1
|
An J, Liu Z, Wang Y, Meng K, Wang Y, Sun H, Li M, Tang Z. Drug delivery strategy of hemostatic drugs for intracerebral hemorrhage. J Control Release 2025; 379:202-220. [PMID: 39793654 DOI: 10.1016/j.jconrel.2025.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/26/2024] [Accepted: 01/03/2025] [Indexed: 01/13/2025]
Abstract
Intracerebral hemorrhage (ICH) is associated with high rates of mortality and disability, underscoring an urgent need for effective therapeutic interventions. The clinical prognosis of ICH remains limited, primarily due to the absence of targeted, precise therapeutic options. Advances in novel drug delivery platforms, including nanotechnology, gel-based systems, and exosome-mediated therapies, have shown potential in enhancing ICH management. This review delves into the pathophysiological mechanisms of ICH and provides a thorough analysis of existing treatment strategies, with an emphasis on innovative drug delivery approaches designed to address critical pathological pathways. We assess the benefits and limitations of these therapies, offering insights into future directions in ICH research and highlighting the transformative potential of next-generation drug delivery systems in improving patient outcomes.
Collapse
Affiliation(s)
- Junyan An
- China-Japan Union Hospital of Jilin University, Department of Neurosurgery, Changchun, Jilin Province 130033, China; Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Zhilin Liu
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Yihan Wang
- China-Japan Union Hospital of Jilin University, Department of Neurosurgery, Changchun, Jilin Province 130033, China
| | - Ke Meng
- China-Japan Union Hospital of Jilin University, Department of Neurosurgery, Changchun, Jilin Province 130033, China
| | - Yixuan Wang
- China-Japan Union Hospital of Jilin University, Department of Neurosurgery, Changchun, Jilin Province 130033, China
| | - Hai Sun
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
| | - Miao Li
- China-Japan Union Hospital of Jilin University, Department of Neurosurgery, Changchun, Jilin Province 130033, China.
| | - Zhaohui Tang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
| |
Collapse
|
2
|
Zhou F, He Y, Zhang M, Gong X, Liu X, Tu R, Yang B. Polydopamine(PDA)-coated diselenide-bridged mesoporous silica-based nanoplatform for neuroprotection by reducing oxidative stress and targeting neuroinflammation in intracerebral hemorrhage. J Nanobiotechnology 2024; 22:731. [PMID: 39578855 PMCID: PMC11585243 DOI: 10.1186/s12951-024-03023-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 11/14/2024] [Indexed: 11/24/2024] Open
Abstract
Oxidative stress (OS) and neuroinflammation are critical pathological processes in secondary brain injury (SBI) after intracerebral hemorrhage(ICH), and their intimate interactions initiate and aggravate brain damage. Thus, targeting oxidative stress and neuroinflammation could be a promising therapeutic strategy for ICH treatment. Here, we report a high-performance platform using polydopamine (PDA)-coated diselenide bridged mesoporous silica nanoparticle (PDA-DSeMSN) as a smart ROS scavenger and ROS-responsive drug delivery system. Caffeic acid phenethyl ester (CAPE) was blocked in the pore of DSeMSN by covering the pore with PDA as a gatekeeper. PDA-DSeMSN @CAPE maintained high stability and underwent reactive oxygen species (ROS)-responsive degradation and drug release. The intelligent nanomaterial effectively eliminated ROS, promoted M1 to M2 microglial conversion and suppressed neuroinflammation in vitro and in vivo. Importantly, intravenous administration of PDA-DSeMSN@CAPE specifically accumulated in perihematomal sites and demonstrated robust neuroprotection in an ICH mouse model with high biological safety. Taking together, the synergistic effect of ROS-responsive drug delivery ability and ROS scavenging ability of PDA-DSeMSN makes it a powerful drug delivery platform and provided new considerations into the therapeutic action to improve ICH-induce brain injury.
Collapse
Affiliation(s)
- Fangfang Zhou
- Department of Neurology, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
- Clinical Medical Research Center for Stroke Prevention and Treatment of Hunan Province, Department of Neurology, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Yongju He
- School of Materials Science and Engineering, Central South University, Changsha, 410083, Hunan, China
| | - Meiru Zhang
- School of Materials Science and Engineering, Central South University, Changsha, 410083, Hunan, China
| | - Xiyu Gong
- Department of Neurology, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
- Clinical Medical Research Center for Stroke Prevention and Treatment of Hunan Province, Department of Neurology, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Xiaoxuan Liu
- Department of Neurology, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
- Clinical Medical Research Center for Stroke Prevention and Treatment of Hunan Province, Department of Neurology, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Ranran Tu
- Department of Neurology, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
- Clinical Medical Research Center for Stroke Prevention and Treatment of Hunan Province, Department of Neurology, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Binbin Yang
- Department of Neurology, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China.
- Clinical Medical Research Center for Stroke Prevention and Treatment of Hunan Province, Department of Neurology, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China.
| |
Collapse
|
3
|
Cui C, Zheng J, Zhang H, Xing Z. Pterostilbene ameliorates oxidative stress and neuronal apoptosis after intracerebral hemorrhage via the sirtuin 1-mediated Nrf2 pathway in vivo and in vitro. J Stroke Cerebrovasc Dis 2024; 33:107950. [PMID: 39173685 DOI: 10.1016/j.jstrokecerebrovasdis.2024.107950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/21/2024] [Accepted: 08/14/2024] [Indexed: 08/24/2024] Open
Abstract
INTRODUCTION Oxidative stress and neuroapoptosis are significant pathological processes that occur in response to intracerebral hemorrhage (ICH), however, the optimal therapeutic strategy to treat these responses remains unknown. Pterostilbene (PTE) influences neural cell survival in in the pathology of a number of neurological diseases, but the mechanisms underlying this influence at present are not clear. The objective of the present study was to examine the potential impact of PTE on mitigating oxidative stress and neuronal apoptosis following ICH, while also elucidating the potential underlying pathways. MATERIAL & METHOD For in vivo experimentation, male C57BL/6 mice were used to establish ICH models. Wet-to-dry weight ratios were utilized to assess the degree of cerebral edema in the context of PTE intervention. Behavioral experiments were conducted to evaluate neurological dysfunction and cognitive impairment, and hematoxylin and eosin staining was employed to observe histopathological changes in the brain. Furthermore, oxidative stress levels in hippocampal tissues were measured, and cell apoptosis was examined using TUNEL staining and western blotting techniques. In vitro experiments were conducted to evaluate the extent of oxidative stress and neural apoptosis after sirtuin 1 (SIRT1) siRNA treatment. Immunofluorescence cytochemistry was used to analyze the immunofluorescence colocalization of SIRT1 and NeuN. RESULT Mice that experienced ICH exhibited worsening neurological deterioration, increased oxidative stress and neuronal cell apoptosis. However, the addition of PTE was found to lessen these effects. Furthermore, PTE was found to activate the SIRT1-mediated Nrf2 pathway in mice with ICH. When SIRT1 was inhibited, levels of oxidative stress and neuronal apoptosis increased, even in the presence of PTE. CONCLUSION The present study provided evidence to indicate that PTE can suppress oxidative damage and neuronal apoptosis following ICH by activating the SIRT1/Nrf2 pathway.
Collapse
Affiliation(s)
- Chengxi Cui
- Department of Neurosurgery, Xinxiang Central Hospital, The Fourth Clinical College of Xinxiang Medical University, Xinxiang, Henan 453000, PR China
| | - Jie Zheng
- Department of Neurosurgery, Xinxiang Central Hospital, The Fourth Clinical College of Xinxiang Medical University, Xinxiang, Henan 453000, PR China
| | - Hongyun Zhang
- Department of Neurosurgery, Xinxiang Central Hospital, The Fourth Clinical College of Xinxiang Medical University, Xinxiang, Henan 453000, PR China
| | - Zhenyi Xing
- Department of Neurosurgery, Xinxiang Central Hospital, The Fourth Clinical College of Xinxiang Medical University, Xinxiang, Henan 453000, PR China.
| |
Collapse
|
4
|
Liang T, Liu R, Liu J, Hong J, Gong F, Yang X. miRNA506 Activates Sphk1 Binding with Sirt1 to Inhibit Brain Injury After Intracerebral Hemorrhage via PI3K/AKT Signaling Pathway. Mol Neurobiol 2024:10.1007/s12035-024-04534-5. [PMID: 39395147 DOI: 10.1007/s12035-024-04534-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 10/06/2024] [Indexed: 10/14/2024]
Abstract
Intracerebral hemorrhage (ICH) is an acute neurological disorder characterized by high mortality and disability rates. Previous studies have shown that 75% of patients who survive ICH experience varying degrees of neurological deficits. Sphk1 has been implicated in a multitude of phylogenetic processes, including innate immunity and cell proliferation. An in vivo rat model of ICH and an in vitro model of neuronal oxyhemoglobin (OxyHb) were constructed. The expression level of Sphk1 was assessed using western blotting and immunofluorescence, whereas cell death following ICH was evaluated using fluoro-Jade B and terminal deoxynucleotidyl transferase dUTP nick end labeling staining. Immunofluorescence facilitated the examination of microglial phenotypic alterations, while enzyme-linked immunosorbent assays were used to determine the concentrations of inflammatory markers. Behavioral assays were employed to assess the overall behavioral modifications of animals. Neuronal Sphk1/Sirt1 protein levels gradually increased following the induction of ICH. Elevated Sphk1 expression resulted in increased levels of anti-inflammatory microglia and reduced levels of pro-inflammatory factors. In contrast, suppression of Sphk1 expression resulted in an increased number of dead cells, thereby exacerbating neurological deficits. In vitro findings indicated that the levels of phosphorylated PI3K and AKT proteins increased in conjunction with Sphk1 expression. This study established that after ICH, Sphk1 interacts with Sirt1 to mitigate neuroinflammation, cell death, oxidative stress, and brain edema via the PI3K/AKT signaling pathway. Augmenting expression of Sphk1 significantly can ameliorate neurological impairments induced by ICH, offering novel targets and perspectives for therapeutic interventions in ICH treatment.
Collapse
Affiliation(s)
- Tianyu Liang
- Emergency and Critical Care Center, Intensive Care Unit, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China
| | - Renyang Liu
- Emergency and Critical Care Center, Intensive Care Unit, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China
| | - Jinquan Liu
- Emergency and Critical Care Center, Intensive Care Unit, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China
| | - Jun Hong
- Emergency and Critical Care Center, Intensive Care Unit, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China
| | - Fangxiao Gong
- Department of Critical Care Medicine, Zhejiang Provincial People's Hospital Bijie Hospital, Bijie, Guizhou, 551799, China
| | - Xianghong Yang
- Emergency and Critical Care Center, Intensive Care Unit, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China.
| |
Collapse
|
5
|
Zhou L, Wu Y, Wang J, Wu H, Tan Y, Chen X, Song X, Ren Y, Yang Q. Development of a Predictive Nomogram for Intra-Hospital Mortality in Acute Ischemic Stroke Patients Using LASSO Regression. Clin Interv Aging 2024; 19:1423-1436. [PMID: 39139210 PMCID: PMC11321337 DOI: 10.2147/cia.s471885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 08/02/2024] [Indexed: 08/15/2024] Open
Abstract
Background and Purpose Ischemic stroke is a leading cause of mortality and disability globally, necessitating accurate prediction of intra-hospital mortality (IHM) for improved patient care. This study aimed to develop a practical nomogram for personalized IHM risk prediction in ischemic stroke patients. Methods A retrospective study of 422 ischemic stroke patients (April 2020 - December 2021) from Chongqing Medical University's First Affiliated Hospital was conducted, with patients divided into training (n=295) and validation (n=127) groups. Data on demographics, comorbidities, stroke risk factors, and lab results were collected. Stroke severity was assessed using NIHSS, and stroke types were classified by TOAST criteria. Least absolute shrinkage and selection operator (LASSO) regression was employed for predictor selection and nomogram construction, with evaluation through ROC curves, calibration curves, and decision curve analysis. Results LASSO regression and multivariate logistic regression identified four independent IHM predictors: age, admission NIHSS score, chronic obstructive pulmonary disease (COPD) diagnosis, and white blood cell count (WBC). A highly accurate nomogram based on these variables exhibited excellent predictive performance, with AUCs of 0.958 (training) and 0.962 (validation), sensitivities of 93.2% and 95.7%, and specificities of 93.1% and 90.9%, respectively. Calibration curves and decision curve analysis validated its clinical applicability. Conclusion Age, admission NIHSS score, COPD history, and WBC were identified as independent IHM predictors in ischemic stroke patients. The developed nomogram demonstrated high predictive accuracy and practical utility for mortality risk estimation. External validation and prospective studies are warranted for further confirmation of its clinical efficacy.
Collapse
Affiliation(s)
- Li Zhou
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| | - Youlin Wu
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
- Department of Neurology, Chongzhou People’s Hospital, Sichuan, People’s Republic of China
| | - Jiani Wang
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| | - Haiyun Wu
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| | - Yongjun Tan
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| | - Xia Chen
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
- Department of Neurology, the Seventh People’s Hospital of Chongqing, Chongqing, People’s Republic of China
| | - Xiaosong Song
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
- Department of Neurology, the Ninth People’s Hospital of Chongqing, Chongqing, People’s Republic of China
| | - Yu Ren
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| | - Qin Yang
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| |
Collapse
|
6
|
Xing G, Mu L, Han B, Zhu R. The silent information regulator 1 agonist SRT1720 reduces experimental intracerebral hemorrhagic brain injury by regulating the blood-brain barrier integrity. Neuroreport 2024; 35:679-686. [PMID: 38874950 DOI: 10.1097/wnr.0000000000002052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
Intracerebral hemorrhage (ICH) is a significant public health matter that has no effective treatment. ICH-induced destruction of the blood-brain barrier (BBB) leads to neurological deterioration. Astrocytic sonic hedgehog (SHH) alleviates brain injury by maintaining the integrity of the BBB after ICH. Silent information regulator 1 (SIRT1) is neuroprotective in several central nervous system diseases via BBB regulation. It is also a possible influential factor of the SHH signaling pathway. Nevertheless, the role of SIRT1 on BBB and the underlying pathological process associated with the SHH signaling pathway after ICH remain unclear. We established an intracerebral hemorrhagic mouse model by collagenase injection. SRT1720 (a selective agonist of SIRT1) was used to evaluate the effect of SIRT1 on BBB integrity after ICH. SIRT1 expression was reduced in the mouse brain after ICH. SRT1720 attenuated neurobehavioral impairments and brain edema of ICH mouse. After ICH induction, SRT1720 improved BBB integrity and tight junction expressions in the mouse brain. The SHH signaling pathway-related factors smoothened and glioma-associated oncogene homolog-1 were increased with the intervention of SRT1720, while cyclopamine (a specific inhibitor of the SHH signaling pathway) reversed these effects. These findings suggest that SIRT1 protects from ICH by altering BBB permeability and tight junction expression levels. This process is associated with the SHH signaling pathway, suggesting that SIRT1 may be a potential therapeutic target for ICH.
Collapse
Affiliation(s)
- Gebeili Xing
- Departments of Neurology, Inner Mongolia People's Hospital
| | - Lei Mu
- Geriatrics, Inner Mongolia People's Hospital, Hohhot, Inner Mongolia, China
| | - Bing Han
- Departments of Neurology, Inner Mongolia People's Hospital
| | - Runxiu Zhu
- Departments of Neurology, Inner Mongolia People's Hospital
| |
Collapse
|
7
|
Wang W, Liu X, Wang Y, Zhou D, Chen L. Application of biomaterials in the treatment of intracerebral hemorrhage. Biomater Sci 2024; 12:4065-4082. [PMID: 39007343 DOI: 10.1039/d4bm00630e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Although the current surgical hematoma removal treatment saves patients' lives in critical moments of intracerebral hemorrhage (ICH), the lethality and disability rates of ICH are still very high. Due to the individual differences of patients, postoperative functional improvement is still to be confirmed, and the existing drug treatment has limited benefits for ICH. Recent advances in biomaterials may provide new ideas for the therapy of ICH. This review first briefly describes the pathogenic mechanisms of ICH, including primary and secondary injuries such as inflammation and intracerebral edema, and briefly describes the existing therapeutic approaches and their limitations. Secondly, existing nanomaterials and hydrogels for ICH, including exosomes, liposomes, and polymer nanomaterials, are also described. In addition, the potential challenges and application prospects of these biomaterials for clinical translation in ICH treatment are discussed.
