1
|
Villacieros-Álvarez J, Lunemann JD, Sepulveda M, Valls-Carbó A, Dinoto A, Fernández V, Vilaseca A, Castillo M, Arrambide G, Bollo L, Espejo C, Llufriu S, Blanco Y, Armangue T, Álvarez Bravo G, Quiroga-Varela A, Ramió Torrentà L, Cobo-Calvo A, Tintore M, Mariotto S, Montalban X, Comabella M. Complement Activation Profiles Predict Clinical Outcomes in Myelin Oligodendrocyte Glycoprotein Antibody-Associated Disease. NEUROLOGY(R) NEUROIMMUNOLOGY & NEUROINFLAMMATION 2025; 12:e200340. [PMID: 39661937 PMCID: PMC11637507 DOI: 10.1212/nxi.0000000000200340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 10/03/2024] [Indexed: 12/13/2024]
Abstract
BACKGROUND AND OBJECTIVES The role of the complement system in myelin oligodendrocyte glycoprotein antibody-associated disease (MOGAD) is not completely understood, and studies exploring its potential utility for diagnosis and prognosis are lacking. We aimed to investigate the value of complement factors (CFs) as diagnostic and prognostic biomarkers in patients with MOGAD. METHODS Multicentric retrospective cohort study including patients with MOGAD, multiple sclerosis (MS) and aquaporin-4 seropositive neuromyelitis optica spectrum disorder (AQP4-NMOSD) with available paired serum and CSF samples. A panel of CFs were measured by multiplex ELISA, and the levels were compared between the 3 conditions. Univariable and multivariable analyses were performed to evaluate the association between levels of CFs and relapse and disability outcomes in MOGAD patients. RESULTS Ninety-four patients (MOGAD, n = 60; MS, n = 18; AQP4-NMOSD, n = 16) were included. Mean (SD) age at sampling was 39.4 (16.7), 40.7 (7.0), and 43.3 (21.0), respectively. Female were predominant, especially in AQP4-NMOSD (88%). Combination of the serum levels of C3a, C4a, and C3a/C3 ratio showed excellent potential to discriminate MOGAD from patients with MS (area under the curve [AUC] [95% CI] 0.95 [0.90-0.99]) and from AQP4-NMOSD (AUC 0.88 [0.76-1.00]). In patients with MOGAD, CSF levels of CFs of the classical/lectin pathway influenced relapse-related outcomes, and lower C4 levels were associated with higher number of relapses during follow-up (incidence rate ratio [95% CI] 0.88 [0.78-0.99]; p = 0.04 in multivariable analysis), and a high C4a/C4 ratio was associated with increased risk of second relapse during the first year (hazard ratio [95% CI] 3.68 [1.26-10.78]; p = 0.02 in multivariable analysis). Time to second relapse was shorter in patients with MOGAD with a high CSF C4a/C4 ratio (log-rank p = 0.01). CSF levels of the membrane attack complex SC5b9 influenced disability-related outcomes, and baseline CSF SC5b9 levels were higher in patients who reached the final Expanded Disability Status Scale (EDSS) ≥ 3.0 (p = 0.002), and elevated SC5b9 levels were associated with increased risk of reaching EDSS ≥ 3.0 (odds ratio [95% CI] 1.79 [1.16-3.67]; p = 0.04 in multivariable analyses). DISCUSSION Our results suggest that serum and CSF levels of CFs have diagnostic and prognostic value respectively in patients with MOGAD. These findings support the use of complement inhibitors as a therapeutic approach in these patients.
Collapse
Affiliation(s)
- Javier Villacieros-Álvarez
- From the Neurology-Neuroimmunology Department (J.V.-Á., V.F., A.V., M. Castillo, M. Comabella), Multiple Sclerosis Center of Catalonia, Vall d'Hebron Barcelona Hospital Campus, Vall d'Hebron Research Institute; Autonomous University of Barcelona (M. Comabella), Spain; Department of Neurology with Institute of Translational Neurology (J.D.L.), University Hospital Münster, Germany; Neuroimmunology and Multiple Sclerosis Unit (M.S., S.L., Y.B.), Hospital Clinic de Barcelona; Fundación INCE (Iniciativa para las Neurociencias) (A.V.-C.), Madrid, Spain; Neurology Unit (A.D., S.M.), Department of Neurosciences, Biomedicine, and Movement Sciences, University of Verona, Italy; Neuroimmunology Program (S.L., Y.B., T.A.), Neurology Service, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic de Barcelona; Pediatric Neuroimmunology Unit (T.A.), Neurology Department, Sant Joan de Déu Children's Hospital, University of Barcelona; Girona Neuroimmunology and Multiple Sclerosis Unit (G.Á.B., L.R.), Neurology Department, Dr. Josep Trueta University Hospital and Santa Caterina Hospital; Neurodegeneration and Neuroinflammation research group (G.Á.B., A.Q.-V., L.R.), IDIBGI, Girona-Salt; Department of Medical Sciences (G.Á.B., L.R.), Faculty of Medicine, University of Girona; and Redes de Investigación Cooperativa Orientada a Resultados en Salud (RICORS) (A.Q.-V., L.R.), Red de Enfermedades inflamatorias (RD21/0002/0063), Instituto de Salud Carlos III, Madrid, Spain
| | - Jan D Lunemann
- From the Neurology-Neuroimmunology Department (J.V.-Á., V.F., A.V., M. Castillo, M. Comabella), Multiple Sclerosis Center of Catalonia, Vall d'Hebron Barcelona Hospital Campus, Vall d'Hebron Research Institute; Autonomous University of Barcelona (M. Comabella), Spain; Department of Neurology with Institute of Translational Neurology (J.D.L.), University Hospital Münster, Germany; Neuroimmunology and Multiple Sclerosis Unit (M.S., S.L., Y.B.), Hospital Clinic de Barcelona; Fundación INCE (Iniciativa para las Neurociencias) (A.V.-C.), Madrid, Spain; Neurology Unit (A.D., S.M.), Department of Neurosciences, Biomedicine, and Movement Sciences, University of Verona, Italy; Neuroimmunology Program (S.L., Y.B., T.A.), Neurology Service, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic de Barcelona; Pediatric Neuroimmunology Unit (T.A.), Neurology Department, Sant Joan de Déu Children's Hospital, University of Barcelona; Girona Neuroimmunology and Multiple Sclerosis Unit (G.Á.B., L.R.), Neurology Department, Dr. Josep Trueta University Hospital and Santa Caterina Hospital; Neurodegeneration and Neuroinflammation research group (G.Á.B., A.Q.-V., L.R.), IDIBGI, Girona-Salt; Department of Medical Sciences (G.Á.B., L.R.), Faculty of Medicine, University of Girona; and Redes de Investigación Cooperativa Orientada a Resultados en Salud (RICORS) (A.Q.-V., L.R.), Red de Enfermedades inflamatorias (RD21/0002/0063), Instituto de Salud Carlos III, Madrid, Spain
| | - Maria Sepulveda
- From the Neurology-Neuroimmunology Department (J.V.-Á., V.F., A.V., M. Castillo, M. Comabella), Multiple Sclerosis Center of Catalonia, Vall d'Hebron Barcelona Hospital Campus, Vall d'Hebron Research Institute; Autonomous University of Barcelona (M. Comabella), Spain; Department of Neurology with Institute of Translational Neurology (J.D.L.), University Hospital Münster, Germany; Neuroimmunology and Multiple Sclerosis Unit (M.S., S.L., Y.B.), Hospital Clinic de Barcelona; Fundación INCE (Iniciativa para las Neurociencias) (A.V.-C.), Madrid, Spain; Neurology Unit (A.D., S.M.), Department of Neurosciences, Biomedicine, and Movement Sciences, University of Verona, Italy; Neuroimmunology Program (S.L., Y.B., T.A.), Neurology Service, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic de Barcelona; Pediatric Neuroimmunology Unit (T.A.), Neurology Department, Sant Joan de Déu Children's Hospital, University of Barcelona; Girona Neuroimmunology and Multiple Sclerosis Unit (G.Á.B., L.R.), Neurology Department, Dr. Josep Trueta University Hospital and Santa Caterina Hospital; Neurodegeneration and Neuroinflammation research group (G.Á.B., A.Q.-V., L.R.), IDIBGI, Girona-Salt; Department of Medical Sciences (G.Á.B., L.R.), Faculty of Medicine, University of Girona; and Redes de Investigación Cooperativa Orientada a Resultados en Salud (RICORS) (A.Q.-V., L.R.), Red de Enfermedades inflamatorias (RD21/0002/0063), Instituto de Salud Carlos III, Madrid, Spain
| | - Adrián Valls-Carbó
- From the Neurology-Neuroimmunology Department (J.V.-Á., V.F., A.V., M. Castillo, M. Comabella), Multiple Sclerosis Center of Catalonia, Vall d'Hebron Barcelona Hospital Campus, Vall d'Hebron Research Institute; Autonomous University of Barcelona (M. Comabella), Spain; Department of Neurology with Institute of Translational Neurology (J.D.L.), University Hospital Münster, Germany; Neuroimmunology and Multiple Sclerosis Unit (M.S., S.L., Y.B.), Hospital Clinic de Barcelona; Fundación INCE (Iniciativa para las Neurociencias) (A.V.-C.), Madrid, Spain; Neurology Unit (A.D., S.M.), Department of Neurosciences, Biomedicine, and Movement Sciences, University of Verona, Italy; Neuroimmunology Program (S.L., Y.B., T.A.), Neurology Service, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic de Barcelona; Pediatric Neuroimmunology Unit (T.A.), Neurology Department, Sant Joan de Déu Children's Hospital, University of Barcelona; Girona Neuroimmunology and Multiple Sclerosis Unit (G.Á.B., L.R.), Neurology Department, Dr. Josep Trueta University Hospital and Santa Caterina Hospital; Neurodegeneration and Neuroinflammation research group (G.Á.B., A.Q.-V., L.R.), IDIBGI, Girona-Salt; Department of Medical Sciences (G.Á.B., L.R.), Faculty of Medicine, University of Girona; and Redes de Investigación Cooperativa Orientada a Resultados en Salud (RICORS) (A.Q.-V., L.R.), Red de Enfermedades inflamatorias (RD21/0002/0063), Instituto de Salud Carlos III, Madrid, Spain
| | - Alessandro Dinoto
- From the Neurology-Neuroimmunology Department (J.V.-Á., V.F., A.V., M. Castillo, M. Comabella), Multiple Sclerosis Center of Catalonia, Vall d'Hebron Barcelona Hospital Campus, Vall d'Hebron Research Institute; Autonomous University of Barcelona (M. Comabella), Spain; Department of Neurology with Institute of Translational Neurology (J.D.L.), University Hospital Münster, Germany; Neuroimmunology and Multiple Sclerosis Unit (M.S., S.L., Y.B.), Hospital Clinic de Barcelona; Fundación INCE (Iniciativa para las Neurociencias) (A.V.-C.), Madrid, Spain; Neurology Unit (A.D., S.M.), Department of Neurosciences, Biomedicine, and Movement Sciences, University of Verona, Italy; Neuroimmunology Program (S.L., Y.B., T.A.), Neurology Service, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic de Barcelona; Pediatric Neuroimmunology Unit (T.A.), Neurology Department, Sant Joan de Déu Children's Hospital, University of Barcelona; Girona Neuroimmunology and Multiple Sclerosis Unit (G.Á.B., L.R.), Neurology Department, Dr. Josep Trueta University Hospital and Santa Caterina Hospital; Neurodegeneration and Neuroinflammation research group (G.Á.B., A.Q.-V., L.R.), IDIBGI, Girona-Salt; Department of Medical Sciences (G.Á.B., L.R.), Faculty of Medicine, University of Girona; and Redes de Investigación Cooperativa Orientada a Resultados en Salud (RICORS) (A.Q.-V., L.R.), Red de Enfermedades inflamatorias (RD21/0002/0063), Instituto de Salud Carlos III, Madrid, Spain
| | - Victoria Fernández
- From the Neurology-Neuroimmunology Department (J.V.-Á., V.F., A.V., M. Castillo, M. Comabella), Multiple Sclerosis Center of Catalonia, Vall d'Hebron Barcelona Hospital Campus, Vall d'Hebron Research Institute; Autonomous University of Barcelona (M. Comabella), Spain; Department of Neurology with Institute of Translational Neurology (J.D.L.), University Hospital Münster, Germany; Neuroimmunology and Multiple Sclerosis Unit (M.S., S.L., Y.B.), Hospital Clinic de Barcelona; Fundación INCE (Iniciativa para las Neurociencias) (A.V.-C.), Madrid, Spain; Neurology Unit (A.D., S.M.), Department of Neurosciences, Biomedicine, and Movement Sciences, University of Verona, Italy; Neuroimmunology Program (S.L., Y.B., T.A.), Neurology Service, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic de Barcelona; Pediatric Neuroimmunology Unit (T.A.), Neurology Department, Sant Joan de Déu Children's Hospital, University of Barcelona; Girona Neuroimmunology and Multiple Sclerosis Unit (G.Á.B., L.R.), Neurology Department, Dr. Josep Trueta University Hospital and Santa Caterina Hospital; Neurodegeneration and Neuroinflammation research group (G.Á.B., A.Q.-V., L.R.), IDIBGI, Girona-Salt; Department of Medical Sciences (G.Á.B., L.R.), Faculty of Medicine, University of Girona; and Redes de Investigación Cooperativa Orientada a Resultados en Salud (RICORS) (A.Q.-V., L.R.), Red de Enfermedades inflamatorias (RD21/0002/0063), Instituto de Salud Carlos III, Madrid, Spain
| | - Andreu Vilaseca
- From the Neurology-Neuroimmunology Department (J.V.-Á., V.F., A.V., M. Castillo, M. Comabella), Multiple Sclerosis Center of Catalonia, Vall d'Hebron Barcelona Hospital Campus, Vall d'Hebron Research Institute; Autonomous University of Barcelona (M. Comabella), Spain; Department of Neurology with Institute of Translational Neurology (J.D.L.), University Hospital Münster, Germany; Neuroimmunology and Multiple Sclerosis Unit (M.S., S.L., Y.B.), Hospital Clinic de Barcelona; Fundación INCE (Iniciativa para las Neurociencias) (A.V.-C.), Madrid, Spain; Neurology Unit (A.D., S.M.), Department of Neurosciences, Biomedicine, and Movement Sciences, University of Verona, Italy; Neuroimmunology Program (S.L., Y.B., T.A.), Neurology Service, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic de Barcelona; Pediatric Neuroimmunology Unit (T.A.), Neurology Department, Sant Joan de Déu Children's Hospital, University of Barcelona; Girona Neuroimmunology and Multiple Sclerosis Unit (G.Á.B., L.R.), Neurology Department, Dr. Josep Trueta University Hospital and Santa Caterina Hospital; Neurodegeneration and Neuroinflammation research group (G.Á.B., A.Q.-V., L.R.), IDIBGI, Girona-Salt; Department of Medical Sciences (G.Á.B., L.R.), Faculty of Medicine, University of Girona; and Redes de Investigación Cooperativa Orientada a Resultados en Salud (RICORS) (A.Q.-V., L.R.), Red de Enfermedades inflamatorias (RD21/0002/0063), Instituto de Salud Carlos III, Madrid, Spain
| | - Mireia Castillo
- From the Neurology-Neuroimmunology Department (J.V.-Á., V.F., A.V., M. Castillo, M. Comabella), Multiple Sclerosis Center of Catalonia, Vall d'Hebron Barcelona Hospital Campus, Vall d'Hebron Research Institute; Autonomous University of Barcelona (M. Comabella), Spain; Department of Neurology with Institute of Translational Neurology (J.D.L.), University Hospital Münster, Germany; Neuroimmunology and Multiple Sclerosis Unit (M.S., S.L., Y.B.), Hospital Clinic de Barcelona; Fundación INCE (Iniciativa para las Neurociencias) (A.V.-C.), Madrid, Spain; Neurology Unit (A.D., S.M.), Department of Neurosciences, Biomedicine, and Movement Sciences, University of Verona, Italy; Neuroimmunology Program (S.L., Y.B., T.A.), Neurology Service, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic de Barcelona; Pediatric Neuroimmunology Unit (T.A.), Neurology Department, Sant Joan de Déu Children's Hospital, University of Barcelona; Girona Neuroimmunology and Multiple Sclerosis Unit (G.Á.B., L.R.), Neurology Department, Dr. Josep Trueta University Hospital and Santa Caterina Hospital; Neurodegeneration and Neuroinflammation research group (G.Á.B., A.Q.-V., L.R.), IDIBGI, Girona-Salt; Department of Medical Sciences (G.Á.B., L.R.), Faculty of Medicine, University of Girona; and Redes de Investigación Cooperativa Orientada a Resultados en Salud (RICORS) (A.Q.-V., L.R.), Red de Enfermedades inflamatorias (RD21/0002/0063), Instituto de Salud Carlos III, Madrid, Spain
| | - Georgina Arrambide
- From the Neurology-Neuroimmunology Department (J.V.-Á., V.F., A.V., M. Castillo, M. Comabella), Multiple Sclerosis Center of Catalonia, Vall d'Hebron Barcelona Hospital Campus, Vall d'Hebron Research Institute; Autonomous University of Barcelona (M. Comabella), Spain; Department of Neurology with Institute of Translational Neurology (J.D.L.), University Hospital Münster, Germany; Neuroimmunology and Multiple Sclerosis Unit (M.S., S.L., Y.B.), Hospital Clinic de Barcelona; Fundación INCE (Iniciativa para las Neurociencias) (A.V.-C.), Madrid, Spain; Neurology Unit (A.D., S.M.), Department of Neurosciences, Biomedicine, and Movement Sciences, University of Verona, Italy; Neuroimmunology Program (S.L., Y.B., T.A.), Neurology Service, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic de Barcelona; Pediatric Neuroimmunology Unit (T.A.), Neurology Department, Sant Joan de Déu Children's Hospital, University of Barcelona; Girona Neuroimmunology and Multiple Sclerosis Unit (G.Á.B., L.R.), Neurology Department, Dr. Josep Trueta University Hospital and Santa Caterina Hospital; Neurodegeneration and Neuroinflammation research group (G.Á.B., A.Q.-V., L.R.), IDIBGI, Girona-Salt; Department of Medical Sciences (G.Á.B., L.R.), Faculty of Medicine, University of Girona; and Redes de Investigación Cooperativa Orientada a Resultados en Salud (RICORS) (A.Q.-V., L.R.), Red de Enfermedades inflamatorias (RD21/0002/0063), Instituto de Salud Carlos III, Madrid, Spain
| | - Luca Bollo
- From the Neurology-Neuroimmunology Department (J.V.-Á., V.F., A.V., M. Castillo, M. Comabella), Multiple Sclerosis Center of Catalonia, Vall d'Hebron Barcelona Hospital Campus, Vall d'Hebron Research Institute; Autonomous University of Barcelona (M. Comabella), Spain; Department of Neurology with Institute of Translational Neurology (J.D.L.), University Hospital Münster, Germany; Neuroimmunology and Multiple Sclerosis Unit (M.S., S.L., Y.B.), Hospital Clinic de Barcelona; Fundación INCE (Iniciativa para las Neurociencias) (A.V.-C.), Madrid, Spain; Neurology Unit (A.D., S.M.), Department of Neurosciences, Biomedicine, and Movement Sciences, University of Verona, Italy; Neuroimmunology Program (S.L., Y.B., T.A.), Neurology Service, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic de Barcelona; Pediatric Neuroimmunology Unit (T.A.), Neurology Department, Sant Joan de Déu Children's Hospital, University of Barcelona; Girona Neuroimmunology and Multiple Sclerosis Unit (G.Á.B., L.R.), Neurology Department, Dr. Josep Trueta University Hospital and Santa Caterina Hospital; Neurodegeneration and Neuroinflammation research group (G.Á.B., A.Q.-V., L.R.), IDIBGI, Girona-Salt; Department of Medical Sciences (G.Á.B., L.R.), Faculty of Medicine, University of Girona; and Redes de Investigación Cooperativa Orientada a Resultados en Salud (RICORS) (A.Q.-V., L.R.), Red de Enfermedades inflamatorias (RD21/0002/0063), Instituto de Salud Carlos III, Madrid, Spain
| | - Carmen Espejo
- From the Neurology-Neuroimmunology Department (J.V.-Á., V.F., A.V., M. Castillo, M. Comabella), Multiple Sclerosis Center of Catalonia, Vall d'Hebron Barcelona Hospital Campus, Vall d'Hebron Research Institute; Autonomous University of Barcelona (M. Comabella), Spain; Department of Neurology with Institute of Translational Neurology (J.D.L.), University Hospital Münster, Germany; Neuroimmunology and Multiple Sclerosis Unit (M.S., S.L., Y.B.), Hospital Clinic de Barcelona; Fundación INCE (Iniciativa para las Neurociencias) (A.V.-C.), Madrid, Spain; Neurology Unit (A.D., S.M.), Department of Neurosciences, Biomedicine, and Movement Sciences, University of Verona, Italy; Neuroimmunology Program (S.L., Y.B., T.A.), Neurology Service, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic de Barcelona; Pediatric Neuroimmunology Unit (T.A.), Neurology Department, Sant Joan de Déu Children's Hospital, University of Barcelona; Girona Neuroimmunology and Multiple Sclerosis Unit (G.Á.B., L.R.), Neurology Department, Dr. Josep Trueta University Hospital and Santa Caterina Hospital; Neurodegeneration and Neuroinflammation research group (G.Á.B., A.Q.-V., L.R.), IDIBGI, Girona-Salt; Department of Medical Sciences (G.Á.B., L.R.), Faculty of Medicine, University of Girona; and Redes de Investigación Cooperativa Orientada a Resultados en Salud (RICORS) (A.Q.-V., L.R.), Red de Enfermedades inflamatorias (RD21/0002/0063), Instituto de Salud Carlos III, Madrid, Spain
