1
|
Zhang N, Ma Y, Li Y, Wang Y, Zhang L, Zheng M, Tian Y, Zhang R, Yang K, Li J, Yan F, Liu H, Zhang Y, Xu J, Yu C, Xu J. Paeonol prevents sepsis-associated encephalopathy via regulating the HIF1A pathway in microglia. Int Immunopharmacol 2024; 143:113287. [PMID: 39362015 DOI: 10.1016/j.intimp.2024.113287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/22/2024] [Accepted: 09/27/2024] [Indexed: 10/05/2024]
Abstract
Paeonol, a phenolic acid compound extracted from the Cortex Moutan, exhibits significant anti-inflammatory, antioxidant, and anti-apoptotic properties. This study aimed to investigate the effects of paeonol on neuroinflammation and depressive-like symptoms, and the underlying mechanisms in a mouse model of sepsis-associated encephalopathy (SAE) induced by lipopolysaccharide (LPS). To assess the therapeutic potential of paeonol in mice treated with LPS, behavioral assessments were conducted using the open-field test (OFT), tail suspension test (TST), and forced swimming test (FST), and quantitative PCR (qPCR), Western blot, and immunofluorescent staining were utilized to determine the expression levels of inflammatory molecules in the hippocampus in vivo and microglial cells in vitro. Our results revealed that paeonol significantly alleviated anxiety and depressive-like symptoms, as evidenced by improved activity in OFT, reduced immobility time in TST and FST, and decreased levels of inflammatory markers such as IL6, TNFα, and PFKFB3. Further in vitro experiments confirmed that paeonol downregulated the expression of pro-inflammatory molecules. A network pharmacology-based strategy combined with molecular docking and cellular thermal shift assay highlighted HIF1A as a potential target for paeonol. Similar anti-inflammatory effects of a HIF1A inhibitor were also observed in microglia treated with LPS. Furthermore, these effects were reversed by CoCl2, a HIF1A agonist, indicating the critical role of the HIF1A signaling pathway in mediating the therapeutic effects of paeonol. These findings highlight the potential of paeonol in modulating the HIF1A pathway, offering a promising therapeutic strategy for neuroinflammation in SAE.
Collapse
Affiliation(s)
- Ning Zhang
- Research Centre of Basic Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, University Town, Guangzhou, China
| | - Yongjie Ma
- Research Centre of Basic Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, University Town, Guangzhou, China
| | - Yuqing Li
- School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, University Town, Guangzhou, China
| | - Yiqi Wang
- Research Centre of Basic Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, University Town, Guangzhou, China
| | - Lisheng Zhang
- Research Centre of Basic Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, University Town, Guangzhou, China
| | - Mincheng Zheng
- Research Centre of Basic Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, University Town, Guangzhou, China
| | - Yu Tian
- Research Centre of Basic Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, University Town, Guangzhou, China
| | - Ruiying Zhang
- Research Centre of Basic Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, University Town, Guangzhou, China
| | - Kanlin Yang
- Research Centre of Basic Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, University Town, Guangzhou, China
| | - Jieyuan Li
- Research Centre of Basic Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, University Town, Guangzhou, China
| | - Fuman Yan
- Department of Physiology, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, University Town, Guangzhou, China
| | - Haimei Liu
- Research Centre of Basic Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, University Town, Guangzhou, China; Department of Physiology, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, University Town, Guangzhou, China
| | - Yaxing Zhang
- Research Centre of Basic Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, University Town, Guangzhou, China; Department of Physiology, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, University Town, Guangzhou, China
| | - Jinwen Xu
- Research Centre of Basic Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, University Town, Guangzhou, China; Department of Physiology, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, University Town, Guangzhou, China.
| | - Cong Yu
- Department of Neonatology, Jiangxi Provincial Children's Hospital, Nanchang, China.
| | - Jiean Xu
- Research Centre of Basic Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, University Town, Guangzhou, China; Department of Physiology, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, University Town, Guangzhou, China.
| |
Collapse
|
2
|
Duan H, Yang X, Cai S, Zhang L, Qiu Z, Wang J, Wang S, Li Z, Li X. Nrf2 mitigates sepsis-associated encephalopathy-induced hippocampus ferroptosis via modulating mitochondrial dynamic homeostasis. Int Immunopharmacol 2024; 143:113331. [PMID: 39396427 DOI: 10.1016/j.intimp.2024.113331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 09/24/2024] [Accepted: 10/04/2024] [Indexed: 10/15/2024]
Abstract
Sepsis-associated encephalopathy (SAE) is a serious neurological complication accompanied with acute and long-term cognitive dysfunction. Ferroptosis is a newly discovered type of cell death that is produced by iron-dependent lipid peroxidation. Emerging evidence suggests that ferroptosis is involved in SAE. The nuclear factor erythroid 2-related factor 2 (Nrf2) is a mitochondria related gene involved in ferroptosis. However, the role of Nrf2 in SAE and the mechanisms remains elusive. In this study, we found that Nrf2 knockout aggravated cognitive and emotional dysfunction and promoted caecal ligation and puncture (CLP)-induced brain injury and hippocampus ferroptosis as indicated by the increase of ROS, Fe2+ and the levels of proinflammatory cytokines. Meanwhile, the levels of glutathione peroxidase 4 (GPX4), SLC7A11 and glutathionewere downregulatedin Nrf2 knockout group. In vitro experiments showed that mitochondrial ROS, Fe2+ and the expression of Fis1 and Drp1 decreased, and the level of Mfn1 and Opa-1 increased after Nrf2 overexpression. The silence of Nrf2 increased the expression of ROS, MDA and Fe2+, while decreased glutathione, mitochondrial membrane potential (MMP) and cell viability in vitro, indicating Nrf2 improved LPS-induced mitochondrial dysfunction and mitigated hippocampal cells ferroptosis. These results suggest that Nrf2 could inhibit ferroptosis and neuroinflammation in hippocampus and reduce cognitive dysfunction in SAE mice, making it a potential therapeutic target in the treatment of SAE. The protective effects of Nrf2 on the brain may be mediated by maintaining mitochondrial dynamic homeostasis.
Collapse
Affiliation(s)
- Haifeng Duan
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, China; Hubei Provincial Engineering Research Center of Minimally Invasive Cardiovascular Surgery, Wuhan, China; Wuhan Clinical Research Center for Minimally Invasive Treatment of Structural Heart Disease, Wuhan, China
| | - Xin Yang
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, China; Hubei Provincial Engineering Research Center of Minimally Invasive Cardiovascular Surgery, Wuhan, China; Wuhan Clinical Research Center for Minimally Invasive Treatment of Structural Heart Disease, Wuhan, China
| | - Shuhan Cai
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China; Clinical Research Center of Hubei Critical Care Medicine, Wuhan, China
| | - Lei Zhang
- Department of Anesthesiology, the First Clinical College of Hubei University of Medicine, Shiyan, Hubei, China
| | - Zebao Qiu
- Department of Anesthesiology, Suizhou Zengdu Hospital, Suizhou, Hubei, China
| | - Jin Wang
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Shun Wang
- Department of Ophthalmology, Zhongnan Hospital of Wuhan University, Wuhan, China.
| | - Zhi Li
- Department of Ophthalmology, Zhongnan Hospital of Wuhan University, Wuhan, China.
| | - Xinyi Li
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, China; Hubei Provincial Engineering Research Center of Minimally Invasive Cardiovascular Surgery, Wuhan, China; Wuhan Clinical Research Center for Minimally Invasive Treatment of Structural Heart Disease, Wuhan, China.
| |
Collapse
|
3
|
Li H, Hu W, Wu Z, Tian B, Ren Y, Zou X. Esketamine improves cognitive function in sepsis-associated encephalopathy by inhibiting microglia-mediated neuroinflammation. Eur J Pharmacol 2024; 983:177014. [PMID: 39312992 DOI: 10.1016/j.ejphar.2024.177014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 09/14/2024] [Accepted: 09/20/2024] [Indexed: 09/25/2024]
Abstract
Microglia-mediated neuroinflammation is critical in the pathogenesis of sepsis-associated encephalopathy(SAE). Identifying the key factors that inhibit microglia-mediated neuroinflammation holds promise as a potential target for preventing and treating SAE. Esketamine, a non-competitive N-methyl-D-aspartate (NMDA) receptor antagonist, has been proposed to possess protective and therapeutic properties against neuroinflammatory disorders. This study provides evidence that the administration of Esketamine in SAE mice improves cognitive impairments and alleviates neuronal damage by inhibiting the microglia-mediated neuroinflammation. The BDNF receptor antagonist K252a was employed in both vivo and in vitro experiments. The findings indicate that K252a successfully counteracted the beneficial effects of Esketamine on microglia and cognitive behavior in mice with SAE. Consequently, these results suggest that Esketamine inhibits microglia-mediated neuroinflammation by activating the BDNF pathway, and mitigating neuronal damage and cognitive dysfunction associated with SAE.
Collapse
Affiliation(s)
- Hui Li
- College of Anesthesia, Guizhou Medical University, Guizhou Province, Guiyang 550004, China; Department of Anesthesiology, The Affiliated Hospital of Guizhou Medical University, Guizhou Province, Guiyang 550004, China; Guizhou Medical University Key Laboratory of Anesthesia and Pain Mechanism Research, Guizhou Province, Guiyang, 550004, China
| | - Wen Hu
- College of Anesthesia, Guizhou Medical University, Guizhou Province, Guiyang 550004, China; Guizhou Medical University Key Laboratory of Anesthesia and Pain Mechanism Research, Guizhou Province, Guiyang, 550004, China
| | - Zhen Wu
- College of Anesthesia, Guizhou Medical University, Guizhou Province, Guiyang 550004, China; Guizhou Medical University Key Laboratory of Anesthesia and Pain Mechanism Research, Guizhou Province, Guiyang, 550004, China
| | - Bin Tian
- Department of Radiology, The Second People's Hospital of Guiyang, Guizhou Province, Guiyang, 550023, China
| | - Yimin Ren
- College of Anesthesia, Guizhou Medical University, Guizhou Province, Guiyang 550004, China; Department of Anesthesiology, The Affiliated Hospital of Guizhou Medical University, Guizhou Province, Guiyang 550004, China; Guizhou Medical University Key Laboratory of Anesthesia and Pain Mechanism Research, Guizhou Province, Guiyang, 550004, China.
| | - Xiaohua Zou
- College of Anesthesia, Guizhou Medical University, Guizhou Province, Guiyang 550004, China; Department of Anesthesiology, The Affiliated Hospital of Guizhou Medical University, Guizhou Province, Guiyang 550004, China; Guizhou Medical University Key Laboratory of Anesthesia and Pain Mechanism Research, Guizhou Province, Guiyang, 550004, China.
| |
Collapse
|
4
|
Li X, Xu X, Zhang J, Wang X, Zhao C, Liu Q, Fan K. Review of the therapeutic effects of traditional Chinese medicine in sepsis-associated encephalopathy. JOURNAL OF ETHNOPHARMACOLOGY 2024; 334:118588. [PMID: 39029543 DOI: 10.1016/j.jep.2024.118588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 07/08/2024] [Accepted: 07/15/2024] [Indexed: 07/21/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Sepsis-associated encephalopathy (SAE) is a common and serious complication during the acute phase of and after recovery from sepsis that seriously affects the quality of life of patients. Traditional Chinese medicine (TCM) has been widely used in modern medicine for neurological anomalies and has become a therapeutic tool for the treatment of SAE due to its multitargeting effects and low toxicity and side effects. AIMS OF THE STUDY This review provides insights into the pathogenesis and treatments of SAE, focusing on the clinical and experimental impacts of TCM formulations and their single components. METHODS Several known databases such as PubMed, Web of Science, Google Scholar, China National Knowledge Infrastructure (CNKI), and others were extensively explored with keywords and phrases such as "sepsis-associated encephalopathy", "traditional Chinese medicine", "herbs", "SAE", "sepsis", "cerebral" or other relevant terms to obtain literature between 2018 and 2024. RESULTS Extensive evidence indicated that TCM could decrease mortality and normalize neurological function in patients with sepsis; these effects might be associated with factors such as reduced oxidative stress and downregulated expression of inflammatory factors. CONCLUSIONS TCM shows notable efficacy in treating SAE, warranting deeper mechanistic studies to optimize its clinical application.
Collapse
Affiliation(s)
- Xingyao Li
- College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China.
| | - Xiaolong Xu
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China.
| | - Jun Zhang
- Intensive Care Unit, Wuhan Hospital of Traditional Chinese Medicine, Wu Han, 430014, China.
| | - Xuerui Wang
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China.
| | - Chunming Zhao
- Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Qingquan Liu
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China.
| | - Kai Fan
- College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
5
|
Wang P, Liang L, Ge Q, Liu S, Yang Z, Jiang L. Dichloroacetate attenuates brain injury through inhibiting neuroinflammation and mitochondrial fission in a rat model of sepsis-associated encephalopathy. Int Immunopharmacol 2024; 140:112840. [PMID: 39106713 DOI: 10.1016/j.intimp.2024.112840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/26/2024] [Accepted: 07/28/2024] [Indexed: 08/09/2024]
Abstract
Sepsis-associated encephalopathy (SAE) is a severe complication of sepsis, characterized by neuroinflammation, mitochondrial dysfunction, and oxidative stress, leading to cognitive decline and high mortality. The effectiveness of dichloroacetate (DCA) in modulating mitochondrial function provides a novel therapeutic strategy for SAE. In this study, we evaluated the neuroprotective effects of DCA in a rat model of SAE induced by cecal ligation and puncture (CLP). Rats treated with DCA exhibited significant improvements in neurological function and survival, as evidenced by less neuron loss from histopathologic analysis, restored neurologic deficit scores, improved Y-maze alternation percentages, and enhanced recognition index performance. Biochemical analyses showed that DCA administration at 25 mg/kg and 100 mg/kg reduced astrocyte and microglial activation, indicating reduced neuroinflammation. Furthermore, DCA simultaneously reduced the production of circulating and cerebral inflammatory cytokines (including TNF-α, IL-1β, and IL-10), concomitant with mitigating oxidative stress through down-regulating expression of 8-Hydroxy-2'-deoxyguanosine (8-OHdG) and reactive oxygen species (ROS) in the brain. Mechanistically, DCA modulated mitochondrial dynamics by suppressing Drp1 and pDrp1 expression, which are indicators of mitochondrial fission. This was corroborated by transmission electron microscopy, quantification of mitochondrial area, and Western blot analyses. Furthermore, DCA treatment improved ATP levels, mitochondrial complex I activity, and NAD+/NADH ratio, indicating a significant attenuation of brain mitochondrial dysfunction. In conclusion, our findings suggest that DCA confers neuroprotection in SAE by curtailing neuroinflammation and mitochondrial fission, outlining a promising therapeutic strategy for treating SAE in critically ill patients.
Collapse
Affiliation(s)
- Peng Wang
- Department of Emergency Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China; Institute of Cardiopulmonary Cerebral Resuscitation, Sun Yat-sen University, Guangzhou 510120, China
| | - Lian Liang
- Department of Emergency Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China; Institute of Cardiopulmonary Cerebral Resuscitation, Sun Yat-sen University, Guangzhou 510120, China
| | - Qiulin Ge
- Department of Emergency Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China; Institute of Cardiopulmonary Cerebral Resuscitation, Sun Yat-sen University, Guangzhou 510120, China
| | - Siqi Liu
- Department of Emergency Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Zhengfei Yang
- Department of Emergency Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China; Institute of Cardiopulmonary Cerebral Resuscitation, Sun Yat-sen University, Guangzhou 510120, China.
| | - Longyuan Jiang
- Department of Emergency Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China; Institute of Cardiopulmonary Cerebral Resuscitation, Sun Yat-sen University, Guangzhou 510120, China.
| |
Collapse
|
6
|
Xu Y, Zhu Y, Shi Y, Ye B, Bo L, Tao T. Immune Checkpoint VISTA Negatively Regulates Microglia Glycolysis and Activation via TRIM28-Mediated Ubiquitination of HK2 in Sepsis-Associated Encephalopathy. Mol Neurobiol 2024:10.1007/s12035-024-04572-z. [PMID: 39455538 DOI: 10.1007/s12035-024-04572-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 10/18/2024] [Indexed: 10/28/2024]
Abstract
V-domain immunoglobulin suppressor of T cell activation (VISTA) has emerged as a crucial player in the pathogenesis of neurological disorders. However, the specific mechanism by which VISTA regulates microglial activation remains unclear. Septic mice were intracerebroventricularly injected with an agonistic anti-VISTA antibody or isotype control. To investigate the differential gene expression profiles, RNA sequencing was conducted on brain tissues from these mice. In vitro, VISTA was silenced in BV2 microglial cells using shRNA. Co-immunoprecipitation assays were performed to identify protein-protein interactions involving hexokinase 2 (HK2), and ubiquitination assays were used to examine the ubiquitination status of HK2. Additionally, BV2 cells were transfected with either tripartite motif-containing 28 overexpression plasmids (TRIM28-PcDNA3.1( +)) or TRIM28-specific siRNA to assess the impact of TRIM28 on VISTA-mediated microglial activation. The cellular glycolytic activity was measured using extracellular acidification rate assays, and proinflammatory cytokine and chemokines were quantified. Treatment with VISTA antibodies significantly alleviated microglial activation and prevented cognitive impairment in septic mice. In contrast, VISTA silencing in BV2 microglia led to the overexpression of proinflammatory cytokines and enhanced glycolysis in an HK2-dependent manner. Mechanistically, HK2 expression was regulated by the E3 ubiquitin ligase TRIM28 through K63-linked ubiquitination, which targeted HK2 for proteasomal degradation. Furthermore, knockdown of TRIM28 reduced the elevated glycolysis and proinflammatory response observed in VISTA-silenced microglia. VISTA modulates microglial activation in sepsis-associated encephalopathy by regulating HK2 expression through TRIM28-mediated K63-linked ubiquitination. These findings highlight VISTA as a potential therapeutic target for modulating microglial activation in sepsis.
Collapse
Affiliation(s)
- Yuhai Xu
- Department of Anesthesiology, Air Force Medical Center, Beijing, 100142, China
| | - Ying Zhu
- Department of Pulmonary and Critical Care Medicine, 7Th Medical Center of Chinese PLA General Hospital, Beijing, 100700, China
| | - Yue Shi
- Department of Anesthesiology, Air Force Medical Center, Beijing, 100142, China
| | - Bo Ye
- Department of Anesthesiology, Air Force Medical Center, Beijing, 100142, China
| | - Lulong Bo
- Faculty of Anesthesiology, Changhai Hospital, Shanghai, 200433, China.
| | - Tianzhu Tao
- Department of Anesthesiology, Air Force Medical Center, Beijing, 100142, China.
| |
Collapse
|
7
|
Guo DZ, Chen Y, Meng Y, Bian JJ, Wang Y, Wang JF. Bidirectional Interaction of Sepsis and Sleep Disorders: The Underlying Mechanisms and Clinical Implications. Nat Sci Sleep 2024; 16:1665-1678. [PMID: 39444661 PMCID: PMC11498039 DOI: 10.2147/nss.s485920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 10/13/2024] [Indexed: 10/25/2024] Open
Abstract
Sepsis is defined as life-threatening organ injury induced by infection, with high incidence and mortality. Sleep disorder is prevalent in septic patients and approximately 50% of patients with sepsis may develop atypical sleep patterns, but many of them may have been underdiagnosed by physicians. Sleep disorders and sepsis exhibit a close bidirectional relationship, with each condition significantly influencing the other. Conversely, sleep deprivation, sleep dysrhythmia and sleep fragmentation have been shown to impact the outcome of sepsis. This review endeavors to offer a comprehensive understanding of the intricate mechanisms that underpin the interplay between sepsis and sleep disorders, in addition to exploring potential clinical intervention strategies that could enhance outcomes for patients suffering from sepsis.
