1
|
Sarkar A, Bhakta S, Chattopadhyay S, Dey A. Role of distal arginine residue in the mechanism of heme nitrite reductases. Chem Sci 2023; 14:7875-7886. [PMID: 37502318 PMCID: PMC10370594 DOI: 10.1039/d3sc01777j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 06/14/2023] [Indexed: 07/29/2023] Open
Abstract
Heme nitrite reductases reduce NO2- by 1e-/2H+ to NO or by 6e-/8H+ to NH4+ which are key steps in the global nitrogen cycle. Second-sphere residues, such as arginine (with a guanidine head group), are proposed to play a key role in the reaction by assisting substrate binding and hydrogen bonding and by providing protons to the active site for the reaction. The reactivity of an iron porphyrin with a NO2- covalently attached to a guanidinium arm in its 2nd sphere was investigated to understand the role of arginine residues in the 2nd sphere of heme nitrite reductases. The presence of the guanidinium residue allows the synthetic ferrous porphyrin to reduce NO2- and produce a ferrous nitrosyl species ({FeNO}7), where the required protons are provided by the guanidinium group in the 2nd sphere. However, in the presence of additional proton sources in solution, the reaction of ferrous porphyrin with NO2- results in the formation of ferric porphyrin and the release of NO. Spectroscopic and kinetic data indicated that re-protonation of the guanidine group in the 2nd sphere by an external proton source causes NO to dissociate from a ferric nitrosyl species ({FeNO}6) at rates similar to those observed for enzymatic sites. This re-protonation of the guanidine group mimics the proton recharge mechanism in the active site of NiR. DFT calculations indicated that the lability of the Fe-NO bond in the {FeNO}6 species is derived from the greater binding affinity of anions (e.g. NO2-) to the ferric center relative to neutral NO due to hydrogen bonding and electrostatic interaction of these bound anions with the protonated guanidium group in the 2nd sphere. The reduced {FeNO}7 species, once formed, is not affected significantly by the re-protonation of the guanidine residue. These results provide direct insight into the role of the 2nd sphere arginine residue present in the active sites of heme-based NiRs in determining the fate of NO2- reduction. Specifically, the findings using the synthetic model suggest that rapid re-protonation of these arginine residues may trigger the dissociation of NO from the {FeNO}6, which may also be the case in the protein active site.
Collapse
Affiliation(s)
- Ankita Sarkar
- School of Chemical Sciences, Indian Association for the Cultivation of Science 2A & 2B Raja S.C. Mullick Road Kolkata WB 700032 India
| | - Snehadri Bhakta
- School of Chemical Sciences, Indian Association for the Cultivation of Science 2A & 2B Raja S.C. Mullick Road Kolkata WB 700032 India
| | - Samir Chattopadhyay
- School of Chemical Sciences, Indian Association for the Cultivation of Science 2A & 2B Raja S.C. Mullick Road Kolkata WB 700032 India
| | - Abhishek Dey
- School of Chemical Sciences, Indian Association for the Cultivation of Science 2A & 2B Raja S.C. Mullick Road Kolkata WB 700032 India
| |
Collapse
|
2
|
Koebke KJ, Tebo AG, Manickas EC, Deb A, Penner-Hahn JE, Pecoraro VL. Nitrite reductase activity within an antiparallel de novo scaffold. J Biol Inorg Chem 2021; 26:855-862. [PMID: 34487215 PMCID: PMC11232943 DOI: 10.1007/s00775-021-01889-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 07/26/2021] [Indexed: 12/28/2022]
Abstract
Copper nitrite reductase (CuNiR) is a copper enzyme that converts nitrite to nitric oxide and is an important part of the global nitrogen cycle in bacteria. The relatively simple CuHis3 binding site of the CuNiR active site has made it an enticing target for small molecule modeling and de novo protein design studies. We have previously reported symmetric CuNiR models within parallel three stranded coiled coil systems, with activities that span a range of three orders of magnitude. In this report, we investigate the same CuHis3 binding site within an antiparallel three helical bundle scaffold, which allows the design of asymmetric constructs. We determine that a simple CuHis3 binding site can be designed within this scaffold with enhanced activity relative to the comparable construct in parallel coiled coils. Incorporating more complex designs or repositioning this binding site can decrease this activity as much as 15 times. Comparing these constructs, we reaffirm a previous result in which a blue shift in the 1s to 4p transition energy determined by Cu(I) X-ray absorption spectroscopy is correlated with an enhanced activity within imidazole-based constructs. With this step and recent successful electron transfer site designs within this scaffold, we are one step closer to a fully functional de novo designed nitrite reductase.
Collapse
Affiliation(s)
- Karl J Koebke
- Department of Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Alison G Tebo
- Program in Chemical Biology, University of Michigan, Ann Arbor, MI, USA
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | | | - Aniruddha Deb
- Department of Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - James E Penner-Hahn
- Department of Chemistry, University of Michigan, Ann Arbor, MI, USA
- Department of Biophysics, University of Michigan, Ann Arbor, MI, USA
| | | |
Collapse
|
3
|
Galler T, Lebrun V, Raibaut L, Faller P, Wezynfeld NE. How trimerization of CTR1 N-terminal model peptides tunes Cu-binding and redox-chemistry. Chem Commun (Camb) 2020; 56:12194-12197. [PMID: 32914794 DOI: 10.1039/d0cc04693k] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Employing peptide-based models of copper transporter 1 (CTR1), we show that the trimeric arrangement of its N-terminus tunes its reactivity with Cu, promoting Cu(ii) reduction and stabilizing Cu(i). Hence, the employed multimeric models of CTR1 provide an important contribution to studies on early steps of Cu uptake by cells.
Collapse
Affiliation(s)
- Thibaut Galler
- Institut de Chimie, UMR 7177, CNRS-Universitéde Strasbourg, 4 rue Blaise Pascal, Strasbourg 67000, France.
| | - Vincent Lebrun
- Institut de Chimie, UMR 7177, CNRS-Universitéde Strasbourg, 4 rue Blaise Pascal, Strasbourg 67000, France.
| | - Laurent Raibaut
- Institut de Chimie, UMR 7177, CNRS-Universitéde Strasbourg, 4 rue Blaise Pascal, Strasbourg 67000, France.
| | - Peter Faller
- Institut de Chimie, UMR 7177, CNRS-Universitéde Strasbourg, 4 rue Blaise Pascal, Strasbourg 67000, France.
| | - Nina E Wezynfeld
- Institut de Chimie, UMR 7177, CNRS-Universitéde Strasbourg, 4 rue Blaise Pascal, Strasbourg 67000, France. and Chair of Medical Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Warsaw 00-664, Poland.
| |
Collapse
|
4
|
Andring JT, Kim CU, McKenna R. Structure and mechanism of copper-carbonic anhydrase II: a nitrite reductase. IUCRJ 2020; 7:287-293. [PMID: 32148856 PMCID: PMC7055381 DOI: 10.1107/s2052252520000986] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 01/24/2020] [Indexed: 05/06/2023]
Abstract
Nitric oxide (NO) promotes vasodilation through the activation of guanylate cyclase, resulting in the relaxation of the smooth muscle vasculature and a subsequent decrease in blood pressure. Therefore, its regulation is of interest for the treatment and prevention of heart disease. An example is pulmonary hypertension which is treated by targeting this NO/vasodilation pathway. In bacteria, plants and fungi, nitrite (NO2 -) is utilized as a source of NO through enzymes known as nitrite reductases. These enzymes reduce NO2 - to NO through a catalytic metal ion, often copper. Recently, several studies have shown nitrite reductase activity of mammalian carbonic anhydrase II (CAII), yet the molecular basis for this activity is unknown. Here we report the crystal structure of copper-bound human CAII (Cu-CAII) in complex with NO2 - at 1.2 Å resolution. The structure exhibits Type 1 (T-1) and 2 (T-2) copper centers, analogous to bacterial nitrite reductases, both required for catalysis. The copper-substituted CAII active site is penta-coordinated with a 'side-on' bound NO2 -, resembling a T-2 center. At the N terminus, several residues that are normally disordered form a porphyrin ring-like configuration surrounding a second copper, acting as a T-1 center. A structural comparison with both apo- (without metal) and zinc-bound CAII (Zn-CAII) provides a mechanistic picture of how, in the presence of copper, CAII, with minimal conformational changes, can function as a nitrite reductase.
Collapse
Affiliation(s)
- Jacob T. Andring
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL 32610 USA
| | - Chae Un Kim
- Department of Physics, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Robert McKenna
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL 32610 USA
| |
Collapse
|
5
|
Abstract
The enzyme carbonic anhydrase binds its zinc ion by three histidine residues in a similar manner to the way copper is bound to nitrite reductase. This remote similarity has now been shown to be real [Andring et al. (2020). IUCrJ, 7, 287-293]. A carbonic anhydrase with two bound copper ions is also a nitrite reductase.