| | - Sara Llufriu
- From the Neurology-Neuroimmunology Department (J.V.-Á., V.F., A.V., M. Castillo, M. Comabella), Multiple Sclerosis Center of Catalonia, Vall d'Hebron Barcelona Hospital Campus, Vall d'Hebron Research Institute; Autonomous University of Barcelona (M. Comabella), Spain; Department of Neurology with Institute of Translational Neurology (J.D.L.), University Hospital Münster, Germany; Neuroimmunology and Multiple Sclerosis Unit (M.S., S.L., Y.B.), Hospital Clinic de Barcelona; Fundación INCE (Iniciativa para las Neurociencias) (A.V.-C.), Madrid, Spain; Neurology Unit (A.D., S.M.), Department of Neurosciences, Biomedicine, and Movement Sciences, University of Verona, Italy; Neuroimmunology Program (S.L., Y.B., T.A.), Neurology Service, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic de Barcelona; Pediatric Neuroimmunology Unit (T.A.), Neurology Department, Sant Joan de Déu Children's Hospital, University of Barcelona; Girona Neuroimmunology and Multiple Sclerosis Unit (G.Á.B., L.R.), Neurology Department, Dr. Josep Trueta University Hospital and Santa Caterina Hospital; Neurodegeneration and Neuroinflammation research group (G.Á.B., A.Q.-V., L.R.), IDIBGI, Girona-Salt; Department of Medical Sciences (G.Á.B., L.R.), Faculty of Medicine, University of Girona; and Redes de Investigación Cooperativa Orientada a Resultados en Salud (RICORS) (A.Q.-V., L.R.), Red de Enfermedades inflamatorias (RD21/0002/0063), Instituto de Salud Carlos III, Madrid, Spain
| | - Yolanda Blanco
- From the Neurology-Neuroimmunology Department (J.V.-Á., V.F., A.V., M. Castillo, M. Comabella), Multiple Sclerosis Center of Catalonia, Vall d'Hebron Barcelona Hospital Campus, Vall d'Hebron Research Institute; Autonomous University of Barcelona (M. Comabella), Spain; Department of Neurology with Institute of Translational Neurology (J.D.L.), University Hospital Münster, Germany; Neuroimmunology and Multiple Sclerosis Unit (M.S., S.L., Y.B.), Hospital Clinic de Barcelona; Fundación INCE (Iniciativa para las Neurociencias) (A.V.-C.), Madrid, Spain; Neurology Unit (A.D., S.M.), Department of Neurosciences, Biomedicine, and Movement Sciences, University of Verona, Italy; Neuroimmunology Program (S.L., Y.B., T.A.), Neurology Service, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic de Barcelona; Pediatric Neuroimmunology Unit (T.A.), Neurology Department, Sant Joan de Déu Children's Hospital, University of Barcelona; Girona Neuroimmunology and Multiple Sclerosis Unit (G.Á.B., L.R.), Neurology Department, Dr. Josep Trueta University Hospital and Santa Caterina Hospital; Neurodegeneration and Neuroinflammation research group (G.Á.B., A.Q.-V., L.R.), IDIBGI, Girona-Salt; Department of Medical Sciences (G.Á.B., L.R.), Faculty of Medicine, University of Girona; and Redes de Investigación Cooperativa Orientada a Resultados en Salud (RICORS) (A.Q.-V., L.R.), Red de Enfermedades inflamatorias (RD21/0002/0063), Instituto de Salud Carlos III, Madrid, Spain
| | - Thais Armangue
- From the Neurology-Neuroimmunology Department (J.V.-Á., V.F., A.V., M. Castillo, M. Comabella), Multiple Sclerosis Center of Catalonia, Vall d'Hebron Barcelona Hospital Campus, Vall d'Hebron Research Institute; Autonomous University of Barcelona (M. Comabella), Spain; Department of Neurology with Institute of Translational Neurology (J.D.L.), University Hospital Münster, Germany; Neuroimmunology and Multiple Sclerosis Unit (M.S., S.L., Y.B.), Hospital Clinic de Barcelona; Fundación INCE (Iniciativa para las Neurociencias) (A.V.-C.), Madrid, Spain; Neurology Unit (A.D., S.M.), Department of Neurosciences, Biomedicine, and Movement Sciences, University of Verona, Italy; Neuroimmunology Program (S.L., Y.B., T.A.), Neurology Service, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic de Barcelona; Pediatric Neuroimmunology Unit (T.A.), Neurology Department, Sant Joan de Déu Children's Hospital, University of Barcelona; Girona Neuroimmunology and Multiple Sclerosis Unit (G.Á.B., L.R.), Neurology Department, Dr. Josep Trueta University Hospital and Santa Caterina Hospital; Neurodegeneration and Neuroinflammation research group (G.Á.B., A.Q.-V., L.R.), IDIBGI, Girona-Salt; Department of Medical Sciences (G.Á.B., L.R.), Faculty of Medicine, University of Girona; and Redes de Investigación Cooperativa Orientada a Resultados en Salud (RICORS) (A.Q.-V., L.R.), Red de Enfermedades inflamatorias (RD21/0002/0063), Instituto de Salud Carlos III, Madrid, Spain
| | - Gary Álvarez Bravo
- From the Neurology-Neuroimmunology Department (J.V.-Á., V.F., A.V., M. Castillo, M. Comabella), Multiple Sclerosis Center of Catalonia, Vall d'Hebron Barcelona Hospital Campus, Vall d'Hebron Research Institute; Autonomous University of Barcelona (M. Comabella), Spain; Department of Neurology with Institute of Translational Neurology (J.D.L.), University Hospital Münster, Germany; Neuroimmunology and Multiple Sclerosis Unit (M.S., S.L., Y.B.), Hospital Clinic de Barcelona; Fundación INCE (Iniciativa para las Neurociencias) (A.V.-C.), Madrid, Spain; Neurology Unit (A.D., S.M.), Department of Neurosciences, Biomedicine, and Movement Sciences, University of Verona, Italy; Neuroimmunology Program (S.L., Y.B., T.A.), Neurology Service, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic de Barcelona; Pediatric Neuroimmunology Unit (T.A.), Neurology Department, Sant Joan de Déu Children's Hospital, University of Barcelona; Girona Neuroimmunology and Multiple Sclerosis Unit (G.Á.B., L.R.), Neurology Department, Dr. Josep Trueta University Hospital and Santa Caterina Hospital; Neurodegeneration and Neuroinflammation research group (G.Á.B., A.Q.-V., L.R.), IDIBGI, Girona-Salt; Department of Medical Sciences (G.Á.B., L.R.), Faculty of Medicine, University of Girona; and Redes de Investigación Cooperativa Orientada a Resultados en Salud (RICORS) (A.Q.-V., L.R.), Red de Enfermedades inflamatorias (RD21/0002/0063), Instituto de Salud Carlos III, Madrid, Spain
| | - Ana Quiroga-Varela
- From the Neurology-Neuroimmunology Department (J.V.-Á., V.F., A.V., M. Castillo, M. Comabella), Multiple Sclerosis Center of Catalonia, Vall d'Hebron Barcelona Hospital Campus, Vall d'Hebron Research Institute; Autonomous University of Barcelona (M. Comabella), Spain; Department of Neurology with Institute of Translational Neurology (J.D.L.), University Hospital Münster, Germany; Neuroimmunology and Multiple Sclerosis Unit (M.S., S.L., Y.B.), Hospital Clinic de Barcelona; Fundación INCE (Iniciativa para las Neurociencias) (A.V.-C.), Madrid, Spain; Neurology Unit (A.D., S.M.), Department of Neurosciences, Biomedicine, and Movement Sciences, University of Verona, Italy; Neuroimmunology Program (S.L., Y.B., T.A.), Neurology Service, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic de Barcelona; Pediatric Neuroimmunology Unit (T.A.), Neurology Department, Sant Joan de Déu Children's Hospital, University of Barcelona; Girona Neuroimmunology and Multiple Sclerosis Unit (G.Á.B., L.R.), Neurology Department, Dr. Josep Trueta University Hospital and Santa Caterina Hospital; Neurodegeneration and Neuroinflammation research group (G.Á.B., A.Q.-V., L.R.), IDIBGI, Girona-Salt; Department of Medical Sciences (G.Á.B., L.R.), Faculty of Medicine, University of Girona; and Redes de Investigación Cooperativa Orientada a Resultados en Salud (RICORS) (A.Q.-V., L.R.), Red de Enfermedades inflamatorias (RD21/0002/0063), Instituto de Salud Carlos III, Madrid, Spain
| | - Lluís Ramió Torrentà
- From the Neurology-Neuroimmunology Department (J.V.-Á., V.F., A.V., M. Castillo, M. Comabella), Multiple Sclerosis Center of Catalonia, Vall d'Hebron Barcelona Hospital Campus, Vall d'Hebron Research Institute; Autonomous University of Barcelona (M. Comabella), Spain; Department of Neurology with Institute of Translational Neurology (J.D.L.), University Hospital Münster, Germany; Neuroimmunology and Multiple Sclerosis Unit (M.S., S.L., Y.B.), Hospital Clinic de Barcelona; Fundación INCE (Iniciativa para las Neurociencias) (A.V.-C.), Madrid, Spain; Neurology Unit (A.D., S.M.), Department of Neurosciences, Biomedicine, and Movement Sciences, University of Verona, Italy; Neuroimmunology Program (S.L., Y.B., T.A.), Neurology Service, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic de Barcelona; Pediatric Neuroimmunology Unit (T.A.), Neurology Department, Sant Joan de Déu Children's Hospital, University of Barcelona; Girona Neuroimmunology and Multiple Sclerosis Unit (G.Á.B., L.R.), Neurology Department, Dr. Josep Trueta University Hospital and Santa Caterina Hospital; Neurodegeneration and Neuroinflammation research group (G.Á.B., A.Q.-V., L.R.), IDIBGI, Girona-Salt; Department of Medical Sciences (G.Á.B., L.R.), Faculty of Medicine, University of Girona; and Redes de Investigación Cooperativa Orientada a Resultados en Salud (RICORS) (A.Q.-V., L.R.), Red de Enfermedades inflamatorias (RD21/0002/0063), Instituto de Salud Carlos III, Madrid, Spain
| | - Alvaro Cobo-Calvo
- From the Neurology-Neuroimmunology Department (J.V.-Á., V.F., A.V., M. Castillo, M. Comabella), Multiple Sclerosis Center of Catalonia, Vall d'Hebron Barcelona Hospital Campus, Vall d'Hebron Research Institute; Autonomous University of Barcelona (M. Comabella), Spain; Department of Neurology with Institute of Translational Neurology (J.D.L.), University Hospital Münster, Germany; Neuroimmunology and Multiple Sclerosis Unit (M.S., S.L., Y.B.), Hospital Clinic de Barcelona; Fundación INCE (Iniciativa para las Neurociencias) (A.V.-C.), Madrid, Spain; Neurology Unit (A.D., S.M.), Department of Neurosciences, Biomedicine, and Movement Sciences, University of Verona, Italy; Neuroimmunology Program (S.L., Y.B., T.A.), Neurology Service, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic de Barcelona; Pediatric Neuroimmunology Unit (T.A.), Neurology Department, Sant Joan de Déu Children's Hospital, University of Barcelona; Girona Neuroimmunology and Multiple Sclerosis Unit (G.Á.B., L.R.), Neurology Department, Dr. Josep Trueta University Hospital and Santa Caterina Hospital; Neurodegeneration and Neuroinflammation research group (G.Á.B., A.Q.-V., L.R.), IDIBGI, Girona-Salt; Department of Medical Sciences (G.Á.B., L.R.), Faculty of Medicine, University of Girona; and Redes de Investigación Cooperativa Orientada a Resultados en Salud (RICORS) (A.Q.-V., L.R.), Red de Enfermedades inflamatorias (RD21/0002/0063), Instituto de Salud Carlos III, Madrid, Spain
| | - Mar Tintore
- From the Neurology-Neuroimmunology Department (J.V.-Á., V.F., A.V., M. Castillo, M. Comabella), Multiple Sclerosis Center of Catalonia, Vall d'Hebron Barcelona Hospital Campus, Vall d'Hebron Research Institute; Autonomous University of Barcelona (M. Comabella), Spain; Department of Neurology with Institute of Translational Neurology (J.D.L.), University Hospital Münster, Germany; Neuroimmunology and Multiple Sclerosis Unit (M.S., S.L., Y.B.), Hospital Clinic de Barcelona; Fundación INCE (Iniciativa para las Neurociencias) (A.V.-C.), Madrid, Spain; Neurology Unit (A.D., S.M.), Department of Neurosciences, Biomedicine, and Movement Sciences, University of Verona, Italy; Neuroimmunology Program (S.L., Y.B., T.A.), Neurology Service, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic de Barcelona; Pediatric Neuroimmunology Unit (T.A.), Neurology Department, Sant Joan de Déu Children's Hospital, University of Barcelona; Girona Neuroimmunology and Multiple Sclerosis Unit (G.Á.B., L.R.), Neurology Department, Dr. Josep Trueta University Hospital and Santa Caterina Hospital; Neurodegeneration and Neuroinflammation research group (G.Á.B., A.Q.-V., L.R.), IDIBGI, Girona-Salt; Department of Medical Sciences (G.Á.B., L.R.), Faculty of Medicine, University of Girona; and Redes de Investigación Cooperativa Orientada a Resultados en Salud (RICORS) (A.Q.-V., L.R.), Red de Enfermedades inflamatorias (RD21/0002/0063), Instituto de Salud Carlos III, Madrid, Spain
| | - Sara Mariotto
- From the Neurology-Neuroimmunology Department (J.V.-Á., V.F., A.V., M. Castillo, M. Comabella), Multiple Sclerosis Center of Catalonia, Vall d'Hebron Barcelona Hospital Campus, Vall d'Hebron Research Institute; Autonomous University of Barcelona (M. Comabella), Spain; Department of Neurology with Institute of Translational Neurology (J.D.L.), University Hospital Münster, Germany; Neuroimmunology and Multiple Sclerosis Unit (M.S., S.L., Y.B.), Hospital Clinic de Barcelona; Fundación INCE (Iniciativa para las Neurociencias) (A.V.-C.), Madrid, Spain; Neurology Unit (A.D., S.M.), Department of Neurosciences, Biomedicine, and Movement Sciences, University of Verona, Italy; Neuroimmunology Program (S.L., Y.B., T.A.), Neurology Service, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic de Barcelona; Pediatric Neuroimmunology Unit (T.A.), Neurology Department, Sant Joan de Déu Children's Hospital, University of Barcelona; Girona Neuroimmunology and Multiple Sclerosis Unit (G.Á.B., L.R.), Neurology Department, Dr. Josep Trueta University Hospital and Santa Caterina Hospital; Neurodegeneration and Neuroinflammation research group (G.Á.B., A.Q.-V., L.R.), IDIBGI, Girona-Salt; Department of Medical Sciences (G.Á.B., L.R.), Faculty of Medicine, University of Girona; and Redes de Investigación Cooperativa Orientada a Resultados en Salud (RICORS) (A.Q.-V., L.R.), Red de Enfermedades inflamatorias (RD21/0002/0063), Instituto de Salud Carlos III, Madrid, Spain
| | - Xavier Montalban
- From the Neurology-Neuroimmunology Department (J.V.-Á., V.F., A.V., M. Castillo, M. Comabella), Multiple Sclerosis Center of Catalonia, Vall d'Hebron Barcelona Hospital Campus, Vall d'Hebron Research Institute; Autonomous University of Barcelona (M. Comabella), Spain; Department of Neurology with Institute of Translational Neurology (J.D.L.), University Hospital Münster, Germany; Neuroimmunology and Multiple Sclerosis Unit (M.S., S.L., Y.B.), Hospital Clinic de Barcelona; Fundación INCE (Iniciativa para las Neurociencias) (A.V.-C.), Madrid, Spain; Neurology Unit (A.D., S.M.), Department of Neurosciences, Biomedicine, and Movement Sciences, University of Verona, Italy; Neuroimmunology Program (S.L., Y.B., T.A.), Neurology Service, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic de Barcelona; Pediatric Neuroimmunology Unit (T.A.), Neurology Department, Sant Joan de Déu Children's Hospital, University of Barcelona; Girona Neuroimmunology and Multiple Sclerosis Unit (G.Á.B., L.R.), Neurology Department, Dr. Josep Trueta University Hospital and Santa Caterina Hospital; Neurodegeneration and Neuroinflammation research group (G.Á.B., A.Q.-V., L.R.), IDIBGI, Girona-Salt; Department of Medical Sciences (G.Á.B., L.R.), Faculty of Medicine, University of Girona; and Redes de Investigación Cooperativa Orientada a Resultados en Salud (RICORS) (A.Q.-V., L.R.), Red de Enfermedades inflamatorias (RD21/0002/0063), Instituto de Salud Carlos III, Madrid, Spain
| | - Manuel Comabella
- From the Neurology-Neuroimmunology Department (J.V.-Á., V.F., A.V., M. Castillo, M. Comabella), Multiple Sclerosis Center of Catalonia, Vall d'Hebron Barcelona Hospital Campus, Vall d'Hebron Research Institute; Autonomous University of Barcelona (M. Comabella), Spain; Department of Neurology with Institute of Translational Neurology (J.D.L.), University Hospital Münster, Germany; Neuroimmunology and Multiple Sclerosis Unit (M.S., S.L., Y.B.), Hospital Clinic de Barcelona; Fundación INCE (Iniciativa para las Neurociencias) (A.V.-C.), Madrid, Spain; Neurology Unit (A.D., S.M.), Department of Neurosciences, Biomedicine, and Movement Sciences, University of Verona, Italy; Neuroimmunology Program (S.L., Y.B., T.A.), Neurology Service, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic de Barcelona; Pediatric Neuroimmunology Unit (T.A.), Neurology Department, Sant Joan de Déu Children's Hospital, University of Barcelona; Girona Neuroimmunology and Multiple Sclerosis Unit (G.Á.B., L.R.), Neurology Department, Dr. Josep Trueta University Hospital and Santa Caterina Hospital; Neurodegeneration and Neuroinflammation research group (G.Á.B., A.Q.-V., L.R.), IDIBGI, Girona-Salt; Department of Medical Sciences (G.Á.B., L.R.), Faculty of Medicine, University of Girona; and Redes de Investigación Cooperativa Orientada a Resultados en Salud (RICORS) (A.Q.-V., L.R.), Red de Enfermedades inflamatorias (RD21/0002/0063), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
2
|
Morse BA, Motovilov K, Michael Brode W, Michael Tee F, Melamed E. A review of intravenous immunoglobulin in the treatment of neuroimmune conditions, acute COVID-19 infection, and post-acute sequelae of COVID-19 Syndrome. Brain Behav Immun 2025; 123:725-738. [PMID: 39389388 DOI: 10.1016/j.bbi.2024.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 09/12/2024] [Accepted: 10/05/2024] [Indexed: 10/12/2024] Open
Abstract
Intravenous immunoglobulin (IVIG) is an immunomodulatory therapy that has been studied in several neuroimmune conditions, such as Guillain-Barré Syndrome, chronic inflammatory demyelinating polyneuropathy, multifocal motor neuropathy, and multiple sclerosis. It has also been proposed as a potential treatment option for acute COVID-19 infection and post-acute sequelae of SARS-CoV-2 infection (PASC). IVIG is thought to function by providing the recipient with a pool of antibodies, which can, in turn, modulate immune responses through multiple mechanisms including neutralization of cytokines and autoantibodies, saturation of neonatal fragment crystallizable receptors, inhibition of complement activation, and regulation of T and B cell mediated inflammation. In acute COVID-19, studies have shown that early administration of IVIG and plasmapheresis in severe cases can reduce the need for mechanical ventilation, shorten ICU and hospital stays, and lower mortality. Similarly, in PASC, while research is still in early stages, IVIG has been shown to alleviate persistent symptoms in small patient cohorts. Furthermore, IVIG has shown benefits in another condition which has symptomatic overlap with PASC, myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS), though studies have yielded mixed results. It is important to note that IVIG can be associated with several potential adverse effects, such as anaphylaxis, headaches, thrombosis, liver enzyme elevations and renal complications. In addition, the high cost of IVIG can be a deterrent for payers and patients. This review provides a comprehensive update on the use of IVIG in multiple neuroimmune conditions, ME/CFS, acute COVID-19, and PASC, as well as covers its history, production, pricing, and mechanisms of action. We also identify key areas of future research, including the need to optimize the use of Ig product dosing, timing, and patient selection across conditions, particularly in the context of COVID-19 and PASC.