Collapse
Affiliation(s)
- Wei Wang
- Department of Neurosurgery, Southern Medical University Hospital of Integrated Traditional Chinese and Western Medicine, Southern Medical University, Guangzhou 510310, P. R. China.
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, P. R. China.
| | - Xiaowen Liu
- Department of Neurosurgery, Southern Medical University Hospital of Integrated Traditional Chinese and Western Medicine, Southern Medical University, Guangzhou 510310, P. R. China.
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, P. R. China.
| | - Yupeng Wang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, P. R. China.
| | - Dongfang Zhou
- Department of Neurosurgery, Southern Medical University Hospital of Integrated Traditional Chinese and Western Medicine, Southern Medical University, Guangzhou 510310, P. R. China.
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, P. R. China.
- Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Lukui Chen
- Department of Neurosurgery, Southern Medical University Hospital of Integrated Traditional Chinese and Western Medicine, Southern Medical University, Guangzhou 510310, P. R. China.
| |
Collapse
|
8
|
Mrochen A, Song Y, Harders V, Sembill JA, Sprügel MI, Hock S, Lang S, Engelhorn T, Kallmünzer B, Volbers B, Kuramatsu JB. Influence of bundled care treatment on functional outcome in patients with intracerebral hemorrhage. Front Neurol 2024; 15:1357815. [PMID: 39161870 PMCID: PMC11330843 DOI: 10.3389/fneur.2024.1357815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 06/27/2024] [Indexed: 08/21/2024] Open
Abstract
Background and aims General guideline recommendations in patients with intracerebral hemorrhage (ICH) include blood pressure-, temperature- and glucose management. The therapeutic effect of such a "care bundle" (blood pressure lowering, glycemic control, and treatment of pyrexia) on clinical outcomes becomes increasingly established. For the present study, we aimed to investigate associations of strict bundled care treatment (BCT) with clinical outcomes and characterize associations with key outcome effectors such as hematoma enlargement (HE) and peak perihemorrhagic edema (PHE). Methods We screened consecutive ICH patients (n = 1,322) from the prospective UKER-ICH cohort study. BCT was defined as achieving and maintaining therapeutic ranges for systolic blood pressure (110-160 mmHg), glucose (80-180 mg/dL), and body temperature (35.5-37.5°C) over the first 72 h. The primary outcome was the functional outcome at 12 months (modified Rankin Scale (mRS) 0-3). Secondary outcomes included mortality at 12 months, the occurrence of hematoma enlargement, and the development of peak perihemorrhagic edema. Confounding was addressed by a doubly robust methodology to calculate the absolute treatment effect (ATE) and by calculating e-values. Results A total of 681 patients remained for analysis, and 182 patients fulfilled all three BCT criteria and were compared to 499 controls. The ATE of BCT to achieve the primary outcome was 9.3%, 95% CI (1.7 to 16.9), p < 0.001; e-value: 3.1, CI (1.8). Mortality at 12 months was significantly reduced by BCT [ATE: -12.8%, 95% CI (-19.8 to -5.7), p < 0.001; e-value: 3.8, CI (2.2)], and no association was observed for HE or peak PHE. Significant drivers of BCT effect on the primary outcome were systolic blood pressure control (ATE: 15.9%) and maintenance of normothermia (ATE: 10.9%). Conclusion Strict adherence to this "care bundle" over the first 72 h during acute hospital care in patients with ICH was independently associated with improved functional long-term outcome, driven by systolic blood pressure control and maintenance of normothermia. Our findings strongly warrant prospective validation to determine the generalizability especially in Western countries.Clinical trial registration:ClinicalTrials.gov, identifier [ID: NCT03183167].
Collapse
Affiliation(s)
- Anne Mrochen
- Department of Neurology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Yu Song
- Department of Neurology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Verena Harders
- Department of Neurology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Jochen A. Sembill
- Department of Neurology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Maximilian I. Sprügel
- Department of Neurology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Stefan Hock
- Department of Neuroradiology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Stefan Lang
- Department of Neuroradiology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Tobias Engelhorn
- Department of Neuroradiology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Bernd Kallmünzer
- Department of Neurology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Bastian Volbers
- Department of Neurology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Joji B. Kuramatsu
- Department of Neurology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
| |
Collapse
|
9
|
Zeng H, Zeng D, Yin X, Zhang W, Wu M, Chen Z. Research progress on high-concentration oxygen therapy after cerebral hemorrhage. Front Neurol 2024; 15:1410525. [PMID: 39139771 PMCID: PMC11320605 DOI: 10.3389/fneur.2024.1410525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 07/18/2024] [Indexed: 08/15/2024] Open
Abstract
Recently, the role of high-concentration oxygen therapy in cerebral hemorrhage has been extensively discussed. This review describes the research progress in high-concentration oxygen therapy after cerebral hemorrhage. High-concentration oxygen therapy can be classified into two treatment methods: hyperbaric and normobaric high-concentration oxygen therapy. Several studies have reported that high-concentration oxygen therapy uses the pathological mechanisms of secondary ischemia and hypoxia after cerebral hemorrhage as an entry point to improve cerebral oxygenation, metabolic rate, cerebral edema, intracranial pressure, and oxidative stress. We also elucidate the mechanisms by which molecules such as Hypoxia-inducible factor 1-alpha (HIF-1α), vascular endothelial growth factor, and erythropoietin (EPO) may play a role in oxygen therapy. Although people are concerned about the toxicity of hyperoxia, combined with relevant literature, the evidence discussed in this article suggests that as long as the duration, concentration, pressure, and treatment interval of patients with cerebral hemorrhage are properly understood and oxygen is administered within the treatment window, it can be effective to avoid hyperoxic oxygen toxicity. Combined with the latest research, we believe that high-concentration oxygen therapy plays an important positive role in injuries and outcomes after cerebral hemorrhage, and we recommend expanding the use of normal-pressure high-concentration oxygen therapy for cerebral hemorrhage.
Collapse
Affiliation(s)
- He Zeng
- Department of Neurology, Clinical Medical School of Jiujiang University, Jiujiang, Jiangxi, China
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi, China
| | - Dakai Zeng
- Department of Anorectal Surgery, Third Affiliated Hospital of Wenzhou Medical University, Zhejiang, China
| | - Xiaoping Yin
- Department of Neurology, Clinical Medical School of Jiujiang University, Jiujiang, Jiangxi, China
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi, China
| | - Wumiao Zhang
- Department of Neurology, Clinical Medical School of Jiujiang University, Jiujiang, Jiangxi, China
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi, China
| | - Moxin Wu
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi, China
| | - Zhiying Chen
- Department of Neurology, Clinical Medical School of Jiujiang University, Jiujiang, Jiangxi, China
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi, China
| |
Collapse
|
10
|
Hladky SB, Barrand MA. Regulation of brain fluid volumes and pressures: basic principles, intracranial hypertension, ventriculomegaly and hydrocephalus. Fluids Barriers CNS 2024; 21:57. [PMID: 39020364 PMCID: PMC11253534 DOI: 10.1186/s12987-024-00532-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 03/21/2024] [Indexed: 07/19/2024] Open
Abstract
The principles of cerebrospinal fluid (CSF) production, circulation and outflow and regulation of fluid volumes and pressures in the normal brain are summarised. Abnormalities in these aspects in intracranial hypertension, ventriculomegaly and hydrocephalus are discussed. The brain parenchyma has a cellular framework with interstitial fluid (ISF) in the intervening spaces. Framework stress and interstitial fluid pressure (ISFP) combined provide the total stress which, after allowing for gravity, normally equals intracerebral pressure (ICP) with gradients of total stress too small to measure. Fluid pressure may differ from ICP in the parenchyma and collapsed subarachnoid spaces when the parenchyma presses against the meninges. Fluid pressure gradients determine fluid movements. In adults, restricting CSF outflow from subarachnoid spaces produces intracranial hypertension which, when CSF volumes change very little, is called idiopathic intracranial hypertension (iIH). Raised ICP in iIH is accompanied by increased venous sinus pressure, though which is cause and which effect is unclear. In infants with growing skulls, restriction in outflow leads to increased head and CSF volumes. In adults, ventriculomegaly can arise due to cerebral atrophy or, in hydrocephalus, to obstructions to intracranial CSF flow. In non-communicating hydrocephalus, flow through or out of the ventricles is somehow obstructed, whereas in communicating hydrocephalus, the obstruction is somewhere between the cisterna magna and cranial sites of outflow. When normal outflow routes are obstructed, continued CSF production in the ventricles may be partially balanced by outflow through the parenchyma via an oedematous periventricular layer and perivascular spaces. In adults, secondary hydrocephalus with raised ICP results from obvious obstructions to flow. By contrast, with the more subtly obstructed flow seen in normal pressure hydrocephalus (NPH), fluid pressure must be reduced elsewhere, e.g. in some subarachnoid spaces. In idiopathic NPH, where ventriculomegaly is accompanied by gait disturbance, dementia and/or urinary incontinence, the functional deficits can sometimes be reversed by shunting or third ventriculostomy. Parenchymal shrinkage is irreversible in late stage hydrocephalus with cellular framework loss but may not occur in early stages, whether by exclusion of fluid or otherwise. Further studies that are needed to explain the development of hydrocephalus are outlined.
Collapse
Affiliation(s)
- Stephen B Hladky
- Department of Pharmacology, Tennis Court Rd, Cambridge, CB2 1PD, UK.
| | | |
Collapse
|
11
|
Zheng Y, Duan C, Yu H, Jiang G, Shen H, Li H, Wang Z, Zhou X, Li X, He M. Transcriptomic analysis reveals novel hub genes associated with astrocyte autophagy in intracerebral hemorrhage. Front Aging Neurosci 2024; 16:1433094. [PMID: 39026989 PMCID: PMC11256209 DOI: 10.3389/fnagi.2024.1433094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 06/24/2024] [Indexed: 07/20/2024] Open
Abstract
Introduction Neuroinflammation serves as a critical local defense mechanism against secondary brain injury following intracerebral hemorrhage (ICH), and astrocytes play a prominent role in this process. In this study, we investigated astrocytic changes during the inflammatory state after ICH to identify new targets for improving the inflammatory response. Methods We stimulated mouse astrocytes with lipopolysaccharide (LPS) in vitro and analyzed their transcriptomes via ribonucleic acid sequencing. We created an ICH model in living organisms by injecting autologous blood. Results RNA sequencing revealed that 2,717 genes were differentially expressed in the LPS group compared to those in the saline group, with notable enrichment of the autophagic pathway. By intersecting the 2,717 differentially expressed genes (DEGs) with autophagy-related genes, we identified 36 autophagy-related DEGs and seven hub genes. Previous studies and quantitative reverse transcription-polymerase chain reaction results confirmed the increased expression of phosphatidylinositol 3-kinase catalytic subunit type 3 (Pik3c3), AKT serine/threonine kinase 1 (Akt1), and unc-51 like autophagy activating kinase 2 (Ulk2) in astrocytes after ICH. Transcription factors and target miRNAs were identified for the final three DEGs, and 3-methyladenine and leupeptin were identified as potential therapeutic agents for ICH. Conclusion Our findings suggest that astrocyte autophagy plays a critical role in ICH complexity, and that Pik3c3, Akt1, and Ulk2 may be potential therapeutic targets.
Collapse
Affiliation(s)
- Yun Zheng
- Department of Geriatrics, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Chengwei Duan
- Medical Research Center, Affiliated Hospital 2 of Nantong University, Nantong, China
| | - Haoyun Yu
- Soochow Medical College of Soochow University, Suzhou, China
| | - Guannan Jiang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Stroke Research, Soochow University, Suzhou, China
| | - Haitao Shen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Stroke Research, Soochow University, Suzhou, China
| | - Haiying Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Stroke Research, Soochow University, Suzhou, China
| | - Zongqi Wang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Stroke Research, Soochow University, Suzhou, China
| | - Xiaohan Zhou
- Department of Geriatrics, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiang Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Stroke Research, Soochow University, Suzhou, China
| | - Mingqing He
- Department of Geriatrics, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
12
|
Giede-Jeppe A, Gerner ST, Sembill JA, Kuramatsu JB, Lang S, Luecking H, Staykov D, Huttner HB, Volbers B. Peak Edema Extension Distance: An Edema Measure Independent from Hematoma Volume Associated with Functional Outcome in Intracerebral Hemorrhage. Neurocrit Care 2024; 40:1089-1098. [PMID: 38030878 PMCID: PMC11147861 DOI: 10.1007/s12028-023-01886-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 10/20/2023] [Indexed: 12/01/2023]
Abstract
BACKGROUND Our objective was to test the association between hematoma volume and long-term (> 72 h) edema extension distance (EED) evolution and the association between peak EED and early EED increase with functional outcome at 3 months in patients with intracerebral hemorrhage (ICH). METHODS This retrospective cohort study included patients with spontaneous supratentorial ICH between January 2006 and January 2014. EED, an edema measure defined as the distance between the hematoma border and the outer edema border, was calculated by using absolute hematoma and edema volumes. We used multivariable logistic regression accounting for age, ICH volume, and location and receiver operating characteristic analysis for assessing measures associated with functional outcome and EED evolution. Functional outcome after 3 months was assessed by using the modified Rankin Scale (0-3 = favorable, 4-6 = unfavorable). To identify properties associated with peak EED multivariable linear and logistic regression analyses were conducted. RESULTS A total of 292 patients were included. Median age was 70 years (interquartile range [IQR] 62-78), median ICH volume on admission 17.7 mL (IQR 7.9-40.2), median peak perihemorrhagic edema (PHE) volume was 37.5 mL (IQR 19.1-60.6), median peak EED was 0.67 cm (IQR 0.51-0.84) with an early EED increase up to 72 h (EED72-0) of 0.06 cm (- 0.02 to 0.15). Peak EED was found to be independent of ICH volume (R2 = 0.001, p = 0.6). In multivariable analyses, peak EED (odds ratio 0.224, 95% confidence interval [CI] [0.071-0.705]) and peak PHE volume (odds ratio 0.984 [95% CI 0.973-0.994]) were inversely associated with favorable functional outcome at 3 months. Receiver operating characteristic analysis identified a peak PHE volume of 26.8 mL (area under the curve 0.695 [95% CI 0.632-0.759]; p ≤ 0.001) and a peak EED of 0.58 cm (area under the curve 0.608 [95% CI 0.540-0.676]; p = 0.002) as best predictive values for outcome discrimination. CONCLUSIONS Compared with absolute peak PHE volume, peak EED represents a promising edema measure in patients with ICH that is largely hematoma volume-independent and nevertheless associated with functional outcome.