Collapse
Affiliation(s)
- Anders Liljas
- Biochemistry and Structural Biology, Lund University, Lund, Sweden
| |
Collapse
|
6
|
Wang L, Sparacino-Watkins CE, Wang J, Wajih N, Varano P, Xu Q, Cecco E, Tejero J, Soleimani M, Kim-Shapiro DB, Gladwin MT. Carbonic anhydrase II does not regulate nitrite-dependent nitric oxide formation and vasodilation. Br J Pharmacol 2019; 177:898-911. [PMID: 31658361 DOI: 10.1111/bph.14887] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 09/16/2019] [Accepted: 09/17/2019] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND AND PURPOSE Although it has been reported that bovine carbonic anhydrase CAII is capable of generating NO from nitrite, the function and mechanism of CAII in nitrite-dependent NO formation and vascular responses remain controversial. We tested the hypothesis that CAII catalyses NO formation from nitrite and contributes to nitrite-dependent inhibition of platelet activation and vasodilation. EXPERIMENT APPROACH The role of CAII in enzymatic NO generation was investigated by measuring NO formation from the reaction of isolated human and bovine CAII with nitrite using NO photolysis-chemiluminescence. A CAII-deficient mouse model was used to determine the role of CAII in red blood cell mediated nitrite reduction and vasodilation. KEY RESULTS We found that the commercially available purified bovine CAII exhibited limited and non-enzymatic NO-generating reactivity in the presence of nitrite with or without addition of the CA inhibitor dorzolamide; the NO formation was eliminated with purification of the enzyme. There was no significant detectable NO production from the reaction of nitrite with recombinant human CAII. Using a CAII-deficient mouse model, there were no measurable changes in nitrite-dependent vasodilation in isolated aorta rings and in vivo in CAII-/- , CAII+/- , and wild-type mice. Moreover, deletion of the CAII gene in mice did not block nitrite reduction by red blood cells and the nitrite-NO-dependent inhibition of platelet activation. CONCLUSION AND IMPLICATIONS These studies suggest that human, bovine and mouse CAII are not responsible for nitrite-dependent NO formation in red blood cells, aorta, or the systemic circulation.
Collapse
Affiliation(s)
- Ling Wang
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania.,Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Courtney E Sparacino-Watkins
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania.,Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Jun Wang
- Hubei University of Technology, Wuhan, P. R. China
| | - Nadeem Wajih
- Department of Physics, Wake Forest University, Winston-Salem, North Carolina
| | - Paul Varano
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Qinzi Xu
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Eric Cecco
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Jesús Tejero
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania.,Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | | | - Daniel B Kim-Shapiro
- Department of Physics, Wake Forest University, Winston-Salem, North Carolina.,Translational Science Center, Wake Forest University, Winston-Salem, North Carolina
| | - Mark T Gladwin
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania.,Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
7
|
Pickerodt PA, Kronfeldt S, Russ M, Gonzalez-Lopez A, Lother P, Steiner E, Vorbrodt K, Busch T, Boemke W, Francis RCE, Swenson ER. Carbonic anhydrase is not a relevant nitrite reductase or nitrous anhydrase in the lung. J Physiol 2018; 597:1045-1058. [PMID: 29660141 DOI: 10.1113/jp275894] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 04/09/2018] [Indexed: 01/12/2023] Open
Abstract
KEY POINTS Carbonic anhydrase (CA) inhibitors such as acetazolamide inhibit hypoxic pulmonary vasoconstriction (HPV) in humans and other mammals, but the mechanism of this action remains unknown. It has been postulated that carbonic anhydrase may act as a nitrous anhydrase in vivo to generate nitric oxide (NO) from nitrite and that this formation is increased in the presence of acetazolamide. Acetazolamide reduces HPV in pigs without evidence of any NO generation, whereas nebulized sodium nitrite reduces HPV by NO formation; however; combined infusion of acetazolamide with sodium nitrite inhalation did not further increase exhaled NO concentration over inhaled nitrite alone in pigs exposed to alveolar hypoxia. We conclude that acetazolamide does not function as either a nitrous anhydrase or a nitrite reductase in the lungs of pigs, and probably other mammals, to explain its vasodilating actions in the pulmonary or systemic circulations. ABSTRACT The carbonic anhydrase (CA) inhibitors acetazolamide and its structurally similar analogue methazolamide prevent or reduce hypoxic pulmonary vasoconstriction (HPV) in dogs and humans in vivo, by a mechanism unrelated to CA inhibition. In rodent blood and isolated blood vessels, it has been reported that inhibition of CA leads to increased generation of nitric oxide (NO) from nitrite and vascular relaxation in vitro. We tested the physiological relevance of augmented NO generation by CA from nitrite with acetazolamide in anaesthetized pigs during alveolar hypoxia in vivo. We found that acetazolamide prevents HPV in anaesthetized pigs, as in other mammalian species. A single nebulization of sodium nitrite reduces HPV, but this action wanes in the succeeding 3 h of hypoxia as nitrite is metabolized and excreted. Pulmonary artery pressure reduction and NO formation as measured by exhaled gas concentration from inhaled sodium nitrite were not increased by acetazolamide during alveolar hypoxia. Thus, our data argue against a physiological role of carbonic anhydrase as a nitrous anhydrase or nitrite reductase as a mechanism for its inhibition of HPV in the lung and blood in vivo.
Collapse
Affiliation(s)
- Philipp A Pickerodt
- Department of Anesthesiology and Operative Intensive Care Medicine, Campus Charité Mitte and Campus Virchow-Klinikum, Charité - Universitätsmedizin, Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Sebastian Kronfeldt
- Department of Anesthesiology and Operative Intensive Care Medicine, Campus Charité Mitte and Campus Virchow-Klinikum, Charité - Universitätsmedizin, Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Martin Russ
- Department of Anesthesiology and Operative Intensive Care Medicine, Campus Charité Mitte and Campus Virchow-Klinikum, Charité - Universitätsmedizin, Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Adrian Gonzalez-Lopez
- Department of Anesthesiology and Operative Intensive Care Medicine, Campus Charité Mitte and Campus Virchow-Klinikum, Charité - Universitätsmedizin, Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Philipp Lother
- Department of Anesthesiology and Operative Intensive Care Medicine, Campus Charité Mitte and Campus Virchow-Klinikum, Charité - Universitätsmedizin, Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Elvira Steiner
- Department of Anesthesiology and Operative Intensive Care Medicine, Campus Charité Mitte and Campus Virchow-Klinikum, Charité - Universitätsmedizin, Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Katja Vorbrodt
- Department of Anesthesiology and Operative Intensive Care Medicine, Campus Charité Mitte and Campus Virchow-Klinikum, Charité - Universitätsmedizin, Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Thilo Busch
- Department of Anesthesiology and Intensive Care Medicine, University of Leipzig, Leipzig, Germany
| | - Willehad Boemke
- Department of Anesthesiology and Operative Intensive Care Medicine, Campus Charité Mitte and Campus Virchow-Klinikum, Charité - Universitätsmedizin, Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Roland C E Francis
- Department of Anesthesiology and Operative Intensive Care Medicine, Campus Charité Mitte and Campus Virchow-Klinikum, Charité - Universitätsmedizin, Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Erik R Swenson
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Washington, Seattle, WA, USA.,VA Puget Sound Health Care System, Seattle, WA, USA
| |
Collapse
|
8
|
Qin X, Deng L, Hu C, Li L, Chen X. Copper-Containing Nitrite Reductase Employing Proton-Coupled Spin-Exchanged Electron-Transfer and Multiproton Synchronized Transfer to Reduce Nitrite. Chemistry 2017; 23:14900-14910. [DOI: 10.1002/chem.201703221] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Indexed: 11/08/2022]
Affiliation(s)
- Xin Qin
- National-Municipal Joint Engineering Laboratory for Chemical; Process Intensification and Reaction; School of Chemistry and Chemical Engineering; Chongqing University; Chongqing 401331 P.R. China
| | - Li Deng
- National-Municipal Joint Engineering Laboratory for Chemical; Process Intensification and Reaction; School of Chemistry and Chemical Engineering; Chongqing University; Chongqing 401331 P.R. China
| | - Caihong Hu
- National-Municipal Joint Engineering Laboratory for Chemical; Process Intensification and Reaction; School of Chemistry and Chemical Engineering; Chongqing University; Chongqing 401331 P.R. China
| | - Li Li
- National-Municipal Joint Engineering Laboratory for Chemical; Process Intensification and Reaction; School of Chemistry and Chemical Engineering; Chongqing University; Chongqing 401331 P.R. China
| | - Xiaohua Chen
- National-Municipal Joint Engineering Laboratory for Chemical; Process Intensification and Reaction; School of Chemistry and Chemical Engineering; Chongqing University; Chongqing 401331 P.R. China
| |
Collapse
|
9
|
Matsuoka M, Kumar A, Muddassar M, Matsuyama A, Yoshida M, Zhang KYJ. Discovery of Fungal Denitrification Inhibitors by Targeting Copper Nitrite Reductase from Fusarium oxysporum. J Chem Inf Model 2017; 57:203-213. [DOI: 10.1021/acs.jcim.6b00649] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Masaki Matsuoka
- Chemical
Genomics Research Group, Center for Sustainable Resource Science, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Ashutosh Kumar
- Structural
Bioinformatics Team, Center for Life Science Technologies, RIKEN, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| | - Muhammad Muddassar
- Structural
Bioinformatics Team, Center for Life Science Technologies, RIKEN, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| | - Akihisa Matsuyama
- Chemical
Genomics Research Group, Center for Sustainable Resource Science, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Chemical
Genetics Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Minoru Yoshida
- Chemical
Genomics Research Group, Center for Sustainable Resource Science, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Chemical
Genetics Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- CREST Research
Project, Japan Science and Technology Corporation, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Kam Y. J. Zhang
- Structural
Bioinformatics Team, Center for Life Science Technologies, RIKEN, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| |
Collapse
|
10
|
Berry SM, Strange JN, Bladholm EL, Khatiwada B, Hedstrom CG, Sauer AM. Nitrite Reductase Activity in Engineered Azurin Variants. Inorg Chem 2016; 55:4233-47. [PMID: 27055058 DOI: 10.1021/acs.inorgchem.5b03006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Nitrite reductase (NiR) activity was examined in a series of dicopper P.a. azurin variants in which a surface binding copper site was added through site-directed mutagenesis. Four variants were synthesized with copper binding motifs inspired by the catalytic type 2 copper binding sites found in the native noncoupled dinuclear copper enzymes nitrite reductase and peptidylglycine α-hydroxylating monooxygenase. The four azurin variants, denoted Az-NiR, Az-NiR3His, Az-PHM, and Az-PHM3His, maintained the azurin electron transfer copper center, with the second designed copper site located over 13 Å away and consisting of mutations Asn10His,Gln14Asp,Asn16His-azurin, Asn10His,Gln14His,Asn16His-azurin, Gln8Met,Gln14His,Asn16His-azurin, and Gln8His,Gln14His,Asn16His-azurin, respectively. UV-visible absorption spectroscopy, EPR spectroscopy, and electrochemistry of the sites demonstrate copper binding as well as interaction with small exogenous ligands. The nitrite reduction activity of the variants was determined, including the catalytic Michaelis-Menten parameters. The variants showed activity (0.34-0.59 min(-1)) that was slower than that of native NiRs but comparable to that of other model systems. There were small variations in activity of the four variants that correlated with the number of histidines in the added copper site. Catalysis was found to be reversible, with nitrite produced from NO. Reactions starting with reduced azurin variants demonstrated that electrons from both copper centers were used to reduce nitrite, although steady-state catalysis required the T2 copper center and did not require the T1 center. Finally, experiments separating rates of enzyme reduction from rates of reoxidation by nitrite demonstrated that the reaction with nitrite was rate limiting during catalysis.