Collapse
Affiliation(s)
- De-Zhi Guo
- School of Basic Medicine, Naval Medical University, Shanghai, People’s Republic of China
| | - Yu Chen
- School of Basic Medicine, Naval Medical University, Shanghai, People’s Republic of China
| | - Yan Meng
- Department of Intensive Care, Changhai Hospital, Naval Medical University, Shanghai, People’s Republic of China
| | - Jin-Jun Bian
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, People’s Republic of China
| | - Yi Wang
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, People’s Republic of China
| | - Jia-Feng Wang
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, People’s Republic of China
| |
Collapse
|
8
|
Huang X, Wei P, Fang C, Yu M, Yang S, Qiu L, Wang Y, Xu A, Hoo RLC, Chang J. Compromised endothelial Wnt/β-catenin signaling mediates the blood-brain barrier disruption and leads to neuroinflammation in endotoxemia. J Neuroinflammation 2024; 21:265. [PMID: 39427196 PMCID: PMC11491032 DOI: 10.1186/s12974-024-03261-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 10/10/2024] [Indexed: 10/21/2024] Open
Abstract
The blood-brain barrier (BBB) is a critical interface that maintains the central nervous system homeostasis by controlling the exchange of substances between the blood and the brain. Disruption of the BBB plays a vital role in the development of neuroinflammation and neurological dysfunction in sepsis, but the mechanisms by which the BBB becomes disrupted during sepsis are not well understood. Here, we induced endotoxemia, a major type of sepsis, in mice by intraperitoneal injection of lipopolysaccharide (LPS). LPS acutely increased BBB permeability, activated microglia, and heightened inflammatory responses in brain endothelium and parenchyma. Concurrently, LPS or proinflammatory cytokines activated the NF-κB pathway, inhibiting Wnt/β-catenin signaling in brain endothelial cells in vitro and in vivo. Cell culture study revealed that NF-κB p65 directly interacted with β-catenin to suppress Wnt/β-catenin signaling. Pharmacological NF-κB pathway inhibition restored brain endothelial Wnt/β-catenin signaling activity and mitigated BBB disruption and neuroinflammation in septic mice. Furthermore, genetic or pharmacological activation of brain endothelial Wnt/β-catenin signaling substantially alleviated LPS-induced BBB leakage and neuroinflammation, while endothelial conditional ablation of the Wnt7a/7b co-receptor Gpr124 exacerbated the BBB leakage caused by LPS. Mechanistically, Wnt/β-catenin signaling activation rectified the reduced expression levels of tight junction protein ZO-1 and transcytosis suppressor Mfsd2a in brain endothelial cells of mice with endotoxemia, inhibiting both paracellular and transcellular permeability of the BBB. Our findings demonstrate that endotoxemia-associated systemic inflammation decreases endothelial Wnt/β-catenin signaling through activating NF-κB pathway, resulting in acute BBB disruption and neuroinflammation. Targeting the endothelial Wnt/β-catenin signaling may offer a promising therapeutic strategy for preserving BBB integrity and treating neurological dysfunction in sepsis.
Collapse
Affiliation(s)
- Xiaowen Huang
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Xueyuan Avenue 1068, Nanshan, Shenzhen, Guangdong, 518055, China
- Department of Pharmacology and Pharmacy, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
- State Key Laboratory of Pharmacological Biotechnology, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Pengju Wei
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Xueyuan Avenue 1068, Nanshan, Shenzhen, Guangdong, 518055, China
- The Key Laboratory of Biomedical Imaging Science and System, Chinese Academy of Sciences, Shenzhen, China
| | - Cheng Fang
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Xueyuan Avenue 1068, Nanshan, Shenzhen, Guangdong, 518055, China
- The Key Laboratory of Biomedical Imaging Science and System, Chinese Academy of Sciences, Shenzhen, China
| | - Min Yu
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Xueyuan Avenue 1068, Nanshan, Shenzhen, Guangdong, 518055, China
- The Key Laboratory of Biomedical Imaging Science and System, Chinese Academy of Sciences, Shenzhen, China
| | - Shilun Yang
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Xueyuan Avenue 1068, Nanshan, Shenzhen, Guangdong, 518055, China
- The Key Laboratory of Biomedical Imaging Science and System, Chinese Academy of Sciences, Shenzhen, China
| | - Linhui Qiu
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Xueyuan Avenue 1068, Nanshan, Shenzhen, Guangdong, 518055, China
- The Key Laboratory of Biomedical Imaging Science and System, Chinese Academy of Sciences, Shenzhen, China
| | - Yu Wang
- Department of Pharmacology and Pharmacy, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
- State Key Laboratory of Pharmacological Biotechnology, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Aimin Xu
- Department of Pharmacology and Pharmacy, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
- State Key Laboratory of Pharmacological Biotechnology, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Ruby Lai Chong Hoo
- Department of Pharmacology and Pharmacy, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
- State Key Laboratory of Pharmacological Biotechnology, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Junlei Chang
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Xueyuan Avenue 1068, Nanshan, Shenzhen, Guangdong, 518055, China.
- The Key Laboratory of Biomedical Imaging Science and System, Chinese Academy of Sciences, Shenzhen, China.
| |
Collapse
|
9
|
Qu H, Wu J, Pan Y, Abdulla A, Duan Z, Cheng W, Wang N, Chen H, Wang C, Yang J, Tang J, Yang C, Wu C, Xue X. Biomimetic Nanomodulator Regulates Oxidative and Inflammatory Stresses to Treat Sepsis-Associated Encephalopathy. ACS NANO 2024; 18:28228-28245. [PMID: 39367850 DOI: 10.1021/acsnano.4c08157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/07/2024]
Abstract
Sepsis-associated encephalopathy (SAE) is a devastating complication of sepsis, affecting approximately 70% of patients with sepsis in intensive care units (ICU). Although the pathophysiological mechanisms remain elusive, sepsis is typically accompanied by systemic inflammatory response syndrome (SIRS) and hyper-oxidative conditions. Here, we introduce a biomimetic nanomodulator (mAOI NP) that specifically targets inflammation site and simultaneously regulates oxidative and inflammatory stresses. mAOI NPs are constructed using metal-coordinated polyphenolic antioxidants (tannic acid) and flavonoid quercetin, which are then coated with macrophage membrane to enhance pharmacokinetics and enable SAE targeting. In a cecal ligation and puncture (CLP)-induced severe sepsis model, mAOI NPs effectively mitigate oxidative stress by purging reactive oxygen species, repairing mitochondrial damage and activating the Nrf2/HO-1 signaling pathway; while polarizing M1 macrophages or microglia toward anti-inflammatory M2 subtype. mAOI NPs potently inhibit sepsis progress, prolong overall survival from 25 to 66% and enhance learning and memory capabilities in SAE mice. Further proteomics analysis reveals that mAOI NPs modulate neurodevelopment processes related to learning and memory formation while also exerting anti-inflammatory and antioxidative effects on brain tissue responses associated with SAE pathology. This study offers significant potential for improving patient outcomes and revolutionizing the treatment landscape for this devastating complication of sepsis.
Collapse
Affiliation(s)
- Haijing Qu
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jie Wu
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yuqing Pan
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Aynur Abdulla
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhiran Duan
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wei Cheng
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ning Wang
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Han Chen
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chao Wang
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jiaojiao Yang
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jianguo Tang
- Department of Trauma-Emergency and Critical Care Medicine Center (TECCMC), Shanghai Fifth People's Hospital, Fudan University, Shanghai 200240, China
| | - Chunhui Yang
- Department of Trauma-Emergency and Critical Care Medicine Center (TECCMC), Shanghai Fifth People's Hospital, Fudan University, Shanghai 200240, China
| | - Chunrong Wu
- Department of Trauma-Emergency and Critical Care Medicine Center (TECCMC), Shanghai Fifth People's Hospital, Fudan University, Shanghai 200240, China
| | - Xiangdong Xue
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
10
|
Park C, Lei Z, Li Y, Ren B, He J, Huang H, Chen F, Li H, Brunner K, Zhu J, Jay SM, Williams B, Chao W, Wu J, Zou L. Extracellular vesicles in sepsis plasma mediate neuronal inflammation in the brain through miRNAs and innate immune signaling. J Neuroinflammation 2024; 21:252. [PMID: 39375720 PMCID: PMC11460013 DOI: 10.1186/s12974-024-03250-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 09/30/2024] [Indexed: 10/09/2024] Open
Abstract
BACKGROUND Neuroinflammation reportedly plays a critical role in the pathogenesis of sepsis-associated encephalopathy (SAE). We previously reported that circulating plasma extracellular vesicles (EVs) from septic mice are proinflammatory. In the current study, we tested the role of sepsis plasma EVs in neuroinflammation. METHODS To track EVs in cells and tissues, HEK293T cell-derived EVs were labeled with the fluorescent dye PKH26. Cecal ligation and puncture (CLP) was conducted to model polymicrobial sepsis in mice. Plasma EVs were isolated by ultracentrifugation and their role in promoting neuronal inflammation was tested following intracerebroventricular (ICV) injection. miRNA inhibitors (anti-miR-146a, -122, -34a, and -145a) were applied to determine the effects of EV cargo miRNAs in the brain. A cytokine array was performed to profile microglia-released protein mediators. TLR7- or MyD88-knockout (KO) mice were utilized to determine the underlying mechanism of EVs-mediated neuroinflammation. RESULTS We observed the uptake of fluorescent PKH26-EVs inside the cell bodies of both microglia and neurons. Sepsis plasma EVs led to a dose-dependent cytokine release in cultured microglia, which was partially attenuated by miRNA inhibitors against the target miRNAs and in TLR7-KO cells. When administered via the ICV, sepsis plasma EVs resulted in a marked increase in the accumulation of innate immune cells, including monocyte and neutrophil and cytokine gene expression, in the brain. Although sepsis plasma EVs had no direct effect on cytokine production or neuronal injury in vitro, the conditioned media (CM) of microglia treated with sepsis plasma EVs induced neuronal cell death as evidenced by increased caspase-3 cleavage and Annexin-V staining. Cytokine arrays and bioinformatics analysis of the microglial CM revealed multiple cytokines/chemokines and other factors functionally linked to leukocyte chemotaxis and migration, TLR signaling, and neuronal death. Moreover, sepsis plasma EV-induced brain inflammation in vivo was significantly dependent on MyD88. CONCLUSIONS Circulating plasma EVs in septic mice cause a microglial proinflammatory response in vitro and a brain innate immune response in vivo, some of which are in part mediated by TLR7 in vitro and MyD88 signaling in vivo. These findings highlight the importance of circulating EVs in brain inflammation during sepsis.
Collapse
Affiliation(s)
- Chanhee Park
- Center for Shock, Trauma and Anesthesiology Research, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Zhuofan Lei
- Center for Shock, Trauma and Anesthesiology Research, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Yun Li
- Center for Shock, Trauma and Anesthesiology Research, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Boyang Ren
- Center for Shock, Trauma and Anesthesiology Research, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Junyun He
- Center for Shock, Trauma and Anesthesiology Research, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Huang Huang
- Center for Shock, Trauma and Anesthesiology Research, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Fengqian Chen
- Center for Shock, Trauma and Anesthesiology Research, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Hui Li
- Center for Shock, Trauma and Anesthesiology Research, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Kavitha Brunner
- Center for Shock, Trauma and Anesthesiology Research, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Jing Zhu
- Center for Shock, Trauma and Anesthesiology Research, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Steven M Jay
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, 20740, USA
| | - Brittney Williams
- Center for Shock, Trauma and Anesthesiology Research, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Wei Chao
- Center for Shock, Trauma and Anesthesiology Research, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Junfang Wu
- Center for Shock, Trauma and Anesthesiology Research, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
- Center to Advanced Chronic Pain Research, University of Maryland, Baltimore, MD, 21201, USA.
| | - Lin Zou
- Center for Shock, Trauma and Anesthesiology Research, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
| |
Collapse
|
11
|
Bruzaferro EVM, de Lima TM, Ariga SK, Barbeiro DF, Barbeiro HV, Pinheiro da Silva F. Effects of CRAMP on the gut-brain axis in experimental sepsis. Immunol Lett 2024; 269:106906. [PMID: 39122093 DOI: 10.1016/j.imlet.2024.106906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 08/01/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024]
Abstract
The collaboration between the microbiota, mucosa, and intestinal epithelium is crucial for defending against pathogens and external antigens. Dysbiosis disrupts this balance, allowing pathogens to thrive and potentially enter the bloodstream, triggering immune dysregulation and potentially leading to sepsis. Antimicrobial peptides like LL-37 and CRAMP are pivotal in innate immune defense. Their expression varies with infection severity, exhibiting a dual pro- and anti-inflammatory response. Understanding this dynamic is key to comprehending sepsis progression. In our study, we examined the inflammatory response in CRAMP knockout mice post-cecal ligation and puncture (CLP). We assessed its impact on brain tissue damage and the intestinal microbiota. Our findings revealed higher gene expression of S100A8 and S100A9 in the prefrontal cortex of wild-type mice versus CRAMP-knockout mice. This trend was consistent in the hippocampus and cerebellum, although protein concentrations remained constant. Notably, there was a notable increase in Escherichia coli, Lactobacillus spp., and Enterococcus faecalis populations in wild-type mice 24 h post-CLP compared to the CRAMP-deficient group. These results align with our previous data suggesting that the absence of CRAMP may confer protection in this sepsis model.
Collapse
Affiliation(s)
| | - Thais Martins de Lima
- Laboratório de Emergências Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Suely Kubo Ariga
- Laboratório de Emergências Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Denise Frediani Barbeiro
- Laboratório de Emergências Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Hermes Vieira Barbeiro
- Laboratório de Emergências Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Fabiano Pinheiro da Silva
- Laboratório de Emergências Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
12
|
Lieberman OJ, Berkowitz AL. Diagnostic Approach to the Patient with Altered Mental Status. Semin Neurol 2024. [PMID: 39353612 DOI: 10.1055/s-0044-1791245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
Acute encephalopathy is a common presenting symptom in the emergency room and complicates many hospital and intensive care unit admissions. The evaluation of patients with encephalopathy poses several challenges: limited history and examination due to the patient's mental status, broad differential diagnosis of systemic and neurologic etiologies, low yield of neurodiagnostic testing due to the high base rate of systemic causes, and the importance of identifying less common neurologic causes of encephalopathy that can be life-threatening if not identified and treated. This article discusses the differential diagnosis of acute encephalopathy, presents an approach to the history and examination in a patient with encephalopathy, reviews the literature on the yield of neurodiagnostic testing in this population, and provides a diagnostic framework for the evaluation of patients with altered mental status.
Collapse
|
13
|
Yang X, Duan H, Li S, Zhang J, Dong L, Ding J, Li X. Yap1 alleviates sepsis associated encephalopathy by inhibiting hippocampus ferroptosis via maintaining mitochondrial dynamic homeostasis. J Cell Mol Med 2024; 28:e70156. [PMID: 39400418 PMCID: PMC11472648 DOI: 10.1111/jcmm.70156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 09/13/2024] [Accepted: 10/01/2024] [Indexed: 10/15/2024] Open
Abstract
Sepsis-associated encephalopathy (SAE) is a serious neurological complication accompanied by acute and long-term cognitive dysfunction. Ferroptosis is a newly discovered type of cell death that is produced by iron-dependent lipid peroxidation. As a key transcriptional coactivator in the Hippo signalling pathway, Yes-associated protein 1 (YAP1) could target ferroptosis-related genes. This study was aimed to determine whether Yap1 protects against SAE and inhibits ferroptosis via maintaining mitochondrial dynamic homeostasis. Caecal ligation puncture (CLP) was used to establish the SAE model, and LPS was applied in hippocampal cells to mimic the inflammatory model in vitro. The results showed that Yap1 conditional knockout in hippocampal caused lower survival in SAE mice and cognitive dysfunction, as proved by Morri's water maze (MWM) task, tail suspension test (TST), open field test (OFT) and elevated plus maze test (EPMT). After Yap1 knockout, the production of ROS, MDA and Fe2+ and proinflammatory cytokines in the hippocampus were increased, indicating that Yap1 deficiency exacerbates CLP-induced brain injury and hippocampus ferroptosis. Meanwhile, GPX4, SLC7A11, ferritin (FTH1) and GSH levels were decreased in the Yap1 knockout group. In vitro, Yap1 overexpression mitigated LPS-induced hippocampal cell ferroptosis and improved mitochondrial function by inhibiting mitochondrial fission, as evidenced by lower mitochondrial ROS, cell viability, Fe2+ and the expression of Fis1 and Drp1. Further, the present study suggested that Yap1 could inhibit ferritinophagy-mediated ferroptosis in the hippocampus via inhibiting mitochondrial fission, thus reducing cognitive dysfunction in SAE mice.
