1
|
Bohl V, Mogk A. When the going gets tough, the tough get going-Novel bacterial AAA+ disaggregases provide extreme heat resistance. Environ Microbiol 2024; 26:e16677. [PMID: 39039821 DOI: 10.1111/1462-2920.16677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 07/05/2024] [Indexed: 07/24/2024]
Abstract
Heat stress can lead to protein misfolding and aggregation, potentially causing cell death due to the loss of essential proteins. Bacteria, being particularly exposed to environmental stress, are equipped with disaggregases that rescue these aggregated proteins. The bacterial Hsp70 chaperone DnaK and the ATPase associated with diverse cellular activities protein ClpB form the canonical disaggregase in bacteria. While this combination operates effectively during physiological heat stress, it is ineffective against massive aggregation caused by temperature-based sterilization protocols used in the food industry and clinics. This leaves bacteria unprotected against these thermal processes. However, bacteria that can withstand extreme, man-made stress conditions have emerged. These bacteria possess novel ATPase associated with diverse cellular activities disaggregases, ClpG and ClpL, which are key players in extreme heat resistance. These disaggregases, present in selected Gram-negative or Gram-positive bacteria, respectively, function superiorly by exhibiting increased thermal stability and enhanced threading power compared to DnaK/ClpB. This enables ClpG and ClpL to operate at extreme temperatures and process large and tight protein aggregates, thereby contributing to heat resistance. The genes for ClpG and ClpL are often encoded on mobile genomic islands or conjugative plasmids, allowing for their rapid spread among bacteria via horizontal gene transfer. This threatens the efficiency of sterilization protocols. In this review, we describe the various bacterial disaggregases identified to date, characterizing their commonalities and the specific features that enable these novel disaggregases to provide stress protection against extreme stress conditions.
Collapse
Affiliation(s)
- Valentin Bohl
- Faculty of Biosciences, Center for Molecular Biology of Heidelberg University (ZMBH), Heidelberg, Germany
| | - Axel Mogk
- Faculty of Biosciences, Center for Molecular Biology of Heidelberg University (ZMBH), Heidelberg, Germany
| |
Collapse
|
2
|
Bohl V, Hollmann NM, Melzer T, Katikaridis P, Meins L, Simon B, Flemming D, Sinning I, Hennig J, Mogk A. The Listeria monocytogenes persistence factor ClpL is a potent stand-alone disaggregase. eLife 2024; 12:RP92746. [PMID: 38598269 PMCID: PMC11006417 DOI: 10.7554/elife.92746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024] Open
Abstract
Heat stress can cause cell death by triggering the aggregation of essential proteins. In bacteria, aggregated proteins are rescued by the canonical Hsp70/AAA+ (ClpB) bi-chaperone disaggregase. Man-made, severe stress conditions applied during, e.g., food processing represent a novel threat for bacteria by exceeding the capacity of the Hsp70/ClpB system. Here, we report on the potent autonomous AAA+ disaggregase ClpL from Listeria monocytogenes that provides enhanced heat resistance to the food-borne pathogen enabling persistence in adverse environments. ClpL shows increased thermal stability and enhanced disaggregation power compared to Hsp70/ClpB, enabling it to withstand severe heat stress and to solubilize tight aggregates. ClpL binds to protein aggregates via aromatic residues present in its N-terminal domain (NTD) that adopts a partially folded and dynamic conformation. Target specificity is achieved by simultaneous interactions of multiple NTDs with the aggregate surface. ClpL shows remarkable structural plasticity by forming diverse higher assembly states through interacting ClpL rings. NTDs become largely sequestered upon ClpL ring interactions. Stabilizing ring assemblies by engineered disulfide bonds strongly reduces disaggregation activity, suggesting that they represent storage states.
Collapse
Affiliation(s)
- Valentin Bohl
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH AllianceHeidelbergGermany
| | - Nele Merret Hollmann
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL) HeidelbergHeidelbergGermany
| | - Tobias Melzer
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH AllianceHeidelbergGermany
| | - Panagiotis Katikaridis
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH AllianceHeidelbergGermany
| | - Lena Meins
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH AllianceHeidelbergGermany
| | - Bernd Simon
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL) HeidelbergHeidelbergGermany
| | - Dirk Flemming
- Heidelberg University Biochemistry Center (BZH)HeidelbergGermany
| | - Irmgard Sinning
- Heidelberg University Biochemistry Center (BZH)HeidelbergGermany
| | - Janosch Hennig
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL) HeidelbergHeidelbergGermany
- Chair of Biochemistry IV, Biophysical Chemistry, University of BayreuthBayreuthGermany
| | - Axel Mogk
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH AllianceHeidelbergGermany
| |
Collapse
|
3
|
Katikaridis P, Simon B, Jenne T, Moon S, Lee C, Hennig J, Mogk A. Structural basis of aggregate binding by the AAA+ disaggregase ClpG. J Biol Chem 2023; 299:105336. [PMID: 37827289 PMCID: PMC10641755 DOI: 10.1016/j.jbc.2023.105336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 09/17/2023] [Accepted: 09/26/2023] [Indexed: 10/14/2023] Open
Abstract
Severe heat stress causes massive loss of essential proteins by aggregation, necessitating a cellular activity that rescues aggregated proteins. This activity is executed by ATP-dependent, ring-forming, hexameric AAA+ disaggregases. Little is known about the recognition principles of stress-induced protein aggregates. How can disaggregases specifically target aggregated proteins, while avoiding binding to soluble non-native proteins? Here, we determined by NMR spectroscopy the core structure of the aggregate-targeting N1 domain of the bacterial AAA+ disaggregase ClpG, which confers extreme heat resistance to bacteria. N1 harbors a Zn2+-coordination site that is crucial for structural integrity and disaggregase functionality. We found that conserved hydrophobic N1 residues located on a β-strand are crucial for aggregate targeting and disaggregation activity. Analysis of mixed hexamers consisting of full-length and N1-truncated subunits revealed that a minimal number of four N1 domains must be present in a AAA+ ring for high-disaggregation activity. We suggest that multiple N1 domains increase substrate affinity through avidity effects. These findings define the recognition principle of a protein aggregate by a disaggregase, involving simultaneous contacts with multiple hydrophobic substrate patches located in close vicinity on an aggregate surface. This binding mode ensures selectivity for aggregated proteins while sparing soluble, non-native protein structures from disaggregase activity.
Collapse
Affiliation(s)
- Panagiotis Katikaridis
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Bernd Simon
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL) Heidelberg, Heidelberg, Germany; Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, Connecticut, USA
| | - Timo Jenne
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Seongjoon Moon
- Department of Biological Sciences, Ajou University, Suwon, South Korea
| | - Changhan Lee
- Department of Biological Sciences, Ajou University, Suwon, South Korea
| | - Janosch Hennig
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL) Heidelberg, Heidelberg, Germany; Division of Biophysical Chemistry, University of Bayreuth, Bayreuth, Germany.
| | - Axel Mogk
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
4
|
Gupta A, Lentzsch AM, Siegel A, Yu Z, Chio US, Cheng Y, Shan SO. Dodecamer assembly of a metazoan AAA + chaperone couples substrate extraction to refolding. SCIENCE ADVANCES 2023; 9:eadf5336. [PMID: 37163603 PMCID: PMC10171807 DOI: 10.1126/sciadv.adf5336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 04/04/2023] [Indexed: 05/12/2023]
Abstract
Ring-forming AAA+ chaperones solubilize protein aggregates and protect organisms from proteostatic stress. In metazoans, the AAA+ chaperone Skd3 in the mitochondrial intermembrane space (IMS) is critical for human health and efficiently refolds aggregated proteins, but its underlying mechanism is poorly understood. Here, we show that Skd3 harbors both disaggregase and protein refolding activities enabled by distinct assembly states. High-resolution structures of Skd3 hexamers in distinct conformations capture ratchet-like motions that mediate substrate extraction. Unlike previously described disaggregases, Skd3 hexamers further assemble into dodecameric cages in which solubilized substrate proteins can attain near-native states. Skd3 mutants defective in dodecamer assembly retain disaggregase activity but are impaired in client refolding, linking the disaggregase and refolding activities to the hexameric and dodecameric states of Skd3, respectively. We suggest that Skd3 is a combined disaggregase and foldase, and this property is particularly suited to meet the complex proteostatic demands in the mitochondrial IMS.
Collapse
Affiliation(s)
- Arpit Gupta
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Alfred M. Lentzsch
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Alex Siegel
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Zanlin Yu
- Department of Biochemistry and Biophysics, University of California at San Francisco, San Francisco, CA 94158, USA
| | - Un Seng Chio
- Department of Biochemistry and Biophysics, University of California at San Francisco, San Francisco, CA 94158, USA
| | - Yifan Cheng
- Department of Biochemistry and Biophysics, University of California at San Francisco, San Francisco, CA 94158, USA
- Howard Hughes Medical Institute, University of California at San Francisco, San Francisco, CA 94158, USA
| | - Shu-ou Shan
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| |
Collapse
|
5
|
Pedrosa AG, Francisco T, Rodrigues TA, Ferreira MJ, van der Heden van Noort GJ, Azevedo JE. The Extraction Mechanism of Monoubiquitinated PEX5 from the Peroxisomal Membrane. J Mol Biol 2023; 435:167896. [PMID: 36442669 DOI: 10.1016/j.jmb.2022.167896] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/19/2022] [Accepted: 11/21/2022] [Indexed: 11/27/2022]
Abstract
The AAA ATPases PEX1•PEX6 extract PEX5, the peroxisomal protein shuttling receptor, from the peroxisomal membrane so that a new protein transport cycle can start. Extraction requires ubiquitination of PEX5 at residue 11 and involves a threading mechanism, but how exactly this occurs is unclear. We used a cell-free in vitro system and a variety of engineered PEX5 and ubiquitin molecules to challenge the extraction machinery. We show that PEX5 modified with a single ubiquitin is a substrate for extraction and extend previous findings proposing that neither the N- nor the C-terminus of PEX5 are required for extraction. Chimeric PEX5 molecules possessing a branched polypeptide structure at their C-terminal domains can still be extracted from the peroxisomal membrane thus suggesting that the extraction machinery can thread more than one polypeptide chain simultaneously. Importantly, we found that the PEX5-linked monoubiquitin is unfolded at a pre-extraction stage and, accordingly, an intra-molecularly cross-linked ubiquitin blocked extraction when conjugated to residue 11 of PEX5. Collectively, our data suggest that the PEX5-linked monoubiquitin is the extraction initiator and that the complete ubiquitin-PEX5 conjugate is threaded by PEX1•PEX6.
Collapse
Affiliation(s)
- Ana G Pedrosa
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Tânia Francisco
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Tony A Rodrigues
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Maria J Ferreira
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Gerbrand J van der Heden van Noort
- Oncode Institute and Department of Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC, Leiden, The Netherlands
| | - Jorge E Azevedo
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| |
Collapse
|
6
|
Elucidation of the interaction proteome of mitochondrial chaperone Hsp78 highlights its role in protein aggregation during heat stress. J Biol Chem 2022; 298:102494. [PMID: 36115461 PMCID: PMC9574514 DOI: 10.1016/j.jbc.2022.102494] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 09/01/2022] [Accepted: 09/06/2022] [Indexed: 11/29/2022] Open
Abstract
Chaperones of the Hsp100/Clp family represent major components of protein homeostasis, conferring maintenance of protein activity under stress. The ClpB-type members of the family, present in bacteria, fungi, and plants, are able to resolubilize aggregated proteins. The mitochondrial member of the ClpB family in Saccharomyces cerevisiae is Hsp78. Although Hsp78 has been shown to contribute to proteostasis in elevated temperatures, the biochemical mechanisms underlying this mitochondria-specific thermotolerance are still largely unclear. To identify endogenous chaperone substrate proteins, here, we generated an Hsp78-ATPase mutant with stabilized substrate-binding behavior. We used two stable isotope labeling–based quantitative mass spectrometry approaches to analyze the role of Hsp78 during heat stress–induced mitochondrial protein aggregation and disaggregation on a proteomic level. We first identified the endogenous substrate spectrum of the Hsp78 chaperone, comprising a wide variety of proteins related to metabolic functions including energy production and protein synthesis, as well as other chaperones, indicating its crucial functions in mitochondrial stress resistance. We then compared these interaction data with aggregation and disaggregation processes in mitochondria under heat stress, which revealed specific aggregation-prone protein populations and demonstrated the direct quantitative impact of Hsp78 on stress-dependent protein solubility under different conditions. We conclude that Hsp78, together with its cofactors, represents a recovery system that protects major mitochondrial metabolic functions during heat stress as well as restores protein biogenesis capacity after the return to normal conditions.
