1
|
Jabeena CA, Rajavelu A. Histone globular domain epigenetic modifications: The regulators of chromatin dynamics in malaria parasite. Chembiochem 2024; 25:e202300596. [PMID: 38078518 DOI: 10.1002/cbic.202300596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 12/09/2023] [Indexed: 01/31/2024]
Abstract
Plasmodium species adapt a complex lifecycle with multiple phenotypes to survive inside various cell types of humans and mosquitoes. Stage-specific gene expression in the developmental stages of parasites is tightly controlled in Plasmodium species; however, the underlying mechanisms have yet to be explored. Genome organization and gene expression for each stage of the malaria parasite need to be better characterized. Recent studies indicated that epigenetic modifications of histone proteins play a vital role in chromatin plasticity. Like other eukaryotes, Plasmodium species N-terminal tail modifications form a distinct "histone code," which creates the docking sites for histone reader proteins, including gene activator/repressor complexes, to regulate gene expression. The emerging research findings shed light on various unconventional epigenetic changes in histone proteins' core/globular domain regions, which might contribute to the chromatin organization in different developmental stages of the malaria parasite. The malaria parasite lost many transcription factors during evolution, and it is proposed that the nature of local chromatin structure essentially regulates the stage-specific gene expression. This review highlights recent discoveries of unconventional histone globular domain epigenetic modifications and their functions in regulating chromatin structure dynamics in various developmental stages of malaria parasites.
Collapse
Affiliation(s)
- C A Jabeena
- Pathogen Biology Group, Rajiv Gandhi Centre for Biotechnology (RGCB), Thycaud P O, Thiruvananthapuram, Kerala, 695014, India
| | - Arumugam Rajavelu
- Pathogen Biology Group, Rajiv Gandhi Centre for Biotechnology (RGCB), Thycaud P O, Thiruvananthapuram, Kerala, 695014, India
- Department of Biotechnology, Bhupat & Jyoti Mehta School of Biosciences, Indian Institute of Technology, Madras, Chennai, Tamil Nadu, 600 036, India
| |
Collapse
|
2
|
Bonté PE, Metoikidou C, Heurtebise-Chretien S, Arribas YA, Sutra Del Galy A, Ye M, Niborski LL, Zueva E, Piaggio E, Seguin-Givelet A, Girard N, Alanio C, Burbage M, Goudot C, Amigorena S. Selective control of transposable element expression during T cell exhaustion and anti-PD-1 treatment. Sci Immunol 2023; 8:eadf8838. [PMID: 37889984 DOI: 10.1126/sciimmunol.adf8838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 09/01/2023] [Indexed: 10/29/2023]
Abstract
In chronic infections and cancer, T cells are exposed to prolonged antigen stimulation, resulting in loss of function (or exhaustion) and impairment of effective immunological protection. Exhausted T cells are heterogeneous and include early progenitors (Tpex) and terminally exhausted cells (Tex). Here, we used bulk and single-cell transcriptomics to analyze expression of transposable elements (TEs) in subpopulations of mouse and human CD8+ tumor-infiltrating T lymphocytes (TILs). We show that in mice, members of the virus-like murine VL30 TE family (mostly intact, evolutionary young ERV1s) are strongly repressed in terminally exhausted CD8+ T cells in both tumor and viral models of exhaustion. Tpex expression of these VL30s, which are mainly intergenic and transcribed independently of their closest gene neighbors, was driven by Fli1, a transcription factor involved in progression from Tpex to Tex. Immune checkpoint blockade (ICB) in both mice and patients with cancer increased TE expression (including VL30 in mice), demonstrating that TEs may be applicable as ICB response biomarkers. We conclude that expression of TEs is tightly regulated in TILs during establishment of exhaustion and reprogramming by ICB. Analyses of TE expression on single cells and bulk populations open opportunities for understanding immune cell identity and heterogeneity, as well as for defining cellular gene expression signatures and disease biomarkers.
Collapse
Affiliation(s)
- Pierre-Emmanuel Bonté
- Institut Curie, PSL University, Inserm U932, Immunity and Cancer, Paris 75005, France
| | - Christina Metoikidou
- Institut Curie, PSL University, Inserm U932, Immunity and Cancer, Paris 75005, France
| | | | - Yago A Arribas
- Institut Curie, PSL University, Inserm U932, Immunity and Cancer, Paris 75005, France
| | | | - Mengliang Ye
- Institut Curie, PSL University, Inserm U932, Immunity and Cancer, Paris 75005, France
| | | | - Elina Zueva
- Institut Curie, PSL University, Inserm U932, Immunity and Cancer, Paris 75005, France
| | - Eliane Piaggio
- Institut Curie, PSL University, Inserm U932, Immunity and Cancer, Paris 75005, France
| | | | - Nicolas Girard
- Institut Curie, PSL University, Inserm U932, Immunity and Cancer, Paris 75005, France
- Institut Curie, Institut du Thorax Curie Montsouris, Paris 75005, France
- Paris Saclay, UVSQ, UFR Simmone Veil, Versailles 78000, France
| | - Cécile Alanio
- Institut Curie, PSL University, Inserm U932, Immunity and Cancer, Paris 75005, France
- Laboratoire d'immunologie clinique, Institut Curie, Paris 75005, France
- Parker Institute of Cancer Immunotherapy, San Francisco, CA, USA
| | - Marianne Burbage
- Institut Curie, PSL University, Inserm U932, Immunity and Cancer, Paris 75005, France
| | - Christel Goudot
- Institut Curie, PSL University, Inserm U932, Immunity and Cancer, Paris 75005, France
| | - Sebastian Amigorena
- Institut Curie, PSL University, Inserm U932, Immunity and Cancer, Paris 75005, France
| |
Collapse
|
3
|
McCarthy RL, Zhang J, Zaret KS. Diverse heterochromatin states restricting cell identity and reprogramming. Trends Biochem Sci 2023; 48:513-526. [PMID: 36990958 PMCID: PMC10182259 DOI: 10.1016/j.tibs.2023.02.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 02/16/2023] [Accepted: 02/24/2023] [Indexed: 03/29/2023]
Abstract
Heterochromatin is defined as a chromosomal domain harboring repressive H3K9me2/3 or H3K27me3 histone modifications and relevant factors that physically compact the chromatin. Heterochromatin can restrict where transcription factors bind, providing a barrier to gene activation and changes in cell identity. While heterochromatin thus helps maintain cell differentiation, it presents a barrier to overcome during efforts to reprogram cells for biomedical purposes. Recent findings have revealed complexity in the composition and regulation of heterochromatin, and shown that transiently disrupting the machinery of heterochromatin can enhance reprogramming. Here, we discuss how heterochromatin is established and maintained during development, and how our growing understanding of the mechanisms regulating H3K9me3 heterochromatin can be leveraged to improve our ability to direct changes in cell identity.
Collapse
Affiliation(s)
- Ryan L McCarthy
- Institute for Regenerative Medicine, Penn Epigenetics Institute, Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jingchao Zhang
- Institute for Regenerative Medicine, Penn Epigenetics Institute, Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kenneth S Zaret
- Institute for Regenerative Medicine, Penn Epigenetics Institute, Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
4
|
Roy A, Niharika, Chakraborty S, Mishra J, Singh SP, Patra SK. Mechanistic aspects of reversible methylation modifications of arginine and lysine of nuclear histones and their roles in human colon cancer. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 197:261-302. [PMID: 37019596 DOI: 10.1016/bs.pmbts.2023.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Abstract
Developmental proceedings and maintenance of cellular homeostasis are regulated by the precise orchestration of a series of epigenetic events that eventually control gene expression. DNA methylation and post-translational modifications (PTMs) of histones are well-characterized epigenetic events responsible for fine-tuning gene expression. PTMs of histones bear molecular logic of gene expression at chromosomal territory and have become a fascinating field of epigenetics. Nowadays, reversible methylation on histone arginine and lysine is gaining increasing attention as a significant PTM related to reorganizing local nucleosomal structure, chromatin dynamics, and transcriptional regulation. It is now well-accepted and reported that histone marks play crucial roles in colon cancer initiation and progression by encouraging abnormal epigenomic reprogramming. It is becoming increasingly clear that multiple PTM marks at the N-terminal tails of the core histones cross-talk with one another to intricately regulate DNA-templated biological processes such as replication, transcription, recombination, and damage repair in several malignancies, including colon cancer. These functional cross-talks provide an additional layer of message, which spatiotemporally fine-tunes the overall gene expression regulation. Nowadays, it is evident that several PTMs instigate colon cancer development. How colon cancer-specific PTM patterns or codes are generated and how they affect downstream molecular events are uncovered to some extent. Future studies would address more about epigenetic communication, and the relationship between histone modification marks to define cellular functions in depth. This chapter will comprehensively highlight the importance of histone arginine and lysine-based methylation modifications and their functional cross-talk with other histone marks from the perspective of colon cancer development.
Collapse
|
5
|
Goissis MD, Cibelli JB. Early Cell Specification in Mammalian Fertilized and Somatic Cell Nuclear Transfer Embryos. Methods Mol Biol 2023; 2647:59-81. [PMID: 37041329 DOI: 10.1007/978-1-0716-3064-8_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2023]
Abstract
Early cell specification in mammalian preimplantation embryos is an intricate cellular process that leads to coordinated spatial and temporal expression of specific genes. Proper segregation into the first two cell lineages, the inner cell mass (ICM) and the trophectoderm (TE), is imperative for developing the embryo proper and the placenta, respectively. Somatic cell nuclear transfer (SCNT) allows the formation of a blastocyst containing both ICM and TE from a differentiated cell nucleus, which means that this differentiated genome must be reprogrammed to a totipotent state. Although blastocysts can be generated efficiently through SCNT, the full-term development of SCNT embryos is impaired mostly due to placental defects. In this review, we examine the early cell fate decisions in fertilized embryos and compare them to observations in SCNT-derived embryos, in order to understand if these processes are affected by SCNT and could be responsible for the low success of reproductive cloning.
Collapse
Affiliation(s)
- Marcelo D Goissis
- Department of Animal Reproduction, School of Veterinary Medicine and Animal Science, University of Sao Paulo, Sao Paulo, SP, Brazil.
| | - Jose B Cibelli
- Department of Animal Science, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
6
|
Maree JP, Tvardovskiy A, Ravnsborg T, Jensen ON, Rudenko G, Patterton HG. Trypanosoma brucei histones are heavily modified with combinatorial post-translational modifications and mark Pol II transcription start regions with hyperacetylated H2A. Nucleic Acids Res 2022; 50:9705-9723. [PMID: 36095123 PMCID: PMC9508842 DOI: 10.1093/nar/gkac759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 08/09/2022] [Accepted: 08/30/2022] [Indexed: 11/12/2022] Open
Abstract
Trypanosomes diverged from the main eukaryotic lineage about 600 million years ago, and display some unusual genomic and epigenetic properties that provide valuable insight into the early processes employed by eukaryotic ancestors to regulate chromatin-mediated functions. We analysed Trypanosoma brucei core histones by high mass accuracy middle-down mass spectrometry to map core histone post-translational modifications (PTMs) and elucidate cis-histone combinatorial PTMs (cPTMs). T. brucei histones are heavily modified and display intricate cPTMs patterns, with numerous hypermodified cPTMs that could contribute to the formation of non-repressive euchromatic states. The Trypanosoma brucei H2A C-terminal tail is hyperacetylated, containing up to five acetylated lysine residues. MNase-ChIP-seq revealed a striking enrichment of hyperacetylated H2A at Pol II transcription start regions, and showed that H2A histones that are hyperacetylated in different combinations localised to different genomic regions, suggesting distinct epigenetic functions. Our genomics and proteomics data provide insight into the complex epigenetic mechanisms used by this parasite to regulate a genome that lacks the transcriptional control mechanisms found in later-branched eukaryotes. The findings further demonstrate the complexity of epigenetic mechanisms that were probably shared with the last eukaryotic common ancestor.