Collapse
Affiliation(s)
- Xin Yang
- Department of AnesthesiologyZhongnan Hospital of Wuhan UniversityWuhanHubeiChina
- Hubei Provincial Engineering Research Center of Minimally Invasive Cardiovascular SurgeryWuhanChina
- Wuhan Clinical Research Center for Minimally Invasive Treatment of Structural Heart DiseaseWuhanChina
| | - Haifeng Duan
- Department of AnesthesiologyZhongnan Hospital of Wuhan UniversityWuhanHubeiChina
| | - Sirui Li
- Department of RadiologyZhongnan Hospital of Wuhan UniversityWuhanHubeiChina
| | - Jing Zhang
- Department of AnesthesiologyZhongnan Hospital of Wuhan UniversityWuhanHubeiChina
| | - Liang Dong
- Liuzhou People's Hospital Affiliated to Guangxi Medical UniversityGuangxiChina
| | - Jingli Ding
- Department of GastroenterologyZhongnan Hospital of Wuhan UniversityWuhanHubeiChina
| | - Xinyi Li
- Department of AnesthesiologyZhongnan Hospital of Wuhan UniversityWuhanHubeiChina
- Hubei Provincial Engineering Research Center of Minimally Invasive Cardiovascular SurgeryWuhanChina
- Wuhan Clinical Research Center for Minimally Invasive Treatment of Structural Heart DiseaseWuhanChina
| |
Collapse
|
14
|
Zhu L, Ma L, Du X, Jiang Y, Gao J, Fan Z, Zheng H, Zhu J, Zhang G. M2 Microglia-Derived Exosomes Protect Against Glutamate-Induced HT22 Cell Injury via Exosomal miR-124-3p. Mol Neurobiol 2024; 61:7845-7861. [PMID: 38433165 DOI: 10.1007/s12035-024-04075-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 02/26/2024] [Indexed: 03/05/2024]
Abstract
As one of the most serious complications of sepsis, sepsis-associated encephalopathy has not been effectively treated or prevented. Exosomes, as a new therapeutic method, play a protective role in neurodegenerative diseases, stroke and traumatic brain injury in recent years. The purpose of this study was to investigate the role of exosomes in glutamate (Glu)-induced neuronal injury, and to explore its mechanism, providing new ideas for the treatment of sepsis-associated encephalopathy. The neuron damage model induced by Glu was established, and its metabolomics was analyzed and identified. BV2 cells were induced to differentiate into M1 and M2 subtypes. After the exosomes from both M1-BV2 cells and M2-BV2 cells were collected, exosome morphological identification was performed by transmission electron microscopy and exosome-specific markers were also detected. These exosomes were then cocultured with HT22 cells. CCK-8 method and LDH kit were used to detect cell viability and toxicity. Cell apoptosis, mitochondrial membrane potential and ROS content were respectively detected by flow cytometry, JC-1 assay and DCFH-DA assay. MiR-124-3p expression level was detected by qRT-PCR and Western blot. Bioinformatics analysis and luciferase reporter assay predicted and verified the relationship between miR-124-3p and ROCK1 or ROCK2. Through metabolomics, 81 different metabolites were found, including fructose, GABA, 2, 4-diaminobutyric acid, etc. The enrichment analysis of differential metabolites showed that they were mainly enriched in glutathione metabolism, glycine and serine metabolism, and urea cycle. M2 microglia-derived exosomes could reduce the apoptosis, decrease the accumulation of ROS, restore the mitochondrial membrane potential and the anti-oxidative stress ability in HT22 cells induced by Glu. It was also found that the protective effect of miR-124-3p mimic on neurons was comparable to that of M2-EXOs. Additionally, M2-EXOs might carry miR-124-3p to target ROCK1 and ROCK2 in neurons, affecting ROCK/PTEN/AKT/mTOR signaling pathway, and then reducing Glu-induced neuronal apoptosis. M2 microglia-derived exosomes may protect HT22 cells against Glu-induced injury by transferring miR-124-3p into HT22 cells, with ROCK being a target gene for miR-124-3p.
Collapse
Affiliation(s)
- Lan Zhu
- Department of Emergency and Critical Care Medicine, The Second Affiliated Hospital of Soochow University, 1055 Sanxiang Road, Suzhou, Jiangsu, 215004, People's Republic of China
| | - Limei Ma
- Department of Emergency and Critical Care Medicine, The Second Affiliated Hospital of Soochow University, 1055 Sanxiang Road, Suzhou, Jiangsu, 215004, People's Republic of China
| | - Xin Du
- Department of Emergency and Critical Care Medicine, The Second Affiliated Hospital of Soochow University, 1055 Sanxiang Road, Suzhou, Jiangsu, 215004, People's Republic of China
| | - Yuhao Jiang
- Department of Emergency and Critical Care Medicine, The Second Affiliated Hospital of Soochow University, 1055 Sanxiang Road, Suzhou, Jiangsu, 215004, People's Republic of China
| | - Jiake Gao
- Department of Emergency and Critical Care Medicine, The Second Affiliated Hospital of Soochow University, 1055 Sanxiang Road, Suzhou, Jiangsu, 215004, People's Republic of China
| | - Zihao Fan
- Department of Emergency and Critical Care Medicine, The Second Affiliated Hospital of Soochow University, 1055 Sanxiang Road, Suzhou, Jiangsu, 215004, People's Republic of China
| | - Hengheng Zheng
- Department of Emergency and Critical Care Medicine, The Second Affiliated Hospital of Soochow University, 1055 Sanxiang Road, Suzhou, Jiangsu, 215004, People's Republic of China
| | - Jianjun Zhu
- Department of Emergency and Critical Care Medicine, The Second Affiliated Hospital of Soochow University, 1055 Sanxiang Road, Suzhou, Jiangsu, 215004, People's Republic of China.
| | - Gaofeng Zhang
- Department of Critical Care Medicine, Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, No.6 Huanghe Road, Changshu, Jiangsu, 215500, People's Republic of China.
| |
Collapse
|
15
|
Hosseini M, Bardaghi Z, Askarpour H, Rajabian A, Mahmoudabady M, Shabab S, Samadi‐Noshahr Z, Salmani H. Minocycline mitigates sepsis-induced neuroinflammation and promotes recovery in male mice: Insights into neuroprotection and inflammatory modulation. Physiol Rep 2024; 12:e70032. [PMID: 39370294 PMCID: PMC11456363 DOI: 10.14814/phy2.70032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/13/2024] [Accepted: 08/26/2024] [Indexed: 10/08/2024] Open
Abstract
Sepsis is associated with brain injury and acute brain inflammation, which can potentially transition into chronic inflammation, triggering a cascade of inflammatory responses that may lead to neurological disorders. Minocycline, recognized for its potent anti-inflammatory properties, was investigated in this study for its protective effects against sepsis-induced brain injury. Adult male C57 mice pretreated with minocycline (12.5, 25, and 50 mg/kg) 3 days before sepsis induction. An intraperitoneal injection of 5 mg/kg LPS was used to induce sepsis. Spontaneous locomotor activity (SLA) and weight changes were assessed over several days post-sepsis to monitor the recovery of the mice. The expression of inflammatory mediators and oxidative stress markers was assessed 24 h post sepsis. Septic mice exhibited significant weight loss and impaired SLA. Initially, minocycline did not attenuate the severity of weight loss (1 day) or SLA (4 h post-sepsis), but it significantly accelerated the recovery of the mice in later days. Minocycline dose-dependently mitigated sepsis-induced brain inflammation and oxidative stress. Our findings demonstrate that pretreatment with minocycline has the potential to prevent brain tissue damage and accelerate recovery from sepsis in mice, suggesting that minocycline may serve as a promising therapeutic intervention to protect against sepsis-induced neurological complications.
Collapse
Affiliation(s)
- Mahmoud Hosseini
- Psychiatry and Behavioral Sciences Research CenterMashhad University of Medical SciencesMashhadIran
- Applied Biomedical Research CenterMashhad University of Medical SciencesMashhadIran
| | - Zahra Bardaghi
- Psychiatry and Behavioral Sciences Research CenterMashhad University of Medical SciencesMashhadIran
- Department of Developmental BiologyWashington University School of MedicineSt. LouisMissouriUSA
| | - Hedyeh Askarpour
- Bioenvironmental Health Hazards Research CenterJiroft University of Medical SciencesJiroftIran
| | - Arezoo Rajabian
- Neuroscience Research CenterMashhad University of Medical SciencesMashhadIran
| | - Maryam Mahmoudabady
- Applied Biomedical Research CenterMashhad University of Medical SciencesMashhadIran
| | - Sadegh Shabab
- Applied Biomedical Research CenterMashhad University of Medical SciencesMashhadIran
| | - Zahra Samadi‐Noshahr
- Chabahar Faculty of Medical Sciences, School of MedicineIranshahr University of Medical SciencesChabaharIran
| | - Hossein Salmani
- Bioenvironmental Health Hazards Research CenterJiroft University of Medical SciencesJiroftIran
- Department of Physiology and Pharmacology, Faculty of MedicineSabzevar University of Medical SciencesMashhadIran
| |
Collapse
|
16
|
Yang XR, Wen R, Yang N, Zhang TN. Role of sirtuins in sepsis and sepsis-induced organ dysfunction: A review. Int J Biol Macromol 2024; 278:134853. [PMID: 39163955 DOI: 10.1016/j.ijbiomac.2024.134853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/16/2024] [Accepted: 08/16/2024] [Indexed: 08/22/2024]
Abstract
Sepsis is defined as life-threatening organ dysfunction caused by a dysregulated host response to infection. Sepsis causes a high mortality rate and current treatment focuses on supportive therapies but lacks specific therapeutic targets. Notably, sirtuins (SIRTs) shows potential clinical application in the treatment of sepsis. It has been demonstrated that SIRTs, the nicotinamide adenine dinucleotide+(NAD+)-dependent deacetylases that regulate key signaling pathways in eukaryotes and prokaryotes, are involved in a variety of biological processes. To date, seven mammalian yeast Sir2 homologs have been identified. SIRTs can regulate inflammation, oxidative stress, apoptosis, autophagy, and other pathways that play important roles in sepsis-induced organ dysfunction. However, the existing studies on SIRTs in sepsis are too scattered, and there is no relevant literature to integrate them. This review innovatively summarizes the different mechanisms of SIRTs in sepsis organ dysfunction according to the different systems, and focuses on SIRT agonists, inhibitors, and targeted drugs that have been proved to be effective in the treatment of sepsis, so as to integrate the clinical research and basic research closely. We searched PubMed for all literature related to SIRTs and sepsis since its inception using the following medical subject headings: sirtuins, SIRTs, and sepsis. Data on the mechanisms of SIRTs in sepsis-induced organ damage and their potential as targets for disease treatment were extracted.
Collapse
Affiliation(s)
- Xin-Ru Yang
- Department of Pediatrics, PICU, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Ri Wen
- Department of Pediatrics, PICU, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Ni Yang
- Department of Pediatrics, PICU, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Tie-Ning Zhang
- Department of Pediatrics, PICU, Shengjing Hospital of China Medical University, Shenyang 110004, China.
| |
Collapse
|
17
|
Bonorino KC, Iria Kraus S, Henrique Cardoso Martins G, Jorge Probst J, Petry Moeke DM, Henrique Dos Santos Sumar A, Reis Casal Y, Rodolfo Moreira Borges Oliveira F, Sordi R, Assreuy J, Duarte da Silva M, de Camargo Hizume Kunzler D. Lung-brain crosstalk: Behavioral disorders and neuroinflammation in septic survivor mice. Brain Behav Immun Health 2024; 40:100823. [PMID: 39252983 PMCID: PMC11381903 DOI: 10.1016/j.bbih.2024.100823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 06/06/2024] [Accepted: 07/15/2024] [Indexed: 09/11/2024] Open
Abstract
Although studies have suggested an association between lung infections and increased risk of neuronal disorders (e.g., dementia, cognitive impairment, and depressive and anxious behaviors), its mechanisms remain unclear. Thus, an experimental mice model of pulmonary sepsis was developed to investigate the relationship between lung and brain inflammation. Male Swiss mice were randomly assigned to either pneumosepsis or control groups. Pneumosepsis was induced by intratracheal instillation of Klebsiella pneumoniae, while the control group received a buffer solution. The model's validation included assessing systemic markers, as well as tissue vascular permeability. Depression- and anxiety-like behaviors and cognitive function were assessed for 30 days in sepsis survivor mice, inflammatory profiles, including cytokine levels (lungs, hippocampus, and prefrontal cortex) and microglial activation (hippocampus), were examined. Pulmonary sepsis damaged distal organs, caused peripheral inflammation, and increased vascular permeability in the lung and brain, impairing the blood-brain barrier and resulting in bacterial dissemination. After sepsis induction, we observed an increase in myeloperoxidase activity in the lungs (up to seven days) and prefrontal cortex (up to 24 h), proinflammatory cytokines in the hippocampus and prefrontal cortex, and percentage of areas with cells positive for ionized calcium-binding adaptor molecule 1 (IBA-1) in the hippocampus. Also, depression- and anxiety-like behaviors and changes in short-term memory were observed even 30 days after sepsis induction, suggesting a crosstalk between inflammatory responses of lungs and brain.
Collapse
Affiliation(s)
| | | | | | - Jéssica Jorge Probst
- Federal University of Santa Catarina, Postgraduate Program in Biochemistry, Brazil
| | | | | | - Yuri Reis Casal
- Neuropathology, Department of Pathology, Medical School Hospital of the São Paulo University, Brazil
| | | | - Regina Sordi
- Department of Pharmacology, Center of Biological Sciences, Federal University of Santa Catarina, Brazil
| | - Jamil Assreuy
- Department of Pharmacology, Center of Biological Sciences, Federal University of Santa Catarina, Brazil
| | | | | |
Collapse
|
18
|
Ritter K, Rissel R, Renz M, Ziebart A, Schäfer MKE, Kamuf J. Nebulized Lipopolysaccharide Causes Delayed Cortical Neuroinflammation in a Murine Model of Acute Lung Injury. Int J Mol Sci 2024; 25:10117. [PMID: 39337602 PMCID: PMC11432715 DOI: 10.3390/ijms251810117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/15/2024] [Accepted: 09/17/2024] [Indexed: 09/30/2024] Open
Abstract
Lung injury caused by respiratory infection is a major cause of hospitalization and mortality and a leading origin of sepsis. Sepsis-associated encephalopathy and delirium are frequent complications in patients with severe lung injury, yet the pathogenetic mechanisms remain unclear. Here, 70 female C57BL/6 mice were subjected to a single full-body-exposure with nebulized lipopolysaccharide (LPS). Neuromotor impairment was assessed repeatedly and brain, blood, and lung samples were analyzed at survival points of 24 h, 48 h, 72 h, and 96 h after exposure. qRT-PCR revealed increased mRNA-expression of TNFα and IL-1β 24 h and 48 h after LPS-exposure in the lung, concomitantly with increased amounts of proteins in bronchoalveolar lavage and interstitial lung edema. In the cerebral cortex, at 72 h and/or 96 h after LPS exposure, the inflammation- and activity-associated markers TLR4, GFAP, Gadd45b, c-Fos, and Arc were increased. Therefore, single exposure to nebulized LPS not only triggers an early inflammatory reaction in the lung but also induces a delayed neuroinflammatory response. The identified mechanisms provide new insights into the pathogenesis of sepsis-associated encephalopathy and might serve as targets for future therapeutic approaches.
Collapse
Affiliation(s)
- Katharina Ritter
- Department of Anesthesiology, University Medical Center of the Johannes-Gutenberg-University, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - René Rissel
- Department of Anesthesiology, University Medical Center of the Johannes-Gutenberg-University, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Miriam Renz
- Department of Anesthesiology, University Medical Center of the Johannes-Gutenberg-University, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Alexander Ziebart
- Department of Anesthesiology, University Medical Center of the Johannes-Gutenberg-University, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Michael K. E. Schäfer
- Department of Anesthesiology, University Medical Center of the Johannes-Gutenberg-University, Langenbeckstrasse 1, 55131 Mainz, Germany
- Research Center for Immunotherapy (FZI), Johannes-Gutenberg-University, 55131 Mainz, Germany
- Focus Program Translational Neurosciences (FTN), Johannes-Gutenberg-University, 55131 Mainz, Germany
| | - Jens Kamuf
- Department of Anesthesiology, University Medical Center of the Johannes-Gutenberg-University, Langenbeckstrasse 1, 55131 Mainz, Germany
| |
Collapse
|
19
|
Zeng QQ, Wang J, Yue RC, Wang FS, Xu Y, Su YP, Zhang QL, Zheng YW, Zhang GF, Li B, Yu CX, Jin GL. Gelsevirine ameliorates sepsis-associated encephalopathy by inhibiting the STING signalling-mediated pyroptosis pathway in microglia. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156071. [PMID: 39326131 DOI: 10.1016/j.phymed.2024.156071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/04/2024] [Accepted: 09/17/2024] [Indexed: 09/28/2024]
Abstract
BACKGROUND Sepsis-associated encephalopathy (SAE) is among the most prevalent and deadly complications associated with sepsis, but satisfactory treatments and therapeutic agents are lacking. Gelsevirine, an active ingredient derived from Gelsemium elegans Benth., has shown promising effects in animal models of anxiety, ischaemic stroke and osteoarthritis. However, its protective effect against SAE and its mechanism of action are still unknown. PURPOSE To elucidate the efficacy of gelsevirine against SAE and the mechanism of its protective effect through the STING signalling-mediated pyroptosis pathway. METHODS We constructed a mouse model of caecum ligation and puncture (CLP)-induced sepsis and explored the protective effects of gelsevirine in mice with SAE by assessing survival rates and behavioural alterations. To further explore its mechanism of action, we investigated the modulatory effects of gelsevirine on the levels of inflammatory factors, microglial activation and pyroptosis by Western blotting, immunohistochemistry staining and PCR. STING knockout mice were used to verify the protective effect of gelsevirine against SAE through the STING pathway. RESULTS Gelsevirine increased the survival rate of mice with SAE. The Morris water maze and open field tests revealed that gelsevirine significantly alleviated cognitive dysfunction and increased exploratory behaviour in mice with SAE. Gelsevirine inhibited the activation of microglia and decreased inflammatory factor levels in the hippocampus of mice with SAE. In mice with SAE and in vitro BV2 microglia, gelsevirine reduced levels of inflammatory factors and inhibited STING protein phosphorylation and microglial pyroptosis. However, after STING knockout, the inhibitory effect of gelsevirine on microglial pyroptosis was significantly weakened, and gelsevirine-mediated protective effects were abolished. CONCLUSIONS Gelsevirine increased the survival rate, ameliorated cognitive impairment, inhibited glial cell activation and reduced inflammation in the hippocampi of mice with SAE; the mechanism may be related to the inhibition of STING signalling pathway-mediated pyroptosis in microglia.