Collapse
|
7
|
Mecha MF, Hutchinson RB, Lee JH, Cavagnero S. Protein folding in vitro and in the cell: From a solitary journey to a team effort. Biophys Chem 2022; 287:106821. [PMID: 35667131 PMCID: PMC9636488 DOI: 10.1016/j.bpc.2022.106821] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 04/18/2022] [Accepted: 04/21/2022] [Indexed: 12/22/2022]
Abstract
Correct protein folding is essential for the health and function of living organisms. Yet, it is not well understood how unfolded proteins reach their native state and avoid aggregation, especially within the cellular milieu. Some proteins, especially small, single-domain and apparent two-state folders, successfully attain their native state upon dilution from denaturant. Yet, many more proteins undergo misfolding and aggregation during this process, in a concentration-dependent fashion. Once formed, native and aggregated states are often kinetically trapped relative to each other. Hence, the early stages of protein life are absolutely critical for proper kinetic channeling to the folded state and for long-term solubility and function. This review summarizes current knowledge on protein folding/aggregation mechanisms in buffered solution and within the bacterial cell, highlighting early stages. Remarkably, teamwork between nascent chain, ribosome, trigger factor and Hsp70 molecular chaperones enables all proteins to overcome aggregation propensities and reach a long-lived bioactive state.
Collapse
Affiliation(s)
- Miranda F Mecha
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, United States of America
| | - Rachel B Hutchinson
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, United States of America
| | - Jung Ho Lee
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, United States of America
| | - Silvia Cavagnero
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, United States of America.
| |
Collapse
|
8
|
Shoup D, Roth A, Puchalla J, Rye HS. The Impact of Hidden Structure on Aggregate Disassembly by Molecular Chaperones. Front Mol Biosci 2022; 9:915307. [PMID: 35874607 PMCID: PMC9302491 DOI: 10.3389/fmolb.2022.915307] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 06/16/2022] [Indexed: 11/13/2022] Open
Abstract
Protein aggregation, or the uncontrolled self-assembly of partially folded proteins, is an ever-present danger for living organisms. Unimpeded, protein aggregation can result in severe cellular dysfunction and disease. A group of proteins known as molecular chaperones is responsible for dismantling protein aggregates. However, how protein aggregates are recognized and disassembled remains poorly understood. Here we employ a single particle fluorescence technique known as Burst Analysis Spectroscopy (BAS), in combination with two structurally distinct aggregate types grown from the same starting protein, to examine the mechanism of chaperone-mediated protein disaggregation. Using the core bi-chaperone disaggregase system from Escherichia coli as a model, we demonstrate that, in contrast to prevailing models, the overall size of an aggregate particle has, at most, a minor influence on the progression of aggregate disassembly. Rather, we show that changes in internal structure, which have no observable impact on aggregate particle size or molecular chaperone binding, can dramatically limit the ability of the bi-chaperone system to take aggregates apart. In addition, these structural alterations progress with surprising speed, rendering aggregates resistant to disassembly within minutes. Thus, while protein aggregate structure is generally poorly defined and is often obscured by heterogeneous and complex particle distributions, it can have a determinative impact on the ability of cellular quality control systems to process protein aggregates.
Collapse
Affiliation(s)
- Daniel Shoup
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, United States
| | - Andrew Roth
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, United States
| | - Jason Puchalla
- Department of Physics, Princeton University, Princeton, NJ, United States
| | - Hays S. Rye
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, United States
| |
Collapse
|
9
|
Judy RM, Sheedy CJ, Gardner BM. Insights into the Structure and Function of the Pex1/Pex6 AAA-ATPase in Peroxisome Homeostasis. Cells 2022; 11:2067. [PMID: 35805150 PMCID: PMC9265785 DOI: 10.3390/cells11132067] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/25/2022] [Accepted: 06/26/2022] [Indexed: 02/01/2023] Open
Abstract
The AAA-ATPases Pex1 and Pex6 are required for the formation and maintenance of peroxisomes, membrane-bound organelles that harbor enzymes for specialized metabolism. Together, Pex1 and Pex6 form a heterohexameric AAA-ATPase capable of unfolding substrate proteins via processive threading through a central pore. Here, we review the proposed roles for Pex1/Pex6 in peroxisome biogenesis and degradation, discussing how the unfolding of potential substrates contributes to peroxisome homeostasis. We also consider how advances in cryo-EM, computational structure prediction, and mechanisms of related ATPases are improving our understanding of how Pex1/Pex6 converts ATP hydrolysis into mechanical force. Since mutations in PEX1 and PEX6 cause the majority of known cases of peroxisome biogenesis disorders such as Zellweger syndrome, insights into Pex1/Pex6 structure and function are important for understanding peroxisomes in human health and disease.
Collapse
Affiliation(s)
| | | | - Brooke M. Gardner
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA 93106, USA; (R.M.J.); (C.J.S.)
| |
Collapse
|
10
|
Riven I, Mazal H, Iljina M, Haran G. Fast dynamics shape the function of the
AAA
+ machine
ClpB
: lessons from single‐molecule
FRET
spectroscopy. FEBS J 2022. [DOI: 10.1111/febs.16539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 05/04/2022] [Accepted: 05/30/2022] [Indexed: 12/01/2022]
Affiliation(s)
- Inbal Riven
- Department of Chemical and Biological Physics Weizmann Institute of Science Rehovot Israel
| | - Hisham Mazal
- Department of Chemical and Biological Physics Weizmann Institute of Science Rehovot Israel
| | - Marija Iljina
- Department of Chemical and Biological Physics Weizmann Institute of Science Rehovot Israel
| | - Gilad Haran
- Department of Chemical and Biological Physics Weizmann Institute of Science Rehovot Israel
| |
Collapse
|
11
|
Lin J, Shorter J, Lucius AL. AAA+ proteins: one motor, multiple ways to work. Biochem Soc Trans 2022; 50:895-906. [PMID: 35356966 PMCID: PMC9115847 DOI: 10.1042/bst20200350] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 12/15/2022]
Abstract
Numerous ATPases associated with diverse cellular activities (AAA+) proteins form hexameric, ring-shaped complexes that function via ATPase-coupled translocation of substrates across the central channel. Cryo-electron microscopy of AAA+ proteins processing substrate has revealed non-symmetric, staircase-like hexameric structures that indicate a sequential clockwise/2-residue step translocation model for these motors. However, for many of the AAA+ proteins that share similar structural features, their translocation properties have not yet been experimentally determined. In the cases where translocation mechanisms have been determined, a two-residue translocation step-size has not been resolved. In this review, we explore Hsp104, ClpB, ClpA and ClpX as examples to review the experimental methods that have been used to examine, in solution, the translocation mechanisms employed by AAA+ motor proteins. We then ask whether AAA+ motors sharing similar structural features can have different translocation mechanisms. Finally, we discuss whether a single AAA+ motor can adopt multiple translocation mechanisms that are responsive to different challenges imposed by the substrate or the environment. We suggest that AAA+ motors adopt more than one translocation mechanism and are tuned to switch to the most energetically efficient mechanism when constraints are applied.
Collapse
Affiliation(s)
- JiaBei Lin
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, U.S.A
| | - James Shorter
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, U.S.A
| | - Aaron L. Lucius
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL, U.S.A
| |
Collapse
|
12
|
Yoo H, Bard JA, Pilipenko E, Drummond DA. Chaperones directly and efficiently disperse stress-triggered biomolecular condensates. Mol Cell 2022; 82:741-755.e11. [PMID: 35148816 PMCID: PMC8857057 DOI: 10.1016/j.molcel.2022.01.005] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 09/30/2021] [Accepted: 01/06/2022] [Indexed: 12/28/2022]
Abstract
Stresses such as heat shock trigger the formation of protein aggregates and the induction of a disaggregation system composed of molecular chaperones. Recent work reveals that several cases of apparent heat-induced aggregation, long thought to be the result of toxic misfolding, instead reflect evolved, adaptive biomolecular condensation, with chaperone activity contributing to condensate regulation. Here we show that the yeast disaggregation system directly disperses heat-induced biomolecular condensates of endogenous poly(A)-binding protein (Pab1) orders of magnitude more rapidly than aggregates of the most commonly used misfolded model substrate, firefly luciferase. Beyond its efficiency, heat-induced condensate dispersal differs from heat-induced aggregate dispersal in its molecular requirements and mechanistic behavior. Our work establishes a bona fide endogenous heat-induced substrate for long-studied heat shock proteins, isolates a specific example of chaperone regulation of condensates, and underscores needed expansion of the proteotoxic interpretation of the heat shock response to encompass adaptive, chaperone-mediated regulation.
Collapse
Affiliation(s)
- Haneul Yoo
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, 60637, USA
| | - Jared A.M. Bard
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, 60637, USA
| | - Evgeny Pilipenko
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, 60637, USA
| | - D. Allan Drummond
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, 60637, USA,Department of Medicine, Section of Genetic Medicine, The University of Chicago, Chicago, IL, 60637, USA,Lead Contact,Correspondence: (D.A.D.)
| |
Collapse
|
13
|
Warren JT, Cupo RR, Wattanasirakul P, Spencer DH, Locke AE, Makaryan V, Bolyard AA, Kelley ML, Kingston NL, Shorter J, Bellanné-Chantelot C, Donadieu J, Dale DC, Link DC. Heterozygous variants of CLPB are a cause of severe congenital neutropenia. Blood 2022; 139:779-791. [PMID: 34115842 PMCID: PMC8814677 DOI: 10.1182/blood.2021010762] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 05/19/2021] [Indexed: 02/05/2023] Open
Abstract
Severe congenital neutropenia is an inborn disorder of granulopoiesis. Approximately one third of cases do not have a known genetic cause. Exome sequencing of 104 persons with congenital neutropenia identified heterozygous missense variants of CLPB (caseinolytic peptidase B) in 5 severe congenital neutropenia cases, with 5 more cases identified through additional sequencing efforts or clinical sequencing. CLPB encodes an adenosine triphosphatase that is implicated in protein folding and mitochondrial function. Prior studies showed that biallelic mutations of CLPB are associated with a syndrome of 3-methylglutaconic aciduria, cataracts, neurologic disease, and variable neutropenia. However, 3-methylglutaconic aciduria was not observed and, other than neutropenia, these clinical features were uncommon in our series. Moreover, the CLPB variants are distinct, consisting of heterozygous variants that cluster near the adenosine triphosphate-binding pocket. Both genetic loss of CLPB and expression of CLPB variants result in impaired granulocytic differentiation of human hematopoietic progenitor cells and increased apoptosis. These CLPB variants associate with wild-type CLPB and inhibit its adenosine triphosphatase and disaggregase activity in a dominant-negative fashion. Finally, expression of CLPB variants is associated with impaired mitochondrial function but does not render cells more sensitive to endoplasmic reticulum stress. Together, these data show that heterozygous CLPB variants are a new and relatively common cause of congenital neutropenia and should be considered in the evaluation of patients with congenital neutropenia.