Collapse
Affiliation(s)
- Antje Giede-Jeppe
- Department of Neurology, University of Erlangen-Nuremberg, Schwabachanlage 6, 91054, Erlangen, Germany.
| | - Stefan T Gerner
- Department of Neurology, University of Gießen, Gießen, Germany
| | - Jochen A Sembill
- Department of Neurology, University of Erlangen-Nuremberg, Schwabachanlage 6, 91054, Erlangen, Germany
| | - Joji B Kuramatsu
- Department of Neurology, University of Erlangen-Nuremberg, Schwabachanlage 6, 91054, Erlangen, Germany
| | - Stefan Lang
- Department of Neuroradiology, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Hannes Luecking
- Department of Neuroradiology, University of Erlangen-Nuremberg, Erlangen, Germany
| | | | - Hagen B Huttner
- Department of Neurology, University of Gießen, Gießen, Germany
| | - Bastian Volbers
- Department of Neurology, University of Erlangen-Nuremberg, Schwabachanlage 6, 91054, Erlangen, Germany
| |
Collapse
|
13
|
Murthy SB. Emergent Management of Intracerebral Hemorrhage. Continuum (Minneap Minn) 2024; 30:641-661. [PMID: 38830066 DOI: 10.1212/con.0000000000001422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
OBJECTIVE Nontraumatic intracerebral hemorrhage (ICH) is a potentially devastating cerebrovascular disorder. Several randomized trials have assessed interventions to improve ICH outcomes. This article summarizes some of the recent developments in the emergent medical and surgical management of acute ICH. LATEST DEVELOPMENTS Recent data have underscored the protracted course of recovery after ICH, particularly in patients with severe disability, cautioning against early nihilism and withholding of life-sustaining treatments. The treatment of ICH has undergone rapid evolution with the implementation of intensive blood pressure control, novel reversal strategies for coagulopathy, innovations in systems of care such as mobile stroke units for hyperacute ICH care, and the emergence of newer minimally invasive surgical approaches such as the endoport and endoscope-assisted evacuation techniques. ESSENTIAL POINTS This review discusses the current state of evidence in ICH and its implications for practice, using case illustrations to highlight some of the nuances involved in the management of acute ICH.
Collapse
|
14
|
Zhang P, Gao C, Guo Q, Yang D, Zhang G, Lu H, Zhang L, Zhang G, Li D. Single-cell RNA sequencing reveals the evolution of the immune landscape during perihematomal edema progression after intracerebral hemorrhage. J Neuroinflammation 2024; 21:140. [PMID: 38807233 PMCID: PMC11131315 DOI: 10.1186/s12974-024-03113-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 04/26/2024] [Indexed: 05/30/2024] Open
Abstract
BACKGROUND Perihematomal edema (PHE) after post-intracerebral hemorrhage (ICH) has complex pathophysiological mechanisms that are poorly understood. The complicated immune response in the post-ICH brain constitutes a crucial component of PHE pathophysiology. In this study, we aimed to characterize the transcriptional profiles of immune cell populations in human PHE tissue and explore the microscopic differences between different types of immune cells. METHODS 9 patients with basal ganglia intracerebral hemorrhage (hematoma volume 50-100 ml) were enrolled in this study. A multi-stage profile was developed, comprising Group1 (n = 3, 0-6 h post-ICH, G1), Group2 (n = 3, 6-24 h post-ICH, G2), and Group3 (n = 3, 24-48 h post-ICH, G3). A minimal quantity of edematous tissue surrounding the hematoma was preserved during hematoma evacuation. Single cell RNA sequencing (scRNA-seq) was used to map immune cell populations within comprehensively resected PHE samples collected from patients at different stages after ICH. RESULTS We established, for the first time, a comprehensive landscape of diverse immune cell populations in human PHE tissue at a single-cell level. Our study identified 12 microglia subsets and 5 neutrophil subsets in human PHE tissue. What's more, we discovered that the secreted phosphoprotein-1 (SPP1) pathway served as the basis for self-communication between microglia subclusters during the progression of PHE. Additionally, we traced the trajectory branches of different neutrophil subtypes. Finally, we also demonstrated that microglia-produced osteopontin (OPN) could regulate the immune environment in PHE tissue by interacting with CD44-positive cells. CONCLUSIONS As a result of our research, we have gained valuable insight into the immune-microenvironment within PHE tissue, which could potentially be used to develop novel treatment modalities for ICH.
Collapse
Affiliation(s)
- Peng Zhang
- Department of Clinical Medicine, Jining Medical University, Jining, China
| | - Cong Gao
- Department of Clinical Medicine, Jining Medical University, Jining, China
| | - Qiang Guo
- Department of Emergency Stroke, Affiliated Hospital of Jining Medical University, Jining, China
| | - Dongxu Yang
- Department of Emergency Stroke, Affiliated Hospital of Jining Medical University, Jining, China
| | - Guangning Zhang
- Department of Neurosurgery, Affiliated Hospital of Jining Medical University, Jining, China
| | - Hao Lu
- Department of Emergency Stroke, Affiliated Hospital of Jining Medical University, Jining, China
| | - Liman Zhang
- Department of Pathology, Affiliated Hospital of Jining Medical University, Jining, China
| | - Guorong Zhang
- Department of Neurology, Affiliated Hospital of Jining Medical University, Jining, China
| | - Daojing Li
- Department of Neurology, Affiliated Hospital of Jining Medical University, Jining, China.
| |
Collapse
|
15
|
Su Q, Su C, Zhang Y, Guo Y, Liu Y, Liu Y, Yong VW, Xue M. Adjudin protects blood-brain barrier integrity and attenuates neuroinflammation following intracerebral hemorrhage in mice. Int Immunopharmacol 2024; 132:111962. [PMID: 38565042 DOI: 10.1016/j.intimp.2024.111962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/09/2024] [Accepted: 03/26/2024] [Indexed: 04/04/2024]
Abstract
Secondary brain injury exacerbates neurological dysfunction and neural cell death following intracerebral hemorrhage (ICH), targeting the pathophysiological mechanism of the secondary brain injury holds promise for improving ICH outcomes. Adjudin, a potential male contraceptive, exhibits neuroprotective effects in brain injury disease models, yet its impact in the ICH model remains unknown. In this study, we investigated the effects of adjudin on brain injury in a mouse ICH model and explored its underlying mechanisms. ICH was induced in male C57BL/6 mice by injecting collagenase into the right striatum. Mice received adjudin treatment (50 mg/kg/day) for 3 days before euthanization and the perihematomal tissues were collected for further analysis. Adjudin significantly reduced hematoma volume and improved neurological function compared with the vehicle group. Western blot showed that Adjudin markedly decreased the expression of MMP-9 and increased the expression of tight junctions (TJs) proteins, Occludin and ZO-1, and adherens junctions (AJs) protein VE-cadherin. Adjudin also decreased the blood-brain barrier (BBB) permeability, as indicated by the reduced albumin and Evans Blue leakage, along with a decrease in brain water content. Immunofluorescence staining revealed that adjudin noticeably reduced the infiltration of neutrophil, activation of microglia/macrophages, and reactive astrogliosis, accompanied by an increase in CD206 positive microglia/macrophages which exhibit phagocytic characteristics. Adjudin concurrently decreased the generation of proinflammatory cytokines, such as TNF-α and IL-1β. Additionally, adjudin increased the expression of aquaporin 4 (AQP4). Furthermore, adjudin reduced brain cell apoptosis, as evidenced by increased expression of anti-apoptotic protein Bcl-2, and decreased expression of apoptosis related proteins Bax, cleaved caspase-3 and fewer TUNEL positive cells. Our data suggest that adjudin protects against ICH-induced secondary brain injury and may serve as a potential neuroprotective agent for ICH treatment.
Collapse
Affiliation(s)
- Qiuyang Su
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China; Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan 450000, China
| | - Chunhe Su
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China; Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan 450000, China
| | - Yan Zhang
- Department of Neurology, People's Hospital of Qianxinan Prefecture, Guizhou, China
| | - Yan Guo
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China; Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan 450000, China
| | - Yang Liu
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China; Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan 450000, China
| | - Yuanyuan Liu
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China; Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan 450000, China
| | - V Wee Yong
- Hotchkiss Brain Institute and Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada.
| | - Mengzhou Xue
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China; Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan 450000, China.
| |
Collapse
|
16
|
Duan M, Xu Y, Li Y, Feng H, Chen Y. Targeting brain-peripheral immune responses for secondary brain injury after ischemic and hemorrhagic stroke. J Neuroinflammation 2024; 21:102. [PMID: 38637850 PMCID: PMC11025216 DOI: 10.1186/s12974-024-03101-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 04/15/2024] [Indexed: 04/20/2024] Open
Abstract
The notion that the central nervous system is an immunologically immune-exempt organ has changed over the past two decades, with increasing evidence of strong links and interactions between the central nervous system and the peripheral immune system, both in the healthy state and after ischemic and hemorrhagic stroke. Although primary injury after stroke is certainly important, the limited therapeutic efficacy, poor neurological prognosis and high mortality have led researchers to realize that secondary injury and damage may also play important roles in influencing long-term neurological prognosis and mortality and that the neuroinflammatory process in secondary injury is one of the most important influences on disease progression. Here, we summarize the interactions of the central nervous system with the peripheral immune system after ischemic and hemorrhagic stroke, in particular, how the central nervous system activates and recruits peripheral immune components, and we review recent advances in corresponding therapeutic approaches and clinical studies, emphasizing the importance of the role of the peripheral immune system in ischemic and hemorrhagic stroke.
Collapse
Affiliation(s)
- Mingxu Duan
- Department of Neurosurgery, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), 29 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
- Chongqing Key Laboratory of Intelligent Diagnosis, Treatment and Rehabilitation of Central Nervous System Injuries, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Chongqing Clinical Research Center for Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Ya Xu
- Department of Neurosurgery, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), 29 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
- Chongqing Key Laboratory of Intelligent Diagnosis, Treatment and Rehabilitation of Central Nervous System Injuries, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Chongqing Clinical Research Center for Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Yuanshu Li
- Department of Neurosurgery, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), 29 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
- Chongqing Key Laboratory of Intelligent Diagnosis, Treatment and Rehabilitation of Central Nervous System Injuries, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Chongqing Clinical Research Center for Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Hua Feng
- Department of Neurosurgery, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), 29 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
- Chongqing Key Laboratory of Intelligent Diagnosis, Treatment and Rehabilitation of Central Nervous System Injuries, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Chongqing Clinical Research Center for Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Yujie Chen
- Department of Neurosurgery, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), 29 Gaotanyan Street, Shapingba District, Chongqing, 400038, China.
- Chongqing Key Laboratory of Intelligent Diagnosis, Treatment and Rehabilitation of Central Nervous System Injuries, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
- Chongqing Clinical Research Center for Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
| |
Collapse
|
17
|
Sobowale OA, Hostettler IC, Wu TY, Heal C, Wilson D, Shah DG, Strbian D, Putaala J, Tatlisumak T, Vail A, Sharma G, Davis SM, Werring DJ, Meretoja A, Allan SM, Parry-Jones AR. Baseline perihematomal edema, C-reactive protein, and 30-day mortality are not associated in intracerebral hemorrhage. Front Neurol 2024; 15:1359760. [PMID: 38645743 PMCID: PMC11026700 DOI: 10.3389/fneur.2024.1359760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 03/25/2024] [Indexed: 04/23/2024] Open
Abstract
Background The relationship between baseline perihematomal edema (PHE) and inflammation, and their impact on survival after intracerebral hemorrhage (ICH) are not well understood. Objective Assess the association between baseline PHE, baseline C-reactive protein (CRP), and early death after ICH. Methods Analysis of pooled data from multicenter ICH registries. We included patients presenting within 24 h of symptom onset, using multifactorial linear regression model to assess the association between CRP and edema extension distance (EED), and a multifactorial Cox regression model to assess the association between CRP, PHE volume and 30-day mortality. Results We included 1,034 patients. Median age was 69 (interquartile range [IQR] 59-79), median baseline ICH volume 11.5 (IQR 4.3-28.9) mL, and median baseline CRP 2.5 (IQR 1.5-7.0) mg/L. In the multifactorial analysis [adjusting for cohort, age, sex, log-ICH volume, ICH location, intraventricular hemorrhage (IVH), statin use, glucose, and systolic blood pressure], baseline log-CRP was not associated with baseline EED: for a 50% increase in CRP the difference in expected mean EED was 0.004 cm (95%CI 0.000-0.008, p = 0.055). In a further multifactorial analysis, after adjusting for key predictors of mortality, neither a 50% increase in PHE volume nor CRP were associated with higher 30-day mortality (HR 0.97; 95%CI 0.90-1.05, p = 0.51 and HR 0.98; 95%CI 0.93-1.03, p = 0.41, respectively). Conclusion Higher baseline CRP is not associated with higher baseline edema, which is also not associated with mortality. Edema at baseline might be driven by different pathophysiological processes with different effects on outcome.
Collapse
Affiliation(s)
- Oluwaseun A. Sobowale
- Division of Cardiovascular Sciences, School of Medical Sciences, Manchester Academic Health Science Center, University of Manchester, Manchester, United Kingdom
- Geoffrey Jefferson Brain Research Center, Manchester Academic Health Science Center, Northern Care Alliance NHS Foundation Trust and University of Manchester, Manchester, United Kingdom
| | - Isabel C. Hostettler
- Stroke Research Center, UCL Queen Square Institute of Neurology, and the National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, London, United Kingdom
- Department of Neurosurgery, Cantonal Hospital St. Gallen, St. Gallen, Switzerland
| | - Teddy Y. Wu
- Department of Medicine and Neurology, The Royal Melbourne Hospital, University of Melbourne, Parkville, VIC, Australia
- New Zealand Brain Research Institute, Christchurch, New Zealand
| | - Calvin Heal
- Center for Biostatistics, The University of Manchester, Manchester Academic Health Science Center, Manchester, United Kingdom
| | - Duncan Wilson
- Stroke Research Center, UCL Queen Square Institute of Neurology, and the National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, London, United Kingdom
- New Zealand Brain Research Institute, Christchurch, New Zealand
| | - Darshan G. Shah
- Department of Medicine and Neurology, The Royal Melbourne Hospital, University of Melbourne, Parkville, VIC, Australia
- Department of Medicine, Princess Alexandra Hospital, Brisbane, QLD, Australia
| | - Daniel Strbian
- Department of Neurology, Helsinki University Hospital and Helsinki University, Helsinki, Finland
| | - Jukka Putaala
- Department of Neurology, Helsinki University Hospital and Helsinki University, Helsinki, Finland
| | - Turgut Tatlisumak
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
- Department of Neurology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Andy Vail
- Center for Biostatistics, The University of Manchester, Manchester Academic Health Science Center, Manchester, United Kingdom
| | - Gagan Sharma
- Department of Medicine and Neurology, The Royal Melbourne Hospital, University of Melbourne, Parkville, VIC, Australia
| | - Stephen M. Davis
- Department of Medicine and Neurology, The Royal Melbourne Hospital, University of Melbourne, Parkville, VIC, Australia
| | - David J. Werring
- Stroke Research Center, UCL Queen Square Institute of Neurology, and the National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, London, United Kingdom
| | - Atte Meretoja
- Department of Medicine and Neurology, The Royal Melbourne Hospital, University of Melbourne, Parkville, VIC, Australia
- Department of Neurology, Helsinki University Hospital and Helsinki University, Helsinki, Finland
| | - Stuart M. Allan
- Geoffrey Jefferson Brain Research Center, Manchester Academic Health Science Center, Northern Care Alliance NHS Foundation Trust and University of Manchester, Manchester, United Kingdom
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Adrian R. Parry-Jones
- Division of Cardiovascular Sciences, School of Medical Sciences, Manchester Academic Health Science Center, University of Manchester, Manchester, United Kingdom
- Geoffrey Jefferson Brain Research Center, Manchester Academic Health Science Center, Northern Care Alliance NHS Foundation Trust and University of Manchester, Manchester, United Kingdom
| |
Collapse
|
18
|
Wu X, Zhang T, Jia J, Chen Y, Zhang Y, Fang Z, Zhang C, Bai Y, Li Z, Li Y. Perspective insights into versatile hydrogels for stroke: From molecular mechanisms to functional applications. Biomed Pharmacother 2024; 173:116309. [PMID: 38479180 DOI: 10.1016/j.biopha.2024.116309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/13/2024] [Accepted: 02/17/2024] [Indexed: 03/27/2024] Open
Abstract
As the leading killer of life and health, stroke leads to limb paralysis, speech disorder, dysphagia, cognitive impairment, mental depression and other symptoms, which entail a significant financial burden to society and families. At present, physiology, clinical medicine, engineering, and materials science, advanced biomaterials standing on the foothold of these interdisciplinary disciplines provide new opportunities and possibilities for the cure of stroke. Among them, hydrogels have been endowed with more possibilities. It is well-known that hydrogels can be employed as potential biosensors, medication delivery vectors, and cell transporters or matrices in tissue engineering in tissue engineering, and outperform many traditional therapeutic drugs, surgery, and materials. Therefore, hydrogels become a popular scaffolding treatment option for stroke. Diverse synthetic hydrogels were designed according to different pathophysiological mechanisms from the recently reported literature will be thoroughly explored. The biological uses of several types of hydrogels will be highlighted, including pro-angiogenesis, pro-neurogenesis, anti-oxidation, anti-inflammation and anti-apoptosis. Finally, considerations and challenges of using hydrogels in the treatment of stroke are summarized.