Collapse
Affiliation(s)
- Johannes P Maree
- Department of Biochemistry, Stellenbosch University, Stellenbosch 7600, South Africa
| | - Andrey Tvardovskiy
- Department of Biochemistry and Molecular Biology, VILLUM Center for Bioanalytical Sciences, and Center for Epigenetics, University of Southern Denmark, Odense M DK-5230, Denmark
| | - Tina Ravnsborg
- Department of Biochemistry and Molecular Biology, VILLUM Center for Bioanalytical Sciences, and Center for Epigenetics, University of Southern Denmark, Odense M DK-5230, Denmark
| | - Ole N Jensen
- Department of Biochemistry and Molecular Biology, VILLUM Center for Bioanalytical Sciences, and Center for Epigenetics, University of Southern Denmark, Odense M DK-5230, Denmark
| | - Gloria Rudenko
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - Hugh-G Patterton
- Center for Bioinformatics and Computational Biology, Stellenbosch University, Stellenbosch 7600, South Africa
| |
Collapse
|
7
|
Millán-Zambrano G, Burton A, Bannister AJ, Schneider R. Histone post-translational modifications - cause and consequence of genome function. Nat Rev Genet 2022; 23:563-580. [PMID: 35338361 DOI: 10.1038/s41576-022-00468-7] [Citation(s) in RCA: 332] [Impact Index Per Article: 166.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/28/2022] [Indexed: 12/16/2022]
Abstract
Much has been learned since the early 1960s about histone post-translational modifications (PTMs) and how they affect DNA-templated processes at the molecular level. This understanding has been bolstered in the past decade by the identification of new types of histone PTM, the advent of new genome-wide mapping approaches and methods to deposit or remove PTMs in a locally and temporally controlled manner. Now, with the availability of vast amounts of data across various biological systems, the functional role of PTMs in important processes (such as transcription, recombination, replication, DNA repair and the modulation of genomic architecture) is slowly emerging. This Review explores the contribution of histone PTMs to the regulation of genome function by discussing when these modifications play a causative (or instructive) role in DNA-templated processes and when they are deposited as a consequence of such processes, to reinforce and record the event. Important advances in the field showing that histone PTMs can exert both direct and indirect effects on genome function are also presented.
Collapse
Affiliation(s)
- Gonzalo Millán-Zambrano
- Centro Andaluz de Biología Molecular y Medicina Regenerativa CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Seville, Spain
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Seville, Spain
| | - Adam Burton
- Institute of Epigenetics and Stem Cells, Helmholtz Center Munich, Munich, Germany
| | - Andrew J Bannister
- Gurdon Institute and Department of Pathology, University of Cambridge, Cambridge, UK.
| | - Robert Schneider
- Institute of Functional Epigenetics, Helmholtz Center Munich, Munich, Germany.
- Faculty of Biology, Ludwig Maximilian University (LMU) of Munich, Munich, Germany.
| |
Collapse
|
8
|
Castiglioni S, Di Fede E, Bernardelli C, Lettieri A, Parodi C, Grazioli P, Colombo EA, Ancona S, Milani D, Ottaviano E, Borghi E, Massa V, Ghelma F, Vignoli A, Lesma E, Gervasini C. KMT2A: Umbrella Gene for Multiple Diseases. Genes (Basel) 2022; 13:genes13030514. [PMID: 35328068 PMCID: PMC8949091 DOI: 10.3390/genes13030514] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 03/10/2022] [Accepted: 03/12/2022] [Indexed: 02/05/2023] Open
Abstract
KMT2A (Lysine methyltransferase 2A) is a member of the epigenetic machinery, encoding a lysine methyltransferase responsible for the transcriptional activation through lysine 4 of histone 3 (H3K4) methylation. KMT2A has a crucial role in gene expression, thus it is associated to pathological conditions when found mutated. KMT2A germinal mutations are associated to Wiedemann–Steiner syndrome and also in patients with initial clinical diagnosis of several other chromatinopathies (i.e., Coffin–Siris syndromes, Kabuki syndrome, Cornelia De Lange syndrome, Rubinstein–Taybi syndrome), sharing an overlapping phenotype. On the other hand, KMT2A somatic mutations have been reported in several tumors, mainly blood malignancies. Due to its evolutionary conservation, the role of KMT2A in embryonic development, hematopoiesis and neurodevelopment has been explored in different animal models, and in recent decades, epigenetic treatments for disorders linked to KMT2A dysfunction have been extensively investigated. To note, pharmaceutical compounds acting on tumors characterized by KMT2A mutations have been formulated, and even nutritional interventions for chromatinopathies have become the object of study due to the role of microbiota in epigenetic regulation.
Collapse
Affiliation(s)
- Silvia Castiglioni
- Department of Health Sciences, Università Degli Studi di Milano, 20142 Milan, Italy; (S.C.); (E.D.F.); (C.B.); (A.L.); (C.P.); (P.G.); (E.A.C.); (S.A.); (E.O.); (E.B.); (V.M.); (F.G.); (A.V.); (E.L.)
| | - Elisabetta Di Fede
- Department of Health Sciences, Università Degli Studi di Milano, 20142 Milan, Italy; (S.C.); (E.D.F.); (C.B.); (A.L.); (C.P.); (P.G.); (E.A.C.); (S.A.); (E.O.); (E.B.); (V.M.); (F.G.); (A.V.); (E.L.)
| | - Clara Bernardelli
- Department of Health Sciences, Università Degli Studi di Milano, 20142 Milan, Italy; (S.C.); (E.D.F.); (C.B.); (A.L.); (C.P.); (P.G.); (E.A.C.); (S.A.); (E.O.); (E.B.); (V.M.); (F.G.); (A.V.); (E.L.)
| | - Antonella Lettieri
- Department of Health Sciences, Università Degli Studi di Milano, 20142 Milan, Italy; (S.C.); (E.D.F.); (C.B.); (A.L.); (C.P.); (P.G.); (E.A.C.); (S.A.); (E.O.); (E.B.); (V.M.); (F.G.); (A.V.); (E.L.)
- “Aldo Ravelli” Center for Neurotechnology and Experimental Brain Therapeutics, Università Degli Studi di Milano, 20142 Milan, Italy
| | - Chiara Parodi
- Department of Health Sciences, Università Degli Studi di Milano, 20142 Milan, Italy; (S.C.); (E.D.F.); (C.B.); (A.L.); (C.P.); (P.G.); (E.A.C.); (S.A.); (E.O.); (E.B.); (V.M.); (F.G.); (A.V.); (E.L.)
| | - Paolo Grazioli
- Department of Health Sciences, Università Degli Studi di Milano, 20142 Milan, Italy; (S.C.); (E.D.F.); (C.B.); (A.L.); (C.P.); (P.G.); (E.A.C.); (S.A.); (E.O.); (E.B.); (V.M.); (F.G.); (A.V.); (E.L.)
| | - Elisa Adele Colombo
- Department of Health Sciences, Università Degli Studi di Milano, 20142 Milan, Italy; (S.C.); (E.D.F.); (C.B.); (A.L.); (C.P.); (P.G.); (E.A.C.); (S.A.); (E.O.); (E.B.); (V.M.); (F.G.); (A.V.); (E.L.)
| | - Silvia Ancona
- Department of Health Sciences, Università Degli Studi di Milano, 20142 Milan, Italy; (S.C.); (E.D.F.); (C.B.); (A.L.); (C.P.); (P.G.); (E.A.C.); (S.A.); (E.O.); (E.B.); (V.M.); (F.G.); (A.V.); (E.L.)
| | - Donatella Milani
- Pediatric Highly Intensive Care Unit, Department of Pathophysiology and Transplantation, Università Degli Studi di Milano, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy;
| | - Emerenziana Ottaviano
- Department of Health Sciences, Università Degli Studi di Milano, 20142 Milan, Italy; (S.C.); (E.D.F.); (C.B.); (A.L.); (C.P.); (P.G.); (E.A.C.); (S.A.); (E.O.); (E.B.); (V.M.); (F.G.); (A.V.); (E.L.)
| | - Elisa Borghi
- Department of Health Sciences, Università Degli Studi di Milano, 20142 Milan, Italy; (S.C.); (E.D.F.); (C.B.); (A.L.); (C.P.); (P.G.); (E.A.C.); (S.A.); (E.O.); (E.B.); (V.M.); (F.G.); (A.V.); (E.L.)
| | - Valentina Massa
- Department of Health Sciences, Università Degli Studi di Milano, 20142 Milan, Italy; (S.C.); (E.D.F.); (C.B.); (A.L.); (C.P.); (P.G.); (E.A.C.); (S.A.); (E.O.); (E.B.); (V.M.); (F.G.); (A.V.); (E.L.)
- “Aldo Ravelli” Center for Neurotechnology and Experimental Brain Therapeutics, Università Degli Studi di Milano, 20142 Milan, Italy
| | - Filippo Ghelma
- Department of Health Sciences, Università Degli Studi di Milano, 20142 Milan, Italy; (S.C.); (E.D.F.); (C.B.); (A.L.); (C.P.); (P.G.); (E.A.C.); (S.A.); (E.O.); (E.B.); (V.M.); (F.G.); (A.V.); (E.L.)
| | - Aglaia Vignoli
- Department of Health Sciences, Università Degli Studi di Milano, 20142 Milan, Italy; (S.C.); (E.D.F.); (C.B.); (A.L.); (C.P.); (P.G.); (E.A.C.); (S.A.); (E.O.); (E.B.); (V.M.); (F.G.); (A.V.); (E.L.)
- Child NeuroPsychiatry Unit, ASST Grande Ospedale Metropolitano Niguarda, 20162 Milan, Italy
| | - Elena Lesma
- Department of Health Sciences, Università Degli Studi di Milano, 20142 Milan, Italy; (S.C.); (E.D.F.); (C.B.); (A.L.); (C.P.); (P.G.); (E.A.C.); (S.A.); (E.O.); (E.B.); (V.M.); (F.G.); (A.V.); (E.L.)
| | - Cristina Gervasini
- Department of Health Sciences, Università Degli Studi di Milano, 20142 Milan, Italy; (S.C.); (E.D.F.); (C.B.); (A.L.); (C.P.); (P.G.); (E.A.C.); (S.A.); (E.O.); (E.B.); (V.M.); (F.G.); (A.V.); (E.L.)
- “Aldo Ravelli” Center for Neurotechnology and Experimental Brain Therapeutics, Università Degli Studi di Milano, 20142 Milan, Italy
- Correspondence: ; Tel.: +39-0250-3230-28
| |
Collapse
|
9
|
Building Pluripotency Identity in the Early Embryo and Derived Stem Cells. Cells 2021; 10:cells10082049. [PMID: 34440818 PMCID: PMC8391114 DOI: 10.3390/cells10082049] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 07/27/2021] [Accepted: 08/06/2021] [Indexed: 12/13/2022] Open
Abstract
The fusion of two highly differentiated cells, an oocyte with a spermatozoon, gives rise to the zygote, a single totipotent cell, which has the capability to develop into a complete, fully functional organism. Then, as development proceeds, a series of programmed cell divisions occur whereby the arising cells progressively acquire their own cellular and molecular identity, and totipotency narrows until when pluripotency is achieved. The path towards pluripotency involves transcriptome modulation, remodeling of the chromatin epigenetic landscape to which external modulators contribute. Both human and mouse embryos are a source of different types of pluripotent stem cells whose characteristics can be captured and maintained in vitro. The main aim of this review is to address the cellular properties and the molecular signature of the emerging cells during mouse and human early development, highlighting similarities and differences between the two species and between the embryos and their cognate stem cells.