Collapse
Affiliation(s)
- Steven M Berry
- Department of Chemistry and Biochemistry, University of Minnesota Duluth , 1039 University Drive, Duluth, Minnesota 55812, United States
| | - Jacob N Strange
- Department of Chemistry and Biochemistry, University of Minnesota Duluth , 1039 University Drive, Duluth, Minnesota 55812, United States
| | - Erika L Bladholm
- Department of Chemistry and Biochemistry, University of Minnesota Duluth , 1039 University Drive, Duluth, Minnesota 55812, United States
| | - Balabhadra Khatiwada
- Department of Chemistry and Biochemistry, University of Minnesota Duluth , 1039 University Drive, Duluth, Minnesota 55812, United States
| | - Christine G Hedstrom
- Department of Chemistry and Biochemistry, University of Minnesota Duluth , 1039 University Drive, Duluth, Minnesota 55812, United States
| | - Alexandra M Sauer
- Department of Chemistry and Biochemistry, University of Minnesota Duluth , 1039 University Drive, Duluth, Minnesota 55812, United States
| |
Collapse
|
11
|
Insights into unknown foreign ligand in copper nitrite reductase. Biochem Biophys Res Commun 2015; 464:622-8. [DOI: 10.1016/j.bbrc.2015.07.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 07/05/2015] [Indexed: 11/23/2022]
|
12
|
Nielsen PM, Fago A. Inhibitory effects of nitrite on the reactions of bovine carbonic anhydrase II with CO2 and bicarbonate consistent with zinc-bound nitrite. J Inorg Biochem 2015; 149:6-11. [PMID: 25951615 DOI: 10.1016/j.jinorgbio.2015.04.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 04/21/2015] [Accepted: 04/21/2015] [Indexed: 11/28/2022]
Abstract
Carbonic anhydrase (CA) is a zinc enzyme that catalyzes hydration of carbon dioxide (CO2) and dehydration of bicarbonate in red blood cells, thus facilitating CO2 transport and excretion. Bovine CA II may also react with nitrite to generate nitric oxide, although nitrite is a known inhibitor of the CO2 hydration reaction. To address the potential in vivo interference of these reactions and the nature of nitrite binding to the enzyme, we here investigate the inhibitory effect of 10-30 mM nitrite on Michaelis-Menten kinetics of CO2 hydration and bicarbonate dehydration by stopped-flow spectroscopy. Our data show that nitrite significantly affects the apparent dissociation constant KM for CO2 (11 mM) and bicarbonate (221 mM), and the turnover number kcat for the CO2 hydration (1.467 × 10(6) s(-1)) but not for the bicarbonate dehydration (7.927 × 10(5) s(-1)). These effects demonstrate mixed and competitive inhibition for the reaction with CO2 and bicarbonate, respectively, and are consistent with nitrite binding to the active site zinc. The high apparent dissociation constant found here for CO2, bicarbonate and nitrite (16-120 mM) are all overall consistent with published data and reveal a large capacity of free enzyme available for binding each of the three substrates at their in vivo levels, with little or no significant interference among reactions. The low affinity of the enzyme for nitrite suggests that the in vivo interaction between red blood cell CA II and nitrite requires compartmentalization at the anion exchanger protein of the red cell membrane to be physiologically relevant.
Collapse
Affiliation(s)
- Per M Nielsen
- Department of Bioscience, Aarhus University, C.F. Møllers Alle 3, DK-8000 Aarhus C, Denmark.
| | - Angela Fago
- Department of Bioscience, Aarhus University, C.F. Møllers Alle 3, DK-8000 Aarhus C, Denmark.
| |
Collapse
|
13
|
Molecular structure and nitrite-bonded study on copper(II) complexes of N,N-dialkyl,N′-benzyl-ethylenediamine; synthesis, spectroscopic characterization, X-ray structure, steric effect and density functional theory calculations. Polyhedron 2015. [DOI: 10.1016/j.poly.2015.01.044] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
14
|
Leferink NGH, Antonyuk SV, Houwman JA, Scrutton NS, Eady RR, Hasnain SS. Impact of residues remote from the catalytic centre on enzyme catalysis of copper nitrite reductase. Nat Commun 2014; 5:4395. [PMID: 25022223 PMCID: PMC4104443 DOI: 10.1038/ncomms5395] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Accepted: 06/13/2014] [Indexed: 11/29/2022] Open
Abstract
Enzyme mechanisms are often probed by structure-informed point mutations and measurement of their effects on enzymatic properties to test mechanistic hypotheses. In many cases, the challenge is to report on complex, often inter-linked elements of catalysis. Evidence for long-range effects on enzyme mechanism resulting from mutations remains sparse, limiting the design/redesign of synthetic catalysts in a predictable way. Here we show that improving the accessibility of the active site pocket of copper nitrite reductase by mutation of a surface-exposed phenylalanine residue (Phe306), located 12 Å away from the catalytic site type-2 Cu (T2Cu), profoundly affects intra-molecular electron transfer, substrate-binding and catalytic activity. Structures and kinetic studies provide an explanation for the lower affinity for the substrate and the alteration of the rate-limiting step in the reaction. Our results demonstrate that distant residues remote from the active site can have marked effects on enzyme catalysis, by driving mechanistic change through relatively minor structural perturbations. Residues within the catalytic site of enzymes are important for activity, but whether more distant residues are also sensitive to mutation is unclear. Here, Leferink et al. show that mutation of residues in copper nitrate reductase that are 12Å away from the active site perturb enzyme function.
