID: 33604573 PMCID: PMC7881257 DOI: 10.1093/noajnl/vdaa153] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Neurofibromatosis type 2 (NF2) is a rare autosomal dominant disorder characterized by the development of multiple nervous system tumors due to mutation in the NF2 tumor suppressor gene. The hallmark feature of the NF2 syndrome is the development of bilateral vestibular schwannomas (VS). Although there is nearly 100% penetrance by 60 years of age, some patients suffer from a severe form of the disease and develop multiple tumors at an early age, while others are asymptomatic until later in life. Management options for VS include surgery, stereotactic radiation, and observation with serial imaging; however, currently, there are no FDA-approved pharmacotherapies for NF2 or VS. Recent advancements in the molecular biology underlying NF2 have led to a better understanding of the etiology and pathogenesis of VS. These novel signaling pathways may be used to identify targeted therapies for these tumors. This review discusses the clinical features and treatment options for sporadic- and NF2-associated VS, the diagnostic and screening criteria, completed and ongoing clinical trials, quality of life metrics, and opportunities for future research.
Collapse
Affiliation(s)
- Yin Ren
- Department of Surgery, Division of Otolaryngology - Head and Neck Surgery, University of California San Diego School of Medicine, San Diego, California, USA
| | - Divya A Chari
- Department of Otolaryngology Head and Neck Surgery, Harvard Medical School, Boston, Massachusetts, USA.,Eaton-Peabody Laboratories and Department of Otolaryngology Head and Neck Surgery, Massachusetts Eye and Ear, Boston, Massachusetts, USA
| | - Sasa Vasilijic
- Department of Otolaryngology Head and Neck Surgery, Harvard Medical School, Boston, Massachusetts, USA.,Eaton-Peabody Laboratories and Department of Otolaryngology Head and Neck Surgery, Massachusetts Eye and Ear, Boston, Massachusetts, USA
| | - D Bradley Welling
- Department of Otolaryngology Head and Neck Surgery, Harvard Medical School, Boston, Massachusetts, USA.,Eaton-Peabody Laboratories and Department of Otolaryngology Head and Neck Surgery, Massachusetts Eye and Ear, Boston, Massachusetts, USA.,Speech and Hearing Bioscience and Technology Program, Harvard Medical School, Boston, Massachusetts, USA
| | - Konstantina M Stankovic
- Department of Otolaryngology Head and Neck Surgery, Harvard Medical School, Boston, Massachusetts, USA.,Eaton-Peabody Laboratories and Department of Otolaryngology Head and Neck Surgery, Massachusetts Eye and Ear, Boston, Massachusetts, USA.,Speech and Hearing Bioscience and Technology Program, Harvard Medical School, Boston, Massachusetts, USA.,Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts, USA.,Program in Therapeutic Science, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
17
|
Huang R, Boltze J, Li S. Strategies for Improved Intra-arterial Treatments Targeting Brain Tumors: a Systematic Review. Front Oncol 2020; 10:1443. [PMID: 32983974 PMCID: PMC7479245 DOI: 10.3389/fonc.2020.01443] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 07/08/2020] [Indexed: 12/16/2022] Open
Abstract
Conventional treatments for brain tumors relying on surgery, radiation, and systemic chemotherapy are often associated with high recurrence and poor prognosis. In recent decades, intra-arterial administration of anti-cancer drugs has been considered a suitable alternative drug delivery route to intravenous and oral administration. Intra-arterial administration is believed to offer increasing drug responses by primary and metastatic brain tumors, and to be associated with better median overall survival. By directly injecting therapeutic agents into carotid or vertebral artery, intra-arterial administration rapidly increases intra-tumoral drug concentration but lowers systemic exposure. However, unexpected vascular or neural toxicity has questioned the therapeutic safety of intra-arterial drug administration and limits its widespread clinical application. Therefore, improving targeting and accuracy of intra-arterial administration has become a major research focus. This systematic review categorizes strategies for optimizing intra-arterial administration into five categories: (1) transient blood-brain barrier (BBB)/blood-tumor barrier (BTB) disruption, (2) regional cerebral hypoperfusion for peritumoral hemodynamic changes, (3) superselective endovascular intervention, (4) high-resolution imaging techniques, and (5) others such as cell and gene therapy. We summarize and discuss both preclinical and clinical research, focusing on advantages and disadvantages of different treatment strategies for a variety of cerebral tumor types.
Collapse
Affiliation(s)
- Rui Huang
- Department of Neurology, Dalian Municipal Central Hospital Affiliated With Dalian Medical University, Dalian, China
| | - Johannes Boltze
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Shen Li
- Department of Neurology, Dalian Municipal Central Hospital Affiliated With Dalian Medical University, Dalian, China
| |
Collapse
|
18
|
A Novel Imaging Grading Biomarker for Predicting Hearing Loss in Acoustic Neuromas. Clin Neuroradiol 2020; 31:599-610. [PMID: 32720068 DOI: 10.1007/s00062-020-00938-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 07/06/2020] [Indexed: 01/12/2023]
Abstract
PURPOSE The aim of this study was to investigate an imaging biomarker based on contrast enhanced T1-weighted and T2-weighted magnetic resonance imaging (MRI) to determine the hearing loss related to acoustic neuromas (AN). METHODS In this retrospective study, 441 acoustic neuromas treated with microsurgery were included. The diagnostic and follow-up MRI and audiometry of these patients were compared. RESULTS We discovered a new MRI grading biomarker based on the percentage of tumor filling the inner auditory canal (TFIAC classification). The area under the receiver operating characteristics (AUROC) curve was highest for TFIAC (0.675), followed by period of observation (0.615) and tumor size (0.6) (P < 0.001). The percentage of patients in TFIAC grade III (90.1%) experiencing hypoacusis prior to microsurgery was significantly higher than that in TFIAC grade I (72.7%, P = 0.037) and TFIAC grade IV patients had a higher rate of non-serviceable hearing compared to TFIAC grade III patients (P < 0.001). During the follow-up, TFIAC grade IV patients experienced a significantly higher rate of non-serviceable hearing than TFIAC grade III patients in all ANs (P < 0.001) and in serviceable hearing acoustic neuroma cases prior to surgery (TFIAC grade IV 55.4%, TFIAC grade III 69.0%, P = 0.045). The TFIAC grade IV patients experienced a significantly higher rate of facial nerve dysfunction than TFIAC grade III patients after surgery (grade IV 48.0%, grade III 26.1%, P < 0.001). CONCLUSION The TFIAC classification serves as a potential imaging biomarker for preoperative and postoperative hearing prediction in ANs, which may aid neurosurgeons in predicting hearing loss and selecting optimal surgical strategies.
Collapse
|
19
|
Long-term therapy with Bevacizumab in a young patient affected by NF2. Stop or continue treatment? An update of a case report and review of the literature. Anticancer Drugs 2020; 31:754-757. [PMID: 32697470 DOI: 10.1097/cad.0000000000000953] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Neurofibromatosis type 2 (NF2) is an autosomal dominant condition caused by pathogenic variants in the NF2 gene. To date, cytotoxic chemotherapy has no established role in the treatment of NF-2. Historical case reports of malignant schwannomas have documented responses to chemotherapies with cyclophosphamide, vincristine and doxorubicin, in patients who develop pulmonary metastases. Recently, several studies proposed the use of anti-HER2, anti-EGFR, anti-platelet-derived growth factor receptors. As reported in our previous review of the literature, vascular endothelial growth factor (VEGF) and its receptor VEGFR-1 have been detected in schwannomas with the best results. We described the case of a young patient with NF2 treated for long time with Bevacizumab. Here, we report the update of the previous case report.
Collapse
|
20
|
Schabla NM, Mondal K, Swanson PC. DCAF1 (VprBP): emerging physiological roles for a unique dual-service E3 ubiquitin ligase substrate receptor. J Mol Cell Biol 2020; 11:725-735. [PMID: 30590706 PMCID: PMC6821201 DOI: 10.1093/jmcb/mjy085] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 10/01/2018] [Accepted: 12/21/2018] [Indexed: 12/12/2022] Open
Abstract
Cullin-RING ligases (CRLs) comprise a large group of modular eukaryotic E3 ubiquitin ligases. Within this family, the CRL4 ligase (consisting of the Cullin4 [CUL4] scaffold protein, the Rbx1 RING finger domain protein, the DNA damage-binding protein 1 [DDB1], and one of many DDB1-associated substrate receptor proteins) has been intensively studied in recent years due to its involvement in regulating various cellular processes, its role in cancer development and progression, and its subversion by viral accessory proteins. Initially discovered as a target for hijacking by the human immunodeficiency virus accessory protein r, the normal targets and function of the CRL4 substrate receptor protein DDB1–Cul4-associated factor 1 (DCAF1; also known as VprBP) had remained elusive, but newer studies have begun to shed light on these questions. Here, we review recent progress in understanding the diverse physiological roles of this DCAF1 in supporting various general and cell type-specific cellular processes in its context with the CRL4 E3 ligase, as well as another HECT-type E3 ligase with which DCAF1 also associates, called EDD/UBR5. We also discuss emerging questions and areas of future study to uncover the dynamic roles of DCAF1 in normal physiology.
Collapse
Affiliation(s)
- N Max Schabla
- Department of Medical Microbiology and Immunology, Creighton University, 2500 California Plaza, Omaha, NE, USA
| | - Koushik Mondal
- Department of Medical Microbiology and Immunology, Creighton University, 2500 California Plaza, Omaha, NE, USA
| | - Patrick C Swanson
- Department of Medical Microbiology and Immunology, Creighton University, 2500 California Plaza, Omaha, NE, USA
| |
Collapse
|
21
|
Mota M, Shevde LA. Merlin regulates signaling events at the nexus of development and cancer. Cell Commun Signal 2020; 18:63. [PMID: 32299434 PMCID: PMC7164249 DOI: 10.1186/s12964-020-00544-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 02/28/2020] [Indexed: 01/04/2023] Open
Abstract
Background In this review, we describe how the cytoskeletal protein Merlin, encoded by the Neurofibromin 2 (NF2) gene, orchestrates developmental signaling to ensure normal ontogeny, and we discuss how Merlin deficiency leads to aberrant activation of developmental pathways that enable tumor development and malignant progression. Main body Parallels between embryonic development and cancer have underscored the activation of developmental signaling pathways. Hippo, WNT/β-catenin, TGF-β, receptor tyrosine kinase (RTK), Notch, and Hedgehog pathways are key players in normal developmental biology. Unrestrained activity or loss of activity of these pathways causes adverse effects in developing tissues manifesting as developmental syndromes. Interestingly, these detrimental events also impact differentiated and functional tissues. By promoting cell proliferation, migration, and stem-cell like phenotypes, deregulated activity of these pathways promotes carcinogenesis and cancer progression. The NF2 gene product, Merlin, is a tumor suppressor classically known for its ability to induce contact-dependent growth inhibition. Merlin plays a role in different stages of an organism development, ranging from embryonic to mature states. While homozygous deletion of Nf2 in murine embryos causes embryonic lethality, Merlin loss in adult tissue is implicated in Neurofibromatosis type 2 disorder and cancer. These manifestations, cumulatively, are reminiscent of dysregulated developmental signaling. Conclusion Understanding the molecular and cellular repercussions of Merlin loss provides fundamental insights into the etiology of developmental disorders and cancer and has the potential, in the long term, to identify new therapeutic strategies. Video Abstract
Graphical abstract ![]()
Collapse
Affiliation(s)
- Mateus Mota
- Department of Pathology, University of Alabama at Birmingham, WTI 320D, 1824 6th Avenue South, Birmingham, AL, 35233, USA
| | - Lalita A Shevde
- Department of Pathology, University of Alabama at Birmingham, WTI 320D, 1824 6th Avenue South, Birmingham, AL, 35233, USA. .,O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, WTI 320D, 1824 6th Avenue South, Birmingham, AL, 35233, USA.