Collapse
|
10
|
Jabeena CA, Govindaraju G, Rawat M, Gopi S, Sethumadhavan DV, Jaleel A, Sasankan D, Karmodiya K, Rajavelu A. Dynamic association of the H3K64 trimethylation mark with genes encoding exported proteins in Plasmodium falciparum. J Biol Chem 2021; 296:100614. [PMID: 33839154 PMCID: PMC8095176 DOI: 10.1016/j.jbc.2021.100614] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/23/2021] [Accepted: 03/29/2021] [Indexed: 12/03/2022] Open
Abstract
Epigenetic modifications have emerged as critical regulators of virulence genes and stage-specific gene expression in Plasmodium falciparum. However, the specific roles of histone core epigenetic modifications in regulating the stage-specific gene expression are not well understood. In this study, we report an unconventional trimethylation at lysine 64 on histone 3 (H3K64me3) and characterize its functional relevance in P. falciparum. We show that PfSET4 and PfSET5 proteins of P. falciparum methylate H3K64 and that they prefer the nucleosome as a substrate over free histone 3 proteins. Structural analysis of PfSET5 revealed that it interacts with the nucleosome as a dimer. The H3K64me3 mark is dynamic, being enriched in the ring and trophozoite stages and drastically reduced in the schizont stages. Stage-specific global chromatin immunoprecipitation –sequencing analysis of the H3K64me3 mark revealed the selective enrichment of this methyl mark on the genes of exported family proteins in the ring and trophozoite stages and a significant reduction of the same in the schizont stages. Collectively, our data identify a novel epigenetic mark that is associated with the subset of genes encoding for exported proteins, which may regulate their expression in different stages of P. falciparum.
Collapse
Affiliation(s)
- C A Jabeena
- Pathogen Biology Group, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, Kerala, India; Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, India
| | - Gayathri Govindaraju
- Pathogen Biology Group, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, Kerala, India; Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, India
| | - Mukul Rawat
- Department of Biology, Indian Institute of Science Education and Research, Pune, Maharashtra, India
| | - Soundhararajan Gopi
- Department of Biotechnology, Bhupat & Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, India
| | - Devadathan Valiyamangalath Sethumadhavan
- Pathogen Biology Group, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, Kerala, India; Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, India
| | - Abdul Jaleel
- Cardiovascular Disease Biology, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, Kerala, India
| | - Dhakshmi Sasankan
- Pathogen Biology Group, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, Kerala, India
| | - Krishanpal Karmodiya
- Department of Biology, Indian Institute of Science Education and Research, Pune, Maharashtra, India
| | - Arumugam Rajavelu
- Pathogen Biology Group, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, Kerala, India.
| |
Collapse
|
11
|
Zorro Shahidian L, Haas M, Le Gras S, Nitsch S, Mourão A, Geerlof A, Margueron R, Michaelis J, Daujat S, Schneider R. Succinylation of H3K122 destabilizes nucleosomes and enhances transcription. EMBO Rep 2021; 22:e51009. [PMID: 33512761 PMCID: PMC7926236 DOI: 10.15252/embr.202051009] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 12/18/2020] [Accepted: 12/18/2020] [Indexed: 11/25/2022] Open
Abstract
Histone post-translational modifications (PTMs) are key players in chromatin regulation. The identification of novel histone acylations raises important questions regarding their role in transcription. In this study, we characterize the role of an acylation on the lateral surface of the histone octamer, H3K122 succinylation (H3K122succ), in chromatin function and transcription. Using chromatin succinylated at H3K122 in in vitro transcription assays, we show that the presence of H3K122succ is sufficient to stimulate transcription. In line with this, we found in our ChIP assays H3K122succ enriched on promoters of active genes and H3K122succ enrichment scaling with gene expression levels. Furthermore, we show that the co-activators p300/CBP can succinylate H3K122 and identify sirtuin 5 (SIRT5) as a new desuccinylase. By applying single molecule FRET assays, we demonstrate a direct effect of H3K122succ on nucleosome stability, indicating an important role for histone succinylation in modulating chromatin dynamics. Together, these data provide the first insights into the mechanisms underlying transcriptional regulation by H3K122succ.
Collapse
Affiliation(s)
| | | | - Stephanie Le Gras
- IGBMC, CNRS UMR7104, Inserm U1258Université de StrasbourgIllkirchFrance
- Plateforme GenomEastInfrastructure France GénomiqueCedexFrance
| | - Sandra Nitsch
- Institute of Functional EpigeneticsHelmholtz Zentrum MünchenNeuherbergGermany
| | - André Mourão
- Protein Expression and Purification FacilityHelmholtz Zentrum MünchenNeuherbergGermany
| | - Arie Geerlof
- Protein Expression and Purification FacilityHelmholtz Zentrum MünchenNeuherbergGermany
| | | | | | - Sylvain Daujat
- IGBMC, CNRS UMR7104, Inserm U1258Université de StrasbourgIllkirchFrance
- Present address:
Biotechnology and Cell SignalingCNRS UMR7242University of StrasbourgCedexFrance
| | - Robert Schneider
- Institute of Functional EpigeneticsHelmholtz Zentrum MünchenNeuherbergGermany
- German Center for Diabetes Research (DZD)NeuherbergGermany
- Faculty of BiologyLudwig‐Maximilians Universität MünchenPlanegg‐MartinsriedGermany
| |
Collapse
|
12
|
Bharti D, Tikka M, Lee SY, Bok EY, Lee HJ, Rho GJ. Female Germ Cell Development, Functioning and Associated Adversities under Unfavorable Circumstances. Int J Mol Sci 2021; 22:1979. [PMID: 33671303 PMCID: PMC7922109 DOI: 10.3390/ijms22041979] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/09/2021] [Accepted: 02/10/2021] [Indexed: 01/07/2023] Open
Abstract
In the present era, infertility is one of the major issues which restricts many couples to have their own children. Infertility is the inability to achieve a clinical pregnancy after regular unprotected sexual intercourse for the period of one year or more. Various factors including defective male or female germ cell development, unhealthy and improper lifestyles, diseases like cancer and associated chemo-or-radiation therapies, congenital disorders, etc., may be responsible for infertility. Therefore, it is highly important to understand the basic concepts of germ cell development including primordial germ cell (PGC) formation, specification, migration, entry to genital ridges and their molecular mechanisms, activated pathways, paracrine and autocrine signaling, along with possible alteration which can hamper germ cell development and can cause adversities like cancer progression and infertility. Knowing all these aspects in a proper way can be very much helpful in improving our understanding about gametogenesis and finding possible ways to cure related disorders. Here in this review, various aspects of gametogenesis especially female gametes and relevant factors causing functional impairment have been thoroughly discussed.
Collapse
Affiliation(s)
- Dinesh Bharti
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine and Research Institute of Life Sciences, Gyeongsang National University, Jinju 52828, Korea; (D.B.); (S.-Y.L.); (E.-Y.B.)
| | - Manisha Tikka
- Department of Zoology and Environmental Sciences, Punjabi University, Patiala 147002, India;
| | - Sang-Yun Lee
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine and Research Institute of Life Sciences, Gyeongsang National University, Jinju 52828, Korea; (D.B.); (S.-Y.L.); (E.-Y.B.)
| | - Eun-Yeong Bok
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine and Research Institute of Life Sciences, Gyeongsang National University, Jinju 52828, Korea; (D.B.); (S.-Y.L.); (E.-Y.B.)
| | - Hyeon-Jeong Lee
- Department of Medicine, University of California, San Diego, CA 92093-0021, USA;
| | - Gyu-Jin Rho
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine and Research Institute of Life Sciences, Gyeongsang National University, Jinju 52828, Korea; (D.B.); (S.-Y.L.); (E.-Y.B.)
| |
Collapse
|
13
|
Yi SJ, Kim K. New Insights into the Role of Histone Changes in Aging. Int J Mol Sci 2020; 21:ijms21218241. [PMID: 33153221 PMCID: PMC7662996 DOI: 10.3390/ijms21218241] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/02/2020] [Accepted: 11/02/2020] [Indexed: 12/15/2022] Open
Abstract
Aging is the progressive decline or loss of function at the cellular, tissue, and organismal levels that ultimately leads to death. A number of external and internal factors, including diet, exercise, metabolic dysfunction, genome instability, and epigenetic imbalance, affect the lifespan of an organism. These aging factors regulate transcriptome changes related to the aging process through chromatin remodeling. Many epigenetic regulators, such as histone modification, histone variants, and ATP-dependent chromatin remodeling factors, play roles in chromatin reorganization. The key to understanding the role of gene regulatory networks in aging lies in characterizing the epigenetic regulators responsible for reorganizing and potentiating particular chromatin structures. This review covers epigenetic studies on aging, discusses the impact of epigenetic modifications on gene expression, and provides future directions in this area.
Collapse
|
14
|
Milazzotto MP, de Lima CB, da Fonseca AM, dos Santos EC, Ispada J. Erasing gametes to write blastocysts: metabolism as the new player in epigenetic reprogramming. Anim Reprod 2020; 17:e20200015. [PMID: 33029209 PMCID: PMC7534565 DOI: 10.1590/1984-3143-ar2020-0015] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 04/23/2020] [Indexed: 12/13/2022] Open
Abstract
Understanding preimplantation embryonic development is crucial for the improvement of assisted reproductive technologies and animal production. To achieve this goal, it is important to consider that gametes and embryos are highly susceptible to environmental changes. Beyond the metabolic adaptation, the dynamic status imposed during follicular growth and early embryogenesis may create marks that will guide the molecular regulation during prenatal development, and consequently impact the offspring phenotype. In this context, metaboloepigenetics has gained attention, as it investigates the crosstalk between metabolism and molecular control, i.e., how substrates generated by metabolic pathways may also act as players of epigenetic modifications. In this review, we present the main metabolic and epigenetic events of pre-implantation development, and how these systems connect to open possibilities for targeted manipulation of reproductive technologies and animal production systems.