Collapse
Affiliation(s)
- Julia T Warren
- Division of Hematology-Oncology, Department of Pediatrics, Washington University School of Medicine, Saint Louis, MO
| | - Ryan R Cupo
- Department of Biochemistry and Biophysics, Pharmacology Graduate Group, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Peeradol Wattanasirakul
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St, MO
| | - David H Spencer
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St, MO
| | - Adam E Locke
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St, MO
| | - Vahagn Makaryan
- Department of Medicine, University of Washington, Seattle, WA
| | | | | | - Natalie L Kingston
- Medical Scientist Training Program, Washington University School of Medicine, St, MO
| | - James Shorter
- Department of Biochemistry and Biophysics, Pharmacology Graduate Group, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Christine Bellanné-Chantelot
- Département de Génétique, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Pitié Salpêtrière, Sorbonne Université, Paris, France; and
| | - Jean Donadieu
- Sorbonne Université, INSERM, AP-HP, Registre français des Neutropénies Chroniques, Centre de Référence des Neutropénies Chroniques, Hôpital Trousseau, Service Hémato Oncologie Pédiatrique, Paris, France
| | - David C Dale
- Department of Medicine, University of Washington, Seattle, WA
| | - Daniel C Link
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St, MO
| |
Collapse
|
14
|
Mazal H, Iljina M, Riven I, Haran G. Ultrafast pore-loop dynamics in a AAA+ machine point to a Brownian-ratchet mechanism for protein translocation. SCIENCE ADVANCES 2021; 7:eabg4674. [PMID: 34516899 PMCID: PMC8442866 DOI: 10.1126/sciadv.abg4674] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 07/14/2021] [Indexed: 05/29/2023]
Abstract
AAA+ ring–shaped machines, such as the disaggregation machines ClpB and Hsp104, mediate ATP-driven substrate translocation through their central channel by a set of pore loops. Recent structural studies have suggested a universal hand-over-hand translocation mechanism with slow and rigid subunit motions. However, functional and biophysical studies are in discord with this model. Here, we directly measure the real-time dynamics of the pore loops of ClpB during substrate threading, using single-molecule FRET spectroscopy. All pore loops undergo large-amplitude fluctuations on the microsecond time scale and change their conformation upon interaction with substrate proteins in an ATP-dependent manner. Conformational dynamics of two of the pore loops strongly correlate with disaggregation activity, suggesting that they are the main contributors to substrate pulling. This set of findings is rationalized in terms of an ultrafast Brownian-ratchet translocation mechanism, which likely acts in parallel to the much slower hand-over-hand process in ClpB and other AAA+ machines.
Collapse
|
15
|
Damre M, Dayananda A, Varikoti RA, Stan G, Dima RI. Factors underlying asymmetric pore dynamics of disaggregase and microtubule-severing AAA+ machines. Biophys J 2021; 120:3437-3454. [PMID: 34181904 PMCID: PMC8391056 DOI: 10.1016/j.bpj.2021.05.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 04/11/2021] [Accepted: 05/19/2021] [Indexed: 11/26/2022] Open
Abstract
Disaggregation and microtubule-severing nanomachines from the AAA+ (ATPases associated with various cellular activities) superfamily assemble into ring-shaped hexamers that enable protein remodeling by coupling large-scale conformational changes with application of mechanical forces within a central pore by loops protruding within the pore. We probed the asymmetric pore motions and intraring interactions that support them by performing extensive molecular dynamics simulations of single-ring severing proteins and the double-ring disaggregase ClpB. Simulations reveal that dynamic stability of hexameric pores of severing proteins and of the nucleotide-binding domain 1 (NBD1) ring of ClpB, which belong to the same clade, involves a network of salt bridges that connect conserved motifs of central pore loops. Clustering analysis of ClpB highlights correlated motions of domains of neighboring protomers supporting strong interprotomer collaboration. Severing proteins have weaker interprotomer coupling and stronger intraprotomer stabilization through salt bridges involving pore loops. Distinct mechanisms are identified in the NBD2 ring of ClpB involving weaker interprotomer coupling through salt bridges formed by noncanonical loops and stronger intraprotomer coupling. Analysis of collective motions of PL1 loops indicates that the largest amplitude motions in the spiral complex of spastin and ClpB involve axial excursions of the loops, whereas for katanin they involve opening and closing of the central pore. All three motors execute primarily axial excursions in the ring complex. These results suggest distinct substrate processing mechanisms of remodeling and translocation by ClpB and spastin compared to katanin, thus providing dynamic support for the differential action of the two severing proteins. Relaxation dynamics of the distance between the PL1 loops and the center of mass of protomers reveals observation-time-dependent dynamics, leading to predicted relaxation times of tens to hundreds of microseconds on millisecond experimental timescales. For ClpB, the predicted relaxation time is in excellent agreement with the extracted time from smFRET experiments.
Collapse
Affiliation(s)
- Mangesh Damre
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio
| | - Ashan Dayananda
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio
| | | | - George Stan
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio.
| | - Ruxandra I Dima
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio.
| |
Collapse
|
16
|
Creekmore BC, Chang YW, Lee EB. The Cryo-EM Effect: Structural Biology of Neurodegenerative Disease Proteostasis Factors. J Neuropathol Exp Neurol 2021; 80:494-513. [PMID: 33860329 PMCID: PMC8177850 DOI: 10.1093/jnen/nlab029] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Neurodegenerative diseases are characterized by the accumulation of misfolded proteins. This protein aggregation suggests that abnormal proteostasis contributes to aging-related neurodegeneration. A better fundamental understanding of proteins that regulate proteostasis may provide insight into the pathophysiology of neurodegenerative disease and may perhaps reveal novel therapeutic opportunities. The 26S proteasome is the key effector of the ubiquitin-proteasome system responsible for degrading polyubiquitinated proteins. However, additional factors, such as valosin-containing protein (VCP/p97/Cdc48) and C9orf72, play a role in regulation and trafficking of substrates through the normal proteostasis systems of a cell. Nonhuman AAA+ ATPases, such as the disaggregase Hsp104, also provide insights into the biochemical processes that regulate protein aggregation. X-ray crystallography and cryo-electron microscopy (cryo-EM) structures not bound to substrate have provided meaningful information about the 26S proteasome, VCP, and Hsp104. However, recent cryo-EM structures bound to substrate have provided new information about the function and mechanism of these proteostasis factors. Cryo-EM and cryo-electron tomography data combined with biochemical data have also increased the understanding of C9orf72 and its role in maintaining proteostasis. These structural insights provide a foundation for understanding proteostasis mechanisms with near-atomic resolution upon which insights can be gleaned regarding the pathophysiology of neurodegenerative diseases.
Collapse
Affiliation(s)
- Benjamin C Creekmore
- From the Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Graduate Program in Biochemistry and Molecular Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Translational Neuropathology Research Laboratory, Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Yi-Wei Chang
- From the Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Edward B Lee
- Translational Neuropathology Research Laboratory, Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
17
|
Katikaridis P, Bohl V, Mogk A. Resisting the Heat: Bacterial Disaggregases Rescue Cells From Devastating Protein Aggregation. Front Mol Biosci 2021; 8:681439. [PMID: 34017857 PMCID: PMC8129007 DOI: 10.3389/fmolb.2021.681439] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 04/12/2021] [Indexed: 11/23/2022] Open
Abstract
Bacteria as unicellular organisms are most directly exposed to changes in environmental growth conditions like temperature increase. Severe heat stress causes massive protein misfolding and aggregation resulting in loss of essential proteins. To ensure survival and rapid growth resume during recovery periods bacteria are equipped with cellular disaggregases, which solubilize and reactivate aggregated proteins. These disaggregases are members of the Hsp100/AAA+ protein family, utilizing the energy derived from ATP hydrolysis to extract misfolded proteins from aggregates via a threading activity. Here, we describe the two best characterized bacterial Hsp100/AAA+ disaggregases, ClpB and ClpG, and compare their mechanisms and regulatory modes. The widespread ClpB disaggregase requires cooperation with an Hsp70 partner chaperone, which targets ClpB to protein aggregates. Furthermore, Hsp70 activates ClpB by shifting positions of regulatory ClpB M-domains from a repressed to a derepressed state. ClpB activity remains tightly controlled during the disaggregation process and high ClpB activity states are likely restricted to initial substrate engagement. The recently identified ClpG (ClpK) disaggregase functions autonomously and its activity is primarily controlled by substrate interaction. ClpG provides enhanced heat resistance to selected bacteria including pathogens by acting as a more powerful disaggregase. This disaggregase expansion reflects an adaption of bacteria to extreme temperatures experienced during thermal based sterilization procedures applied in food industry and medicine. Genes encoding for ClpG are transmissible by horizontal transfer, allowing for rapid spreading of extreme bacterial heat resistance and posing a threat to modern food production.
Collapse
Affiliation(s)
- Panagiotis Katikaridis
- Center for Molecular Biology of the Heidelberg University and German Cancer Research Center, DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Valentin Bohl
- Center for Molecular Biology of the Heidelberg University and German Cancer Research Center, DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Axel Mogk
- Center for Molecular Biology of the Heidelberg University and German Cancer Research Center, DKFZ-ZMBH Alliance, Heidelberg, Germany
| |
Collapse
|
18
|
Katikaridis P, Römling U, Mogk A. Basic mechanism of the autonomous ClpG disaggregase. J Biol Chem 2021; 296:100460. [PMID: 33639171 PMCID: PMC8024975 DOI: 10.1016/j.jbc.2021.100460] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 02/05/2021] [Accepted: 02/23/2021] [Indexed: 01/19/2023] Open
Abstract
Bacterial survival during lethal heat stress relies on the cellular ability to reactivate aggregated proteins. This activity is typically executed by the canonical 70-kDa heat shock protein (Hsp70)–ClpB bichaperone disaggregase, which is most widespread in bacteria. The ClpB disaggregase is a member of the ATPase associated with diverse cellular activities protein family and exhibits an ATP-driven threading activity. Substrate binding and stimulation of ATP hydrolysis depends on the Hsp70 partner, which initiates the disaggregation reaction. Recently elevated heat resistance in gamma-proteobacterial species was shown to be mediated by the ATPase associated with diverse cellular activities protein ClpG as an alternative disaggregase. Pseudomonas aeruginosa ClpG functions autonomously and does not cooperate with Hsp70 for substrate binding, enhanced ATPase activity, and disaggregation. With the underlying molecular basis largely unknown, the fundamental differences in ClpG- and ClpB-dependent disaggregation are reflected by the presence of sequence alterations and additional ClpG-specific domains. By analyzing the effects of mutants lacking ClpG-specific domains and harboring mutations in conserved motifs implicated in ATP hydrolysis and substrate threading, we show that the N-terminal, ClpG-specific N1 domain generally mediates protein aggregate binding as the molecular basis of autonomous disaggregation activity. Peptide substrate binding strongly stimulates ClpG ATPase activity by overriding repression by the N-terminal N1 and N2 domains. High ATPase activity requires two functional nucleotide binding domains and drives substrate threading which ultimately extracts polypeptides from the aggregate. ClpG ATPase and disaggregation activity is thereby directly controlled by substrate availability.
Collapse
Affiliation(s)
- Panagiotis Katikaridis
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany; German Cancer Research Center (DKFZ), A250 Chaperones and Proteases, Heidelberg, Germany
| | - Ute Römling
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden
| | - Axel Mogk
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany; German Cancer Research Center (DKFZ), A250 Chaperones and Proteases, Heidelberg, Germany.
| |
Collapse
|
19
|
Kohler V, Andréasson C. Hsp70-mediated quality control: should I stay or should I go? Biol Chem 2020; 401:1233-1248. [PMID: 32745066 DOI: 10.1515/hsz-2020-0187] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 07/11/2020] [Indexed: 12/30/2022]
Abstract
Chaperones of the 70 kDa heat shock protein (Hsp70) superfamily are key components of the cellular proteostasis system. Together with its co-chaperones, Hsp70 forms proteostasis subsystems that antagonize protein damage during physiological and stress conditions. This function stems from highly regulated binding and release cycles of protein substrates, which results in a flow of unfolded, partially folded and misfolded species through the Hsp70 subsystem. Specific factors control how Hsp70 makes decisions regarding folding and degradation fates of the substrate proteins. In this review, we summarize how the flow of Hsp70 substrates is controlled in the cell with special emphasis on recent advances regarding substrate release mechanisms.