Collapse
Affiliation(s)
- Xinghan Wu
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China; Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Tiejun Zhang
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Jing Jia
- Department of Pharmacy, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Yining Chen
- Key laboratory for Leather Chemistry and Engineering of the Education Ministry, Sichuan University, Chengdu, Sichuan 610065, China
| | - Ying Zhang
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Zhenwei Fang
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Chenyu Zhang
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yang Bai
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Zhengjun Li
- Department of Dermatology, Qilu Hospital, Shandong University, Jinan 250012, China
| | - Yuwen Li
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.
| |
Collapse
|
19
|
Liu M, Wang D, Xu L, Pan Y, Huang H, Li M, Liu Q. Group 2 innate lymphoid cells suppress neuroinflammation and brain injury following intracerebral hemorrhage. J Cereb Blood Flow Metab 2024; 44:355-366. [PMID: 37933727 PMCID: PMC10870958 DOI: 10.1177/0271678x231208168] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 09/15/2023] [Accepted: 09/20/2023] [Indexed: 11/08/2023]
Abstract
Intracerebral hemorrhage (ICH) mobilizes circulating leukocytes that contribute to neuroinflammation and neural injury. However, little is known about the endogenous regulatory immune mechanisms to restrict neuroinflammation following ICH. We examined the role of group 2 innate lymphoid cells (ILC2) that are a specialized subset of innate immune modulators in a mouse model of ICH. We found accumulation of ILC2 in the brain following acute ICH and a concomitant increase of ILC2 within the peripheral lymph nodes. Depletion of ILC2 exacerbated neurodeficits and brain edema after ICH in male and female mice. This aggravated ICH injury was accompanied by augmented microglia activity and leukocyte infiltration. In contrast, expansion of ILC2 using IL-33 led to reduced ICH injury, microglia activity and leukocyte infiltration. Notably, elimination of microglia using a colony stimulating factor 1 receptor inhibitor diminished the exacerbation of ICH injury induced by depletion of ILC2. Brain-infiltrating ILC2 had upregulation of IL-13 after ICH. Results from in vitro assays revealed that ILC2 suppressed thrombin-induced inflammatory activity in microglia-like BV2 cells. Thus, our findings demonstrate that ILC2 suppress neuroinflammation and acute ICH injury.
Collapse
Affiliation(s)
- Mingming Liu
- Department of Neurology, Tianjin Neurological Institute, Tianjin Institute of Immunology, State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Tianjin Medical University General Hospital, Tianjin, China
| | - Danni Wang
- Department of Neurology, Tianjin Neurological Institute, Tianjin Institute of Immunology, State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Tianjin Medical University General Hospital, Tianjin, China
- Department of Neurology, The Second Hospital of Shandong University, Jinan, China
| | - Lin Xu
- Department of Neurology, Tianjin Neurological Institute, Tianjin Institute of Immunology, State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Tianjin Medical University General Hospital, Tianjin, China
| | - Yan Pan
- Department of Neurology, Tianjin Neurological Institute, Tianjin Institute of Immunology, State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Tianjin Medical University General Hospital, Tianjin, China
| | - Huachen Huang
- Department of Neurology, Tianjin Neurological Institute, Tianjin Institute of Immunology, State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Tianjin Medical University General Hospital, Tianjin, China
| | - Minshu Li
- Department of Neurology, Tianjin Neurological Institute, Tianjin Institute of Immunology, State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Tianjin Medical University General Hospital, Tianjin, China
| | - Qiang Liu
- Department of Neurology, Tianjin Neurological Institute, Tianjin Institute of Immunology, State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Tianjin Medical University General Hospital, Tianjin, China
- Department of Neurology, The Second Hospital of Shandong University, Jinan, China
| |
Collapse
|
20
|
Shen J, Xue X, Yuan H, Song Y, Wang J, Cui R, Ke K. Deubiquitylating Enzyme OTUB1 Facilitates Neuronal Survival After Intracerebral Hemorrhage Via Inhibiting NF-κB-triggered Apoptotic Cascades. Mol Neurobiol 2024; 61:1726-1736. [PMID: 37775718 DOI: 10.1007/s12035-023-03676-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 09/25/2023] [Indexed: 10/01/2023]
Abstract
The deubiquitylase OTU domain-containing ubiquitin aldehyde-binding protein 1 (OTUB1) has been implicated in the pathogenesis of various human diseases. However, the molecular mechanism by which OTUB1 participates in the pathogenesis of intracerebral hemorrhage (ICH) remains elusive. In the present study, we established an autologous whole blood fusion-induced ICH model in C57BL/6 J mice. We showed that the upregulation of OTUB1 contributes to the attenuation of Nuclear factor kappa B (NF-κB) and its downstream apoptotic signaling after ICH. OTUB1 directly associates with NF-κB precursors p105 and p100 after ICH, leading to attenuated polyubiquitylation of p105 and p100. Moreover, we revealed that NF-κB signaling was modestly activated both in ICH tissues and hemin-exposed HT-22 neuronal cells, accompanied with the activation of NF-κB downstream pro-apoptotic signaling. Notably, overexpression of OTUB1 strongly inhibited hemin-induced NF-κB activation, whereas interference of OTUB1 led to the opposite effect. Finally, we revealed that lentiviral transduction of OTUB1 markedly ameliorated hemin-induced apoptotic signaling and HT-22 neuronal death. Collectively, these findings suggest that the upregulation of OTUB1 serves as a neuroprotective mechanism in antagonizing neuroinflammation-induced NF-κB signaling and neuronal death, shed new light on manipulating intracellular deubiquitylating pathways as novel interventive approaches against ICH-induced secondary neuronal damage and death.
Collapse
Affiliation(s)
- Jiabing Shen
- Department of Neurology, Affiliated Hospital and Medical School of Nantong University, Nantong, 226001, People's Republic of China
| | - Xiaoli Xue
- Department of Neurology, Affiliated Hospital and Medical School of Nantong University, Nantong, 226001, People's Republic of China
- Department of Neurology, Qidong People's Hospital, Qidong, Jiangsu, People's Republic of China
| | - Huimin Yuan
- Department of Neurology, Affiliated Hospital and Medical School of Nantong University, Nantong, 226001, People's Republic of China
- Department of Neurology, Qidong People's Hospital, Qidong, Jiangsu, People's Republic of China
| | - Yan Song
- Department of Neurology, Affiliated Hospital and Medical School of Nantong University, Nantong, 226001, People's Republic of China
| | - Jinglei Wang
- Department of Neurology, Affiliated Hospital and Medical School of Nantong University, Nantong, 226001, People's Republic of China
- Department of Neurology, Affiliated Hai'an Hospital of Nantong University and Hai'an People's Hospital, Hai'an, People's Republic of China
| | - Ronghui Cui
- Department of Neurology, Affiliated Hospital and Medical School of Nantong University, Nantong, 226001, People's Republic of China.
| | - Kaifu Ke
- Department of Neurology, Affiliated Hospital and Medical School of Nantong University, Nantong, 226001, People's Republic of China.
| |
Collapse
|
21
|
Zhang X, Zhang Y, Su Q, Liu Y, Li Z, Yong VW, Xue M. Ion Channel Dysregulation Following Intracerebral Hemorrhage. Neurosci Bull 2024; 40:401-414. [PMID: 37755675 PMCID: PMC10912428 DOI: 10.1007/s12264-023-01118-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 06/14/2023] [Indexed: 09/28/2023] Open
Abstract
Injury to the brain after intracerebral hemorrhage (ICH) results from numerous complex cellular mechanisms. At present, effective therapy for ICH is limited and a better understanding of the mechanisms of brain injury is necessary to improve prognosis. There is increasing evidence that ion channel dysregulation occurs at multiple stages in primary and secondary brain injury following ICH. Ion channels such as TWIK-related K+ channel 1, sulfonylurea 1 transient receptor potential melastatin 4 and glutamate-gated channels affect ion homeostasis in ICH. They in turn participate in the formation of brain edema, disruption of the blood-brain barrier, and the generation of neurotoxicity. In this review, we summarize the interaction between ions and ion channels, the effects of ion channel dysregulation, and we discuss some therapeutics based on ion-channel modulation following ICH.
Collapse
Affiliation(s)
- Xiangyu Zhang
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China
- Academy of Medical Science, Zhengzhou University, Zhengzhou, 450000, China
| | - Yan Zhang
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China
- Academy of Medical Science, Zhengzhou University, Zhengzhou, 450000, China
| | - Qiuyang Su
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China
- Academy of Medical Science, Zhengzhou University, Zhengzhou, 450000, China
| | - Yang Liu
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China
- Academy of Medical Science, Zhengzhou University, Zhengzhou, 450000, China
| | - Zhe Li
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China
- Academy of Medical Science, Zhengzhou University, Zhengzhou, 450000, China
| | - V Wee Yong
- Hotchkiss Brain Institute and Department of Clinical Neurosciences, University of Calgary, Calgary, AB, T2N 1N4, Canada.
| | - Mengzhou Xue
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China.
- Academy of Medical Science, Zhengzhou University, Zhengzhou, 450000, China.
| |
Collapse
|
22
|
Cliteur MP, van der Kolk AG, Hannink G, Hofmeijer J, Jolink WMT, Klijn CJM, Schreuder FHBM. Anakinra in cerebral haemorrhage to target secondary injury resulting from neuroinflammation (ACTION): Study protocol of a phase II randomised clinical trial. Eur Stroke J 2024; 9:265-273. [PMID: 37713268 PMCID: PMC10916813 DOI: 10.1177/23969873231200686] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 08/10/2023] [Indexed: 09/16/2023] Open
Abstract
BACKGROUND Inflammation plays a vital role in the development of secondary brain injury after spontaneous intracerebral haemorrhage (ICH). Interleukin-1 beta is an early pro-inflammatory cytokine and a potential therapeutic target. AIM To determine the effect of treatment with recombinant human interleukin-1 receptor antagonist anakinra on perihematomal oedema (PHO) formation in patients with spontaneous ICH compared to standard medical management, and investigate whether this effect is dose-dependent. METHODS ACTION is a phase-II, prospective, randomised, three-armed (1:1:1) trial with open-label treatment and blinded end-point assessment (PROBE) at three hospitals in The Netherlands. We will include 75 patients with a supratentorial spontaneous ICH admitted within 8 h after symptom onset. Participants will receive anakinra in a high dose (loading dose 500 mg intravenously, followed by infusion with 2 mg/kg/h over 72 h; n = 25) or in a low dose (loading dose 100 mg subcutaneously, followed by 100 mg subcutaneous twice daily for 72 h; n = 25), plus standard care. The control group (n = 25) will receive standard medical management. OUTCOMES Primary outcome is PHO, measured as oedema extension distance on MRI at day 7 ± 1. Secondary outcomes include the safety profile of anakinra, the effect of anakinra on serum inflammation markers, MRI measures of blood brain barrier integrity, and functional outcome at 90 ± 7 days. DISCUSSION The ACTION trial will provide insight into whether targeting interleukin-1 beta in the early time window after ICH onset could ameliorate secondary brain injury. This may contribute to the development of new treatment options to improve clinical outcome after ICH.
Collapse
Affiliation(s)
- MP Cliteur
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - AG van der Kolk
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, The Netherlands
| | - G Hannink
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, The Netherlands
| | - J Hofmeijer
- Department of Neurology, Rijnstate Hospital, Arnhem, The Netherlands
- Department of Clinical Neurophysiology, University of Twente, Enschede, The Netherlands
| | - WMT Jolink
- Department of Neurology, Isala Hospital, Zwolle, The Netherlands
| | - CJM Klijn
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - FHBM Schreuder
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
23
|
Almarghalani DA, Bahader GA, Ali M, Tillekeratne LMV, Shah ZA. Cofilin Inhibitor Improves Neurological and Cognitive Functions after Intracerebral Hemorrhage by Suppressing Endoplasmic Reticulum Stress Related-Neuroinflammation. Pharmaceuticals (Basel) 2024; 17:114. [PMID: 38256947 PMCID: PMC10818666 DOI: 10.3390/ph17010114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/05/2024] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
Neuroinflammation after intracerebral hemorrhage (ICH) is a crucial factor that determines the extent of the injury. Cofilin is a cytoskeleton-associated protein that drives neuroinflammation and microglia activation. A novel cofilin inhibitor (CI) synthesized and developed in our lab has turned out to be a potential therapeutic agent for targeting cofilin-mediated neuroinflammation in an in vitro model of ICH and traumatic brain injury. The current study aims to examine the therapeutic potential of CI in a mouse collagenase model of ICH and examine the neurobehavioral outcomes and its mechanism of action. Male mice were subjected to intrastriatal collagenase injection to induce ICH, and sham mice received needle insertion. Various concentrations (25, 50, and 100 mg/kg) of CI were administered to different cohorts of the animals as a single intravenous injection 3 h following ICH and intraperitoneally every 12 h for 3 days. The animals were tested for neurobehavioral parameters for up to 7 days and sacrificed to collect brains for hematoma volume measurement, Western blotting, and immunohistochemistry. Blood was collected for cofilin, TNF-α, and IL-1β assessments. The results indicated that 50 mg/kg CI improved neurological outcomes, reversed post-stroke cognitive impairment, accelerated hematoma resolution, mitigated cofilin rods/aggregates, and reduced microglial and astrocyte activation in mice with ICH. Microglia morphological analysis demonstrated that CI restored the homeostasis ramification pattern of microglia in mice treated with CI. CI suppressed endoplasmic reticulum stress-related neuroinflammation by inhibiting inflammasomes and cell death signaling pathways. We also showed that CI prevented synaptic loss by reviving the pre- and post-synaptic markers. Our results unveil a novel therapeutic approach to treating ICH and open a window for using CI in clinical practice.
Collapse
Affiliation(s)
- Daniyah A. Almarghalani
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, The University of Toledo, Toledo, OH 43614, USA
| | - Ghaith A. Bahader
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, The University of Toledo, Toledo, OH 43614, USA
| | - Mohammad Ali
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, The University of Toledo, Toledo, OH 43614, USA
| | - L. M. Viranga Tillekeratne
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, The University of Toledo, Toledo, OH 43614, USA
| | - Zahoor A. Shah
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, The University of Toledo, Toledo, OH 43614, USA
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, The University of Toledo, Toledo, OH 43614, USA
| |
Collapse
|
24
|
Kirby C, Barrington J, Sondag L, Loan JJ, Schreuder FH, McColl BW, Klijn CJ, Al-Shahi Salman R, Samarasekera N. Association between circulating inflammatory biomarkers and functional outcome or perihaematomal oedema after ICH: a systematic review & meta-analysis. Wellcome Open Res 2023; 8:239. [PMID: 38037559 PMCID: PMC10687391 DOI: 10.12688/wellcomeopenres.19187.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/16/2023] [Indexed: 12/02/2023] Open
Abstract
Background Currently, there are no specific medical treatments for intracerebral haemorrhage (ICH), but the inflammatory response may provide a potential route to treatment. Given the known effects of acute brain injury on peripheral immunity, we hypothesised that inflammatory biomarkers in peripheral blood may be associated with clinical outcome following ICH, as well as perihaematomal oedema (PHO), which is an imaging marker of the neuroinflammatory response. Methods We searched OVID Medline and EMBASE on 07 April 2021 for studies of humans with ICH measuring an inflammatory biomarker in peripheral blood and PHO or clinical outcome. Risk of bias was assessed both by using a scale comprising features of the Newcastle-Ottawa Assessment Scale, STROBE-ME and REMARK guidelines, and for studies included in meta-analysis, also by the QUIPS tool.We used random effects meta-analysis to pool standardised mean differences (SMD) if ≥1 study quantified the association between identical biomarkers and measures of PHO or functional outcome. Results Of 8,615 publications, 16 examined associations between 21 inflammatory biomarkers and PHO (n=1,299 participants), and 93 studies examined associations between ≥1 biomarker and clinical outcome (n=17,702 participants). Overall, 20 studies of nine biomarkers (n=3,199) met criteria for meta-analysis of associations between inflammatory biomarkers and clinical outcome. Death or dependency (modified Rankin Scale (mRS) 3‒6) 90 days after ICH was associated with higher levels of fibrinogen (SMD 0.32; 95%CI [0.04, 0.61]; p=0.025), and high mobility group box protein 1 (HMGB1) (SMD 1.67; 95%CI [0.05, 3.30]; p=0.04). Higher WBC was associated with death or dependency at 90 days (pooled SMD 0.27; 95% CI [0.11, 0.44]; p=0.001; but the association was no longer significant when the analysis was restricted to studies with a low risk of bias (pooled SMD 0.22; 95% CI -0.04-0.48). Higher CRP seemed to be associated with death or dependency at 90 days (pooled SMD 0.80; 95% CI [0.44, 1.17]; p<0.0001) but this association was no longer significant when adjusted OR were pooled (OR 0.99 (95% CI 0.98-1.01)). Conclusions Higher circulating levels of, fibrinogen and HMGB1 are associated with poorer outcomes after ICH. This study highlights the clinical importance of the inflammatory response to ICH and identifies additional research needs in determining if these associations are mediated via PHO and are potential therapeutic targets. Registration PROSPERO ( CRD42019132628; 28/05/2019).