Collapse
Affiliation(s)
- Brinkley A Morse
- Department of Neurology, Dell Medical School at the University of Texas, Austin, USA
| | - Katherine Motovilov
- Department of Neurology, Dell Medical School at the University of Texas, Austin, USA
| | - W Michael Brode
- Department of Internal Medicine, Dell Medical School at the University of Texas, Austin, USA
| | - Francis Michael Tee
- Department of Internal Medicine, Dell Medical School at the University of Texas, Austin, USA.
| | - Esther Melamed
- Department of Neurology, Dell Medical School at the University of Texas, Austin, USA.
| |
Collapse
|
3
|
Lünemann JD. Moving beyond immunoglobulin therapy for CIDP with efgartigimod. Nat Rev Neurol 2025; 21:1-2. [PMID: 39609632 DOI: 10.1038/s41582-024-01045-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2024]
Affiliation(s)
- Jan D Lünemann
- Department of Neurology with Institute of Translational Neurology, University and University Hospital of Münster, Münster, Germany.
| |
Collapse
|
4
|
Santoro JD, Jafarpour S, Keehan L, Khoshnood MM, Kazerooni L, Boyd NK, Vogel BN, Nguyen L, Manning M, Nagesh D, Spinazzi NA, Besterman AD, Quinn EA, Rafii MS. Diagnostic abnormalities, disease severity and immunotherapy responsiveness in individuals with Down syndrome regression disorder. Sci Rep 2024; 14:30865. [PMID: 39730779 DOI: 10.1038/s41598-024-81819-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 11/29/2024] [Indexed: 12/29/2024] Open
Abstract
INTRODUCTION Down Syndrome Regression Disorder (DSRD) is a neuropsychiatric condition causing insomnia, catatonia, encephalopathy, and obsessive-compulsive behavior in otherwise healthy individuals with Down syndrome (DS). Smaller cohorts have identified heterogenous diagnostic abnormalities which have predicted immunotherapy responsiveness although pattern analysis in a large cohort has never been performed. METHODS A multi-center, retrospective study of individuals with DSRD was performed. Individuals met international consensus criteria for DRSD and were aged 10-30 years. Clinical, demographic, and diagnostic data was extracted for all individuals. Serum studies were compared to a group of individuals with DS only. RESULTS A total of 164 individuals with DSRD were identified. Individuals with DSRD were more likely to have a positive antinuclear antibody, low complement 3, abnormal cytokines, and elevated ferritin levels. In a minority of individuals, EEG (30%), MRI (33%) and cerebrospinal fluid (CSF) (21%) were abnormal. Individuals with CSF abnormalities demonstrated greater disease severity at diagnosis on the BFCRS and NPI-Q (p = 0.02 and p < 0.001). Abnormalities in cytokines (p = 0.03), neuroimaging (p < 0.001), and CSF (p = 0.02) were predictive of immunotherapy responsiveness. When MRI and LP were both abnormal or when EEG, MRI and LP were all abnormal, the odds of immunotherapy responsiveness approached 100% (p = 0.01, 95%CI: 1.75-105.1, OR: 13.56 and p = 0.02, 95%CI: 1.37-86.87, OR: 10.91, respectively). CONCLUSIONS In a population of individuals diagnosed with DSRD, abnormalities in serum cytokine levels, neuroimaging findings, and CSF analysis emerged as indicators of disease severity and responsiveness to immunotherapy.
Collapse
Affiliation(s)
- Jonathan D Santoro
- Division of Neurology, Department of Pediatrics, Children's Hospital Los Angeles, 4650 Sunset Blvd, Mailstop 82, Los Angeles, CA, 90027, USA.
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| | - Saba Jafarpour
- Division of Neurology, Department of Pediatrics, Children's Hospital Los Angeles, 4650 Sunset Blvd, Mailstop 82, Los Angeles, CA, 90027, USA
| | - Laura Keehan
- Department of Pediatrics, Division of Medical Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Mellad M Khoshnood
- Division of Neurology, Department of Pediatrics, Children's Hospital Los Angeles, 4650 Sunset Blvd, Mailstop 82, Los Angeles, CA, 90027, USA
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Lilia Kazerooni
- Division of Neurology, Department of Pediatrics, Children's Hospital Los Angeles, 4650 Sunset Blvd, Mailstop 82, Los Angeles, CA, 90027, USA
| | - Natalie K Boyd
- Division of Neurology, Department of Pediatrics, Children's Hospital Los Angeles, 4650 Sunset Blvd, Mailstop 82, Los Angeles, CA, 90027, USA
| | - Benjamin N Vogel
- Division of Neurology, Department of Pediatrics, Children's Hospital Los Angeles, 4650 Sunset Blvd, Mailstop 82, Los Angeles, CA, 90027, USA
| | - Lina Nguyen
- Division of Neurology, Department of Pediatrics, Children's Hospital Los Angeles, 4650 Sunset Blvd, Mailstop 82, Los Angeles, CA, 90027, USA
| | - Melanie Manning
- Department of Pediatrics, Division of Medical Genetics, Stanford University School of Medicine, Stanford, CA, USA
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Deepti Nagesh
- Division of Neurology, Department of Pediatrics, Children's Hospital Los Angeles, 4650 Sunset Blvd, Mailstop 82, Los Angeles, CA, 90027, USA
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Noemi A Spinazzi
- Benioff Children's Hospital, University of California San Francisco, Oakland, CA, USA
| | - Aaron D Besterman
- Department of Psychiatry, University of California San Diego, San Diego, CA, USA
| | - Eileen A Quinn
- Department of Pediatrics, University of Toledo, Toledo, OH, USA
| | - Michael S Rafii
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Alzheimer's Therapeutic Research Institute, University of Southern California, San Diego, CA, USA
| |
Collapse
|
5
|
Mair D, Madi H, Eftimov F, Lunn MP, Keddie S. Novel therapies in CIDP. J Neurol Neurosurg Psychiatry 2024; 96:38-46. [PMID: 39358011 DOI: 10.1136/jnnp-2024-334165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 09/17/2024] [Indexed: 10/04/2024]
Abstract
Chronic inflammatory demyelinating polyradiculoneuropathy (CIDP) is a heterogeneous but clinically well-described disease within circumscribed parameters. It is immunologically mediated through several poorly understood mechanisms. First-line therapies with steroids, intravenous immunoglobulin (IVIG) or plasma exchange are each effective in about two-thirds of patients. These treatments are seldom associated with complete resolution or cure, and often pose considerable practical, financial and medical implications.Our understanding of many of the key pathological processes in autoimmune diseases is expanding, and novel targeted therapeutics are being developed with promise in several autoimmune neurological disorders.This narrative review looks first at detailing key pathogenic mechanisms of disease in CIDP, followed by an in-depth description of potential novel therapies and the current evidence of their application in clinical practice.
Collapse
Affiliation(s)
- Devan Mair
- Barts Health NHS Trust, London, UK
- Barts and The London School of Medicine and Dentistry, London, UK
| | | | - Filip Eftimov
- Department of Neurology, Amsterdam Neuroscience, Amsterdam UMC - Locatie AMC, Amsterdam, The Netherlands
| | - Michael P Lunn
- MRC Centre for Neuromuscular Disease and Department of Molecular Neuroscience, University College London Hospitals NHS Foundation Trust National Hospital for Neurology and Neurosurgery, London, UK
- Neuroimmunology and CSF laboratory, Institute of Neurology, University College London Hospitals NHS Foundation Trust, London, UK
| | | |
Collapse
|
6
|
Mausberg AK, Szepanowski F, Eggert B, Liebig KC, Kleinschnitz C, Kieseier BC, Stettner M. Targeting the neonatal Fc receptor (FcRn) is not beneficial in an animal model of chronic neuritis. Immunol Res 2024; 73:12. [PMID: 39674966 DOI: 10.1007/s12026-024-09565-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 11/05/2024] [Indexed: 12/17/2024]
Abstract
The inhibition of the neonatal Fc receptor (FcRn) is a promising therapeutic pathway in certain autoimmune disorders to reduce the amount of circulating pathogenic IgG autoantibodies by interfering with their recycling system. FcRn antibodies are currently being tested in chronic inflammatory demyelinating polyradiculoneuropathy (CIDP). This study aimed to investigate the therapeutic potential of an antibody targeting FcRn in the intracellular adhesion molecule 1 (ICAM1)-deficient NOD mouse-a model representative for many aspects of human CIDP. After the onset of clinical signs of neuropathy, ICAM1-deficient NOD mice were assigned to treatment twice per week with anti-FcRn antibody, isotype control antibody (negative control) or intraperitoneal (administered) immunoglobulin (positive control). Disease severity was monitored using disease-specific assessments for ataxia and paresis such as grip strength measurements. Serum immunoglobulin levels and peripheral nerve immune cell infiltration were quantified. Treatment with anti-FcRn antibody did not ameliorate disease progression, as determined by clinical scores and grip strength analysis. Disease progression was reduced in the positive control animals receiving immunoglobulin. Consistent with the clinical results, the composition of infiltrating immune cells was not altered in the peripheral nerve of anti-FcRn antibody-treated mice compared to controls. However, in anti-FcRn antibody-treated mice, significantly lower IgG levels were detectable compared to controls. These findings suggest that targeting the FcRn recycling system does not influence disease progression in the NOD-ICAM1-deficient mouse model of CIDP. Further studies will elucidate whether the reduction of IgG levels was insufficient to deplete pathogenic autoantibodies or whether the major inflammatory driver in the NOD-ICAM1-deficient mouse animal model is mediated by factors other than pathological immunoglobulins.
Collapse
Affiliation(s)
- Anne K Mausberg
- Department of Neurology, Center for Translational Neuro- and Behavioural Sciences, University Hospital Essen, Hufelandstr. 55, 45147, Essen, Germany.
| | - Fabian Szepanowski
- Department of Neurology, Center for Translational Neuro- and Behavioural Sciences, University Hospital Essen, Hufelandstr. 55, 45147, Essen, Germany
| | - Bianca Eggert
- Department of Neurology, Center for Translational Neuro- and Behavioural Sciences, University Hospital Essen, Hufelandstr. 55, 45147, Essen, Germany
| | - Kai C Liebig
- Department of Neurology, Center for Translational Neuro- and Behavioural Sciences, University Hospital Essen, Hufelandstr. 55, 45147, Essen, Germany
| | - Christoph Kleinschnitz
- Department of Neurology, Center for Translational Neuro- and Behavioural Sciences, University Hospital Essen, Hufelandstr. 55, 45147, Essen, Germany
| | - Bernd C Kieseier
- Department of Neurology, University of Duesseldorf, Moorenstr. 5, 40225, Düsseldorf, Germany
| | - Mark Stettner
- Department of Neurology, Center for Translational Neuro- and Behavioural Sciences, University Hospital Essen, Hufelandstr. 55, 45147, Essen, Germany
| |
Collapse
|
7
|
O'Hare M, Guidon AC. Peripheral nervous system immune-related adverse events due to checkpoint inhibition. Nat Rev Neurol 2024; 20:509-525. [PMID: 39122934 DOI: 10.1038/s41582-024-01001-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/11/2024] [Indexed: 08/12/2024]
Abstract
Immune checkpoint inhibitors have revolutionized cancer therapy and are increasingly used to treat a wide range of oncological conditions, with dramatic benefits for many patients. Unfortunately, the resulting increase in T cell effector function often results in immune-related adverse events (irAEs), which can involve any organ system, including the central nervous system (CNS) and peripheral nervous system (PNS). Neurological irAEs involve the PNS in two-thirds of affected patients. Muscle involvement (immune-related myopathy) is the most common PNS irAE and can be associated with neuromuscular junction involvement. Immune-related peripheral neuropathy most commonly takes the form of polyradiculoneuropathy or cranial neuropathies. Immune-related myopathy (with or without neuromuscular junction involvement) often occurs along with immune-related myocarditis, and this overlap syndrome is associated with substantially increased mortality. This Review focuses on PNS adverse events associated with immune checkpoint inhibition. Underlying pathophysiological mechanisms are discussed, including antigen homology between self and tumour, epitope spreading and activation of pre-existing autoreactive T cells. An overview of current approaches to clinical management is provided, including cytokine-directed therapies that aim to decouple anticancer immunity from autoimmunity and emerging treatments for patients with severe (life-threatening) presentations.
Collapse
Affiliation(s)
- Meabh O'Hare
- Brigham and Women's Hospital, Division of Neuromuscular Medicine, Department of Neurology, Boston, MA, USA.
- Massachusetts General Hospital, Division of Neuromuscular Medicine, Department of Neurology, Boston, MA, USA.
| | - Amanda C Guidon
- Massachusetts General Hospital, Division of Neuromuscular Medicine, Department of Neurology, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| |
Collapse
|
8
|
Mahadeen AZ, Carlson AK, Cohen JA, Galioto R, Abbatemarco JR, Kunchok A. Review of the Longitudinal Management of Autoimmune Encephalitis, Potential Biomarkers, and Novel Therapeutics. Neurol Clin Pract 2024; 14:e200306. [PMID: 38831758 PMCID: PMC11145747 DOI: 10.1212/cpj.0000000000200306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 02/08/2024] [Indexed: 06/05/2024]
Abstract
Purpose of Review Increasing awareness and earlier diagnosis of autoimmune encephalitis (AE) have led to a greater number of patients being cared for longitudinally by neurologists. Although many neurologists are now familiar with the general approach to diagnosis and acute immunosuppression, this review aims to provide neurologists with guidance related to management beyond the acute phase of disease, including long-term immunosuppression, monitoring, potential biomarkers of disease activity, outcome measures, and symptom management. Recent Findings Observational studies in AE have demonstrated that early diagnosis and treatment is associated with improved neurologic outcomes, particularly in AE with antibodies targeting neuronal cell surface/synaptic proteins. The literature regarding long-term management is evolving. In addition to traditional immunosuppressive approaches, there is emerging use of novel immunosuppressive therapies (ISTs) in case series, and several randomized controlled trials are planned. Novel biomarkers of disease activity and methods to measure outcomes and response to treatment are being explored. Furthermore, it is increasingly recognized that many individuals have chronic symptoms affecting quality of life including seizures, cognitive impairment, fatigue, sleep disorders, and mood disorders, and there are emerging data supporting the use of patient centered outcome measures and multidisciplinary symptom-based care. Summary This review aims to summarize recent literature and offer a practical approach to long-term management of adult patients with AE through a multidisciplinary approach. We summarize current knowledge on ISTs, potential biomarkers of disease activity, outcome measures, and long-term sequelae. Further research is needed to answer questions regarding optimal IST, biomarker validity, and sequelae of disease.
Collapse
Affiliation(s)
- Ahmad Z Mahadeen
- Department of Neurology (AZM), University of Mississippi Medical Center, Jackson; and Cleveland Clinic Mellen Center (AKC, JAC, RG, JRA, AK), OH
| | - Alise K Carlson
- Department of Neurology (AZM), University of Mississippi Medical Center, Jackson; and Cleveland Clinic Mellen Center (AKC, JAC, RG, JRA, AK), OH
| | - Jeffrey A Cohen
- Department of Neurology (AZM), University of Mississippi Medical Center, Jackson; and Cleveland Clinic Mellen Center (AKC, JAC, RG, JRA, AK), OH
| | - Rachel Galioto
- Department of Neurology (AZM), University of Mississippi Medical Center, Jackson; and Cleveland Clinic Mellen Center (AKC, JAC, RG, JRA, AK), OH
| | - Justin R Abbatemarco
- Department of Neurology (AZM), University of Mississippi Medical Center, Jackson; and Cleveland Clinic Mellen Center (AKC, JAC, RG, JRA, AK), OH
| | - Amy Kunchok
- Department of Neurology (AZM), University of Mississippi Medical Center, Jackson; and Cleveland Clinic Mellen Center (AKC, JAC, RG, JRA, AK), OH
| |
Collapse
|
9
|
Tunç A, Akbaş AA, Bozkurt B, Oncel S. Beyond conventional therapies: IVIG in treating severe fingolimod-rebound in a postpartum patient with MS. BMJ Case Rep 2024; 17:e259932. [PMID: 39059796 DOI: 10.1136/bcr-2024-259932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2024] Open
Abstract
This case report details a female patient with multiple sclerosis in her 30s, who experienced a significant fingolimod rebound syndrome post partum, characterised by worsening neurological symptoms and severe demyelinating lesions. Traditional treatments, including steroids and plasmapheresis, were ineffective. However, the introduction of intravenous immunoglobulin (IVIG) led to remarkable improvement in her symptoms and disability status. This case highlights the complex immunological changes associated with fingolimod cessation and underscores IVIG's potential as a valuable treatment in managing such rebounds.
Collapse
Affiliation(s)
- Abdulkadir Tunç
- Department of Neurology, Sakarya University Faculty of Medicine, Sakarya, Turkey
| | | | - Beyzanur Bozkurt
- Department of Neurology, Sakarya University Faculty of Medicine, Sakarya, Turkey
| | - Samet Oncel
- Department of Neurology, Ministry of Health Sakarya Education and Research Hospital, Adapazari, Sakarya, Turkey
| |
Collapse
|
10
|
Albin CSW. Neuromuscular Emergencies. Continuum (Minneap Minn) 2024; 30:818-844. [PMID: 38830072 DOI: 10.1212/con.0000000000001424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
OBJECTIVE This article aims to familiarize the reader with the clinical approach, diagnostic considerations, and treatment strategies for patients presenting with abrupt-onset or acutely worsening weakness due to neuromuscular disorders. LATEST DEVELOPMENTS Neuromuscular weakness is often the result of an inflammatory process. In recent years, there has been growing recognition of pathologic antibodies that cause neuromuscular injury. This has allowed clinicians to make a more accurate diagnosis. Additionally, neuromuscular junction disorders and myopathies are increasingly identified as the adverse effects of novel anticancer therapies, namely immune checkpoint inhibitors. More data are being incorporated into frameworks for neuroprognostication after neuromuscular emergencies, especially for commonly encountered disorders such as Guillain-Barré syndrome. ESSENTIAL POINTS Care of patients with neuromuscular emergencies requires prompt attention to respiratory status. Once supportive measures are in place to protect the airway and facilitate effective ventilation, diagnostic considerations should hinge on appropriate neurologic localization. Aggressive immunosuppression is often required for immune-mediated neuromuscular disorders, and clinicians must be thoughtful in selecting a strategy that best aligns with each patient's risk factors and comorbidities.
Collapse
|
11
|
Ghanbar MI, Danoff SK. Review of Pulmonary Manifestations in Antisynthetase Syndrome. Semin Respir Crit Care Med 2024; 45:365-385. [PMID: 38710221 DOI: 10.1055/s-0044-1785536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Antisynthetase syndrome (ASyS) is now a widely recognized entity within the spectrum of idiopathic inflammatory myopathies. Initially described in patients with a triad of myositis, arthritis, and interstitial lung disease (ILD), its presentation can be diverse. Additional common symptoms experienced by patients with ASyS include Raynaud's phenomenon, mechanic's hand, and fever. Although there is a significant overlap with polymyositis and dermatomyositis, the key distinction lies in the presence of antisynthetase antibodies (ASAs). Up to 10 ASAs have been identified to correlate with a presentation of ASyS, each having manifestations that may slightly differ from others. Despite the proposal of three classification criteria to aid diagnosis, the heterogeneous nature of patient presentations poses challenges. ILD confers a significant burden in patients with ASyS, sometimes manifesting in isolation. Notably, ILD is also often the initial presentation of ASyS, requiring pulmonologists to remain vigilant for an accurate diagnosis. This article will comprehensively review the various aspects of ASyS, including disease presentation, diagnosis, management, and clinical course, with a primary focus on its pulmonary manifestations.
Collapse
Affiliation(s)
- Mohammad I Ghanbar
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Sonye K Danoff
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University, Baltimore, Maryland
| |
Collapse
|
12
|
Deng G, Chen X, Shao L, Wu Q, Wang S. Glycosylation in autoimmune diseases: A bibliometric and visualization study. Heliyon 2024; 10:e30026. [PMID: 38707406 PMCID: PMC11066412 DOI: 10.1016/j.heliyon.2024.e30026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 04/17/2024] [Accepted: 04/18/2024] [Indexed: 05/07/2024] Open
Abstract
An increasing amount of research has shown that glycosylation plays a crucial role in autoimmune diseases (ADs), prompting our interest in conducting research on the knowledge framework and hot topics in this field based on bibliometric analysis. Studies on glycosylation in the field of ADs from 2003 to 2023 were collected by searching the Web of Science Core Collection database. Bibliometric analysis was conducted using VOSviewer, CiteSpace, and Bibliometrix software. This study included a total of 530 studies. According to the H, G, and M indices, the United States has made the most contributions worldwide, with China making significant contributions in recent years. Leiden University from the Netherlands ranks among the top institutions in terms of publication and citation rankings, with the institution's author Manfred Wuhrer contributing the most to this field. Frontiers in Immunology is the journal with the highest H-index. Research in this field has focused on antibody glycosylation, particularly the specific glycosylation of IgG and IgA, and its role in various ADs. The application of glycoengineering glycosylated proteins in the synthesis of targeted monoclonal antibodies, drug delivery, and regenerative medical materials may be a new trend in the treatment of ADs. Artificial intelligence is an emerging tool in glycobiology. This study summarizes the objective data on glycosylation in the field of AD publications in recent years, providing a reference for researchers in this field.