Collapse
Affiliation(s)
- Verena Kohler
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, S-106 91 Stockholm, Sweden
| | - Claes Andréasson
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, S-106 91 Stockholm, Sweden
| |
Collapse
|
20
|
Ooi CP, Benz C, Urbaniak MD. Phosphoproteomic analysis of mammalian infective Trypanosoma brucei subjected to heat shock suggests atypical mechanisms for thermotolerance. J Proteomics 2020; 219:103735. [PMID: 32198071 DOI: 10.1016/j.jprot.2020.103735] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 02/11/2020] [Accepted: 03/10/2020] [Indexed: 10/24/2022]
Abstract
The symptoms of African sleeping sickness, caused by the parasite Trypanosoma brucei, can include periods of fever as high as 41 °C which triggers a heat shock response in the parasite. To capture events involved in sensing and responding to heat shock in the mammalian infective form we have conducted a SILAC-based quantitative proteomic and phosphoproteomic analysis of T. brucei cells treated at 41 °C for 1h. Our analysis identified 193 heat shock responsive phosphorylation sites with an average of 5-fold change in abundance, but only 20 heat shock responsive proteins with average of 1.5-fold change. These data indicate that protein abundance does not rapidly respond (≤1 h) to heat shock, and that the changes observed in phosphorylation site abundance are larger and more widespread. The heat shock responsive phosphorylation sites showed enrichment of RNA binding proteins with putative roles in heat shock response included P-body / stress granules and the eukaryotic translation initiation 4F complex. The ZC3H11-MKT1 complex, which stabilises mRNAs of thermotolerance proteins, appears to represent a key signal integration node in the heat shock response. SIGNIFICANCE: We report the first quantitative study of changes in protein and phosphorylation site abundance in response to heat shock in the clinically relevant form of the human parasite Trypanosoma brucei. The identification of heat shock responsive phosphorylation sites on proteins with putative roles in thermotolerance including the ZC3H11-MKT1 complex provides evidence of the role dynamic phosphorylation of RNA binding proteins in co-ordinating heat shock. Temperature changes in the host are a major physiological challenge to parasites and factors conferring tolerance to heat shock constitute overlooked virulence factors. A better understanding of these virulence factors will pave the way for the development of novel drug therapies which selectively target T. brucei.
Collapse
Affiliation(s)
- Cher P Ooi
- Department of Life Sciences, Sir Alexander Fleming Building, Imperial College London, South Kensington, London SW7 2AZ, UK.
| | - Corinna Benz
- Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster LA1 4YG, UK
| | - Michael D Urbaniak
- Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster LA1 4YG, UK.
| |
Collapse
|
21
|
Katikaridis P, Meins L, Kamal SM, Römling U, Mogk A. ClpG Provides Increased Heat Resistance by Acting as Superior Disaggregase. Biomolecules 2019; 9:biom9120815. [PMID: 31810333 PMCID: PMC6995612 DOI: 10.3390/biom9120815] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 11/27/2019] [Accepted: 11/28/2019] [Indexed: 12/21/2022] Open
Abstract
Elevation of temperature within and above the physiological limit causes the unfolding and aggregation of cellular proteins, which can ultimately lead to cell death. Bacteria are therefore equipped with Hsp100 disaggregation machines that revert the aggregation process and reactivate proteins otherwise lost by aggregation. In Gram-negative bacteria, two disaggregation systems have been described: the widespread ClpB disaggregase, which requires cooperation with an Hsp70 chaperone, and the standalone ClpG disaggregase. ClpG co-exists with ClpB in selected bacteria and provides superior heat resistance. Here, we compared the activities of both disaggregases towards diverse model substrates aggregated in vitro and in vivo at different temperatures. We show that ClpG exhibits robust activity towards all disordered aggregates, whereas ClpB acts poorly on the protein aggregates formed at very high temperatures. Extreme temperatures are expected not only to cause extended protein unfolding, but also to result in an accelerated formation of protein aggregates with potentially altered chemical and physical parameters, including increased stability. We show that ClpG exerts higher threading forces as compared to ClpB, likely enabling ClpG to process “tight” aggregates formed during severe heat stress. This defines ClpG as a more powerful disaggregase and mechanistically explains how ClpG provides increased heat resistance.
Collapse
Affiliation(s)
- Panagiotis Katikaridis
- Center for Molecular Biology of the University of Heidelberg (ZMBH) and German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany; (P.K.); (L.M.)
| | - Lena Meins
- Center for Molecular Biology of the University of Heidelberg (ZMBH) and German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany; (P.K.); (L.M.)
| | - Shady Mansour Kamal
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, 17177 Stockholm, Sweden; (S.M.K.); (U.R.)
| | - Ute Römling
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, 17177 Stockholm, Sweden; (S.M.K.); (U.R.)
| | - Axel Mogk
- Center for Molecular Biology of the University of Heidelberg (ZMBH) and German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany; (P.K.); (L.M.)
- Correspondence: ; Tel.: +49-6221-546-863
| |
Collapse
|
22
|
Vamecq J, Papegay B, Nuyens V, Boogaerts J, Leo O, Kruys V. Mitochondrial dysfunction, AMPK activation and peroxisomal metabolism: A coherent scenario for non-canonical 3-methylglutaconic acidurias. Biochimie 2019; 168:53-82. [PMID: 31626852 DOI: 10.1016/j.biochi.2019.10.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 10/10/2019] [Indexed: 12/13/2022]
Abstract
The occurrence of 3-methylglutaconic aciduria (3-MGA) is a well understood phenomenon in leucine oxidation and ketogenesis disorders (primary 3-MGAs). In contrast, its genesis in non-canonical (secondary) 3-MGAs, a growing-up group of disorders encompassing more than a dozen of inherited metabolic diseases, is a mystery still remaining unresolved for three decades. To puzzle out this anthologic problem of metabolism, three clues were considered: (i) the variety of disorders suggests a common cellular target at the cross-road of metabolic and signaling pathways, (ii) the response to leucine loading test only discriminative for primary but not secondary 3-MGAs suggests these latter are disorders of extramitochondrial HMG-CoA metabolism as also attested by their failure to increase 3-hydroxyisovalerate, a mitochondrial metabolite accumulating only in primary 3-MGAs, (iii) the peroxisome is an extramitochondrial site possessing its own pool and displaying metabolism of HMG-CoA, suggesting its possible involvement in producing extramitochondrial 3-methylglutaconate (3-MG). Following these clues provides a unifying common basis to non-canonical 3-MGAs: constitutive mitochondrial dysfunction induces AMPK activation which, by inhibiting early steps in cholesterol and fatty acid syntheses, pipelines cytoplasmic acetyl-CoA to peroxisomes where a rise in HMG-CoA followed by local dehydration and hydrolysis may lead to 3-MGA yield. Additional contributors are considered, notably for 3-MGAs associated with hyperammonemia, and to a lesser extent in CLPB deficiency. Metabolic and signaling itineraries followed by the proposed scenario are essentially sketched, being provided with compelling evidence from the literature coming in their support.
Collapse
Affiliation(s)
- Joseph Vamecq
- Inserm, CHU Lille, Univ Lille, Department of Biochemistry and Molecular Biology, Laboratory of Hormonology, Metabolism-Nutrition & Oncology (HMNO), Center of Biology and Pathology (CBP) Pierre-Marie Degand, CHRU Lille, EA 7364 RADEME, University of North France, Lille, France.
| | - Bérengère Papegay
- Laboratory of Experimental Medicine (ULB unit 222), University Hospital Center, Charleroi, (CHU Charleroi), Belgium
| | - Vincent Nuyens
- Laboratory of Experimental Medicine (ULB unit 222), University Hospital Center, Charleroi, (CHU Charleroi), Belgium
| | - Jean Boogaerts
- Laboratory of Experimental Medicine (ULB unit 222), University Hospital Center, Charleroi, (CHU Charleroi), Belgium
| | - Oberdan Leo
- Laboratory of Immunobiology, Department of Molecular Biology, ULB Immunology Research Center (UIRC), Free University of Brussels (ULB), Gosselies, Belgium
| | - Véronique Kruys
- Laboratory of Molecular Biology of the Gene, Department of Molecular Biology, ULB Immunology Research Center (UIRC), Free University of Brussels (ULB), Gosselies, Belgium
| |
Collapse
|
23
|
Shorter J, Southworth DR. Spiraling in Control: Structures and Mechanisms of the Hsp104 Disaggregase. Cold Spring Harb Perspect Biol 2019; 11:cshperspect.a034033. [PMID: 30745294 DOI: 10.1101/cshperspect.a034033] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Hsp104 is a hexameric AAA+ ATPase and protein disaggregase found in yeast, which couples ATP hydrolysis to the dissolution of diverse polypeptides trapped in toxic preamyloid oligomers, phase-transitioned gels, disordered aggregates, amyloids, and prions. Hsp104 shows plasticity in disaggregating diverse substrates, but how its hexameric architecture operates as a molecular machine has remained unclear. Here, we highlight structural advances made via cryoelectron microscopy (cryo-EM) that enhance our mechanistic understanding of Hsp104 and other related AAA+ translocases. Hsp104 hexamers are dynamic and adopt open "lock-washer" spiral states and closed ring structures that envelope polypeptide substrate inside the axial channel. ATP hydrolysis-driven conformational changes at the spiral seam ratchet substrate deeper into the channel. Remarkably, this mode of polypeptide translocation is reminiscent of models for how hexameric helicases unwind DNA and RNA duplexes. Thus, Hsp104 likely adapts elements of a deeply rooted, ring-translocase mechanism to the specialized task of protein disaggregation.
Collapse
Affiliation(s)
- James Shorter
- Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Daniel R Southworth
- Department of Biochemistry and Biophysics; and the Institute for Neurodegenerative Diseases, University of California San Francisco, San Francisco, California 94158
| |
Collapse
|
24
|
Three J-proteins impact Hsp104-mediated variant-specific prion elimination: a new critical role for a low-complexity domain. Curr Genet 2019; 66:51-58. [PMID: 31230108 PMCID: PMC6925661 DOI: 10.1007/s00294-019-01006-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 06/12/2019] [Accepted: 06/13/2019] [Indexed: 12/13/2022]
Abstract
Prions are self-propagating protein isoforms that are typically amyloid. In Saccharomyces cerevisiae, amyloid prion aggregates are fragmented by a trio involving three classes of chaperone proteins: Hsp40s, also known as J-proteins, Hsp70s, and Hsp104. Hsp104, the sole Hsp100-class disaggregase in yeast, along with the Hsp70 Ssa and the J-protein Sis1, is required for the propagation of all known amyloid yeast prions. However, when Hsp104 is ectopically overexpressed, only the prion [PSI+] is efficiently eliminated from cell populations via a highly debated mechanism that also requires Sis1. Recently, we reported roles for two additional J-proteins, Apj1 and Ydj1, in this process. Deletion of Apj1, a J-protein involved in the degradation of sumoylated proteins, partially blocks Hsp104-mediated [PSI+] elimination. Apj1 and Sis1 were found to have overlapping functions, as overexpression of one compensates for loss of function of the other. In addition, overexpression of Ydj1, the most abundant J-protein in the yeast cytosol, completely blocks Hsp104-mediated curing. Yeast prions exhibit structural polymorphisms known as “variants”; most intriguingly, these J-protein effects were only observed for strong variants, suggesting variant-specific mechanisms. Here, we review these results and present new data resolving the domains of Apj1 responsible, specifically implicating the involvement of Apj1’s Q/S-rich low-complexity domain.