Collapse
Affiliation(s)
- Caoimhe Kirby
- Centre for Clinical Brain Sciences, The University of Edinburgh, Edinburgh, Scotland, UK
- Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh, Scotland, UK
- UK Dementia Research Institute, The University of Edinburgh, Edinburgh, Scotland, UK
| | - Jack Barrington
- Centre for Clinical Brain Sciences, The University of Edinburgh, Edinburgh, Scotland, UK
- Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh, Scotland, UK
- UK Dementia Research Institute, The University of Edinburgh, Edinburgh, Scotland, UK
| | - Lotte Sondag
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud Universiteit, Nijmegen, Gelderland, The Netherlands
| | - James J.M. Loan
- Centre for Clinical Brain Sciences, The University of Edinburgh, Edinburgh, Scotland, UK
- Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh, Scotland, UK
- UK Dementia Research Institute, The University of Edinburgh, Edinburgh, Scotland, UK
| | - Floris H.B.M. Schreuder
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud Universiteit, Nijmegen, Gelderland, The Netherlands
| | - Barry W. McColl
- Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh, Scotland, UK
- UK Dementia Research Institute, The University of Edinburgh, Edinburgh, Scotland, UK
| | - Catharina J.M. Klijn
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud Universiteit, Nijmegen, Gelderland, The Netherlands
| | - Rustam Al-Shahi Salman
- Centre for Clinical Brain Sciences, The University of Edinburgh, Edinburgh, Scotland, UK
| | - Neshika Samarasekera
- Centre for Clinical Brain Sciences, The University of Edinburgh, Edinburgh, Scotland, UK
| |
Collapse
|
25
|
Ren H, Pan Y, Wang D, Hao H, Han R, Qi C, Zhang W, He W, Shi FD, Liu Q. CD22 blockade modulates microglia activity to suppress neuroinflammation following intracerebral hemorrhage. Pharmacol Res 2023; 196:106912. [PMID: 37696483 DOI: 10.1016/j.phrs.2023.106912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 08/09/2023] [Accepted: 09/04/2023] [Indexed: 09/13/2023]
Abstract
Microglia are first responders to acute brain insults and initiate neuroinflammation to drive secondary tissue injury. Yet the key molecular switches in control of the inflammatory activity of microglia remain poorly understood. Intracerebral hemorrhage (ICH) is a devastating stroke subtype whereby a hematoma is formed within the brain parenchyma and associated with high mortality. Using a mouse model of ICH, we found upregulation of CD22 that predominantly occurred in microglia. Antibody blockade of CD22 led to a reduction in neurological deficits, brain lesion and hematoma volume. This was accompanied by reduced inflammatory activity, increased expression of alternative activation markers (CD206 and IL-10) and enhanced phagocytosis activity in microglia after ICH. CD22 blockade also led to an increase of phosphorylated SYK and AKT after ICH. Notably, the benefits of CD22 blockade were ablated in ICH mice subjected to microglial depletion with a colony-stimulating factor 1 receptor inhibitor PLX5622. Additionally, the protective effects of CD22 blockade was diminished in ICH mice receiving a SYK inhibitor R406. Together, our findings highlight CD22 as a key molecular switch to control the detrimental effects of microglia after acute brain injury, and provide a novel strategy to improve the outcome of ICH injury.
Collapse
Affiliation(s)
- Honglei Ren
- Department of Neurology, Tianjin Neurological Institute, Tianjin Institute of Immunology, State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Yan Pan
- Department of Neurology, Tianjin Neurological Institute, Tianjin Institute of Immunology, State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Danni Wang
- Department of Neurology, Tianjin Neurological Institute, Tianjin Institute of Immunology, State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Hongying Hao
- Department of Neurology, Tianjin Neurological Institute, Tianjin Institute of Immunology, State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Ranran Han
- Department of Neurology, Tianjin Neurological Institute, Tianjin Institute of Immunology, State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Caiyun Qi
- Department of Neurology, Tianjin Neurological Institute, Tianjin Institute of Immunology, State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Wenjun Zhang
- Department of Neurology, Tianjin Neurological Institute, Tianjin Institute of Immunology, State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Wenyan He
- Advanced Innovation Center for Human Brain Protection, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Beijing 100050, China.
| | - Fu-Dong Shi
- Department of Neurology, Tianjin Neurological Institute, Tianjin Institute of Immunology, State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Tianjin Medical University General Hospital, Tianjin 300052, China; Advanced Innovation Center for Human Brain Protection, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Beijing 100050, China.
| | - Qiang Liu
- Department of Neurology, Tianjin Neurological Institute, Tianjin Institute of Immunology, State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Tianjin Medical University General Hospital, Tianjin 300052, China; Department of Neurology, The Second Hospital of Shandong University, Jinan 250033, Shandong, China.
| |
Collapse
|
26
|
Kung TFC, Wilkinson CM, Liddle LJ, Colbourne F. A systematic review and meta-analysis on the efficacy of glibenclamide in animal models of intracerebral hemorrhage. PLoS One 2023; 18:e0292033. [PMID: 37756302 PMCID: PMC10529582 DOI: 10.1371/journal.pone.0292033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023] Open
Abstract
Intracerebral hemorrhage (ICH) is a devastating stroke with many mechanisms of injury. Edema worsens outcome and can lead to mortality after ICH. Glibenclamide (GLC), a sulfonylurea 1- transient receptor potential melastatin 4 (Sur1-Trpm4) channel blocker, has been shown to attenuate edema in ischemic stroke models, raising the possibility of benefit in ICH. This meta-analysis synthesizes current pre-clinical (rodent) literature regarding the efficacy of post-ICH GLC administration (vs. vehicle controls) on behaviour (i.e., neurological deficit, motor, and memory outcomes), edema, hematoma volume, and injury volume. Six studies (5 in rats and 1 in mice) were included in our meta-analysis (PROSPERO registration = CRD42021283614). GLC significantly improved behaviour (standardized mean difference (SMD) = -0.63, [-1.16, -0.09], n = 70-74) and reduced edema (SMD = -0.91, [-1.64, -0.18], n = 70), but did not affect hematoma volume (SMD = 0.0788, [-0.5631, 0.7207], n = 18-20), or injury volume (SMD = 0.2892, [-0.4950, 1.0734], n = 24). However, these results should be interpreted cautiously. Findings were conflicted with 2 negative and 4 positive reports, and Egger regressions indicated missing negative edema data (p = 0.0001), and possible missing negative behavioural data (p = 0.0766). Experimental quality assessed via the SYRCLE and CAMARADES checklists was concerning, as most studies demonstrated high risks of bias. Studies were generally low-powered (e.g., average n = 14.4 for behaviour), and future studies should employ sample sizes of 41 to detect our observed effect size in behaviour and 33 to detect our observed effect in edema. Overall, missing negative studies, low study quality, high risk of bias, and incomplete attention to key recommendations (e.g., investigating female, aged, and co-morbid animals) suggest that further high-powered confirmatory studies are needed before conclusive statements about GLC's efficacy in ICH can be made, and before further clinical trials are performed.
Collapse
Affiliation(s)
- Tiffany F. C. Kung
- Department of Psychology, University of Alberta, Edmonton, Alberta, Canada
| | | | - Lane J. Liddle
- Department of Psychology, University of Alberta, Edmonton, Alberta, Canada
| | - Frederick Colbourne
- Department of Psychology, University of Alberta, Edmonton, Alberta, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
27
|
Wang J, Wang T, Fang M, Wang Z, Xu W, Teng B, Yuan Q, Hu X. Advances of nanotechnology for intracerebral hemorrhage therapy. Front Bioeng Biotechnol 2023; 11:1265153. [PMID: 37771570 PMCID: PMC10523393 DOI: 10.3389/fbioe.2023.1265153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 09/01/2023] [Indexed: 09/30/2023] Open
Abstract
Intracerebral hemorrhage (ICH), the most devastating subtype of stoke, is of high mortality at 5 years and even those survivors usually would suffer permanent disabilities. Fortunately, various preclinical active drugs have been approached in ICH, meanwhile, the therapeutic effects of these pharmaceutical ingredients could be fully boosted with the assistance of nanotechnology. In this review, besides the pathology of ICH, some ICH therapeutically available active drugs and their employed nanotechnologies, material functions, and therapeutic principles were comprehensively discussed hoping to provide novel and efficient strategies for ICH therapy in the future.
Collapse
Affiliation(s)
- Jiayan Wang
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
- West China School of Medicine, Sichuan University, Chengdu, China
| | - Tianyou Wang
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu, China
| | - Mei Fang
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
- West China School of Medicine, Sichuan University, Chengdu, China
| | - Zexu Wang
- West China School of Medicine, Sichuan University, Chengdu, China
| | - Wei Xu
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
- West China School of Medicine, Sichuan University, Chengdu, China
| | - Bang Teng
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
- West China School of Medicine, Sichuan University, Chengdu, China
| | - Qijuan Yuan
- School of Materials Science and Engineering, Xihua University, Chengdu, China
| | - Xin Hu
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
28
|
Pisco C, Pedro T, Aires A, Fonseca L, Fonseca S, Castro P. The effect of neutrophil-to-lymphocyte ratio and systemic inflammatory response on perihematomal edema after intracerebral hemorrhage. J Clin Neurosci 2023; 115:33-37. [PMID: 37480730 DOI: 10.1016/j.jocn.2023.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/22/2023] [Accepted: 07/10/2023] [Indexed: 07/24/2023]
Abstract
BACKGROUND Perihematomal edema (PHE) is a marker of secondary brain injury in patients with intracerebral hemorrhage (ICH) and is associated with increased inflammatory markers and neurological disability. This study aims to assess the effect of the neutrophile-to-lymphocyte ratio (NLR) and systemic inflammatory response syndrome (SIRS) on PHE measurements and functional status in patients with ICH. METHODS We included 215 patients with primary ICH and the primary outcomes were absolute and relative PHE, and edema extension distance (EED). A favorable functional outcome was defined as a modified Rankin Scale (mRS) score 0-2 measured 3 months after ICH. RESULTS Median age was 73.0 years (interquartile range 66-80) and 54.4% patients were males. Fifty-nine patients were functionally independent at 90 days (mRS 0 to 2). NLR and SIRS were not predictors of absolute, relative PHE, and EED when adjusted for multiple confounders. However, admission NLR was independently associated with an unfavorable functional outcome at 90 days (aOR = 0.38; 95% CI 0.17-0.87; p = 0.021). CONCLUSIONS NLR and SIRS are not independent predictors of absolute and relative PHE measurements following ICH. Nevertheless, NLR predicts long-term disability in ICH patients. Further research is needed to understand the mechanisms by which inflammation causes neurological injury in ICH.
Collapse
Affiliation(s)
- Catarina Pisco
- Department of Clinical Neurosciences and Mental Health, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Tiago Pedro
- Department of Neuroradiology, Centro Hospitalar Universitário de São João, Porto, Portugal.
| | - Ana Aires
- Department of Clinical Neurosciences and Mental Health, Faculty of Medicine, University of Porto, Porto, Portugal; Department of Neurology, Centro Hospitalar Universitário de São João, Porto, Portugal
| | - Luísa Fonseca
- Stroke Unit and Department of Internal Medicine, Centro Hospitalar Universitário de São João, Porto, Portugal; Department of Medicine, University of Porto, Porto, Portugal
| | - Sérgio Fonseca
- Department of Clinical Neurosciences and Mental Health, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Pedro Castro
- Department of Clinical Neurosciences and Mental Health, Faculty of Medicine, University of Porto, Porto, Portugal; Department of Neurology, Centro Hospitalar Universitário de São João, Porto, Portugal; Stroke Unit and Department of Internal Medicine, Centro Hospitalar Universitário de São João, Porto, Portugal
| |
Collapse
|
29
|
Choi JH, Yoon WK, Kim JH, Kwon TH, Byun J. Predictor of the Postoperative Swelling After Craniotomy for Spontaneous Intracerebral Hemorrhage: Sphericity Index as a Novel Parameter. Korean J Neurotrauma 2023; 19:333-347. [PMID: 37840614 PMCID: PMC10567521 DOI: 10.13004/kjnt.2023.19.e41] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/17/2023] [Accepted: 08/21/2023] [Indexed: 10/17/2023] Open
Abstract
Objective Spontaneous intracerebral hemorrhage is a serious type of stroke with high mortality and disability rates. Surgical treatment options vary; however, predicting edema aggravation is crucial when choosing the optimal approach. We propose using the sphericity index, a measure of roundness, to predict the aggravation of edema and guide surgical decisions. Methods We analyzed 56 cases of craniotomy and hematoma evacuation to investigate the correlation between the sphericity index and patient outcomes, including the need for salvage decompressive craniectomy (DC). Results The patients included 35 (62.5%) men and 21 (37.5%) women, with a median age of 62.5 years. The basal ganglia was the most common location of hemorrhage (50.0%). The mean hematoma volume was 86.3 cc, with 10 (17.9%) instances of hematoma expansion. Cerebral herniation was observed in 44 (78.6%) patients, intraventricular hemorrhage in 34 (60.7%), and spot signs in 9 (16.1%). Salvage DC was performed in 13 (23.6%) patients to relieve intracranial pressure. The median follow-up duration was 6 months, with a mortality rate of 12.5%. The sphericity index was significantly correlated with delayed swelling and hematoma expansion but not salvage DC. Conclusions The sphericity index is a promising predictor of delayed swelling and hematoma expansion that may aid in the development of surgical guidelines and medication strategies. Further large-scale studies are required to explore these aspects and establish comprehensive guidelines.