Collapse
Affiliation(s)
- Guoqian Deng
- Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Xinyi Chen
- Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Le Shao
- The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Qibiao Wu
- State Key Laboratory of Quality Research in Chinese Medicines and Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, Macau, China
- Zhuhai MUST Science and Technology Research Institute, Zhuhai, Guangdong, China
| | - Shenzhi Wang
- The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| |
Collapse
|
13
|
Gaulier A, Hardouin JB, Wiertlewski S, Lebranchu P. Efficacy and comparison of corticosteroids only and corticosteroids with plasmapheresis or intravenous immunoglobulin for the treatment of optic neuritis in demyelinating disease: A systematic review and network meta-analysis. Mult Scler Relat Disord 2024; 85:105521. [PMID: 38457882 DOI: 10.1016/j.msard.2024.105521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/27/2024] [Accepted: 02/25/2024] [Indexed: 03/10/2024]
Abstract
PURPOSE To compare the efficacy of treatment of optic neuritis (ON) with corticosteroids (CTC) alone, CTC+plasmapheresis (PLP), and CTC+intravenous immunoglobulin (IVIG). DESIGN After an episode of ON, although visual recovery is usually good, some patients may have significant visual sequelae. While the efficacy of first-line CTC is now indisputable, there is no consensus on the nature of second-line treatment. To date, no systematic review has compared the efficacy of treatment of ON with CTC alone, CTC+plasmapheresis (PLP), and CTC+intravenous immunoglobulin (IVIG). A meta-analysis is needed to compare the efficacy of PLP and IVIG in steroid-resistant ON. METHODS This systematic review included all studies comparing at least two of the three treatments for steroid-resistant ON (CTC alone, CTC+PLP, and CTC+IVIG). From all articles published on PubMed between January 2000 and June 2022, two independent ophthalmologists selected studies of interest using the PRISMA method. Methodology, patient characteristics, and outcomes were identified. A network metaanalysis was then performed to compare the efficacy of the three treatments. RESULTS Six comparative studies were included, representing 209 patients. The percentage of significant visual recovery after CTC alone, CTC+PLP, and CTC+IVIG in the acute treatment of steroid-resistant ON was 30 %, 45 %, and 77 %, respectively. Comparison of CTC+IVIG vs CTC alone, CTC+PLP vs CTC only, and CTC+PLP vs CTC+IVIG yielded odds ratios of 12.81, 2.47, and 0.19 respectively. CONCLUSION Treatment of steroid-resistant ON with CTC+PLP or CTC+IVIG is more effective than treatment with CTC alone. Although no study has directly compared the two treatments, IVIG may be more effective than PLP.
Collapse
Affiliation(s)
- Arnaud Gaulier
- Department of Ophthalmology, University Hospital of Nantes, Nantes, France.
| | - Jean-Benoit Hardouin
- PhD-HDR, University Hospital of Nantes, UMR INSERM U1246-SPHERE, Institut de Recherche en Santé 2, France
| | | | - Pierre Lebranchu
- Department of Ophthalmology, University Hospital of Nantes, Nantes, France; École Centrale Nantes, LS2N, UMR6004, F-44000 Nantes, France
| |
Collapse
|
14
|
Ren X, Zhang M, Zhang X, Zhao P, Zhai W. Can low-dose intravenous immunoglobulin be an alternative to high-dose intravenous immunoglobulin in the treatment of children with newly diagnosed immune thrombocytopenia: a systematic review and meta-analysis. BMC Pediatr 2024; 24:199. [PMID: 38515126 PMCID: PMC10956331 DOI: 10.1186/s12887-024-04677-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 02/29/2024] [Indexed: 03/23/2024] Open
Abstract
Intravenous immunoglobulin (IVIg) is a first-line treatment for children with newly diagnosed immune thrombocytopenia (ITP). Higher doses of IVIg are associated with a more insupportable financial burden to pediatric patients' families and may produce more adverse reactions. Whether low-dose IVIg (LD-IVIg) can replace high-dose IVIg (HD-IVIg) has yet to be established. We conducted a comprehensive literature search from the establishment of the database to May 1, 2023, and eventually included 22 RCTs and 3 cohort studies compared different dosages of IVIg. A total of 1989 patients were included, with 991 patients in the LD-IVIg group and 998 patients in the HD-IVIg group. Our results showed no significant differences between the two groups in the effective rate (LD-IVIg: 91% vs. HD-IVIg: 93%; RR: 0.99; 95%CI: 0.96-1.02) and the durable remission rate (LD-IVIg: 65% vs. HD-IVIg: 67%; RR: 0.97; 95%CI: 0.89-1.07). Similar results were also found in the time of platelet counts (PC) starting to rise (MD: 0.01, 95%CI: -0.06-0.09), rising to normal (MD: 0.16, 95%CI: -0.03-0.35), and achieving hemostasis (MD: 0.11, 95%CI: -0.02-0.23) between the two groups. Subgroup analysis showed the effective rate of 0.6 g/kg was equal to 1 g/kg subgroup (91%) but higher than 0.8 g/kg subgroup (82%), and a combination with glucocorticoid may contribute to effect enhancement (combined with glucocorticoid: 91% vs. IVIg alone: 86%) whether combined with dexamethasone (92%) or methylprednisolone (91%). Besides, the incidence rate of adverse reactions in the LD-IVIg group (3%) was significantly lower than the HD-IVIg group (6%) (RR: 0.61; 95%CI: 0.38-0.98). So low-dose IVIg (≤ 1 g/kg) is effective, safe, and economical, which can replace high-dose IVIg (2 g/kg) as an initial treatment. This systematic review was registered in PROSPERO (CRD42022384604).
Collapse
Affiliation(s)
- Xiangge Ren
- Department of Pediatrics, Children's Purpura and Nephropathy Center, The first affiliated hospital of Henan University of Chinese Medicine, No.19, Renmin Road, Jinshui District, Zhengzhou, Henan, China
- College of Pediatrics, Henan University of Chinese Medicine, No.156, Jinshui East Road, Jinshui District, Zhengzhou, Henan, China
| | - Miaomiao Zhang
- Department of Pediatrics, Children's Purpura and Nephropathy Center, The first affiliated hospital of Henan University of Chinese Medicine, No.19, Renmin Road, Jinshui District, Zhengzhou, Henan, China
- College of Pediatrics, Henan University of Chinese Medicine, No.156, Jinshui East Road, Jinshui District, Zhengzhou, Henan, China
| | - Xiaohan Zhang
- Department of Pediatrics, Children's Purpura and Nephropathy Center, The first affiliated hospital of Henan University of Chinese Medicine, No.19, Renmin Road, Jinshui District, Zhengzhou, Henan, China
- College of Pediatrics, Henan University of Chinese Medicine, No.156, Jinshui East Road, Jinshui District, Zhengzhou, Henan, China
| | - Peidong Zhao
- Department of Pediatrics, Children's Purpura and Nephropathy Center, The first affiliated hospital of Henan University of Chinese Medicine, No.19, Renmin Road, Jinshui District, Zhengzhou, Henan, China
- College of Pediatrics, Henan University of Chinese Medicine, No.156, Jinshui East Road, Jinshui District, Zhengzhou, Henan, China
| | - Wensheng Zhai
- Department of Pediatrics, Children's Purpura and Nephropathy Center, The first affiliated hospital of Henan University of Chinese Medicine, No.19, Renmin Road, Jinshui District, Zhengzhou, Henan, China.
| |
Collapse
|
15
|
Zanardi A, Nardini I, Raia S, Conti A, Ferrini B, D'Adamo P, Gilberti E, DePalma G, Belloli S, Monterisi C, Coliva A, Rainone P, Moresco RM, Mori F, Zurlo G, Scali C, Natali L, Pancanti A, Giovacchini P, Magherini G, Tovani G, Salvini L, Cicaloni V, Tinti C, Tinti L, Lana D, Magni G, Giovannini MG, Gringeri A, Caricasole A, Alessio M. New orphan disease therapies from the proteome of industrial plasma processing waste- a treatment for aceruloplasminemia. Commun Biol 2024; 7:140. [PMID: 38291108 PMCID: PMC10828504 DOI: 10.1038/s42003-024-05820-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 01/15/2024] [Indexed: 02/01/2024] Open
Abstract
Plasma-derived therapeutic proteins are produced through an industrial fractionation process where proteins are purified from individual intermediates, some of which remain unused and are discarded. Relatively few plasma-derived proteins are exploited clinically, with most of available plasma being directed towards the manufacture of immunoglobulin and albumin. Although the plasma proteome provides opportunities to develop novel protein replacement therapies, particularly for rare diseases, the high cost of plasma together with small patient populations impact negatively on the development of plasma-derived orphan drugs. Enabling therapeutics development from unused plasma fractionation intermediates would therefore constitute a substantial innovation. To this objective, we characterized the proteome of unused plasma fractionation intermediates and prioritized proteins for their potential as new candidate therapies for human disease. We selected ceruloplasmin, a plasma ferroxidase, as a potential therapy for aceruloplasminemia, an adult-onset ultra-rare neurological disease caused by iron accumulation as a result of ceruloplasmin mutations. Intraperitoneally administered ceruloplasmin, purified from an unused plasma fractionation intermediate, was able to prevent neurological, hepatic and hematological phenotypes in ceruloplasmin-deficient mice. These data demonstrate the feasibility of transforming industrial waste plasma fraction into a raw material for manufacturing of new candidate proteins for replacement therapies, optimizing plasma use and reducing waste generation.
Collapse
Affiliation(s)
- Alan Zanardi
- Proteome Biochemistry, COSR-Centre for Omics Sciences, IRCCS Ospedale San Raffaele, Milano, Italy
| | - Ilaria Nardini
- Research and Innovation, Kedrion S.p.A., Loc, Bolognana, Gallicano, Italy
| | - Sara Raia
- Proteome Biochemistry, COSR-Centre for Omics Sciences, IRCCS Ospedale San Raffaele, Milano, Italy
| | - Antonio Conti
- Proteome Biochemistry, COSR-Centre for Omics Sciences, IRCCS Ospedale San Raffaele, Milano, Italy
| | - Barbara Ferrini
- Proteome Biochemistry, COSR-Centre for Omics Sciences, IRCCS Ospedale San Raffaele, Milano, Italy
| | - Patrizia D'Adamo
- Mouse Behavior Facility, IRCCS Ospedale San Raffaele, Milano, Italy
| | - Enrica Gilberti
- Unit of Occupational Health and Industrial Hygiene, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
| | - Giuseppe DePalma
- Unit of Occupational Health and Industrial Hygiene, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
| | - Sara Belloli
- Nuclear Medicine and PET Cyclotron Unit, IRCCS Ospedale San Raffaele, Milano, Italy
- Institute of Molecular Bioimaging and Physiology-IBFM, CNR, Segrate, Italy
| | - Cristina Monterisi
- Nuclear Medicine and PET Cyclotron Unit, IRCCS Ospedale San Raffaele, Milano, Italy
| | - Angela Coliva
- Nuclear Medicine and PET Cyclotron Unit, IRCCS Ospedale San Raffaele, Milano, Italy
| | - Paolo Rainone
- Nuclear Medicine and PET Cyclotron Unit, IRCCS Ospedale San Raffaele, Milano, Italy
- Institute of Molecular Bioimaging and Physiology-IBFM, CNR, Segrate, Italy
- Medicine and Surgery Department, University of Milano - Bicocca, Monza, Italy
| | - Rosa Maria Moresco
- Nuclear Medicine and PET Cyclotron Unit, IRCCS Ospedale San Raffaele, Milano, Italy
- Institute of Molecular Bioimaging and Physiology-IBFM, CNR, Segrate, Italy
- Medicine and Surgery Department, University of Milano - Bicocca, Monza, Italy
| | - Filippo Mori
- Research and Innovation, Kedrion S.p.A., Loc, Bolognana, Gallicano, Italy
| | - Giada Zurlo
- Research and Innovation, Kedrion S.p.A., Loc, Bolognana, Gallicano, Italy
| | - Carla Scali
- Research and Innovation, Kedrion S.p.A., Loc, Bolognana, Gallicano, Italy
| | - Letizia Natali
- Research and Innovation, Kedrion S.p.A., Loc, Bolognana, Gallicano, Italy
| | - Annalisa Pancanti
- Research and Innovation, Kedrion S.p.A., Loc, Bolognana, Gallicano, Italy
| | | | - Giulio Magherini
- Research and Innovation, Kedrion S.p.A., Loc, Bolognana, Gallicano, Italy
| | - Greta Tovani
- Research and Innovation, Kedrion S.p.A., Loc, Bolognana, Gallicano, Italy
| | | | | | | | - Laura Tinti
- Toscana Life Sciences Foundation, Siena, Italy
| | - Daniele Lana
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Firenze, Italy
| | - Giada Magni
- Institute of Applied Physics "Nello Carrara", National Research Council (IFAC-CNR), Sesto Fiorentino, Italy
| | - Maria Grazia Giovannini
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Firenze, Italy
| | | | - Andrea Caricasole
- Research and Innovation, Kedrion S.p.A., Loc, Bolognana, Gallicano, Italy.
| | - Massimo Alessio
- Proteome Biochemistry, COSR-Centre for Omics Sciences, IRCCS Ospedale San Raffaele, Milano, Italy.
| |
Collapse
|
16
|
Wu J, Yang H, Yu D, Yang X. Blood-derived product therapies for SARS-CoV-2 infection and long COVID. MedComm (Beijing) 2023; 4:e426. [PMID: 38020714 PMCID: PMC10651828 DOI: 10.1002/mco2.426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 10/15/2023] [Accepted: 10/25/2023] [Indexed: 12/01/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is capable of large-scale transmission and has caused the coronavirus disease 2019 (COVID-19) pandemic. Patients with COVID-19 may experience persistent long-term health issues, known as long COVID. Both acute SARS-CoV-2 infection and long COVID have resulted in persistent negative impacts on global public health. The effective application and development of blood-derived products are important strategies to combat the serious damage caused by COVID-19. Since the emergence of COVID-19, various blood-derived products that target or do not target SARS-CoV-2 have been investigated for therapeutic applications. SARS-CoV-2-targeting blood-derived products, including COVID-19 convalescent plasma, COVID-19 hyperimmune globulin, and recombinant anti-SARS-CoV-2 neutralizing immunoglobulin G, are virus-targeting and can provide immediate control of viral infection in the short term. Non-SARS-CoV-2-targeting blood-derived products, including intravenous immunoglobulin and human serum albumin exhibit anti-inflammatory, immunomodulatory, antioxidant, and anticoagulatory properties. Rational use of these products can be beneficial to patients with SARS-CoV-2 infection or long COVID. With evidence accumulated since the pandemic began, we here summarize the progress of blood-derived product therapies for COVID-19, discuss the effective methods and scenarios regarding these therapies, and provide guidance and suggestions for clinical treatment.
Collapse
Affiliation(s)
- Junzheng Wu
- Chengdu Rongsheng Pharmaceuticals Co., Ltd.ChengduChina
| | | | - Ding Yu
- Chengdu Rongsheng Pharmaceuticals Co., Ltd.ChengduChina
- Beijing Tiantan Biological Products Co., Ltd.BeijingChina
| | | |
Collapse
|
17
|
Chen X, Qiu J, Gao Z, Liu B, Zhang C, Yu W, Yang J, Shen Y, Qi L, Yao X, Sun H, Yang X. Myasthenia gravis: Molecular mechanisms and promising therapeutic strategies. Biochem Pharmacol 2023; 218:115872. [PMID: 37865142 DOI: 10.1016/j.bcp.2023.115872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 10/16/2023] [Accepted: 10/18/2023] [Indexed: 10/23/2023]
Abstract
Myasthenia gravis (MG) is a type of autoimmune disease caused by the blockage of neuromuscular junction transmission owing to the attack of autoantibodies on transmission-related proteins. Related antibodies, such as anti-AChR, anti-MuSK and anti-LRP4 antibodies, can be detected in most patients with MG. Although traditional therapies can control most symptoms, several challenges remain to be addressed, necessitating the development of more effective and safe treatment strategies for MG. With the in-depth exploration on the mechanism and immune targets of MG, effective therapies, especially therapies using biologicals, have been reported recently. Given the important roles of immune cells, cytokines and intercellular interactions in the pathological process of MG, B-cell targeted therapy, T-cell targeted therapy, proteasome inhibitors targeting plasma cell, complement inhibitors, FcRn inhibitors have been developed for the treatment of MG. Although these novel therapies exert good therapeutic effects, they may weaken the immunity and increase the risk of infection in MG patients. This review elaborates on the pathogenesis of MG and discusses the advantages and disadvantages of the strategies of traditional treatment and biologicals. In addition, this review emphasises that combined therapy may have better therapeutic effects and reducing the risk of side effects of treatments, which has great prospects for the treatment of MG. With the deepening of research on immunotherapy targets in MG, novel opportunities and challenges in the treatment of MG will be introduced.
Collapse
Affiliation(s)
- Xin Chen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Department of Neurology, Affiliated Hospital of Nantong University, Nantong University, Nantong, Jiangsu Province 226001, PR China
| | - Jiayi Qiu
- Department of Clinical Medicine, Medical College, Nantong University, Nantong, Jiangsu Province 226001, PR China
| | - Zihui Gao
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Department of Neurology, Affiliated Hospital of Nantong University, Nantong University, Nantong, Jiangsu Province 226001, PR China
| | - Boya Liu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Department of Neurology, Affiliated Hospital of Nantong University, Nantong University, Nantong, Jiangsu Province 226001, PR China
| | - Chen Zhang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Department of Neurology, Affiliated Hospital of Nantong University, Nantong University, Nantong, Jiangsu Province 226001, PR China
| | - Weiran Yu
- Department of Clinical Medicine, Medical College, Nantong University, Nantong, Jiangsu Province 226001, PR China
| | - Jiawen Yang
- Department of Clinical Medicine, Medical College, Nantong University, Nantong, Jiangsu Province 226001, PR China
| | - Yuntian Shen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Department of Neurology, Affiliated Hospital of Nantong University, Nantong University, Nantong, Jiangsu Province 226001, PR China
| | - Lei Qi
- Department of Emergency Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province 226001, PR China
| | - Xinlei Yao
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Department of Neurology, Affiliated Hospital of Nantong University, Nantong University, Nantong, Jiangsu Province 226001, PR China.
| | - Hualin Sun
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Department of Neurology, Affiliated Hospital of Nantong University, Nantong University, Nantong, Jiangsu Province 226001, PR China.
| | - Xiaoming Yang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Department of Neurology, Affiliated Hospital of Nantong University, Nantong University, Nantong, Jiangsu Province 226001, PR China.
| |
Collapse
|
18
|
Zhang W, Yuan X, Wang Z, Xu J, Ye S, Jiang P, Du X, Liu F, Lin F, Zhang R, Ma L, Li C. Study on the Treatment of ITP Mice with IVIG Sourced from Distinct Sex-Special Plasma (DSP-IVIG). Int J Mol Sci 2023; 24:15993. [PMID: 37958975 PMCID: PMC10648144 DOI: 10.3390/ijms242115993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 10/30/2023] [Accepted: 11/03/2023] [Indexed: 11/15/2023] Open
Abstract
Intravenous immunoglobulin (IVIG) is a first-line drug prepared from human plasma for the treatment of autoimmune diseases (AIDs), especially immune thrombocytopenia (ITP). Significant differences exist in protein types and expression levels between male and female plasma, and the prevalence of autoimmune diseases varies between sexes. The present study seeks to explore potential variations in IVIG sourced from distinct sex-specific plasma (DSP-IVIG), including IVIG sourced from female plasma (F-IVIG), IVIG sourced from male plasma (M-IVIG), and IVIG sourced from a blend of male and female plasma (Mix-IVIG). To address this question, we used an ITP mouse model and a monocyte-macrophage inflammation model treated with DSP IVIG. The analysis of proteomics in mice suggested that the pathogenesis and treatment of ITP may involve FcγRs mediated phagocytosis, apoptosis, Th17, cytokines, chemokines, and more. Key indicators, including the mouse spleen index, CD16+ macrophages, M1, M2, IL-6, IL-27, and IL-13, all indicated that the efficacy in improving ITP was highest for M-IVIG. Subsequent cell experiments revealed that M-IVIG exhibited a more potent ability to inhibit monocyte phagocytosis. It induced more necrotic M2 cells and fewer viable M2, resulting in weaker M2 phagocytosis. M-IVIG also demonstrated superiority in the downregulation of surface makers CD36, CD68, and CD16 on M1 macrophages, a weaker capacity to activate complement, and a stronger binding ability to FcγRs on the THP-1 surface. In summary, DSP-IVIG effectively mitigated inflammation in ITP mice and monocytes and macrophages. However, M-IVIG exhibited advantages in improving the spleen index, regulating the number and typing of M1 and M2 macrophages, and inhibiting macrophage-mediated inflammation compared to F-IVIG and Mix-IVIG.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Li Ma
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College, Chengdu 610052, China; (W.Z.); (Z.W.); (J.X.); (S.Y.); (P.J.); (X.D.); (F.L.); (F.L.); (R.Z.)
| | - Changqing Li
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College, Chengdu 610052, China; (W.Z.); (Z.W.); (J.X.); (S.Y.); (P.J.); (X.D.); (F.L.); (F.L.); (R.Z.)
| |
Collapse
|
19
|
Hou YB, Chang S, Chen S, Zhang WJ. Intravenous immunoglobulin in kidney transplantation: Mechanisms of action, clinical applications, adverse effects, and hyperimmune globulin. Clin Immunol 2023; 256:109782. [PMID: 37742791 DOI: 10.1016/j.clim.2023.109782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/11/2023] [Accepted: 09/20/2023] [Indexed: 09/26/2023]
Abstract
Intravenous immunoglobulin (IVIG) has been developed for over 40 years. The mechanisms of action of IVIG are complex and diverse, and there may be multiple mechanisms that combine to influence it. IVIG has been used in kidney transplantation for desensitization, treatment of antibody-mediated rejection, and ABO-incompatible transplantation. and treatment or prevention of some infectious diseases. Hyperimmune globulins such as cytomegalovirus hyperimmune globulin (CMV-IG) and hepatitis B hyperimmune globulin (HBIG) have also been used to protect against cytomegalovirus and hepatitis B virus, respectively. However, IVIG is also associated with some rare but serious adverse effects and some application risks, and clinicians need to weigh the pros and cons and develop individualized treatment programs to benefit more patients. This review will provide an overview of the multiple mechanisms of action, clinical applications, adverse effects, and prophylactic measures of IVIG, and hyperimmune globulin will also be introduced in it.