Collapse
|
25
|
Deville C, Franke K, Mogk A, Bukau B, Saibil HR. Two-Step Activation Mechanism of the ClpB Disaggregase for Sequential Substrate Threading by the Main ATPase Motor. Cell Rep 2019; 27:3433-3446.e4. [PMID: 31216466 PMCID: PMC6593972 DOI: 10.1016/j.celrep.2019.05.075] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 04/26/2019] [Accepted: 05/20/2019] [Indexed: 11/20/2022] Open
Abstract
AAA+ proteins form asymmetric hexameric rings that hydrolyze ATP and thread substrate proteins through a central channel via mobile substrate-binding pore loops. Understanding how ATPase and threading activities are regulated and intertwined is key to understanding the AAA+ protein mechanism. We studied the disaggregase ClpB, which contains tandem ATPase domains (AAA1, AAA2) and shifts between low and high ATPase and threading activities. Coiled-coil M-domains repress ClpB activity by encircling the AAA1 ring. Here, we determine the mechanism of ClpB activation by comparing ATPase mechanisms and cryo-EM structures of ClpB wild-type and a constitutively active ClpB M-domain mutant. We show that ClpB activation reduces ATPase cooperativity and induces a sequential mode of ATP hydrolysis in the AAA2 ring, the main ATPase motor. AAA1 and AAA2 rings do not work synchronously but in alternating cycles. This ensures high grip, enabling substrate threading via a processive, rope-climbing mechanism.
Collapse
Affiliation(s)
- Célia Deville
- Department of Crystallography, Institute of Structural and Molecular Biology, Birkbeck, University of London, Malet Street, London WC1E 7HX, UK
| | - Kamila Franke
- Center for Molecular Biology of University of Heidelberg (ZMBH) and German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, Im Neuenheimer Feld 282, 69120 Heidelberg, Germany
| | - Axel Mogk
- Center for Molecular Biology of University of Heidelberg (ZMBH) and German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, Im Neuenheimer Feld 282, 69120 Heidelberg, Germany.
| | - Bernd Bukau
- Center for Molecular Biology of University of Heidelberg (ZMBH) and German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, Im Neuenheimer Feld 282, 69120 Heidelberg, Germany.
| | - Helen R Saibil
- Department of Crystallography, Institute of Structural and Molecular Biology, Birkbeck, University of London, Malet Street, London WC1E 7HX, UK.
| |
Collapse
|
26
|
Chaari A. Molecular chaperones biochemistry and role in neurodegenerative diseases. Int J Biol Macromol 2019; 131:396-411. [DOI: 10.1016/j.ijbiomac.2019.02.148] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 02/25/2019] [Accepted: 02/25/2019] [Indexed: 02/07/2023]
|
27
|
Durie CL, Lin J, Scull NW, Mack KL, Jackrel ME, Sweeny EA, Castellano LM, Shorter J, Lucius AL. Hsp104 and Potentiated Variants Can Operate as Distinct Nonprocessive Translocases. Biophys J 2019; 116:1856-1872. [PMID: 31027887 DOI: 10.1016/j.bpj.2019.03.035] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 03/14/2019] [Accepted: 03/25/2019] [Indexed: 01/09/2023] Open
Abstract
Heat shock protein (Hsp) 104 is a hexameric ATPases associated with diverse cellular activities motor protein that enables cells to survive extreme stress. Hsp104 couples the energy of ATP binding and hydrolysis to solubilize proteins trapped in aggregated structures. The mechanism by which Hsp104 disaggregates proteins is not completely understood but may require Hsp104 to partially or completely translocate polypeptides across its central channel. Here, we apply transient state, single turnover kinetics to investigate the ATP-dependent translocation of soluble polypeptides by Hsp104 and Hsp104A503S, a potentiated variant developed to resolve misfolded conformers implicated in neurodegenerative disease. We establish that Hsp104 and Hsp104A503S can operate as nonprocessive translocases for soluble substrates, indicating a "partial threading" model of translocation. Remarkably, Hsp104A503S exhibits altered coupling of ATP binding to translocation and decelerated dissociation from polypeptide substrate compared to Hsp104. This altered coupling and prolonged substrate interaction likely increases entropic pulling forces, thereby enabling more effective aggregate dissolution by Hsp104A503S.
Collapse
Affiliation(s)
- Clarissa L Durie
- University of Alabama at Birmingham, Chemistry Department, Birmingham, Alabama
| | - JiaBei Lin
- Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Nathaniel W Scull
- University of Alabama at Birmingham, Chemistry Department, Birmingham, Alabama
| | - Korrie L Mack
- Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Meredith E Jackrel
- Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Elizabeth A Sweeny
- Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Laura M Castellano
- Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - James Shorter
- Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Aaron L Lucius
- University of Alabama at Birmingham, Chemistry Department, Birmingham, Alabama.
| |
Collapse
|
28
|
Tariq A, Lin J, Noll MM, Torrente MP, Mack KL, Murillo OH, Jackrel ME, Shorter J. Potentiating Hsp104 activity via phosphomimetic mutations in the middle domain. FEMS Yeast Res 2019; 18:4969683. [PMID: 29788207 DOI: 10.1093/femsyr/foy042] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 04/10/2018] [Indexed: 12/13/2022] Open
Abstract
Hsp104 is a hexameric AAA + ATPase and protein disaggregase found in yeast, which can be potentiated via mutations in its middle domain (MD) to counter toxic phase separation by TDP-43, FUS and α-synuclein connected to devastating neurodegenerative disorders. Subtle missense mutations in the Hsp104 MD can enhance activity, indicating that post-translational modification of specific MD residues might also potentiate Hsp104. Indeed, several serine and threonine residues throughout Hsp104 can be phosphorylated in vivo. Here, we introduce phosphomimetic aspartate or glutamate residues at these positions and assess Hsp104 activity. Remarkably, phosphomimetic T499D/E and S535D/E mutations in the MD enable Hsp104 to counter TDP-43, FUS and α-synuclein aggregation and toxicity in yeast, whereas T499A/V/I and S535A do not. Moreover, Hsp104T499E and Hsp104S535E exhibit enhanced ATPase activity and Hsp70-independent disaggregase activity in vitro. We suggest that phosphorylation of T499 or S535 may elicit enhanced Hsp104 disaggregase activity in a reversible and regulated manner.
Collapse
Affiliation(s)
| | - JiaBei Lin
- Department of Biochemistry and Biophysics
| | | | | | - Korrie L Mack
- Department of Biochemistry and Biophysics
- Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | |
Collapse
|
29
|
Stress-induced protein aggregates shape population heterogeneity in bacteria. Curr Genet 2019; 65:865-869. [PMID: 30820637 DOI: 10.1007/s00294-019-00947-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 02/18/2019] [Accepted: 02/20/2019] [Indexed: 02/07/2023]
Abstract
The concept of phenotypic heterogeneity preparing a subpopulation of isogenic cells to better cope with anticipated stresses has been well established. However, less is known about how stress itself can drive subsequent cellular individualization in clonal populations. In this perspective, we focus on the impact of stress-induced cellular protein aggregates, and how their segregation and disaggregation can act as a deterministic incentive for heterogeneity in the population emerging from a stressed ancestor.
Collapse
|
30
|
Yu CI, King CY. Forms and abundance of chaperone proteins influence yeast prion variant competition. Mol Microbiol 2019; 111:798-810. [PMID: 30582872 DOI: 10.1111/mmi.14192] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/18/2018] [Indexed: 02/01/2023]
Abstract
[PSI+ ] variants are different infectious conformations of the same Sup35 protein. We show that when [PSI+ ] variants VK and VL co-infect a dividing host, only one prevails in the end and the host genetic background is involved in winner selection. In the 5V-H19 background, the VK variant dominates over the VL variant. The order of dominance is reversed in the 74-D694 background, where VL can coexists with VK for a short period, but will eventually take over. Differential interaction of chaperone proteins with distinct prion variant conformations can influence the outcome of competition. Expanding the Glycine/Methionine-rich domain of Sis1, an Hsp40 protein, helps the propagation of VL. Over-expression of the Hsp70 protein Ssa2 lowers the number of prion particles (propagons) in the cell. There is more reduction for VK than VL, causing the latter to dominate in some of the 5V-H19 and all of the 74-D694 cells tested. Consistently, depleting Ssa1 in 74-D694 strengthens VK. Swapping chromosomal alleles of SSA1/2 and SIS1 between 5V-H19 and 74-D694, including cognate promoters, is not sufficient to change the native dominance order of each background, suggesting there exist additional polymorphic factors that modulate [PSI+ ] competition.
Collapse
Affiliation(s)
- Chang-I Yu
- Institute of Molecular Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Chih-Yen King
- Institute of Molecular Biology, Academia Sinica, Taipei, 11529, Taiwan
| |
Collapse
|
31
|
Cellular Handling of Protein Aggregates by Disaggregation Machines. Mol Cell 2019; 69:214-226. [PMID: 29351843 DOI: 10.1016/j.molcel.2018.01.004] [Citation(s) in RCA: 237] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 12/15/2017] [Accepted: 01/02/2018] [Indexed: 11/20/2022]
Abstract
Both acute proteotoxic stresses that unfold proteins and expression of disease-causing mutant proteins that expose aggregation-prone regions can promote protein aggregation. Protein aggregates can interfere with cellular processes and deplete factors crucial for protein homeostasis. To cope with these challenges, cells are equipped with diverse folding and degradation activities to rescue or eliminate aggregated proteins. Here, we review the different chaperone disaggregation machines and their mechanisms of action. In all these machines, the coating of protein aggregates by Hsp70 chaperones represents the conserved, initializing step. In bacteria, fungi, and plants, Hsp70 recruits and activates Hsp100 disaggregases to extract aggregated proteins. In the cytosol of metazoa, Hsp70 is empowered by a specific cast of J-protein and Hsp110 co-chaperones allowing for standalone disaggregation activity. Both types of disaggregation machines are supported by small Hsps that sequester misfolded proteins.
Collapse
|
32
|
Nikoofard N, Mashaghi A. Implications of Molecular Topology for Nanoscale Mechanical Unfolding. J Phys Chem B 2018; 122:9703-9712. [PMID: 30351148 DOI: 10.1021/acs.jpcb.8b09454] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Biopolymer unfolding events are ubiquitous in biology and mechanical unfolding is an established approach to study the structure and function of biomolecules, yet whether and how mechanical unfolding processes depend on native state topology remain unexplored. Here, we investigate how the number of unfolding pathways via mechanical methods depends on the circuit topology of a folded chain, which categorizes the arrangement of intrachain contacts into parallel, crossing, and series. Three unfolding strategies, namely, threading through a pore, pulling from the ends, and pulling by threading, are compared. Considering that some contacts may be unbreakable within the relevant forces, we also study the dependence of the unfolding efficiency on the chain topology. Our analysis reveals that the number of pathways and the efficiency of unfolding are critically determined by topology in a manner that depends on the employed mechanical approach, a significant result for interpretation of the unfolding experiments.
Collapse
Affiliation(s)
- Narges Nikoofard
- Institute of Nanoscience and Nanotechnology , University of Kashan , Kashan 51167-87317 , Iran
| | - Alireza Mashaghi
- Leiden Academic Centre for Drug Research, Faculty of Science , Leiden University , Leiden 2333 CC , The Netherlands
| |
Collapse
|
33
|
Tripathi P, Parijat P, Patel VK, Batra JK. The amino-terminal domain of Mycobacterium tuberculosis ClpB protein plays a crucial role in its substrate disaggregation activity. FEBS Open Bio 2018; 8:1669-1690. [PMID: 30338218 PMCID: PMC6168691 DOI: 10.1002/2211-5463.12509] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 08/03/2018] [Accepted: 08/08/2018] [Indexed: 01/09/2023] Open
Abstract
Mycobacterium tuberculosis (Mtb) is known to persist in extremely hostile environments within host macrophages. The ability to withstand such proteotoxic stress comes from its highly conserved molecular chaperone machinery. ClpB, a unique member of the AAA+ family of chaperones, is responsible for resolving aggregates in Mtb and many other bacterial pathogens. Mtb produces two isoforms of ClpB, a full length and an N-terminally truncated form (ClpB∆N), with the latter arising from an internal translation initiation site. It is not clear why this internal start site is conserved and what role the N-terminal domain (NTD) of Mtb ClpB plays in its function. In the current study, we functionally characterized and compared the two isoforms of Mtb ClpB. We found the NTD to be dispensable for oligomerization, ATPase activity and prevention of aggregation activity of ClpB. Both ClpB and ClpB∆N were found to be capable of resolubilizing protein aggregates. However, the efficiency of ClpB∆N at resolubilizing higher order aggregates was significantly lower than that of ClpB. Further, ClpB∆N exhibited reduced affinity for substrates as compared to ClpB. We also demonstrated that the surface of the NTD of Mtb ClpB has a hydrophobic groove that contains four hydrophobic residues: L97, L101, F140 and V141. These residues act as initial contacts for the substrate and are crucial for stable interaction between ClpB and highly aggregated substrates.