Collapse
Affiliation(s)
- Qing-Quan Zeng
- Department of Pharmacology, College of Pharmacy, Fujian Medical University, Fuzhou, Fujian, PR China
| | - Jing Wang
- Laboratory Animal Center, Fujian Medical University, Fuzhou, Fujian, PR China
| | - Rong-Cai Yue
- Department of Pharmacology, College of Pharmacy, Fujian Medical University, Fuzhou, Fujian, PR China; Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, Fuzhou, Fujian, PR China
| | - Fa-Sheng Wang
- Department of Orthopaedics, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, PR China
| | - Ying Xu
- Department of Pharmacology, College of Pharmacy, Fujian Medical University, Fuzhou, Fujian, PR China
| | - Yan-Ping Su
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, Fuzhou, Fujian, PR China
| | - Qiao-Ling Zhang
- Department of Pharmacology, College of Pharmacy, Fujian Medical University, Fuzhou, Fujian, PR China
| | - You-Wei Zheng
- Department of Pharmacology, College of Pharmacy, Fujian Medical University, Fuzhou, Fujian, PR China
| | - Gui-Fei Zhang
- Department of Pharmacology, College of Pharmacy, Fujian Medical University, Fuzhou, Fujian, PR China
| | - Bo Li
- Amway (Shanghai) Science and Technology Development Co., Ltd, Shanghai, PR China; Amway (China) Botanical R&D Center, Wuxi 214145, PR China.
| | - Chang-Xi Yu
- Department of Pharmacology, College of Pharmacy, Fujian Medical University, Fuzhou, Fujian, PR China; Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, Fuzhou, Fujian, PR China.
| | - Gui-Lin Jin
- Department of Pharmacology, College of Pharmacy, Fujian Medical University, Fuzhou, Fujian, PR China; Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, Fuzhou, Fujian, PR China.
| |
Collapse
|
20
|
Lu S, Di John Portela I, Martino N, Bossardi Ramos R, Salinero AE, Smith RM, Zuloaga KL, Adam AP. A transient brain endothelial translatome response to endotoxin is associated with mild cognitive changes post-shock in young mice. Neuroscience 2024; 555:194-204. [PMID: 39067684 PMCID: PMC11470799 DOI: 10.1016/j.neuroscience.2024.07.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/10/2024] [Accepted: 07/23/2024] [Indexed: 07/30/2024]
Abstract
Sepsis-associated encephalopathy (SAE) is associated with increased risk of long-term cognitive impairment. SAE is driven, at least in part, by brain endothelial dysfunction in response to systemic cytokine signaling. However, the mechanisms driving SAE and its consequences remain largely unknown. Here, we performed translating ribosome affinity purification and RNA-sequencing (TRAP-seq) from the brain endothelium to determine the transcriptional changes after an acute endotoxemic (LPS) challenge. LPS induced a strong acute transcriptional response in the brain endothelium that partially correlates with the whole brain transcriptional response and suggested an endothelial-specific hypoxia response. Consistent with a crucial role for IL-6, loss of the main regulator of this pathway, SOCS3, leads to a broadening of the population of genes responsive to LPS, suggesting that an overactivation of the IL-6/JAK/STAT3 pathway leads to an increased transcriptional response that could explain our prior findings of severe brain injury in these mice. To identify any potential sequelae of this acute response, we performed brain TRAP-seq following a battery of behavioral tests in mice after apparent recovery. We found that the transcriptional response returns to baseline within days post-challenge, but reductions in gene expression regulating protein translation and respiratory electron transport remained. We observed that mice that recovered from the endotoxemic shock showed mild, sex-dependent cognitive impairment, suggesting that the acute brain injury led to sustained effects. A better understanding of the transcriptional and non-transcriptional changes in response to shock is needed in order to prevent and/or revert the devastating consequences of septic shock.
Collapse
Affiliation(s)
- Shuhan Lu
- Department of Molecular and Cellular Physiology, Albany Medical College, United States
| | - Iria Di John Portela
- Department of Molecular and Cellular Physiology, Albany Medical College, United States
| | - Nina Martino
- Department of Molecular and Cellular Physiology, Albany Medical College, United States
| | - Ramon Bossardi Ramos
- Department of Molecular and Cellular Physiology, Albany Medical College, United States
| | - Abigail E Salinero
- Department of Neuroscience & Experimental Therapeutics, Albany Medical College, United States
| | - Rachel M Smith
- Department of Neuroscience & Experimental Therapeutics, Albany Medical College, United States
| | - Kristen L Zuloaga
- Department of Neuroscience & Experimental Therapeutics, Albany Medical College, United States
| | - Alejandro P Adam
- Department of Molecular and Cellular Physiology, Albany Medical College, United States; Department of Ophthalmology, Albany Medical College, United States.
| |
Collapse
|
21
|
Xiao P, Wen Y, Du G, Luo E, Su Z, Liao Z, Ding H, Li W. Clusterin attenuates blood-brain barrier damage and cognitive impairment by inhibiting astrocyte aging in mice with sepsis-associated encephalopathy. Neuroreport 2024; 35:857-867. [PMID: 38973492 DOI: 10.1097/wnr.0000000000002075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2024]
Abstract
Sepsis-associated encephalopathy (SAE) is a severe complication of sepsis, however, its exact mechanism remains unknown. This study aimed to evaluate whether clusterin is essential to the development of SAE during the aging process of astrocytes. In the study, septic mice were established with cecal ligation and puncture (CLP) and lipopolysaccharides were applied to astrocytes in vitro. Evan's blue dye was used in vivo to show blood-brain barrier (BBB) permeability. A morris water maze test was conducted to assess cognitive functions of the mice. Clusterin-knockout mice were used to examine the effect of clusterin on sepsis. The astrocytes were transfected with lentivirus expressing clusterin cDNA for clusterin overexpression or pYr-LV-clusterin small hairpin RNA for clusterin knockdown in vitro . The expression of clusterin, p-p53, p21, GDNF, and iNOS was detected. he CLP mice exhibited a higher clusterin expression in hippocampus tissue, aging astrocytes, lower GDNF expression and higher iNOS expression, accompanied with BBB damage and cognitive deficiency. Following clusterin knockout, this pathological process was further enhanced. In vitro , following lipopolysaccharides treatment, astrocytes exhibited increased clusterin, p-p53, p21, iNOS and decreased GDNF. Following clusterin knockdown, the cells exhibited a further increase in p-p53, p21, and iNOS and decrease in GDNF. Clusterin overexpression, however, helped inhibit astrocytes aging and neuroinflammation evidenced by decreased p-p53, p21, iNOS and increased GDNF. The present study has revealed that clusterin may exert its neuroprotective effect by preventing aging in astrocytes, suppressing the secretion of iNOS and promoting GNDF release.
Collapse
Affiliation(s)
- Ping Xiao
- Surgical Department of Pulmonary Oncology
| | - Yin Wen
- Department of Critical Care Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou
| | - Guoqiang Du
- Department of Emergency Medicine, Luoding People's Hospital, Yunfu
| | - Ensi Luo
- Department of Endocrinology, Binhaiwan Central Hospital of Dongguan, Dongguan Hospital Affiliated to Medical College of Jinan University, Dongguan
| | - ZhiWei Su
- Department of Critical Care Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou
| | - Zhong Liao
- Department of Emergency Medicine, Longnan First People's Hospital, Longnan
| | - Hongguang Ding
- Department of Emergency Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Weifeng Li
- Department of Emergency Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| |
Collapse
|
22
|
Gao S, Shen R, Li J, Jiang Y, Sun H, Wu X, Li X, Miao C, He M, Wang J, Chen W. N-acetyltransferase 10 mediates cognitive dysfunction through the acetylation of GABA BR1 mRNA in sepsis-associated encephalopathy. Proc Natl Acad Sci U S A 2024; 121:e2410564121. [PMID: 39190359 PMCID: PMC11388286 DOI: 10.1073/pnas.2410564121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 07/30/2024] [Indexed: 08/28/2024] Open
Abstract
Sepsis-associated encephalopathy (SAE) is a critical neurological complication of sepsis and represents a crucial factor contributing to high mortality and adverse prognosis in septic patients. This study explored the contribution of NAT10-mediated messenger RNA (mRNA) acetylation in cognitive dysfunction associated with SAE, utilizing a cecal ligation and puncture (CLP)-induced SAE mouse model. Our findings demonstrate that CLP significantly upregulates NAT10 expression and mRNA acetylation in the excitatory neurons of the hippocampal dentate gyrus (DG). Notably, neuronal-specific Nat10 knockdown improved cognitive function in septic mice, highlighting its critical role in SAE. Proteomic analysis, RNA immunoprecipitation, and real-time qPCR identified GABABR1 as a key downstream target of NAT10. Nat10 deletion reduced GABABR1 expression, and subsequently weakened inhibitory postsynaptic currents in hippocampal DG neurons. Further analysis revealed that microglia activation and the release of inflammatory mediators lead to the increased NAT10 expression in neurons. Microglia depletion with PLX3397 effectively reduced NAT10 and GABABR1 expression in neurons, and ameliorated cognitive dysfunction induced by SAE. In summary, our findings revealed that after CLP, NAT10 in hippocampal DG neurons promotes GABABR1 expression through mRNA acetylation, leading to cognitive dysfunction.
Collapse
Affiliation(s)
- Shenjia Gao
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai 200032, China
| | - Ruling Shen
- Shanghai Laboratory Animal Research Center, Shanghai 201203, China
| | - Jie Li
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and Ministry of Education (MOE) Frontiers Center for Brain Science, Shanghai 200032, China
- Department of Neurobiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Yi Jiang
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai 200032, China
| | - Hao Sun
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai 200032, China
| | - Xinyi Wu
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai 200032, China
| | - Xiya Li
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai 200032, China
| | - Changhong Miao
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai 200032, China
| | - Miao He
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and Ministry of Education (MOE) Frontiers Center for Brain Science, Shanghai 200032, China
- Department of Neurobiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Jun Wang
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Science, Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, Fudan University, Shanghai 200032, China
| | - Wankun Chen
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai 200032, China
- Department of Anesthesiology, Shanghai Geriatric Medical Center, Shanghai 201104, China
- Department of Anesthesiology, QingPu Branch of Zhongshan Hospital, Fudan University, Shanghai 201799, China
| |
Collapse
|
23
|
Koutroulis I, Kratimenos P, Hoptay C, O’Brien WN, Sanidas G, Byrd C, Triantafyllou M, Goldstein E, Jablonska B, Bharadwaj M, Gallo V, Freishtat R. Mesenchymal stem cell-derived small extracellular vesicles alleviate the immunometabolic dysfunction in murine septic encephalopathy. iScience 2024; 27:110573. [PMID: 39165840 PMCID: PMC11334791 DOI: 10.1016/j.isci.2024.110573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 05/20/2024] [Accepted: 07/22/2024] [Indexed: 08/22/2024] Open
Abstract
Sepsis is a life-threatening organ dysfunction caused by a dysregulated host response to infection that results in high mortality and long-term sequela. The central nervous system (CNS) is susceptible to injury from infectious processes, which can lead to clinical symptoms of septic encephalopathy (SE). SE is linked to a profound energetic deficit associated with immune dysregulation. Here, we show that intravenous administration of adipose tissue mesenchymal stem cell (MSC)-derived small extracellular vesicles (sEVs) in septic mice improved disease outcomes by reducing SE clinical severity, restoring aerobic metabolism, and lowering pro-inflammatory cytokines in the cerebellum, a key region affected by SE. Our high throughput analysis showed that MSC-derived sEVs partially reversed sepsis-induced transcriptomic changes, highlighting the potential association of miRNA regulators in the cerebellum of MSC-derived sEV-treated mice with miRNAs identified in sEV cargo. MSC-derived sEVs could serve as a promising therapeutic agent in SE through their favorable immunometabolic properties.
Collapse
Affiliation(s)
- Ioannis Koutroulis
- Department of Pediatrics, Division of Emergency Medicine, Children’s National Hospital, Washington, DC 20010, USA
- George Washington University School of Medicine and Health Sciences, Washington, DC 20010, USA
- Children’s National Research Institute, Washington, DC 20010, USA
| | - Panagiotis Kratimenos
- George Washington University School of Medicine and Health Sciences, Washington, DC 20010, USA
- Department of Pediatrics, Division of Neonatology, Children’s National Hospital, Washington, DC 20010, USA
- Children’s National Research Institute, Washington, DC 20010, USA
| | - Claire Hoptay
- Children’s National Research Institute, Washington, DC 20010, USA
| | - Wade N. O’Brien
- Dartmouth College Geisel School of Medicine, Hanover, NH 03755, USA
| | - Georgios Sanidas
- Children’s National Research Institute, Washington, DC 20010, USA
| | - Chad Byrd
- Children’s National Research Institute, Washington, DC 20010, USA
| | | | - Evan Goldstein
- Augusta University Medical College of Georgia, Augusta, GA 30912, USA
| | - Beata Jablonska
- Children’s National Research Institute, Washington, DC 20010, USA
| | | | - Vittorio Gallo
- George Washington University School of Medicine and Health Sciences, Washington, DC 20010, USA
- Children’s National Research Institute, Washington, DC 20010, USA
| | - Robert Freishtat
- Department of Pediatrics, Division of Emergency Medicine, Children’s National Hospital, Washington, DC 20010, USA
- George Washington University School of Medicine and Health Sciences, Washington, DC 20010, USA
- Children’s National Research Institute, Washington, DC 20010, USA
| |
Collapse
|
24
|
Jin YY, Liang YP, Wei ZY, Sui WJ, Chen JH. Hippocampal adenosine-to-inosine RNA editing in sepsis: dynamic changes and influencing factors. Brain Commun 2024; 6:fcae260. [PMID: 39135964 PMCID: PMC11317967 DOI: 10.1093/braincomms/fcae260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 06/05/2024] [Accepted: 08/07/2024] [Indexed: 08/15/2024] Open
Abstract
Sepsis-associated encephalopathy is a diffuse brain dysfunction secondary to infection. It has been established that factors such as age and sex can significantly contribute to the development of sepsis-associated encephalopathy. Our recent study implicated a possible link between adenosine-to-inosine RNA editing and sepsis-associated encephalopathy, yet the dynamics of adenosine-to-inosine RNA editing during sepsis-associated encephalopathy and how it could be influenced by factors such as age, sex and antidepressants remain uninvestigated. Our current study analysed and validated transcriptome-wide changes in adenosine-to-inosine RNA editing in the hippocampus of different septic mouse models. Seventy-four sites in 64 genes showed significant differential RNA editing over time in septic mice induced by caecal ligation and perforation. The differential RNA editing might contribute to the RNA expression regulation of the edited genes, with 42.2% differentially expressed. These differentially edited genes, especially those with missense editing, such as glutamate receptor, ionotropic, kainate 2 (Grik2, p.M620V), filamin A (Flna, p.S2331G) and capicua transcriptional repressor (Cic, p.E2270G), were mainly involved in abnormal social behaviour and neurodevelopmental and psychiatric disorders. Significant effects of age and sex were also observed on sepsis-associated RNA editing. Further comparison highlighted 40 common differential RNA editing sites that caecal ligation and perforation-induced and lipopolysaccharide-induced septic mouse models shared. Interestingly, these findings demonstrate temporal dynamics of adenosine-to-inosine RNA editing in the mouse hippocampus during sepsis, add to the understanding of age and sex differences in the disease and underscore the role of the epigenetic process in sepsis-associated encephalopathy.
Collapse
Affiliation(s)
- Yun-Yun Jin
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, China
- Joint Primate Research Center for Chronic Diseases, Jiangnan University and Institute of Zoology, Guangdong Academy of Sciences, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, China
- Jiangnan University Brain Institute, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Ya-Ping Liang
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, China
- Joint Primate Research Center for Chronic Diseases, Jiangnan University and Institute of Zoology, Guangdong Academy of Sciences, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, China
- Jiangnan University Brain Institute, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Zhi-Yuan Wei
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, China
- Joint Primate Research Center for Chronic Diseases, Jiangnan University and Institute of Zoology, Guangdong Academy of Sciences, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, China
- Jiangnan University Brain Institute, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wei-Jia Sui
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, China
- Joint Primate Research Center for Chronic Diseases, Jiangnan University and Institute of Zoology, Guangdong Academy of Sciences, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, China
- Jiangnan University Brain Institute, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jian-Huan Chen
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, China
- Joint Primate Research Center for Chronic Diseases, Jiangnan University and Institute of Zoology, Guangdong Academy of Sciences, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, China
- Jiangnan University Brain Institute, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
25
|
Xu HJ, Lin YY, Yu JJ, Zhang N, Hu JM, Qu JS, Yuan CM, Chen DQ, Liang M, Cai HD, Zeng K. Gibberellic acid targeting ZBTB16 reduces NF-κB dependent inflammatory stress in sepsis-induced neuroinflammation. Eur J Pharmacol 2024; 976:176665. [PMID: 38797312 DOI: 10.1016/j.ejphar.2024.176665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 05/01/2024] [Accepted: 05/22/2024] [Indexed: 05/29/2024]
Abstract
OBJECTIVE Sepsis is frequently complicated by neuroinflammation. Gibberellic acid (GA3) is recognized for its anti-inflammatory properties. In this study, our objective was to investigate whether GA3 could alleviate Nuclear factor-kappa B (NF-κB) -dependent inflammatory stress in sepsis-induced neuroinflammation. METHODS C57BL/6 J mice were administered 10 mg/kg lipopolysaccharide (LPS) to induce sepsis. BV2 cells were pre-incubated with GA3 and subjected lipopolysaccharide stimulation to replicate the inflammatory microglia during sepsis. Subsequently, we assessed the release of IL-6, TNF-α, and IL-1β, along with the expression of Zbtb16, NF-κB, and IκB. To investigate whether any observed anti-inflammatory effects of GA3 were mediated through a Zbtb16-dependent mechanism, Zbtb16 was silenced using siRNA. RESULTS GA3 improved the survival of sepsis mice and alleviated post-sepsis cognitive impairment. Additionally, GA3 attenuated microglial M1 activation (pro-inflammatory phenotype), inflammation, and neuronal damage in the brain. Moreover, GA3 inhibited the release of TNF-α, IL-6, and IL-1β in microglia stimulated with LPS. The NF-κB signaling pathway emerged as one of the key molecular pathways associated with the impact of GA3 on LPS-stimulated microglia. Lastly, GA3 upregulated Zbtb16 expression in microglia that had been downregulated by LPS. The inhibitory effects of GA3 on microglial M1 activation were partially reversed through siRNA knockdown of Zbtb16. CONCLUSIONS Pre-incubation of microglia with GA3 led to the upregulation of the NF-κB regulator, Zbtb16. This process counteracted LPS-induced microglial M1 activation, resulting in an anti-inflammatory effect upon subsequent LPS stimulation.