| |
Collapse
|
22
|
Hennigan RF, Fletcher JS, Guard S, Ratner N. Proximity biotinylation identifies a set of conformation-specific interactions between Merlin and cell junction proteins. Sci Signal 2019; 12:12/578/eaau8749. [PMID: 31015291 DOI: 10.1126/scisignal.aau8749] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Neurofibromatosis type 2 is an inherited, neoplastic disease associated with schwannomas, meningiomas, and ependymomas and that is caused by inactivation of the tumor suppressor gene NF2 The NF2 gene product, Merlin, has no intrinsic catalytic activity; its tumor suppressor function is mediated through the proteins with which it interacts. We used proximity biotinylation followed by mass spectrometry and direct binding assays to identify proteins that associated with wild-type and various mutant forms of Merlin in immortalized Schwann cells. We defined a set of 52 proteins in close proximity to wild-type Merlin. Most of the Merlin-proximal proteins were components of cell junctional signaling complexes, suggesting that additional potential interaction partners may exist in adherens junctions, tight junctions, and focal adhesions. With mutant forms of Merlin that cannot bind to phosphatidylinositol 4,5-bisphosphate (PIP2) or that constitutively adopt a closed conformation, we confirmed a critical role for PIP2 binding in Merlin function and identified a large cohort of proteins that specifically interacted with Merlin in the closed conformation. Among these proteins, we identified a previously unreported Merlin-binding protein, apoptosis-stimulated p53 protein 2 (ASPP2, also called Tp53bp2), that bound to closed-conformation Merlin predominately through the FERM domain. Our results demonstrate that Merlin is a component of cell junctional mechanosensing complexes and defines a specific set of proteins through which it acts.
Collapse
Affiliation(s)
- Robert F Hennigan
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital, Cincinnati, OH 45229, USA.
| | - Jonathan S Fletcher
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital, Cincinnati, OH 45229, USA
| | - Steven Guard
- Department of Molecular, Cellular & Developmental Biology, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Nancy Ratner
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital, Cincinnati, OH 45229, USA
| |
Collapse
|
23
|
Long-term therapy with bevacizumab in a young patient affected by NF-2: a case report and review of the literature. Anticancer Drugs 2019; 30:318-321. [PMID: 30640792 DOI: 10.1097/cad.0000000000000732] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Neurofibromatosis type 2 (NF-2) is an autosomal dominant inherited disease caused by heterozygous mutations in the NF-2 tumor suppressor gene. It is characterized by the development of multiple benign tumors in the central nervous system. A majority of these tumors can be treated with surgery or radiotherapy in the case of the symptomatic disease. Cytotoxic chemotherapy has no established role in the treatment of NF-2. Vascular endothelial growth factor (VEGF) is a critical mediator of tumor angiogenesis and vessel permeability. VEGF and its receptor VEGFR-1 have been detected in schwannomas, and increased levels of these factors correlate with increased rates of tumor growth. The use of bevacizumab has made many progresses in recent years in NF-2 patients. We report a case of a young patient treated with more than 100 administration of bevacizumab, with clinical and instrumental benefits.
Collapse
|
24
|
Zhao F, Yang Z, Chen Y, Zhou Q, Zhang J, Liu J, Wang B, He Q, Zhang L, Yu Y, Liu P. Deregulation of the Hippo Pathway Promotes Tumor Cell Proliferation Through YAP Activity in Human Sporadic Vestibular Schwannoma. World Neurosurg 2018; 117:e269-e279. [DOI: 10.1016/j.wneu.2018.06.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 06/01/2018] [Accepted: 06/02/2018] [Indexed: 12/21/2022]
|
25
|
Young ED, Ingram D, Metcalf-Doetsch W, Khan D, Al Sannaa G, Le Loarer F, Lazar AJF, Slopis J, Torres KE, Lev D, Pollock RE, McCutcheon IE. Clinicopathological variables of sporadic schwannomas of peripheral nerve in 291 patients and expression of biologically relevant markers. J Neurosurg 2018; 129:805-814. [PMID: 28885122 DOI: 10.3171/2017.2.jns153004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
OBJECTIVE While sporadic peripheral schwannomas (SPSs) are generally well treated with surgery, their biology is not well understood. Consequently, treatment options are limited. The aim of this study was to provide a comprehensive description of SPS. The authors describe clinicopathological features and treatment outcomes of patients harboring these tumors, and they assess expression of biomarkers using a clinically annotated tissue microarray. Together, these data give new insight into the biology and management of SPS. METHODS Patients presenting with a primary SPS between 1993 and 2011 (n = 291) were selected from an institutional registry to construct a clinical database. All patients underwent follow-up, and short- and long-term outcomes were assessed. Expression of relevant biomarkers was assessed using a new tissue microarray (n = 121). RESULTS SPSs were generally large (mean 5.5 cm) and frequently painful at presentation (55%). Most patients were treated with surgery (80%), the majority of whom experienced complete resolution (52%) or improvement (18%) of their symptoms. Tumors that were completely resected (85%) did not recur. Some patients experienced short-term (16%) and long-term (4%) complications postoperatively. Schwannomas expressed higher levels of platelet-derived growth factor receptor-β (2.1) than malignant peripheral nerve sheath tumors (MPNSTs) (1.5, p = 0.004) and neurofibromas (1.33, p = 0.007). Expression of human epidermal growth factor receptor-2 was greater in SPSs (0.91) than in MPNSTs (0.33, p = 0.002) and neurofibromas (0.33, p = 0.026). Epidermal growth factor receptor was expressed in far fewer SPS cells (10%) than in MPNSTs (58%, p < 0.0001) or neurofibromas (37%, p = 0.007). SPSs more frequently expressed cytoplasmic survivin (66% of tumor cells) than normal nerve (46% of cells), but SPS expressed nuclear survivin in fewer tumor cells than in MPNSTs (24% and 50%, respectively; p = 0.018). CONCLUSIONS Complete resection is curative for SPS. Left untreated, however, these tumors can cause significant morbidity, and not all patients are candidates for resection. SPSs express a pattern of biomarkers consistent with the dysregulation of the tumor suppressor merlin observed in neurofibromatosis Type 2-associated schwannomas, suggesting a shared etiology. This SPS pattern is distinct from that of other tumors of the peripheral nerve sheath.
Collapse
Affiliation(s)
- Eric D Young
- 1Department of Cancer Biology, University of Kansas Medical Center, Andover, Kansas
| | - Davis Ingram
- Departments of2Surgical Oncology
- 6The Sarcoma Research Center, University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | - Dilshad Khan
- 8Department of Internal Medicine, University of Toledo Medical Center, Toledo, Ohio
| | - Ghadah Al Sannaa
- 3Pathology and Laboratory Medicine
- 6The Sarcoma Research Center, University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | - Alexander J F Lazar
- 3Pathology and Laboratory Medicine
- 6The Sarcoma Research Center, University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | - Keila E Torres
- Departments of2Surgical Oncology
- 6The Sarcoma Research Center, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Dina Lev
- 10Department of Surgery, Sheba Medical Center, Israel; and
| | | | | |
Collapse
|
26
|
Petrilli AM, Garcia J, Bott M, Klingeman Plati S, Dinh CT, Bracho OR, Yan D, Zou B, Mittal R, Telischi FF, Liu XZ, Chang LS, Welling DB, Copik AJ, Fernández-Valle C. Ponatinib promotes a G1 cell-cycle arrest of merlin/NF2-deficient human schwann cells. Oncotarget 2018; 8:31666-31681. [PMID: 28427224 PMCID: PMC5458238 DOI: 10.18632/oncotarget.15912] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 02/20/2017] [Indexed: 02/04/2023] Open
Abstract
Neurofibromatosis type 2 (NF2) is a genetic syndrome that predisposes individuals to multiple benign tumors of the central and peripheral nervous systems, including vestibular schwannomas. Currently, there are no FDA approved drug therapies for NF2. Loss of function of merlin encoded by the NF2 tumor suppressor gene leads to activation of multiple mitogenic signaling cascades, including platelet-derived growth factor receptor (PDGFR) and SRC in Schwann cells. The goal of this study was to determine whether ponatinib, an FDA-approved ABL/SRC inhibitor, reduced proliferation and/or survival of merlin-deficient human Schwann cells (HSC). Merlin-deficient HSC had higher levels of phosphorylated PDGFRα/β, and SRC than merlin-expressing HSC. A similar phosphorylation pattern was observed in phospho-protein arrays of human vestibular schwannoma samples compared to normal HSC. Ponatinib reduced merlin-deficient HSC viability in a dose-dependent manner by decreasing phosphorylation of PDGFRα/β, AKT, p70S6K, MEK1/2, ERK1/2 and STAT3. These changes were associated with decreased cyclin D1 and increased p27Kip1levels, leading to a G1 cell-cycle arrest as assessed by Western blotting and flow cytometry. Ponatinib did not modulate ABL, SRC, focal adhesion kinase (FAK), or paxillin phosphorylation levels. These results suggest that ponatinib is a potential therapeutic agent for NF2-associated schwannomas and warrants further in vivo investigation.