Collapse
Affiliation(s)
- Jae Hoon Choi
- Department of Neurosurgery, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Korea
| | - Won Ki Yoon
- Department of Neurosurgery, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Korea
| | - Jong Hyun Kim
- Department of Neurosurgery, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Korea
| | - Taek Hyun Kwon
- Department of Neurosurgery, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Korea
| | - Joonho Byun
- Department of Neurosurgery, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Korea
| |
Collapse
|
30
|
Yang D, Wang X, Zhang X, Zhu H, Sun S, Mane R, Zhao X, Zhou J. Temporal Evolution of Perihematomal Blood-Brain Barrier Compromise and Edema Growth After Intracerebral Hemorrhage. Clin Neuroradiol 2023; 33:813-824. [PMID: 37185668 PMCID: PMC10449681 DOI: 10.1007/s00062-023-01285-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 02/23/2023] [Indexed: 05/17/2023]
Abstract
PURPOSE The aim of this study was to investigate the temporal evolution of perihematomal blood-brain barrier (BBB) compromise and edema growth and to determine the role of BBB compromise in edema growth. METHODS Spontaneous intracerebral hemorrhage patients who underwent computed tomography perfusion (CTP) were divided into five groups according to the time interval from symptom onset to CTP examination. Permeability-surface area product (PS) maps were generated using CTP source images. Ipsilateral and contralateral mean PS values were computed in the perihematomal and contralateral mirror regions. The relative PS (rPS) value was calculated as a ratio of ipsilateral to contralateral PS value. Hematoma and perihematomal edema volume were determined on non-contrast CT images. RESULTS In the total of 101 intracerebral hemorrhage patients, the ipsilateral mean PS value was significantly higher than that in contralateral region (z = -8.284, p < 0.001). The perihematomal BBB permeability showed a course of dynamic changes including an increase in the hyperacute and acute phases, a decrease in the early subacute phase and a second increase in the late subacute phase and chronic phase. Perihematomal edema increased gradually until the late subacute phase and then slightly increased. There was a relationship between rPS value and edema volume (β = 0.254, p = 0.006). CONCLUSION The perihematomal BBB permeability is dynamic changes, and edema growth is gradually increased in patients following intracerebral hemorrhage. BBB compromise plays an essential role in edema growth. The quantitative assessment of BBB compromise may provide valuable information in therapeutic interventions of intracerebral hemorrhage patients.
Collapse
Affiliation(s)
- Dan Yang
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, No.119, South Fourth Ring West Road, Fengtai District, 100070 Beijing, China
| | - Xin Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xue Zhang
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, No.119, South Fourth Ring West Road, Fengtai District, 100070 Beijing, China
| | - Huachen Zhu
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, No.119, South Fourth Ring West Road, Fengtai District, 100070 Beijing, China
| | - Shengjun Sun
- Department of Neuroradiology, Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Ravikiran Mane
- China National Clinical Research Center-Hanalytics Artificial Intelligence Research Centre for Neurological Disorders, Beijing, China
| | - Xingquan Zhao
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jian Zhou
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, No.119, South Fourth Ring West Road, Fengtai District, 100070 Beijing, China
| |
Collapse
|
31
|
Xu J, Hsu SH. Self-healing hydrogel as an injectable implant: translation in brain diseases. J Biomed Sci 2023; 30:43. [PMID: 37340481 DOI: 10.1186/s12929-023-00939-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 06/13/2023] [Indexed: 06/22/2023] Open
Abstract
Tissue engineering biomaterials are aimed to mimic natural tissue and promote new tissue formation for the treatment of impaired or diseased tissues. Highly porous biomaterial scaffolds are often used to carry cells or drugs to regenerate tissue-like structures. Meanwhile, self-healing hydrogel as a category of smart soft hydrogel with the ability to automatically repair its own structure after damage has been developed for various applications through designs of dynamic crosslinking networks. Due to flexibility, biocompatibility, and ease of functionalization, self-healing hydrogel has great potential in regenerative medicine, especially in restoring the structure and function of impaired neural tissue. Recent researchers have developed self-healing hydrogel as drug/cell carriers or tissue support matrices for targeted injection via minimally invasive surgery, which has become a promising strategy in treating brain diseases. In this review, the development history of self-healing hydrogel for biomedical applications and the design strategies according to different crosslinking (gel formation) mechanisms are summarized. The current therapeutic progress of self-healing hydrogels for brain diseases is described as well, with an emphasis on the potential therapeutic applications validated by in vivo experiments. The most recent aspect as well as the design rationale of self-healing hydrogel for different brain diseases is also addressed.
Collapse
Affiliation(s)
- Junpeng Xu
- Institute of Polymer Science and Engineering, National Taiwan University, No. 1, Sec. 4 Roosevelt Road, Taipei, 106319, Taiwan, Republic of China
| | - Shan-Hui Hsu
- Institute of Polymer Science and Engineering, National Taiwan University, No. 1, Sec. 4 Roosevelt Road, Taipei, 106319, Taiwan, Republic of China.
- Institute of Cellular and System Medicine, National Health Research Institutes, No. 35 Keyan Road, Miaoli, 350401, Taiwan, Republic of China.
| |
Collapse
|
32
|
Shi SX, Xiu Y, Li Y, Yuan M, Shi K, Liu Q, Wang X, Jin WN. CD4 + T cells aggravate hemorrhagic brain injury. SCIENCE ADVANCES 2023; 9:eabq0712. [PMID: 37285421 DOI: 10.1126/sciadv.abq0712] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 05/01/2023] [Indexed: 06/09/2023]
Abstract
Leukocyte infiltration accelerates brain injury following intracerebral hemorrhage (ICH). Yet, the involvement of T lymphocytes in this process has not been fully elucidated. Here, we report that CD4+ T cells accumulate in the perihematomal regions in the brains of patients with ICH and ICH mouse models. T cells activation in the ICH brain is concurrent with the course of perihematomal edema (PHE) development, and depletion of CD4+ T cells reduced PHE volumes and improved neurological deficits in ICH mice. Single-cell transcriptomic analysis revealed that brain-infiltrating T cells exhibited enhanced proinflammatory and proapoptotic signatures. Consequently, CD4+ T cells disrupt the blood-brain barrier integrity and promote PHE progression through interleukin-17 release; furthermore, the TRAIL-expressing CD4+ T cells engage DR5 to trigger endothelial death. Recognition of T cell contribution to ICH-induced neural injury is instrumental for designing immunomodulatory therapies for this dreadful disease.
Collapse
Affiliation(s)
- Samuel X Shi
- Clinical Neuroscience Research Center (CNRC), Department of Neurosurgery and Neurology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Yuwen Xiu
- Clinical Neuroscience Research Center (CNRC), Department of Neurosurgery and Neurology, Tulane University School of Medicine, New Orleans, LA, USA
- Center for Neurological Diseases, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin, China
| | - Yan Li
- Center for Neurological Diseases, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Meng Yuan
- Center for Neurological Diseases, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Kaibin Shi
- Center for Neurological Diseases, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Qiang Liu
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin, China
| | - Xiaoying Wang
- Clinical Neuroscience Research Center (CNRC), Department of Neurosurgery and Neurology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Wei-Na Jin
- Center for Neurological Diseases, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
33
|
Yang G, Kantapan J, Mazhar M, Bai X, Zou Y, Wang H, Huang B, Yang S, Dechsupa N, Wang L. Mesenchymal stem cells transplantation combined with IronQ attenuates ICH-induced inflammation response via Mincle/syk signaling pathway. Stem Cell Res Ther 2023; 14:131. [PMID: 37189208 DOI: 10.1186/s13287-023-03369-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 05/05/2023] [Indexed: 05/17/2023] Open
Abstract
BACKGROUND Intracerebral hemorrhage (ICH) is a severe brain-injured disease accompanied by cerebral edema, inflammation, and subsequent neurological deficits. Mesenchymal stem cells (MSCs) transplantation has been used as a neuroprotective therapy in nervous system diseases because of its anti-inflammatory effect. Nevertheless, the biological characteristics of transplanted MSCs, including the survival rate, viability, and effectiveness, are restricted because of the severe inflammatory response after ICH. Therefore, improving the survival and viability of MSCs will provide a hopeful therapeutic efficacy for ICH. Notably, the biomedical applications of coordination chemistry-mediated metal-quercetin complex have been verified positively and studied extensively, including growth-promoting and imaging probes. Previous studies have shown that the iron-quercetin complex (IronQ) possesses extraordinary dual capabilities with a stimulating agent for cell growth and an imaging probe by magnetic resonance imaging (MRI). Therefore, we hypothesized that IronQ could improve the survival and viability of MSCs, displaying the anti-inflammation function in the treatment of ICH while also labeling MSCs for their tracking by MRI. This study aimed to explore the effects of MSCs with IronQ in regulating inflammation and further clarify their potential mechanisms. METHODS C57BL/6 male mice were utilized in this research. A collagenase I-induced ICH mice model was established and randomly separated into the model group (Model), quercetin gavage group (Quercetin), MSCs transplantation group (MSCs), and MSCs transplantation combined with IronQ group (MSCs + IronQ) after 24 h. Then, the neurological deficits score, brain water content (BWC), and protein expression, such as TNF-α, IL-6, NeuN, MBP, as well as GFAP, were investigated. We further measured the protein expression of Mincle and its downstream targets. Furthermore, the lipopolysaccharide (LPS)-induced BV2 cells were utilized to investigate the neuroprotection of conditioned medium of MSCs co-cultured with IronQ in vitro. RESULTS We found that the combined treatment of MSCs with IronQ improved the inflammation-induced neurological deficits and BWC in vivo by inhibiting the Mincle/syk signaling pathway. Conditioned medium derived from MSCs co-cultured with IronQ decreased inflammation, Mincle, and its downstream targets in the LPS-induced BV2 cell line. CONCLUSIONS These data suggested that the combined treatment exerts a collaborative effect in alleviating ICH-induced inflammatory response through the downregulation of the Mincle/syk signaling pathway following ICH, further improving the neurologic deficits and brain edema.
Collapse
Affiliation(s)
- Guoqiang Yang
- Molecular Imaging and Therapy Research Unit, Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
- Center of Radiation Research and Medical Imaging, Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
- Research Center for Integrated Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
- Acupuncture and Rehabilitation Department, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Jiraporn Kantapan
- Molecular Imaging and Therapy Research Unit, Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
- Center of Radiation Research and Medical Imaging, Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Maryam Mazhar
- National Traditional Chinese Medicine Clinical Research Base and Drug Research Center of the Affiliated Traditional, Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
- Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, China
| | - Xue Bai
- Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, China
- Department of Neurology and National Traditional Chinese Medicine Clinical Research Base, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Yuanxia Zou
- Molecular Imaging and Therapy Research Unit, Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
- Center of Radiation Research and Medical Imaging, Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
- Research Center for Integrated Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Honglian Wang
- Research Center for Integrated Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Bingfeng Huang
- Department of Magnetic Resonance Imaging, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Sijing Yang
- National Traditional Chinese Medicine Clinical Research Base and Drug Research Center of the Affiliated Traditional, Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
- Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, China
| | - Nathupakorn Dechsupa
- Molecular Imaging and Therapy Research Unit, Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand.
- Center of Radiation Research and Medical Imaging, Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand.
| | - Li Wang
- Research Center for Integrated Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China.
- Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, China.
| |
Collapse
|
34
|
Liu Y, Liu X, Sun P, Li J, Nie M, Gong J, He A, Zhao M, Yang C, Wang Z. rTMS treatment for abrogating intracerebral hemorrhage-induced brain parenchymal metabolite clearance dysfunction in male mice by regulating intracranial lymphatic drainage. Brain Behav 2023:e3062. [PMID: 37161559 DOI: 10.1002/brb3.3062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 04/17/2023] [Indexed: 05/11/2023] Open
Abstract
BACKGROUND The discovery of the glymphatic system and meningeal lymphatic vessels challenged the traditional view regarding the lack of a lymphatic system in the central nervous system. It is now known that the intracranial lymphatic system plays an important role in fluid transport, macromolecule uptake, and immune cell trafficking. Studies have also shown that the function of the intracranial lymphatic system is significantly associated with neurological diseases; for example, an impaired intracranial lymphatic system can lead to Tau deposition and an increased lymphocyte count in the brain tissue of mice with subarachnoid hemorrhage. METHODS In this study, we assessed the changes in the intracranial lymphatic system after intracerebral hemorrhage and the regulatory effects of repeated transcranial magnetic stimulation on the glymphatic system and meningeal lymphatic vessels in an intracerebral hemorrhage (ICH) model of male mice. Experimental mice were divided into three groups: Sham, ICH, and ICH + repeated transcranial magnetic stimulation (rTMS). Three days after ICH, mice in the ICH+rTMS group were subjected to rTMS daily for 7 days. Thereafter, the function of the intracranial lymphatic system, clearance of RITC-dextran and FITC-dextran, and neurological functions were evaluated. RESULTS Compared with the Sham group, the ICH group had an impaired glymphatic system. Importantly, rTMS treatment could improve intracranial lymphatic system function as well as behavioral functions and enhance the clearance of parenchymal RITC-dextran and FITC-dextran after ICH. CONCLUSION Our results indicate that rTMS can abrogate ICH-induced brain parenchymal metabolite clearance dysfunction by regulating intracranial lymphatic drainage.
Collapse
Affiliation(s)
- Yuheng Liu
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin, Tianjin, China
| | - Xuanhui Liu
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin, Tianjin, China
| | - Pengju Sun
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Department of Neurosurgery, Fuyang People's Hospital, Fuyang, China
| | - Jing Li
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin, Tianjin, China
| | - Meng Nie
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin, Tianjin, China
| | - Junjie Gong
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin, Tianjin, China
| | - Anqi He
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin, Tianjin, China
| | - Mingyu Zhao
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin, Tianjin, China
| | - Chen Yang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin, Tianjin, China
| | - Zengguang Wang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
35
|
Feldstein E, Zhong A, Clare K, Nolan B, Patel S, Lavi-Romer N, Stadlan Z, Dicpinigaitis A, Dominguez J, Kamal H, Shapiro SD, Biswas A, Tanweer O, Bulsara K, Muh C, Pisapia J, Hanft S, Mayer S, Gandhi CD, Al-Mufti F. Ruptured arteriovenous malformation mortality: Incidence, risk factors, and inpatient outcome score. Interv Neuroradiol 2023:15910199231173458. [PMID: 37157828 DOI: 10.1177/15910199231173458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023] Open
Abstract
BACKGROUND Limited literature exists on the morbidity and mortality of AVM associated intracerebral hemorrhage (ICH) compared with non-AVM ICH. OBJECTIVE We examine morbidity and mortality in cAVM in a large nationwide inpatient sample to create a prognostic inpatient ruptured AVM mortality score. METHODS This retrospective cohort study from 2008 to 2014 compares outcomes in cAVM related hemorrhages and ICH utilizing the National Inpatient Sample database. Diagnostic codes for ICH and AVM underlying ICH were identified. We compared case fatality according to medical complications. Multivariate analysis was used to derive hazard ratios and 95% confidence intervals to assess odds of mortality. RESULTS We identified 6496 patients with ruptured AVMs comparing them to 627,185 admitted with ICH. Mortality was lower for ruptured AVMs (11%) compared to ICH (22%) [p < 0.01]. Mortality associated factors were liver disease (OR 2.64, CI 1.81-3.85, p < .001), diabetes mellitus (OR 2.42, CI 1.38-4.22, p = 0.002), alcohol abuse (OR 1.81, CI 1.31-2.49, p = 0.001), hydrocephalus (OR 3.35 CI 2.81-4.00, p < 0.001), cerebral edema (OR 1.5, 1.25-1.85, p < 0.001), cardiac arrest (OR 15, CI 7.9-30, p < 0.001), and pneumonia (OR 1.93, CI 1.51-2.47, p < 0.001). A 0-5 ruptured AVM mortality score was developed: Cardiac arrest (=3), age >60 (=1), Black race (=1), chronic liver failure (=1) diabetes mellitus (=1), pneumonia (=1), alcohol abuse (=1) and cerebral edema (=1). Mortality increased with score. No patient with 5 or more points survived. CONCLUSION The Ruptured AVM Mortality Score allows for risk stratification on patients with ICH due to ruptured AVM. This scale could prove useful in prognostication and patient education.