Collapse
Affiliation(s)
- Marcella Pecora Milazzotto
- Laboratório de Epigenética e Metabolismo Embrionário, Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, SP, Brasil
- Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brasil
| | - Camila Bruna de Lima
- Laboratório de Epigenética e Metabolismo Embrionário, Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, SP, Brasil
- Département des Sciences Animales, Centre de Recherche en Reproduction, Développement et Santé Intergénérationnelle, Faculté des Sciences de l’Agriculture et de l’Alimentation, Université Laval, Quebec, Canada
| | - Aldcejam Martins da Fonseca
- Laboratório de Epigenética e Metabolismo Embrionário, Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, SP, Brasil
| | - Erika Cristina dos Santos
- Laboratório de Epigenética e Metabolismo Embrionário, Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, SP, Brasil
| | - Jessica Ispada
- Laboratório de Epigenética e Metabolismo Embrionário, Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, SP, Brasil
| |
Collapse
|
15
|
Heterochromatin establishment during early mammalian development is regulated by pericentromeric RNA and characterized by non-repressive H3K9me3. Nat Cell Biol 2020; 22:767-778. [PMID: 32601371 PMCID: PMC7610380 DOI: 10.1038/s41556-020-0536-6] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Accepted: 05/24/2020] [Indexed: 01/24/2023]
Abstract
Upon fertilization in mammals the gametes are reprogrammed to create a totipotent zygote, a process that involves de novo establishment of chromatin domains. A major feature occurring during preimplantation development is the dramatic remodeling of constitutive heterochromatin, although the functional relevance of this is unknown. Here we show that heterochromatin establishment relies on the stepwise expression and regulated activity of Suv39h enzymes. Enforcing precocious acquisition of constitutive heterochromatin results in compromised development and epigenetic reprogramming, demonstrating that heterochromatin remodeling is essential for natural reprogramming at fertilization. We find that de novo H3K9 trimethylation in the paternal pronucleus after fertilization is catalyzed by Suv39h2 and that pericentromeric RNAs inhibit Suv39h2 activity and reduce H3K9me3. De novo H3K9me3 is initially non-repressive for gene expression but instead can bookmark promoters for compaction. Overall, we uncover the functional importance for the restricted transmission of constitutive heterochromatin during reprogramming and a non-repressive role for H3K9me3.
Collapse
|
16
|
Epigenetic Factors That Control Pericentric Heterochromatin Organization in Mammals. Genes (Basel) 2020; 11:genes11060595. [PMID: 32481609 PMCID: PMC7349813 DOI: 10.3390/genes11060595] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/17/2020] [Accepted: 05/25/2020] [Indexed: 12/11/2022] Open
Abstract
Pericentric heterochromatin (PCH) is a particular form of constitutive heterochromatin that is localized to both sides of centromeres and that forms silent compartments enriched in repressive marks. These genomic regions contain species-specific repetitive satellite DNA that differs in terms of nucleotide sequences and repeat lengths. In spite of this sequence diversity, PCH is involved in many biological phenomena that are conserved among species, including centromere function, the preservation of genome integrity, the suppression of spurious recombination during meiosis, and the organization of genomic silent compartments in the nucleus. PCH organization and maintenance of its repressive state is tightly regulated by a plethora of factors, including enzymes (e.g., DNA methyltransferases, histone deacetylases, and histone methyltransferases), DNA and histone methylation binding factors (e.g., MECP2 and HP1), chromatin remodeling proteins (e.g., ATRX and DAXX), and non-coding RNAs. This evidence helps us to understand how PCH organization is crucial for genome integrity. It then follows that alterations to the molecular signature of PCH might contribute to the onset of many genetic pathologies and to cancer progression. Here, we describe the most recent updates on the molecular mechanisms known to underlie PCH organization and function.
Collapse
|
17
|
Chioccarelli T, Pierantoni R, Manfrevola F, Porreca V, Fasano S, Chianese R, Cobellis G. Histone Post-Translational Modifications and CircRNAs in Mouse and Human Spermatozoa: Potential Epigenetic Marks to Assess Human Sperm Quality. J Clin Med 2020; 9:jcm9030640. [PMID: 32121034 PMCID: PMC7141194 DOI: 10.3390/jcm9030640] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 02/20/2020] [Accepted: 02/20/2020] [Indexed: 12/14/2022] Open
Abstract
Spermatozoa (SPZ) are motile cells, characterized by a cargo of epigenetic information including histone post-translational modifications (histone PTMs) and non-coding RNAs. Specific histone PTMs are present in developing germ cells, with a key role in spermatogenic events such as self-renewal and commitment of spermatogonia (SPG), meiotic recombination, nuclear condensation in spermatids (SPT). Nuclear condensation is related to chromatin remodeling events and requires a massive histone-to-protamine exchange. After this event a small percentage of chromatin is condensed by histones and SPZ contain nucleoprotamines and a small fraction of nucleohistone chromatin carrying a landascape of histone PTMs. Circular RNAs (circRNAs), a new class of non-coding RNAs, characterized by a nonlinear back-spliced junction, able to play as microRNA (miRNA) sponges, protein scaffolds and translation templates, have been recently characterized in both human and mouse SPZ. Since their abundance in eukaryote tissues, it is challenging to deepen their biological function, especially in the field of reproduction. Here we review the critical role of histone PTMs in male germ cells and the profile of circRNAs in mouse and human SPZ. Furthermore, we discuss their suggested role as novel epigenetic biomarkers to assess sperm quality and improve artificial insemination procedure.
Collapse
|
18
|
Guthmann M, Burton A, Torres‐Padilla M. Expression and phase separation potential of heterochromatin proteins during early mouse development. EMBO Rep 2019; 20:e47952. [PMID: 31701657 PMCID: PMC6893284 DOI: 10.15252/embr.201947952] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 10/03/2019] [Accepted: 10/16/2019] [Indexed: 12/29/2022] Open
Abstract
In most eukaryotes, constitutive heterochromatin is associated with H3K9me3 and HP1α. The latter has been shown to play a role in heterochromatin formation through liquid-liquid phase separation. However, many other proteins are known to regulate and/or interact with constitutive heterochromatic regions in several species. We postulate that some of these heterochromatic proteins may play a role in the regulation of heterochromatin formation by liquid-liquid phase separation. Indeed, an analysis of the constitutive heterochromatin proteome shows that proteins associated with constitutive heterochromatin are significantly more disordered than a random set or a full nucleome set of proteins. Interestingly, their expression begins low and increases during preimplantation development. These observations suggest that the preimplantation embryo is a useful model to address the potential role for phase separation in heterochromatin formation, anticipating exciting research in the years to come.
Collapse
Affiliation(s)
- Manuel Guthmann
- Institute of Epigenetics and Stem Cells (IES)Helmholtz Zentrum MünchenMünchenGermany
- Faculty of BiologyLudwig‐Maximilians UniversitätMünchenGermany
| | - Adam Burton
- Institute of Epigenetics and Stem Cells (IES)Helmholtz Zentrum MünchenMünchenGermany
- Faculty of BiologyLudwig‐Maximilians UniversitätMünchenGermany
| | - Maria‐Elena Torres‐Padilla
- Institute of Epigenetics and Stem Cells (IES)Helmholtz Zentrum MünchenMünchenGermany
- Faculty of BiologyLudwig‐Maximilians UniversitätMünchenGermany
| |
Collapse
|
19
|
Vacík T, Lađinović D, Raška I. KDM2A/B lysine demethylases and their alternative isoforms in development and disease. Nucleus 2019; 9:431-441. [PMID: 30059280 PMCID: PMC7000146 DOI: 10.1080/19491034.2018.1498707] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Aberrant levels of histone modifications lead to chromatin malfunctioning and consequently to various developmental defects and human diseases. Therefore, the proteins bearing the ability to modify histones have been extensively studied and the molecular mechanisms of their action are now fairly well understood. However, little attention has been paid to naturally occurring alternative isoforms of chromatin modifying proteins and to their biological roles. In this review, we focus on mammalian KDM2A and KDM2B, the only two lysine demethylases whose genes have been described to produce also an alternative isoform lacking the N-terminal demethylase domain. These short KDM2A/B-SF isoforms arise through alternative promoter usage and seem to play important roles in development and disease. We hypothesise about the biological significance of these alternative isoforms, which might represent a more common evolutionarily conserved regulatory mechanism.
Collapse
Affiliation(s)
- Tomáš Vacík
- a Institute of Biology and Medical Genetics, First Faculty of Medicine , Charles University and General University Hospital in Prague , Praha 2 , Czech Republic
| | - Dijana Lađinović
- a Institute of Biology and Medical Genetics, First Faculty of Medicine , Charles University and General University Hospital in Prague , Praha 2 , Czech Republic
| | - Ivan Raška
- a Institute of Biology and Medical Genetics, First Faculty of Medicine , Charles University and General University Hospital in Prague , Praha 2 , Czech Republic
| |
Collapse
|
20
|
Jang SM, Kauzlaric A, Quivy JP, Pontis J, Rauwel B, Coluccio A, Offner S, Duc J, Turelli P, Almouzni G, Trono D. KAP1 facilitates reinstatement of heterochromatin after DNA replication. Nucleic Acids Res 2019; 46:8788-8802. [PMID: 29955894 PMCID: PMC6158507 DOI: 10.1093/nar/gky580] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 06/25/2018] [Indexed: 12/30/2022] Open
Abstract
During cell division, maintenance of chromatin features from the parental genome requires their proper establishment on its newly synthetized copy. The loss of epigenetic marks within heterochromatin, typically enriched in repetitive elements, endangers genome stability and permits chromosomal rearrangements via recombination. However, how histone modifications associated with heterochromatin are maintained across mitosis remains poorly understood. KAP1 is known to act as a scaffold for a repressor complex that mediates local heterochromatin formation, and was previously demonstrated to play an important role during DNA repair. Accordingly, we investigated a putative role for this protein in the replication of heterochromatic regions. We first found that KAP1 associates with several DNA replication factors including PCNA, MCM3 and MCM6. We then observed that these interactions are promoted by KAP1 phosphorylation on serine 473 during S phase. Finally, we could demonstrate that KAP1 forms a complex with PCNA and the histone-lysine methyltransferase Suv39h1 to reinstate heterochromatin after DNA replication.
Collapse
Affiliation(s)
- Suk Min Jang
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Station 19, 1015 Lausanne, Switzerland
| | - Annamaria Kauzlaric
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Station 19, 1015 Lausanne, Switzerland
| | - Jean-Pierre Quivy
- Institut Curie, Centre de Recherche, Paris 75248, France.,Centre National de la Recherche Scientifique (CNRS), UMR3664, Paris 75248, France.,Equipe Labellisée Ligue contre le Cancer, UMR3664, Paris 75248, France.,Université Pierre et Marie Curie (UPMC), UMR3664, Paris 75248, France.,Sorbonne University, PSL, Paris 75005, France
| | - Julien Pontis
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Station 19, 1015 Lausanne, Switzerland
| | - Benjamin Rauwel
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Station 19, 1015 Lausanne, Switzerland
| | - Andrea Coluccio
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Station 19, 1015 Lausanne, Switzerland
| | - Sandra Offner
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Station 19, 1015 Lausanne, Switzerland
| | - Julien Duc
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Station 19, 1015 Lausanne, Switzerland
| | - Priscilla Turelli
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Station 19, 1015 Lausanne, Switzerland
| | - Geneviève Almouzni
- Institut Curie, Centre de Recherche, Paris 75248, France.,Centre National de la Recherche Scientifique (CNRS), UMR3664, Paris 75248, France.,Equipe Labellisée Ligue contre le Cancer, UMR3664, Paris 75248, France.,Université Pierre et Marie Curie (UPMC), UMR3664, Paris 75248, France.,Sorbonne University, PSL, Paris 75005, France
| | - Didier Trono
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Station 19, 1015 Lausanne, Switzerland
| |
Collapse
|
21
|
Schultz RM, Stein P, Svoboda P. The oocyte-to-embryo transition in mouse: past, present, and future. Biol Reprod 2019; 99:160-174. [PMID: 29462259 DOI: 10.1093/biolre/ioy013] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 02/03/2018] [Indexed: 02/06/2023] Open
Abstract
The oocyte-to-embryo transition (OET) arguably initiates with formation of a primordial follicle and culminates with reprogramming of gene expression during the course of zygotic genome activation. This transition results in converting a highly differentiated cell, i.e. oocyte, to undifferentiated cells, i.e. initial blastomeres of a preimplantation embryo. A plethora of changes occur during the OET and include, but are not limited to, changes in transcription, chromatin structure, and protein synthesis; accumulation of macromolecules and organelles that will comprise the oocyte's maternal contribution to the early embryo; sequential acquisition of meiotic and developmental competence to name but a few. This review will focus on transcriptional and post-transcriptional changes that occur during OET in mouse because such changes are likely the major driving force for OET. We often take a historical and personal perspective, and highlight how advances in experimental methods often catalyzed conceptual advances in understanding the molecular bases for OET. We also point out questions that remain open and therefore represent topics of interest for future investigation.