Collapse
Affiliation(s)
- Alejandra M Petrilli
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Lake Nona-Orlando, FL 32827, USA
| | - Jeanine Garcia
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Lake Nona-Orlando, FL 32827, USA
| | - Marga Bott
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Lake Nona-Orlando, FL 32827, USA
| | - Stephani Klingeman Plati
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Lake Nona-Orlando, FL 32827, USA
| | - Christine T Dinh
- University of Miami Miller School of Medicine, Department of Otolaryngology, Miami, FL 33136, USA
| | - Olena R Bracho
- University of Miami Miller School of Medicine, Department of Otolaryngology, Miami, FL 33136, USA
| | - Denise Yan
- University of Miami Miller School of Medicine, Department of Otolaryngology, Miami, FL 33136, USA
| | - Bing Zou
- University of Miami Miller School of Medicine, Department of Otolaryngology, Miami, FL 33136, USA
| | - Rahul Mittal
- University of Miami Miller School of Medicine, Department of Otolaryngology, Miami, FL 33136, USA
| | - Fred F Telischi
- University of Miami Miller School of Medicine, Department of Otolaryngology, Miami, FL 33136, USA
| | - Xue-Zhong Liu
- University of Miami Miller School of Medicine, Department of Otolaryngology, Miami, FL 33136, USA
| | - Long-Sheng Chang
- Center for Childhood Cancer and Blood Diseases, The Research Institute at Nationwide Children's Hospital and Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA
| | - D Bradley Welling
- Center for Childhood Cancer and Blood Diseases, The Research Institute at Nationwide Children's Hospital and Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA.,Current Affiliation: Department of Otolaryngology, Massachusetts Eye and Ear Infirmary, Massachusetts General Hospital and Harvard University, Boston, MA 02114, USA
| | - Alicja J Copik
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Lake Nona-Orlando, FL 32827, USA
| | - Cristina Fernández-Valle
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Lake Nona-Orlando, FL 32827, USA
| |
Collapse
|
27
|
Targeting the cMET pathway augments radiation response without adverse effect on hearing in NF2 schwannoma models. Proc Natl Acad Sci U S A 2018; 115:E2077-E2084. [PMID: 29440379 DOI: 10.1073/pnas.1719966115] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Neurofibromatosis type II (NF2) is a disease that needs new solutions. Vestibular schwannoma (VS) growth causes progressive hearing loss, and the standard treatment, including surgery and radiotherapy, can further damage the nerve. There is an urgent need to identify an adjunct therapy that, by enhancing the efficacy of radiation, can help lower the radiation dose and preserve hearing. The mechanisms underlying deafness in NF2 are still unclear. One of the major limitations in studying tumor-induced hearing loss is the lack of mouse models that allow hearing testing. Here, we developed a cerebellopontine angle (CPA) schwannoma model that faithfully recapitulates the tumor-induced hearing loss. Using this model, we discovered that cMET blockade by crizotinib (CRZ) enhanced schwannoma radiosensitivity by enhancing DNA damage, and CRZ treatment combined with low-dose radiation was as effective as high-dose radiation. CRZ treatment had no adverse effect on hearing; however, it did not affect tumor-induced hearing loss, presumably because cMET blockade did not change tumor hepatocyte growth factor (HGF) levels. This cMET gene knockdown study independently confirmed the role of the cMET pathway in mediating the effect of CRZ. Furthermore, we evaluated the translational potential of cMET blockade in human schwannomas. We found that human NF2-associated and sporadic VSs showed significantly elevated HGF expression and cMET activation compared with normal nerves, which correlated with tumor growth and cyst formation. Using organoid brain slice culture, cMET blockade inhibited the growth of patient-derived schwannomas. Our findings provide the rationale and necessary data for the clinical translation of combined cMET blockade with radiation therapy in patients with NF2.
Collapse
|
28
|
Yoon YJ, Suh MJ, Lee HY, Lee HJ, Choi EH, Moon IS, Song K. Anti-tumor effects of cold atmospheric pressure plasma on vestibular schwannoma demonstrate its feasibility as an intra-operative adjuvant treatment. Free Radic Biol Med 2018; 115:43-56. [PMID: 29138018 DOI: 10.1016/j.freeradbiomed.2017.11.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 11/07/2017] [Accepted: 11/10/2017] [Indexed: 12/12/2022]
Abstract
Vestibular schwannoma (VS), although a benign intracranial tumor, causes morbidities by brainstem compression. Since chemotherapy is not very effective in most Nf2-negative schwannomas, surgical removal or radiation therapy is required. However, depending on the size and site of the tumor, these approaches may cause loss of auditory or vestibular functions, and severely decrease the post-surgical wellbeing. Here, we examined the feasibility of cold atmospheric pressure plasma (CAP) as an intra-operative adjuvant treatment for VS after surgery. Cell death was efficiently induced in both human HEI-193 and mouse SC4 VS cell lines upon exposure to CAP for seven minutes. Interestingly, both apoptosis and necroptosis were simultaneously induced by CAP treatment, and cell death was not completely inhibited by pan-caspase and receptor-interacting serine/threonine-protein kinase 1 (RIK1) inhibitors. Upon CAP exposure, cell death phenotype was similarly observed in patient-derived primary VS cells and tumor mass. In addition, CAP exposure after the surgical removal of primary tumor efficiently inhibited tumor recurrence in SC4-grafted mouse models. Collectively, these results strongly suggest that CAP should be developed as an efficient adjuvant treatment for VS after surgery to eliminate the possible remnant tumor cells, and to minimize the surgical area in the brain for post-surgical wellbeing.
Collapse
Affiliation(s)
- Yeo Jun Yoon
- Department of Biochemistry, College of Life Science & Biotechnology, Yonsei University, Seoul 03722, Korea
| | - Michelle J Suh
- Department of Otorhinolaryngology, College of Medicine, Yonsei University, Seoul 03722, Korea
| | - Hyun Young Lee
- Department of Electrical Engineering, Pusan National University, Pusan 46269, Korea
| | - Hae June Lee
- Department of Electrical Engineering, Pusan National University, Pusan 46269, Korea
| | - Eun Ha Choi
- Plasma Bioscience Research Center and Department of Electrical and Biological Physics, Kwangwoon University, Seoul 01897, Korea
| | - In Seok Moon
- Department of Otorhinolaryngology, College of Medicine, Yonsei University, Seoul 03722, Korea.
| | - Kiwon Song
- Department of Biochemistry, College of Life Science & Biotechnology, Yonsei University, Seoul 03722, Korea.
| |
Collapse
|
29
|
Could IGF-I levels play a neuroprotective role in patients with large vestibular schwannomas? Future Sci OA 2017; 4:FSO260. [PMID: 29379636 PMCID: PMC5778376 DOI: 10.4155/fsoa-2017-0103] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Accepted: 09/29/2017] [Indexed: 11/17/2022] Open
Abstract
Aim To evaluate the possible superiority of outcome in patients with elevated IGF-I levels after vestibular schwannoma (VS) resection. Patients & methods This retrospective study included 65 patients (34 male, 52.3%) with VS operated in between January 2009 and April 2014 (follow-up 3.2 ± 0.7 years). Preoperative or postoperative IGF-I levels were identified for each patient. Results Patients were divided into two groups: Group A (small size tumor), 56 patients; and Group B (large size tumor), 9 cases. IGF-I levels in Group A (195.8 ± 32.9 ng/ml) were compared with those of Group B (242.2 ± 22.2 ng/ml) and were found to have statistically significant difference (p = 0.001). Conclusion Increased IGF-I levels could hold a key role in nerve recovery in patients undergoing surgical resection of large VS.
Collapse
|
30
|
Zhang N, Chen J, Ferraro GB, Wu L, Datta M, Jain RK, Plotkin SR, Stemmer-Rachamimov A, Xu L. Anti-VEGF treatment improves neurological function in tumors of the nervous system. Exp Neurol 2017; 299:326-333. [PMID: 28911884 DOI: 10.1016/j.expneurol.2017.09.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Revised: 07/05/2017] [Accepted: 09/10/2017] [Indexed: 01/17/2023]
Abstract
Research of various diseases of the nervous system has shown that VEGF has direct neuroprotective effects in the central and peripheral nervous systems, and indirect effects on improving neuronal vessel perfusion which leads to nerve protection. In the tumors of the nervous system, VEGF plays a critical role in tumor angiogenesis and tumor progression. The effect of anti-VEGF treatment on nerve protection and function has been recently reported - by normalizing the tumor vasculature, anti-VEGF treatment is able to relieve nerve edema and deliver oxygen more efficiently into the nerve, thus reducing nerve damage and improving nerve function. This review aims to summarize the divergent roles of VEGF in diseases of the nervous system and the recent findings of anti-VEGF therapy in nerve damage/regeneration and function in tumors, specifically, in Neurofibromatosis type 2 associated schwannomas.
Collapse
Affiliation(s)
- Na Zhang
- Edwin Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Jie Chen
- Edwin Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Gino B Ferraro
- Edwin Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Limeng Wu
- Edwin Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Meenal Datta
- Edwin Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Department of Chemical and Biological Engineering, Tufts University, Medford, MA 02155, USA
| | - Rakesh K Jain
- Edwin Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Scott R Plotkin
- Department of Neurology and Cancer Center, Massachusetts General Hospital, USA
| | - Anat Stemmer-Rachamimov
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
| | - Lei Xu
- Edwin Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
31
|
Ruggieri M, Praticò AD, Serra A, Maiolino L, Cocuzza S, Di Mauro P, Licciardello L, Milone P, Privitera G, Belfiore G, Di Pietro M, Di Raimondo F, Romano A, Chiarenza A, Muglia M, Polizzi A, Evans DG. Childhood neurofibromatosis type 2 (NF2) and related disorders: from bench to bedside and biologically targeted therapies. ACTA OTORHINOLARYNGOLOGICA ITALICA 2017; 36:345-367. [PMID: 27958595 PMCID: PMC5225790 DOI: 10.14639/0392-100x-1093] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 04/29/2016] [Indexed: 12/22/2022]
Abstract
Neurofibromatosis type 2 [NF2; MIM # 101000] is an autosomal dominant disorder characterised by the occurrence of vestibular schwannomas (VSs), schwannomas of other cranial, spinal and cutaneous nerves, cranial and spinal meningiomas and/or other central nervous system (CNS) tumours (e.g., ependymomas, astrocytomas). Additional features include early onset cataracts, optic nerve sheath meningiomas, retinal hamartomas, dermal schwannomas (i.e., NF2-plaques), and (few) café-au-lait spots. Clinically, NF2 children fall into two main groups: (1) congenital NF2 - with bilateral VSs detected as early as the first days to months of life, which can be stable/asymptomatic for one-two decades and suddenly progress; and (2) severe pre-pubertal (Wishart type) NF2- with multiple (and rapidly progressive) CNS tumours other-than-VS, which usually present first, years before VSs [vs. the classical adult (Gardner type) NF2, with bilateral VSs presenting in young adulthood, sometimes as the only disease feature]. Some individuals can develop unilateral VS associated with ipsilateral meningiomas or multiple schwannomas localised to one part of the peripheral nervous system [i.e., mosaic NF2] or multiple non-VS, non-intradermal cranial, spinal and peripheral schwannomas (histologically proven) [schwannomatosis]. NF2 is caused by mutations in the NF2 gene at chromosome 22q12.1, which encodes for a protein called merlin or schwannomin, most similar to the exrin-readixin-moesin (ERM) proteins; mosaicNF2 is due to mosaic phenomena for the NF2 gene, whilst schwannomatosis is caused by coupled germ-line and mosaic mutations either in the SMARCB1 gene [SWNTS1; MIM # 162091] or the LZTR1 gene [SWNTS2; MIM # 615670] both falling within the 22q region and the NF2 gene. Data driven from in vitro and animal studies on the merlin pathway [e.g., post-translational and upstream/downstream regulation] allowed biologically targeted treatment strategies [e.g., Lapatinib, Erlotinib, Bevacizumab] aimed to multiple tumour shrinkage and/or regression and tumour arrest of progression with functional improvement.