Collapse
Affiliation(s)
- Hao-Jie Xu
- Department of Anesthesiology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China; Department of Anesthesiology, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China; Institute of Anesthesiology, Fujian Medical University, Fuzhou, 350005, China
| | - Ying-Yi Lin
- Department of Anesthesiology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China; Department of Anesthesiology, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China; Institute of Anesthesiology, Fujian Medical University, Fuzhou, 350005, China
| | - Jian-Jun Yu
- Department of Anesthesiology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China; Department of Anesthesiology, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China; Institute of Anesthesiology, Fujian Medical University, Fuzhou, 350005, China
| | - Na Zhang
- Department of Anesthesiology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China; Department of Anesthesiology, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China; Institute of Anesthesiology, Fujian Medical University, Fuzhou, 350005, China
| | - Jia-Min Hu
- Department of Anesthesiology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China; Department of Anesthesiology, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China; Institute of Anesthesiology, Fujian Medical University, Fuzhou, 350005, China
| | - Jin-Shuang Qu
- Department of Anesthesiology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China; Department of Anesthesiology, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China; Institute of Anesthesiology, Fujian Medical University, Fuzhou, 350005, China
| | - Chao-Mei Yuan
- Department of Anesthesiology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China; Department of Anesthesiology, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China; Institute of Anesthesiology, Fujian Medical University, Fuzhou, 350005, China
| | - Da-Qiu Chen
- Department of Cardiology, Affiliated Nanping First Hospital, Fujian Medical University, Nanping, 353000, Fujian Province, China
| | - Min Liang
- Department of Anesthesiology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China; Department of Anesthesiology, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China; Institute of Anesthesiology, Fujian Medical University, Fuzhou, 350005, China
| | - Hong-da Cai
- Department of Anesthesiology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China; Department of Anesthesiology, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China; Institute of Anesthesiology, Fujian Medical University, Fuzhou, 350005, China
| | - Kai Zeng
- Department of Anesthesiology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China; Department of Anesthesiology, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China; Institute of Anesthesiology, Fujian Medical University, Fuzhou, 350005, China.
| |
Collapse
|
26
|
Li YN, Liang YP, Zhang JQ, Li N, Wei ZY, Rao Y, Chen JH, Jin YY. Dynamic A-to-I RNA editing during acute neuroinflammation in sepsis-associated encephalopathy. Front Neurosci 2024; 18:1435185. [PMID: 39156629 PMCID: PMC11328407 DOI: 10.3389/fnins.2024.1435185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 06/25/2024] [Indexed: 08/20/2024] Open
Abstract
Introduction The activation of cerebral endothelial cells (CECs) has recently been reported to be the earliest acute neuroinflammation event in the CNS during sepsis-associated encephalopathy (SAE). Importantly, adenosine-to-inosine (A-to-I) RNA editing mediated by ADARs has been associated with SAE, yet its role in acute neuroinflammation in SAE remains unclear. Methods Our current study systematically analyzed A-to-I RNA editing in cerebral vessels, cerebral endothelial cells (CECs), and microglia sampled during acute neuroinflammation after treatment in a lipopolysaccharide (LPS)-induced SAE mouse model. Results Our results showed dynamic A-to-I RNA editing activity changes in cerebral vessels during acute neuroinflammation. Differential A-to-I RNA editing (DRE) associated with acute neuroinflammation were identified in these tissue or cells, especially missense editing events such as S367G in antizyme inhibitor 1 (Azin1) and editing events in lincRNAs such as maternally expressed gene 3 (Meg3), AW112010, and macrophage M2 polarization regulator (Mm2pr). Importantly, geranylgeranyl diphosphate synthase 1 (Ggps1) and another three genes were differentially edited across cerebral vessels, CECs, and microglia. Notably, Spearman correlation analysis also revealed dramatic time-dependent DRE during acute neuroinflammation, especially in GTP cyclohydrolase1 (Gch1) and non-coding RNA activated by DNA damage (Norad), both with the editing level positively correlated with both post-LPS treatment time and edited gene expression in cerebral vessels and CECs. Discussion The findings in our current study demonstrate substantial A-to-I RNA editing changes during acute neuroinflammation in SAE, underlining its potential role in the disease.
Collapse
Affiliation(s)
- Yu-Ning Li
- School of Biotechnology, Jiangnan University, Wuxi, China
| | - Ya-Ping Liang
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Jing-Qian Zhang
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Na Li
- Wuxi Maternal and Child Healthcare Hospital, Wuxi, Jiangsu, China
| | - Zhi-Yuan Wei
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Yijian Rao
- School of Biotechnology, Jiangnan University, Wuxi, China
| | - Jian-Huan Chen
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Yun-Yun Jin
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
27
|
Zhou Y, Yang Y, Yi L, Pan M, Tang W, Duan H. Propofol Mitigates Sepsis-Induced Brain Injury by Inhibiting Ferroptosis Via Activation of the Nrf2/HO-1axis. Neurochem Res 2024; 49:2131-2147. [PMID: 38822984 DOI: 10.1007/s11064-024-04163-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/28/2024] [Accepted: 05/22/2024] [Indexed: 06/03/2024]
Abstract
BACKGROUND Sepsis-associated encephalopathy (SAE) develops in 30-70% of hospitalized patients with sepsis. In intensive care units (ICUs), propofol is often administered to ensure an appropriate level of sedation in mechanically ventilated patients. Ferroptosis is a newly identified mode of cellular death characterized by the peroxidation of membrane lipids and excessive iron. This study was conducted to explore the interplay between propofol, sepsis, and ferroptosis. METHODS An acute systemic inflammatory model was constructed via the intraperitoneal administration of lipopolysaccharide (LPS). Nissl and Fluoro-Jade C (FJC) staining were employed to display neuronal damage and degeneration. Western blotting and immunofluorescence (IF) staining of Bax and Bcl-2 were used to confirm the neural apoptosis. QPCR of cytokines and DHE staining were used to indicate neuroinflammation. To validate ferroptosis, we assessed the content of malondialdehyde (MDA), GSH, and tissue iron, accompanied by transcription level of CHAC1, PTGS2 and GPX4. Additionally, we examined the content of acyl-CoA synthetase long-chain family member 4 (ACSL4), xCT (SLC7A11, solute carrier family 7 member 11), and glutathione peroxidase 4 (GPX4). The IF staining of Iba1-labeled microglia and GFAP-marked astrocytes were used to measure the gliosis. Erastin was pre-pretreated to confirm the anti-ferroptotic capability of propofol. ML385 was preconditioned to explore the role of nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1) in propofol-repressed ferroptosis. RESULTS Propofol dose-dependently inhibited the decrease of Nissl-positive neurons and the increase of FJC-stained neurons in septic hippocampus and cortex. Neural cytokines, oxidative stress, apoptosis and gliosis were reduced by propofol. Propofol repressed the level of MDA, iron, CHAC1, PTGS2, ACLS4 and restored the content of GSH, GPX4, xCT, Nrf2 and HO-1, thus inhibiting sepsis-induced ferroptosis. All protections from propofol could be reversed by eratsin and ML385 pretreatment. CONCLUSION Propofol protected against sepsis-induced brain damage, neuroinflammation, neuronal apoptosis and gliosis through the activation of the Nrf2/HO-1 axis to combat ferroptosis.
Collapse
Affiliation(s)
- Ye Zhou
- Department of Anesthesiology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, No. 2800 Gongwei Road, Shanghai, 201399, People's Republic of China
| | - Yangliang Yang
- Department of Anesthesiology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, No. 2800 Gongwei Road, Shanghai, 201399, People's Republic of China
| | - Liang Yi
- Department of Anesthesiology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, No. 2800 Gongwei Road, Shanghai, 201399, People's Republic of China
| | - Mengzhi Pan
- Department of Anesthesiology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, No. 2800 Gongwei Road, Shanghai, 201399, People's Republic of China
| | - Weiqing Tang
- Department of Anesthesiology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, No. 2800 Gongwei Road, Shanghai, 201399, People's Republic of China
| | - Hongwei Duan
- Department of Anesthesiology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, No. 2800 Gongwei Road, Shanghai, 201399, People's Republic of China.
| |
Collapse
|
28
|
Falvey A, Palandira SP, Chavan SS, Brines M, Dantzer R, Tracey KJ, Pavlov VA. Electrical stimulation of the dorsal motor nucleus of the vagus in male mice can regulate inflammation without affecting the heart rate. Brain Behav Immun 2024; 120:630-639. [PMID: 38670240 DOI: 10.1016/j.bbi.2024.04.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 04/01/2024] [Accepted: 04/22/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND The vagus nerve plays an important role in neuroimmune interactions and in the regulation of inflammation. A major source of efferent vagus nerve fibers that contribute to the regulation of inflammation is the brainstem dorsal motor nucleus of the vagus (DMN), as recently shown using optogenetics. In contrast to optogenetics, electrical neuromodulation has broad therapeutic implications. However, the anti-inflammatory effectiveness of electrical stimulation of the DMN (eDMNS) and the possible heart rate (HR) alterations associated with this approach have not been investigated. Here, we examined the effects of eDMNS on HR and cytokine levels in mice administered with lipopolysaccharide (LPS, endotoxin) and in mice subjected to cecal ligation and puncture (CLP) sepsis. METHODS Anesthetized male 8-10-week-old C57BL/6 mice on a stereotaxic frame were subjected to eDMNS using a concentric bipolar electrode inserted into the left or right DMN or sham stimulation. eDMNS (500, 250 or 50 μA at 30 Hz, for 1 min) was performed and HR recorded. In endotoxemia experiments, sham or eDMNS utilizing 250 μA or 50 μA was performed for 5 mins and was followed by LPS (0.5 mg/kg) i.p. administration. eDMNS was also applied in mice with cervical unilateral vagotomy or sham operation. In CLP experiments sham or left eDMNS was performed immediately post CLP. Cytokines and corticosterone were analyzed 90 mins after LPS administration or 24 h after CLP. CLP survival was monitored for 14 days. RESULTS Either left or right eDMNS at 500 μA and 250 μA decreased HR, compared with baseline pre-stimulation. This effect was not observed at 50 μA. Left side eDMNS at 50 μA, compared with sham stimulation, significantly decreased serum and splenic levels of the pro-inflammatory cytokine TNF and increased serum levels of the anti-inflammatory cytokine IL-10 during endotoxemia. The anti-inflammatory effect of eDMNS was abrogated in mice with unilateral vagotomy and was not associated with serum corticosterone alterations. Right side eDMNS in endotoxemic mice suppressed serum TNF and increased serum IL-10 levels but had no effects on splenic cytokines. In mice with CLP, left side eDMNS suppressed serum IL-6, as well as splenic IL-6 and increased splenic IL-10 and significantly improved the survival rate of CLP mice. CONCLUSIONS For the first time we show that a regimen of eDMNS which does not cause bradycardia alleviates LPS-induced inflammation. These eDMNS anti-inflammatory effects require an intact vagus nerve and are not associated with corticosteroid alterations. eDMNS also decreases inflammation and improves survival in a model of polymicrobial sepsis. These findings are of interest for further studies exploring bioelectronic anti-inflammatory approaches targeting the brainstem DMN.
Collapse
Affiliation(s)
- Aidan Falvey
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY 11030, USA
| | - Santhoshi P Palandira
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY 11030, USA; Elmezzi Graduate School of Molecular Medicine, 350 Community Drive, Manhasset, NY 11030, USA
| | - Sangeeta S Chavan
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY 11030, USA; Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, 500 Hofstra University, Hempstead, NY 11549, USA; Elmezzi Graduate School of Molecular Medicine, 350 Community Drive, Manhasset, NY 11030, USA
| | - Michael Brines
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY 11030, USA
| | - Robert Dantzer
- University of Texas MD Anderson Cancer Center, Department of Symptom Research, Houston, TX 77030, USA
| | - Kevin J Tracey
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY 11030, USA; Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, 500 Hofstra University, Hempstead, NY 11549, USA; Elmezzi Graduate School of Molecular Medicine, 350 Community Drive, Manhasset, NY 11030, USA
| | - Valentin A Pavlov
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY 11030, USA; Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, 500 Hofstra University, Hempstead, NY 11549, USA; Elmezzi Graduate School of Molecular Medicine, 350 Community Drive, Manhasset, NY 11030, USA.
| |
Collapse
|
29
|
Zhu T, Yao Y, Ding J, Zhang C, Xia N, Tao Y, Zhang W, Qi H, Gong L, Jiang P. 3-Methyladenine attenuates neuroinflammation and improves cognitive function in sepsis-associated encephalopathy by inhibiting autophagy. Int Immunopharmacol 2024; 139:112744. [PMID: 39059098 DOI: 10.1016/j.intimp.2024.112744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 07/01/2024] [Accepted: 07/19/2024] [Indexed: 07/28/2024]
Abstract
OBJECTIVE Sepsis-associated encephalopathy (SAE) can lead to severe cerebral dysfunction as well as cognitive dysfunction, resulting in a significant disease burden. 3-Methyladenine (3-MA) has been confirmed to have anti-inflammatory effects on diseases characterized by enhanced autophagy. However, its role in SAE has not been clarified. METHODS An SAE mouse model was generated by intraperitoneal injection of lipopolysaccharide (LPS). Mice were given 5, 20, or 80 mg/kg 3-MA to determine the therapeutic dose. The mice in the different groups were given 20 mg/kg 3-MA or saline, and survival, body temperature, body weight and neurobehavioral scores were measured at different time points. The expression of autophagy-related proteins and inflammatory factors was detected by Western blotting, enzyme linked immunosorbent assay (ELISA) and real-time quantitative polymerase chain reaction (RT-qPCR) 12 h after LPS induction. Glial activation and neuronal injury in the hippocampus were detected by immunofluorescence staining and HE staining. The open Field test, novel object recognition (NOR) test, Y-maze test, and Morris water maze (MWM) test were performed to assess cognitive function. RESULTS Treatment with 20 or 80 mg/kg 3-MA reduced the increase in hippocampal TNF-α, IL-6, and IL-1β expression in SAE model mice, with 20 mg/kg 3-MA having the greatest therapeutic effect. Treatment with 20 mg/kg 3-MA effectively reduced the expression of hippocampal autophagy-related proteins and mortality, ameliorated hypothermia, decreased body weight and electroencephalography (EEG) performance, and attenuated the activation of neuroglia and neuronal damage. Moreover, it alleviated the cognitive dysfunction 2 weeks after LPS induction. CONCLUSIONS 3-MA reduced neuroglial activation and neuronal damage, attenuated neuroinflammation, and improved cognitive deficits during recovery period by inhibiting autophagy in SAE.
Collapse
Affiliation(s)
- Tao Zhu
- Department of Critical Care Medicine, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province 310020, China
| | - Yinping Yao
- Department of Neurology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang Province 310052, China; Department of Pediatrics, Shaoxing People's Hospital, Shaoxing, Zhejiang Province 312300, China
| | - Junchao Ding
- Department of Neurology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang Province 310052, China; Department of Pediatrics, Yiwu Maternal and Child Health Care Hospital, Yiwu, Zhejiang Province 322000, China
| | - Chengyue Zhang
- Department of Neurology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang Province 310052, China
| | - Ningxiao Xia
- Department of Neurology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang Province 310052, China
| | - Yilin Tao
- Department of Neurology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang Province 310052, China
| | - Wenhao Zhang
- Department of Neurology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang Province 310052, China
| | - Hantao Qi
- Department of Neurology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang Province 310052, China
| | - Lifen Gong
- Department of Neurology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang Province 310052, China.
| | - Peifang Jiang
- Department of Neurology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang Province 310052, China.
| |
Collapse
|
30
|
Bitar R, Khan UM, Rosenthal ES. Utility and rationale for continuous EEG monitoring: a primer for the general intensivist. Crit Care 2024; 28:244. [PMID: 39014421 PMCID: PMC11251356 DOI: 10.1186/s13054-024-04986-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 06/09/2024] [Indexed: 07/18/2024] Open
Abstract
This review offers a comprehensive guide for general intensivists on the utility of continuous EEG (cEEG) monitoring for critically ill patients. Beyond the primary role of EEG in detecting seizures, this review explores its utility in neuroprognostication, monitoring neurological deterioration, assessing treatment responses, and aiding rehabilitation in patients with encephalopathy, coma, or other consciousness disorders. Most seizures and status epilepticus (SE) events in the intensive care unit (ICU) setting are nonconvulsive or subtle, making cEEG essential for identifying these otherwise silent events. Imaging and invasive approaches can add to the diagnosis of seizures for specific populations, given that scalp electrodes may fail to identify seizures that may be detected by depth electrodes or electroradiologic findings. When cEEG identifies SE, the risk of secondary neuronal injury related to the time-intensity "burden" often prompts treatment with anti-seizure medications. Similarly, treatment may be administered for seizure-spectrum activity, such as periodic discharges or lateralized rhythmic delta slowing on the ictal-interictal continuum (IIC), even when frank seizures are not evident on the scalp. In this setting, cEEG is utilized empirically to monitor treatment response. Separately, cEEG has other versatile uses for neurotelemetry, including identifying the level of sedation or consciousness. Specific conditions such as sepsis, traumatic brain injury, subarachnoid hemorrhage, and cardiac arrest may each be associated with a unique application of cEEG; for example, predicting impending events of delayed cerebral ischemia, a feared complication in the first two weeks after subarachnoid hemorrhage. After brief training, non-neurophysiologists can learn to interpret quantitative EEG trends that summarize elements of EEG activity, enhancing clinical responsiveness in collaboration with clinical neurophysiologists. Intensivists and other healthcare professionals also play crucial roles in facilitating timely cEEG setup, preventing electrode-related skin injuries, and maintaining patient mobility during monitoring.
Collapse
Affiliation(s)
- Ribal Bitar
- Department of Neurology, Massachusetts General Hospital, 55 Fruit St., Lunder 644, Boston, MA, 02114, USA
| | - Usaamah M Khan
- Department of Neurology, Massachusetts General Hospital, 55 Fruit St., Lunder 644, Boston, MA, 02114, USA
| | - Eric S Rosenthal
- Department of Neurology, Massachusetts General Hospital, 55 Fruit St., Lunder 644, Boston, MA, 02114, USA.
| |
Collapse
|
31
|
Allaire P, Elsayed NS, Berg RL, Rose W, Shukla SK. Phenome-wide association study identifies new clinical phenotypes associated with Staphylococcus aureus infections. PLoS One 2024; 19:e0303395. [PMID: 38968223 PMCID: PMC11226111 DOI: 10.1371/journal.pone.0303395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 04/23/2024] [Indexed: 07/07/2024] Open
Abstract
BACKGROUND Phenome-Wide Association study (PheWAS) is a powerful tool designed to systematically screen clinical observations derived from medical records (phenotypes) for association with a variable of interest. Despite their usefulness, no systematic screening of phenotypes associated with Staphylococcus aureus infections (SAIs) has been done leaving potential novel risk factors or complications undiscovered. METHOD AND COHORTS We tailored the PheWAS approach into a two-stage screening procedure to identify novel phenotypes correlating with SAIs. The first stage screened for co-occurrence of SAIs with other phenotypes within medical records. In the second stage, significant findings were examined for the correlations between their age of onset with that of SAIs. The PheWAS was implemented using the medical records of 754,401 patients from the Marshfield Clinic Health System. Any novel associations discovered were subsequently validated using datasets from TriNetX and All of Us, encompassing 109,884,571 and 118,538 patients respectively. RESULTS Forty-one phenotypes met the significance criteria of a p-value < 3.64e-5 and odds ratios of > 5. Out of these, we classified 23 associations either as risk factors or as complications of SAIs. Three novel associations were discovered and classified either as a risk (long-term use of aspirin) or complications (iron deficiency anemia and anemia of chronic disease). All novel associations were replicated in the TriNetX cohort. In the All of Us cohort, anemia of chronic disease was replicated according to our significance criteria. CONCLUSIONS The PheWAS of SAIs expands our understanding of SAIs interacting phenotypes. Additionally, the novel two-stage PheWAS approach developed in this study can be applied to examine other disease-disease interactions of interest. Due to the possibility of bias inherent in observational data, the findings of this study require further investigation.