Collapse
Affiliation(s)
- Richard M Schultz
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Department of Anatomy, Physiology, Cell Biology, School of Veterinary Medicine, University of California, Davis, Davis, California, USA
| | - Paula Stein
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, North Carolina, USA
| | - Petr Svoboda
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| |
Collapse
|
22
|
Yandım C, Karakülah G. Expression dynamics of repetitive DNA in early human embryonic development. BMC Genomics 2019; 20:439. [PMID: 31151386 PMCID: PMC6545021 DOI: 10.1186/s12864-019-5803-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 05/15/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND The last decade witnessed a number of genome-wide studies on human pre-implantation, which mostly focused on genes and provided only limited information on repeats, excluding the satellites. Considering the fact that repeats constitute a large portion of our genome with reported links to human physiology and disease, a thorough understanding of their spatiotemporal regulation during human embryogenesis will give invaluable clues on chromatin dynamics across time and space. Therefore, we performed a detailed expression analysis of all repetitive DNA elements including the satellites across stages of human pre-implantation and embryonic stem cells. RESULTS We uncovered stage-specific expressions of more than a thousand repeat elements whose expressions fluctuated with a mild global decrease at the blastocyst stage. Most satellites were highly expressed at the 4-cell level and expressions of ACRO1 and D20S16 specifically peaked at this point. Whereas all members of the SVA elements were highly upregulated at 8-cell and morula stages, other transposons and small RNA repeats exhibited a high level of variation among their specific subtypes. Our repeat enrichment analysis in gene promoters coupled with expression correlations highlighted potential links between repeat expressions and nearby genes, emphasising mostly 8-cell and morula specific genes together with SVA_D, LTR5_Hs and LTR70 transposons. The DNA methylation analysis further complemented the understanding on the mechanistic aspects of the repeatome's regulation per se and revealed critical stages where DNA methylation levels are negatively correlating with repeat expression. CONCLUSIONS Taken together, our study shows that specific expression patterns are not exclusive to genes and long non-coding RNAs but the repeatome also exhibits an intriguingly dynamic pattern at the global scale. Repeats identified in this study; particularly satellites, which were historically associated with heterochromatin, and those with potential links to nearby gene expression provide valuable insights into the understanding of key events in genomic regulation and warrant further research in epigenetics, genomics and developmental biology.
Collapse
Affiliation(s)
- Cihangir Yandım
- İzmir Biomedicine and Genome Center (IBG), 35340, İnciraltı, İzmir, Turkey.,Department of Genetics and Bioengineering, İzmir University of Economics, Faculty of Engineering, 35330, Balçova, İzmir, Turkey.,Department of Medicine, Division of Brain Sciences, Hammersmith Hospital, Imperial College London, Faculty of Medicine, W12 0NN, London, UK
| | - Gökhan Karakülah
- İzmir Biomedicine and Genome Center (IBG), 35340, İnciraltı, İzmir, Turkey. .,İzmir International Biomedicine and Genome Institute (iBG-İzmir), Dokuz Eylül University, 35340, İnciraltı, İzmir, Turkey.
| |
Collapse
|
23
|
Abstract
Epigenetic mechanisms allow the establishment and maintenance of multiple cellular phenotypes from a single genomic code. At the initiation of development, the oocyte and spermatozoa provide their fully differentiated chromatin that soon after fertilization undergo extensive remodeling, resulting in a totipotent state that can then drive cellular differentiation towards all cell types. These remodeling involves different epigenetic modifications, including DNA methylation, post-translational modifications of histones, non-coding RNAs, and large-scale chromatin conformation changes. Moreover, epigenetic remodeling is responsible for reprogramming somatic cells to totipotency upon somatic cell nuclear transfer/cloning, which is often incomplete and inefficient. Given that environmental factors, such as assisted reproductive techniques (ARTs), can affect epigenetic remodeling, there is interest in understanding the mechanisms driving these changes. We describe and discuss our current understanding of mechanisms responsible for the epigenetic remodeling that ensues during preimplantation development of mammals, presenting findings from studies of mouse embryos and when available comparing them to what is known for human and cattle embryos.
Collapse
Affiliation(s)
- Pablo J Ross
- Department of Animal Science, University of California Davis, Davis, CA, United States
| | - Rafael V Sampaio
- Department of Animal Science, University of California Davis, Davis, CA, United States.,Department of Animal Science, University of California Davis, Davis, CA, United States
| |
Collapse
|
24
|
Chromatin dynamics at the core of kidney fibrosis. Matrix Biol 2018; 68-69:194-229. [DOI: 10.1016/j.matbio.2018.02.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Revised: 02/16/2018] [Accepted: 02/17/2018] [Indexed: 02/06/2023]
|
25
|
Svoboda P. Mammalian zygotic genome activation. Semin Cell Dev Biol 2017; 84:118-126. [PMID: 29233752 DOI: 10.1016/j.semcdb.2017.12.006] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 11/22/2017] [Accepted: 12/08/2017] [Indexed: 12/14/2022]
Abstract
Zygotic genome activation (ZGA) denotes the initiation of gene expression after fertilization. It is part of the complex oocyte-to-embryo transition (OET) in which a highly specialized cell - the oocyte - is fertilized and transformed into a zygote that gives rise to an embryo that will develop into a newborn. From the perspective of gene expression, the OET reflects reprogramming of germ cell gene expression into the new developmental program of the zygote. This reprogramming occurs at transcriptional and post-transcriptional levels. This review will discuss selected aspects of mammalian ZGA, highlighting shared features and evolved differences observed in commonly investigated mammals and non-mammalian model animals.
Collapse
Affiliation(s)
- Petr Svoboda
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Videnska 1083, 142 20, Prague 4, Czech Republic.
| |
Collapse
|
26
|
Bissiere S, Gasnier M, Alvarez YD, Plachta N. Cell Fate Decisions During Preimplantation Mammalian Development. Curr Top Dev Biol 2017; 128:37-58. [PMID: 29477170 DOI: 10.1016/bs.ctdb.2017.11.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The early mouse embryo offers a phenomenal system to dissect how changes in the mechanisms controlling cell fate are integrated with morphogenetic events at the single-cell level. New technologies based on live imaging have enabled the discovery of dynamic changes in the regulation of single genes, transcription factors, and epigenetic mechanisms directing early cell fate decision in the early embryo. Here, we review recent progress in linking molecular dynamic events occurring at the level of the single cell in vivo, to some of the key morphogenetic changes regulating early mouse development.
Collapse
Affiliation(s)
| | - Maxime Gasnier
- Institute of Molecular and Cell Biology, A*STAR, Singapore, Singapore
| | - Yanina D Alvarez
- Institute of Molecular and Cell Biology, A*STAR, Singapore, Singapore; Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Conicet, Buenos Aires, Argentina
| | - Nicolas Plachta
- Institute of Molecular and Cell Biology, A*STAR, Singapore, Singapore; National University of Singapore, Singapore, Singapore.
| |
Collapse
|
27
|
Seah MKY, Messerschmidt DM. From Germline to Soma: Epigenetic Dynamics in the Mouse Preimplantation Embryo. Curr Top Dev Biol 2017; 128:203-235. [PMID: 29477164 DOI: 10.1016/bs.ctdb.2017.10.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
When reflecting about cell fate commitment we think of differentiation. Be it during embryonic development or in an adult stem cell niche, where cells of a higher potency specialize and cell fate decisions are taken. Under normal circumstances this process is definitive and irreversible. Cell fate commitment is achieved by the establishment of cell-type-specific transcriptional programmes, which in turn are guided, reinforced, and ultimately locked-in by epigenetic mechanisms. Yet, this plunging drift in cellular potency linked to epigenetically restricted access to genomic information is problematic for reproduction. Particularly in mammals where germ cells are not set aside early on like in other species. Instead they are rederived from the embryonic ectoderm, a differentiating embryonic tissue with somatic epigenetic features. The epigenomes of germ cell precursors are efficiently reprogrammed against the differentiation trend, only to specialize once more into highly differentiated, sex-specific gametes: oocyte and sperm. Their differentiation state is reflected in their specialized epigenomes, and erasure of these features is required to enable the acquisition of the totipotent cell fate to kick start embryonic development of the next generation. Recent technological advances have enabled unprecedented insights into the epigenetic dynamics, first of DNA methylation and then of histone modifications, greatly expanding the historically technically limited understanding of this processes. In this chapter we will focus on the details of embryonic epigenetic reprogramming, a cell fate determination process against the tide to a higher potency.
Collapse
Affiliation(s)
- Michelle K Y Seah
- Developmental Epigenetics and Disease Group, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Daniel M Messerschmidt
- Developmental Epigenetics and Disease Group, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore.
| |
Collapse
|
28
|
Sindikubwabo F, Ding S, Hussain T, Ortet P, Barakat M, Baumgarten S, Cannella D, Palencia A, Bougdour A, Belmudes L, Couté Y, Tardieux I, Botté CY, Scherf A, Hakimi MA. Modifications at K31 on the lateral surface of histone H4 contribute to genome structure and expression in apicomplexan parasites. eLife 2017; 6:29391. [PMID: 29101771 PMCID: PMC5685513 DOI: 10.7554/elife.29391] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 11/02/2017] [Indexed: 12/22/2022] Open
Abstract
An unusual genome architecture characterizes the two related human parasitic pathogens Plasmodium falciparum and Toxoplasma gondii. A major fraction of the bulk parasite genome is packaged as transcriptionally permissive euchromatin with few loci embedded in silenced heterochromatin. Primary chromatin shapers include histone modifications at the nucleosome lateral surface close to the DNA but their mode of action remains unclear. We now identify versatile modifications at Lys31 within the globular domain of histone H4 that crucially determine genome organization and expression in Apicomplexa parasites. H4K31 acetylation at the promoter correlates with, and perhaps directly regulates, gene expression in both parasites. By contrast, monomethylated H4K31 is enriched in the core body of T. gondii active genes but inversely correlates with transcription, whereas it is unexpectedly enriched at transcriptionally inactive pericentromeric heterochromatin in P. falciparum, a region devoid of the characteristic H3K9me3 histone mark and its downstream effector HP1.