Collapse
Affiliation(s)
- Nicole G H Leferink
- 1] Manchester Institute of Biotechnology, Faculty of Life Sciences, University of Manchester, Manchester M1 7DN, UK [2]
| | - Svetlana V Antonyuk
- 1] Molecular Biophysics Group, Institute of Integrative Biology, Faculty of Health and Life Sciences, Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK [2]
| | - Joseline A Houwman
- Manchester Institute of Biotechnology, Faculty of Life Sciences, University of Manchester, Manchester M1 7DN, UK
| | - Nigel S Scrutton
- Manchester Institute of Biotechnology, Faculty of Life Sciences, University of Manchester, Manchester M1 7DN, UK
| | - Robert R Eady
- Molecular Biophysics Group, Institute of Integrative Biology, Faculty of Health and Life Sciences, Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| | - S Samar Hasnain
- Molecular Biophysics Group, Institute of Integrative Biology, Faculty of Health and Life Sciences, Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| |
Collapse
|
15
|
Affiliation(s)
- Luisa B. Maia
- REQUIMTE/CQFB, Departamento
de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - José J. G. Moura
- REQUIMTE/CQFB, Departamento
de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| |
Collapse
|
16
|
Antonyuk SV, Cong H, Eady RR, Hasnain SS. Structures of protein-protein complexes involved in electron transfer. Nature 2013; 496:123-6. [PMID: 23535590 PMCID: PMC3672994 DOI: 10.1038/nature11996] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2012] [Accepted: 02/08/2013] [Indexed: 01/07/2023]
Abstract
Electron transfer reactions are essential for life because they underpin oxidative phosphorylation and photosynthesis, processes leading to the generation of ATP, and are involved in many reactions of intermediary metabolism. Key to these roles is the formation of transient inter-protein electron transfer complexes. The structural basis for the control of specificity between partner proteins is lacking because these weak transient complexes have remained largely intractable for crystallographic studies. Inter-protein electron transfer processes are central to all of the key steps of denitrification, an alternative form of respiration in which bacteria reduce nitrate or nitrite to N2 through the gaseous intermediates nitric oxide (NO) and nitrous oxide (N2O) when oxygen concentrations are limiting. The one-electron reduction of nitrite to NO, a precursor to N2O, is performed by either a haem- or copper-containing nitrite reductase (CuNiR) where they receive an electron from redox partner proteins a cupredoxin or a c-type cytochrome. Here we report the structures of the newly characterized three-domain haem-c-Cu nitrite reductase from Ralstonia pickettii (RpNiR) at 1.01 Å resolution and its M92A and P93A mutants. Very high resolution provides the first view of the atomic detail of the interface between the core trimeric cupredoxin structure of CuNiR and the tethered cytochrome c domain that allows the enzyme to function as an effective self-electron transfer system where the donor and acceptor proteins are fused together by genomic acquisition for functional advantage. Comparison of RpNiR with the binary complex of a CuNiR with a donor protein, AxNiR-cytc551 (ref. 6), and mutagenesis studies provide direct evidence for the importance of a hydrogen-bonded water at the interface in electron transfer. The structure also provides an explanation for the preferential binding of nitrite to the reduced copper ion at the active site in RpNiR, in contrast to other CuNiRs where reductive inactivation occurs, preventing substrate binding.
Collapse
|
17
|
Merkle AC, Lehnert N. Binding and activation of nitrite and nitric oxide by copper nitrite reductase and corresponding model complexes. Dalton Trans 2012; 41:3355-68. [DOI: 10.1039/c1dt11049g] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
18
|
Chen CS, Yeh WY. Coordination of NO2− ligand to Cu(i) ion in an O,O-bidentate fashion that evolves NO gas upon protonation: a model reaction relevant to the denitrification process. Chem Commun (Camb) 2010; 46:3098-100. [DOI: 10.1039/b927513d] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
19
|
Aamand R, Dalsgaard T, Jensen FB, Simonsen U, Roepstorff A, Fago A. Generation of nitric oxide from nitrite by carbonic anhydrase: a possible link between metabolic activity and vasodilation. Am J Physiol Heart Circ Physiol 2009; 297:H2068-74. [PMID: 19820197 DOI: 10.1152/ajpheart.00525.2009] [Citation(s) in RCA: 167] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
In catalyzing the reversible hydration of CO2 to bicarbonate and protons, the ubiquitous enzyme carbonic anhydrase (CA) plays a crucial role in CO2 transport, in acid-base balance, and in linking local acidosis to O2 unloading from hemoglobin. Considering the structural similarity between bicarbonate and nitrite, we hypothesized that CA uses nitrite as a substrate to produce the potent vasodilator nitric oxide (NO) to increase local blood flow to metabolically active tissues. Here we show that CA readily reacts with nitrite to generate NO, particularly at low pH, and that the NO produced in the reaction induces vasodilation in aortic rings. This reaction occurs under normoxic and hypoxic conditions and in various tissues at physiological levels of CA and nitrite. Furthermore, two specific inhibitors of the CO2 hydration, dorzolamide and acetazolamide, increase the CA-catalyzed production of vasoactive NO from nitrite. This enhancing effect may explain the known vasodilating effects of these drugs and indicates that CO2 and nitrite bind differently to the enzyme active site. Kinetic analyses show a higher reaction rate at high pH, suggesting that anionic nitrite participates more effectively in catalysis. Taken together, our results reveal a novel nitrous anhydrase enzymatic activity of CA that would function to link the in vivo main end products of energy metabolism (CO2/H+) to the generation of vasoactive NO. The CA-mediated NO production may be important to the correlation between blood flow and metabolic activity in tissues, as occurring for instance in active areas of the brain.
Collapse
Affiliation(s)
- Rasmus Aamand
- Department of Biological Sciences, Universitetsparken Bldg. 1131, Aarhus University, DK-8000 Aarhus C, Denmark
| | | | | | | | | | | |
Collapse
|
20
|
Brenner S, Heyes DJ, Hay S, Hough MA, Eady RR, Hasnain SS, Scrutton NS. Demonstration of proton-coupled electron transfer in the copper-containing nitrite reductases. J Biol Chem 2009; 284:25973-83. [PMID: 19586913 DOI: 10.1074/jbc.m109.012245] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The reduction of nitrite (NO2-) into nitric oxide (NO), catalyzed by nitrite reductase, is an important reaction in the denitrification pathway. In this study, the catalytic mechanism of the copper-containing nitrite reductase from Alcaligenes xylosoxidans (AxNiR) has been studied using single and multiple turnover experiments at pH 7.0 and is shown to involve two protons. A novel steady-state assay was developed, in which deoxyhemoglobin was employed as an NO scavenger. A moderate solvent kinetic isotope effect (SKIE) of 1.3 +/- 0.1 indicated the involvement of one protonation to the rate-limiting catalytic step. Laser photoexcitation experiments have been used to obtain single turnover data in H2O and D2O, which report on steps kinetically linked to inter-copper electron transfer (ET). In the absence of nitrite, a normal SKIE of approximately 1.33 +/- 0.05 was obtained, suggesting a protonation event that is kinetically linked to ET in substrate-free AxNiR. A nitrite titration gave a normal hyperbolic behavior for the deuterated sample. However, in H2O an unusual decrease in rate was observed at low nitrite concentrations followed by a subsequent acceleration in rate at nitrite concentrations of >10 mM. As a consequence, the observed ET process was faster in D2O than in H2O above 0.1 mM nitrite, resulting in an inverted SKIE, which featured a significant dependence on the substrate concentration with a minimum value of approximately 0.61 +/- 0.02 between 3 and 10 mM. Our work provides the first experimental demonstration of proton-coupled electron transfer in both the resting and substrate-bound AxNiR, and two protons were found to be involved in turnover.
Collapse
Affiliation(s)
- Sibylle Brenner
- Manchester Interdisciplinary Biocentre and Faculty of Life Sciences, University of Manchester, Manchester M1 7DN, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
21
|
Hough MA, Antonyuk SV, Strange RW, Eady RR, Hasnain SS. Crystallography with online optical and X-ray absorption spectroscopies demonstrates an ordered mechanism in copper nitrite reductase. J Mol Biol 2008; 378:353-61. [PMID: 18353369 DOI: 10.1016/j.jmb.2008.01.097] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2007] [Revised: 01/21/2008] [Accepted: 01/23/2008] [Indexed: 10/22/2022]
Abstract
Nitrite reductases are key enzymes that perform the first committed step in the denitrification process and reduce nitrite to nitric oxide. In copper nitrite reductases, an electron is delivered from the type 1 copper (T1Cu) centre to the type 2 copper (T2Cu) centre where catalysis occurs. Despite significant structural and mechanistic studies, it remains controversial whether the substrates, nitrite, electron and proton are utilised in an ordered or random manner. We have used crystallography, together with online X-ray absorption spectroscopy and optical spectroscopy, to show that X-rays rapidly and selectively photoreduce the T1Cu centre, but that the T2Cu centre does not photoreduce directly over a typical crystallographic data collection time. Furthermore, internal electron transfer between the T1Cu and T2Cu centres does not occur, and the T2Cu centre remains oxidised. These data unambiguously demonstrate an 'ordered' mechanism in which electron transfer is gated by binding of nitrite to the T2Cu. Furthermore, the use of online multiple spectroscopic techniques shows their value in assessing radiation-induced redox changes at different metal sites and demonstrates the importance of ensuring the correct status of redox centres in a crystal structure determination. Here, optical spectroscopy has shown a very high sensitivity for detecting the change in T1Cu redox state, while X-ray absorption spectroscopy has reported on the redox status of the T2Cu site, as this centre has no detectable optical absorption.