Collapse
Affiliation(s)
- Eric Feldstein
- Westchester Medical Center/New York Medical College, Valhalla, NY, USA
| | - Allison Zhong
- Westchester Medical Center/New York Medical College, Valhalla, NY, USA
| | - Kevin Clare
- Westchester Medical Center/New York Medical College, Valhalla, NY, USA
| | - Bridget Nolan
- Westchester Medical Center/New York Medical College, Valhalla, NY, USA
| | - Smit Patel
- Division of Neurosurgery, University of Connecticut, Farmington, CT, USA
| | - Nir Lavi-Romer
- Westchester Medical Center/New York Medical College, Valhalla, NY, USA
| | - Zehavya Stadlan
- Westchester Medical Center/New York Medical College, Valhalla, NY, USA
| | | | - Jose Dominguez
- Westchester Medical Center/New York Medical College, Valhalla, NY, USA
| | - Haris Kamal
- Westchester Medical Center/New York Medical College, Valhalla, NY, USA
| | - Steven D Shapiro
- Westchester Medical Center/New York Medical College, Valhalla, NY, USA
| | - Arundhati Biswas
- Westchester Medical Center/New York Medical College, Valhalla, NY, USA
| | | | - Ketan Bulsara
- Division of Neurosurgery, University of Connecticut, Farmington, CT, USA
| | - Carrie Muh
- Westchester Medical Center/New York Medical College, Valhalla, NY, USA
| | - Jared Pisapia
- Westchester Medical Center/New York Medical College, Valhalla, NY, USA
| | - Simon Hanft
- Westchester Medical Center/New York Medical College, Valhalla, NY, USA
| | - Stephan Mayer
- Westchester Medical Center/New York Medical College, Valhalla, NY, USA
| | - Chirag D Gandhi
- Westchester Medical Center/New York Medical College, Valhalla, NY, USA
| | - Fawaz Al-Mufti
- Westchester Medical Center/New York Medical College, Valhalla, NY, USA
| |
Collapse
|
36
|
Wu G, Liu Z, Mu C, Song D, Wang J, Meng X, Li Z, Qing H, Dong Y, Xie HY, Pang DW. Enhanced Proliferation of Visualizable Mesenchymal Stem Cell-Platelet Hybrid Cell for Versatile Intracerebral Hemorrhage Treatment. ACS NANO 2023; 17:7352-7365. [PMID: 37037487 DOI: 10.1021/acsnano.2c11329] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The intrinsic features and functions of platelets and mesenchymal stem cells (MSCs) indicate their great potential in the treatment of intracerebral hemorrhage (ICH). However, neither of them can completely overcome ICH because of the stealth process and the complex pathology of ICH. Here, we fabricate hybrid cells for versatile and highly efficient ICH therapy by fusing MSCs with platelets and loading with lysophosphatidic acid-modified PbS quantum dots (LPA-QDs). The obtained LPA-QDs@FCs (FCs = fusion cells) not only inherit the capabilities of both platelets and MSCs but also exhibit clearly enhanced proliferation activated by LPA. After systemic administration, many proliferating LPA-QDs@FCs rapidly accumulate in ICH areas for responding to the vascular damage and inflammation and then efficiently prevent both the primary and secondary injuries of ICH but with no obvious side effects. Moreover, the treatment process can be tracked by near-infrared II fluorescence imaging with highly spatiotemporal resolution, providing a promising solution for ICH therapy.
Collapse
Affiliation(s)
- Guanghao Wu
- School of Life Science, Beijing Institute of Technology, Beijing 100081, P. R. China
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Zhenya Liu
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers Science Center for New Organic Matter, Research Center for Analytical Sciences, College of Chemistry, Frontiers Science Center for Cell Responses, Nankai University, Tianjin 300071, P. R. China
| | - Changwen Mu
- School of Life Science, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Da Song
- School of Life Science, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Jiaxin Wang
- Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing 100083, P. R. China
| | - Xiangxi Meng
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Peking University, Beijing 100142, P. R. China
| | - Ziyuan Li
- Department of Biomedical Engineering, Peking University, Beijing 100871, P. R. China
| | - Hong Qing
- School of Life Science, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Yuping Dong
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Hai-Yan Xie
- School of Life Science, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Dai-Wen Pang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers Science Center for New Organic Matter, Research Center for Analytical Sciences, College of Chemistry, Frontiers Science Center for Cell Responses, Nankai University, Tianjin 300071, P. R. China
| |
Collapse
|
37
|
Reyes-Esteves S, Nong J, Glassman PM, Omo-Lamai S, Ohashi S, Myerson JW, Zamora ME, Ma X, Kasner SE, Sansing L, Muzykantov VR, Marcos-Contreras OA, Brenner JS. Targeted drug delivery to the brain endothelium dominates over passive delivery via vascular leak in experimental intracerebral hemorrhage. J Control Release 2023; 356:185-195. [PMID: 36868517 PMCID: PMC10519578 DOI: 10.1016/j.jconrel.2023.02.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 02/16/2023] [Accepted: 02/26/2023] [Indexed: 03/05/2023]
Abstract
Intracerebral hemorrhage (ICH) is one of the most common causes of fatal stroke, yet has no specific drug therapies. Many attempts at passive intravenous (IV) delivery in ICH have failed to deliver drugs to the salvageable area around the hemorrhage. The passive delivery method assumes vascular leak through the ruptured blood-brain barrier will allow drug accumulation in the brain. Here we tested this assumption using intrastriatal injection of collagenase, a well-established experimental model of ICH. Fitting with hematoma expansion in clinical ICH, we showed that collagenase-induced blood leak drops significantly by 4 h after ICH onset and is gone by 24 h. We observed passive-leak brain accumulation also declines rapidly over ∼4 h for 3 model IV therapeutics (non-targeted IgG; a protein therapeutic; PEGylated nanoparticles). We compared these passive leak results with targeted brain delivery by IV monoclonal antibodies (mAbs) that actively bind vascular endothelium (anti-VCAM, anti-PECAM, anti-ICAM). Even at early time points after ICH induction, where there is high vascular leak, brain accumulation via passive leak is dwarfed by brain accumulation of endothelial-targeted agents: At 4 h after injury, anti-PECAM mAbs accumulate at 8-fold higher levels in the brain vs. non-immune IgG; anti-VCAM nanoparticles (NPs) deliver a protein therapeutic (superoxide dismutase, SOD) at 4.5-fold higher levels than the carrier-free therapeutic at 24 h after injury. These data suggest that relying on passive vascular leak provides inefficient delivery of therapeutics even at early time points after ICH, and that a better strategy might be targeted delivery to the brain endothelium, which serves as the gateway for the immune attack on the peri-hemorrhage inflamed brain region.
Collapse
Affiliation(s)
- Sahily Reyes-Esteves
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Jia Nong
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Patrick M Glassman
- Department of Pharmaceutical Sciences, Temple University School of Pharmacy, Philadelphia, PA, United States of America
| | - Serena Omo-Lamai
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Sarah Ohashi
- Department of Neurology, Yale School of Medicine, New Haven, CT, United States of America
| | - Jacob W Myerson
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Marco E Zamora
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Xiaonan Ma
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Scott E Kasner
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Lauren Sansing
- Department of Neurology, Yale School of Medicine, New Haven, CT, United States of America
| | - Vladimir R Muzykantov
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Oscar A Marcos-Contreras
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America; Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America.
| | - Jacob S Brenner
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America; Division of Pulmonary Allergy, and Critical Care, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States of America.
| |
Collapse
|
38
|
Sondag L, Wolsink A, Jolink WMT, Voigt S, van Walderveen MAA, Wermer MJH, Klijn CJM, Schreuder FHBM. The association between blood pressure variability and perihematomal edema after spontaneous intracerebral hemorrhage. Front Neurol 2023; 14:1114602. [PMID: 37006500 PMCID: PMC10060834 DOI: 10.3389/fneur.2023.1114602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 03/01/2023] [Indexed: 03/18/2023] Open
Abstract
BackgroundPerihematomal edema (PHE) after spontaneous intracerebral hemorrhage (sICH) is associated with clinical deterioration, but the etiology of PHE development is only partly understood.AimsWe aimed to investigate the association between systemic blood pressure (BP) variability (BPV) and formation of PHE.MethodsFrom a multicenter prospective observational study, we selected patients with sICH who underwent 3T brain MRI within 21 days after sICH, and had at least 5 BP measurements available in the first week after sICH. Primary outcome was the association between coefficient of variation (CV) of systolic BP (SBP) and edema extension distance (EED) using multivariable linear regression, adjusting for age, sex, ICH volume and timing of the MRI. In addition, we investigated the associations of mean SBP, mean arterial pressure (MAP), their CVs with EED and absolute and relative PHE volume.ResultsWe included 92 patients (mean age 64 years; 74% men; median ICH volume 16.8 mL (IQR 6.6–36.0), median PHE volume 22.5 mL (IQR 10.2–41.4). Median time between symptom onset and MRI was 6 days (IQR 4–11), median number of BP measurements was 25 (IQR 18–30). Log-transformed CV of SBP was not associated with EED (B = 0.050, 95%-CI −0.186 to 0.286, p = 0.673). Furthermore, we found no association between mean SBP, mean and CV of MAP and EED, nor between mean SBP, mean MAP or their CVs and absolute or relative PHE.DiscussionOur results do not support a contributing role for BPV on PHE, suggesting mechanisms other than hydrostatic pressure such as inflammatory processes, may play a more important role.
Collapse
Affiliation(s)
- Lotte Sondag
- Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, Netherlands
| | - Axel Wolsink
- Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, Netherlands
| | | | - Sabine Voigt
- Department of Neurology, Leiden University Medical Center, Leiden, Netherlands
- Department of Radiology, Leiden University Medical Center, Leiden, Netherlands
| | | | | | - Catharina J. M. Klijn
- Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, Netherlands
| | - Floris H. B. M. Schreuder
- Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, Netherlands
- *Correspondence: Floris H. B. M. Schreuder
| |
Collapse
|
39
|
Wang J, Xiong X, Zou J, Fu J, Yin Y, Ye J. Combination of Hematoma Volume and Perihematoma Radiomics Analysis on Baseline CT Scan Predicts the Growth of Perihematomal Edema. Clin Neuroradiol 2023; 33:199-209. [PMID: 35943522 DOI: 10.1007/s00062-022-01201-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 07/11/2022] [Indexed: 11/28/2022]
Abstract
PURPOSE The aim is to explore the potential value of CT-based radiomics in predicting perihematomal edema (PHE) volumes after acute intracerebral hemorrhage (ICH) from admission to 24 h. METHODS A total of 231 patients newly diagnosed with acute ICH at two institutes were analyzed retrospectively. The patients were randomly divided into training (N = 117) and internal validation cohort (N = 45) from institute 1 with a ratio of 7:3. According to radiomics features extracted from baseline CT, the radiomics signatures were constructed. Multiple logistic regression analysis was used for clinical radiological factors and then the nomogram model was generated to predict the extent of PHE according to the optimal radiomics signature and the clinical radiological factors. The receiver operating characteristic (ROC) curve was used to evaluate the discrimination performance. The calibration curve and Hosmer-Lemeshow test were used to evaluate the consistency between the predicted and actual probability. The support vector regression (SVR) model was constructed to predict the overall value of follow-up PHE. The performance of the models was evaluated on the internal and independent validation cohorts. RESULTS The perihematoma 5 mm radiomics signature (AUC: 0.875) showed good ability to discriminate the small relative PHE(rPHE) from large rPHE volumes, comparing to intrahematoma radiomics signature (AUC: 0.711) or perihematoma 10 mm radiomics signature (AUC: 0.692) on the training cohort. The AUC of the combined nomogram model was 0.922 for the training cohort, 0.945 and 0.902 for the internal and independent validation cohorts, respectively. The calibration curves and Hosmer-Lemeshow test of the nomogram model suggested that the predictive performance and actual outcome were in favorable agreement. The SVR model also predicted the overall value of follow-up rPHE (root mean squared error, 0.60 and 0.45; Pearson correlation coefficient, 0.73 and 0.68; P < 0.001). CONCLUSION Among patients with acute ICH, the established nomogram and SVR model with favorable performance can offer a noninvasive tool for the prediction of PHE after ICH.
Collapse
Affiliation(s)
- Jia Wang
- Department of Radiology, Northern Jiangsu People's Hospital, 225001, Yangzhou, China
| | - Xing Xiong
- Department of Radiology, The First Affiliated Hospital of Soochow University, 215006, Suzhou, Jiangsu, China
| | - Jinzhao Zou
- Department of Radiology, Northern Jiangsu People's Hospital, 225001, Yangzhou, China
| | - Jianxiong Fu
- Department of Radiology, Northern Jiangsu People's Hospital, 225001, Yangzhou, China
| | - Yili Yin
- Department of Radiology, Northern Jiangsu People's Hospital, 225001, Yangzhou, China.
| | - Jing Ye
- Department of Radiology, Northern Jiangsu People's Hospital, 225001, Yangzhou, China.
| |
Collapse
|
40
|
Cao Y, Xiao W, Liu S, Zeng Y. Ferroptosis: Underlying mechanism and the crosstalk with other modes of neuronal death after intracerebral hemorrhage. Front Cell Neurosci 2023; 17:1080344. [PMID: 36814866 PMCID: PMC9939649 DOI: 10.3389/fncel.2023.1080344] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 01/16/2023] [Indexed: 02/09/2023] Open
Abstract
Intracerebral hemorrhage (ICH) is a serious cerebrovascular disease with high rates of morbidity, mortality, and disability. Optimal treatment of ICH is a major clinical challenge, as the underlying mechanisms remain unclear. Ferroptosis, a newly identified form of non-apoptotic programmed cell death, is characterized by the iron-induced accumulation of lipid reactive oxygen species (ROS), leading to intracellular oxidative stress. Lipid ROS causes damage to nucleic acids, proteins, and cell membranes, eventually resulting in ferroptosis. In the past 10 years, ferroptosis has resulted in plenty of discoveries and breakthroughs in cancer, neurodegeneration, and other diseases. Some studies have also reported that ferroptosis does occur after ICH in vitro and in vivo and contribute to neuronal death. However, the studies on ferroptosis following ICH are still in the preliminary stage. In this review, we will summarize the current evidence on the mechanism underlying ferroptosis after ICH. And review the traditional modes of neuronal death to identify the crosstalk with ferroptosis in ICH, including apoptosis, necroptosis, and autophagy. Additionally, we also aim to explore the promising therapeutic application of ferroptosis in cell death-based ICH.
Collapse
Affiliation(s)
- Yuan Cao
- Department of Geriatrics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Wenbiao Xiao
- Department of Geriatrics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Shuzhen Liu
- Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Yi Zeng
- Department of Geriatrics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China,*Correspondence: Yi Zeng,
| |
Collapse
|
41
|
Suswati I, Rahayu, Maulida AP, Prasetio AD. Managing Mental Disorders in Intracranial Hemorrhage (ICH) Patients: A Case Study on the Importance of Early Recognition and Intervention. BRAIN HEMORRHAGES 2023. [DOI: 10.1016/j.hest.2023.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023] Open
|
42
|
Abstract
Stroke is a sudden and rapidly progressing ischemic or hemorrhagic cerebrovascular disease. When stroke damages the brain, the immune system becomes hyperactive, leading to systemic inflammatory response and immunomodulatory disorders, which could significantly impact brain damage, recovery, and prognosis of stroke. Emerging researches suggest that ischemic stroke-induced spleen contraction could activate a peripheral immune response, which may further aggravate brain injury. This review focuses on hemorrhagic strokes including intracerebral hemorrhage (ICH) and subarachnoid hemorrhage (SAH) and discusses the central nervous system-peripheral immune interactions after hemorrhagic stroke induction. First, inflammatory progression after ICH and SAH is investigated. As a part of this review, we summarize the various kinds of inflammatory cell infiltration to aggravate brain injury after blood-brain barrier interruption induced by hemorrhagic stroke. Then, we explore hemorrhagic stroke-induced systemic inflammatory response syndrome (SIRS) and discuss the interactions of CNS and peripheral inflammatory response. In addition, potential targets related to inflammatory response for ICH and SAH are discussed in this review, which may lead to novel therapeutic strategies for hemorrhagic stroke.