Collapse
Affiliation(s)
- Fabien Sindikubwabo
- Institute for Advanced Biosciences (IAB), Team Host-pathogen interactions and immunity to infection, INSERM U1209, CNRS UMR5309, Université Grenoble Alpes, Grenoble, France
| | - Shuai Ding
- Unité de Biologie des Interactions Hôte-Parasite, Institut Pasteur, CNRS, ERL 9195, INSERM, Unit U1201, Paris, France
| | - Tahir Hussain
- Institute for Advanced Biosciences (IAB), Team Host-pathogen interactions and immunity to infection, INSERM U1209, CNRS UMR5309, Université Grenoble Alpes, Grenoble, France
| | - Philippe Ortet
- Aix-Marseille Univ, CEA, CNRS, UMR 7265, BIAM-LEMIRE, St-Paul-lez-Durance, France
| | - Mohamed Barakat
- Aix-Marseille Univ, CEA, CNRS, UMR 7265, BIAM-LEMIRE, St-Paul-lez-Durance, France
| | - Sebastian Baumgarten
- Unité de Biologie des Interactions Hôte-Parasite, Institut Pasteur, CNRS, ERL 9195, INSERM, Unit U1201, Paris, France
| | - Dominique Cannella
- Institute for Advanced Biosciences (IAB), Team Host-pathogen interactions and immunity to infection, INSERM U1209, CNRS UMR5309, Université Grenoble Alpes, Grenoble, France
| | - Andrés Palencia
- Institute for Advanced Biosciences (IAB), Team Host-pathogen interactions and immunity to infection, INSERM U1209, CNRS UMR5309, Université Grenoble Alpes, Grenoble, France
| | - Alexandre Bougdour
- Institute for Advanced Biosciences (IAB), Team Host-pathogen interactions and immunity to infection, INSERM U1209, CNRS UMR5309, Université Grenoble Alpes, Grenoble, France
| | - Lucid Belmudes
- Université Grenoble Alpes, CEA, INSERM, Grenoble, France
| | - Yohann Couté
- Université Grenoble Alpes, CEA, INSERM, Grenoble, France
| | - Isabelle Tardieux
- Institute for Advanced Biosciences (IAB), Team Membrane and Cell Dynamics of Host Parasite Interactions, INSERM U1209, CNRS UMR5309, Université Grenoble Alpes, Grenoble, France
| | - Cyrille Y Botté
- Institute for Advanced Biosciences (IAB), Team ApicoLipid, INSERM U1209, CNRS UMR5309, Université Grenoble Alpes, Grenoble, France
| | - Artur Scherf
- Unité de Biologie des Interactions Hôte-Parasite, Institut Pasteur, CNRS, ERL 9195, INSERM, Unit U1201, Paris, France
| | - Mohamed-Ali Hakimi
- Institute for Advanced Biosciences (IAB), Team Host-pathogen interactions and immunity to infection, INSERM U1209, CNRS UMR5309, Université Grenoble Alpes, Grenoble, France
| |
Collapse
|
29
|
WITHDRAWN: Abnormal expression of TFIIIB subunits and RNA Pol III genes is associated with hepatocellular carcinoma. LIVER RESEARCH 2017. [DOI: 10.1016/j.livres.2017.08.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
30
|
Lei J, Chen S, Zhong S. Abnormal expression of TFIIIB subunits and RNA Pol III genes is associated with hepatocellular carcinoma. LIVER RESEARCH 2017; 1:112-120. [PMID: 29276645 PMCID: PMC5739085 DOI: 10.1016/j.livres.2017.08.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The levels of the products of RNA polymerase III-dependent genes (Pol III genes), including tRNAs and 5S rRNA, are elevated in transformed and tumor cells, which potentiate tumorigenesis. TFIIB-related factor 1 (Brf1) is a key transcription factor and specifically regulates the transcription of Pol III genes. In vivo and in vitro studies have demonstrated that a decrease in Brf1 reduces Pol III gene transcription and is sufficient for inhibiting cell transformation and tumor formation. Emerging evidence indicates that dysregulation of Brf1 and Pol III genes is linked to the development of hepatocellular carcinoma (HCC) in humans and animals. We have reported that Brf1 is overexpressed in human liver cancer patients and that those with high Brf1 levels have shorter survivals. This review summarizes the effects of dysregulation of these genes on HCC and their regulation by signaling pathways and epigenetics. These novel data should help us determine the molecular mechanisms of HCC from a different perspective and guide the development of therapeutic approaches for HCC patients.
Collapse
Affiliation(s)
- Junxia Lei
- School of medicine, South china university of technology, China
- Department of Biochemistry and Molecular Biology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Songlin Chen
- Department of Cardiothoracic Surgery, Xiamen University Affiliated Southeast Hospital, China
- Department of Biochemistry and Molecular Biology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Shuping Zhong
- Department of Biochemistry and Molecular Biology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Corresponding author. Department of Biochemistry and Molecular Biology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA. (S. Zhong)
| |
Collapse
|
31
|
Sun YC, Wang YY, Ge W, Cheng SF, Dyce PW, Shen W. Epigenetic regulation during the differentiation of stem cells to germ cells. Oncotarget 2017; 8:57836-57844. [PMID: 28915715 PMCID: PMC5593687 DOI: 10.18632/oncotarget.18444] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 05/08/2017] [Indexed: 01/08/2023] Open
Abstract
Gametogenesis is an essential process to ensure the transfer of genetic information from one generation to the next. It also provides a mechanism by which genetic evolution can take place. Although the genome of primordial germ cells (PGCs) is exactly the same with somatic cells within an organism, there are significant differences between their developments. For example, PGCs eventually undergo meiosis to become functional haploid gametes, and prior to that they undergo epigenetic imprinting which greatly alter their genetic regulation. Epigenetic imprinting of PGCs involves the erasure of DNA methylation and the reestablishment of them during sperm and oocyte formation. These processes are necessary and important during gametogenesis. Also, histone modification and X-chromosome inactivation have important roles during germ cell development. Recently, several studies have reported that functional sperm or oocytes can be derived from stem cells in vivo or in vitro. To produce functional germ cells, induction of germ cells from stem cells must recapitulate these processes similar to endogenous germ cells, such as epigenetic modifications. This review focuses on the epigenetic regulation during the process of germ cell development and discusses their importance during the differentiation from stem cells to germ cells.
Collapse
Affiliation(s)
- Yuan-Chao Sun
- College of Animal Science and Technology, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Yong-Yong Wang
- College of Animal Science and Technology, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Wei Ge
- College of Animal Science and Technology, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Shun-Feng Cheng
- College of Animal Science and Technology, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Paul W Dyce
- Department of Animal Sciences, Auburn University, Auburn, AL 36849, USA
| | - Wei Shen
- College of Animal Science and Technology, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao 266109, China
| |
Collapse
|
32
|
Funaya S, Aoki F. Regulation of zygotic gene activation by chromatin structure and epigenetic factors. J Reprod Dev 2017; 63:359-363. [PMID: 28579579 PMCID: PMC5593087 DOI: 10.1262/jrd.2017-058] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
After fertilization, the genomes derived from an oocyte and spermatozoon are in a transcriptionally silent state before becoming activated at a species-specific time. In mice, the initiation of transcription occurs at the
mid-one-cell stage, which represents the start of the gene expression program. A recent RNA sequencing analysis revealed that the gene expression pattern of one-cell embryos is unique and changes dramatically at the two-cell
stage. However, the mechanism regulating this alteration has not yet been elucidated. It has been shown that chromatin structure and epigenetic factors change dynamically between the one- and two-cell stages. In this article, we
review the characteristics of transcription, chromatin structure, and epigenetic factors in one- and two-cell mouse embryos and discuss the involvement of chromatin structure and epigenetic factors in the alteration of
transcription that occurs between these stages.
Collapse
Affiliation(s)
- Satoshi Funaya
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, University of Tokyo, Chiba 277-8562, Japan
| | - Fugaku Aoki
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, University of Tokyo, Chiba 277-8562, Japan
| |
Collapse
|
33
|
Magaraki A, van der Heijden G, Sleddens-Linkels E, Magarakis L, van Cappellen WA, Peters AHFM, Gribnau J, Baarends WM, Eijpe M. Silencing markers are retained on pericentric heterochromatin during murine primordial germ cell development. Epigenetics Chromatin 2017; 10:11. [PMID: 28293300 PMCID: PMC5346203 DOI: 10.1186/s13072-017-0119-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 03/02/2017] [Indexed: 12/14/2022] Open
Abstract
Background In the nuclei of most mammalian cells, pericentric heterochromatin is characterized by DNA methylation, histone modifications such as H3K9me3 and H4K20me3, and specific binding proteins like heterochromatin-binding protein 1 isoforms (HP1 isoforms). Maintenance of this specialized chromatin structure is of great importance for genome integrity and for the controlled repression of the repetitive elements within the pericentric DNA sequence. Here we have studied histone modifications at pericentric heterochromatin during primordial germ cell (PGC) development using different fixation conditions and fluorescent immunohistochemical and immunocytochemical protocols. Results We observed that pericentric heterochromatin marks, such as H3K9me3, H4K20me3, and HP1 isoforms, were retained on pericentric heterochromatin throughout PGC development. However, the observed immunostaining patterns varied, depending on the fixation method, explaining previous findings of a general loss of pericentric heterochromatic features in PGCs. Also, in contrast to the general clustering of multiple pericentric regions and associated centromeres in DAPI-dense regions in somatic cells, the pericentric regions of PGCs were more frequently organized as individual entities. We also observed a transient enrichment of the chromatin remodeler ATRX in pericentric regions in embryonic day 11.5 (E11.5) PGCs. At this stage, a similar and low level of major satellite repeat RNA transcription was detected in both PGCs and somatic cells. Conclusions These results indicate that in pericentric heterochromatin of mouse PGCs, only minor reductions in levels of some chromatin-associated proteins occur, in association with a transient increase in ATRX, between E11.5 and E13.5. These pericentric heterochromatin regions more frequently contain only a single centromere in PGCs compared to the surrounding soma, indicating a difference in overall organization, but there is no de-repression of major satellite transcription. Electronic supplementary material The online version of this article (doi:10.1186/s13072-017-0119-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Aristea Magaraki
- Department of Developmental Biology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Godfried van der Heijden
- Division of Reproductive Medicine, Department of Obstetrics and Gynecology, Erasmus MC, Rotterdam, The Netherlands
| | - Esther Sleddens-Linkels
- Department of Developmental Biology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Leonidas Magarakis
- Division of Reproductive Medicine, Department of Obstetrics and Gynecology, Central Hospital of Karlstad, Karlstad, Värmland Sweden
| | | | - Antoine H F M Peters
- Friedrich Miescher Institute for Biomedical Research (FMI), Basel, Switzerland.,Faculty of Sciences, University of Basel, Basel, Switzerland
| | - Joost Gribnau
- Department of Developmental Biology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Willy M Baarends
- Department of Developmental Biology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Maureen Eijpe
- Department of Developmental Biology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
34
|
Svoboda P, Fulka H, Malik R. Clearance of Parental Products. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 953:489-535. [DOI: 10.1007/978-3-319-46095-6_10] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
35
|
SUV4-20 activity in the preimplantation mouse embryo controls timely replication. Genes Dev 2016; 30:2513-2526. [PMID: 27920088 PMCID: PMC5159666 DOI: 10.1101/gad.288969.116] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 11/07/2016] [Indexed: 11/25/2022]
Abstract
Eid et al. show that ectopic expression of Suv4-20h2 leads to sustained levels of H4K20me3, developmental arrest, and defects in S-phase progression. The developmental phenotype can be partially overcome through inhibition of the ATR pathway, suggesting that the main function for the remodeling of H4K20me3 after fertilization is to allow the timely and coordinated progression of replication. Extensive chromatin remodeling after fertilization is thought to take place to allow a new developmental program to start. This includes dynamic changes in histone methylation and, in particular, the remodeling of constitutive heterochromatic marks such as histone H4 Lys20 trimethylation (H4K20me3). While the essential function of H4K20me1 in preimplantation mouse embryos is well established, the role of the additional H4K20 methylation states through the action of the SUV4-20 methyltransferases has not been addressed. Here we show that Suv4-20h1/h2 are mostly absent in mouse embryos before implantation, underscoring a rapid decrease of H4K20me3 from the two-cell stage onward. We addressed the functional significance of this remodeling by introducing Suv4-20h1 and Suv4-20h2 in early embryos. Ectopic expression of Suv4-20h2 leads to sustained levels of H4K20me3, developmental arrest, and defects in S-phase progression. The developmental phenotype can be partially overcome through inhibition of the ATR pathway, suggesting that the main function for the remodeling of H4K20me3 after fertilization is to allow the timely and coordinated progression of replication. This is in contrast to the replication program in somatic cells, where H4K20me3 has been shown to promote replication origin licensing, and anticipates a different regulation of replication during this early developmental time window.