Collapse
Affiliation(s)
- Michael A Hough
- Molecular Biophysics Group, STFC Daresbury Laboratory, Warrington, Cheshire WA4 4AD, UK
| | | | | | | | | |
Collapse
|
22
|
Kohzuma T, Kikuchi M, Horikoshi N, Nagatomo S, Kitagawa T, Czernuszewicz RS. Intersite structural rearrangement of the blue copper site induced by substrate binding: spectroscopic studies of a copper-containing nitrite reductase from Alcaligenes xylosoxidans NCIMB 11015. Inorg Chem 2007; 45:8474-6. [PMID: 17029353 DOI: 10.1021/ic0609195] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A copper-containing nitrite reductase from Alcaligenes xylosoxidans NCIMB 11015 has its own unique blue or type 1 copper protein resonance Raman spectrum in the usual Cu-S(Cys) stretching region, nu(Cu-S(Cys)), with a pair of strong peaks at 412 and 420 cm(-1) and a weak peak at 364 cm(-1). The predominantly nu(Cu-S(Cys)) Raman bands at 412, 420, and 364 cm(-1) of the type 1 copper site all shifted to higher frequencies upon binding of nitrite to the type 2 copper site, and the resonance Raman difference spectra progressively intensified with the increments of nitrite ion concentration. Positive support for substrate binding to the type 2 copper is provided by the nu(Cu-S(Cys)) bands in the resonance Raman spectrum of a type 2 copper-depleted enzyme, which is insensitive to the presence of NO2-. The shift to higher frequency of the Raman bands of the type 1 copper center with the addition of nitrite ions suggests a stronger Cu-S(Cys) interaction in the substrate-bound A. xylosoxidans nitrite reductase.
Collapse
Affiliation(s)
- Takamitsu Kohzuma
- Institute of Applied Beam Science, Ibaraki University, Bunkyo 2-1-1, Mito, Ibaraki 310-8512, Japan.
| | | | | | | | | | | |
Collapse
|
23
|
Lehnert N, Cornelissen U, Neese F, Ono T, Noguchi Y, Okamoto KI, Fujisawa K. Synthesis and Spectroscopic Characterization of Copper(II)−Nitrito Complexes with Hydrotris(pyrazolyl)borate and Related Coligands. Inorg Chem 2007; 46:3916-33. [PMID: 17447754 DOI: 10.1021/ic0619355] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
This study focuses on the geometric (molecular) structures, spectroscopic properties, and electronic structures of copper(II)-nitrito complexes as a function of second coordination sphere effects using a set of closely related coligands. With anionic hydrotris(pyrazolyl)borate ligands, one nitrite is bound to copper(II). Depending on the steric demand of the coligand, the coordination mode is either symmetric or asymmetric bidentate, which leads to different ground states of the resulting complexes as evident from EPR spectroscopy. The vibrational spectra of these compounds are assigned using isotope substitution and DFT calculations. The results demonstrate that nu sym(N-O) occurs at higher energy than nu asym(N-O), which is different from the literature assignments for related compounds. UV-vis absorption and MCD spectra are presented and analyzed with the help of TD-DFT calculations. The principal binding modes of nitrite to Cu(II) and Cu(I) are also investigated applying DFT. Using a neutral tris(pyrazolyl)methane ligand, two nitrite ligands are bound to copper. In this case, a very unusual binding mode is observed where one nitrite is eta1-O and the other one is eta1-N bound. This allows to study the properties of coordinated nitrite as a function of binding mode in one complex. The N-coordination mode is easily identified from vibrational spectroscopy, where N-bound nitrite shows a large shift of nu asym(N-O) to >1400 cm-1, which is a unique spectroscopic feature. The optical spectra of this compound exhibit an intense band around 300 nm, which might be attributable to a nitrite to Cu(II) CT transition. Finally, using a bidentate neutral bis(pyrazolyl)methane ligand, two eta1-O coordinated nitrite ligands are observed. The vibrational and optical (UV-vis and MCD) spectra of this compound are presented and analyzed.
Collapse
Affiliation(s)
- Nicolai Lehnert
- Department of Chemistry, The University of Michigan, 930 North University, Ann Arbor, Michigan 48109, USA.
| | | | | | | | | | | | | |
Collapse
|
24
|
Antonyuk SV, Strange RW, Sawers G, Eady RR, Hasnain SS. Atomic resolution structures of resting-state, substrate- and product-complexed Cu-nitrite reductase provide insight into catalytic mechanism. Proc Natl Acad Sci U S A 2005; 102:12041-6. [PMID: 16093314 PMCID: PMC1189323 DOI: 10.1073/pnas.0504207102] [Citation(s) in RCA: 144] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2005] [Indexed: 11/18/2022] Open
Abstract
Copper-containing nitrite reductases catalyze the reduction of nitrite to nitric oxide (NO), a key step in denitrification that results in the loss of terrestrial nitrogen to the atmosphere. They are found in a wide variety of denitrifying bacteria and fungi of different physiology from a range of soil and aquatic ecosystems. Structural analysis of potential intermediates in the catalytic cycle is an important goal in understanding enzyme mechanism. Using "crystal harvesting" and substrate-soaking techniques, we have determined atomic resolution structures of four forms of the green Cu-nitrite reductase, from the soil bacterium Achromobacter cycloclastes. These structures are the resting state of the enzyme at 0.9 A, two species exhibiting different conformations of nitrite bound at the catalytic type 2 Cu, one of which is stable and also has NO present, at 1.10 A and 1.15 A, and a stable form with the product NO bound side-on to the catalytic type 2 Cu, at 1.12 A resolution. These structures provide incisive insights into the initial binding of substrate, its repositioning before catalysis, bond breakage (O-NO), and the formation of a stable NO adduct.
Collapse
Affiliation(s)
- Svetlana V Antonyuk
- Molecular Biophysics Group, Council for the Central Laboratory of the Research Councils Daresbury Laboratory, Warrington WA4 4AD, United Kingdom
| | | | | | | | | |
Collapse
|
25
|
Hough MA, Ellis MJ, Antonyuk S, Strange RW, Sawers G, Eady RR, Samar Hasnain S. High Resolution Structural Studies of Mutants Provide Insights into Catalysis and Electron Transfer Processes in Copper Nitrite Reductase. J Mol Biol 2005; 350:300-9. [PMID: 15927201 DOI: 10.1016/j.jmb.2005.04.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2005] [Revised: 04/01/2005] [Accepted: 04/04/2005] [Indexed: 10/25/2022]
Abstract
We present high-resolution crystal structures and functional analysis of T1Cu centre mutants of nitrite reductase that perturb the redox potential and the Cys130-His129 "hard-wired" bridge through which electron transfer to the catalytic T2Cu centre occurs. These data provide insight into how activity can be altered through mutational manipulation of the electron delivery centre (T1Cu). The alteration of Cys to Ala results in loss of T1Cu and enzyme inactivation with azurin as electron donor despite the mutant enzyme retaining full nitrite-binding capacity. These data establish unequivocally that no direct transfer of electrons occurs from azurin to the catalytic type 2 Cu centre. The mutation of the axial ligand Met144 to Leu increases both the redox potential and catalytic activity, establishing that the rate-determining step of catalysis is the intermolecular electron transfer from azurin to nitrite reductase.
Collapse
Affiliation(s)
- Michael A Hough
- Molecular Biophysics Group, CCLRC Daresbury Laboratory, Warrington WA4 4AD, UK
| | | | | | | | | | | | | |
Collapse
|
26
|
Tocheva EI, Rosell FI, Mauk AG, Murphy MEP. Side-On Copper-Nitrosyl Coordination by Nitrite Reductase. Science 2004; 304:867-70. [PMID: 15131305 DOI: 10.1126/science.1095109] [Citation(s) in RCA: 176] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
A copper-nitrosyl intermediate forms during the catalytic cycle of nitrite reductase, the enzyme that mediates the committed step in bacterial denitrification. The crystal structure of a type 2 copper-nitrosyl complex of nitrite reductase reveals an unprecedented side-on binding mode in which the nitrogen and oxygen atoms are nearly equidistant from the copper cofactor. Comparison of this structure with a refined nitrite-bound crystal structure explains how coordination can change between copper-oxygen and copper-nitrogen during catalysis. The side-on copper-nitrosyl in nitrite reductase expands the possibilities for nitric oxide interactions in copper proteins such as superoxide dismutase and prions.
Collapse
Affiliation(s)
- Elitza I Tocheva
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver, BC, Canada V6T 1Z3
| | | | | | | |
Collapse
|
27
|
Jensen FB. Nitrite disrupts multiple physiological functions in aquatic animals. Comp Biochem Physiol A Mol Integr Physiol 2003; 135:9-24. [PMID: 12727546 DOI: 10.1016/s1095-6433(02)00323-9] [Citation(s) in RCA: 210] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Nitrite is a potential problem in aquatic environments. Freshwater fish actively take up nitrite across the gills, leading to high internal concentrations. Seawater fish are less susceptible but do take up nitrite across intestine and gills. Nitrite has multiple physiological effects. Its uptake is at the expense of chloride, leading to chloride depletion. Nitrite also activates efflux of potassium from skeletal muscle and erythrocytes, disturbing intracellular and extracellular K(+) levels. Nitrite transfer across the erythrocytic membrane leads to oxidation of haemoglobin to methaemoglobin (metHb), compromising blood O(2) transport. Other haem proteins are also oxidised. Hyperventilation is observed, and eventually tissue O(2) shortage becomes reflected in elevated lactate concentrations. Heart rate increases rapidly, before any significant elevations in metHb or extracellular potassium occur. This suggests nitrite-induced vasodilation (possibly via nitric oxide generated from nitrite) that is countered by increased cardiac pumping to re-establish blood pressure. Nitrite can form and/or mimic nitric oxide and thereby interfere with processes regulated by this local hormone. Steroid hormone synthesis may be inhibited, while changes in ammonia and urea levels and excretion rates reflect an influence of nitrite on nitrogen metabolism. Detoxification of nitrite occurs via endogenous oxidation to nitrate, and elimination of nitrite takes place both via gills and urine. The susceptibility to nitrite varies between species and in some cases also within species. Rainbow trout fall into two groups with regard to susceptibility and physiological response. These two groups are not related to sex but show significant different nitrite uptake rates.