Collapse
Affiliation(s)
- M Ruggieri
- Unit of Rare Diseases of the Nervous System in Childhood, Department of Clinical and Experimental Medicine, Section of Pediatrics and Child Neuropsychiatry, University of Catania, Italy
| | - A D Praticò
- Unit of Rare Diseases of the Nervous System in Childhood, Department of Clinical and Experimental Medicine, Section of Pediatrics and Child Neuropsychiatry, University of Catania, Italy.,Department of Biomedical and Biotechnological Sciences, University of Catania, Italy
| | - A Serra
- Department of Medical and Surgical Sciences and Advanced Technologies "G. Ingrassia", Institute of Otorhinolaryngology, University of Catania, Italy
| | - L Maiolino
- Department of Medical and Surgical Sciences and Advanced Technologies "G. Ingrassia", Institute of Otorhinolaryngology, University of Catania, Italy
| | - S Cocuzza
- Department of Medical and Surgical Sciences and Advanced Technologies "G. Ingrassia", Institute of Otorhinolaryngology, University of Catania, Italy
| | - P Di Mauro
- Department of Medical and Surgical Sciences and Advanced Technologies "G. Ingrassia", Institute of Otorhinolaryngology, University of Catania, Italy
| | - L Licciardello
- Department of Medical and Surgical Sciences and Advanced Technologies "G. Ingrassia", Institute of Otorhinolaryngology, University of Catania, Italy
| | - P Milone
- Department of Medical and Surgical Sciences and Advanced Technologies "G. Ingrassia", Institute of Radiology, University of Catania, Italy
| | - G Privitera
- Department of Medical and Surgical Sciences and Advanced Technologies "G. Ingrassia", Institute of Radiology, University of Catania, Italy
| | - G Belfiore
- Unit of Paediatric Radiology, AOU "Policlinico-Vittorio Emanuele", Catania, Italy
| | - M Di Pietro
- Department of Medical and Surgical Sciences and Advanced Technologies "G. Ingrassia", Institute of Ophthalmology, University of Catania, Italy
| | - F Di Raimondo
- Division of Hematology, AOU "Policlinico-Vittorio Emanuele", University of Catania, Italy
| | - A Romano
- Division of Hematology, AOU "Policlinico-Vittorio Emanuele", University of Catania, Italy
| | - A Chiarenza
- Division of Hematology, AOU "Policlinico-Vittorio Emanuele", University of Catania, Italy
| | - M Muglia
- Unit of Genetics, Institute of Neurological Sciences, National Research Council, Piano Lago di Mangone, Italy
| | - A Polizzi
- National Centre for Rare Disease, Istituto Superiore di Sanità, Rome, Italy.,Institute of Neurological Sciences, National Research Council, Catania, Italy
| | - D G Evans
- Genomic Medicine, University of Manchester, Manchester Academic Health Science Centre, Institute of Human Development, Central Manchester NHS Foundation Trust, Manchester Royal Infirmary, Manchester, UK
| |
Collapse
|
32
|
Abstract
Neurofibromatosis (NF) encompasses a group of distinct genetic disorders in which affected children and adults are prone to the development of benign and malignant tumors of the nervous system. The purpose of this review is to discuss the spectrum of CNS tumors arising in individuals with NF type 1 (NF1) and NF type 2 (NF2), their pathogenic etiologies, and the rational treatment options for people with these neoplasms. This article is a review of preclinical and clinical data focused on the treatment of the most common CNS tumors encountered in children and adults with NF1 and NF2. Although children with NF1 are at risk for developing low-grade gliomas of the optic pathway and brainstem, individuals with NF2 typically manifest low-grade tumors affecting the cranial nerves (vestibular schwannomas), meninges (meningiomas), and spinal cord (ependymomas). With the identification of the NF1 and NF2 genes, molecularly targeted therapies are beginning to emerge, as a result of a deeper understanding of the mechanisms underlying NF1 and NF2 protein function. As we enter into an era of precision oncology, a more comprehensive awareness of the factors that increase the risk of developing CNS cancers in affected individuals, coupled with a greater appreciation of the cellular and molecular determinants that maintain tumor growth, will undoubtedly yield more effective therapies for these cancer predisposition syndromes.
Collapse
Affiliation(s)
- Jian Campian
- All authors: Washington University School of Medicine, St. Louis, MO
| | - David H Gutmann
- All authors: Washington University School of Medicine, St. Louis, MO
| |
Collapse
|
33
|
Kim BG, Fujita T, Stankovic KM, Welling DB, Moon IS, Choi JY, Yun J, Kang JS, Lee JD. Sulforaphane, a natural component of broccoli, inhibits vestibular schwannoma growth in vitro and in vivo. Sci Rep 2016; 6:36215. [PMID: 27805058 PMCID: PMC5090244 DOI: 10.1038/srep36215] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 10/12/2016] [Indexed: 12/25/2022] Open
Abstract
Vestibular schwannoma (VS) is an intracranial tumor that causes significant morbidity, including hearing loss, tinnitus, dizziness, and possibly even death from brainstem compression. However, FDA-approved pharmacologic treatments for VS do not exist. Sulforaphane (SFN) is a naturally occurring isothiocyanate found in cruciferous vegetables, such as broccoli, with potent chemoprotective effects in several cell types. Our objective was to determine whether SFN is effective against VS in vitro and in vivo. Human primary VS cells, HEI-193 schwannoma cells, and SC4 Nf2−/− Schwann cells were used to investigate the inhibitory effects of SFN in vitro. Cell proliferation was assessed by bromodeoxyuridine (BrdU) incorporation, and cell viability and metabolic activity was calculated by MTT assay. Apoptosis was measured by flow cytometry, terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) staining, and Western blot for cleaved caspases. A mouse model with a murine schwannoma allograft was also used to examine the antitumor activity of SFN. SFN exhibited significant antiproliferative activity in schwannoma cells in vitro, via the inhibition of HDAC activity and the activation of ERK. SFN treatment induced apoptosis and cell cycle arrest at the G2/M phase. SFN also significantly inhibited schwannoma growth in vivo. Our preclinical studies motivate a future prospective clinical study of SFN for the treatment of VS.
Collapse
Affiliation(s)
- Bo Gyung Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, Soonchunhyang University College of Medicine, Bucheon, Korea
| | - Takeshi Fujita
- Department of Otolaryngology, Kindai University Faculty of Medicine, Osaka, Japan.,Eaton Peabody Laboratories, Department of Otolaryngology, Massachusetts Eye and Ear Infirmary, Boston, MA, USA.,Department of Otology and Laryngology, Harvard Medical School, Boston, MA, USA
| | - Konstantina M Stankovic
- Eaton Peabody Laboratories, Department of Otolaryngology, Massachusetts Eye and Ear Infirmary, Boston, MA, USA.,Department of Otology and Laryngology, Harvard Medical School, Boston, MA, USA
| | - D Bradley Welling
- Department of Otology and Laryngology, Harvard Medical School, Boston, MA, USA
| | - In Seok Moon
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, Korea
| | - Jae Young Choi
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, Korea
| | - Jieun Yun
- Bioevaluation Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Korea
| | - Jong Soon Kang
- Bioevaluation Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Korea
| | - Jong Dae Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, Soonchunhyang University College of Medicine, Bucheon, Korea.,Eaton Peabody Laboratories, Department of Otolaryngology, Massachusetts Eye and Ear Infirmary, Boston, MA, USA.,Department of Otology and Laryngology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
34
|
Pećina-Šlaus N, Kafka A, Lechpammer M. Molecular Genetics of Intracranial Meningiomas with Emphasis on Canonical Wnt Signalling. Cancers (Basel) 2016; 8:E67. [PMID: 27429002 PMCID: PMC4963809 DOI: 10.3390/cancers8070067] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 06/27/2016] [Accepted: 07/07/2016] [Indexed: 12/15/2022] Open
Abstract
Research over the last decade recognized the importance of novel molecular pathways in pathogenesis of intracranial meningiomas. In this review, we focus on human brain tumours meningiomas and the involvement of Wnt signalling pathway genes and proteins in this common brain tumour, describing their known functional effects. Meningiomas originate from the meningeal layers of the brain and the spinal cord. Most meningiomas have benign clinical behaviour and are classified as grade I by World Health Organization (WHO). However, up to 20% histologically classified as atypical (grade II) or anaplastic (grade III) are associated with higher recurrent rate and have overall less favourable clinical outcome. Recently, there is emerging evidence that multiple signalling pathways including Wnt pathway contribute to the formation and growth of meningiomas. In the review we present the synopsis on meningioma histopathology and genetics and discuss our research regarding Wnt in meningioma. Epithelial-to-mesenchymal transition, a process in which Wnt signalling plays an important role, is shortly discussed.
Collapse
Affiliation(s)
- Nives Pećina-Šlaus
- Laboratory of Neuro-Oncology, Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Salata 12, Zagreb 10000, Croatia.
- Department of Biology, School of Medicine, University of Zagreb, Salata 3, Zagreb 10000, Croatia.
| | - Anja Kafka
- Laboratory of Neuro-Oncology, Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Salata 12, Zagreb 10000, Croatia.
- Department of Biology, School of Medicine, University of Zagreb, Salata 3, Zagreb 10000, Croatia.
| | - Mirna Lechpammer
- Department of Pathology & Laboratory Medicine, University of California, Davis, Medical Center 4400 V Street, Sacramento, CA 95817, USA.
| |
Collapse
|
35
|
Matsubara F, Katabami T, Asai S, Ariizumi Y, Maeda I, Takagi M, Keely MM, Ono K, Maekawa T, Nakamura Y, Tanaka Y, Sasano H. Immunohistochemical analysis of insulin-like growth factor 1 and its receptor in sporadic schwannoma/peripheral nerve sheath tumour. J Int Med Res 2016; 44:662-72. [PMID: 27091859 PMCID: PMC5536698 DOI: 10.1177/0300060516637768] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 02/15/2016] [Indexed: 01/17/2023] Open
Abstract
Objective To investigate the immunohistochemical localization of insulin-like growth factor 1 (IGF-1) and IGF-1 receptor (IGF-1R) in archival specimens of sporadic schwannoma. Method This study retrospectively analysed the immunolocalization of IGF-1 and IGF-1R in schwannoma specimens collected from all patients with sporadic schwannoma that were treated by two institutions in Japan. The study also evaluated the association between the extent of the IGF-1 and IGF-1R immunoreactivity and several clinicopathological characteristics (age, sex and maximum tumour dimension). Results The study examined a total of 29 sporadic schwannoma specimens. IGF-1 and IGF-1R immunoreactivity was detected in the majority of the specimens regardless of their anatomical location. IGF-1 and IGF-1R were not co-localized. There was no association between the extent of the IGF-1 and IGF-1R immunoreactivity and the clinicopathological characteristics of the patients. Conclusions As IGF-1 and IGF-1R immunoreactivity was detected in the majority of sporadic schwannoma specimens regardless of their anatomical location, these findings suggest that an IGF-1/IGF-1R loop could play a role in the tumorigenesis and progression of schwannomas via an autocrine–paracrine mechanism.