Collapse
|
36
|
Gibeault RL, Conn KL, Bildersheim MD, Schang LM. An Essential Viral Transcription Activator Modulates Chromatin Dynamics. PLoS Pathog 2016; 12:e1005842. [PMID: 27575707 PMCID: PMC5004865 DOI: 10.1371/journal.ppat.1005842] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 08/03/2016] [Indexed: 12/02/2022] Open
Abstract
Although ICP4 is the only essential transcription activator of herpes simplex virus 1 (HSV-1), its mechanisms of action are still only partially understood. We and others propose a model in which HSV-1 genomes are chromatinized as a cellular defense to inhibit HSV-1 transcription. To counteract silencing, HSV-1 would have evolved proteins that prevent or destabilize chromatinization to activate transcription. These proteins should act as HSV-1 transcription activators. We have shown that HSV-1 genomes are organized in highly dynamic nucleosomes and that histone dynamics increase in cells infected with wild type HSV-1. We now show that whereas HSV-1 mutants encoding no functional ICP0 or VP16 partially enhanced histone dynamics, mutants encoding no functional ICP4 did so only minimally. Transient expression of ICP4 was sufficient to enhance histone dynamics in the absence of other HSV-1 proteins or HSV-1 DNA. The dynamics of H3.1 were increased in cells expressing ICP4 to a greater extent than those of H3.3. The dynamics of H2B were increased in cells expressing ICP4, whereas those of canonical H2A were not. ICP4 preferentially targets silencing H3.1 and may also target the silencing H2A variants. In infected cells, histone dynamics were increased in the viral replication compartments, where ICP4 localizes. These results suggest a mechanism whereby ICP4 activates transcription by disrupting, or preventing the formation of, stable silencing nucleosomes on HSV-1 genomes. The nuclear-replicating DNA viruses of the family herpesviridae cause a variety of diseases. Eight herpesviruses infect humans. Three of them, including herpes simplex virus 1 (HSV-1), belong to the alpha-herpesvirus sub-family. Viruses in this family have the fastest replication cycles of all herpesviruses, producing acute symptoms. During lytic infection, the genomes of HSV-1 associate with histones in more dynamic chromatin than those of the beta- and gamma- herpesviruses. The transcription activator ICP4 is conserved only among alpha-herpesviruses. Although ICP4 is essential, relatively little is known about its mechanisms of action. We have shown that histone dynamics are enhanced in HSV-1 lytically infected cells. Here we show that HSV-1 mutants in ICP4 are deficient in their ability to enhance histone dynamics. ICP4 was sufficient to enhance histone dynamics in the absence of other HSV-1 proteins or DNA. The dynamics of histones were greater in the viral replication compartments, where ICP4 localizes, than in the cellular chromatin. ICP4 may thus mobilize histones away from HSV-1 genomes to activate transcription. Such a mechanism of transcription activation would result in the highly dynamic nature of the viral chromatin and the fast replication cycles, and the acute pathologies, of the alpha-herpesviruses.
Collapse
Affiliation(s)
- Rebecca L. Gibeault
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Kristen L. Conn
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| | | | - Luis M. Schang
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
- * E-mail:
| |
Collapse
|
37
|
Chen Y, Zhu WG. Biological function and regulation of histone and non-histone lysine methylation in response to DNA damage. Acta Biochim Biophys Sin (Shanghai) 2016; 48:603-16. [PMID: 27217472 DOI: 10.1093/abbs/gmw050] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 04/21/2016] [Indexed: 02/07/2023] Open
Abstract
DNA damage response (DDR) signaling network is initiated to protect cells from various exogenous and endogenous damage resources. Timely and accurate regulation of DDR proteins is required for distinct DNA damage repair pathways. Post-translational modifications of histone and non-histone proteins play a vital role in the DDR factor foci formation and signaling pathway. Phosphorylation, ubiquitylation, SUMOylation, neddylation, poly(ADP-ribosyl)ation, acetylation, and methylation are all involved in the spatial-temporal regulation of DDR, among which phosphorylation and ubiquitylation are well studied. Studies in the past decade also revealed extensive roles of lysine methylation in response to DNA damage. Lysine methylation is finely regulated by plenty of lysine methyltransferases, lysine demethylases, and can be recognized by proteins with chromodomain, plant homeodomain, Tudor domain, malignant brain tumor domain, or proline-tryptophan-tryptophan-proline domain. In this review, we outline the dynamics and regulation of histone lysine methylation at canonical (H3K4, H3K9, H3K27, H3K36, H3K79, and H4K20) and non-canonical sites after DNA damage, and discuss their context-specific functions in DDR protein recruitment or extraction, chromatin environment establishment, and transcriptional regulation. We also present the emerging advances of lysine methylation in non-histone proteins during DDR.
Collapse
Affiliation(s)
- Yongcan Chen
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), State Key Laboratory of Natural and Biomimetic Drugs, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Beijing 100191, China Peking University-Tsinghua University Center for Life Sciences, Beijing 100191, China
| | - Wei-Guo Zhu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), State Key Laboratory of Natural and Biomimetic Drugs, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Beijing 100191, China Peking University-Tsinghua University Center for Life Sciences, Beijing 100191, China School of Medicine, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
38
|
Lim CY, Knowles BB, Solter D, Messerschmidt DM. Epigenetic Control of Early Mouse Development. Curr Top Dev Biol 2016; 120:311-60. [PMID: 27475856 DOI: 10.1016/bs.ctdb.2016.05.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Although the genes sequentially transcribed in the mammalian embryo prior to implantation have been identified, understanding of the molecular processes ensuring this transcription is still in development. The genomes of the sperm and egg are hypermethylated, hence transcriptionally silent. Their union, in the prepared environment of the egg, initiates their epigenetic genomic reprogramming into a totipotent zygote, in which the genome gradually becomes transcriptionally activated. During gametogenesis, sex-specific processes result in sperm and eggs with disparate epigenomes, both of which require drastic reprogramming to establish the totipotent genome of the zygote and the pluripotent inner cell mass of the blastocyst. Herein, we describe the factors, DNA and histone modifications, activation and repression of retrotransposons, and cytoplasmic localizations, known to influence the activation of the mammalian genome at the initiation of new life.
Collapse
Affiliation(s)
- C Y Lim
- Institute of Medical Biology, A*STAR, Singapore, Singapore
| | - B B Knowles
- Emerita, The Jackson Laboratory, Bar Harbor, ME, United States; Siriraj Center of Excellence for Stem Cell Research, Mahidol University, Bangkok, Thailand
| | - D Solter
- Siriraj Center of Excellence for Stem Cell Research, Mahidol University, Bangkok, Thailand; Emeritus, Max-Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany.
| | - D M Messerschmidt
- Institute of Molecular and Cell Biology, A*STAR, Singapore, Singapore.
| |
Collapse
|
39
|
Canovas S, Ross PJ. Epigenetics in preimplantation mammalian development. Theriogenology 2016; 86:69-79. [PMID: 27165992 DOI: 10.1016/j.theriogenology.2016.04.020] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2015] [Revised: 02/27/2016] [Accepted: 03/14/2016] [Indexed: 12/11/2022]
Abstract
Fertilization is a very dynamic period of comprehensive chromatin remodeling, from which two specialized cells result in a totipotent zygote. The formation of a totipotent cell requires extensive epigenetic remodeling that, although independent of modifications in the DNA sequence, still entails a profound cell-fate change, supported by transcriptional profile modifications. As a result of finely tuned interactions between numerous mechanisms, the goal of fertilization is to form a full healthy new individual. To avoid the persistence of alterations in epigenetic marks, the epigenetic information contained in each gamete is reset during early embryogenesis. Covalent modification of DNA by methylation, as well as posttranslational modifications of histone proteins and noncoding RNAs, appears to be the main epigenetic mechanisms that control gene expression. These allow different cells in an organism to express different transcription profiles, despite each cell containing the same DNA sequence. In the context of replacement of spermatic protamine with histones from the oocyte, active cell division, and specification of different lineages, active and passive mechanisms of epigenetic remodeling have been revealed as critical for editing the epigenetic profile of the early embryo. Importantly, redundant factors and mechanisms are likely in place, and only a few have been reported as critical for fertilization or embryo survival by the use of knockout models. The aim of this review is to highlight the main mechanisms of epigenetic remodeling that ensue after fertilization in mammals.
Collapse
Affiliation(s)
- Sebastian Canovas
- LARCEL (Laboratorio Andaluz de Reprogramacion Celular), BIONAND, Centro Andaluz de Nanomedicina y Biotecnologia Campanillas, Malaga, Spain.
| | - Pablo Juan Ross
- Department of Animal Science, University of California, Davis, California, USA.
| |
Collapse
|
40
|
Histone H3 globular domain acetylation identifies a new class of enhancers. Nat Genet 2016; 48:681-6. [PMID: 27089178 PMCID: PMC4886833 DOI: 10.1038/ng.3550] [Citation(s) in RCA: 142] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 03/22/2016] [Indexed: 02/07/2023]
Abstract
Histone acetylation is generally associated with active chromatin, but most studies have focused on the acetylation of histone tails. Various histone H3 and H4 tail acetylations mark the promoters of active genes. These modifications include acetylation of histone H3 at lysine 27 (H3K27ac), which blocks Polycomb-mediated trimethylation of H3K27 (H3K27me3). H3K27ac is also widely used to identify active enhancers, and the assumption has been that profiling H3K27ac is a comprehensive way of cataloguing the set of active enhancers in mammalian cell types. Here we show that acetylation of lysine residues in the globular domain of histone H3 (lysine 64 (H3K64ac) and lysine 122 (H3K122ac)) marks active gene promoters and also a subset of active enhancers. Moreover, we find a new class of active functional enhancers that is marked by H3K122ac but lacks H3K27ac. This work suggests that, to identify enhancers, a more comprehensive analysis of histone acetylation is required than has previously been considered.