Collapse
Affiliation(s)
- Frank B Jensen
- Institute of Biology, University of Southern Denmark, Campusvej 55, DK-5230 M Odense, Denmark.
| |
Collapse
|
28
|
Liu SQ, Chang T, Liu MY, LeGall J, Chang WC, Zhang JP, Liang DC, Chang WR. Crystal structure of a NO-forming nitrite reductase mutant: an analog of a transition state in enzymatic reaction. Biochem Biophys Res Commun 2003; 302:568-74. [PMID: 12615072 DOI: 10.1016/s0006-291x(03)00166-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
I257E was obtained by site directed mutagenesis of nitrite reductase from Achromobacter cycloclastes. The mutant has no enzyme activity. Its crystal structure determined at 1.65A resolution shows that the side-chain carboxyl group of the mutated residue, Glu257, coordinates with the type 2 copper in the mutant and blocks the contact between the type 2 copper and its solvent channel, indicating that the accessibility of the type 2 copper is essential for maintaining the activity of nitrite reductase. The carboxylate is an analog of the substrate, nitrite, but the distances between the type 2 copper and the two oxygen atoms of the side-chain carboxyl group are reversed in comparison to the binding of nitrite to the native enzyme. In the mutant, both the type 2 copper and the N epsilon atom on the imidazole ring of its coordinated residue His135 move in the substrate binding direction relative to the native enzyme. In addition, an EPR study showed that the type 2 copper in the mutant is in a reduced state. We propose that mutant I257E is in a state corresponding to a transition state in the enzymatic reaction.
Collapse
Affiliation(s)
- Sheng-Quan Liu
- National laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Science, Beijing 100101, China
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Boulanger MJ, Murphy MEP. Directing the mode of nitrite binding to a copper-containing nitrite reductase from Alcaligenes faecalis S-6: characterization of an active site isoleucine. Protein Sci 2003; 12:248-56. [PMID: 12538888 PMCID: PMC2312428 DOI: 10.1110/ps.0224503] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Unlike the heme cd(1)-based nitrite reductase enzymes, the molecular mechanism of copper-containing nitrite reductases remains controversial. A key source of controversy is the productive binding mode of nitrite in the active site. To identify and characterize the molecular determinants associated with nitrite binding, we applied a combinatorial mutagenesis approach to generate a small library of six variants at position 257 in nitrite reductase from Alcaligenes faecalis S-6. The activities of these six variants span nearly two orders of magnitude with one variant, I257V, the only observed natural substitution for Ile257, showing greater activity than the native enzyme. High-resolution (> 1.8 A) nitrite-soaked crystal structures of these variants display different modes of nitrite binding that correlate well with the altered activities. These studies identify for the first time that the highly conserved Ile257 in the native enzyme is a key molecular determinant in directing a catalytically competent mode of nitrite binding in the active site. The O-coordinate bidentate binding mode of nitrite observed in native and mutant forms with high activity supports a catalytic model distinct from the heme cd(1) NiRs. (The atomic coordinates for I257V[NO(2)(-)], I257L[NO(2)(-)], I257A[NO(2)(-)], I257T[NO(2)(-)], I257M[NO(2)(-)] and I257G[NO(2)(-)] AfNiR have been deposited in the Protein Data Bank [PDB identification codes are listed in Table 2].)
Collapse
Affiliation(s)
- Martin J Boulanger
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, Canada
| | | |
Collapse
|
30
|
Yousafzai FK, Eady RR. Dithionite reduction kinetics of the dissimilatory copper-containing nitrite reductase of Alcalegenes xylosoxidans. The SO(2)(.-) radical binds to the substrate binding type 2 copper site before the type 2 copper is reduced. J Biol Chem 2002; 277:34067-73. [PMID: 12082116 DOI: 10.1074/jbc.m204305200] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We report here the first detailed study of the dithionite reduction kinetics of a copper-containing dissimilatory nitrite reductase (NiR). The reduction of the blue type 1 copper (T1Cu) center of NiR preparations that contained both type 1 and type 2 copper atoms, followed biphasic kinetics. In contrast, NiR that was deficient in type 2 copper (T2DNiR), followed monophasic kinetics with a second-order rate constant (T2D)k = 3.06 x 10(6) m(-1) s(-1). In all cases the SO(2)(.-) radical rather than S(2)O(4)(2-) was the effective reductant. The observed kinetics were compatible with a reaction mechanism in which the T1Cu of the fully loaded protein is reduced both directly by dithionite and indirectly by the type 2 Cu (T2Cu) site via intramolecular electron transfer. Reduction kinetics of the T2Cu were consistent with SO(2)(.-) binding first to the T2Cu center and then transferring electrons (112 s(-1)) to reduce it. As SO(2)(.-) is a homologue of NO(2)(-), the NiR substrate, it is not unlikely that it binds to the catalytic T2Cu site. Effects on the catalytic activity of the enzyme using dithionite as a reducing agent are discussed. Reduction of the semireduced T1Cu(I)T2Cu(II) state followed either second-order kinetics with k(2) = 3.33 x 10(7) m(-1) s(-1) or first-order kinetics with 52.6 s(-1) < (T1red)k(1) < 112 s(-1). Values of formation constants of the T1Cu(II)T2Cu(II)-SO(2)(.-) and T1Cu(I)T2Cu(II)-SO(2)(.-) adducts showed that the redox state of T1Cu affected binding of SO(2)(.-) at the catalytic T2Cu center. Analysis of the kinetics required the development of a mathematical protocol that could be applied to a system with two intercommunicating sites but only one of which can be monitored. This novel protocol, reported for the first time, is of general application.
Collapse
Affiliation(s)
- Faridoon K Yousafzai
- Department of Biological Chemistry, John Innes Center, Colney, Norwich NR4 7UH, United Kingdom.
| | | |
Collapse
|
31
|
Wasser IM, de Vries S, Moënne-Loccoz P, Schröder I, Karlin KD. Nitric oxide in biological denitrification: Fe/Cu metalloenzyme and metal complex NO(x) redox chemistry. Chem Rev 2002; 102:1201-34. [PMID: 11942794 DOI: 10.1021/cr0006627] [Citation(s) in RCA: 369] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ian M Wasser
- Department of Chemistry, The Johns Hopkins University, Charles and 34th Streets, Baltimore, MD 21218, USA
| | | | | | | | | |
Collapse
|
32
|
Ellis MJ, Prudêncio M, Dodd FE, Strange RW, Sawers G, Eady RR, Hasnain SS. Biochemical and crystallographic studies of the Met144Ala, Asp92Asn and His254Phe mutants of the nitrite reductase from Alcaligenes xylosoxidans provide insight into the enzyme mechanism. J Mol Biol 2002; 316:51-64. [PMID: 11829502 DOI: 10.1006/jmbi.2001.5304] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Dissimilatory nitrite reductase catalyses the reduction of nitrite (NO(2)(-)) to nitric oxide (NO). Copper-containing nitrite reductases contain both type 1 and type 2 Cu sites. Electron transfer from redox partners is presumed to be mediated via the type 1 Cu site and used at the catalytic type 2 Cu centre along with the substrate nitrite. At the type 2 Cu site, Asp92 has been identified as a key residue in substrate utilisation, since it hydrogen bonds to the water molecule at the nitrite binding site. We have also suggested that protons enter the catalytic site via Asp92, through a water network that is mediated by His254. The role of these residues has been investigated in the blue copper nitrite reductase from Alcaligenes xylosoxidans (NCIMB 11015) by a combination of point mutation, enzymatic activity measurement and structure determination.In addition, it has been suggested that the enzyme operates via an ordered mechanism where an electron is transferred to the type 2 Cu site largely when the second substrate nitrite is bound and that this is controlled via the lowering of the redox potential of the type 2 site when it is loaded with nitrite. Thus, a small perturbation of the type 1 Cu site should result in a significant effect on the activity of the enzyme. For this reason a mutation of Met144, which is the weakest ligand of the type 1 Cu, is investigated. The structures of H254F, D92N and M144A have been determined to 1.85 A, 1.9 A and 2.2 A resolution, respectively. The D92N and H254F mutants have negligible or no activity, while the M144A mutant has 30 % activity of the native enzyme. Structural and spectroscopic data show that the loss of activity in H254F is due to the catalytic site being occupied by Zn while the loss/reduction of activity in D92N/M144A are due to structural reasons. The D92N mutation results in the loss of the Asp92 hydrogen bond to the Cu-ligated water. Therefore, the ligand is no longer able to perform proton abstraction. Even though the loss of activity in H254F is due to lack of catalytic Cu, the mutation does cause the disruption of the water network, confirming its key role in proton channel. The structure of the H254F mutant is the first case where full occupancy Zn at the type 2 Cu site is observed, but despite the previously noted similarity of this site to the carbonic anhydrase catalytic site, no carbonic anhydrase activity is observed. The H254F and D92N mutant structures provide, for the first time, observation of surface Zn sites which may act as a Zn sink and prevent binding of Zn at the catalytic Cu site in the native enzyme.
