1
|
Yang T, Nian Y, Lin H, Li J, Lin X, Li T, Wang R, Wang L, Beattie GA, Zhang J, Fan M. Structure and mechanism of the osmoregulated choline transporter BetT. SCIENCE ADVANCES 2024; 10:eado6229. [PMID: 39141726 PMCID: PMC11323884 DOI: 10.1126/sciadv.ado6229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 07/09/2024] [Indexed: 08/16/2024]
Abstract
The choline-glycine betaine pathway plays an important role in bacterial survival in hyperosmotic environments. Osmotic activation of the choline transporter BetT promotes the uptake of external choline for synthesizing the osmoprotective glycine betaine. Here, we report the cryo-electron microscopy structures of Pseudomonas syringae BetT in the apo and choline-bound states. Our structure shows that BetT forms a domain-swapped trimer with the C-terminal domain (CTD) of one protomer interacting with the transmembrane domain (TMD) of a neighboring protomer. The substrate choline is bound within a tryptophan prism at the central part of TMD. Together with functional characterization, our results suggest that in Pseudomonas species, including the plant pathogen P. syringae and the human pathogen Pseudomonas aeruginosa, BetT is locked at a low-activity state through CTD-mediated autoinhibition in the absence of osmotic stress, and its hyperosmotic activation involves the release of this autoinhibition.
Collapse
Affiliation(s)
- Tianjiao Yang
- CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Yuwei Nian
- CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Huajian Lin
- CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Jing Li
- School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Xiang Lin
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry and Biophysics, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Tianming Li
- CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Ruiying Wang
- CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Longfei Wang
- School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Gwyn A. Beattie
- Department of Plant Pathology, Entomology and Microbiology, Iowa State University, Ames, IA 50011, USA
| | - Jinru Zhang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry and Biophysics, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Minrui Fan
- CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
- Key Laboratory of Plant Carbon Capture, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
2
|
Zantza I, Pyrris Y, Raniolo S, Papadaki GF, Lambrinidis G, Limongelli V, Diallinas G, Mikros E. Uracil/H + Symport by FurE Refines Aspects of the Rocking-bundle Mechanism of APC-type Transporters. J Mol Biol 2023; 435:168226. [PMID: 37544358 DOI: 10.1016/j.jmb.2023.168226] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 07/22/2023] [Accepted: 07/31/2023] [Indexed: 08/08/2023]
Abstract
Transporters mediate the uptake of solutes, metabolites and drugs across the cell membrane. The eukaryotic FurE nucleobase/H+ symporter of Aspergillus nidulans has been used as a model protein to address structure-function relationships in the APC transporter superfamily, members of which are characterized by the LeuT-fold and seem to operate by the so-called 'rocking-bundle' mechanism. In this study, we reveal the binding mode, translocation and release pathway of uracil/H+ by FurE using path collective variable, funnel metadynamics and rational mutational analysis. Our study reveals a stepwise, induced-fit, mechanism of ordered sequential transport of proton and uracil, which in turn suggests that FurE, functions as a multi-step gated pore, rather than employing 'rocking' of compact domains, as often proposed for APC transporters. Finally, our work supports that specific residues of the cytoplasmic N-tail are involved in substrate translocation, in line with their essentiality for FurE function.
Collapse
Affiliation(s)
- Iliana Zantza
- Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis, Athens 15771, Greece.
| | - Yiannis Pyrris
- Department of Biology, National and Kapodistrian University of Athens, Panepistimiopolis, Athens 15781, Greece.
| | - Stefano Raniolo
- Faculty of Biomedical Sciences, Euler Institute, Università della Svizzera italiana (USI), Lugano 6900, Switzerland.
| | - Georgia F Papadaki
- Department of Biology, National and Kapodistrian University of Athens, Panepistimiopolis, Athens 15781, Greece
| | - George Lambrinidis
- Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis, Athens 15771, Greece.
| | - Vittorio Limongelli
- Faculty of Biomedical Sciences, Euler Institute, Università della Svizzera italiana (USI), Lugano 6900, Switzerland; Department of Pharmacy, University of Naples "Federico II", Naples 80131, Italy.