Collapse
Affiliation(s)
| | - Priyanka Parijat
- National Institute of ImmunologyNew DelhiIndia
- Present address:
Randall Division of Cell and Molecular BiophysicsKing's College LondonUK
| | | | - Janendra K. Batra
- National Institute of ImmunologyNew DelhiIndia
- Department of BiochemistrySchool of Chemical and Life SciencesJamia HamdardNew DelhiIndia
| |
Collapse
|
34
|
Cotranslational assembly of protein complexes in eukaryotes revealed by ribosome profiling. Nature 2018; 561:268-272. [PMID: 30158700 PMCID: PMC6372068 DOI: 10.1038/s41586-018-0462-y] [Citation(s) in RCA: 205] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Accepted: 08/02/2018] [Indexed: 02/07/2023]
Abstract
The folding of newly synthesized proteins to the native state is a major
challenge within the crowded cellular environment, as non-productive
interactions can lead to misfolding, aggregation and degradation1. Cells cope with this challenge by
coupling synthesis with polypeptide folding and by using molecular chaperones to
safeguard folding cotranslationally2.
However, although most of the cellular proteome forms oligomeric assemblies3, little is known about the final step of
folding: the assembly of polypeptides into complexes. In prokaryotes, a
proof-of-concept study showed that the assembly of heterodimeric luciferase is
an organized cotranslational process that is facilitated by spatially confined
translation of the subunits encoded on a polycistronic mRNA4. In eukaryotes, however, fundamental
differences—such as the rarity of polycistronic mRNAs and different
chaperone constellations—raise the question of whether assembly is also
coordinated with translation. Here we provide a systematic and mechanistic
analysis of the assembly of protein complexes in eukaryotes using ribosome
profiling. We determined the in vivo interactions of the
nascent subunits from twelve hetero-oligomeric protein complexes of
Saccharomyces cerevisiae at near-residue resolution. We
find nine complexes assemble cotranslationally; the three complexes that do not
show cotranslational interactions are regulated by dedicated assembly
chaperones5–7. Cotranslational assembly often occurs
uni-directionally, with one fully synthesized subunit engaging its nascent
partner subunit, thereby counteracting its propensity for aggregation. The onset
of cotranslational subunit association coincides directly with the full exposure
of the nascent interaction domain at the ribosomal tunnel exit. The
ribosome-associated Hsp70 chaperone Ssb8
is coordinated with assembly. Ssb transiently engages partially synthesized
interaction domains and then dissociates before the onset of partner subunit
association, presumably to prevent premature assembly interactions. Our study
shows that cotranslational subunit association is a prevalent mechanism for the
assembly of hetero-oligomers in yeast and indicates that translation, folding
and assembly of protein complexes are integrated processes in eukaryotes.
Collapse
|
35
|
Ranaweera CB, Glaza P, Yang T, Zolkiewski M. Interaction of substrate-mimicking peptides with the AAA+ ATPase ClpB from Escherichia coli. Arch Biochem Biophys 2018; 655:12-17. [PMID: 30092228 DOI: 10.1016/j.abb.2018.08.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 08/02/2018] [Accepted: 08/04/2018] [Indexed: 11/28/2022]
Abstract
A molecular chaperone ClpB disaggregates and reactivates aggregated proteins in cooperation with DnaK, DnaJ, and GrpE. Within a cellular environment, ClpB must distinguish between properly folded and aggregated proteins by recognizing specific physical and/or chemical surface properties of the aggregates. However, the molecular mechanism of substrate binding to ClpB is poorly understood. We hypothesized that ClpB recognizes those polypeptide segments that promote protein aggregation because they are likely present at the surface of growing aggregates. We used an algorithm TANGO (Fernandez-Escamilla et al., Nat. Biotech. 2004, 22, 1302) to predict the aggregation-prone segments within the model ClpB-binding peptides and investigated interactions of the FITC-labeled peptides with ClpB using fluorescence anisotropy. We found that ClpB binds the substrate-mimicking peptides with positive cooperativity, which is consistent with an allosteric linkage between substrate binding and ClpB oligomerization. The apparent affinity towards ClpB for peptides displaying different predicted aggregation propensities correlates with the peptide length. However, discrete aggregation-prone segments within the peptides are neither sufficient nor necessary for efficient interaction with ClpB. Our results suggest that the substrate recognition mechanism of ClpB may rely on global surface properties of aggregated proteins rather than on local sequence motifs.
Collapse
Affiliation(s)
- Chathurange B Ranaweera
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS, 66506, USA
| | - Przemyslaw Glaza
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS, 66506, USA
| | - Taihao Yang
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS, 66506, USA
| | - Michal Zolkiewski
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS, 66506, USA.
| |
Collapse
|
36
|
Durie CL, Duran EC, Lucius AL. Escherichia coli DnaK Allosterically Modulates ClpB between High- and Low-Peptide Affinity States. Biochemistry 2018; 57:3665-3675. [PMID: 29812913 DOI: 10.1021/acs.biochem.8b00045] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
ClpB and DnaKJE provide protection to Escherichia coli cells during extreme environmental stress. Together, this co-chaperone system can resolve protein aggregates, restoring misfolded proteins to their native form and function in solubilizing damaged proteins for removal by the cell's proteolytic systems. DnaK is the component of the KJE system that directly interacts with ClpB. There are many hypotheses for how DnaK affects ClpB-catalyzed disaggregation, each with some experimental support. Here, we build on our recent work characterizing the molecular mechanism of ClpB-catalyzed polypeptide translocation by developing a stopped-flow FRET assay that allows us to detect ClpB's movement on model polypeptide substrates in the absence or presence of DnaK. We find that DnaK induces ClpB to dissociate from the polypeptide substrate. We propose that DnaK acts as a peptide release factor, binding ClpB and causing the ClpB conformation to change to a low-peptide affinity state. Such a role for DnaK would allow ClpB to rebind to another portion of an aggregate and continue nonprocessive translocation to disrupt the aggregate.
Collapse
Affiliation(s)
- Clarissa L Durie
- Department of Chemistry , University of Alabama at Birmingham , Birmingham , Alabama 35294-1240 , United States
| | - Elizabeth C Duran
- Department of Chemistry , University of Alabama at Birmingham , Birmingham , Alabama 35294-1240 , United States
| | - Aaron L Lucius
- Department of Chemistry , University of Alabama at Birmingham , Birmingham , Alabama 35294-1240 , United States
| |
Collapse
|
37
|
Uchihashi T, Watanabe YH, Nakazaki Y, Yamasaki T, Watanabe H, Maruno T, Ishii K, Uchiyama S, Song C, Murata K, Iino R, Ando T. Dynamic structural states of ClpB involved in its disaggregation function. Nat Commun 2018; 9:2147. [PMID: 29858573 PMCID: PMC5984625 DOI: 10.1038/s41467-018-04587-w] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 05/09/2018] [Indexed: 11/09/2022] Open
Abstract
The ATP-dependent bacterial protein disaggregation machine, ClpB belonging to the AAA+ superfamily, refolds toxic protein aggregates into the native state in cooperation with the cognate Hsp70 partner. The ring-shaped hexamers of ClpB unfold and thread its protein substrate through the central pore. However, their function-related structural dynamics has remained elusive. Here we directly visualize ClpB using high-speed atomic force microscopy (HS-AFM) to gain a mechanistic insight into its disaggregation function. The HS-AFM movies demonstrate massive conformational changes of the hexameric ring during ATP hydrolysis, from a round ring to a spiral and even to a pair of twisted half-spirals. HS-AFM observations of Walker-motif mutants unveil crucial roles of ATP binding and hydrolysis in the oligomer formation and structural dynamics. Furthermore, repressed and hyperactive mutations result in significantly different oligomeric forms. These results provide a comprehensive view for the ATP-driven oligomeric-state transitions that enable ClpB to disentangle protein aggregates. The bacterial protein disaggregation machine ClpB uses ATP to generate mechanical force to unfold and thread its protein substrates. Here authors visualize the ClpB ring using high-speed atomic force microscopy and capture conformational changes of the hexameric ring during the ATPase reaction.
Collapse
Affiliation(s)
- Takayuki Uchihashi
- Department of Physics and Structural Biology Research Center, Nagoya University, Chikusa-ku, Nagoya, 464-8602, Japan
| | - Yo-Hei Watanabe
- Department of Biology, Faculty of Science and Engineering, Konan University, Okamoto 8-9-1, Kobe, 658-8501, Japan. .,Institute for Integrative Neurobiology, Konan University, Okamoto 8-9-1, Kobe, 658-8501, Japan.
| | - Yosuke Nakazaki
- Department of Biology, Faculty of Science and Engineering, Konan University, Okamoto 8-9-1, Kobe, 658-8501, Japan.,Institute for Integrative Neurobiology, Konan University, Okamoto 8-9-1, Kobe, 658-8501, Japan
| | - Takashi Yamasaki
- Department of Biology, Faculty of Science and Engineering, Konan University, Okamoto 8-9-1, Kobe, 658-8501, Japan.,Institute for Integrative Neurobiology, Konan University, Okamoto 8-9-1, Kobe, 658-8501, Japan
| | - Hiroki Watanabe
- Department of Physics, College of Science and Engineering, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Takahiro Maruno
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Osaka, 565-0871, Japan
| | - Kentaro Ishii
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, Aichi, 444-8787, Japan
| | - Susumu Uchiyama
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Osaka, 565-0871, Japan.,Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, Aichi, 444-8787, Japan
| | - Chihong Song
- National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Aichi, 444-8787, Japan
| | - Kazuyoshi Murata
- National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Aichi, 444-8787, Japan
| | - Ryota Iino
- Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki, Aichi, 444-8787, Japan. .,Department of Functional Molecular Science, School of Physical Sciences, The Graduate University for Advanced Studies (SOKENDAI), Hayama, Kanagawa, 240-0193, Japan.
| | - Toshio Ando
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, 920-1192, Japan.
| |
Collapse
|
38
|
Johnston CL, Marzano NR, van Oijen AM, Ecroyd H. Using Single-Molecule Approaches to Understand the Molecular Mechanisms of Heat-Shock Protein Chaperone Function. J Mol Biol 2018; 430:4525-4546. [PMID: 29787765 DOI: 10.1016/j.jmb.2018.05.021] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 05/11/2018] [Accepted: 05/13/2018] [Indexed: 02/01/2023]
Abstract
The heat-shock proteins (Hsp) are a family of molecular chaperones, which collectively form a network that is critical for the maintenance of protein homeostasis. Traditional ensemble-based measurements have provided a wealth of knowledge on the function of individual Hsps and the Hsp network; however, such techniques are limited in their ability to resolve the heterogeneous, dynamic and transient interactions that molecular chaperones make with their client proteins. Single-molecule techniques have emerged as a powerful tool to study dynamic biological systems, as they enable rare and transient populations to be identified that would usually be masked in ensemble measurements. Thus, single-molecule techniques are particularly amenable for the study of Hsps and have begun to be used to reveal novel mechanistic details of their function. In this review, we discuss the current understanding of the chaperone action of Hsps and how gaps in the field can be addressed using single-molecule methods. Specifically, this review focuses on the ATP-independent small Hsps and the broader Hsp network and describes how these dynamic systems are amenable to single-molecule techniques.