Collapse
Affiliation(s)
- Yi-Bo Hou
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan 430030, China
| | - Sheng Chang
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan 430030, China
| | - Song Chen
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan 430030, China
| | - Wei-Jie Zhang
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan 430030, China.
| |
Collapse
|
20
|
San PP, Jacob S. Role of complement in myasthenia gravis. Front Neurol 2023; 14:1277596. [PMID: 37869140 PMCID: PMC10585143 DOI: 10.3389/fneur.2023.1277596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 09/18/2023] [Indexed: 10/24/2023] Open
Abstract
Myasthenia gravis is a prototypic neuroimmune disorder with autoantibodies targeting the acetylcholine receptor complex at the neuromuscular junction. Patients present with mainly ocular muscle weakness and tend to have a generalized muscle weakness later in the clinical course. The weakness can be severe and fatal when bulbar muscles are heavily involved. Acetylcholine receptor antibodies are present in the majority of patients and are of IgG1 and IgG3 subtypes which can activate the complement system. The complement involvement plays a major role in the neuromuscular junction damage and the supporting evidence in the literature is described in this article. Complement therapies were initially studied and approved for paroxysmal nocturnal hemoglobinuria and in the past decade, those have also been studied in myasthenia gravis. The currently available randomized control trial and real-world data on the efficacy and safety of the approved and investigational complement therapies are summarized in this review.
Collapse
Affiliation(s)
- Pyae Phyo San
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Saiju Jacob
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
- Department of Neurology, Queen Elizabeth Hospital Birmingham, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
| |
Collapse
|
21
|
Farina N, Campochiaro C, Lescoat A, Benanti G, De Luca G, Khanna D, Dagna L, Matucci-Cerinic M. Drug development and novel therapeutics to ensure a personalized approach in the treatment of systemic sclerosis. Expert Rev Clin Immunol 2023; 19:1131-1142. [PMID: 37366065 DOI: 10.1080/1744666x.2023.2230370] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 06/23/2023] [Indexed: 06/28/2023]
Abstract
INTRODUCTION Systemic sclerosis (SSc) is a systemic disease encompassing autoimmunity, vasculopathy, and fibrosis. SSc is still burdened by high mortality and morbidity rates. Recent advances in understanding the pathogenesis of SSc have identified novel potential therapeutic targets. Several clinical trials have been subsequently designed to evaluate the efficacy of a number of new drugs. The aim of this review is to provide clinicians with useful information about these novel molecules. AREA COVERED In this narrative review, we summarize the available evidence regarding the most promising targeted therapies currently under investigation for the treatment of SSc. These medications include kinase inhibitors, B-cell depleting agents, and interleukin inhibitors. EXPERT OPINION Over the next five years, several new, targeted drugs will be introduced in clinical practice for the treatment of SSc. Such pharmacological agents will expand the existing pharmacopoeia and enable a more personalized and effective approach to patients with SSc. Thus, it will not only possible to target a specific disease domain, but also different stages of the disease.
Collapse
Affiliation(s)
- N Farina
- Unit of Immunology, Rheumatology, Allergy and Rare diseases, IRCCS San Raffaele Hospital, Milan, Italy
| | - C Campochiaro
- Unit of Immunology, Rheumatology, Allergy and Rare diseases, IRCCS San Raffaele Hospital, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - A Lescoat
- Department of Internal Medicine and Clinical Immunology, Rennes University Hospital, Rennes, France
| | - G Benanti
- Unit of Immunology, Rheumatology, Allergy and Rare diseases, IRCCS San Raffaele Hospital, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - G De Luca
- Unit of Immunology, Rheumatology, Allergy and Rare diseases, IRCCS San Raffaele Hospital, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - D Khanna
- Department of Internal Medicine, University of Michigan, Ann Arbor, USA
| | - L Dagna
- Unit of Immunology, Rheumatology, Allergy and Rare diseases, IRCCS San Raffaele Hospital, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - M Matucci-Cerinic
- Unit of Immunology, Rheumatology, Allergy and Rare diseases, IRCCS San Raffaele Hospital, Milan, Italy
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| |
Collapse
|
22
|
Zhang C, Wei C, Huang X, Hou C, Liu C, Zhang S, Zhao Z, Liu Y, Zhang R, Zhou L, Li Y, Yuan X, Zhang J. MPC-n (IgG) improves long-term cognitive impairment in the mouse model of repetitive mild traumatic brain injury. BMC Med 2023; 21:199. [PMID: 37254196 DOI: 10.1186/s12916-023-02895-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 05/09/2023] [Indexed: 06/01/2023] Open
Abstract
BACKGROUND Contact sports athletes and military personnel who suffered a repetitive mild traumatic brain injury (rmTBI) are at high risk of neurodegenerative diseases such as advanced dementia and chronic traumatic encephalopathy (CTE). However, due to the lack of specific biological indicators in clinical practice, the diagnosis and treatment of rmTBI are quite limited. METHODS We used 2-methacryloyloxyethyl phosphorylcholine (MPC)-nanocapsules to deliver immunoglobulins (IgG), which can increase the delivery efficiency and specific target of IgG while reducing the effective therapeutic dose of the drug. RESULTS Our results demonstrated that MPC-capsuled immunoglobulins (MPC-n (IgG)) significantly alleviated cognitive impairment, hippocampal atrophy, p-Tau deposition, and myelin injury in rmTBI mice compared with free IgG. Furthermore, MPC-n (IgG) can also effectively inhibit the activation of microglia and the release of inflammatory factors. CONCLUSIONS In the present study, we put forward an efficient strategy for the treatment of rmTBI-related cognitive impairment and provide evidence for the administration of low-dose IgG.
Collapse
Affiliation(s)
- Chaonan Zhang
- Key Laboratory of Post-Neurotrauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Department of Neurosurgery, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Cheng Wei
- Key Laboratory of Post-Neurotrauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Department of Neurosurgery, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Xingqi Huang
- Key Laboratory of Post-Neurotrauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Department of Neurosurgery, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Changxin Hou
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Chuan Liu
- Key Laboratory of Post-Neurotrauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Department of Neurosurgery, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Shu Zhang
- Key Laboratory of Post-Neurotrauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Department of Neurosurgery, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Zilong Zhao
- Key Laboratory of Post-Neurotrauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Department of Neurosurgery, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Yafan Liu
- Key Laboratory of Post-Neurotrauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Department of Neurosurgery, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Ruiguang Zhang
- Key Laboratory of Post-Neurotrauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Department of Neurosurgery, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Lei Zhou
- Key Laboratory of Post-Neurotrauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Department of Neurosurgery, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Ying Li
- Key Laboratory of Post-Neurotrauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Department of Neurosurgery, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Xubo Yuan
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China.
| | - Jianning Zhang
- Key Laboratory of Post-Neurotrauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Department of Neurosurgery, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China.
| |
Collapse
|
23
|
Thangaleela S, Sivamaruthi BS, Radha A, Kesika P, Chaiyasut C. Neuromyelitis Optica Spectrum Disorders: Clinical Perspectives, Molecular Mechanisms, and Treatments. APPLIED SCIENCES 2023; 13:5029. [DOI: 10.3390/app13085029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Neuromyelitis optica (NMO) is a rare autoimmune inflammatory disorder affecting the central nervous system (CNS), specifically the optic nerve and the spinal cord, with severe clinical manifestations, including optic neuritis (ON) and transverse myelitis. Initially, NMO was wrongly understood as a condition related to multiple sclerosis (MS), due to a few similar clinical and radiological features, until the discovery of the AQP4 antibody (NMO-IgG/AQP4-ab). Various etiological factors, such as genetic-environmental factors, medication, low levels of vitamins, and others, contribute to the initiation of NMO pathogenesis. The autoantibodies against AQP4 target the AQP4 channel at the blood–brain barrier (BBB) of the astrocyte end feet, which leads to high permeability or leakage of the BBB that causes more influx of AQP4-antibodies into the cerebrospinal fluid (CSF) of NMO patients. The binding of AQP4-IgG onto the AQP4 extracellular epitopes initiates astrocyte damage through complement-dependent cytotoxicity (CDC) and antibody-dependent cellular cytotoxicity (ADCC). Thus, a membrane attack complex is formed due to complement cascade activation; the membrane attack complex targets the AQP4 channels in the astrocytes, leading to astrocyte cell damage, demyelination of neurons and oligodendrocytes, and neuroinflammation. The treatment of NMOSD could improve relapse symptoms, restore neurological functions, and alleviate immunosuppression. Corticosteroids, apheresis therapies, immunosuppressive drugs, and B cell inactivating and complement cascade blocking agents have been used to treat NMOSD. This review intends to provide all possible recent studies related to molecular mechanisms, clinical perspectives, and treatment methodologies of the disease, particularly focusing on recent developments in clinical criteria and therapeutic formulations.
Collapse
Affiliation(s)
- Subramanian Thangaleela
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | | | - Arumugam Radha
- Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli 620024, India
| | - Periyanaina Kesika
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Chaiyavat Chaiyasut
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
24
|
Bohländer F. A new hope? Possibilities of therapeutic IgA antibodies in the treatment of inflammatory lung diseases. Front Immunol 2023; 14:1127339. [PMID: 37051237 PMCID: PMC10083398 DOI: 10.3389/fimmu.2023.1127339] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 03/14/2023] [Indexed: 03/29/2023] Open
Abstract
Inflammatory lung diseases represent a persistent burden for patients and the global healthcare system. The combination of high morbidity, (partially) high mortality and limited innovations in the last decades, have resulted in a great demand for new therapeutics. Are therapeutic IgA antibodies possibly a new hope in the treatment of inflammatory lung diseases? Current research increasingly unravels the elementary functions of IgA as protector against infections and as modulator of overwhelming inflammation. With a focus on IgA, this review describes the pathological alterations in mucosal immunity and how they contribute to chronic inflammation in the most common inflammatory lung diseases. The current knowledge of IgA functions in the circulation, and particularly in the respiratory mucosa, are summarized. The interplay between neutrophils and IgA seems to be key in control of inflammation. In addition, the hurdles and benefits of therapeutic IgA antibodies, as well as the currently known clinically used IgA preparations are described. The data highlighted here, together with upcoming research strategies aiming at circumventing the current pitfalls in IgA research may pave the way for this promising antibody class in the application of inflammatory lung diseases.
Collapse
Affiliation(s)
- Fabian Bohländer
- Department of Translational Research, Biotest AG, Dreieich, Germany
| |
Collapse
|
25
|
Seeling M, Pöhnl M, Kara S, Horstmann N, Riemer C, Wöhner M, Liang C, Brückner C, Eiring P, Werner A, Biburger M, Altmann L, Schneider M, Amon L, Lehmann CHK, Lee S, Kunz M, Dudziak D, Schett G, Bäuerle T, Lux A, Tuckermann J, Vögtle T, Nieswandt B, Sauer M, Böckmann RA, Nimmerjahn F. Immunoglobulin G-dependent inhibition of inflammatory bone remodeling requires pattern recognition receptor Dectin-1. Immunity 2023; 56:1046-1063.e7. [PMID: 36948194 DOI: 10.1016/j.immuni.2023.02.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 09/14/2022] [Accepted: 02/24/2023] [Indexed: 03/24/2023]
Abstract
Immunoglobulin G (IgG) antibodies are major drivers of inflammation during infectious and autoimmune diseases. In pooled serum IgG (IVIg), however, antibodies have a potent immunomodulatory and anti-inflammatory activity, but how this is mediated is unclear. We studied IgG-dependent initiation of resolution of inflammation in cytokine- and autoantibody-driven models of rheumatoid arthritis and found IVIg sialylation inhibited joint inflammation, whereas inhibition of osteoclastogenesis was sialic acid independent. Instead, IVIg-dependent inhibition of osteoclastogenesis was abrogated in mice lacking receptors Dectin-1 or FcγRIIb. Atomistic molecular dynamics simulations and super-resolution microscopy revealed that Dectin-1 promoted FcγRIIb membrane conformations that allowed productive IgG binding and enhanced interactions with mouse and human IgG subclasses. IVIg reprogrammed monocytes via FcγRIIb-dependent signaling that required Dectin-1. Our data identify a pathogen-independent function of Dectin-1 as a co-inhibitory checkpoint for IgG-dependent inhibition of mouse and human osteoclastogenesis. These findings may have implications for therapeutic targeting of autoantibody and cytokine-driven inflammation.
Collapse
Affiliation(s)
- Michaela Seeling
- Division of Genetics, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Matthias Pöhnl
- Computational Biology, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Sibel Kara
- Division of Genetics, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Nathalie Horstmann
- Division of Genetics, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Carolina Riemer
- Division of Genetics, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Miriam Wöhner
- Division of Genetics, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Chunguang Liang
- Division of Medical Informatics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Christin Brückner
- Division of Genetics, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Patrick Eiring
- Department of Biotechnology and Biophysics, Biocenter, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Anja Werner
- Division of Genetics, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Markus Biburger
- Division of Genetics, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Leon Altmann
- Division of Genetics, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Martin Schneider
- Division of Genetics, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Lukas Amon
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, 91052 Erlangen, Germany
| | - Christian H K Lehmann
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, 91052 Erlangen, Germany
| | - Sooyeon Lee
- Institute of Comparative Molecular Endocrinology, University of Ulm, 89081 Ulm, Germany
| | - Meik Kunz
- Division of Medical Informatics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany; Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Hannover, Germany; Fraunhofer Cluster of Excellence Immune-Mediated Diseases (CIMD), Hannover, Germany
| | - Diana Dudziak
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, 91052 Erlangen, Germany
| | - Georg Schett
- Department of Internal Medicine 3, University Hospital Erlangen, 91052 Erlangen, Germany
| | - Tobias Bäuerle
- Preclinical Imaging Platform Erlangen, Institute of Radiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Anja Lux
- Division of Genetics, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Jan Tuckermann
- Institute of Comparative Molecular Endocrinology, University of Ulm, 89081 Ulm, Germany
| | - Timo Vögtle
- Institute of Experimental Biomedicine, University Hospital Würzburg and Rudolf Virchow Center for Integrative and Translational Bioimaging, Josef-Schneider-Straße 2, 97080 Würzburg, Germany
| | - Bernhardt Nieswandt
- Institute of Experimental Biomedicine, University Hospital Würzburg and Rudolf Virchow Center for Integrative and Translational Bioimaging, Josef-Schneider-Straße 2, 97080 Würzburg, Germany
| | - Markus Sauer
- Department of Biotechnology and Biophysics, Biocenter, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Rainer A Böckmann
- Computational Biology, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany; Erlangen National High Performance Computing Center (NHR@FAU), Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Falk Nimmerjahn
- Division of Genetics, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany; Medical Immunology Campus Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany.
| |
Collapse
|
26
|
Mbonde AA, Grill MF, Harahsheh EY, Marks LA, Wingerchuk DM, O'Carroll CB. Is Intravenous Immunoglobulin Effective in Reducing the Risk of Mortality and Morbidity in Neuroinvasive West Nile Virus Infection?: A Critically Appraised Topic. Neurologist 2023; 28:129-134. [PMID: 36728647 DOI: 10.1097/nrl.0000000000000479] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
BACKGROUND The clinical benefit of intravenous immunoglobulin (IVIG) in adult individuals with neuroinvasive West Nile virus (niWNV) infection is not well substantiated. We sought to critically assess current evidence regarding the efficacy of IVIG in treating patients with niWNV. METHODS The objective was addressed through the development of a critically appraised topic that included a clinical scenario, structured question, literature search strategy, critical appraisal, assessment of results, evidence summary, commentary, and bottom-line conclusions. Participants included consultant and resident neurologists, a medical librarian, clinical epidemiologists, and a content expert in the field of neuro-infectious diseases. RESULTS The appraised study enrolled 62 participants with suspected niWNV, randomized into 3 different arms [37 participants in the Omr-IgG-am group, 12 in the Polygam group, and 13 in the normal saline (NS) group]. Omr-IgG-am and Polygam are different formulations of IVIG. IVIG safety, measured as rates of serious adverse events, was the primary study outcome while IVIG efficacy, measured as rates of unfavorable outcomes, was a secondary endpoint. The estimated rates of SAE were statistically similar in all groups (51.4% Omr-IgG-am, 58.3% Polygam, and 23.1% NS groups). Unfavorable outcomes also occurred at a similar rate between all the groups (51.5% Omr-IgG-am, 54.5% Polygam, and 27.3% NS). CONCLUSIONS The appraised trial showed that Omr-IgG-am and Polygam are as safe as NS. Data on efficacy from this trial were limited by a small sample size. Phase III clinical trials on IVIG efficacy in NiWNV infection are needed.
Collapse
Affiliation(s)
- Amir A Mbonde
- Department of Neurology, Mayo Clinic College of Medicine and Science, Phoenix, AZ
| | | | | | | | | | | |
Collapse
|
27
|
Liu X, Zhang Y, Lu L, Li X, Wu Y, Yang Y, Li T, Cao W. Benefits of high-dose intravenous immunoglobulin on mortality in patients with severe COVID-19: An updated systematic review and meta-analysis. Front Immunol 2023; 14:1116738. [PMID: 36756131 PMCID: PMC9900022 DOI: 10.3389/fimmu.2023.1116738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 01/10/2023] [Indexed: 01/24/2023] Open
Abstract
Background The clinical benefits of high-dose intravenous immunoglobulin (IVIg) in treating COVID-19 remained controversial. Methods We systematically searched databases up to February 17, 2022, for studies examining the efficacy of IVIg compared to routine care. Meta-analyses were conducted using the random-effects model. Subgroup analysis, meta-regression, and trial series analysis w ere performed to explore heterogeneity and statistical significance. Results A total of 4,711 hospitalized COVID-19 patients (1,925 IVIg treated and 2786 control) were collected from 17 studies, including five randomized controlled trials (RCTs) and 12 cohort studies. The application of IVIg was not associated with all-cause mortality (RR= 0.89 [0.63, 1.26], P= 0.53; I2 = 75%), the length of hospital stays (MD= 0.29 [-3.40, 6.44] days, P= 0.88; I2 = 96%), the needs for mechanical ventilation (RR= 0.93 ([0.73, 1.19], P= 0.31; I2 = 56%), or the incidence of adverse events (RR= 1.15 [0.99, 1.33], P= 0.06; I2 = 20%). Subgroup analyses showed that overall mortality among patients with severe COVID-19 was reduced in the high-dose IVIg subgroup (RR= 0.33 [0.13, 0.86], P= 0.02, I2 = 68%; very low certainty). Conclusions Results of this study suggest that severe hospitalized COVID-19 patients treated with high-dose IVIg would have a lower risk of death than patients with routine care. Systematic review registration https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42021231040, identifier CRD42021231040.