Collapse
|
41
|
Conservation and divergence of the histone code in nucleomorphs. Biol Direct 2016; 11:18. [PMID: 27048461 PMCID: PMC4822330 DOI: 10.1186/s13062-016-0119-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 03/22/2016] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Nucleomorphs, the remnant nuclei of photosynthetic algae that have become endosymbionts to other eukaryotes, represent a unique example of convergent reductive genome evolution in eukaryotes, having evolved independently on two separate occasions in chlorarachniophytes and cryptophytes. The nucleomorphs of the two groups have evolved in a remarkably convergent manner, with numerous very similar features. Chief among them is the extreme reduction and compaction of nucleomorph genomes, with very small chromosomes and extremely short or even completely absent intergenic spaces. These characteristics pose a number of intriguing questions regarding the mechanisms of transcription and gene regulation in such a crowded genomic context, in particular in terms of the functioning of the histone code, which is common to almost all eukaryotes and plays a central role in chromatin biology. RESULTS This study examines the sequences of nucleomorph histone proteins in order to address these issues. Remarkably, all classical transcription- and repression-related components of the histone code seem to be missing from chlorarachniophyte nucleomorphs. Cryptophyte nucleomorph histones are generally more similar to the conventional eukaryotic state; however, they also display significant deviations from the typical histone code. Based on the analysis of specific components of the code, we discuss the state of chromatin and the transcriptional machinery in these nuclei. CONCLUSIONS The results presented here shed new light on the mechanisms of nucleomorph transcription and gene regulation and provide a foundation for future studies of nucleomorph chromatin and transcriptional biology.
Collapse
|
42
|
|
43
|
Lawrence M, Daujat S, Schneider R. Lateral Thinking: How Histone Modifications Regulate Gene Expression. Trends Genet 2015; 32:42-56. [PMID: 26704082 DOI: 10.1016/j.tig.2015.10.007] [Citation(s) in RCA: 496] [Impact Index Per Article: 55.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 10/26/2015] [Accepted: 10/27/2015] [Indexed: 12/21/2022]
Abstract
The DNA of each cell is wrapped around histone octamers, forming so-called 'nucleosomal core particles'. These histone proteins have tails that project from the nucleosome and many residues in these tails can be post-translationally modified, influencing all DNA-based processes, including chromatin compaction, nucleosome dynamics, and transcription. In contrast to those present in histone tails, modifications in the core regions of the histones had remained largely uncharacterised until recently, when some of these modifications began to be analysed in detail. Overall, recent work has shown that histone core modifications can not only directly regulate transcription, but also influence processes such as DNA repair, replication, stemness, and changes in cell state. In this review, we focus on the most recent developments in our understanding of histone modifications, particularly those on the lateral surface of the nucleosome. This region is in direct contact with the DNA and is formed by the histone cores. We suggest that these lateral surface modifications represent a key insight into chromatin regulation in the cell. Therefore, lateral surface modifications form a key area of interest and a focal point of ongoing study in epigenetics.
Collapse
|
44
|
Abstract
Histone proteins and the nucleosomal organization of chromatin are near-universal eukaroytic features, with the exception of dinoflagellates. Previous studies have suggested that histones do not play a major role in the packaging of dinoflagellate genomes, although several genomic and transcriptomic surveys have detected a full set of core histone genes. Here, transcriptomic and genomic sequence data from multiple dinoflagellate lineages are analyzed, and the diversity of histone proteins and their variants characterized, with particular focus on their potential post-translational modifications and the conservation of the histone code. In addition, the set of putative epigenetic mark readers and writers, chromatin remodelers and histone chaperones are examined. Dinoflagellates clearly express the most derived set of histones among all autonomous eukaryote nuclei, consistent with a combination of relaxation of sequence constraints imposed by the histone code and the presence of numerous specialized histone variants. The histone code itself appears to have diverged significantly in some of its components, yet others are conserved, implying conservation of the associated biochemical processes. Specifically, and with major implications for the function of histones in dinoflagellates, the results presented here strongly suggest that transcription through nucleosomal arrays happens in dinoflagellates. Finally, the plausible roles of histones in dinoflagellate nuclei are discussed.
Collapse
|
45
|
Ziegler-Birling C, Daujat S, Schneider R, Torres-Padilla ME. Dynamics of histone H3 acetylation in the nucleosome core during mouse pre-implantation development. Epigenetics 2015; 11:553-62. [PMID: 26479850 PMCID: PMC4990223 DOI: 10.1080/15592294.2015.1103424] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
In mammals, the time period that follows fertilization is characterized by extensive chromatin remodeling, which enables epigenetic reprogramming of the gametes. Major changes in chromatin structure persist until the time of implantation, when the embryo develops into a blastocyst, which comprises the inner cell mass and the trophectoderm. Changes in DNA methylation, histone variant incorporation, and covalent modifications of the histones tails have been intensively studied during pre-implantation development. However, modifications within the core of the nucleosomes have not been systematically analyzed. Here, we report the first characterization and temporal analysis of 3 key acetylated residues in the core of the histone H3: H3K64ac, H3K122ac, and H3K56ac, all located at structurally important positions close to the DNA. We found that all 3 acetylations occur during pre-implantation development, but with different temporal kinetics. Globally, H3K64ac and H3K56ac were detected throughout cleavage stages, while H3K122ac was only weakly detectable during this time. Our work contributes to the understanding of the contribution of histone modifications in the core of the nucleosome to the “marking” of the newly established embryonic chromatin and unveils new modification pathways potentially involved in epigenetic reprogramming.
Collapse
Affiliation(s)
- Céline Ziegler-Birling
- a Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM U964 , Université de Strasbourg, Illkirch, Cité Universitaire de Strasbourg , France
| | - Sylvain Daujat
- a Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM U964 , Université de Strasbourg, Illkirch, Cité Universitaire de Strasbourg , France
| | - Robert Schneider
- a Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM U964 , Université de Strasbourg, Illkirch, Cité Universitaire de Strasbourg , France
| | - Maria-Elena Torres-Padilla
- a Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM U964 , Université de Strasbourg, Illkirch, Cité Universitaire de Strasbourg , France
| |
Collapse
|
46
|
Heterochromatin Protein 1β (HP1β) has distinct functions and distinct nuclear distribution in pluripotent versus differentiated cells. Genome Biol 2015; 16:213. [PMID: 26415775 PMCID: PMC4587738 DOI: 10.1186/s13059-015-0760-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2015] [Accepted: 08/25/2015] [Indexed: 11/22/2022] Open
Abstract
Background Pluripotent embryonic stem cells (ESCs) have the unique ability to differentiate into every cell type and to self-renew. These characteristics correlate with a distinct nuclear architecture, epigenetic signatures enriched for active chromatin marks and hyperdynamic binding of structural chromatin proteins. Recently, several chromatin-related proteins have been shown to regulate ESC pluripotency and/or differentiation, yet the role of the major heterochromatin proteins in pluripotency is unknown. Results Here we identify Heterochromatin Protein 1β (HP1β) as an essential protein for proper differentiation, and, unexpectedly, for the maintenance of pluripotency in ESCs. In pluripotent and differentiated cells HP1β is differentially localized and differentially associated with chromatin. Deletion of HP1β, but not HP1α, in ESCs provokes a loss of the morphological and proliferative characteristics of embryonic pluripotent cells, reduces expression of pluripotency factors and causes aberrant differentiation. However, in differentiated cells, loss of HP1β has the opposite effect, perturbing maintenance of the differentiation state and facilitating reprogramming to an induced pluripotent state. Microscopy, biochemical fractionation and chromatin immunoprecipitation reveal a diffuse nucleoplasmic distribution, weak association with chromatin and high expression levels for HP1β in ESCs. The minor fraction of HP1β that is chromatin-bound in ESCs is enriched within exons, unlike the situation in differentiated cells, where it binds heterochromatic satellite repeats and chromocenters. Conclusions We demonstrate an unexpected duality in the role of HP1β: it is essential in ESCs for maintaining pluripotency, while it is required for proper differentiation in differentiated cells. Thus, HP1β function both depends on, and regulates, the pluripotent state. Electronic supplementary material The online version of this article (doi:10.1186/s13059-015-0760-8) contains supplementary material, which is available to authorized users.
Collapse
|
47
|
Zhao Y, Garcia BA. Comprehensive Catalog of Currently Documented Histone Modifications. Cold Spring Harb Perspect Biol 2015; 7:a025064. [PMID: 26330523 DOI: 10.1101/cshperspect.a025064] [Citation(s) in RCA: 257] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Modern techniques in molecular biology, genomics, and mass spectrometry-based proteomics have identified a large number of novel histone posttranslational modifications (PTMs), many of whose functions are still under intense investigation. Here, we catalog histone PTMs under two classes: first, those whose functions have been fairly well studied and, second, those PTMs that have been more recently identified but whose functions remain unclear. We hope that this will be a useful resource for researchers from all biological or technical backgrounds, aiding in their chromatin and epigenetic pursuits.
Collapse
Affiliation(s)
- Yingming Zhao
- Ben May Department for Cancer Research, The University of Chicago, Chicago, Illinois 60637
| | - Benjamin A Garcia
- Epigenetics Program, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| |
Collapse
|
48
|
Svoboda P, Franke V, Schultz RM. Sculpting the Transcriptome During the Oocyte-to-Embryo Transition in Mouse. Curr Top Dev Biol 2015; 113:305-49. [PMID: 26358877 DOI: 10.1016/bs.ctdb.2015.06.004] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In mouse, the oocyte-to-embryo transition entails converting a highly differentiated oocyte to totipotent blastomeres. This transition is driven by degradation of maternal mRNAs, which results in loss of oocyte identity, and reprogramming of gene expression during the course of zygotic gene activation, which occurs primarily during the two-cell stage and confers blastomere totipotency. Full-grown oocytes are transcriptionally quiescent and mRNAs are remarkably stable in oocytes due to the RNA-binding protein MSY2, which stabilizes mRNAs, and low activity of the 5' and 3' RNA degradation machinery. Oocyte maturation initiates a transition from mRNA stability to instability due to phosphorylation of MSY2, which makes mRNAs more susceptible to the RNA degradation machinery, and recruitment of dormant maternal mRNAs that encode for critical components of the 5' and 3' RNA degradation machinery. Small RNAs (miRNA, siRNA, and piRNA) play little, if any, role in mRNA degradation that occurs during maturation. Many mRNAs are totally degraded but a substantial fraction is only partially degraded, their degradation completed by the end of the two-cell stage. Genome activation initiates during the one-cell stage, is promiscuous, low level, and genome wide (and includes both inter- and intragenic regions) and produces transcripts that are inefficiently spliced and polyadenylated. The major wave of genome activation in two-cell embryos involves expression of thousands of new genes. This unique pattern of gene expression is the product of maternal mRNAs recruited during maturation that encode for transcription factors and chromatin remodelers, as well as dramatic changes in chromatin structure due to incorporation of histone variants and modified histones.
Collapse
Affiliation(s)
- Petr Svoboda
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague, Czech Republic.
| | - Vedran Franke
- Bioinformatics Group, Division of Biology, Faculty of Science, Zagreb University, Zagreb, Croatia
| | - Richard M Schultz
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
49
|
Affiliation(s)
- He Huang
- Ben May Department of Cancer Research, The University of Chicago, Chicago, Illinois 60637, United States
| | - Shu Lin
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Benjamin A. Garcia
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Yingming Zhao
- Ben May Department of Cancer Research, The University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
50
|
Bowman GD, Poirier MG. Post-translational modifications of histones that influence nucleosome dynamics. Chem Rev 2015; 115:2274-95. [PMID: 25424540 PMCID: PMC4375056 DOI: 10.1021/cr500350x] [Citation(s) in RCA: 319] [Impact Index Per Article: 35.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Indexed: 12/12/2022]
Affiliation(s)
- Gregory D. Bowman
- T.
C. Jenkins Department of Biophysics, Johns
Hopkins University, Baltimore, Maryland 21218, United States
| | - Michael G. Poirier
- Department of Physics, and Department of
Chemistry and Biochemistry, The Ohio State
University, Columbus, Ohio 43210, United
States
| |
Collapse
|