Collapse
Affiliation(s)
- Mark J Ellis
- Faculty of Applied Science, De Montfort University, Leicester, LE1 9BH, UK
| | | | | | | | | | | | | |
Collapse
|
33
|
Boulanger MJ, Murphy MEP. Crystal structure of the soluble domain of the major anaerobically induced outer membrane protein (AniA) from pathogenic Neisseria: a new class of copper-containing nitrite reductases. J Mol Biol 2002; 315:1111-27. [PMID: 11827480 DOI: 10.1006/jmbi.2001.5251] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The major anaerobically induced outer membrane protein (AniA) from pathogenic Neisseria gonorrhoeae is essential for cell growth under oxygen limiting conditions in the presence of nitrite and is protective against killing by human sera. A phylogenic analysis indicates that AniA is a member of a new class of copper-containing nitrite reductases. Expression of the soluble domain of AniA yields a protein capable of reducing nitrite with specific activity of 160 units/mg, approximately 50 % of that measured for the nitrite reductase from the strong soil denitrifier Alcaligenes faecalis S-6. The crystal structure of the soluble domain of AniA was solved by molecular replacement and sixfold averaging to a resolution of 2.4 A. The nitrite soaked AniA crystal structure refined to 1.95 A reveals a bidentate mode of substrate binding to the type II copper. Despite low sequence identity (approximately 30 %), the core cupredoxin fold of AniA is similar to that found in copper-containing nitrite reductases from soil bacteria. The main structural differences are localized to two attenuated surface loops that map to deletions in the sequence alignment. In soil nitrite reductases, one of these surface loops is positioned near the type I copper site and contributes residues to the docking surface for proteaceous electron donors. In AniA, the attenuation of this loop results in a restructured hydrophobic binding surface that may be required to interact with a lipid anchored azurin. The second attenuated loop is positioned on the opposite side of AniA and may facilitate a more intimate interaction with the lipid membrane. A unique combination of structural effectors surrounding the type I copper site of sAnia contribute to a unusual visible absorption spectra with components observed previously in either green or blue type I copper sites.
Collapse
Affiliation(s)
- Martin J Boulanger
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, Canada
| | | |
Collapse
|
34
|
Boulanger MJ, Kukimoto M, Nishiyama M, Horinouchi S, Murphy ME. Catalytic roles for two water bridged residues (Asp-98 and His-255) in the active site of copper-containing nitrite reductase. J Biol Chem 2000; 275:23957-64. [PMID: 10811642 DOI: 10.1074/jbc.m001859200] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Two active site residues, Asp-98 and His-255, of copper-containing nitrite reductase (NIR) from Alcaligenes faecalis have been mutated to probe the catalytic mechanism. Three mutations at these two sites (D98N, H255D, and H255N) result in large reductions in activity relative to native NIR, suggesting that both residues are involved intimately in the reaction mechanism. Crystal structures of these mutants have been determined using data collected to better than 1. 9-A resolution. In the native structure, His-255 Nepsilon2 forms a hydrogen bond through a bridging water molecule to the side chain of Asp-98, which also forms a hydrogen bond to a water or nitrite oxygen ligated to the active site copper. In the D98N mutant, reorientation of the Asn-98 side chain results in the loss of the hydrogen bond to the copper ligand water, consistent with a negatively charged Asp-98 directing the binding and protonation of nitrite in the native enzyme. An additional solvent molecule is situated between residues 255 and the bridging water in the H255N and H255D mutants and likely inhibits nitrite binding. The interaction of His-255 with the bridging water appears to be necessary for catalysis and may donate a proton to reaction intermediates in addition to Asp-98.
Collapse
Affiliation(s)
- M J Boulanger
- Departments of Biochemistry and Molecular Biology and of Microbiology and Immunology, University of British Columbia, Vancouver V6T 1Z3, Canada
| | | | | | | | | |
Collapse
|
35
|
Suzuki S, Kataoka K, Yamaguchi K, Inoue T, Kai Y. Structure–function relationships of copper-containing nitrite reductases. Coord Chem Rev 1999. [DOI: 10.1016/s0010-8545(99)00069-7] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
36
|
Abstract
The structure-function relationships in nitrite reductases, key enzymes in the dissimilatory denitrification pathway which reduce nitrite to nitric oxide (NO), are reviewed in this paper. The mechanisms of NO production are discussed in detail and special attention is paid to new structural information, such as the high resolution structure of the copper- and heme-containing enzymes from different sources. Finally, some implications relevant to regulation of the steady state levels of NO in denitrifiers are presented.
Collapse
Affiliation(s)
- F Cutruzzolà
- Dipartimento di Scienze Biochimiche, Università di Roma 'La Sapienza', P.le A. Moro, 5, 00185, Rome, Italy.
| |
Collapse
|
37
|
Watmough NJ, Butland G, Cheesman MR, Moir JW, Richardson DJ, Spiro S. Nitric oxide in bacteria: synthesis and consumption. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1411:456-74. [PMID: 10320675 DOI: 10.1016/s0005-2728(99)00032-8] [Citation(s) in RCA: 109] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- N J Watmough
- School of Biological Sciences, Centre for Metalloprotein Spectroscopy and Biology, University of East Anglia, Norwich NR4 7TJ, UK.
| | | | | | | | | | | |
Collapse
|
38
|
Strange RW, Murphy LM, Dodd FE, Abraham ZH, Eady RR, Smith BE, Hasnain SS. Structural and kinetic evidence for an ordered mechanism of copper nitrite reductase. J Mol Biol 1999; 287:1001-9. [PMID: 10222206 DOI: 10.1006/jmbi.1999.2648] [Citation(s) in RCA: 97] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The crystallographic structures of several copper-containing nitrite reductases are now available. Despite this wealth of structural data, no definitive information is available as to whether the reaction proceeds by an ordered mechanism where nitrite binds to the oxidised type 2 site, followed by an internal electron transfer from the type 1 Cu, or whether binding occurs to the reduced type 2 Cu centre, or a random mechanism operates. We present here the first structural information on both types of Cu centres for the reduced form of NiR from Alcaligenes xylosoxidans (AxNiR) using X-ray absorption spectroscopy. The reduced type 2 Cu site EXAFS shows striking similarity to the EXAFS data for reduced bovine superoxide dismutase (Cu2Zn2 SOD), providing strong evidence for the loss of the water molecule from the catalytic Cu site in NiR on reduction resulting in a tri-coordinate Cu site similar to that in Cu2Zn2 SOD. The reduced type 2 Cu site of AxNiR is shown to be unable to bind inhibitory ligands such as azide, and to react very sluggishly with nitrite leading to only a slow re-oxidation of the the type 1 centre. These observations provide strong evidence that turnover of AxNiR proceeds by an ordered mechanism in which nitrite binds to the oxidised type 2 Cu centres before electron transfer from the reduced type 1 centre occurs. We propose that the two links between the Cu sites of AxNiR, namely His129-Cys130 and His89-Asp92-His94 are utilised for electron transfer and for communicating the status of the type 2 Cu site, respectively. Nitrite binding at type 2 Cu is sensed by the proton abstracting group Asp92 and the type 2 Cu ligand His94, and relayed to the type 1 Cu site via His89 thus triggering an internal electron transfer. The similarity of the type 2 Cu NiR catalytic site to the reduced Cu site of SOD is examined in some detail together with the biochemical evidence for the SOD activity of AxNiR.
Collapse
Affiliation(s)
- R W Strange
- CCLRC Daresbury Laboratory, Warrington, Cheshire, WA4 4AD, UK
| | | | | | | | | | | | | |
Collapse
|
39
|
Dodd FE, Van Beeumen J, Eady RR, Hasnain SS. X-ray structure of a blue-copper nitrite reductase in two crystal forms. The nature of the copper sites, mode of substrate binding and recognition by redox partner. J Mol Biol 1998; 282:369-82. [PMID: 9735294 DOI: 10.1006/jmbi.1998.2007] [Citation(s) in RCA: 95] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Denitrification is one of the main steps of the global nitrogen cycle that is sustained by prokaryotic organisms. Denitrifying bacteria use two entirely different enzymes in this process, one based on haem cd1 prosthetic groups and the other on type 1-type 2 Cu centres. Copper-containing nitrite reductases (NiRs) are sub-divided into blue and green NiRs, which are respectively thought to be redox partners of azurins and pseudo-azurins. Crystallographic structures of the blue nitrite reductase from Alcaligenes xylosoxidans (AxNiR) are presented in the oxidised hexagonal form and the substrate-bound orthorhombic form to 2.1 A and 2.8 A resolution, respectively. The complete amino acid sequence of AxNiR has been determined by conventional chemical analysis. A 3 A structure of AxNiR has been published where the modelling was based on the sequence of another blue NiR. The higher resolution of the hexagonal form together with the correct sequence allows a detailed comparison with the crystallographic structures of the green NiRs. There is a striking difference in the overall surface charge distribution between the two sub-groups, providing a neat structural explanation for their different reactivities to pseudoazurin or azurin and supporting the view that electron transfer proceeds via complex formation. A detailed examination of the type-1 Cu site, the site responsible for the colour, reveals several subtle differences, including a lateral displacement of 0.7 A for Smet. The structure of the type-2 Cu site, and changes that occur upon substrate binding are discussed in terms of the catalytic mechanism. The similarity of the type 2 Cu site to the catalytic Zn site in carbonic anhydrase and the catalytic Cu site of superoxide dismutase is re-examined in view of the high-resolution (2.1 A) structure.