Collapse
Affiliation(s)
- Xiaosheng Liu
- Tsinghua-Peking Center for Life Sciences, Beijing, China,Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China,Department of Infectious Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Yuelun Zhang
- Medical research center, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Lianfeng Lu
- Department of Infectious Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Xiaodi Li
- Department of Infectious Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Yuanni Wu
- Department of Infectious Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Yang Yang
- Department of Infectious Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Taisheng Li
- Tsinghua-Peking Center for Life Sciences, Beijing, China,Department of Infectious Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China,State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Wei Cao
- Department of Infectious Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China,State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China,*Correspondence: Wei Cao,
| |
Collapse
|
28
|
Dziadkowiak E, Baczyńska D, Wieczorek M, Olbromski M, Moreira H, Mrozowska M, Budrewicz S, Dzięgiel P, Barg E, Koszewicz M. miR-31-5p as a Potential Circulating Biomarker and Tracer of Clinical Improvement for Chronic Inflammatory Demyelinating Polyneuropathy. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2023; 2023:2305163. [PMID: 37077658 PMCID: PMC10110370 DOI: 10.1155/2023/2305163] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 09/02/2022] [Accepted: 10/06/2022] [Indexed: 04/21/2023]
Abstract
Background MicroRNAs are endogenous, small noncoding RNA molecules that play a pivotal role in the regulation of gene expression. MicroRNAs are involved in many biological processes such as proliferation, cell differentiation, neovascularization, and apoptosis. Studies on microRNA expression may contribute to a better understanding of the pathomechanism of chronic inflammatory demyelinating polyneuropathy (CIDP) and consequently enable the development of new therapeutic measures using antisense miRNAs (antagomirs). In this study, we evaluated the level of miR-31-5p in the serum of patients with CIDP and its correlation with the miR-31-5p level and clinical presentation and electrophysiological and biochemical parameters. Methods The study group consisted of 48 patients, mean age 61.60 ± 11.76, who fulfilled the diagnostic criteria of a typical variant of CIDP. The expression of miR-31-5p in patient serum probes was investigated by droplet digital PCR. The results were correlated with neurophysiological findings and the patient's clinical and biochemical parameters. Results The mean copy number of miRNA-31 in 100 μl serum was 1288.64 ± 2001.02 in the CIDP group of patients, while in the control group, it was 3743.09 ± 4026.90. There was a significant positive correlation (0.426) between IgIV treatment duration and miR-31-5p expression. Patients without IgIV treatment showed significantly lower levels of miR-31 compared to the treated group (259.44 ± 304.02 vs. 1559.48 ± 2168.45; p = 0.002). The group of patients with body weight > 80 kg showed statistically significantly lower levels of miRNA-31-5p than the patients with lower body weight (934.37 ± 1739.66 vs. 1784.62 ± 2271.62, respectively; p = 0.014). Similarly, the patients with elevated cerebrospinal fluid (CSF) protein levels had significantly higher miRNA-31-5p expression than those with normal protein levels (1393.93 ± 1932.27 vs. 987.38 ± 2364.10, respectively; p = 0.044). Conclusion The results may support the hypothesis that miR-31-5p is strongly involved in the autoimmune process in CIDP. The positive correlation between higher miR-31-5p levels and duration of IVIg treatment may be an additional factor explaining the efficacy of prolonged IVIg therapy in CIDP.
Collapse
Affiliation(s)
- Edyta Dziadkowiak
- Department of Neurology, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland
| | - Dagmara Baczyńska
- Department of Molecular and Cellular Biology, Wroclaw Medical University, Borowska 211A, Wroclaw, Poland
| | - Małgorzata Wieczorek
- Faculty of Earth Sciences and Environmental Management, University of Wroclaw, Uniwersytecki 1, 50-137 Wroclaw, Poland
| | - Mateusz Olbromski
- Department of Histology and Embryology, Wroclaw Medical University, ul. Chałubinskiego 6a, 50-368 Wroclaw, Poland
| | - Helena Moreira
- Department of Basic Medical Sciences, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland
| | - Monika Mrozowska
- Department of Histology and Embryology, Wroclaw Medical University, ul. Chałubinskiego 6a, 50-368 Wroclaw, Poland
| | - Sławomir Budrewicz
- Department of Neurology, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland
| | - Piotr Dzięgiel
- Department of Histology and Embryology, Wroclaw Medical University, ul. Chałubinskiego 6a, 50-368 Wroclaw, Poland
| | - Ewa Barg
- Department of Basic Medical Sciences, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland
| | - Magdalena Koszewicz
- Department of Neurology, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland
| |
Collapse
|
29
|
Ballow M. Immunoglobulin Therapy: Replacement and Immunomodulation. Clin Immunol 2023. [DOI: 10.1016/b978-0-7020-8165-1.00082-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2023]
|
30
|
Fitriah M, Putri AE, Semedi BP, Atika A, Tambunan BA. Immunomodulation Effect of Convalescent Plasma Therapy in Severe - Critical COVID-19 Patients. Open Access Emerg Med 2023; 15:109-118. [PMID: 37124663 PMCID: PMC10143688 DOI: 10.2147/oaem.s405555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 04/18/2023] [Indexed: 05/02/2023] Open
Abstract
Introduction Convalescent plasma therapy (CPT) is an alternative therapy for managing COVID-19, but its use is still controversial. Objective Analyzing the effectiveness of CPT in modulating immune responses based on SARS-COV-2 anti-spike protein receptor-binding domain (s-RBD) IgG, inflammatory cytokines (IL-6 and IL-4), and mortality in severe-critical COVID-19 patients. Methods This study was an observational analytical with a prospective cohort design. The number of participants was 39 patients from June to December 2020. The participants received CPT and was tested for blood analysis such as IL-4, IL-6 and s-RBD IgG. The data were taken a day before CPT, 1st day, 2nd day, and 7th day after CPT. The analysis included Friedman, Pearson correlation, and Mann-Whitney test which is significant if p <0.05. Results The value of participant's s-RBD IgG before CPT was 91.49 (0.43-3074.73) AU/mL and the 7th day post-CPT, s-RBD IgG value of 1169.79 (6.48-5577.91) AU/mL (p <0.001). The IL-4 value before CPT was 1.78 (0.85-5.21) ng/mL and the 7th day post-CPT, IL-4 value of 1.97 (0.87-120.30) ng/mL (p = 0.401). The condition was also found in IL-6 value, in which the IL-4 value participant before CPT was 109.61 (0.73-4701.63) ng/mL and the 7th day post-CPT, IL-6 value of 1.97 (0.87-120.30) ng/mL (p = 0.401). No significant correlation found between increased s-RBD IgG level with increased IL-4 and decreased IL-6 before and after CPT in severe-critical COVID-19 patients (p >0.05). No significant correlation was also found between increased s-RBD IgG levels, IL-4 too, and decreased IL-6 after CPT therapy between deceased and alive patients, both in 1st, 2nd, and 7th days (p >0.05). Conclusion No correlation between the increase in s-RBD IgG levels and changes in IL-4 and IL-6 levels. Changes in s-RBD IgG, IL-4, and IL-6 levels are not associated with mortality in severe-critical COVID-19 degree post CPT recipients.
Collapse
Affiliation(s)
- Munawaroh Fitriah
- Department of Clinical Pathology, Faculty of Medicine, Universitas Airlangga – Dr. Soetomo General Academic Hospital, Surabaya, Indonesia
| | - Aditea Etnawati Putri
- Department of Clinical Pathology, Faculty of Medicine, Universitas Airlangga – Dr. Soetomo General Academic Hospital, Surabaya, Indonesia
| | - Bambang Pujo Semedi
- Department of Anesthesiology and Reanimation, Faculty of Medicine, Universitas Airlangga – Dr. Soetomo General Academic Hospital, Surabaya, Indonesia
| | - Atika Atika
- Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Betty Agustina Tambunan
- Department of Clinical Pathology, Faculty of Medicine, Universitas Airlangga – Dr. Soetomo General Academic Hospital, Surabaya, Indonesia
- Correspondence: Betty Agustina Tambunan, Department of Clinical Pathology, Faculty of Medicine, Universitas Airlangga – Dr. Soetomo General Academic Hospital, Jl. Mayjend Prof. Dr. Moestopo No. 6-8, Airlangga, Gubeng, Surabaya, East Java, 60286, Indonesia, Tel +6231-5023865, Email
| |
Collapse
|
31
|
SETOGUCHI Y, HAYASHI A, KAWADA A, IBUSUKI A, YANAOKA D, SAITO R, ISHIBASHI T, TAKIMOTO H, YAMAGUCHI Y, OHTAKI H, BABA H. Intravenous immunoglobulin preparations attenuate lysolecithin-induced peripheral demyelination in mice and comprise anti-large myelin protein zero antibody. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2023; 99:48-60. [PMID: 36775342 PMCID: PMC10020422 DOI: 10.2183/pjab.99.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 12/06/2022] [Indexed: 06/18/2023]
Abstract
Intravenous immunoglobulin (IVIg) has been used to treat inflammatory demyelinating diseases such as chronic inflammatory demyelinating polyneuropathy, Guillain-Barré syndrome, and multifocal motor neuropathy. Despite studies demonstrating the clinical effectiveness of IVIg, the mechanisms underlying its effects remain to be elucidated in detail. Herein, we examined the effects of IVIg on lysolecithin-induced demyelination of the sciatic nerve in a mouse model. Mice -administered with IVIg 1 and 3 days post-injection (dpi) of lysolecithin -exhibited a significantly decreased demyelination area at 7 dpi. Immunoblotting analysis using two different preparations revealed that IVIg reacted with a 36-kDa membrane glycoprotein in the sciatic nerve. Subsequent analyses of peptide absorption identified the protein as a myelin protein in the peripheral nervous system (PNS) known as large myelin protein zero (L-MPZ). Moreover, injected IVIg penetrated the demyelinating lesion, leading to deposition on L-MPZ in the myelin debris. These results indicate that IVIg may modulate PNS demyelination, possibly by binding to L-MPZ on myelin debris.
Collapse
Affiliation(s)
- Yuki SETOGUCHI
- Department of Functional Neurobiology, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan
| | - Akiko HAYASHI
- Department of Functional Neurobiology, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan
| | - Ayami KAWADA
- Department of Functional Neurobiology, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan
| | - Ayako IBUSUKI
- Department of Functional Neurobiology, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan
| | - Daigo YANAOKA
- Department of Functional Neurobiology, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan
| | - Ryota SAITO
- Department of Functional Neurobiology, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan
| | - Tomoko ISHIBASHI
- Department of Functional Neurobiology, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan
| | - Hiroaki TAKIMOTO
- Department of Biosciences, School of Science, Kitasato University, Sagamihara, Kanagawa, Japan
| | - Yoshihide YAMAGUCHI
- Department of Functional Neurobiology, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan
| | - Hirokazu OHTAKI
- Department of Functional Neurobiology, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan
| | - Hiroko BABA
- Department of Occupational Therapy, Faculty of Rehabilitation, Niigata University of Health and Welfare, Niigata, Japan
| |
Collapse
|
32
|
Real-world utilization patterns of intravenous immunoglobulin in adults with generalized myasthenia gravis in the United States. J Neurol Sci 2022; 443:120480. [PMID: 36347174 DOI: 10.1016/j.jns.2022.120480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 09/14/2022] [Accepted: 10/23/2022] [Indexed: 11/06/2022]
Abstract
OBJECTIVE To evaluate real-world utilization patterns of intravenous immunoglobulin (IVIg) among patients with generalized myasthenia gravis (gMG) over 3 years post-IVIg initiation. METHODS Patients with gMG who initiated IVIg treatment were identified from a United States claims database (Symphony Health's Integrated Dataverse [IDV]®, January 1, 2014 - December 31, 2019). The frequency of subsequent IVIg treatment and associated cost during the year post-IVIg initiation were analyzed. Usage patterns of IVIg and concomitant gMG treatments during the year preceding and 3 years post-IVIg initiation were compared. RESULTS Among 1225 patients with gMG who initiated IVIg treatment, 706 patients (57.6%) received 1 to 5 IVIg treatment courses (intermittent IVIg users), and 519 patients (42.4%) received ≥6 IVIg treatment courses (chronic IVIg users) within the subsequent year. Mean annual medical cost per patient was nearly 2.5-fold higher for chronic vs. intermittent IVIg users ($161,478 vs. $64,888, p < 0.001). The proportion of patients using corticosteroids and nonsteroidal immunosuppressive treatments (NSISTs) was not reduced over the 3-year follow-up period following IVIg initiation, even for patients who continued annual chronic IVIg for 3 consecutive years post-initiation. CONCLUSIONS Nearly half of patients with gMG received chronic and multiple IVIg treatment courses within the first year once initiating IVIg treatment, indicating higher usage than expected. For all IVIg initiators, the proportion of patients using corticosteroids and NSISTs did not decrease over 3 years despite IVIg initiation.
Collapse
|
33
|
Shah SMI, Yasmin F, Memon RS, Jatoi NN, Savul IS, Kazmi S, Monawwer SA, Zafar MDB, Asghar MS, Tahir MJ, Lee KY. COVID-19 and myasthenia gravis: A review of neurological implications of the SARS-COV-2. Brain Behav 2022; 12:e2789. [PMID: 36306401 PMCID: PMC9759145 DOI: 10.1002/brb3.2789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 09/10/2022] [Accepted: 09/24/2022] [Indexed: 11/11/2022] Open
Abstract
INTRODUCTION This review highlights the potential mechanisms of neuromuscular manifestation of COVID-19, especially myasthenia gravis (MG). METHODS An extensive literature search was conducted by two independent investigators using PubMed/MEDLINE and Google Scholar from its inception to December 2020. RESULTS Exacerbations of clinical symptoms in patients of MG who were treated with some commonly used COVID-19 drugs has been reported, with updated recommendations of management of symptoms of neuromuscular disorders. Severe acute respiratory syndrome coronavirus 2 can induce the immune response to trigger autoimmune neurological disorders. CONCLUSIONS Further clinical studies are warranted to indicate and rather confirm if MG in the setting of COVID-19 can pre-existent subclinically or develop as a new-onset disease.
Collapse
Affiliation(s)
| | - Farah Yasmin
- Department of Internal Medicine, Dow Medical College, Dow University of Health Sciences, Karachi, Pakistan
| | - Roha Saeed Memon
- Department of Internal Medicine, Dow Medical College, Dow University of Health Sciences, Karachi, Pakistan
| | - Nadia Nazir Jatoi
- Department of Internal Medicine, Dow Medical College, Dow University of Health Sciences, Karachi, Pakistan
| | - Ilma Saleh Savul
- Department of Internal Medicine, St. Joseph Medical Center, Houston, Texas, USA
| | - Sana Kazmi
- Department of Internal Medicine, Dow Medical College, Dow University of Health Sciences, Karachi, Pakistan
| | | | - Muhammad Daim Bin Zafar
- Department of Internal Medicine, Dow Medical College, Dow University of Health Sciences, Karachi, Pakistan
| | | | | | - Ka Yiu Lee
- Swedish Winter Sports Research Centre, Department of Health Sciences, Mid Sweden University, Östersund, Sweden
| |
Collapse
|
34
|
Hosseini SSJ, Dudakova A, Kummer K, Zschüntzsch J. [SARS-CoV-2 antibody response to the second COVID-19 vaccination in neuromuscular disease patients under immune modulating treatment]. DER NERVENARZT 2022; 93:1219-1227. [PMID: 35997783 PMCID: PMC9395911 DOI: 10.1007/s00115-022-01363-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 06/23/2022] [Indexed: 12/04/2022]
Abstract
Successful vaccination (adequate elevation of anti-spike protein antibodies) is attributed with sufficient protection against a severe course of coronavirus disease 2019 (COVID-19). For patients with chronic inflammatory diseases (CID) and immunosuppression the success of vaccination is an ongoing scientific discourse. Therefore, we evaluated the antibody titer against the S1 antigen of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) 2 weeks after complete immunization in patients with an underlying neuromuscular disease (NMD), who presented to our neurological day clinic and outpatient department for regular infusions of immunoglobulins. The data show that patients with chronic autoimmune NMD and simultaneous immunosuppressive or immune modulating treatment show an antibody response after vaccination with both mRNA and vector vaccines. In comparison to healthy subjects there is a comparable number of seroconversions due to the vaccination. A correlation between immunoglobulin dose and vaccination response could not be found; however, in contrast, there was a significant reduction of specific antibody synthesis, especially for the combination of mycophenolate mofetil (MMF) and prednisolone.
Collapse
Affiliation(s)
- S S Justus Hosseini
- Neuromuskuläres Zentrum Göttingen, Klinik für Neurologie, Universitätsmedizin Göttingen, Robert-Koch-Str. 40, 37075, Göttingen, Deutschland
| | - Anna Dudakova
- Institut für Medizinische Mikrobiologie und Virologie, Universitätsmedizin Göttingen, Göttingen, Deutschland
| | - Karsten Kummer
- Neuromuskuläres Zentrum Göttingen, Klinik für Neurologie, Universitätsmedizin Göttingen, Robert-Koch-Str. 40, 37075, Göttingen, Deutschland
| | - Jana Zschüntzsch
- Neuromuskuläres Zentrum Göttingen, Klinik für Neurologie, Universitätsmedizin Göttingen, Robert-Koch-Str. 40, 37075, Göttingen, Deutschland.
| |
Collapse
|
35
|
Targeted therapy in Coronavirus disease 2019 (COVID-19): Implication from cell and gene therapy to immunotherapy and vaccine. Int Immunopharmacol 2022; 111:109161. [PMID: 35998506 PMCID: PMC9385778 DOI: 10.1016/j.intimp.2022.109161] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/27/2022] [Accepted: 08/11/2022] [Indexed: 02/07/2023]
Abstract
Severe acute respiratory syndrome Coronavirus 2 (SARS-CoV-2) is a highly pathogenic and transmissible virus. Infection caused by SARS-CoV-2 known as Coronavirus disease 2019 (COVID-19) can be severe, especially among high risk populations affected of underlying medical conditions. COVID-19 is characterized by the severe acute respiratory syndrome, a hyper inflammatory syndrome, vascular injury, microangiopathy and thrombosis. Antiviral drugs and immune modulating methods has been evaluated. So far, a particular therapeutic option has not been approved for COVID-19 and a variety of treatments have been studied for COVID-19 including, current treatment such as oxygen therapy, corticosteroids, antiviral agents until targeted therapy and vaccines which are diverse in each patient and have various outcomes. According to the findings of different in vitro and in vivo studies, some novel approach such as gene editing, cell based therapy, and immunotherapy may have significant potential in the treatment of COVID-19. Based on these findings, this paper aims to review the different strategies of treatment against COVID-19 and provide a summary from traditional and newer methods in curing COVID-19.
Collapse
|
36
|
Segú-Vergés C, Caño S, Calderón-Gómez E, Bartra H, Sardon T, Kaveri S, Terencio J. Systems biology and artificial intelligence analysis highlights the pleiotropic effect of IVIg therapy in autoimmune diseases with a predominant role on B cells and complement system. Front Immunol 2022; 13:901872. [PMID: 36248801 PMCID: PMC9563374 DOI: 10.3389/fimmu.2022.901872] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 08/31/2022] [Indexed: 11/26/2022] Open
Abstract
Intravenous immunoglobulin (IVIg) is used as treatment for several autoimmune and inflammatory conditions, but its specific mechanisms are not fully understood. Herein, we aimed to evaluate, using systems biology and artificial intelligence techniques, the differences in the pathophysiological pathways of autoimmune and inflammatory conditions that show diverse responses to IVIg treatment. We also intended to determine the targets of IVIg involved in the best treatment response of the evaluated diseases. Our selection and classification of diseases was based on a previously published systematic review, and we performed the disease characterization through manual curation of the literature. Furthermore, we undertook the mechanistic evaluation with artificial neural networks and pathway enrichment analyses. A set of 26 diseases was selected, classified, and compared. Our results indicated that diseases clearly benefiting from IVIg treatment were mainly characterized by deregulated processes in B cells and the complement system. Indeed, our results show that proteins related to B-cell and complement system pathways, which are targeted by IVIg, are involved in the clinical response. In addition, targets related to other immune processes may also play an important role in the IVIg response, supporting its wide range of actions through several mechanisms. Although B-cell responses and complement system have a key role in diseases benefiting from IVIg, protein targets involved in such processes are not necessarily the same in those diseases. Therefore, IVIg appeared to have a pleiotropic effect that may involve the collaborative participation of several proteins. This broad spectrum of targets and 'non-specificity' of IVIg could be key to its efficacy in very different diseases.