Collapse
Affiliation(s)
- Caitlin L Johnston
- School of Biological Sciences, University of Wollongong, Wollongong, New South Wales 2522, Australia; Illawarra Health and Medical Research Institute, Wollongong, NSW, 2522, Australia
| | - Nicholas R Marzano
- School of Biological Sciences, University of Wollongong, Wollongong, New South Wales 2522, Australia; Illawarra Health and Medical Research Institute, Wollongong, NSW, 2522, Australia
| | - Antoine M van Oijen
- School of Chemistry, University of Wollongong, Wollongong, New South Wales 2522, Australia; Illawarra Health and Medical Research Institute, Wollongong, NSW, 2522, Australia.
| | - Heath Ecroyd
- School of Biological Sciences, University of Wollongong, Wollongong, New South Wales 2522, Australia; Illawarra Health and Medical Research Institute, Wollongong, NSW, 2522, Australia.
| |
Collapse
|
39
|
Astor MT, Kamiya E, Sporn ZA, Berger SE, Hines JK. Variant-specific and reciprocal Hsp40 functions in Hsp104-mediated prion elimination. Mol Microbiol 2018; 109:41-62. [PMID: 29633387 PMCID: PMC6099457 DOI: 10.1111/mmi.13966] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/04/2018] [Indexed: 01/02/2023]
Abstract
The amyloid-based prions of Saccharomyces cerevisiae are heritable aggregates of misfolded proteins, passed to daughter cells following fragmentation by molecular chaperones including the J-protein Sis1, Hsp70 and Hsp104. Overexpression of Hsp104 efficiently cures cell populations of the prion [PSI+ ] by an alternative Sis1-dependent mechanism that is currently the subject of significant debate. Here, we broadly investigate the role of J-proteins in this process by determining the impact of amyloid polymorphisms (prion variants) on the ability of well-studied Sis1 constructs to compensate for Sis1 and ask whether any other S. cerevisiae cytosolic J-proteins are also required for this process. Our comprehensive screen, examining all 13 members of the yeast cytosolic/nuclear J-protein complement, uncovered significant variant-dependent genetic evidence for a role of Apj1 (antiprion DnaJ) in this process. For strong, but not weak [PSI+ ] variants, depletion of Apj1 inhibits Hsp104-mediated curing. Overexpression of either Apj1 or Sis1 enhances curing, while overexpression of Ydj1 completely blocks it. We also demonstrated that Sis1 was the only J-protein necessary for the propagation of at least two weak [PSI+ ] variants and no J-protein alteration, or even combination of alterations, affected the curing of weak [PSI+ ] variants, suggesting the possibility of biochemically distinct, variant-specific Hsp104-mediated curing mechanisms.
Collapse
Affiliation(s)
| | - Erina Kamiya
- Department of ChemistryLafayette CollegeEastonPAUSA
| | - Zachary A. Sporn
- Department of ChemistryLafayette CollegeEastonPAUSA
- Present address:
Geisinger Commonwealth School of MedicineScrantonPAUSA
| | | | | |
Collapse
|
40
|
Protein aggregation: From background to inhibition strategies. Int J Biol Macromol 2017; 103:208-219. [DOI: 10.1016/j.ijbiomac.2017.05.048] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 05/11/2017] [Accepted: 05/12/2017] [Indexed: 01/01/2023]
|
41
|
Fusion protein analysis reveals the precise regulation between Hsp70 and Hsp100 during protein disaggregation. Sci Rep 2017; 7:8648. [PMID: 28819163 PMCID: PMC5561102 DOI: 10.1038/s41598-017-08917-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 07/13/2017] [Indexed: 12/19/2022] Open
Abstract
ClpB, a bacterial Hsp100, is a ring-shaped AAA+ chaperone that can reactivate aggregated proteins in cooperation with DnaK, a bacterial Hsp70, and its co-factors. ClpB subunits comprise two AAA+ modules with an interstitial rod-shaped M-domain. The M-domain regulates ClpB ATPase activity and interacts directly with the DnaK nucleotide-binding domain (NBD). Here, to clarify how these functions contribute to the disaggregation process, we constructed ClpB, DnaK, and aggregated YFP fusion proteins in various combinations. Notably, i) DnaK activates ClpB only when the DnaK substrate-binding domain (SBD) is in the closed conformation, affording high DnaK-peptide affinity; ii) although NBD alone can activate ClpB, SBD is required for disaggregation; and iii) tethering aggregated proteins to the activated ClpB obviates SBD requirements. These results indicate that DnaK activates ClpB only when the SBD tightly holds aggregated proteins adjacent to ClpB for effective disaggregation.
Collapse
|
42
|
Duran EC, Weaver CL, Lucius AL. Comparative Analysis of the Structure and Function of AAA+ Motors ClpA, ClpB, and Hsp104: Common Threads and Disparate Functions. Front Mol Biosci 2017; 4:54. [PMID: 28824920 PMCID: PMC5540906 DOI: 10.3389/fmolb.2017.00054] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 07/13/2017] [Indexed: 11/25/2022] Open
Abstract
Cellular proteostasis involves not only the expression of proteins in response to environmental needs, but also the timely repair or removal of damaged or unneeded proteins. AAA+ motor proteins are critically involved in these pathways. Here, we review the structure and function of AAA+ proteins ClpA, ClpB, and Hsp104. ClpB and Hsp104 rescue damaged proteins from toxic aggregates and do not partner with any protease. ClpA functions as the regulatory component of the ATP dependent protease complex ClpAP, and also remodels inactive RepA dimers into active monomers in the absence of the protease. Because ClpA functions both with and without a proteolytic component, it is an ideal system for developing strategies that address one of the major challenges in the study of protein remodeling machines: how do we observe a reaction in which the substrate protein does not undergo covalent modification? Here, we review experimental designs developed for the examination of polypeptide translocation catalyzed by the AAA+ motors in the absence of proteolytic degradation. We propose that transient state kinetic methods are essential for the examination of elementary kinetic mechanisms of these motor proteins. Furthermore, rigorous kinetic analysis must also account for the thermodynamic properties of these complicated systems that reside in a dynamic equilibrium of oligomeric states, including the biologically active hexamer.
Collapse
Affiliation(s)
- Elizabeth C Duran
- Department of Chemistry, University of Alabama at BirminghamBirmingham, AL, United States
| | - Clarissa L Weaver
- Department of Chemistry, University of Alabama at BirminghamBirmingham, AL, United States
| | - Aaron L Lucius
- Department of Chemistry, University of Alabama at BirminghamBirmingham, AL, United States
| |
Collapse
|
43
|
Deville C, Carroni M, Franke KB, Topf M, Bukau B, Mogk A, Saibil HR. Structural pathway of regulated substrate transfer and threading through an Hsp100 disaggregase. SCIENCE ADVANCES 2017; 3:e1701726. [PMID: 28798962 PMCID: PMC5544394 DOI: 10.1126/sciadv.1701726] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 07/05/2017] [Indexed: 05/03/2023]
Abstract
Refolding aggregated proteins is essential in combating cellular proteotoxic stress. Together with Hsp70, Hsp100 chaperones, including Escherichia coli ClpB, form a powerful disaggregation machine that threads aggregated polypeptides through the central pore of tandem adenosine triphosphatase (ATPase) rings. To visualize protein disaggregation, we determined cryo-electron microscopy structures of inactive and substrate-bound ClpB in the presence of adenosine 5'-O-(3-thiotriphosphate), revealing closed AAA+ rings with a pronounced seam. In the substrate-free state, a marked gradient of resolution, likely corresponding to mobility, spans across the AAA+ rings with a dynamic hotspot at the seam. On the seam side, the coiled-coil regulatory domains are locked in a horizontal, inactive orientation. On the opposite side, the regulatory domains are accessible for Hsp70 binding, substrate targeting, and activation. In the presence of the model substrate casein, the polypeptide threads through the entire pore channel and increased nucleotide occupancy correlates with higher ATPase activity. Substrate-induced domain displacements indicate a pathway of regulated substrate transfer from Hsp70 to the ClpB pore, inside which a spiral of loops contacts the substrate. The seam pore loops undergo marked displacements, along with ordering of the regulatory domains. These asymmetric movements suggest a mechanism for ATPase activation and substrate threading during disaggregation.
Collapse
Affiliation(s)
- Célia Deville
- Department of Crystallography, Institute of Structural and Molecular Biology, Birkbeck, University of London, Malet Street, London WC1E 7HX, UK
| | - Marta Carroni
- Department of Crystallography, Institute of Structural and Molecular Biology, Birkbeck, University of London, Malet Street, London WC1E 7HX, UK
| | - Kamila B. Franke
- Center for Molecular Biology of the Heidelberg University, German Cancer Research Center, Heidelberg, Germany
| | - Maya Topf
- Department of Crystallography, Institute of Structural and Molecular Biology, Birkbeck, University of London, Malet Street, London WC1E 7HX, UK
| | - Bernd Bukau
- Center for Molecular Biology of the Heidelberg University, German Cancer Research Center, Heidelberg, Germany
| | - Axel Mogk
- Center for Molecular Biology of the Heidelberg University, German Cancer Research Center, Heidelberg, Germany
| | - Helen R. Saibil
- Department of Crystallography, Institute of Structural and Molecular Biology, Birkbeck, University of London, Malet Street, London WC1E 7HX, UK
| |
Collapse
|
44
|
Elsholz AKW, Birk MS, Charpentier E, Turgay K. Functional Diversity of AAA+ Protease Complexes in Bacillus subtilis. Front Mol Biosci 2017; 4:44. [PMID: 28748186 PMCID: PMC5506225 DOI: 10.3389/fmolb.2017.00044] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 06/15/2017] [Indexed: 12/20/2022] Open
Abstract
Here, we review the diverse roles and functions of AAA+ protease complexes in protein homeostasis, control of stress response and cellular development pathways by regulatory and general proteolysis in the Gram-positive model organism Bacillus subtilis. We discuss in detail the intricate involvement of AAA+ protein complexes in controlling sporulation, the heat shock response and the role of adaptor proteins in these processes. The investigation of these protein complexes and their adaptor proteins has revealed their relevance for Gram-positive pathogens and their potential as targets for new antibiotics.