| | - George Diallinas
- Department of Biology, National and Kapodistrian University of Athens, Panepistimiopolis, Athens 15781, Greece; Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, Heraklion 70013, Greece.
| | - Emmanuel Mikros
- Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis, Athens 15771, Greece; Athena Research and Innovation Center in Information Communication & Knowledge Technologies, Marousi 15125, Greece.
| |
Collapse
|
3
|
Del Alamo D, Meiler J, Mchaourab HS. Principles of Alternating Access in LeuT-fold Transporters: Commonalities and Divergences. J Mol Biol 2022; 434:167746. [PMID: 35843285 DOI: 10.1016/j.jmb.2022.167746] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 07/08/2022] [Accepted: 07/09/2022] [Indexed: 11/15/2022]
Abstract
Found in all domains of life, transporters belonging to the LeuT-fold class mediate the import and exchange of hydrophilic and charged compounds such as amino acids, metals, and sugar molecules. Nearly two decades of investigations on the eponymous bacterial transporter LeuT have yielded a library of high-resolution snapshots of its conformational cycle linked by solution-state experimental data obtained from multiple techniques. In parallel, its topology has been observed in symporters and antiporters characterized by a spectrum of substrate specificities and coupled to gradients of distinct ions. Here we review and compare mechanistic models of transport for LeuT, its well-studied homologs, as well as functionally distant members of the fold, emphasizing the commonalities and divergences in alternating access and the corresponding energy landscapes. Our integrated summary illustrates how fold conservation, a hallmark of the LeuT fold, coincides with divergent choreographies of alternating access that nevertheless capitalize on recurrent structural motifs. In addition, it highlights the knowledge gap that hinders the leveraging of the current body of research into detailed mechanisms of transport for this important class of membrane proteins.
Collapse
Affiliation(s)
- Diego Del Alamo
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA; Department of Chemistry, Vanderbilt University, Nashville, TN, USA. https://twitter.com/DdelAlamo
| | - Jens Meiler
- Department of Chemistry, Vanderbilt University, Nashville, TN, USA; Institute for Drug Discovery, Leipzig University, Leipzig, DE, USA. https://twitter.com/MeilerLab
| | - Hassane S Mchaourab
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
4
|
Portioli C, Ruiz Munevar MJ, De Vivo M, Cancedda L. Cation-coupled chloride cotransporters: chemical insights and disease implications. TRENDS IN CHEMISTRY 2021; 3:832-849. [PMID: 34604727 PMCID: PMC8461084 DOI: 10.1016/j.trechm.2021.05.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cation-coupled chloride cotransporters (CCCs) modulate the transport of sodium and/or potassium cations coupled with chloride anions across the cell membrane. CCCs thus help regulate intracellular ionic concentration and consequent cell volume homeostasis. This has been largely exploited in the past to develop diuretic drugs that act on CCCs expressed in the kidney. However, a growing wealth of evidence has demonstrated that CCCs are also critically involved in a great variety of other pathologies, motivating most recent drug discovery programs targeting CCCs. Here, we examine the structure–function relationship of CCCs. By linking recent high-resolution cryogenic electron microscopy (cryo-EM) data with older biochemical/functional studies on CCCs, we discuss the mechanistic insights and opportunities to design selective CCC modulators to treat diverse pathologies. The structural topology and function of all cation-coupled chloride cotransporters (CCCs) have been continuously investigated over the past 40 years, with great progress also thanks to the recent cryogenic electron microscopy (cryo-EM) resolution of the structures of five CCCs. In particular, such studies have clarified the structure–function relationship for the Na-K-Cl cotransporter NKCC1 and K-Cl cotransporters KCC1–4. The constantly growing evidence of the crucial involvement of CCCs in physiological and various pathological conditions, as well as the evidence of their wide expression in diverse body tissues, has promoted CCCs as targets for the discovery and development of new, safer, and more selective/effective drugs for a plethora of pathologies. Post-translational modification anchor points on the structure of CCCs may offer alternative strategies for small molecule drug discovery.