Collapse
Affiliation(s)
| | - Silvia Caño
- Grifols Innovation and New Technologies (GIANT) Ltd., Dublin, Ireland
| | | | - Helena Bartra
- Health Department, Anaxomics Biotech, Barcelona, Spain
| | - Teresa Sardon
- Health Department, Anaxomics Biotech, Barcelona, Spain
| | - Srini Kaveri
- Institut National de la Santé et de la Recherche Médicale, Centre de Recherche des Cordeliers, Sorbonne Université, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - José Terencio
- Grifols Innovation and New Technologies (GIANT) Ltd., Dublin, Ireland
| |
Collapse
|
37
|
Pidiyar V, Kumraj G, Ahmed K, Ahmed S, Shah S, Majumder P, Verma B, Pathak S, Mukherjee S. COVID-19 management landscape: A need for an affordable platform to manufacture safe and efficacious biotherapeutics and prophylactics for the developing countries. Vaccine 2022; 40:5302-5312. [PMID: 35914959 PMCID: PMC9148927 DOI: 10.1016/j.vaccine.2022.05.065] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 05/19/2022] [Indexed: 12/23/2022]
Abstract
To gain world-wide control over COVID-19 pandemic, it is necessary to have affordable and accessible vaccine and monoclonal antibody technologies across the globe. In comparison to the western countries, Asian and African countries have less percentage of vaccination done which warrants urgent attention. Global manufacturer production capacities, dependency on advanced nations for the supply of vaccines or the raw material, national economy, limited research facilities, and logistics could be the factors. This review article elaborates the existing therapeutic and prophylactic strategies available for COVID-19, currently adopted vaccine and monoclonal antibody platforms for SARS-CoV-2 along with the approaches to bridge the gap prevailing in the challenges faced by low- and middle-income countries. We believe adoption of yeast-derived P. pastoris technology can help in developing safe, proven, easy to scale-up, and affordable recombinant vaccine or monoclonal antibodies against SARS-CoV-2. This platform has the advantage of not requiring a dedicated or specialized facility making it an affordable option using existing manufacturing facilities, without significant additional capital investments. Besides, the technology platform of multiantigen vaccine approach and monoclonal antibody cocktail will serve as effective weapons to combat the threat posed by the SARS-CoV-2 variants. Successful development of vaccines and monoclonal antibodies using such a technology will lead to self-sufficiency of these nations in terms of availability of vaccines and monoclonal antibodies.
Collapse
Affiliation(s)
- Vyankatesh Pidiyar
- Techinvention Lifecare Pvt. Ltd. #1004, The Summit Business Park, Off WEH Metro Station, Andheri Kurla Road, Andheri East, Mumbai 400093. India
| | - Ganesh Kumraj
- Techinvention Lifecare Pvt. Ltd. #1004, The Summit Business Park, Off WEH Metro Station, Andheri Kurla Road, Andheri East, Mumbai 400093. India
| | - Kafil Ahmed
- Techinvention Lifecare Pvt. Ltd. #1004, The Summit Business Park, Off WEH Metro Station, Andheri Kurla Road, Andheri East, Mumbai 400093. India
| | - Syed Ahmed
- Techinvention Lifecare Pvt. Ltd. #1004, The Summit Business Park, Off WEH Metro Station, Andheri Kurla Road, Andheri East, Mumbai 400093. India.
| | - Sanket Shah
- Techinvention Lifecare Pvt. Ltd. #1004, The Summit Business Park, Off WEH Metro Station, Andheri Kurla Road, Andheri East, Mumbai 400093. India
| | - Piyali Majumder
- Techinvention Lifecare Pvt. Ltd. #1004, The Summit Business Park, Off WEH Metro Station, Andheri Kurla Road, Andheri East, Mumbai 400093. India
| | - Bhawna Verma
- Techinvention Lifecare Pvt. Ltd. #1004, The Summit Business Park, Off WEH Metro Station, Andheri Kurla Road, Andheri East, Mumbai 400093. India
| | - Sarang Pathak
- Techinvention Lifecare Pvt. Ltd. #1004, The Summit Business Park, Off WEH Metro Station, Andheri Kurla Road, Andheri East, Mumbai 400093. India
| | - Sushmita Mukherjee
- Techinvention Lifecare Pvt. Ltd. #1004, The Summit Business Park, Off WEH Metro Station, Andheri Kurla Road, Andheri East, Mumbai 400093. India
| |
Collapse
|
38
|
Kriván G, Borte M, Harris JB, Lumry WR, Aigner S, Lentze S, Staiger C. Efficacy, safety and pharmacokinetics of a new 10% normal human immunoglobulin for intravenous infusion, BT595, in children and adults with primary immunodeficiency disease. Vox Sang 2022; 117:1153-1162. [PMID: 35944615 DOI: 10.1111/vox.13337] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 06/03/2022] [Accepted: 06/21/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND AND OBJECTIVES To evaluate the efficacy, safety and pharmacokinetics of a new, highly purified 10% IVIg (BT595, Yimmugo®) administered in children and adults with Primary immunodeficiency diseases (PID). MATERIALS AND METHODS Prospective, uncontrolled, multicentre Phase III trial. Patients aged 2 to <76 years with PID were switched from their pre-trial IVIg replacement therapy to BT595. In all, 67 patients (49 adults, 18 children) received doses between 0.2 and 0.8 g/kg body weight for approximately 12 months at intervals of 3 or 4 weeks. Dosing and dosing intervals were based on each patient's pre-trial infusion schedule. The primary end point was the rate of acute serious bacterial infections (SBIs); secondary efficacy, safety and pharmacokinetic outcomes were also evaluated. RESULTS The primary efficacy end point was met, and the unadjusted SBI rate was 0.01 per subject-year (adjusted SBI rate 0.015 per subject-year, with an upper limit of the one-sided 99% confidence interval of 0.151). A single adult patient experienced one event classified as an SBI. All secondary end points, including those related to infections, supported the efficacy. Infusion rates were increased up to 8 ml/kg/h. Overall, 8% of infusions were associated with ≥1 infusional adverse event (AE) (start during or within 72 h post-infusion), comprising mainly headache (2.4%), fatigue (0.9%) and nausea (0.5%). There were no infusional AEs at infusion rates of >4.0 ml/kg/h, and only one patient required a single premedication. The observed patterns, severity and frequency of treatment-emergent adverse events are consistent with the established safety profile for IVIgs and did not show clinically relevant differences between all age groups. CONCLUSION BT595 is effective, safe and well tolerated for treating patients with PID.
Collapse
Affiliation(s)
- Gergely Kriván
- Department of Pediatric Hematology and Stem Cell Transplantation, Central Hospital of Southern Pest - National Institute of Hematology and Infectious Diseases, Budapest, Hungary
| | - Michael Borte
- ImmunDeficiencyCenter Leipzig (IDCL) at Klinikum St. Georg gGmbH, Leipzig, Germany
| | | | | | | | | | | |
Collapse
|
39
|
Kapoor M, Hunt I, Spillane J, Bonnett LJ, Hutton EJ, McFadyen J, Westwood JP, Lunn MP, Carr AS, Reilly MM. IVIg-exposure and thromboembolic event risk: findings from the UK Biobank. J Neurol Neurosurg Psychiatry 2022; 93:876-885. [PMID: 35688633 DOI: 10.1136/jnnp-2022-328881] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 04/28/2022] [Indexed: 12/23/2022]
Abstract
BACKGROUND Arterial and venous thromboembolic events (TEEs) have been associated with intravenous Ig use, but the risk has been poorly quantified. We aimed to calculate the risk of TEEs associated with exposure to intravenous Ig. METHODS We included participants from UK Biobank recruited over 3 years, data extracted September 2020.The study endpoints were incidence of myocardial infarction, other acute ischaemic heart disease, stroke, pulmonary embolism and other venous embolism and thrombosis.Predictors included known TEE risk factors: age, sex, hypertension, smoking status, type 2 diabetes mellitus, hypercholesterolaemia, cancer and past history of TEE. Intravenous Ig and six other predictors were added in the sensitivity analysis.Information from participants was collected prospectively, while data from linked resources, including death, cancer, hospital admissions and primary care records were collected retrospectively and prospectively. FINDINGS: 14 794 of 502 492 individuals had an incident TEE during the study period. The rate of incident events was threefold higher in those with prior history of TEE (8 .7%) than those without previous history of TEE (3.0%).In the prior TEE category, intravenous Ig exposure was independently associated with increased risk of incident TEE (OR=3.69 (95% CI 1.15 to 11.92), p=0.03) on multivariate analysis. The number needed to harm by exposure to intravenous Ig in those with a history of TEE was 5.8 (95% CI 2.3 to 88.3).Intravenous Ig exposure did not increase risk of TEE in those with no previous history of TEE. INTERPRETATION Intravenous Ig is associated with increased risk of further TEE in individuals with prior history of an event with one further TEE for every six people exposed. In practice, this will influence how clinicians consent for and manage overall TEE risk on intravenous Ig exposure.
Collapse
Affiliation(s)
- Mahima Kapoor
- MRC Centre for Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK .,Department of Neurosciences, Monash University Central Clinical School, Melbourne, Victoria, Australia
| | - Ian Hunt
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, Tasmania, Australia
| | - Jennifer Spillane
- Neurology, Royal Free Hospital Foundation Trust, London, UK.,MRC Centre for Neuromuscular Diseases, National Hospital for Neurology and Neurosurgery and UCL Queen Square Institute of Neurology, London, UK
| | | | - Elspeth Jane Hutton
- Neurology, Alfred Health, Melbourne, Victoria, Australia.,Neuroscience, Monash University, Melbourne, Victoria, Australia
| | - James McFadyen
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia.,Department of Clinical Hematology, The Alfred Hospital, Melbourne, Victoria, Australia
| | - John-Paul Westwood
- Department of Haematology, University College London Hospital, London, UK
| | - Michael P Lunn
- MRC Centre for Neuromuscular Disease and Department of Molecular Neuroscience, University College London Hospitals NHS Foundation Trust National Hospital for Neurology and Neurosurgery, London, UK.,NIHR Biomedical Research Centre, University College London Hospitals NHS Foundation Trust, London, UK
| | - Aisling S Carr
- MRC Centre for Neuromuscualr Diseases, National Hospital of Neurology and Neurosurgery, London, UK
| | - Mary M Reilly
- MRC Centre for Neuromuscular Diseases, UCL Institute of Neurology and National Hospital for Neurology and Neurosurgery, London, UK
| |
Collapse
|
40
|
Hou Y, Zhang C, Yu X, Wang W, Zhang D, Bai Y, Yan C, Ma L, Li A, Ji J, Cao L, Wang Q. Effect of low-dose rituximab treatment on autoimmune nodopathy with anti-contactin 1 antibody. Front Immunol 2022; 13:939062. [PMID: 35958552 PMCID: PMC9362773 DOI: 10.3389/fimmu.2022.939062] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 07/04/2022] [Indexed: 11/29/2022] Open
Abstract
Background Autoimmune nodopathy with anti-contactin-1 (CNTN1) responds well to rituximab instead of traditional therapies. Although a low-dose rituximab regimen was administered to patients with other autoimmune diseases, such as myasthenia gravis and neuromyelitis optica spectrum disorders, and satisfactory outcomes were obtained, this low-dose rituximab regimen has not been trialed in anti-CNTN1-positive patients. Methods Anti–CNTN1 nodopathy patients were enrolled in this prospective, open-label, self-controlled pilot study. A cell-based assay was used to detect anti-CNTN1 antibodies and their subclasses in both serum and cerebrospinal fluid. Clinical features were evaluated at baseline, 2 days, 14 days, and 6 months after single low-dose rituximab treatment (600 mg). The titers of the subclasses of anti-CNTN1 antibody and peripheral B cells were also evaluated at baseline, 2 days, and 6 months after the rituximab regimen. Results Two patients with anti–CNTN1 antibodies were enrolled. Both patients had neurological symptoms including muscle weakness, tremor, sensory ataxia, numbness and mild nephrotic symptoms. In the field of neurological symptoms, sensory ataxia markedly improved, and the titer of anti-CNTN1 antibody as well as CD19+ B cells decreased only two days following low-dose rituximab treatment. Other neurological symptoms improved within two weeks of rituximab treatment. At the 6-month follow-up, all neurological symptoms steadily improved with steroid reduction, and both the anti-CNTN1 antibody titer and CD19+ B cells steadily decreased. No adverse events were observed after this single low-dose rituximab treatment. Conclusions We confirmed the clinical efficacy of low-dose rituximab by B cell depletion in autoimmune nodopathy with anti-CNTN1 antibody. This rapid and long-lasting response suggests that low-dose rituximab is a promising option for anti-CNTN1 nodopathy.
Collapse
Affiliation(s)
- Ying Hou
- Research Institute of Neuromuscular and Neurodegenerative Diseases and Department of Neurology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Chao Zhang
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xiaolin Yu
- Department of Geriatric Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Wenqing Wang
- Research Institute of Neuromuscular and Neurodegenerative Diseases and Department of Neurology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Dong Zhang
- Research Institute of Neuromuscular and Neurodegenerative Diseases and Department of Neurology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yunfei Bai
- Research Institute of Neuromuscular and Neurodegenerative Diseases and Department of Neurology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Chuanzhu Yan
- Research Institute of Neuromuscular and Neurodegenerative Diseases and Department of Neurology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Department of Central Laboratory and Mitochondrial Medicine Laboratory, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, China
- Brain Science Research Institute, Shandong University, Jinan, China
| | - Lin Ma
- Department of Geriatric Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Anning Li
- Department of Radiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jian Ji
- Department of Clinical Laboratory, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Lili Cao
- Department of Neurology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Qinzhou Wang
- Research Institute of Neuromuscular and Neurodegenerative Diseases and Department of Neurology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- *Correspondence: Qinzhou Wang,
| |
Collapse
|
41
|
First-line immunotherapy of neuronal surface antibody-mediated autoimmune encephalitis: Assessment of therapeutic effectiveness and cost-efficiency. Mult Scler Relat Disord 2022; 66:104071. [PMID: 35917744 DOI: 10.1016/j.msard.2022.104071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 07/14/2022] [Accepted: 07/24/2022] [Indexed: 11/21/2022]
Abstract
OBJECTIVE To evaluate the therapeutic effectiveness and cost-efficiency of first-line immunotherapies on neuronal surface antibody-mediated autoimmune encephalitis (AE) based on a real-world observational study in China. METHODS Our study retrospectively collected the clinical and paraclinical data of patients with definite neuronal surface antibody-mediated AE between July 2014 and July 2020. Regular follow-up was performed after administering standard regimens of first-line immunotherapies, including intravenous methylprednisolone (IVMP) and / or intravenous immunoglobulin (IVIG). Therapeutic effectiveness was reflected by modified Rankin Scale scores. The health resource utilization and direct medical costs were extracted to analyze the cost-efficiency. RESULTS Among the 78 eligible patients, 48 (61.5%) were males with a median age of 40 years. More than half (56, 71.8%) were treated with combination therapy, with the rest receiving IVMP and IVIG monotherapy (both of 11, 14.1%). Related objective variables, i.e., sex, onset age, disease course, onset symptoms, antibody types, abnormal paraclinical results, disease severity, and the health insurance, showed insignificant differences on the selection of therapy. Each therapy showed similar short-term (4-week) and long-term (1-year) therapeutic effects. Yet the single or combination of IVIG had a slightly better effectiveness but higher cost than the monotherapy of IVMP. CONCLUSION The combination of IVMP and IVIG was used more frequently than either alone, which may be associated with neurologist's personal experience and patient's wishes. Though with similar therapeutic effectiveness, the use of IVMP alone might be a better choice with a better cost-efficiency.
Collapse
|
42
|
Xiang Q, Cao Y, Song Z, Chen H, Hu Z, Zhou S, Zhang Y, Cui H, Luo J, Qiang Y, Wang Y, Shuai S, Yang Y, Yang M, Wei X, Xiong A. Cyclophosphamide for Treatment of Refractory Chronic Inflammatory Demyelinating Polyradiculoneuropathy: A Systematic Review and Meta-analysis. Clin Ther 2022; 44:1058-1070. [PMID: 35872028 DOI: 10.1016/j.clinthera.2022.06.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 06/16/2022] [Accepted: 06/26/2022] [Indexed: 02/05/2023]
Abstract
PURPOSE This study evaluates the tolerability and efficacy of cyclophosphamide (CYC) for the treatment of refractory chronic inflammatory demyelinating polyradiculoneuropathy (CIDP). METHODS We searched PubMed, Embase, Cochrane Library, and 2 Chinese databases (Chinese National Knowledge Infrastructure and SinoMed) for studies published between database inception and September 30, 2021. Articles obtained using the appropriate keywords were independently selected by 2 reviewers on the basis of the established inclusion and exclusion criteria. FINDINGS In total, 240 records that were eventually curtailed to 13 studies with 83 patients were retrieved and subsequently included in this evaluation. All 13 studies were included in the systematic review, 7 of which were included in the meta-analysis. The pooled estimate of the response rate was 68% (95% CI, 45%-90%). The pooled estimate of the adverse reaction rate was 8% (95% CI, 0%-15%). The disease duration before the first CYC treatment was negatively correlated with the reduction in the modified Rankin Scale score (r = -0.76, P < 0.001). However, the response rates did not differ significantly between patients of different sexes (P = 0.716) or between patients who received and those who did not receive concurrent glucocorticoids (P = 0.617). IMPLICATIONS CYC might be a recommended therapeutic option for patients with refractory CIDP, especially those who are unable to accept rituximab treatment. Earlier CYC treatment yields better therapeutic outcomes in patients with refractory CIDP without CYC-related contraindications.
Collapse
Affiliation(s)
- Qilang Xiang
- Department of Rheumatology and Immunology, Nanchong Central Hospital, The Affiliated Nanchong Central Hospital of North Sichuan Medical College, Nanchong, China
| | - Yuzi Cao
- Department of Rheumatology and Immunology, Nanchong Central Hospital, The Affiliated Nanchong Central Hospital of North Sichuan Medical College, Nanchong, China
| | - Zhuoyao Song
- Department of Rheumatology and Immunology, Nanchong Central Hospital, The Affiliated Nanchong Central Hospital of North Sichuan Medical College, Nanchong, China
| | - Huini Chen
- Department of Rheumatology and Immunology, Nanchong Central Hospital, The Affiliated Nanchong Central Hospital of North Sichuan Medical College, Nanchong, China
| | - Ziyi Hu
- Department of Rheumatology and Immunology, Nanchong Central Hospital, The Affiliated Nanchong Central Hospital of North Sichuan Medical College, Nanchong, China
| | - Shifeng Zhou
- Department of Rheumatology and Immunology, Nanchong Central Hospital, The Affiliated Nanchong Central Hospital of North Sichuan Medical College, Nanchong, China
| | - Yan Zhang
- Department of Rheumatology and Immunology, Nanchong Central Hospital, The Affiliated Nanchong Central Hospital of North Sichuan Medical College, Nanchong, China
| | - Hongxu Cui
- Department of Rheumatology and Immunology, Nanchong Central Hospital, The Affiliated Nanchong Central Hospital of North Sichuan Medical College, Nanchong, China
| | - Jie Luo
- Department of Rheumatology and Immunology, Nanchong Central Hospital, The Affiliated Nanchong Central Hospital of North Sichuan Medical College, Nanchong, China
| | - Yiying Qiang
- Department of Rheumatology and Immunology, Nanchong Central Hospital, The Affiliated Nanchong Central Hospital of North Sichuan Medical College, Nanchong, China
| | - Ye Wang
- Department of Rheumatology and Immunology, Nanchong Central Hospital, The Affiliated Nanchong Central Hospital of North Sichuan Medical College, Nanchong, China
| | - Shiquan Shuai
- Department of Rheumatology and Immunology, Nanchong Central Hospital, The Affiliated Nanchong Central Hospital of North Sichuan Medical College, Nanchong, China; Inflammation and Immunology Key Laboratory of Nanchong City, Sichuan, China
| | - Yuan Yang
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Min Yang
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
| | - Xin Wei
- Department of Ophthalmology, West China Hospital, Sichuan University; Chengdu, China
| | - Anji Xiong
- Department of Rheumatology and Immunology, Nanchong Central Hospital, The Affiliated Nanchong Central Hospital of North Sichuan Medical College, Nanchong, China; Inflammation and Immunology Key Laboratory of Nanchong City, Sichuan, China.
| |
Collapse
|
43
|
Population Pharmacokinetic Modelling of Intravenous Immunoglobulin Treatment in Patients with Guillain-Barré Syndrome. Clin Pharmacokinet 2022; 61:1285-1296. [PMID: 35781631 PMCID: PMC9439991 DOI: 10.1007/s40262-022-01136-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/02/2022] [Indexed: 11/04/2022]
Abstract
Background and Objective Intravenous immunoglobulin (IVIg) at a standard dosage is the treatment of choice for Guillain–Barré syndrome. The pharmacokinetics, however, is highly variable between patients, and a rapid clearance of IVIg is associated with poor recovery. We aimed to develop a model to predict the pharmacokinetics of a standard 5-day IVIg course (0.4 g/kg/day) in patients with Guillain–Barré syndrome. Methods Non-linear mixed-effects modelling software (NONMEM®) was used to construct a pharmacokinetic model based on a model-building cohort of 177 patients with Guillain–Barré syndrome, with a total of 589 sequential serum samples tested for total immunoglobulin G (IgG) levels, and evaluated on an independent validation cohort that consisted of 177 patients with Guillain–Barré syndrome with 689 sequential serum samples. Results The final two-compartment model accurately described the daily increment in serum IgG levels during a standard IVIg course; the initial rapid fall and then a gradual decline to steady-state levels thereafter. The covariates that increased IgG clearance were a more severe disease (as indicated by the Guillain–Barré syndrome disability score) and concomitant methylprednisolone treatment. When the current dosing regimen was simulated, the percentage of patients who reached a target ∆IgG > 7.3 g/L at 2 weeks decreased from 74% in mildly affected patients to only 33% in the most severely affected and mechanically ventilated patients (Guillain–Barré syndrome disability score of 5). Conclusions This is the first population-pharmacokinetic model for standard IVIg treatment in Guillain–Barré syndrome. The model provides a new tool to predict the pharmacokinetics of alternative regimens of IVIg in Guillain–Barré syndrome to design future trials and personalise treatment. Supplementary Information The online version contains supplementary material available at 10.1007/s40262-022-01136-z.