Collapse
Affiliation(s)
- Fumiaki Matsubara
- Department of Internal Medicine, Division of Metabolism and Endocrinology, St Marianna University School of Medicine, Kawasaki, Kanagawa, Japan
| | - Takuyuki Katabami
- Department of Internal Medicine, Division of Metabolism and Endocrinology, St Marianna University School of Medicine Yokohama City Seibu Hospital, Yokohama, Kanagawa, Japan
| | - Shiko Asai
- Department of Internal Medicine, Division of Metabolism and Endocrinology, St Marianna University School of Medicine Yokohama City Seibu Hospital, Yokohama, Kanagawa, Japan
| | - Yasushi Ariizumi
- Department of Pathology, St Marianna University School of Medicine, Kawasaki, Kanagawa, Japan
| | - Ichiro Maeda
- Department of Pathology, St Marianna University School of Medicine, Kawasaki, Kanagawa, Japan
| | - Masayuki Takagi
- Department of Pathology, St Marianna University School of Medicine, Kawasaki, Kanagawa, Japan
| | - May McNamara Keely
- Department of Anatomical Pathology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Katsuhiko Ono
- Department of Anatomical Pathology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Takashi Maekawa
- Department of Anatomical Pathology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Yasuhiro Nakamura
- Department of Anatomical Pathology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Yasushi Tanaka
- Department of Internal Medicine, Division of Metabolism and Endocrinology, St Marianna University School of Medicine, Kawasaki, Kanagawa, Japan
| | - Hironobu Sasano
- Department of Anatomical Pathology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| |
Collapse
|
36
|
Tumor Biology of Vestibular Schwannoma: A Review of Experimental Data on the Determinants of Tumor Genesis and Growth Characteristics. Otol Neurotol 2016; 36:1128-36. [PMID: 26049313 DOI: 10.1097/mao.0000000000000788] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
OBJECTIVE Provide an overview of the literature on vestibular schwannoma biology with special attention to tumor behavior and targeted therapy. BACKGROUND Vestibular schwannomas are benign tumors originating from the eighth cranial nerve and arise due to inactivation of the NF2 gene and its product merlin. Unraveling the biology of these tumors helps to clarify their growth pattern and is essential in identifying therapeutic targets. METHODS PubMed search for English-language articles on vestibular schwannoma biology from 1994 to 2014. RESULTS Activation of merlin and its role in cell signaling seem as key aspects of vestibular schwannoma biology. Merlin is regulated by proteins such as CD44, Rac, and myosin phosphatase-targeting subunit 1. The tumor-suppressive functions of merlin are related to receptor tyrosine kinases, such as the platelet-derived growth factor receptor and vascular endothelial growth factor receptor. Merlin mediates the Hippo pathway and acts within the nucleus by binding E3 ubiquiting ligase CRL4. Angiogenesis is an important mechanism responsible for the progression of these tumors and is affected by processes such as hypoxia and inflammation. Inhibiting angiogenesis by targeting vascular endothelial growth factor receptor seems to be the most successful pharmacologic strategy, but additional therapeutic options are emerging. CONCLUSION Over the years, the knowledge on vestibular schwannoma biology has significantly increased. Future research should focus on identifying new therapeutic targets by investigating vestibular schwannoma (epi)genetics, merlin function, and tumor behavior. Besides identifying novel targets, testing new combinations of existing treatment strategies can further improve vestibular schwannoma therapy.
Collapse
|
37
|
Birth Size Characteristics and Risk of Brain Tumors in Early Adulthood: Results from a Swedish Cohort Study. Cancer Epidemiol Biomarkers Prev 2016; 25:678-85. [DOI: 10.1158/1055-9965.epi-15-1096] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 01/13/2016] [Indexed: 11/16/2022] Open
|
38
|
Ruggieri M, Praticò AD, Evans DG. Diagnosis, Management, and New Therapeutic Options in Childhood Neurofibromatosis Type 2 and Related Forms. Semin Pediatr Neurol 2015; 22:240-58. [PMID: 26706012 DOI: 10.1016/j.spen.2015.10.008] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Neurofibromatosis type 2 (NF2; MIM # 101000) is an autosomal dominant disorder characterized by the development of vestibular schwannomas (VSs); schwannomas of other cranial, spinal, and cutaneous nerves; cranial and spinal meningiomas or other central nervous system tumors (eg, ependymomas and astrocytomas) or both. Additional features include eye (eg, early onset cataracts, optic nerve sheath meningiomas, retinal or pigment epithelial hamartomas or both, and epithelial retinal membranes) and skin abnormalities (eg, flat dermal [NF2 plaques] or spherical subcutaneous nodular schwannomas or both, and few, atypical café-au-lait spots). Clinically, children with NF2 fall into 2 main groups: (1) congenital NF2 with bilateral VSs detected as early as the first days to months of life, which can be stable or asymptomatic for 1-2 decades and suddenly progress; and (2) severe prepubertal (Wishart type) NF2 with multiple (and rapidly progressive) central nervous system tumors other-than-VS, which usually presents first, years before VSs, both associated with more marked skin and eye involvement (vs the classical mild adult [Gardner type] NF2, with bilateral VSs presenting in young adulthood, sometimes as the only disease feature). Individuals manifesting unilateral VS associated with ipsilateral meningiomas or multiple schwannomas localized to a part of the peripheral nervous system have mosaic or segmental NF2; individuals developing multiple nonVS, nonintradermal cranial, spinal, and peripheral schwannomas (histologically proven) have schwannomatosis (SWNTS). NF2 is caused by mutations in the NF2 gene at chromosome 22q12.1, which encodes for a protein called merlin or schwannomin, most similar to the exrin-readixin-moesin proteins; mosaic or segmental NF2 is because of mosaic phenomena for the NF2 gene, whereas SWNTS is caused by germline and possibly mosaic mutations either in the SMARCB1 gene (SWNTS1; MIM # 162091) or the LZTR1 gene (SWNTS2; MIM # 615670), both falling within the 22q region. Data driven from in vitro and animal studies on the merlin pathway allowed biologically targeted treatment strategies (employing Lapatinib, Erlotinib, Everolimus, Picropodophyllin, OSU.03012, Imatinib, Sorafenib, and Bevacizumab) aimed at multiple tumor shrinkage or regression or both and tumor arrest of progression with functional improvement.
Collapse
Affiliation(s)
- Martino Ruggieri
- Department of Clinical and Experimental Medicine, Section of Pediatrics and Child Neuropsychiatry, University of Catania, Catania, Italy.
| | - Andrea Domenico Praticò
- Department of Clinical and Experimental Medicine, Section of Pediatrics and Child Neuropsychiatry, University of Catania, Catania, Italy; Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Dafydd Gareth Evans
- Genomic Medicine, Manchester Academic Health Science Centre, Institute of Human Development, University of Manchester, Central Manchester NHS Foundation Trust, Manchester, UK; Department of Genetic Medicine, Manchester Academic Health Science Centre, Central Manchester NHS Foundation Trust, Manchester Royal Infirmary, Manchester, UK
| |
Collapse
|
39
|
Hilton DA, Shivane A, Kirk L, Bassiri K, Enki DG, Hanemann CO. Activation of multiple growth factor signalling pathways is frequent in meningiomas. Neuropathology 2015; 36:250-61. [DOI: 10.1111/neup.12266] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 09/25/2015] [Accepted: 09/26/2015] [Indexed: 01/14/2023]
Affiliation(s)
- David A Hilton
- Department of Cellular and Anatomical Pathology; Derriford Hospital; Plymouth UK
| | - Aditya Shivane
- Department of Cellular and Anatomical Pathology; Derriford Hospital; Plymouth UK
| | - Leanne Kirk
- Department of Cellular and Anatomical Pathology; Derriford Hospital; Plymouth UK
| | - Kayleigh Bassiri
- Institute of Translational and Stratified Medicine; Plymouth University Peninsula Schools of Medicine & Dentistry; Plymouth UK
| | - Doyo G Enki
- Plymouth University Peninsula Schools of Medicine & Dentistry; Plymouth UK
| | - C Oliver Hanemann
- Institute of Translational and Stratified Medicine; Plymouth University Peninsula Schools of Medicine & Dentistry; Plymouth UK
| |
Collapse
|
40
|
Anti-VEGF treatment improves neurological function and augments radiation response in NF2 schwannoma model. Proc Natl Acad Sci U S A 2015; 112:14676-81. [PMID: 26554010 DOI: 10.1073/pnas.1512570112] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Hearing loss is the main limitation of radiation therapy for vestibular schwannoma (VS), and identifying treatment options that minimize hearing loss are urgently needed. Treatment with bevacizumab is associated with tumor control and hearing improvement in neurofibromatosis type 2 (NF2) patients; however, its effect is not durable and its mechanism of action on nerve function is unknown. We modeled the effect anti-VEGF therapy on neurological function in the sciatic nerve model and found that it improves neurological function by alleviating tumor edema, which may further improve results by decreasing muscle atrophy and increasing nerve regeneration. Using a cranial window model, we showed that anti-VEGF treatment may achieve these effects via normalizing the tumor vasculature, improving vessel perfusion, and delivery of oxygenation. It is known that oxygen is a potent radiosensitizer; therefore, we further demonstrated that combining anti-VEGF with radiation therapy can achieve a better tumor control and help lower the radiation dose and, thus, minimize radiation-related neurological toxicity. Our results provide compelling rationale for testing combined therapy in human VS.
Collapse
|
41
|
Bhowmik A, Khan R, Ghosh MK. Blood brain barrier: a challenge for effectual therapy of brain tumors. BIOMED RESEARCH INTERNATIONAL 2015; 2015:320941. [PMID: 25866775 PMCID: PMC4383356 DOI: 10.1155/2015/320941] [Citation(s) in RCA: 173] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Revised: 10/27/2014] [Accepted: 11/04/2014] [Indexed: 01/01/2023]
Abstract
Brain tumors are one of the most formidable diseases of mankind. They have only a fair to poor prognosis and high relapse rate. One of the major causes of extreme difficulty in brain tumor treatment is the presence of blood brain barrier (BBB). BBB comprises different molecular components and transport systems, which in turn create efflux machinery or hindrance for the entry of several drugs in brain. Thus, along with the conventional techniques, successful modification of drug delivery and novel therapeutic strategies are needed to overcome this obstacle for treatment of brain tumors. In this review, we have elucidated some critical insights into the composition and function of BBB and along with it we have discussed the effective methods for delivery of drugs to the brain and therapeutic strategies overcoming the barrier.
Collapse
Affiliation(s)
- Arijit Bhowmik
- Signal Transduction in Cancer and Stem Cells Laboratory, Division of Cancer Biology and Inflammatory Disorder, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), 4 Raja S.C. Mullick Road, Jadavpur, Kolkata 700 032, India
| | - Rajni Khan
- Signal Transduction in Cancer and Stem Cells Laboratory, Division of Cancer Biology and Inflammatory Disorder, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), 4 Raja S.C. Mullick Road, Jadavpur, Kolkata 700 032, India
| | - Mrinal Kanti Ghosh
- Signal Transduction in Cancer and Stem Cells Laboratory, Division of Cancer Biology and Inflammatory Disorder, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), 4 Raja S.C. Mullick Road, Jadavpur, Kolkata 700 032, India
| |
Collapse
|
42
|
Schroeder RD, Angelo LS, Kurzrock R. NF2/merlin in hereditary neurofibromatosis 2 versus cancer: biologic mechanisms and clinical associations. Oncotarget 2014; 5:67-77. [PMID: 24393766 PMCID: PMC3960189 DOI: 10.18632/oncotarget.1557] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Inactivating germline mutations in the tumor suppressor gene NF2 cause the hereditary syndrome neurofibromatosis 2, which is characterized by the development of neoplasms of the nervous system, most notably bilateral vestibular schwannoma. Somatic NF2 mutations have also been reported in a variety of cancers, but interestingly these mutations do not cause the same tumors that are common in hereditary neurofibromatosis 2, even though the same gene is involved and there is overlap in the site of mutations. This review highlights cancers in which somatic NF2 mutations have been found, the cell signaling pathways involving NF2/merlin, current clinical trials treating neurofibromatosis 2 patients, and preclinical findings that promise to lead to new targeted therapies for both cancers harboring NF2 mutations and neurofibromatosis 2 patients.