Collapse
Affiliation(s)
- Patrick Allaire
- Center for Precision Medicine Research, Marshfield Clinic Research Institute, Marshfield, Wisconsin, United States of America
| | - Noha S. Elsayed
- Center for Precision Medicine Research, Marshfield Clinic Research Institute, Marshfield, Wisconsin, United States of America
| | - Richard L. Berg
- Research Computing and Analytics, Marshfield Clinic Research Institute, Marshfield, Wisconsin, United States of America
| | - Warren Rose
- School of Pharmacy, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Sanjay K. Shukla
- Center for Precision Medicine Research, Marshfield Clinic Research Institute, Marshfield, Wisconsin, United States of America
- Computational and Informatics in Biology and Medicine Program, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| |
Collapse
|
32
|
Zhuang Y, Du X, Yang L, Jiang Z, Yu B, Gu W, Cui W, Lu H. Drop to Gate Nasal Drops Attenuates Sepsis-Induced Cognitive Dysfunction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2403564. [PMID: 38966875 DOI: 10.1002/smll.202403564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/17/2024] [Indexed: 07/06/2024]
Abstract
Nasal administration can bypass the blood-brain barrier and directly deliver drugs to the brain, providing a non-invasive route for central nervous system (CNS) diseases. Inspired by the appearance that a gate can block the outside world and the characteristics of the sol-gel transition can form a "gate" in the nasal cavity, a Drop to Gate nasal drop (DGND) is designed to set a gate in nose, which achieves protecting role from the influence of nasal environment. The DGND demonstrates the efficiency and application prospect of delivering drugs to the brain through the N-to-B. The effective concentration of single administration is increased through the hydrophobic interaction between C8-GelMA and SRT1720 (SA), and then cross-linked under UV to form nanogel, which can respond to MMP in the inflammatory microenvironment of sepsis-induced cognitive dysfunction. Finally, the SA/nanogel is compounded into the thermogel, which can respond to the nasal cavity temperature to form DGND in situ, increasing the residence time and delivery efficiency of drugs in the nasal cavity. In vitro, the DGND alleviates lipopolysaccharides (LPS)-induced BV2 inflammation. In vivo, DGND effectively targets the nasal mucosa and deliver drugs to the brain, which activate Sirt1 to alleviate inflammation mediated by microglia and improve cognitive dysfunction in sepsis mice.
Collapse
Affiliation(s)
- Yaping Zhuang
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Huangpu, Shanghai, 200025, P. R. China
| | - Xiyu Du
- Department of Anesthesiology, Huadong Hospital Affiliated to Fudan University, No. 221 Yan'an West Road, Jing'an, Shanghai, 200040, P. R. China
| | - Li Yang
- Department of Anesthesiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Huangpu, Shanghai, 200025, P. R. China
| | - Zhaoshun Jiang
- Department of Anesthesiology, Huadong Hospital Affiliated to Fudan University, No. 221 Yan'an West Road, Jing'an, Shanghai, 200040, P. R. China
| | - Buwei Yu
- Department of Anesthesiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Huangpu, Shanghai, 200025, P. R. China
| | - Weidong Gu
- Department of Anesthesiology, Huadong Hospital Affiliated to Fudan University, No. 221 Yan'an West Road, Jing'an, Shanghai, 200040, P. R. China
| | - Wenguo Cui
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Huangpu, Shanghai, 200025, P. R. China
| | - Han Lu
- Department of Anesthesiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Huangpu, Shanghai, 200025, P. R. China
| |
Collapse
|
33
|
Grünewald B, Wickel J, Hahn N, Rahmati V, Rupp H, Chung HY, Haselmann H, Strauss AS, Schmidl L, Hempel N, Grünewald L, Urbach A, Bauer M, Toyka KV, Blaess M, Claus RA, König R, Geis C. Targeted rescue of synaptic plasticity improves cognitive decline in sepsis-associated encephalopathy. Mol Ther 2024; 32:2113-2129. [PMID: 38788710 PMCID: PMC11286813 DOI: 10.1016/j.ymthe.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 04/02/2024] [Accepted: 05/01/2024] [Indexed: 05/26/2024] Open
Abstract
Sepsis-associated encephalopathy (SAE) is a frequent complication of severe systemic infection resulting in delirium, premature death, and long-term cognitive impairment. We closely mimicked SAE in a murine peritoneal contamination and infection (PCI) model. We found long-lasting synaptic pathology in the hippocampus including defective long-term synaptic plasticity, reduction of mature neuronal dendritic spines, and severely affected excitatory neurotransmission. Genes related to synaptic signaling, including the gene for activity-regulated cytoskeleton-associated protein (Arc/Arg3.1) and members of the transcription-regulatory EGR gene family, were downregulated. At the protein level, ARC expression and mitogen-activated protein kinase signaling in the brain were affected. For targeted rescue we used adeno-associated virus-mediated overexpression of ARC in the hippocampus in vivo. This recovered defective synaptic plasticity and improved memory dysfunction. Using the enriched environment paradigm as a non-invasive rescue intervention, we found improvement of defective long-term potentiation, memory, and anxiety. The beneficial effects of an enriched environment were accompanied by an increase in brain-derived neurotrophic factor (BDNF) and ARC expression in the hippocampus, suggesting that activation of the BDNF-TrkB pathway leads to restoration of the PCI-induced reduction of ARC. Collectively, our findings identify synaptic pathomechanisms underlying SAE and provide a conceptual approach to target SAE-induced synaptic dysfunction with potential therapeutic applications to patients with SAE.
Collapse
Affiliation(s)
- Benedikt Grünewald
- Center for Sepsis Control and Care, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany; Section Translational Neuroimmunology, Department of Neurology, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany; Institute of Pathophysiology and Focus Program Translational Neuroscience (FTN), University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - Jonathan Wickel
- Center for Sepsis Control and Care, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany; Section Translational Neuroimmunology, Department of Neurology, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany
| | - Nina Hahn
- Center for Sepsis Control and Care, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany; Section Translational Neuroimmunology, Department of Neurology, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany
| | - Vahid Rahmati
- Section Translational Neuroimmunology, Department of Neurology, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany
| | - Hanna Rupp
- Center for Sepsis Control and Care, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany; Section Translational Neuroimmunology, Department of Neurology, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany
| | - Ha-Yeun Chung
- Center for Sepsis Control and Care, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany; Section Translational Neuroimmunology, Department of Neurology, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany
| | - Holger Haselmann
- Center for Sepsis Control and Care, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany; Section Translational Neuroimmunology, Department of Neurology, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany
| | - Anja S Strauss
- Section Translational Neuroimmunology, Department of Neurology, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany
| | - Lars Schmidl
- Section Translational Neuroimmunology, Department of Neurology, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany
| | - Nina Hempel
- Section Translational Neuroimmunology, Department of Neurology, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany
| | - Lena Grünewald
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital of Frankfurt, 60528 Frankfurt, Germany
| | - Anja Urbach
- Department of Neurology, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany; Jena Center for Healthy Aging, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany; Leibniz Institute on Aging, Aging Research Center Jena, Beutenbergstr. 11, 07745 Jena, Germany
| | - Michael Bauer
- Center for Sepsis Control and Care, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany; Department of Anesthesiology and Intensive Care, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany
| | - Klaus V Toyka
- Department of Neurology, University of Würzburg, 97080 Würzburg, Germany
| | - Markus Blaess
- Center for Sepsis Control and Care, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany; Institute of Precision Medicine, Medical and Life Sciences Faculty, Furtwangen University, 78054 Villingen-Schwenningen, Germany
| | - Ralf A Claus
- Center for Sepsis Control and Care, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany; Department of Anesthesiology and Intensive Care, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany
| | - Rainer König
- Center for Sepsis Control and Care, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany; Department of Anesthesiology and Intensive Care, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany
| | - Christian Geis
- Center for Sepsis Control and Care, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany; Section Translational Neuroimmunology, Department of Neurology, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany; German Center for Mental Health (DZP), Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits Underlying Mental Health (C-I-R-C), Jena-Magdeburg-Halle, Jena, Germany.
| |
Collapse
|
34
|
Liu Y, Hu S, Shi B, Yu B, Luo W, Peng S, Du X. The Role of Iron Metabolism in Sepsis-associated Encephalopathy: a Potential Target. Mol Neurobiol 2024; 61:4677-4690. [PMID: 38110647 DOI: 10.1007/s12035-023-03870-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 11/30/2023] [Indexed: 12/20/2023]
Abstract
Sepsis-associated encephalopathy (SAE) is an acute cerebral dysfunction secondary to infection, and the severity can range from mild delirium to deep coma. Disorders of iron metabolism have been proven to play an important role in a variety of neurodegenerative diseases by inducing cell damage through iron accumulation in glial cells and neurons. Recent studies have found that iron accumulation is also a potential mechanism of SAE. Systemic inflammation can induce changes in the expression of transporters and receptors on cells, especially high expression of divalent metal transporter1 (DMT1) and low expression of ferroportin (Fpn) 1, which leads to iron accumulation in cells. Excessive free Fe2+ can participate in the Fenton reaction to produce reactive oxygen species (ROS) to directly damage cells or induce ferroptosis. As a result, it may be of great help to improve SAE by treatment of targeting disorders of iron metabolism. Therefore, it is important to review the current research progress on the mechanism of SAE based on iron metabolism disorders. In addition, we also briefly describe the current status of SAE and iron metabolism disorders and emphasize the therapeutic prospect of targeting iron accumulation as a treatment for SAE, especially iron chelator. Moreover, drug delivery and side effects can be improved with the development of nanotechnology. This work suggests that treating SAE based on disorders of iron metabolism will be a thriving field.
Collapse
Affiliation(s)
- Yinuo Liu
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China
- The Clinical Medical College of Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Shengnan Hu
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China
- The Clinical Medical College of Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Bowen Shi
- The Clinical Medical College of Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Bodong Yu
- The Clinical Medical College of Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Wei Luo
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Shengliang Peng
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China.
| | - Xiaohong Du
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China.
| |
Collapse
|
35
|
Zhou Y, Bai L, Tang W, Yang W, Sun L. Research progress in the pathogenesis of sepsis-associated encephalopathy. Heliyon 2024; 10:e33458. [PMID: 39027435 PMCID: PMC11254713 DOI: 10.1016/j.heliyon.2024.e33458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 06/18/2024] [Accepted: 06/21/2024] [Indexed: 07/20/2024] Open
Abstract
Sepsis is a syndrome that causes dysfunction of multiple organs due to the host's uncontrolled response to infection and is a significant contributor to morbidity and mortality in intensive care units worldwide. Surviving patients are often left with acute brain injury and long-term cognitive impairment, known as sepsis-associated encephalopathy (SAE). In recent years, researchers have directed their focus towards the pathogenesis of SAE. However, due to the complexity of its development, there remains a lack of effective treatment measures that arise as a serious issue affecting the prognosis of sepsis patients. Further research on the possible causes of SAE aims to provide clinicians with potential therapeutic targets and help develop targeted prevention strategies. This paper aims to review recent research on the pathogenesis of SAE, in order to enhance our understanding of this syndrome.
Collapse
Affiliation(s)
- Yue Zhou
- Teaching Department, First Hospital of Jilin University, Changchun, 130021, China
| | - Lu Bai
- Department of Medical Oncology, Dalian NO.3 People's Hospital, Dalian, 116091, China
| | - Wenjing Tang
- Department of Emergency Medicine, First Hospital of Jilin University, Changchun, 130021, China
| | - Weiying Yang
- Department of Emergency Medicine, First Hospital of Jilin University, Changchun, 130021, China
| | - Lichao Sun
- Department of Emergency Medicine, First Hospital of Jilin University, Changchun, 130021, China
| |
Collapse
|
36
|
Hu J, Xie S, Liao Y, Chen W, Qian Z, Zhang L. Can serum NSE predict and evaluate sepsis-associated encephalopathy: A protocol for a systematic review and meta-analysis. J Clin Neurosci 2024; 124:150-153. [PMID: 38718610 DOI: 10.1016/j.jocn.2024.04.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 04/19/2024] [Accepted: 04/29/2024] [Indexed: 05/18/2024]
Abstract
INTRODUCTION Brain dysfunction in sepsis is known as sepsis-associated encephalopathy (SAE), which often results in severe cognitive and neurological sequelae and increases the risk of death. Neuron specific enolase (NSE) may serve as an important neurocritical biomarker for detection and longitudinal monitoring in SAE patients. Our systematic review and meta-analysis will aim to explore the diagnostic and prognostic value of serum NSE in SAE patients. Currently, no systematic review and meta-analysis have been assessed that NSE as a biomarker of SAE. METHODS AND ANALYSIS We will conduct a systematic review and meta-analysis of serum NSE for the diagnostic and prognostic value of SAE patients. The primary objective is to evaluate the diagnostic accuracy of serum NSE as an independent biomarker for SAE. The secondary objective is to determine the prognostic strength of serum NSE as an independent biomarker of mortality in septic patients determine. We will perform a systematic search and descriptive review using the MEDLINE database and the PubMed interface. We will assign two independent reviewers to review all collected titles and associated abstracts, review full articles, and extract study data. We will use the Quality Assessment of Diagnostic Accuracy Studies version 2 (QUADAS-2) assessment tool according to the recommendation by the Cochrane Collaboration to evaluate quality and risk of bias of the selected studies. Subgroup and sensitivity analyses will also be used to assess heterogeneity. Review Manager version 5.4 and Stata16.0. will be used for statistical analysis. ETHICS AND DISSEMINATION The meta-analysis will provide ICU physicians with the most current information to predict which patients are at risk of SAE and take corresponding intervention measures to reduce morbidity and ameliorate neurological outcomes. There is no need for ethics approval for this review. The findings will be disseminated in a peer-reviewed journal. TRIAL REGISTRATION NUMBER CRD42023398736.
Collapse
Affiliation(s)
- Jiyun Hu
- Department of Critical Care Medicine, Hunan Provincial Clinical Research Center for Critical Care Medicine, Xiangya Hospital, Central South University, Changsha 410008, Hunan, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
| | - Shucai Xie
- Department of Critical Care Medicine, Hunan Provincial Clinical Research Center for Critical Care Medicine, Xiangya Hospital, Central South University, Changsha 410008, Hunan, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
| | - Ya Liao
- Department of Critical Care Medicine, Hunan Provincial Clinical Research Center for Critical Care Medicine, Xiangya Hospital, Central South University, Changsha 410008, Hunan, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
| | - Wei Chen
- Department of Critical Care Medicine, Hunan Provincial Clinical Research Center for Critical Care Medicine, Xiangya Hospital, Central South University, Changsha 410008, Hunan, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
| | - Zhaoxin Qian
- Department of Critical Care Medicine, Hunan Provincial Clinical Research Center for Critical Care Medicine, Xiangya Hospital, Central South University, Changsha 410008, Hunan, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China.
| | - Lina Zhang
- Department of Critical Care Medicine, Hunan Provincial Clinical Research Center for Critical Care Medicine, Xiangya Hospital, Central South University, Changsha 410008, Hunan, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China.
| |
Collapse
|
37
|
Wang X, Wen X, Yuan S, Zhang J. Gut-brain axis in the pathogenesis of sepsis-associated encephalopathy. Neurobiol Dis 2024; 195:106499. [PMID: 38588753 DOI: 10.1016/j.nbd.2024.106499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 03/31/2024] [Accepted: 04/04/2024] [Indexed: 04/10/2024] Open
Abstract
The gut-brain axis is a bidirectional communication network linking the gut and the brain, overseeing digestive functions, emotional responses, body immunity, brain development, and overall health. Substantial research highlights a connection between disruptions of the gut-brain axis and various psychiatric and neurological conditions, including depression and Alzheimer's disease. Given the impact of the gut-brain axis on behavior, cognition, and brain diseases, some studies have started to pay attention to the role of the axis in sepsis-associated encephalopathy (SAE), where cognitive impairment is the primary manifestation. SAE emerges as the primary and earliest form of organ dysfunction following sepsis, potentially leading to acute cognitive impairment and long-term cognitive decline in patients. Notably, the neuronal damage in SAE does not stem directly from the central nervous system (CNS) infection but rather from an infection occurring outside the brain. The gut-brain axis is posited as a pivotal factor in this process. This review will delve into the gut-brain axis, exploring four crucial pathways through which inflammatory signals are transmitted and elevate the incidence of SAE. These pathways encompass the vagus nerve pathway, the neuroendocrine pathway involving the hypothalamic-pituitary-adrenal (HPA) axis and serotonin (5-HT) regulation, the neuroimmune pathway, and the microbial regulation. These pathways can operate independently or collaboratively on the CNS to modulate brain activity. Understanding how the gut affects and regulates the CNS could offer the potential to identify novel targets for preventing and treating this condition, ultimately enhancing the prognosis for individuals with SAE.
Collapse
Affiliation(s)
- Xin Wang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, PR China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, PR China
| | - Xiaoyue Wen
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, PR China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, PR China
| | - Shiying Yuan
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, PR China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, PR China.
| | - Jiancheng Zhang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, PR China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, PR China.
| |
Collapse
|
38
|
Song R, He S, Wu Y, Tan S. Pyroptosis in sepsis induced organ dysfunction. Curr Res Transl Med 2024; 72:103419. [PMID: 38246070 DOI: 10.1016/j.retram.2023.103419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 09/27/2023] [Accepted: 10/05/2023] [Indexed: 01/23/2024]
Abstract
As an uncontrolled inflammatory response to infection, sepsis and sepsis induced organ dysfunction are great threats to the lives of septic patients. Unfortunately, the pathogenesis of sepsis is complex and multifactorial, which still needs to be elucidated. Pyroptosis is a newly discovered atypical form of inflammatory programmed cell death, which depends on the Caspase-1 dependent classical pathway or the non-classical Caspase-11 (mouse) or Caspase-4/5 (human) dependent pathway. Many studies have shown that pyroptosis is related to sepsis. The Gasdermin proteins are the key molecules in the membrane pores formation in pyroptosis. After cut by inflammatory caspase, the Gasdermin N-terminal fragments with perforation activity are released to cause pyroptosis. Pyroptosis is closely related to the occurrence and development of sepsis induced organ dysfunction. In this review, we summarized the molecular mechanism of pyroptosis, the key role of pyroptosis in sepsis and sepsis induced organ dysfunction, with the aim to bring new diagnostic biomarkers and potential therapeutic targets to improve sepsis clinical treatments.