Collapse
|
44
|
Guillain-Barré-like syndrome: an uncommon feature of CASPR2 and LGI1 autoimmunity. J Neurol 2022; 269:5893-5900. [PMID: 35781606 DOI: 10.1007/s00415-022-11248-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 06/08/2022] [Accepted: 06/20/2022] [Indexed: 10/17/2022]
Abstract
Contactin-associated protein-like 2 (CASPR2) and leucine-rich glioma-inactivated 1 (LGI1) are essential components of the voltage-gated Kv1 potassium channel complex and are extensively expressed in both central and peripheral nervous system. Autoimmune CASPR2 and LGI1 disorders commonly present with Morvan syndrome (Mos) and/or limbic encephalitis, but whether Guillain-Barré syndrome (GBS) is a specific clinical phenotype is unknown. Here, we first reported an adult patient with dual CASPR2 and LGI1 antibodies in both serum and cerebrospinal fluid, who initially presented with a GBS-like syndrome and developed a typical MoS and respiratory paralysis, with a rapid resolution of his neurological symptoms and disappearance of autoantibodies after treatment with plasma exchange. Additionally, we also provided an overview of the previously reported GBS cases associated with CASPR2 or LGI1 antibodies. These cases expand the phenotypic spectrum of CASPR2 and LGI1 autoimmune syndromes, implying that these two antigens, especially CASPR2, are likely to participate in the etiology of GBS as a potential new target antigen, which deserves further exploration.
Collapse
|
45
|
Trifiletti R, Lachman HM, Manusama O, Zheng D, Spalice A, Chiurazzi P, Schornagel A, Serban AM, van Wijck R, Cunningham JL, Swagemakers S, van der Spek PJ. Identification of ultra-rare genetic variants in pediatric acute onset neuropsychiatric syndrome (PANS) by exome and whole genome sequencing. Sci Rep 2022; 12:11106. [PMID: 35773312 PMCID: PMC9246359 DOI: 10.1038/s41598-022-15279-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 06/21/2022] [Indexed: 12/13/2022] Open
Abstract
Abrupt onset of severe neuropsychiatric symptoms including obsessive-compulsive disorder, tics, anxiety, mood swings, irritability, and restricted eating is described in children with Pediatric Acute-Onset Neuropsychiatric Syndrome (PANS). Symptom onset is often temporally associated with infections, suggesting an underlying autoimmune/autoinflammatory etiology, although direct evidence is often lacking. The pathological mechanisms are likely heterogeneous, but we hypothesize convergence on one or more biological pathways. Consequently, we conducted whole exome sequencing (WES) on a U.S. cohort of 386 cases, and whole genome sequencing (WGS) on ten cases from the European Union who were selected because of severe PANS. We focused on identifying potentially deleterious genetic variants that were de novo or ultra-rare (MAF) < 0.001. Candidate mutations were found in 11 genes (PPM1D, SGCE, PLCG2, NLRC4, CACNA1B, SHANK3, CHK2, GRIN2A, RAG1, GABRG2, and SYNGAP1) in 21 cases, which included two or more unrelated subjects with ultra-rare variants in four genes. These genes converge into two broad functional categories. One regulates peripheral immune responses and microglia (PPM1D, CHK2, NLRC4, RAG1, PLCG2). The other is expressed primarily at neuronal synapses (SHANK3, SYNGAP1, GRIN2A, GABRG2, CACNA1B, SGCE). Mutations in these neuronal genes are also described in autism spectrum disorder and myoclonus-dystonia. In fact, 12/21 cases developed PANS superimposed on a preexisting neurodevelopmental disorder. Genes in both categories are also highly expressed in the enteric nervous system and the choroid plexus. Thus, genetic variation in PANS candidate genes may function by disrupting peripheral and central immune functions, neurotransmission, and/or the blood-CSF/brain barriers following stressors such as infection.
Collapse
Affiliation(s)
| | - Herbert M Lachman
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, 10461, USA.
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA.
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA.
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA.
| | - Olivia Manusama
- Department of Immunology, Erasmus MC, Rotterdam, The Netherlands
| | - Deyou Zheng
- Department of Neurology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Alberto Spalice
- Department of Pediatrics, Pediatric Neurology, Sapienza University of Rome, Rome, Italy
| | - Pietro Chiurazzi
- Sezione di Medicina Genomica, Dipartimento Scienze della Vita e Sanità Pubblica, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy
- Dipartimento Scienze di Laboratorio e Infettivologiche, UOC Genetica Medica, Rome, Italy
| | - Allan Schornagel
- GGZ-Delfland, Kinderpraktijk Zoetermeer, Zoetermeer, The Netherlands
| | - Andreea M Serban
- Department of Pathology and Clinical Bioinformatics, Erasmus MC, Rotterdam, The Netherlands
| | - Rogier van Wijck
- Department of Pathology and Clinical Bioinformatics, Erasmus MC, Rotterdam, The Netherlands
| | - Janet L Cunningham
- Department of Neuroscience, Psychiatry, Uppsala University, Uppsala, Sweden
| | - Sigrid Swagemakers
- Department of Pathology and Clinical Bioinformatics, Erasmus MC, Rotterdam, The Netherlands
| | - Peter J van der Spek
- Department of Pathology and Clinical Bioinformatics, Erasmus MC, Rotterdam, The Netherlands
| |
Collapse
|
46
|
Dalakas MC. Role of complement, anti-complement therapeutics, and other targeted immunotherapies in myasthenia gravis. Expert Rev Clin Immunol 2022; 18:691-701. [PMID: 35730504 DOI: 10.1080/1744666x.2022.2082946] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
INTRODUCTION Several patients with myasthenia gravis (MG) do not adequately respond to available drugs or exhibit poor tolerance, necessitating the need for new therapies. AREAS COVERED The paper discusses the rapidly evolving target-specific immunotherapies that promise long-standing remissions in the management of MG. It is specifically focused on the role of complement, anti-complement therapeutics, and the anti-FcRn and B cell monoclonals. EXPERT OPINION Anti-AChR antibodies cause internalization of the receptors and activate complement leading to in situ MAC formation that damages the post-synaptic membrane of the neuromuscular junction. Inhibiting MAC formation by antibodies targeting key complements subcomponents is a reasonable therapeutic goal. Indeed, the anti-C5 monoclonal antibodies, Eculizumab, Ravulizumab, and Zilucoplan, have been successfully tested in MG with Eculizumab first and now Ravulizumab FDA-approved for refractory MG based on sustained long-term benefits. Among the biologics that inhibit FcRn, Efgartigimod caused rapid reduction of the circulating IgG in the lysosomes, and induced sustained clinical remission with good safety profile leading to FDA-approved indication. Anti-B cell agents, like Rituximab, can induce sustained long-term remissions, especially in IgG4 antibody-mediated Musk-MG, by targeting short-lived antibody-secreting plasmablasts. These biologics offer effective targeted immunotherapies with good tolerance promising to change the therapeutic algorithm in the chronic MG management.
Collapse
Affiliation(s)
- Marinos C Dalakas
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA, USA.,Neuroimmunology Unit, National and Kapodistrian University, University of Athens Medical School, Athens, Greece
| |
Collapse
|
47
|
Yu H, Liu F, Chen K, Xu Y, Wang Y, Fu L, Zhou H, Pi L, Che D, Li H, Gu X. The EIF2AK4/rs4594236 AG/GG Genotype Is a Hazard Factor of Immunoglobulin Therapy Resistance in Southern Chinese Kawasaki Disease Patients. Front Genet 2022; 13:868159. [PMID: 35812738 PMCID: PMC9257007 DOI: 10.3389/fgene.2022.868159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 05/16/2022] [Indexed: 12/19/2022] Open
Abstract
Background: Kawasaki disease (KD) is an acute, self-limited vasculitis disorder of unknown etiology in children. Immunologic abnormalities were detected during the acute phase of KD, which reflected that the effect cells of the activated immune system markedly increased cytokine production. High-dose intravenous immunoglobulin (IVIG) therapy is effective in resolving inflammation from KD and reducing occurrence of coronary artery abnormalities. However, 10%–20% of KD patients have no response to IVIG therapy, who were defined as IVIG resistance. Furthermore, these patients have persistent inflammation and increased risk of developing coronary artery aneurysm (CAA). EIF2AK4 is a stress sensor gene and can be activated by pathogen infection. In addition, the polymorphisms of EIF2AK4 were associated with various blood vessel disorders. However, it remains unclear whether the EIF2AK4 gene polymorphisms were related to IVIG therapy outcome in KD patients. Methods:EIF2AK4/rs4594236 polymorphism was genotyped in 795 IVIG response KD patients and 234 IVIG resistant KD patients through TaqMan, a real-time polymerase chain reaction. The odds ratios (ORs) and 95% confidence intervals (CIs) were calculated to assess the strength of association between EIF2AK4/rs4594236 polymorphism and IVIG therapeutic effects. Results: Our results showed that the EIF2AK4/rs4594236 AG/GG genotype was significantly associated with increased risk to IVIG resistance compared to the AA genotype (AG vs. AA: adjusted ORs = 1.71, 95% CIs = 1.17–2.51, and p = 0.0061; GG vs. AA: adjusted ORs = 2.09, 95% CIs = 1.36–3.23, and p = 0.0009; AG/GG vs. AA: adjusted ORs = 1.82, 95% CIs = 1.27–2.63, and p = 0.0013; and GG vs. AA/AG: adjusted ORs = 1.45, 95% CI = 1.04–2.02, and p = 0.0306). Furthermore, the stratified analysis of age and gender in the KD cohort indicated that male patients carrying the rs4594236 AG/GG genotype tends to be more resistant to IVIG therapy than female patients. Conclusion: These results suggested that EIF2AK4/rs4594236 polymorphism might be associated with increased risk of IVIG resistance in southern Chinese KD patients.
Collapse
Affiliation(s)
- Hongyan Yu
- Department of Clinical Biological Resource Bank, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Fucheng Liu
- Department of Cardiology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Kaining Chen
- Department of Clinical Biological Resource Bank, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Yufen Xu
- Department of Clinical Biological Resource Bank, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Yishuai Wang
- Department of Clinical Biological Resource Bank, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Lanyan Fu
- Department of Clinical Biological Resource Bank, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Huazhong Zhou
- Department of Clinical Biological Resource Bank, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Lei Pi
- Department of Clinical Biological Resource Bank, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Di Che
- Department of Clinical Biological Resource Bank, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Hehong Li
- Department of Radiology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
- *Correspondence: Hehong Li, ; Xiaoqiong Gu,
| | - Xiaoqiong Gu
- Department of Clinical Biological Resource Bank, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
- Department of Blood Transfusion and Clinical Lab, Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
- *Correspondence: Hehong Li, ; Xiaoqiong Gu,
| |
Collapse
|
48
|
Wang Z, Xiao H, Dong J, Li Y, Wang B, Chen Z, Zeng X, Liu J, Dong Y, Ma L, Xu J, Cheng L, Li C, Liu X, Cui M. Sexual dimorphism in gut microbiota dictates therapeutic efficacy of intravenous immunoglobulin on radiotherapy complications. J Adv Res 2022; 46:123-133. [PMID: 35700918 PMCID: PMC10105085 DOI: 10.1016/j.jare.2022.06.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 05/16/2022] [Accepted: 06/07/2022] [Indexed: 11/18/2022] Open
Abstract
INTRODUCTION With the mounting number of cancer survivors, the complications following cancer treatment become novel conundrums and starve for countermeasures. Intravenous immunoglobulin (IVIg) is a purified preparation for immune-deficient and autoimmune conditions. OBJECTIVES Here, we investigated whether IVIg could be employed to fight against radiation injuries and explored the underlying mechanism. METHODS Hematopoietic or gastrointestinal (GI) tract toxicity was induced by total body or abdominal local irradiation. High-throughput sequencing was performed to analyze the gut microbiota configurations and gene expression profile of small intestine. The untargeted metabolomics of gut microbiome was assessed by liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) analyses. Hydrodynamic-based gene delivery was used to knockdown the target genes in vivo. RESULTS Intravenous injection of IVIg protected against radiation-induced hematopoietic and GI tract toxicity in female mice but not in males. IVIg structured sex-characteristic gut microbiota configurations in abdominal irradiated mice. The irradiation enriched gut Lachnospiraceae in female mice but reduced those in males. IVIg injection combined with oral gavage of Lachnospiraceae or its metabolite hypoxanthine, alleviated radiation toxicity in male mice however, Lachnospiraceae or hypoxanthine alone failed to ameliorate the injuries. Abdominal local irradiation drove sex-distinct gene expression signatures in small intestine. Mechanistic investigation showed that replenishment of Lachnospiraceae or hypoxanthine offset abdominal radiation-reduced PLD1 expression in male mice. In females, irradiation elevated PLD1 expression. Deletion of PLD1 in GI tract of female mice erased the radioprotective effects of IVIg. CONCLUSION IVIg battles against radiation injuries in a sex-specific, gut microbiome-dependent way through Lachnospiraceae/hypoxanthine/PLD1 axis. Our findings provide a sex-precise therapeutic avenue to improve the prognosis of cancer patients with radiotherapy in pre-clinical settings.
Collapse
Affiliation(s)
- Zongkui Wang
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College, Chengdu, 610052, China
| | - Huiwen Xiao
- Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Jiali Dong
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, China
| | - Yuan Li
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, China
| | - Bin Wang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, China
| | - Zhiyuan Chen
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, China
| | - Xiaozhou Zeng
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, China
| | - Jia Liu
- Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Yanxi Dong
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, China
| | - Li Ma
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College, Chengdu, 610052, China
| | - Jun Xu
- Shanghai RAAS Blood products Co., Ltd., Shanghai, 201401, China
| | - Lu Cheng
- Shanghai RAAS Blood products Co., Ltd., Shanghai, 201401, China
| | - Changqing Li
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College, Chengdu, 610052, China.
| | - Xingzhong Liu
- Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, 300071, China.
| | - Ming Cui
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, China.
| |
Collapse
|
49
|
Wang Y, Huan X, Jiao K, Jiang Q, Goh LY, Shi J, Lv Z, Xi J, Song J, Yan C, Lin J, Zhu W, Zhu X, Zhou Z, Xia R, Luo S, Zhao C. Plasma exchange versus intravenous immunoglobulin in AChR subtype myasthenic crisis: A prospective cohort study. Clin Immunol 2022; 241:109058. [PMID: 35690385 DOI: 10.1016/j.clim.2022.109058] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 05/31/2022] [Accepted: 06/03/2022] [Indexed: 11/03/2022]
Abstract
Myasthenic crisis (MC) is a life-threatening state with respiratory failure in patients with myasthenia gravis (MG). The fast-acting immunomodulatory therapies for treating MC included plasma exchange (PE) and intravenous immunoglobulin (IVIG). However, the efficacy and the impact on antibody changes remained unknown. We prospectively followed 40 anti-acetylcholine receptors (AChR) antibody-positive MC patients who received either PE (n = 12) or IVIG (n = 28) at crisis. PE was associated with a reduced ICU stay length (p = 0.018) and an early response by the average changes in MGFA-QMG (p = 0.003), MMT (p = 0.020), and ADL (p = 0.011) at one-week off-ventilation. However, the clinical efficacy was equally comparable in both groups after 1 month. Post-treatment hemoglobin drop was significant in both groups, while IVIG was associated with a significant reduction in anti-AChR antibody titers (p < 0.001). This analysis provides real-world evidence in supporting the use of PE as a fast-acting therapy for shortening the ICU stay in AChR-associated MC.
Collapse
Affiliation(s)
- Yuan Wang
- Department of Blood Transfusion, Huashan Hospital Fudan University, Shanghai 200040, China
| | - Xiao Huan
- Huashan Rare disease centre, Department of Neurology, Huashan Hospital Fudan University, Shanghai 200040, China; National Center for Neurological Disorders, Shanghai 200040, China
| | - Kexin Jiao
- Huashan Rare disease centre, Department of Neurology, Huashan Hospital Fudan University, Shanghai 200040, China; National Center for Neurological Disorders, Shanghai 200040, China
| | - Qilong Jiang
- First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Li-Ying Goh
- Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Jianquan Shi
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zhiguo Lv
- Changchun University of Chinese Medicine Department of Neurology, The Affiliated Hospital of Changchun University of Chinese Medicine, Changchun 130000, China
| | - Jianying Xi
- Huashan Rare disease centre, Department of Neurology, Huashan Hospital Fudan University, Shanghai 200040, China; National Center for Neurological Disorders, Shanghai 200040, China
| | - Jie Song
- Huashan Rare disease centre, Department of Neurology, Huashan Hospital Fudan University, Shanghai 200040, China; National Center for Neurological Disorders, Shanghai 200040, China
| | - Chong Yan
- Huashan Rare disease centre, Department of Neurology, Huashan Hospital Fudan University, Shanghai 200040, China; National Center for Neurological Disorders, Shanghai 200040, China
| | - Jie Lin
- Huashan Rare disease centre, Department of Neurology, Huashan Hospital Fudan University, Shanghai 200040, China; National Center for Neurological Disorders, Shanghai 200040, China
| | - Wenhua Zhu
- Huashan Rare disease centre, Department of Neurology, Huashan Hospital Fudan University, Shanghai 200040, China; National Center for Neurological Disorders, Shanghai 200040, China
| | - Xinfang Zhu
- Department of Blood Transfusion, Huashan Hospital Fudan University, Shanghai 200040, China
| | - Zhirui Zhou
- Radiation Oncology Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Rong Xia
- Department of Blood Transfusion, Huashan Hospital Fudan University, Shanghai 200040, China.
| | - Sushan Luo
- Huashan Rare disease centre, Department of Neurology, Huashan Hospital Fudan University, Shanghai 200040, China; National Center for Neurological Disorders, Shanghai 200040, China.
| | - Chongbo Zhao
- Huashan Rare disease centre, Department of Neurology, Huashan Hospital Fudan University, Shanghai 200040, China; National Center for Neurological Disorders, Shanghai 200040, China.
| | | |
Collapse
|
50
|
Alcantara M, Barnett C, Katzberg H, Bril V. An update on the use of immunoglobulins as treatment for myasthenia gravis. Expert Rev Clin Immunol 2022; 18:703-715. [PMID: 35639497 DOI: 10.1080/1744666x.2022.2084074] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Myasthenia gravis (MG) is an antibody mediated disease where pathogenic antibodies interact with the acetylcholine receptor or other proteins at the post-synaptic neuromuscular junction. There is growing evidence that immunoglobulin infusions are beneficial for clinical exacerbations and chronic refractory disease and may be an option for patients unresponsive to conventional immunosuppressive therapies. AREAS COVERED We performed an extensive literature review, looking for evidence on the use of immunoglobulins for the treatment of MG, by conducting a search in MEDLINE (1946 to present), EMBASE (1947 to present) and Clinicaltrials.gov. We have included studies on the use of intravenous immunoglobulins (IVIG) and subcutaneous immunoglobulins (SCIG) for acute deterioration and chronic disease. EXPERT OPINION The use of IVIG in MG provides an option for rapid improvement in critical deterioration, being preferred over more invasive and less available therapies such as plasmapheresis. For refractory MG, the addition of IVIG can improve a patient's status and reduce the dosage of immunosuppressive medications. The alternative of SCIG is also effective and has advantages of infusion time flexibility, fewer side-effects, and patient independence. The safety and efficacy of both interventions, patient preferences and quality of life may direct therapeutic choices in the future.
Collapse
Affiliation(s)
- Monica Alcantara
- Ellen & Martin Prosserman Centre for Neuromuscular Diseases, Toronto General Hospital, University Health Network, University of Toronto, Toronto, Canada
| | - Carolina Barnett
- Ellen & Martin Prosserman Centre for Neuromuscular Diseases, Toronto General Hospital, University Health Network, University of Toronto, Toronto, Canada.,Institute of Health Policy, Management and Evaluation, Dalla Lana School of Public Health, University of Toronto
| | - Hans Katzberg
- Ellen & Martin Prosserman Centre for Neuromuscular Diseases, Toronto General Hospital, University Health Network, University of Toronto, Toronto, Canada
| | - Vera Bril
- Ellen & Martin Prosserman Centre for Neuromuscular Diseases, Toronto General Hospital, University Health Network, University of Toronto, Toronto, Canada
| |
Collapse
|