Collapse
Affiliation(s)
- Rebecca Dunbar Schroeder
- Department of Investigational Cancer Therapeutics (Phase I Program), The University of Texas MD Anderson Cancer Center, Houston, TX
| | | | | |
Collapse
|
43
|
Faria CC, Golbourn BJ, Dubuc AM, Remke M, Diaz RJ, Agnihotri S, Luck A, Sabha N, Olsen S, Wu X, Garzia L, Ramaswamy V, Mack SC, Wang X, Leadley M, Reynaud D, Ermini L, Post M, Northcott PA, Pfister SM, Croul SE, Kool M, Korshunov A, Smith CA, Taylor MD, Rutka JT. Foretinib is effective therapy for metastatic sonic hedgehog medulloblastoma. Cancer Res 2014; 75:134-46. [PMID: 25391241 DOI: 10.1158/0008-5472.can-13-3629] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Medulloblastoma is the most common malignant pediatric brain tumor, with metastases present at diagnosis conferring a poor prognosis. Mechanisms of dissemination are poorly understood and metastatic lesions are genetically divergent from the matched primary tumor. Effective and less toxic therapies that target both compartments have yet to be identified. Here, we report that the analysis of several large nonoverlapping cohorts of patients with medulloblastoma reveals MET kinase as a marker of sonic hedgehog (SHH)-driven medulloblastoma. Immunohistochemical analysis of phosphorylated, active MET kinase in an independent patient cohort confirmed its correlation with increased tumor relapse and poor survival, suggesting that patients with SHH medulloblastoma may benefit from MET-targeted therapy. In support of this hypothesis, we found that the approved MET inhibitor foretinib could suppress MET activation, decrease tumor cell proliferation, and induce apoptosis in SHH medulloblastomas in vitro and in vivo. Foretinib penetrated the blood-brain barrier and was effective in both the primary and metastatic tumor compartments. In established mouse xenograft or transgenic models of metastatic SHH medulloblastoma, foretinib administration reduced the growth of the primary tumor, decreased the incidence of metastases, and increased host survival. Taken together, our results provide a strong rationale to clinically evaluate foretinib as an effective therapy for patients with SHH-driven medulloblastoma.
Collapse
Affiliation(s)
- Claudia C Faria
- Arthur and Sonia Labatt Brain Tumour Research Centre, Hospital for Sick Children, Toronto, Canada. Department of Neurosurgery, Hospital de Santa Maria, Centro Hospitalar Lisboa Norte, EPE, Lisbon, Portugal
| | - Brian J Golbourn
- Arthur and Sonia Labatt Brain Tumour Research Centre, Hospital for Sick Children, Toronto, Canada
| | - Adrian M Dubuc
- Arthur and Sonia Labatt Brain Tumour Research Centre, Hospital for Sick Children, Toronto, Canada. Program in Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, Canada
| | - Marc Remke
- Arthur and Sonia Labatt Brain Tumour Research Centre, Hospital for Sick Children, Toronto, Canada. Program in Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, Canada
| | - Roberto J Diaz
- Arthur and Sonia Labatt Brain Tumour Research Centre, Hospital for Sick Children, Toronto, Canada
| | - Sameer Agnihotri
- Arthur and Sonia Labatt Brain Tumour Research Centre, Hospital for Sick Children, Toronto, Canada
| | - Amanda Luck
- Arthur and Sonia Labatt Brain Tumour Research Centre, Hospital for Sick Children, Toronto, Canada
| | - Nesrin Sabha
- Arthur and Sonia Labatt Brain Tumour Research Centre, Hospital for Sick Children, Toronto, Canada
| | - Samantha Olsen
- Arthur and Sonia Labatt Brain Tumour Research Centre, Hospital for Sick Children, Toronto, Canada
| | - Xiaochong Wu
- Arthur and Sonia Labatt Brain Tumour Research Centre, Hospital for Sick Children, Toronto, Canada. Program in Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, Canada
| | - Livia Garzia
- Arthur and Sonia Labatt Brain Tumour Research Centre, Hospital for Sick Children, Toronto, Canada. Program in Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, Canada
| | - Vijay Ramaswamy
- Arthur and Sonia Labatt Brain Tumour Research Centre, Hospital for Sick Children, Toronto, Canada. Program in Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, Canada
| | - Stephen C Mack
- Arthur and Sonia Labatt Brain Tumour Research Centre, Hospital for Sick Children, Toronto, Canada. Program in Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, Canada
| | - Xin Wang
- Arthur and Sonia Labatt Brain Tumour Research Centre, Hospital for Sick Children, Toronto, Canada. Program in Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, Canada
| | - Michael Leadley
- Program in Physiology & Experimental Medicine, Hospital for Sick Children, Toronto, Canada
| | - Denis Reynaud
- Program in Physiology & Experimental Medicine, Hospital for Sick Children, Toronto, Canada
| | - Leonardo Ermini
- Program in Physiology & Experimental Medicine, Hospital for Sick Children, Toronto, Canada
| | - Martin Post
- Program in Physiology & Experimental Medicine, Hospital for Sick Children, Toronto, Canada
| | - Paul A Northcott
- Division of Pediatric Neurooncology and Division of Molecular Genetics, German Cancer Research Centre (DKFZ), University of Heidelberg, Heidelberg, Germany
| | - Stefan M Pfister
- Division of Pediatric Neurooncology and Division of Molecular Genetics, German Cancer Research Centre (DKFZ), University of Heidelberg, Heidelberg, Germany
| | - Sidney E Croul
- Arthur and Sonia Labatt Brain Tumour Research Centre, Hospital for Sick Children, Toronto, Canada
| | - Marcel Kool
- Division of Pediatric Neurooncology and Division of Molecular Genetics, German Cancer Research Centre (DKFZ), University of Heidelberg, Heidelberg, Germany
| | - Andrey Korshunov
- Clinical Cooperation Unit Neuropathology, German Cancer Research Centre (DKFZ), Department of Neuropathology, University of Heidelberg, Heidelberg, Germany
| | - Christian A Smith
- Arthur and Sonia Labatt Brain Tumour Research Centre, Hospital for Sick Children, Toronto, Canada
| | - Michael D Taylor
- Arthur and Sonia Labatt Brain Tumour Research Centre, Hospital for Sick Children, Toronto, Canada. Program in Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, Canada. Division of Neurosurgery, Hospital for Sick Children, Toronto, Canada
| | - James T Rutka
- Arthur and Sonia Labatt Brain Tumour Research Centre, Hospital for Sick Children, Toronto, Canada. Division of Neurosurgery, Hospital for Sick Children, Toronto, Canada. Department of Surgery, University of Toronto, Toronto, Canada.
| |
Collapse
|
44
|
Artesunate induces necrotic cell death in schwannoma cells. Cell Death Dis 2014; 5:e1466. [PMID: 25321473 PMCID: PMC4649524 DOI: 10.1038/cddis.2014.434] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 09/04/2014] [Accepted: 09/08/2014] [Indexed: 11/09/2022]
Abstract
Established as a potent anti-malaria medicine, artemisinin-based drugs have been suggested to have anti-tumour activity in some cancers. Although the mechanism is poorly understood, it has been suggested that artemisinin induces apoptotic cell death. Here, we show that the artemisinin analogue artesunate (ART) effectively induces cell death in RT4 schwannoma cells and human primary schwannoma cells. Interestingly, our data indicate for first time that the cell death induced by ART is largely dependent on necroptosis. ART appears to inhibit autophagy, which may also contribute to the cell death. Our data in human schwannoma cells show that ART can be combined with the autophagy inhibitor chloroquine (CQ) to potentiate the cell death. Thus, this study suggests that artemisinin-based drugs may be used in certain tumours where cells are necroptosis competent, and the drugs may act in synergy with apoptosis inducers or autophagy inhibitors to enhance their anti-tumour activity.
Collapse
|
45
|
Lim SHS, Ardern-Holmes S, McCowage G, de Souza P. Systemic therapy in neurofibromatosis type 2. Cancer Treat Rev 2014; 40:857-61. [PMID: 24877986 DOI: 10.1016/j.ctrv.2014.05.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Accepted: 05/09/2014] [Indexed: 01/06/2023]
Abstract
The systemic treatment of patients with neurofibromatosis type 2 associated tumours is challenging, as these patients often have prolonged survival but with the inevitable propensity for their disease to cause symptoms, and no effective therapies other than local treatments such as surgery. Understanding the molecular mechanisms driving NF-2 pathogenesis holds promise for the potential use of targeted therapy. Initial studies of agents such as bevacizumab (angiogenesis inhibitor) and lapatinib (epidermal growth factor and ErbB2 inhibitor) have indicated benefit for selected patients. As the biology of NF-2 is dependent on multiple interlinked downstream signalling pathways, targeting multiple pathways may be more effective than single agents. Phase zero trials, adaptive phase II or small multi-arm trials, are likely the way forward in this rare disease. Ideally, well-tolerated targeted therapy would appear to be the most promising approach for patients with NF-2, given the natural history of this disease.
Collapse
Affiliation(s)
- Stephanie Hui-Su Lim
- Department of Medical Oncology and Ingham Research Institute, Liverpool, NSW, Australia.
| | - Simone Ardern-Holmes
- TY Nelson Department of Neurology and Neurosurgery, The Children's Hospital at Westmead, Westmead, NSW, Australia.
| | - Geoffrey McCowage
- Oncology Research Unit, The Children's Hospital at Westmead, Westmead, NSW, Australia.
| | - Paul de Souza
- Department of Medical Oncology and Ingham Research Institute, Liverpool, NSW, Australia; University of Western Sydney, School of Medicine, Molecular Medicine Research Group, NSW, Australia.
| |
Collapse
|
46
|
Yue WY, Clark JJ, Telisak M, Hansen MR. Inhibition of c-Jun N-terminal kinase activity enhances vestibular schwannoma cell sensitivity to gamma irradiation. Neurosurgery 2014; 73:506-16. [PMID: 23728448 DOI: 10.1227/01.neu.0000431483.10031.89] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Radiosurgery is increasingly used to treat vestibular schwannomas (VSs). Increasing the sensitivity of VS cells to irradiation (IR) could allow for lower and/or more effective doses of IR, improving safety and efficacy. Persistent c-Jun N-terminal kinase (JNK) activity in VS cells reduces cell death by suppressing the accumulation of reactive oxygen species (ROS), raising the possibility that JNK activity protects against IR-induced VS cell death, which is mediated by ROS. OBJECTIVE To determine the extent to which JNK signaling contributes to VS cell radiosensitivity. METHODS Primary human VS cultures, derived from acutely resected tumors, received single doses (5-40 Gy) of gamma irradiation. Histone 2AX phosphorylation, a marker of IR-induced DNA damage, was assayed by Western blot and immunostaining. ROS levels were quantified by measuring 2',7'-dichlorodihydrofluorescein diacetate (H2DCFDA) fluorescence. Cell apoptosis was determined by terminal deoxynucleotidyl transferase 2'-deoxyuridine, 5'-triphosphate nick end labeling. RESULTS The JNK inhibitors SP6000125 and I-JIP reduced histone 2AX phosphorylation after IR. They also increased H2DCFDA fluorescence in nonirradiated cultures and significantly increased IR-induced (5-10 Gy) H2DCFDA fluorescence 72 hours, but not 2 hours, after IR. Finally, I-JIP (50 μmol/L) significantly increased VS cell apoptosis in cultures treated with 20 to 40 Gy. I-JIP (20 μmol/L), SP600125 (20 μmol/L), and JNK1/2 short interfering RNA knockdown each increased VS cell apoptosis in cultures treated with 30 to 40 Gy, but not lower doses, of IR. CONCLUSION Inhibition of JNK signaling decreases histone 2AX phosphorylation and increases ROS and apoptosis in VS cells after gamma irradiation. These results raise the possibility of using JNK inhibitors to increase the effectiveness of radiosurgery for treatment of VSs.