Collapse
Affiliation(s)
- Ruoyu Song
- Department of Pathophysiology, School of Basic Medicine Science, Central South University, Changsha, China; Sepsis Translational Medicine Key Laboratory of Hunan Province, Central South University, Changsha, China; National Medicine Functional Experimental Teaching Center, Central South University, Changsha, China.
| | - Shijun He
- Department of Pathophysiology, School of Basic Medicine Science, Central South University, Changsha, China; Sepsis Translational Medicine Key Laboratory of Hunan Province, Central South University, Changsha, China; National Medicine Functional Experimental Teaching Center, Central South University, Changsha, China
| | - Yongbin Wu
- Department of Pathophysiology, School of Basic Medicine Science, Central South University, Changsha, China; Sepsis Translational Medicine Key Laboratory of Hunan Province, Central South University, Changsha, China; National Medicine Functional Experimental Teaching Center, Central South University, Changsha, China
| | - Sipin Tan
- Department of Pathophysiology, School of Basic Medicine Science, Central South University, Changsha, China; Sepsis Translational Medicine Key Laboratory of Hunan Province, Central South University, Changsha, China; National Medicine Functional Experimental Teaching Center, Central South University, Changsha, China.
| |
Collapse
|
39
|
Dobson GP, Letson HL, Morris JL. Revolution in sepsis: a symptoms-based to a systems-based approach? J Biomed Sci 2024; 31:57. [PMID: 38811967 PMCID: PMC11138085 DOI: 10.1186/s12929-024-01043-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 05/17/2024] [Indexed: 05/31/2024] Open
Abstract
Severe infection and sepsis are medical emergencies. High morbidity and mortality are linked to CNS dysfunction, excessive inflammation, immune compromise, coagulopathy and multiple organ dysfunction. Males appear to have a higher risk of mortality than females. Currently, there are few or no effective drug therapies to protect the brain, maintain the blood brain barrier, resolve excessive inflammation and reduce secondary injury in other vital organs. We propose a major reason for lack of progress is a consequence of the treat-as-you-go, single-nodal target approach, rather than a more integrated, systems-based approach. A new revolution is required to better understand how the body responds to an infection, identify new markers to detect its progression and discover new system-acting drugs to treat it. In this review, we present a brief history of sepsis followed by its pathophysiology from a systems' perspective and future opportunities. We argue that targeting the body's early immune-driven CNS-response may improve patient outcomes. If the barrage of PAMPs and DAMPs can be reduced early, we propose the multiple CNS-organ circuits (or axes) will be preserved and secondary injury will be reduced. We have been developing a systems-based, small-volume, fluid therapy comprising adenosine, lidocaine and magnesium (ALM) to treat sepsis and endotoxemia. Our early studies indicate that ALM therapy shifts the CNS from sympathetic to parasympathetic dominance, maintains cardiovascular-endothelial glycocalyx coupling, reduces inflammation, corrects coagulopathy, and maintains tissue O2 supply. Future research will investigate the potential translation to humans.
Collapse
Affiliation(s)
- Geoffrey P Dobson
- Heart, Sepsis and Trauma Research Laboratory, College of Medicine and Dentistry, James Cook University, 1 James Cook Drive, Townsville, QLD, 4811, Australia.
| | - Hayley L Letson
- Heart, Sepsis and Trauma Research Laboratory, College of Medicine and Dentistry, James Cook University, 1 James Cook Drive, Townsville, QLD, 4811, Australia
| | - Jodie L Morris
- Heart, Sepsis and Trauma Research Laboratory, College of Medicine and Dentistry, James Cook University, 1 James Cook Drive, Townsville, QLD, 4811, Australia
| |
Collapse
|
40
|
Gong H, Xia Y, Jing G, Yuan M, Zhou H, Wu D, Zuo J, Lei C, Aidebaike D, Wu X, Song X. Berberine alleviates neuroinflammation by downregulating NFκB/LCN2 pathway in sepsis-associated encephalopathy: network pharmacology, bioinformatics, and experimental validation. Int Immunopharmacol 2024; 133:112036. [PMID: 38640713 DOI: 10.1016/j.intimp.2024.112036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/12/2024] [Accepted: 04/05/2024] [Indexed: 04/21/2024]
Abstract
BACKGROUND Sepsis refers to a systemic inflammatory response caused by infection, involving multiple organs. Sepsis-associated encephalopathy (SAE), as one of the most common complications in patients with severe sepsis, refers to the diffuse brain dysfunction caused by sepsis without central nervous system infection. However, there is no clear diagnostic criteria and lack of specific diagnostic markers. METHODS The main active ingredients of coptidis rhizoma(CR) were identified from TCMSP and SwissADME databases. SwissTargetPrediction and PharmMapper databases were used to obtain targets of CR. OMIM, DisGeNET and Genecards databases were used to explore targets of SAE. Limma differential analysis was used to identify the differential expressed genes(DEGs) in GSE167610 and GSE198861 datasets. WGCNA was used to identify feature module. GO and KEGG enrichment analysis were performed using Metascape, DAVID and STRING databases. The PPI network was constructed by STRING database and analyzed by Cytoscape software. AutoDock and PyMOL software were used for molecular docking and visualization. Cecal ligation and puncture(CLP) was used to construct a mouse model of SAE, and the core targets were verified in vivo experiments. RESULTS 277 common targets were identified by taking the intersection of 4730 targets related to SAE and 509 targets of 9 main active ingredients of CR. 52 common DEGs were mined from GSE167610 and GSE198861 datasets. Among the 25,864 DEGs in GSE198861, LCN2 showed the most significant difference (logFC = 6.9). GO and KEGG enrichment analysis showed that these 52 DEGs were closely related to "inflammatory response" and "innate immunity". A network containing 38 genes was obtained by PPI analysis, among which LCN2 ranked the first in Degree value. Molecular docking results showed that berberine had a well binding affinity with LCN2. Animal experiments results showed that berberine could inhibit the high expression of LCN2,S100A9 and TGM2 induced by CLP in the hippocampus of mice, as well as the high expression of inflammatory factors (TNFα, IL-6 and IL-1β). In addition, berberine might reduce inflammation and neuronal cell death by partially inhibiting NFκB/LCN2 pathway in the hippocampus of CLP models, thereby alleviating SAE. CONCLUSION Overall, Berberine may exert anti-inflammatory effects through multi-ingredients, multi-targets and multi-pathways to partially rescue neuronal death and alleviate SAE.
Collapse
Affiliation(s)
- Hailong Gong
- Research Centre of Anesthesiology and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei Province 430071, China
| | - Yun Xia
- Research Centre of Anesthesiology and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei Province 430071, China
| | - Guoqing Jing
- Research Centre of Anesthesiology and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei Province 430071, China
| | - Min Yuan
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province 430060, China
| | - Huimin Zhou
- Research Centre of Anesthesiology and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei Province 430071, China
| | - Die Wu
- Research Centre of Anesthesiology and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei Province 430071, China
| | - Jing Zuo
- Research Centre of Anesthesiology and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei Province 430071, China
| | - Chuntian Lei
- Research Centre of Anesthesiology and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei Province 430071, China
| | - Delida Aidebaike
- Research Centre of Anesthesiology and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei Province 430071, China
| | - Xiaojing Wu
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province 430060, China.
| | - Xuemin Song
- Research Centre of Anesthesiology and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei Province 430071, China.
| |
Collapse
|
41
|
Lu S, John Portela ID, Martino N, Ramos RB, Salinero AE, Smith RM, Zuloaga KL, Adam AP. A transient brain endothelial translatome response to endotoxin is associated with mild cognitive changes post-shock in young mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.03.583191. [PMID: 38496442 PMCID: PMC10942387 DOI: 10.1101/2024.03.03.583191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Sepsis-associated encephalopathy (SAE) is a common manifestation in septic patients that is associated with increased risk of long-term cognitive impairment. SAE is driven, at least in part, by brain endothelial dysfunction in response to systemic cytokine signaling. However, the mechanisms driving SAE and its consequences remain largely unknown. Here, we performed translating ribosome affinity purification and RNA-sequencing (TRAP-seq) from the brain endothelium to determine the transcriptional changes after an acute endotoxemic (LPS) challenge. LPS induced a strong acute transcriptional response in the brain endothelium that partially correlates with the whole brain transcriptional response and suggested an endothelial-specific hypoxia response. Consistent with a crucial role for IL-6, loss of the main regulator of this pathway, SOCS3, leads to a broadening of the population of genes responsive to LPS, suggesting that an overactivation of the IL-6/JAK/STAT3 pathway leads to an increased transcriptional response that could explain our prior findings of severe brain injury in these mice. To identify any potential sequelae of this acute response, we performed brain TRAP-seq following a battery of behavioral tests in mice after apparent recovery. We found that the transcriptional response returns to baseline within days post-challenge. Despite the transient nature of the response, we observed that mice that recovered from the endotoxemic shock showed mild, sex-dependent cognitive impairment, suggesting that the acute brain injury led to sustained, non-transcriptional effects. A better understanding of the transcriptional and non-transcriptional changes in response to shock is needed in order to prevent and/or revert the devastating consequences of septic shock. Abstract Figure
Collapse
|
42
|
Boxiang Q, Liping S, Tong Q. Cuscuta chinensis Lam. Flavonoids (CCLF) alleviate the symptoms of sepsis-associated encephalopathy via PI3K/Nrf2 pathway. Behav Brain Res 2024; 465:114887. [PMID: 38499156 DOI: 10.1016/j.bbr.2024.114887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 01/29/2024] [Accepted: 01/29/2024] [Indexed: 03/20/2024]
Abstract
Sepsis-associated encephalopathy (SAE) frequently encounters patients who are in intensive care units and ∼70% of patients with severe systemic infection. However, due to the unclear pathological mechanisms of SAE, the desease-modifying drug is still lack. Here, we aimed to explore whether the flavonoid components extracted from CCL (CCLF) seeds possess protective effects on SAE animals, and systematically evaluate the transcriptomic alteration (in the hippocampus) after CCLF treatment on SAE animals employing RNA sequencing. We observed that CCLF improved the brain's learning and memory abilities and the structural integrity of BBB using cecal ligation and puncture (CLP)-induced SAE animal models, evaluated by behavioral test and tissue examination of animals respectively. RNA sequencing results showed that CCLF treatment reverses SAE-induced transcriptomic alteration in the hippocampus. Moreover, CCLF also dramatically relieved inflammatory (such as TNF-α, IL-2, and IL-6) and oxidative (MDA and SOD activity) stresses, and inhibited SAE-induced neuron apoptosis in brain tissues. More importantly, CCLF restored the PI3K/AKT signaling pathway and then induced the Nrf2 nuclear translocation to drive HO-1 expression both in vitro and in vivo. LY294002, an inhibitor of PI3K, obviously blocked CCLF's functions on anti-apoptosis, anti-inflammation, and anti-oxidation in vivo, demonstrating that CCLF achieves its bioactivities in a PI3K/AKT signaling dependent manner. Altogether, CCLF exhibits remarkable neuro-protective function and may be a promising candidate for further clinical trials for SAE treatment.
Collapse
Affiliation(s)
- Qi Boxiang
- Medicine Intensive Care Unit, Nantong University Affiliated Maternal and Child Health Hospital/ Nantong Children Hospital, Jiangsu, 226000, PR China.
| | - Sheng Liping
- Medicine Intensive Care Unit, Xuzhou Children Hospital, Xuzhou, Jiangsu, 221000, PR China
| | - Qian Tong
- Medicine Intensive Care Unit, Xuzhou Children Hospital, Xuzhou, Jiangsu, 221000, PR China
| |
Collapse
|
43
|
Sun J, Fleishman JS, Liu X, Wang H, Huo L. Targeting novel regulated cell death:Ferroptosis, pyroptosis, and autophagy in sepsis-associated encephalopathy. Biomed Pharmacother 2024; 174:116453. [PMID: 38513593 DOI: 10.1016/j.biopha.2024.116453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/04/2024] [Accepted: 03/15/2024] [Indexed: 03/23/2024] Open
Abstract
Sepsis-associated encephalopathy (SAE), a common neurological complication of sepsis, is a heterogenous complex clinical syndrome caused by the dysfunctional response of a host to infection. This dysfunctional response leads to excess mortality and morbidity worldwide. Despite clinical relevance with high incidence, there is a lack of understanding for its both its acute/chronic pathogenesis and therapeutic management. A better understanding of the molecular mechanisms behind SAE may provide tools to better enhance therapeutic efficacy. Mounting evidence indicates that some types of non-apoptotic regulated cell death (RCD), such as ferroptosis, pyroptosis, and autophagy, contribute to SAE. Targeting these types of RCD may provide meaningful targets for future treatments against SAE. This review summarizes the core mechanism by which non-apoptotic RCD leads to the pathogenesis of SAE. We focus on the emerging types of therapeutic compounds that can inhibit RCD and delineate their beneficial pharmacological effects against SAE. Within this review we suggest that pharmacological inhibition of non-apoptotic RCD may serve as a potential therapeutic strategy against SAE.
Collapse
Affiliation(s)
- Jingjing Sun
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang 11004, China
| | - Joshua S Fleishman
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Xueyan Liu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang 11004, China
| | - Hongquan Wang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, 300060, China
| | - Liang Huo
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang 11004, China.
| |
Collapse
|
44
|
Li L, Lixia D, Gan G, Li J, Yang L, Wu Y, Fang Z, Zhang X. Astrocytic HILPDA promotes lipid droplets generation to drive cognitive dysfunction in mice with sepsis-associated encephalopathy. CNS Neurosci Ther 2024; 30:e14758. [PMID: 38757390 PMCID: PMC11099789 DOI: 10.1111/cns.14758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 04/20/2024] [Accepted: 04/23/2024] [Indexed: 05/18/2024] Open
Abstract
AIMS Sepsis-associated encephalopathy (SAE) is manifested as a spectrum of disturbed cerebral function ranging from mild delirium to coma. However, the pathogenesis of SAE has not been clearly elucidated. Astrocytes play important roles in maintaining the function and metabolism of the brain. Most recently, it has been demonstrated that disorders of lipid metabolism, especially lipid droplets (LDs) dyshomeostasis, are involved in a variety of neurodegenerative diseases. The aim of this study was to investigate whether LDs are involved in the underlying mechanism of SAE. METHODS The open field test, Y-maze test, and contextual fear conditioning test (CFCT) were used to test cognitive function in SAE mice. Lipidomics was utilized to investigate alterations in hippocampal lipid metabolism in SAE mice. Western blotting and immunofluorescence labeling were applied for the observation of related proteins. RESULTS In the current study, we found that SAE mice showed severe cognitive dysfunction, including spatial working and contextual memory. Meanwhile, we demonstrated that lipid metabolism was widely dysregulated in the hippocampus by using lipidomic analysis. Furthermore, western blotting and immunofluorescence confirmed that LDs accumulation in hippocampal astrocytes was involved in the pathological process of cognitive dysfunction in SAE mice. We verified that LDs can be inhibited by specifically suppress hypoxia-inducible lipid droplet-associated protein (HILPDA) in astrocytes. Meanwhile, cognitive dysfunction in SAE was ameliorated by reducing A1 astrocyte activation and inhibiting presynaptic membrane transmitter release. CONCLUSION The accumulation of astrocytic lipid droplets plays a crucial role in the pathological process of SAE. HILPDA is an attractive therapeutic target for lipid metabolism regulation and cognitive improvement in septic patients.
Collapse
Affiliation(s)
- Ling Li
- Department of Critical Care MedicineXijing HospitalFourth Military Medical UniversityXi'anShaanxiChina
- Department of Anesthesiology and Perioperative Medicine and Department of Intensive Care UnitXijing HospitalFourth Military Medical UniversityXi'anShaanxiChina
- Department of PediatricXijing HospitalFourth Military Medical UniversityXi'anShaanxiChina
| | - Du Lixia
- Department of Critical Care MedicineXijing HospitalFourth Military Medical UniversityXi'anShaanxiChina
- Department of Anesthesiology and Perioperative Medicine and Department of Intensive Care UnitXijing HospitalFourth Military Medical UniversityXi'anShaanxiChina
| | - Guifen Gan
- Department of Critical Care MedicineQinghai University Affiliated HospitalXiningQinghaiChina
| | - Jin Li
- Department of Critical Care MedicineXijing HospitalFourth Military Medical UniversityXi'anShaanxiChina
- Department of Anesthesiology and Perioperative Medicine and Department of Intensive Care UnitXijing HospitalFourth Military Medical UniversityXi'anShaanxiChina
| | - Lin Yang
- Department of Critical Care MedicineXijing HospitalFourth Military Medical UniversityXi'anShaanxiChina
- Department of Anesthesiology and Perioperative Medicine and Department of Intensive Care UnitXijing HospitalFourth Military Medical UniversityXi'anShaanxiChina
| | - You Wu
- Department of Critical Care MedicineXijing HospitalFourth Military Medical UniversityXi'anShaanxiChina
- Department of Anesthesiology and Perioperative Medicine and Department of Intensive Care UnitXijing HospitalFourth Military Medical UniversityXi'anShaanxiChina
| | - Zongping Fang
- Department of Critical Care MedicineXijing HospitalFourth Military Medical UniversityXi'anShaanxiChina
- Department of Anesthesiology and Perioperative Medicine and Department of Intensive Care UnitXijing HospitalFourth Military Medical UniversityXi'anShaanxiChina
- Translational Research Institute of Brain and Brain‐Like IntelligenceShanghai Fourth People's HospitalSchool of MedicineTongji UniversityShanghaiChina
- Department of Critical Care MedicineShanghai Fourth People's HospitalSchool of MedicineTongji UniversityShanghaiChina
| | - Xijing Zhang
- Department of Critical Care MedicineXijing HospitalFourth Military Medical UniversityXi'anShaanxiChina
- Department of Anesthesiology and Perioperative Medicine and Department of Intensive Care UnitXijing HospitalFourth Military Medical UniversityXi'anShaanxiChina
| |
Collapse
|
45
|
Wei C, Jiang W, Wang R, Zhong H, He H, Gao X, Zhong S, Yu F, Guo Q, Zhang L, Schiffelers LDJ, Zhou B, Trepel M, Schmidt FI, Luo M, Shao F. Brain endothelial GSDMD activation mediates inflammatory BBB breakdown. Nature 2024; 629:893-900. [PMID: 38632402 DOI: 10.1038/s41586-024-07314-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 03/14/2024] [Indexed: 04/19/2024]
Abstract
The blood-brain barrier (BBB) protects the central nervous system from infections or harmful substances1; its impairment can lead to or exacerbate various diseases of the central nervous system2-4. However, the mechanisms of BBB disruption during infection and inflammatory conditions5,6 remain poorly defined. Here we find that activation of the pore-forming protein GSDMD by the cytosolic lipopolysaccharide (LPS) sensor caspase-11 (refs. 7-9), but not by TLR4-induced cytokines, mediates BBB breakdown in response to circulating LPS or during LPS-induced sepsis. Mice deficient in the LBP-CD14 LPS transfer and internalization pathway10-12 resist BBB disruption. Single-cell RNA-sequencing analysis reveals that brain endothelial cells (bECs), which express high levels of GSDMD, have a prominent response to circulating LPS. LPS acting on bECs primes Casp11 and Cd14 expression and induces GSDMD-mediated plasma membrane permeabilization and pyroptosis in vitro and in mice. Electron microscopy shows that this features ultrastructural changes in the disrupted BBB, including pyroptotic endothelia, abnormal appearance of tight junctions and vasculature detachment from the basement membrane. Comprehensive mouse genetic analyses, combined with a bEC-targeting adeno-associated virus system, establish that GSDMD activation in bECs underlies BBB disruption by LPS. Delivery of active GSDMD into bECs bypasses LPS stimulation and opens the BBB. In CASP4-humanized mice, Gram-negative Klebsiella pneumoniae infection disrupts the BBB; this is blocked by expression of a GSDMD-neutralizing nanobody in bECs. Our findings outline a mechanism for inflammatory BBB breakdown, and suggest potential therapies for diseases of the central nervous system associated with BBB impairment.