Collapse
Affiliation(s)
- Xiang Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China.,Institute of Stroke Research, Soochow University, Suzhou, China
| | - Gang Chen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China.,Institute of Stroke Research, Soochow University, Suzhou, China
| |
Collapse
|
43
|
Fainardi E, Busto G, Scola E, Casetta I, Mizutani K, Consoli A, Boulouis G, Padovani A, Morotti A. Perfusion gradients promote delayed perihaematomal oedema in intracerebral haemorrhage. Brain Commun 2023; 5:fcad133. [PMID: 37151226 PMCID: PMC10162681 DOI: 10.1093/braincomms/fcad133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 02/23/2023] [Accepted: 04/20/2023] [Indexed: 05/09/2023] Open
Abstract
Perihaematomal oedema is a potential therapeutic target to improve outcome of patients with intracerebral haemorrhage, but its pathophysiology remains poorly elucidated. We investigated the longitudinal changes of cerebral perfusion and their influence on perihaematomal oedema development in 150 patients with intracerebral haemorrhage who underwent computed tomography perfusion within 6 h from onset, at 24 h and at 7 days. Perfusion parameters were measured in haemorrhagic core, perihaematomal rim, surrounding normal appearing and contralateral brain tissue. Computed tomography perfusion parameters gradually improved from the core to the periphery in each time interval with an early increase at 24 h followed by a delayed decline at 7 days compared with admission values (P < 0.001). Multivariable linear regression analysis showed that haematoma volume and cerebral blood flow gradient between normal appearing and perihaematomal rim were independently associated with absolute perihaematomal oedema volume in the different time points (within 6 h, B = 0.128, P = 0.032; at 24 h, B = 0.133, P = 0.016; at 7 days, B = 0.218, P < 0.001). In a secondary analysis with relative perihaematomal oedema as the outcome of interest, cerebral blood flow gradient between normal appearing and perihaematomal rim was an independent predictor of perihaematomal oedema only at 7 days (B = 0.239, P = 0.002). Our findings raise the intriguing hypothesis that perfusion gradients promote perihaematomal oedema development in the subacute phase after intracerebral haemorrhage.
Collapse
Affiliation(s)
- Enrico Fainardi
- Correspondence to: Enrico Fainardi, MD, PhD Struttura Organizzativa Dipartimentale di Neuroradiologia Dipartimento di Scienze Biomediche, Sperimentali e Cliniche ‘Mario Serio’ Università degli Studi di Firenze Ospedale Universitario Careggi Largo Brambilla 3, Firenze 50134, Italy E-mail:
| | - Giorgio Busto
- Neuroradiology Unit, Department of Radiology, Careggi University Hospital, Florence 50139, Italy
| | - Elisa Scola
- Neuroradiology Unit, Department of Radiology, Careggi University Hospital, Florence 50139, Italy
| | - Ilaria Casetta
- Section of Neurological, Psychiatric and Psychological Sciences, Department of Biomedical and Specialist Surgical Sciences, University of Ferrara, Ferrara 44121, Italy
| | - Katsuhiro Mizutani
- Department of Neurosurgery, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Arturo Consoli
- Department of Interventional and Diagnostic Neuroradiology, Hopitâl Foch, Suresnes, le de France, Paris 92150, France
| | - Gregoire Boulouis
- Department of Neuroradiology, University Hospital of Tours, Centre Val de Loire Region, Tours 37020, France
| | - Alessandro Padovani
- Department of Clinical and Experimental Sciences, Neurology Unit, University of Brescia, Brescia 25121, Italy
- Department of Neurological Sciences and Vision, Neurology Unit, ASST Spedali Civili, Brescia 25123, Italy
| | - Andrea Morotti
- Department of Neurological Sciences and Vision, Neurology Unit, ASST Spedali Civili, Brescia 25123, Italy
| |
Collapse
|
44
|
Wilting FNH, Sondag L, Schreuder FHBM, Vinke RS, Dammers R, Klijn CJM, Boogaarts HD. Surgery for spontaneous supratentorial intracerebral haemorrhage. THE COCHRANE DATABASE OF SYSTEMATIC REVIEWS 2022; 2022:CD015387. [PMCID: PMC9743082 DOI: 10.1002/14651858.cd015387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
This is a protocol for a Cochrane Review (intervention). The objectives are as follows: To assess the efficacy and safety of surgery plus standard medical management, compared to standard medical management alone, in people with spontaneous supratentorial ICH, and to assess whether the effect of surgery differs according to the surgical technique.
Collapse
Affiliation(s)
| | - Floor NH Wilting
- Department of Neurology, Donders Institute for Brain, Cognition and BehaviourRadboud University Medical CentreNijmegenNetherlands
| | - Lotte Sondag
- Department of Neurology, Donders Institute for Brain, Cognition and BehaviourRadboud University Medical CentreNijmegenNetherlands
| | - Floris HBM Schreuder
- Department of Neurology, Donders Institute for Brain, Cognition and BehaviourRadboud University Medical CentreNijmegenNetherlands
| | - R Saman Vinke
- Department of NeurosurgeryRadboud University Medical CentreNijmegenNetherlands
| | - Ruben Dammers
- Department of Neurosurgery, Erasmus Medical CentreErasmus MC Stroke CentreRotterdamNetherlands
| | - Catharina JM Klijn
- Department of Neurology, Donders Institute for Brain, Cognition and BehaviourRadboud University Medical CentreNijmegenNetherlands
| | | |
Collapse
|
45
|
Che R, Zhang M, Sun H, Ma J, Hu W, Liu X, Ji X. Long-term outcome of cerebral amyloid angiopathy-related hemorrhage. CNS Neurosci Ther 2022; 28:1829-1837. [PMID: 35975394 PMCID: PMC9532921 DOI: 10.1111/cns.13922] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 06/30/2022] [Accepted: 07/01/2022] [Indexed: 11/30/2022] Open
Abstract
OBJECT The long-term functional outcome of cerebral amyloid angiopathy-related hemorrhage (CAAH) patients is unclear. We sought to assess the long-term functional outcome of CAAH and determine the prognostic factors associated with unfavorable outcomes. METHODS We enrolled consecutive CAAH patients from 2014 to 2020 in this observational study. Baseline characteristics and clinical outcomes were presented. Multivariable logistic regression analysis was performed to identify the prognostic factors associated with long-term outcome. RESULTS Among the 141 CAAH patients, 76 (53.9%) achieved favorable outcomes and 28 (19.9%) of them died at 1-year follow-up. For the longer-term follow-up with a median observation time of 19.0 (interquartile range, 12.0-26.5) months, 71 (50.4%) patients obtained favorable outcomes while 33 (23.4%) died. GCS on admission (OR, 0.109; 95% CI, 0.021-0.556; p = 0.008), recurrence of ICH (OR, 2923.687; 95% CI, 6.282-1360730.14; p = 0.011), WML grade 3-4 (OR, 31.007; 95% CI, 1.041-923.573; p = 0.047), severe central atrophy (OR, 4220.303; 95% CI, 9.135-1949674.84; p = 0.008) assessed by CT was identified as independent predictors for long-term outcome. INTERPRETATION Nearly 50% of CAAH patients achieved favorable outcomes at long-term follow-up. GCS, recurrence of ICH, WML grade and cerebral atrophy were identified as independent prognostic factors of long-term outcome.
Collapse
Affiliation(s)
- Ruiwen Che
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Hypoxia Conditioning Translational Medicine, Beijing, China
| | - Mengke Zhang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Hailiang Sun
- Department of Neurosurgery, Beijing Fengtai You'anmen Hospital, Beijing, China
| | - Jin Ma
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Wenbo Hu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Xin Liu
- Department of Radiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Xunming Ji
- Beijing Key Laboratory of Hypoxia Conditioning Translational Medicine, Beijing, China
- Department of Neurosurgery, Xuan Wu Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Brain Disorders, Beijing, China
- Capital Medical University, Beijing, China
| |
Collapse
|
46
|
Xia S, Zheng Y, Yan F, Chen G. MicroRNAs modulate neuroinflammation after intracerebral hemorrhage: Prospects for new therapy. Front Immunol 2022; 13:945860. [PMID: 36389834 PMCID: PMC9665326 DOI: 10.3389/fimmu.2022.945860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 10/13/2022] [Indexed: 12/03/2022] Open
Abstract
Intracerebral hemorrhage (ICH) is the most common subtype of hemorrhagic stroke. After ICH, blood components extravasate from vessels into the brain, activating immune cells and causing them to release a series of inflammatory mediators. Immune cells, together with inflammatory mediators, lead to neuroinflammation in the perihematomal region and the whole brain, and neuroinflammation is closely related to secondary brain injury as well as functional recovery of the brain. Despite recent progress in understanding the pathophysiology of ICH, there is still no effective treatment for this disease. MicroRNAs (miRNAs) are non-coding RNAs 17-25 nucleotides in length that are generated naturally in the human body. They bind complementarily to messenger RNAs and suppress translation, thus regulating gene expression at the post-transcriptional level. They have been found to regulate the pathophysiological process of ICH, particularly the neuroinflammatory cascade. Multiple preclinical studies have shown that manipulating the expression and activity of miRNAs can modulate immune cell activities, influence neuroinflammatory responses, and ultimately affect neurological functions after ICH. This implicates the potentially crucial roles of miRNAs in post-ICH neuroinflammation and indicates the possibility of applying miRNA-based therapeutics for this disease. Thus, this review aims to address the pathophysiological roles and molecular underpinnings of miRNAs in the regulation of neuroinflammation after ICH. With a more sophisticated understanding of ICH and miRNAs, it is possible to translate these findings into new pharmacological therapies for ICH.
Collapse
Affiliation(s)
- Siqi Xia
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yonghe Zheng
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Zhejiang University, Hangzhou, Zhejiang, China
| | - Feng Yan
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Zhejiang University, Hangzhou, Zhejiang, China
| | - Gao Chen
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
47
|
Affiliation(s)
- Kevin N Sheth
- From the Division of Neurocritical Care and Emergency Neurology, Departments of Neurology and Neurosurgery, and the Yale Center for Brain and Mind Health, Yale School of Medicine, New Haven, CT
| |
Collapse
|
48
|
Caffes N, Hendricks K, Bradley JS, Twenhafel NA, Simard JM. Anthrax Meningoencephalitis and Intracranial Hemorrhage. Clin Infect Dis 2022; 75:S451-S458. [PMID: 36251558 PMCID: PMC9649421 DOI: 10.1093/cid/ciac521] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
The neurological sequelae of Bacillus anthracis infection include a rapidly progressive fulminant meningoencephalitis frequently associated with intracranial hemorrhage, including subarachnoid and intracerebral hemorrhage. Higher mortality than other forms of bacterial meningitis suggests that antimicrobials and cardiopulmonary support alone may be insufficient and that strategies targeting the hemorrhage might improve outcomes. In this review, we describe the toxic role of intracranial hemorrhage in anthrax meningoencephalitis. We first examine the high incidence of intracranial hemorrhage in patients with anthrax meningoencephalitis. We then review common diseases that present with intracranial hemorrhage, including aneurysmal subarachnoid hemorrhage and spontaneous intracerebral hemorrhage, postulating applicability of established and potential neurointensive treatments to the multimodal management of hemorrhagic anthrax meningoencephalitis. Finally, we examine the therapeutic potential of minocycline, an antimicrobial that is effective against B. anthracis and that has been shown in preclinical studies to have neuroprotective properties, which thus might be repurposed for this historically fatal disease.
Collapse
Affiliation(s)
- Nicholas Caffes
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Katherine Hendricks
- Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - John S Bradley
- Department of Pediatrics, San Diego School of Medicine and Rady Children’s Hospital, University of California, San Diego, California, USA
| | - Nancy A Twenhafel
- Division of Pathology, United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, USA
| | - J Marc Simard
- Correspondence: J. M. Simard, Department of Neurosurgery, University of Maryland School of Medicine, 22 S Greene St, Suite S12D, Baltimore, MD 21201, USA ()
| |
Collapse
|
49
|
Schleicher RL, Li K, Mylvaganam R, Bevers MB, Goldstein JN, Kimberly WT. Expression of DEspR in acute intracerebral hemorrhage. J Stroke Cerebrovasc Dis 2022; 31:106685. [PMID: 36007264 PMCID: PMC9509454 DOI: 10.1016/j.jstrokecerebrovasdis.2022.106685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 07/24/2022] [Indexed: 11/17/2022] Open
Abstract
OBJECTIVES Neuroinflammation and secondary injury play a central role in the pathophysiology of intracerebral hemorrhage. The dual endothelin-1/VEGFsignal-peptide receptor (DEspR) has been reported to mediate the inflammatory response after acute brain injury in a rodent model. We performed a pilot study to assess the expression of DEspR on circulating leukocytes in patients who presented with spontaneous intracerebral hemorrhage (ICH). MATERIALS AND METHODS We performed a prospective observational study of patients presenting to two academic medical centers with ICH. Normal healthy volunteers (NHV) were also recruited for sample analysis. Whole blood was obtained, and flow cytometry was performed to examine DEspR expression on neutrophils, monocytes, and lymphocytes. RESULTS A total of 19 patients were included in analysis. Median ICH volume was 39 cm3 [IQR 19 cm3, 73 cm3] and median ICH score was 2 [IQR 2, 3]. DEspR expression was more abundant on neutrophils (median 2.4% [IQR 0.5%, 5.8%], p = 0.0064) and monocytes (median 4.4% [IQR 1.7%, 15.8%], p = 0.003) relative to lymphocytes (median 0.9% [IQR 0.2%, 3.3%]). ICH patients had higher DEspR expression in all leukocytes relative to NHV (p < 0.05 for all). Among ICH patients, those with a medical history of hypertension showed higher DEspR expression on neutrophils and monocytes (p = 0.018) compared to those without hypertension. CONCLUSIONS In this pilot study, DEspR is expressed on circulating neutrophils and monocytes in humans after ICH, with higher levels of expression in those with hypertension. Future work in larger cohorts should examine the relationship of DEspR expression with neuroinflammatory endpoints and long-term outcome.
Collapse
Affiliation(s)
- Riana L Schleicher
- Division of Neurocritical Care, Massachusetts General Hospital, 55 Fruit Street, Lunder 644, Boston, MA 02114, USA; Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Karen Li
- Divisions of Stroke, Cerebrovascular and Critical Care Neurology, Brigham and Women's Hospital, Boston, MA, USA
| | - Ravi Mylvaganam
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
| | - Matthew B Bevers
- Divisions of Stroke, Cerebrovascular and Critical Care Neurology, Brigham and Women's Hospital, Boston, MA, USA
| | - Joshua N Goldstein
- Department of Emergency Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - W Taylor Kimberly
- Division of Neurocritical Care, Massachusetts General Hospital, 55 Fruit Street, Lunder 644, Boston, MA 02114, USA; Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA.
| |
Collapse
|
50
|
Molecular, Pathological, Clinical, and Therapeutic Aspects of Perihematomal Edema in Different Stages of Intracerebral Hemorrhage. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:3948921. [PMID: 36164392 PMCID: PMC9509250 DOI: 10.1155/2022/3948921] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 08/17/2022] [Accepted: 09/03/2022] [Indexed: 02/07/2023]
Abstract
Acute intracerebral hemorrhage (ICH) is a devastating type of stroke worldwide. Neuronal destruction involved in the brain damage process caused by ICH includes a primary injury formed by the mass effect of the hematoma and a secondary injury induced by the degradation products of a blood clot. Additionally, factors in the coagulation cascade and complement activation process also contribute to secondary brain injury by promoting the disruption of the blood-brain barrier and neuronal cell degeneration by enhancing the inflammatory response, oxidative stress, etc. Although treatment options for direct damage are limited, various strategies have been proposed to treat secondary injury post-ICH. Perihematomal edema (PHE) is a potential surrogate marker for secondary injury and may contribute to poor outcomes after ICH. Therefore, it is essential to investigate the underlying pathological mechanism, evolution, and potential therapeutic strategies to treat PHE. Here, we review the pathophysiology and imaging characteristics of PHE at different stages after acute ICH. As illustrated in preclinical and clinical studies, we discussed the merits and limitations of varying PHE quantification protocols, including absolute PHE volume, relative PHE volume, and extension distance calculated with images and other techniques. Importantly, this review summarizes the factors that affect PHE by focusing on traditional variables, the cerebral venous drainage system, and the brain lymphatic drainage system. Finally, to facilitate translational research, we analyze why the relationship between PHE and the functional outcome of ICH is currently controversial. We also emphasize promising therapeutic approaches that modulate multiple targets to alleviate PHE and promote neurologic recovery after acute ICH.
Collapse
|