Collapse
Affiliation(s)
- Wei Ying Yue
- Department of Otolaryngology-Head and Neck Surgery, University of Iowa, Iowa City, Iowa 52242, USA
| | | | | | | |
Collapse
|
47
|
A hypothesis about the potential role of statin administration as adjuvant treatment in the management of Merlin-deficient tumors. INTERDISCIPLINARY NEUROSURGERY-ADVANCED TECHNIQUES AND CASE MANAGEMENT 2014. [DOI: 10.1016/j.inat.2014.02.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
48
|
Hilton DA, Hanemann CO. Schwannomas and their pathogenesis. Brain Pathol 2014; 24:205-20. [PMID: 24450866 DOI: 10.1111/bpa.12125] [Citation(s) in RCA: 133] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Accepted: 01/16/2014] [Indexed: 12/18/2022] Open
Abstract
Schwannomas may occur spontaneously, or in the context of a familial tumor syndrome such as neurofibromatosis type 2 (NF2), schwannomatosis and Carney's complex. Schwannomas have a variety of morphological appearances, but they behave as World Health Organization (WHO) grade I tumors, and only very rarely undergo malignant transformation. Central to the pathogenesis of these tumors is loss of function of merlin, either by direct genetic change involving the NF2 gene on chromosome 22 or secondarily to merlin inactivation. The genetic pathways and morphological features of schwannomas associated with different genetic syndromes will be discussed. Merlin has multiple functions, including within the nucleus and at the cell membrane, and this review summarizes our current understanding of the mechanisms by which merlin loss is involved in schwannoma pathogenesis, highlighting potential areas for therapeutic intervention.
Collapse
Affiliation(s)
- David A Hilton
- Department of Cellular and Anatomical Pathology, Derriford Hospital, Plymouth, UK
| | | |
Collapse
|
49
|
Boin A, Couvelard A, Couderc C, Brito I, Filipescu D, Kalamarides M, Bedossa P, De Koning L, Danelsky C, Dubois T, Hupé P, Louvard D, Lallemand D. Proteomic screening identifies a YAP-driven signaling network linked to tumor cell proliferation in human schwannomas. Neuro Oncol 2014; 16:1196-209. [PMID: 24558021 DOI: 10.1093/neuonc/nou020] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Inactivation of the NF2 gene predisposes to neurofibromatosis type II and the development of schwannomas. In vitro studies have shown that loss of NF2 leads to the induction of mitogenic signaling mediated by receptor tyrosine kinases (RTKs), MAP kinase, AKT, or Hippo pathways. The goal of our study was to evaluate the expression and activity of these signaling pathways in human schwannomas in order to identify new potential therapeutic targets. METHODS Large sets of human schwannomas, totaling 68 tumors, were analyzed using complementary proteomic approaches. RTK arrays identified the most frequently activated RTKs. The correlation between the expression and activity of signaling pathways and proliferation of tumor cells using Ki67 marker was investigated by reverse-phase protein array (RRPA). Finally, immunohistochemistry was used to evaluate the expression pattern of signaling effectors in the tumors. RESULTS We showed that Her2, Her3, PDGFRß, Axl, and Tie2 are frequently activated in the tumors. Furthermore, RRPA demonstrated that Ki67 levels are linked to YAP, p-Her3, and PDGFRß expression levels. In addition, Her2, Her3, and PDGFRß are transcriptional targets of Yes-associated protein (YAP) in schwannoma cells in culture. Finally, we observed that the expression of these signaling effectors is very variable between tumors. CONCLUSIONS Tumor cell proliferation in human schwannomas is linked to a signaling network controlled by the Hippo effector YAP. Her2, Her3, PDGFRß, Axl, and Tie2, as well as YAP, represent potentially valuable therapeutic targets. However, the variability of their expression between tumors may result in strong differences in the response to targeted therapy.
Collapse
Affiliation(s)
- Alizée Boin
- Centre National de la Recherche Scientifique, Institut Curie, Paris, France (A.B., C.C., D.Lo., D.La.); Institut National de la Santé et de la Recherche Médicale, Paris, France (I.B., P.H.); Mines ParisTech, Fontainebleau, France (P.H.); Breast Cancer Biology Group, Institut Curie, Paris, France (T.D.); Reverse Phase Protein Array Platform, Institut Curie, Paris, France (C.D., L.D.K.); Centre National de la Recherche Scientifique, Institut Curie, Paris, France (D.F.); Department of Neurosurgery, Assistance Publique-Hôpitaux de Paris, Hopital Beaujon, Clichy, France (M.K.); Unité Institut National de la Santé et de la Recherche Médicale, Fondation Jean Dausset, Paris, France (M.K.); Pathology Department Beaujon-Bichat, AP-HP, Hôpital Bichat, Paris, France (A.C.); Université Paris Diderot, Sorbonne Paris Cité, Paris, France (A.C.); Pathology Department Beaujon-Bichat, AP-HP, Hôpital Beaujon, Clichy, France (P.B.); Université Paris Diderot, Sorbonne Paris Cité, Paris, France (M.K.)
| | - Anne Couvelard
- Centre National de la Recherche Scientifique, Institut Curie, Paris, France (A.B., C.C., D.Lo., D.La.); Institut National de la Santé et de la Recherche Médicale, Paris, France (I.B., P.H.); Mines ParisTech, Fontainebleau, France (P.H.); Breast Cancer Biology Group, Institut Curie, Paris, France (T.D.); Reverse Phase Protein Array Platform, Institut Curie, Paris, France (C.D., L.D.K.); Centre National de la Recherche Scientifique, Institut Curie, Paris, France (D.F.); Department of Neurosurgery, Assistance Publique-Hôpitaux de Paris, Hopital Beaujon, Clichy, France (M.K.); Unité Institut National de la Santé et de la Recherche Médicale, Fondation Jean Dausset, Paris, France (M.K.); Pathology Department Beaujon-Bichat, AP-HP, Hôpital Bichat, Paris, France (A.C.); Université Paris Diderot, Sorbonne Paris Cité, Paris, France (A.C.); Pathology Department Beaujon-Bichat, AP-HP, Hôpital Beaujon, Clichy, France (P.B.); Université Paris Diderot, Sorbonne Paris Cité, Paris, France (M.K.)
| | - Christophe Couderc
- Centre National de la Recherche Scientifique, Institut Curie, Paris, France (A.B., C.C., D.Lo., D.La.); Institut National de la Santé et de la Recherche Médicale, Paris, France (I.B., P.H.); Mines ParisTech, Fontainebleau, France (P.H.); Breast Cancer Biology Group, Institut Curie, Paris, France (T.D.); Reverse Phase Protein Array Platform, Institut Curie, Paris, France (C.D., L.D.K.); Centre National de la Recherche Scientifique, Institut Curie, Paris, France (D.F.); Department of Neurosurgery, Assistance Publique-Hôpitaux de Paris, Hopital Beaujon, Clichy, France (M.K.); Unité Institut National de la Santé et de la Recherche Médicale, Fondation Jean Dausset, Paris, France (M.K.); Pathology Department Beaujon-Bichat, AP-HP, Hôpital Bichat, Paris, France (A.C.); Université Paris Diderot, Sorbonne Paris Cité, Paris, France (A.C.); Pathology Department Beaujon-Bichat, AP-HP, Hôpital Beaujon, Clichy, France (P.B.); Université Paris Diderot, Sorbonne Paris Cité, Paris, France (M.K.)
| | - Isabel Brito
- Centre National de la Recherche Scientifique, Institut Curie, Paris, France (A.B., C.C., D.Lo., D.La.); Institut National de la Santé et de la Recherche Médicale, Paris, France (I.B., P.H.); Mines ParisTech, Fontainebleau, France (P.H.); Breast Cancer Biology Group, Institut Curie, Paris, France (T.D.); Reverse Phase Protein Array Platform, Institut Curie, Paris, France (C.D., L.D.K.); Centre National de la Recherche Scientifique, Institut Curie, Paris, France (D.F.); Department of Neurosurgery, Assistance Publique-Hôpitaux de Paris, Hopital Beaujon, Clichy, France (M.K.); Unité Institut National de la Santé et de la Recherche Médicale, Fondation Jean Dausset, Paris, France (M.K.); Pathology Department Beaujon-Bichat, AP-HP, Hôpital Bichat, Paris, France (A.C.); Université Paris Diderot, Sorbonne Paris Cité, Paris, France (A.C.); Pathology Department Beaujon-Bichat, AP-HP, Hôpital Beaujon, Clichy, France (P.B.); Université Paris Diderot, Sorbonne Paris Cité, Paris, France (M.K.)
| | - Dan Filipescu
- Centre National de la Recherche Scientifique, Institut Curie, Paris, France (A.B., C.C., D.Lo., D.La.); Institut National de la Santé et de la Recherche Médicale, Paris, France (I.B., P.H.); Mines ParisTech, Fontainebleau, France (P.H.); Breast Cancer Biology Group, Institut Curie, Paris, France (T.D.); Reverse Phase Protein Array Platform, Institut Curie, Paris, France (C.D., L.D.K.); Centre National de la Recherche Scientifique, Institut Curie, Paris, France (D.F.); Department of Neurosurgery, Assistance Publique-Hôpitaux de Paris, Hopital Beaujon, Clichy, France (M.K.); Unité Institut National de la Santé et de la Recherche Médicale, Fondation Jean Dausset, Paris, France (M.K.); Pathology Department Beaujon-Bichat, AP-HP, Hôpital Bichat, Paris, France (A.C.); Université Paris Diderot, Sorbonne Paris Cité, Paris, France (A.C.); Pathology Department Beaujon-Bichat, AP-HP, Hôpital Beaujon, Clichy, France (P.B.); Université Paris Diderot, Sorbonne Paris Cité, Paris, France (M.K.)