Collapse
Affiliation(s)
- F E Dodd
- Synchrotron Radiation Department, CCLRC Daresbury Laboratory, Warrington, WA4 4AD, UK
| | | | | | | |
Collapse
|
40
|
Suzuki S, Deligeer, Yamaguchi K, Kataoka K, Shidara S, Iwasaki H, Sakurai T. Spectroscopic distinction between two Co(II) ions substituted for types 1 and 2 Cu in nitrite reductase. Inorganica Chim Acta 1998. [DOI: 10.1016/s0020-1693(97)00070-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
41
|
Abstract
Denitrification is a distinct means of energy conservation, making use of N oxides as terminal electron acceptors for cellular bioenergetics under anaerobic, microaerophilic, and occasionally aerobic conditions. The process is an essential branch of the global N cycle, reversing dinitrogen fixation, and is associated with chemolithotrophic, phototrophic, diazotrophic, or organotrophic metabolism but generally not with obligately anaerobic life. Discovered more than a century ago and believed to be exclusively a bacterial trait, denitrification has now been found in halophilic and hyperthermophilic archaea and in the mitochondria of fungi, raising evolutionarily intriguing vistas. Important advances in the biochemical characterization of denitrification and the underlying genetics have been achieved with Pseudomonas stutzeri, Pseudomonas aeruginosa, Paracoccus denitrificans, Ralstonia eutropha, and Rhodobacter sphaeroides. Pseudomonads represent one of the largest assemblies of the denitrifying bacteria within a single genus, favoring their use as model organisms. Around 50 genes are required within a single bacterium to encode the core structures of the denitrification apparatus. Much of the denitrification process of gram-negative bacteria has been found confined to the periplasm, whereas the topology and enzymology of the gram-positive bacteria are less well established. The activation and enzymatic transformation of N oxides is based on the redox chemistry of Fe, Cu, and Mo. Biochemical breakthroughs have included the X-ray structures of the two types of respiratory nitrite reductases and the isolation of the novel enzymes nitric oxide reductase and nitrous oxide reductase, as well as their structural characterization by indirect spectroscopic means. This revealed unexpected relationships among denitrification enzymes and respiratory oxygen reductases. Denitrification is intimately related to fundamental cellular processes that include primary and secondary transport, protein translocation, cytochrome c biogenesis, anaerobic gene regulation, metalloprotein assembly, and the biosynthesis of the cofactors molybdopterin and heme D1. An important class of regulators for the anaerobic expression of the denitrification apparatus are transcription factors of the greater FNR family. Nitrate and nitric oxide, in addition to being respiratory substrates, have been identified as signaling molecules for the induction of distinct N oxide-metabolizing enzymes.
Collapse
Affiliation(s)
- W G Zumft
- Lehrstuhl für Mikrobiologie, Universität Fridericiana, Karlsruhe, Germany
| |
Collapse
|
42
|
Murphy ME, Turley S, Adman ET. Structure of nitrite bound to copper-containing nitrite reductase from Alcaligenes faecalis. Mechanistic implications. J Biol Chem 1997; 272:28455-60. [PMID: 9353305 DOI: 10.1074/jbc.272.45.28455] [Citation(s) in RCA: 181] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The structures of oxidized, reduced, nitrite-soaked oxidized and nitrite-soaked reduced nitrite reductase from Alcaligenes faecalis have been determined at 1.8-2.0 A resolution using data collected at -160 degrees C. The active site at cryogenic temperature, as at room temperature, contains a tetrahedral type II copper site liganded by three histidines and a water molecule. The solvent site is empty when crystals are reduced with ascorbate. A fully occupied oxygen-coordinate nitrite occupies the solvent site in crystals soaked in nitrite. Ascorbate-reduced crystals soaked in a glycerol-methanol solution and nitrite at -40 degrees C remain colorless at -160 degrees C but turn amber-brown when warmed, suggesting that NO is released. Nitrite is found at one-half occupancy. Five new solvent sites in the oxidized nitrite bound form exhibit defined but different occupancies in the other three forms. These results support a previously proposed mechanism by which nitrite is bound primarily by a single oxygen atom that is protonable, and after reduction and cleavage of that N-O bond, NO is released leaving the oxygen atom bound to the Cu site as hydroxide or water.
Collapse
Affiliation(s)
- M E Murphy
- Department of Biological Structure, School of Medicine, University of Washington, Seattle, Washington 98195-7420, USA
| | | | | |
Collapse
|
43
|
Abraham ZH, Smith BE, Howes BD, Lowe DJ, Eady RR. pH-dependence for binding a single nitrite ion to each type-2 copper centre in the copper-containing nitrite reductase of Alcaligenes xylosoxidans. Biochem J 1997; 324 ( Pt 2):511-6. [PMID: 9182711 PMCID: PMC1218459 DOI: 10.1042/bj3240511] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The first quantitative characterization of the interaction of NO2(-) with the Cu-containing dissimilatory nitrite reductase (NiR) of Alcaligenes xylosoxidans using steady-state kinetics, equilibrium gel filtration and EPR spectroscopy is described. Each molecule of this protein consists of three equivalent subunits, each containing a type-1 Cu atom and also a type-2 Cu atom at each subunit interface. Enzyme activity increased in a biphasic manner with decreasing pH, having an optimum at pH 5.2 and a plateau between pH 6.1 and 5.8. Equilibrium gel filtration showed that binding of NO2(-) to the oxidized NiR was also pH-dependent. At pH 7.5, no binding was detectable, but binding was detectable at lower pH values. At pH 5.2, the concentration-dependence for binding of NO2(-) to the enzyme showed that approx. 4.1 NO2(-) ions bound per trimeric NiR molecule. Unexpectedly, NiR deficient in type-2 Cu centres bound 1.3 NO2(-) ions per trimer. When corrected for this binding, a value of 3 NO2(-) ions bound per trimer of NiR, equivalent to the type-2 Cu content. The NO2(-)-induced changes in the EPR parameters of the type-2 Cu centre of the oxidized enzyme showed a similar pH-dependence to that of the activity. Binding constants for NO2(-) at a single type of site, after allowing for the non-specifically bound NO2(-), were 350+/-35 microM (mean+/-S.E.M.) at pH 7.5 and <30 microM at pH 5.2. The apparent Km for NO2(-) with saturating concentrations of dithionite as reductant was 35 microM at pH 7.5, which is 10-fold tighter than for the oxidized enzyme, and is compatible with an ordered mechanism in which the enzyme is reduced before NO2(-) binds.
Collapse
Affiliation(s)
- Z H Abraham
- Nitrogen Fixation Laboratory, John Innes Centre, Colney Lane, Norwich NR4 7UH, U.K
| | | | | | | | | |
Collapse
|
44
|
Adman ET, Godden JW, Turley S. The structure of copper-nitrite reductase from Achromobacter cycloclastes at five pH values, with NO2- bound and with type II copper depleted. J Biol Chem 1995; 270:27458-74. [PMID: 7499203 DOI: 10.1074/jbc.270.46.27458] [Citation(s) in RCA: 200] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
High resolution x-ray crystallographic structures of nitrite reductase from Achromobacter cycloclastes, undertaken in order to understand the pH optimum of the reaction with nitrite, show that at pH 5.0, 5.4, 6.0, 6.2, and 6.8, no significant changes occur, other than in the occupancy of the type II copper at the active site. An extensive network of hydrogen bonds, both within and between subunits of the trimer, maintains the rigidity of the protein structure. A water occupies a site approximately 1.5 A from the site of the type II copper in the structure of the type II copper-depleted structure (at pH 5.4), again with no other significant changes in structure. In nitrite-soaked crystals, nitrite binds via its oxygens to the type II copper and replaces the water normally bound to the type II copper. The active-site cavity of the protein is distinctly hydrophobic on one side and hydrophilic on the other, providing a possible path for diffusion of the product NO. Asp-98 exhibits thermal parameter values higher than its surroundings, suggesting a role in shuttling the two protons necessary for the overall reaction. The strong structural homology with cupredoxins is described.
Collapse
Affiliation(s)
- E T Adman
- Department of Biological Structure, University of Washington, Seattle 98195-7420, USA
| | | | | |
Collapse
|