Collapse
Affiliation(s)
- Alexander K W Elsholz
- Department of Regulation in Infection Biology, Max Planck Institute for Infection BiologyBerlin, Germany
| | - Marlene S Birk
- Department of Regulation in Infection Biology, Max Planck Institute for Infection BiologyBerlin, Germany
| | - Emmanuelle Charpentier
- Department of Regulation in Infection Biology, Max Planck Institute for Infection BiologyBerlin, Germany.,The Laboratory for Molecular Infection Sweden, Department of Molecular Biology, Umeå Centre for Microbial Research, Umeå UniversityUmeå, Sweden.,Humboldt UniversityBerlin, Germany
| | - Kürşad Turgay
- Faculty of Natural Sciences, Institute of Microbiology, Leibniz UniversitätHannover, Germany
| |
Collapse
|
45
|
Huang C, Kalodimos CG. Structures of Large Protein Complexes Determined by Nuclear Magnetic Resonance Spectroscopy. Annu Rev Biophys 2017; 46:317-336. [DOI: 10.1146/annurev-biophys-070816-033701] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Chengdong Huang
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455
| | - Charalampos G. Kalodimos
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455
| |
Collapse
|
46
|
Mueller-Cajar O. The Diverse AAA+ Machines that Repair Inhibited Rubisco Active Sites. Front Mol Biosci 2017; 4:31. [PMID: 28580359 PMCID: PMC5437159 DOI: 10.3389/fmolb.2017.00031] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 04/29/2017] [Indexed: 11/13/2022] Open
Abstract
Gaseous carbon dioxide enters the biosphere almost exclusively via the active site of the enzyme ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco). This highly conserved catalyst has an almost universal propensity to non-productively interact with its substrate ribulose 1,5-bisphosphate, leading to the formation of dead-end inhibited complexes. In diverse autotrophic organisms this tendency has been counteracted by the recruitment of dedicated AAA+ (ATPases associated with various cellular activities) proteins that all use the energy of ATP hydrolysis to remodel inhibited Rubisco active sites leading to release of the inhibitor. Three evolutionarily distinct classes of these Rubisco activases (Rcas) have been discovered so far. Green and red-type Rca are mostly found in photosynthetic eukaryotes of the green and red plastid lineage respectively, whereas CbbQO is associated with chemoautotrophic bacteria. Ongoing mechanistic studies are elucidating how the various motors are utilizing both similar and contrasting strategies to ultimately perform their common function of cracking the inhibited Rubisco active site. The best studied mechanism utilized by red-type Rca appears to involve transient threading of the Rubisco large subunit C-terminal peptide, reminiscent of the action performed by Clp proteases. As well as providing a fascinating example of convergent molecular evolution, Rca proteins can be considered promising crop-improvement targets. Approaches aiming to replace Rubisco in plants with improved enzymes will need to ensure the presence of a compatible Rca protein. The thermolability of the Rca protein found in crop plants provides an opportunity to fortify photosynthesis against high temperature stress. Photosynthesis also appears to be limited by Rca when light conditions are fluctuating. Synthetic biology strategies aiming to enhance the autotrophic CO2 fixation machinery will need to take into consideration the requirement for Rubisco activases as well as their properties.
Collapse
Affiliation(s)
- Oliver Mueller-Cajar
- School of Biological Sciences, Nanyang Technological UniversitySingapore, Singapore
| |
Collapse
|
47
|
Nillegoda NB, Stank A, Malinverni D, Alberts N, Szlachcic A, Barducci A, De Los Rios P, Wade RC, Bukau B. Evolution of an intricate J-protein network driving protein disaggregation in eukaryotes. eLife 2017; 6. [PMID: 28504929 PMCID: PMC5542770 DOI: 10.7554/elife.24560] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 05/12/2017] [Indexed: 12/12/2022] Open
Abstract
Hsp70 participates in a broad spectrum of protein folding processes extending from nascent chain folding to protein disaggregation. This versatility in function is achieved through a diverse family of J-protein cochaperones that select substrates for Hsp70. Substrate selection is further tuned by transient complexation between different classes of J-proteins, which expands the range of protein aggregates targeted by metazoan Hsp70 for disaggregation. We assessed the prevalence and evolutionary conservation of J-protein complexation and cooperation in disaggregation. We find the emergence of a eukaryote-specific signature for interclass complexation of canonical J-proteins. Consistently, complexes exist in yeast and human cells, but not in bacteria, and correlate with cooperative action in disaggregation in vitro. Signature alterations exclude some J-proteins from networking, which ensures correct J-protein pairing, functional network integrity and J-protein specialization. This fundamental change in J-protein biology during the prokaryote-to-eukaryote transition allows for increased fine-tuning and broadening of Hsp70 function in eukaryotes. DOI:http://dx.doi.org/10.7554/eLife.24560.001 All cells must maintain their proteins in a correctly folded shape to survive. The task of sustaining a healthy set of proteins has increased with the rise of complex life from prokaryotes (such as bacteria) that form simple single-celled organisms to eukaryotes (such as yeast, plants and multicellular animals). As a result of organisms ageing or acquiring genetic mutations, or under stressful conditions such as high temperature, proteins can lose their normal shape and clump together to form “aggregates”. These aggregates are potentially toxic to cells and have been linked to many human diseases including neurodegeneration and cancer. Cells contain molecular machines that help break down aggregates and subsequently recycle or rescue trapped proteins. Some of these machines are based around a protein called Hsp70, which can perform a wide range of protein folding processes. So-called J-proteins help Hsp70 to select aggregates to be targeted for break down. It used to be thought that different classes of J-proteins interacted with Hsp70 separately. However, in 2015, researchers showed that in humans, two different classes of J-proteins can bind to each other to form a “complex”, which has distinct aggregate selection properties. Now, Nillegoda et al. – including several of the researchers involved in the 2015 study – have examined the evolutionary history of these J-protein complexes. This revealed that different classes (A and B) of J-proteins first cooperated after prokaryotes and eukaryotes diverged from each other. In particular, the molecular machinery that breaks down aggregates in yeast cells – but not the machinery found in bacteria – depends on complexes formed from the two classes of J-proteins. Further investigation revealed that in humans, J-proteins have structural features that ensure they pair up correctly to perform unique activities. Furthermore, Nillegoda et al. suggest that cooperation between J-proteins may have enabled organisms such as humans – which contain over 40 distinct J-proteins – to carry out further specialized protein-folding tasks that do not occur in prokaryotes. Overall, the findings presented by Nillegoda et al. reveal another important layer to protein quality control in eukaryotic cells. The next step is to understand the possible roles of different J-protein complexes play in J-protein associated cellular protein quality control processes such as preventing protein aggregation, refolding or recycling abnormal proteins. This knowledge could ultimately be used to develop treatments for diseases and disorders in which protein aggregates form. DOI:http://dx.doi.org/10.7554/eLife.24560.002
Collapse
Affiliation(s)
- Nadinath B Nillegoda
- Center for Molecular Biology (ZMBH), Heidelberg University, Heidelberg, Germany.,DKFZ-ZMBH Alliance, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Antonia Stank
- Heidelberg Institute for Theoretical Studies, Heidelberg, Germany.,Heidelberg Graduate School of Mathematical and Computational Methods for the Sciences, University of Heidelberg, Heidelberg, Germany
| | - Duccio Malinverni
- Laboratory of Statistical Biophysics, School of Basic Sciences, Institute of Physics, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Niels Alberts
- Center for Molecular Biology (ZMBH), Heidelberg University, Heidelberg, Germany
| | - Anna Szlachcic
- Center for Molecular Biology (ZMBH), Heidelberg University, Heidelberg, Germany
| | - Alessandro Barducci
- Inserm, U1054, Montpellier, France.,CNRS, UMR 5048, Centre de Biochimie Structurale, Université de Montpellier, Montpellier, France
| | - Paolo De Los Rios
- Laboratory of Statistical Biophysics, School of Basic Sciences, Institute of Physics, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.,Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Rebecca C Wade
- Center for Molecular Biology (ZMBH), Heidelberg University, Heidelberg, Germany.,Heidelberg Institute for Theoretical Studies, Heidelberg, Germany.,Interdisciplinary Center for Scientific Computing, Heidelberg University, Heidelberg, Germany
| | - Bernd Bukau
- Center for Molecular Biology (ZMBH), Heidelberg University, Heidelberg, Germany.,DKFZ-ZMBH Alliance, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
48
|
Franke KB, Bukau B, Mogk A. Mutant Analysis Reveals Allosteric Regulation of ClpB Disaggregase. Front Mol Biosci 2017; 4:6. [PMID: 28275610 PMCID: PMC5319980 DOI: 10.3389/fmolb.2017.00006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 02/07/2017] [Indexed: 11/13/2022] Open
Abstract
The members of the hexameric AAA+ disaggregase of E. coli and S. cerevisiae, ClpB, and Hsp104, cooperate with the Hsp70 chaperone system in the solubilization of aggregated proteins. Aggregate solubilization relies on a substrate threading activity of ClpB/Hsp104 fueled by ATP hydrolysis in both ATPase rings (AAA-1, AAA-2). ClpB/Hsp104 ATPase activity is controlled by the M-domains, which associate to the AAA-1 ring to downregulate ATP hydrolysis. Keeping M-domains displaced from the AAA-1 ring by association with Hsp70 increases ATPase activity due to enhanced communication between protomers. This communication involves conserved arginine fingers. The control of ClpB/Hsp104 activity is crucial, as hyperactive mutants with permanently dissociated M-domains exhibit cellular toxicity. Here, we analyzed AAA-1 inter-ring communication in relation to the M-domain mediated ATPase regulation, by subjecting a conserved residue of the AAA-1 domain subunit interface of ClpB (A328) to mutational analysis. While all A328X mutants have reduced disaggregation activities, their ATPase activities strongly differed. ClpB-A328I/L mutants have reduced ATPase activity and when combined with the hyperactive ClpB-K476C M-domain mutation, suppress cellular toxicity. This underlines that ClpB ATPase activation by M-domain dissociation relies on increased subunit communication. The ClpB-A328V mutant in contrast has very high ATPase activity and exhibits cellular toxicity on its own, qualifying it as novel hyperactive ClpB mutant. ClpB-A328V hyperactivity is however, different from that of M-domain mutants as M-domains stay associated with the AAA-1 ring. The high ATPase activity of ClpB-A328V primarily relies on the AAA-2 ring and correlates with distinct conformational changes in the AAA-2 catalytic site. These findings characterize the subunit interface residue A328 as crucial regulatory element to control ATP hydrolysis in both AAA rings.
Collapse
Affiliation(s)
- Kamila B Franke
- Center for Molecular Biology of the Heidelberg University, German Cancer Research Center Heidelberg, Germany
| | - Bernd Bukau
- Center for Molecular Biology of the Heidelberg University, German Cancer Research Center Heidelberg, Germany
| | - Axel Mogk
- Center for Molecular Biology of the Heidelberg University, German Cancer Research Center Heidelberg, Germany
| |
Collapse
|
49
|
Chan KW, Shone C, Hesp JR. Antibiotics and iron-limiting conditions and their effect on the production and composition of outer membrane vesicles secreted from clinical isolates of extraintestinal pathogenic E. coli. Proteomics Clin Appl 2016; 11. [PMID: 27666736 DOI: 10.1002/prca.201600091] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 08/19/2016] [Accepted: 09/22/2016] [Indexed: 01/02/2023]
Abstract
PURPOSE The focus of this study was to characterize the effect of clinically relevant stress-inducing conditions on the production and composition of proinflammatory outer membrane vesicles (OMVs) produced from ST131 extraintestinal pathogenic Escherichia coli (ExPEC) clinical isolates. EXPERIMENTAL DESIGN A label-free method (relative normalized spectral index quantification, SINQ) was used to identify changes in the respective OMV proteomes following exposure of the ExPEC strains to antibiotics and low iron. Nanoparticle tracking analysis was used to quantify changes in abundance and size of OMVs produced by the gentamicin-resistant (GenR) and gentamicin-sensitive (GenS) ExPEC strains. RESULTS Up to a 13.1-fold increase in abundance of particles were detected when the gentamicin-sensitive strain was exposed to a range of gentamicin concentrations. In contrast, no increase was observed for the gentamicin-resistant strain. Iron-limiting conditions had minimal effect on OMV production for either strain. Marked changes in the OMV proteome were observed for both strains including increases in Hsp100/Clp proteins, ATP-dependent ClpP protease, and regulatory proteins. CONCLUSION These data provide information on changes in the composition of OMV particles derived from ExPEC strains generated in response to clinically relevant conditions. We show that the levels of the proinflammatory OMVs increase for gentamicin-sensitive ExPEC exposed to the antibiotic.
Collapse
Affiliation(s)
- Kin W Chan
- Public Health England, Porton, Salisbury, UK
| | | | | |
Collapse
|
50
|
Kummer E, Szlachcic A, Franke KB, Ungelenk S, Bukau B, Mogk A. Bacterial and Yeast AAA + Disaggregases ClpB and Hsp104 Operate through Conserved Mechanism Involving Cooperation with Hsp70. J Mol Biol 2016; 428:4378-4391. [DOI: 10.1016/j.jmb.2016.09.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 08/10/2016] [Accepted: 09/06/2016] [Indexed: 11/28/2022]
|