| | - Michel Kalamarides
- Centre National de la Recherche Scientifique, Institut Curie, Paris, France (A.B., C.C., D.Lo., D.La.); Institut National de la Santé et de la Recherche Médicale, Paris, France (I.B., P.H.); Mines ParisTech, Fontainebleau, France (P.H.); Breast Cancer Biology Group, Institut Curie, Paris, France (T.D.); Reverse Phase Protein Array Platform, Institut Curie, Paris, France (C.D., L.D.K.); Centre National de la Recherche Scientifique, Institut Curie, Paris, France (D.F.); Department of Neurosurgery, Assistance Publique-Hôpitaux de Paris, Hopital Beaujon, Clichy, France (M.K.); Unité Institut National de la Santé et de la Recherche Médicale, Fondation Jean Dausset, Paris, France (M.K.); Pathology Department Beaujon-Bichat, AP-HP, Hôpital Bichat, Paris, France (A.C.); Université Paris Diderot, Sorbonne Paris Cité, Paris, France (A.C.); Pathology Department Beaujon-Bichat, AP-HP, Hôpital Beaujon, Clichy, France (P.B.); Université Paris Diderot, Sorbonne Paris Cité, Paris, France (M.K.)
| | - Pierre Bedossa
- Centre National de la Recherche Scientifique, Institut Curie, Paris, France (A.B., C.C., D.Lo., D.La.); Institut National de la Santé et de la Recherche Médicale, Paris, France (I.B., P.H.); Mines ParisTech, Fontainebleau, France (P.H.); Breast Cancer Biology Group, Institut Curie, Paris, France (T.D.); Reverse Phase Protein Array Platform, Institut Curie, Paris, France (C.D., L.D.K.); Centre National de la Recherche Scientifique, Institut Curie, Paris, France (D.F.); Department of Neurosurgery, Assistance Publique-Hôpitaux de Paris, Hopital Beaujon, Clichy, France (M.K.); Unité Institut National de la Santé et de la Recherche Médicale, Fondation Jean Dausset, Paris, France (M.K.); Pathology Department Beaujon-Bichat, AP-HP, Hôpital Bichat, Paris, France (A.C.); Université Paris Diderot, Sorbonne Paris Cité, Paris, France (A.C.); Pathology Department Beaujon-Bichat, AP-HP, Hôpital Beaujon, Clichy, France (P.B.); Université Paris Diderot, Sorbonne Paris Cité, Paris, France (M.K.)
| | - Leanne De Koning
- Centre National de la Recherche Scientifique, Institut Curie, Paris, France (A.B., C.C., D.Lo., D.La.); Institut National de la Santé et de la Recherche Médicale, Paris, France (I.B., P.H.); Mines ParisTech, Fontainebleau, France (P.H.); Breast Cancer Biology Group, Institut Curie, Paris, France (T.D.); Reverse Phase Protein Array Platform, Institut Curie, Paris, France (C.D., L.D.K.); Centre National de la Recherche Scientifique, Institut Curie, Paris, France (D.F.); Department of Neurosurgery, Assistance Publique-Hôpitaux de Paris, Hopital Beaujon, Clichy, France (M.K.); Unité Institut National de la Santé et de la Recherche Médicale, Fondation Jean Dausset, Paris, France (M.K.); Pathology Department Beaujon-Bichat, AP-HP, Hôpital Bichat, Paris, France (A.C.); Université Paris Diderot, Sorbonne Paris Cité, Paris, France (A.C.); Pathology Department Beaujon-Bichat, AP-HP, Hôpital Beaujon, Clichy, France (P.B.); Université Paris Diderot, Sorbonne Paris Cité, Paris, France (M.K.)
| | - Carine Danelsky
- Centre National de la Recherche Scientifique, Institut Curie, Paris, France (A.B., C.C., D.Lo., D.La.); Institut National de la Santé et de la Recherche Médicale, Paris, France (I.B., P.H.); Mines ParisTech, Fontainebleau, France (P.H.); Breast Cancer Biology Group, Institut Curie, Paris, France (T.D.); Reverse Phase Protein Array Platform, Institut Curie, Paris, France (C.D., L.D.K.); Centre National de la Recherche Scientifique, Institut Curie, Paris, France (D.F.); Department of Neurosurgery, Assistance Publique-Hôpitaux de Paris, Hopital Beaujon, Clichy, France (M.K.); Unité Institut National de la Santé et de la Recherche Médicale, Fondation Jean Dausset, Paris, France (M.K.); Pathology Department Beaujon-Bichat, AP-HP, Hôpital Bichat, Paris, France (A.C.); Université Paris Diderot, Sorbonne Paris Cité, Paris, France (A.C.); Pathology Department Beaujon-Bichat, AP-HP, Hôpital Beaujon, Clichy, France (P.B.); Université Paris Diderot, Sorbonne Paris Cité, Paris, France (M.K.)
| | - Thierry Dubois
- Centre National de la Recherche Scientifique, Institut Curie, Paris, France (A.B., C.C., D.Lo., D.La.); Institut National de la Santé et de la Recherche Médicale, Paris, France (I.B., P.H.); Mines ParisTech, Fontainebleau, France (P.H.); Breast Cancer Biology Group, Institut Curie, Paris, France (T.D.); Reverse Phase Protein Array Platform, Institut Curie, Paris, France (C.D., L.D.K.); Centre National de la Recherche Scientifique, Institut Curie, Paris, France (D.F.); Department of Neurosurgery, Assistance Publique-Hôpitaux de Paris, Hopital Beaujon, Clichy, France (M.K.); Unité Institut National de la Santé et de la Recherche Médicale, Fondation Jean Dausset, Paris, France (M.K.); Pathology Department Beaujon-Bichat, AP-HP, Hôpital Bichat, Paris, France (A.C.); Université Paris Diderot, Sorbonne Paris Cité, Paris, France (A.C.); Pathology Department Beaujon-Bichat, AP-HP, Hôpital Beaujon, Clichy, France (P.B.); Université Paris Diderot, Sorbonne Paris Cité, Paris, France (M.K.)
| | - Philippe Hupé
- Centre National de la Recherche Scientifique, Institut Curie, Paris, France (A.B., C.C., D.Lo., D.La.); Institut National de la Santé et de la Recherche Médicale, Paris, France (I.B., P.H.); Mines ParisTech, Fontainebleau, France (P.H.); Breast Cancer Biology Group, Institut Curie, Paris, France (T.D.); Reverse Phase Protein Array Platform, Institut Curie, Paris, France (C.D., L.D.K.); Centre National de la Recherche Scientifique, Institut Curie, Paris, France (D.F.); Department of Neurosurgery, Assistance Publique-Hôpitaux de Paris, Hopital Beaujon, Clichy, France (M.K.); Unité Institut National de la Santé et de la Recherche Médicale, Fondation Jean Dausset, Paris, France (M.K.); Pathology Department Beaujon-Bichat, AP-HP, Hôpital Bichat, Paris, France (A.C.); Université Paris Diderot, Sorbonne Paris Cité, Paris, France (A.C.); Pathology Department Beaujon-Bichat, AP-HP, Hôpital Beaujon, Clichy, France (P.B.); Université Paris Diderot, Sorbonne Paris Cité, Paris, France (M.K.)
| | - Daniel Louvard
- Centre National de la Recherche Scientifique, Institut Curie, Paris, France (A.B., C.C., D.Lo., D.La.); Institut National de la Santé et de la Recherche Médicale, Paris, France (I.B., P.H.); Mines ParisTech, Fontainebleau, France (P.H.); Breast Cancer Biology Group, Institut Curie, Paris, France (T.D.); Reverse Phase Protein Array Platform, Institut Curie, Paris, France (C.D., L.D.K.); Centre National de la Recherche Scientifique, Institut Curie, Paris, France (D.F.); Department of Neurosurgery, Assistance Publique-Hôpitaux de Paris, Hopital Beaujon, Clichy, France (M.K.); Unité Institut National de la Santé et de la Recherche Médicale, Fondation Jean Dausset, Paris, France (M.K.); Pathology Department Beaujon-Bichat, AP-HP, Hôpital Bichat, Paris, France (A.C.); Université Paris Diderot, Sorbonne Paris Cité, Paris, France (A.C.); Pathology Department Beaujon-Bichat, AP-HP, Hôpital Beaujon, Clichy, France (P.B.); Université Paris Diderot, Sorbonne Paris Cité, Paris, France (M.K.)
| | - Dominique Lallemand
- Centre National de la Recherche Scientifique, Institut Curie, Paris, France (A.B., C.C., D.Lo., D.La.); Institut National de la Santé et de la Recherche Médicale, Paris, France (I.B., P.H.); Mines ParisTech, Fontainebleau, France (P.H.); Breast Cancer Biology Group, Institut Curie, Paris, France (T.D.); Reverse Phase Protein Array Platform, Institut Curie, Paris, France (C.D., L.D.K.); Centre National de la Recherche Scientifique, Institut Curie, Paris, France (D.F.); Department of Neurosurgery, Assistance Publique-Hôpitaux de Paris, Hopital Beaujon, Clichy, France (M.K.); Unité Institut National de la Santé et de la Recherche Médicale, Fondation Jean Dausset, Paris, France (M.K.); Pathology Department Beaujon-Bichat, AP-HP, Hôpital Bichat, Paris, France (A.C.); Université Paris Diderot, Sorbonne Paris Cité, Paris, France (A.C.); Pathology Department Beaujon-Bichat, AP-HP, Hôpital Beaujon, Clichy, France (P.B.); Université Paris Diderot, Sorbonne Paris Cité, Paris, France (M.K.)
| |
Collapse
|
50
|
Nakagawa T, Mondal K, Swanson PC. VprBP (DCAF1): a promiscuous substrate recognition subunit that incorporates into both RING-family CRL4 and HECT-family EDD/UBR5 E3 ubiquitin ligases. BMC Mol Biol 2013; 14:22. [PMID: 24028781 PMCID: PMC3847654 DOI: 10.1186/1471-2199-14-22] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Accepted: 09/03/2013] [Indexed: 12/19/2022] Open
Abstract
The terminal step in the ubiquitin modification system relies on an E3 ubiquitin ligase to facilitate transfer of ubiquitin to a protein substrate. The substrate recognition and ubiquitin transfer activities of the E3 ligase may be mediated by a single polypeptide or may rely on separate subunits. The latter organization is particularly prevalent among members of largest class of E3 ligases, the RING family, although examples of this type of arrangement have also been reported among members of the smaller HECT family of E3 ligases. This review describes recent discoveries that reveal the surprising and distinctive ability of VprBP (DCAF1) to serve as a substrate recognition subunit for a member of both major classes of E3 ligase, the RING-type CRL4 ligase and the HECT-type EDD/UBR5 ligase. The cellular processes normally regulated by VprBP-associated E3 ligases, and their targeting and subversion by viral accessory proteins are also discussed. Taken together, these studies provide important insights and raise interesting new questions regarding the mechanisms that regulate or subvert VprBP function in the context of both the CRL4 and EDD/UBR5 E3 ligases.
Collapse
Affiliation(s)
- Tadashi Nakagawa
- Department of Cell Proliferation, United Center for Advanced Research and Translational Medicine, Graduate School of Medicine, Tohoku University, Sendai 900-8575, Japan.
| | | | | |
Collapse
|