Collapse
Affiliation(s)
- Chao Wei
- Chinese Institute for Brain Research, Beijing, P. R. China
| | - Wei Jiang
- National Institute of Biological Sciences, Beijing, P. R. China
- Research Unit of Pyroptosis and Immunity, Chinese Academy of Medical Sciences and National Institute of Biological Sciences, Beijing, P. R. China
| | - Ruiyu Wang
- National Institute of Biological Sciences, Beijing, P. R. China
| | - Haoyu Zhong
- National Institute of Biological Sciences, Beijing, P. R. China
| | - Huabin He
- National Institute of Biological Sciences, Beijing, P. R. China
- Research Unit of Pyroptosis and Immunity, Chinese Academy of Medical Sciences and National Institute of Biological Sciences, Beijing, P. R. China
| | - Xinwei Gao
- Chinese Institute for Brain Research, Beijing, P. R. China
| | - Shilin Zhong
- National Institute of Biological Sciences, Beijing, P. R. China
| | - Fengting Yu
- Chinese Institute for Brain Research, Beijing, P. R. China
| | - Qingchun Guo
- Chinese Institute for Brain Research, Beijing, P. R. China
| | - Li Zhang
- Chinese Institute for Brain Research, Beijing, P. R. China
| | - Lisa D J Schiffelers
- Institute of Innate Immunity, Medical Faculty, University of Bonn, Bonn, Germany
| | - Bin Zhou
- CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, P. R. China
| | - Martin Trepel
- Department of Hematology and Medical Oncology, University Medical Center Augsburg, Augsburg, Germany
| | - Florian I Schmidt
- Institute of Innate Immunity, Medical Faculty, University of Bonn, Bonn, Germany
| | - Minmin Luo
- Chinese Institute for Brain Research, Beijing, P. R. China.
- National Institute of Biological Sciences, Beijing, P. R. China.
- Research Unit of Medical Neurobiology, Chinese Academy of Medical Sciences, Beijing, P. R. China.
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, P. R. China.
- New Cornerstone Science Laboratory, Shenzhen, P. R. China.
| | - Feng Shao
- National Institute of Biological Sciences, Beijing, P. R. China.
- Research Unit of Pyroptosis and Immunity, Chinese Academy of Medical Sciences and National Institute of Biological Sciences, Beijing, P. R. China.
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, P. R. China.
- New Cornerstone Science Laboratory, Shenzhen, P. R. China.
- Changping Laboratory, Beijing, P. R. China.
| |
Collapse
|
46
|
Sokołowska EM, Wityk P, Szypenbejl J, Petrosjan R, Raczak-Gutknecht J, Waszczuk-Jankowska M, Dudzik D, Markuszewski M, Siemiński M. Clinical image of sepsis-associated encephalopathy midst E. coli urosepsis: Emergency department database study. Heliyon 2024; 10:e29530. [PMID: 38655312 PMCID: PMC11036046 DOI: 10.1016/j.heliyon.2024.e29530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 04/08/2024] [Accepted: 04/09/2024] [Indexed: 04/26/2024] Open
Abstract
Background Sepsis is a life-threatening organ dysfunction caused by a dysregulated host response to infection, which, if untreated, leads to multi-organ failure. One of the severe possible complications is sepsis associated encephalopathy (SAE), a neurological dysfunction occurring secondary to a severe inflammatory response. It manifests as acute cognitive dysfunction and sudden-onset dysfunctions in mental state. Uropathogenic Escherichia coli is the most common pathogen causing bacteremia, responsible for 80% of uncomplicated outpatient urinary tract infections and 40% of nosocomial infections. The study aimed to assess the difference in the severity and the course of urosepsis caused by E. coli in patients with and without septic encephalopathy. Materials and methods This study presents a retrospective analysis of the population of urosepsis patients admitted to the Emergency Department between September 2019 and June 2022. Inflammatory parameters, urinalysis and blood cultures were performed, along with a clinical evaluation of sepsis severity and encephalopathy. The patients were then stratified into SAE and non-SAE groups based on neurological manifestations and compared according to the collected data. Results A total of 199 septic patients were included in the study. E. coli-induced urosepsis was diagnosed in 84 patients. In this group, SAE was diagnosed in 31 (36.9%) patients (33.3% in males, 40.5% females). Patients with SAE were found to be hypotensive (p < 0,005), with a higher respiratory rate (p < 0,017) resulting in a higher mortality rate (p = 0.002) compared to non-SAE septic patients. The APACHE II score was an independent risk factor associated with a higher mortality rate. Biochemical parameters between the groups did not show any statistical importance related to the severity of urosepsis. Conclusions The severity of urosepsis and risk of SAE development increase according to the clinical condition and underlying comorbidities. Urosepsis patients with SAE are at a higher risk of death. Patients should undergo more careful screening for the presence of SAE on admission, and more intense monitoring and treatment should be provided for patients with SAE. This study indicates the need to develop projects aiming to further investigate neuroprotective interventions in sepsis.
Collapse
Affiliation(s)
| | - Paweł Wityk
- Department of Biopharmaceutics and Pharmacodynamics, Medical University of Gdańsk, Gdańsk, Poland
| | - Jacek Szypenbejl
- Department of Emergency Medicine, Medical University of Gdansk, Poland
| | - Rafael Petrosjan
- Emergency Department, University Clinical Center, Gdansk, Poland
| | - Joanna Raczak-Gutknecht
- Department of Biopharmaceutics and Pharmacodynamics, Medical University of Gdańsk, Gdańsk, Poland
| | | | - Danuta Dudzik
- Department of Biopharmaceutics and Pharmacodynamics, Medical University of Gdańsk, Gdańsk, Poland
| | - Michał Markuszewski
- Department of Biopharmaceutics and Pharmacodynamics, Medical University of Gdańsk, Gdańsk, Poland
| | - Mariusz Siemiński
- Department of Emergency Medicine, Medical University of Gdansk, Poland
| |
Collapse
|
47
|
Wang H, Xu L, Tang X, Jiang Z, Feng X. Lipid peroxidation-induced ferroptosis as a therapeutic target for mitigating neuronal injury and inflammation in sepsis-associated encephalopathy: insights into the hippocampal PEBP-1/15-LOX/GPX4 pathway. Lipids Health Dis 2024; 23:128. [PMID: 38685023 PMCID: PMC11057122 DOI: 10.1186/s12944-024-02116-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 04/21/2024] [Indexed: 05/02/2024] Open
Abstract
BACKGROUND Sepsis-associated encephalopathy (SAE) refers to the widespread impairment of brain function caused by noncentral nervous system infection mediated by sepsis. Lipid peroxidation-induced ferroptosis contributes to the occurrence and course of SAE. This study aimed to investigate the relationship between neuronal injury and lipid peroxidation-induced ferroptosis in SAE. METHODS Baseline data were collected from pediatric patients upon admission, and the expression levels of various markers related to lipid peroxidation and ferroptosis were monitored in the serum and peripheral blood mononuclear cells (PBMCs) of patients with SAE as well as SAE model mice. The hippocampal phosphatidylethanolamine-binding protein (PEBP)-1/15-lysine oxidase (LOX)/ glutathione peroxidase 4 (GPX4) pathway was assessed for its role on the inhibitory effect of ferroptosis in SAE treatment. RESULTS The results showed elevated levels of S100 calcium-binding protein beta (S-100β), glial fibrillary acidic protein, and malondialdehyde in the serum of SAE patients, while superoxide dismutase levels were reduced. Furthermore, analysis of PBMCs revealed increased transcription levels of PEBP1, LOX, and long-chain fatty acyl-CoA synthetase family member 4 (ACSL4) in SAE patients, while the transcription levels of GPX4 and cystine/glutamate transporter xCT (SLC7A11) were decreased. In comparison to the control group, the SAE mice exhibited increased expression of S-100β and neuron-specific enolase (NSE) in the hippocampus, whereas the expression of S-100β and NSE were reduced in deferoxamine (DFO) mice. Additionally, iron accumulation was observed in the hippocampus of SAE mice, while the iron ion levels were reduced in the DFO mice. Inhibition of ferroptosis alleviated the mitochondrial damage (as assessed by transmission electron microscopy, hippocampal mitochondrial ATP detection, and the JC-1 polymer-to-monomer ratio in the hippocampus) and the oxidative stress response induced by SAE as well as attenuated neuroinflammatory reactions. Further investigations revealed that the mechanism underlying the inhibitory effect of ferroptosis in SAE treatment is associated with the hippocampal PEBP-1/15-LOX/GPX4 pathway. CONCLUSION These results offer potential therapeutic targets for the management of neuronal injury in SAE and valuable insights into the potential mechanisms of ferroptosis in neurological disorders.
Collapse
Affiliation(s)
- Haosen Wang
- Department of Neonatology, Children's Hospital of Soochow University, Suzhou, 215003, Jiangsu, China
- Department of Critical Care Medicine, Xuzhou Children's Hospital, Xuzhou, 221002, Jiangsu, China
| | - Lixiao Xu
- Department of Neonatology, Children's Hospital of Soochow University, Suzhou, 215003, Jiangsu, China
| | - Xiaojuan Tang
- Department of Neonatology, Children's Hospital of Soochow University, Suzhou, 215003, Jiangsu, China
| | - Zhen Jiang
- Department of Critical Care Medicine, Xuzhou Children's Hospital, Xuzhou, 221002, Jiangsu, China
| | - Xing Feng
- Department of Neonatology, Children's Hospital of Soochow University, Suzhou, 215003, Jiangsu, China.
| |
Collapse
|
48
|
Hu J, Xie S, Xia W, Huang F, Xu B, Zuo Z, Liao Y, Qian Z, Zhang L. Meta-analysis of evaluating neuron specific enolase as a serum biomarker for sepsis-associated encephalopathy. Int Immunopharmacol 2024; 131:111857. [PMID: 38489973 DOI: 10.1016/j.intimp.2024.111857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 03/01/2024] [Accepted: 03/10/2024] [Indexed: 03/17/2024]
Abstract
INTRODUCTION Brain dysfunction in sepsis is known as Sepsis-associated encephalopathy (SAE), which often results in severe cognitive and neurological sequelae and increases the risk of death. Neuron specific enolase (NSE) may serve as an important neurocritical biomarker for detection and longitudinal monitoring in SAE patients. Our Meta-analysis aimed to explore the diagnostic and prognostic value of serum NSE in SAE patients. Currently, no systematic Review and Meta-analysis have been assessed that NSE as a biomarker of SAE. METHODS The study protocol was registered in the PROSPERO database (CRD42023398736) and adhered to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. We conducted a systematic review and Meta-analysis to evaluate the serum NSE's diagnostic accuracy for SAE and prognostic strength for probability of death of septic patients. We systematic searched electronic bibliographic databases from PubMed, MEDLINE, Web of Science, Embase, Cochrane databases, CNKI, CQVIP, and WFSD. QUADAS-2 assessment tool was used to evaluate quality and risk of bias of the selected studies. Subgroup analyses, funnel plots, sensitivity analyses were also carried out. Review Manager version 5.4 and Stata16.0. was used for statistical analysis. RESULTS This Meta-analysis included 22 studies with 1361 serum samples from SAE patients and 1580 serum samples from no-encephalopathy septic (NE) patients. The Meta-analysis showed that individuals with SAE had higher serum NSE level than NE controls (SMD 1.93 (95 % CI 1.51-2.35), P < 0.00001). In addition, there are 948 serum samples from survival septic patients and 446 serum samples from non-survival septic patients, septic patients with survival outcomes had lower serum NSE levels than those with death outcomes (SMD -1.87 (95 % CI -2.43 to -1.32), P < 0.00001). CONCLUSION Our Meta-analysis reveals a significant association between elevated NSE concentrations and the increased likelihood of concomitant SAE and mortality during septic patients. This comprehensive analysis will equip ICU physicians with up-to-date insights to accurately identify patients at risk of SAE and implement appropriate intervention strategies to mitigate morbidity and improve neurological outcomes. However, it is important to note that the presence of substantial heterogeneity among studies poses challenges in determining the most effective discrimination cutoff values and optimal sampling collection time.
Collapse
Affiliation(s)
- Jiyun Hu
- Department of Critical Care Medicine, Hunan Provincial Clinical Research Center for Critical Care Medicine, Xiangya Hospital, Central South University, Changsha 410008, Hunan, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
| | - Shucai Xie
- Department of Critical Care Medicine, Hunan Provincial Clinical Research Center for Critical Care Medicine, Xiangya Hospital, Central South University, Changsha 410008, Hunan, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
| | - Weiping Xia
- Department of Critical Care Medicine, Hunan Provincial Clinical Research Center for Critical Care Medicine, Xiangya Hospital, Central South University, Changsha 410008, Hunan, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
| | - Fang Huang
- Department of Critical Care Medicine, Hunan Provincial Clinical Research Center for Critical Care Medicine, Xiangya Hospital, Central South University, Changsha 410008, Hunan, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
| | - Biaoxiang Xu
- Department of Critical Care Medicine, Hunan Provincial Clinical Research Center for Critical Care Medicine, Xiangya Hospital, Central South University, Changsha 410008, Hunan, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
| | - Zhihong Zuo
- Department of Critical Care Medicine, Hunan Provincial Clinical Research Center for Critical Care Medicine, Xiangya Hospital, Central South University, Changsha 410008, Hunan, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
| | - Ya Liao
- Department of Critical Care Medicine, Hunan Provincial Clinical Research Center for Critical Care Medicine, Xiangya Hospital, Central South University, Changsha 410008, Hunan, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
| | - Zhaoxin Qian
- Department of Critical Care Medicine, Hunan Provincial Clinical Research Center for Critical Care Medicine, Xiangya Hospital, Central South University, Changsha 410008, Hunan, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China.
| | - Lina Zhang
- Department of Critical Care Medicine, Hunan Provincial Clinical Research Center for Critical Care Medicine, Xiangya Hospital, Central South University, Changsha 410008, Hunan, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China.
| |
Collapse
|
49
|
Wu H, Li N, Peng S, Fu H, Hu Z, Su L. Maresin1 improves hippocampal neuroinflammation and cognitive function in septic rats by activating the SLC7A11 / GPX4 ferroptosis signaling pathway. Int Immunopharmacol 2024; 131:111792. [PMID: 38484667 DOI: 10.1016/j.intimp.2024.111792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 02/19/2024] [Accepted: 02/29/2024] [Indexed: 04/10/2024]
Abstract
Sepsis-associated encephalopathy (SAE) is a prevalent complication of sepsis, with hippocampal neuroinflammation playing a crucial role in SAE-induced cognitive impairment. Maresin1 (MaR1), a bioactive docosahexaenoic acid (DHA) metabolite, demonstrates comprehensive anti-inflammatory and neuroprotective attributes. Yet, its protective efficacy against SAE-induced cognitive decline remains unexplored. In this investigation, we implemented a rat SAE model via cecal ligation and puncture (CLP), while lipopolysaccharide (LPS) stimulation of HT22 cells simulated an in vitro SAE model; both models were pre-treated with MaR1. We evaluated rat learning and memory using a water maze, assessed hippocampal neuron damage via Nissl and FJC staining, and observed mitochondrial alterations through TEM. In vivo and in vitro assays gauged levels of Fe2+, MDA, GSH, and SOD. Additionally, Iba1 expression in the hippocampus was examined via immunofluorescence, while SLC7A11 and GPX4 protein expression levels were determined using western blot. Our findings indicated CLP-induced learning and memory impairment in rats, along with heightened ROS, Fe2+, and MDA levels in hippocampal neurons, diminished GSH and SOD levels, and down-regulated ferroptosis-related proteins (GPX4 and SLC7A11). Remarkably, MaR1 treatment attenuated these adverse effects. In LPS-stimulated HT22 cells, MaR1 lowered lipid ROS and bolstered mitochondrial membrane potential. Nonetheless, the ferroptosis inducer Erastin reversed MaR1's protective effects. Transwell experiments further showed MaR1's potential to inhibit microglia activation triggered by ferroptosis in HT22 cells. Consequently, MaR1 may mitigate hippocampal neuroinflammation via activating the SLC7A11/GPX4 ferroptosis signaling pathway, thus ameliorating SAE-related cognitive impairment.
Collapse
Affiliation(s)
- Huiping Wu
- Intensive Care Unit, The First Affiliated Hospital of JinZhou Medical University, Jinzhou 121001, China
| | - Na Li
- Intensive Care Unit, The First Affiliated Hospital of JinZhou Medical University, Jinzhou 121001, China
| | - Shuang Peng
- Intensive Care Unit, The First Affiliated Hospital of JinZhou Medical University, Jinzhou 121001, China
| | - Haiyan Fu
- Intensive Care Unit, The First Affiliated Hospital of JinZhou Medical University, Jinzhou 121001, China
| | - Zhansheng Hu
- Intensive Care Unit, The First Affiliated Hospital of JinZhou Medical University, Jinzhou 121001, China
| | - Longxiang Su
- Department of Critical Care Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, 1st Shuaifuyuan, Dongcheng District, Beijing 100730, China.
| |
Collapse
|
50
|
Freund BE, Husari KS, Kaplan PW. Danger in plain sight: determining who is at highest risk for cefepime induced neurotoxicity and its associated morbidity and mortality. Acta Neurol Belg 2024:10.1007/s13760-024-02546-5. [PMID: 38589733 DOI: 10.1007/s13760-024-02546-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 03/23/2024] [Indexed: 04/10/2024]
Abstract
Cefepime is a fourth-generation cephalosporin that is widely used to treat sepsis but is associated with a potentially dangerous neurotoxicity syndrome, cefepime-induced neurotoxicity (CIN). As a result, patients treated with cefepime may be at higher risk for morbidity, including seizures, and mortality. Though the recent ACORN trial concluded that cefepime does not increase the risk of mortality, most of these patients were not critically ill or elderly, two of the most at risk populations for CIN. Further, diagnosis may be difficult in the critical care setting as patients may have multiple reasons for encephalopathy. Therefore, this population in particular should be studied and monitored closely for CIN. Importantly, there are not well defined diagnostic criteria for CIN to guide evaluation and management. Defining the risk factors for CIN and using laboratory and EEG to help support the clinical diagnosis could be helpful in early recognition of CIN to help institute treatment and to rule out seizures. In this mini review, we highlight risk factors for CIN, discuss the possible value of EEG, and propose a diagnostic and management approach in the evaluation and management of CIN.
Collapse
Affiliation(s)
- Brin E Freund
- Department of Neurology, Mayo Clinic, Jacksonville, FL, USA.
| | - Khalil S Husari
- Department of Neurology, Johns Hopkins Hospital, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins Bayview Medical Center, Baltimore, MD, USA
| | - Peter W Kaplan
- Department of Neurology, Johns Hopkins Bayview Medical Center, Baltimore, MD, USA
| |
Collapse
|