Collapse
Affiliation(s)
- Corinne Portioli
- Brain Development and Disease Laboratory, Istituto Italiano di Tecnologia (IIT), Via Morego 30, 16163 Genoa, Italy.,Laboratory of Molecular Modeling and Drug Discovery, IIT, Via Morego, 30 16163 Genoa, Italy
| | | | - Marco De Vivo
- Laboratory of Molecular Modeling and Drug Discovery, IIT, Via Morego, 30 16163 Genoa, Italy
| | - Laura Cancedda
- Brain Development and Disease Laboratory, Istituto Italiano di Tecnologia (IIT), Via Morego 30, 16163 Genoa, Italy.,Dulbecco Telethon Institute, Via Varese 16b, 00185 Rome, Italy
| |
Collapse
|
5
|
Focht D, Neumann C, Lyons J, Eguskiza Bilbao A, Blunck R, Malinauskaite L, Schwarz IO, Javitch JA, Quick M, Nissen P. A non-helical region in transmembrane helix 6 of hydrophobic amino acid transporter MhsT mediates substrate recognition. EMBO J 2021; 40:e105164. [PMID: 33155685 PMCID: PMC7780149 DOI: 10.15252/embj.2020105164] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 09/23/2020] [Accepted: 10/01/2020] [Indexed: 12/30/2022] Open
Abstract
MhsT of Bacillus halodurans is a transporter of hydrophobic amino acids and a homologue of the eukaryotic SLC6 family of Na+ -dependent symporters for amino acids, neurotransmitters, osmolytes, or creatine. The broad range of transported amino acids by MhsT prompted the investigation of the substrate recognition mechanism. Here, we report six new substrate-bound structures of MhsT, which, in conjunction with functional studies, reveal how the flexibility of a Gly-Met-Gly (GMG) motif in the unwound region of transmembrane segment 6 (TM6) is central for the recognition of substrates of different size by tailoring the binding site shape and volume. MhsT mutants, harboring substitutions within the unwound GMG loop and substrate binding pocket that mimick the binding sites of eukaryotic SLC6A18/B0AT3 and SLC6A19/B0AT1 transporters of neutral amino acids, exhibited impaired transport of aromatic amino acids that require a large binding site volume. Conservation of a general (G/A/C)ΦG motif among eukaryotic members of SLC6 family suggests a role for this loop in a common mechanism for substrate recognition and translocation by SLC6 transporters of broad substrate specificity.
Collapse
Affiliation(s)
- Dorota Focht
- Department of Molecular Biology and GeneticsDanish Research Institute of Translational Neuroscience—DANDRITENordic‐EMBL Partnership for Molecular MedicineAarhus UniversityAarhus CDenmark
| | - Caroline Neumann
- Department of Molecular Biology and GeneticsDanish Research Institute of Translational Neuroscience—DANDRITENordic‐EMBL Partnership for Molecular MedicineAarhus UniversityAarhus CDenmark
| | - Joseph Lyons
- Department of Molecular Biology and GeneticsDanish Research Institute of Translational Neuroscience—DANDRITENordic‐EMBL Partnership for Molecular MedicineAarhus UniversityAarhus CDenmark
| | - Ander Eguskiza Bilbao
- Department of Molecular Biology and GeneticsDanish Research Institute of Translational Neuroscience—DANDRITENordic‐EMBL Partnership for Molecular MedicineAarhus UniversityAarhus CDenmark
| | - Rickard Blunck
- Department of PhysicsUniversité de MontréalMontréalQCCanada
| | - Lina Malinauskaite
- Department of Molecular Biology and GeneticsDanish Research Institute of Translational Neuroscience—DANDRITENordic‐EMBL Partnership for Molecular MedicineAarhus UniversityAarhus CDenmark
- MRC Laboratory of Molecular BiologyCambridgeUK
| | - Ilona O Schwarz
- Department of PsychiatryColumbia University Vagelos College of Physicians and SurgeonsNew YorkNYUSA
| | - Jonathan A Javitch
- Department of PsychiatryColumbia University Vagelos College of Physicians and SurgeonsNew YorkNYUSA
- Center for Molecular RecognitionColumbia University Vagelos College of Physicians and SurgeonsNew YorkNYUSA
- Department of PharmacologyColumbia University Vagelos College of Physicians and SurgeonsNew YorkNYUSA
- Division of Molecular TherapeuticsNew York State Psychiatric InstituteNew YorkNYUSA
| | - Matthias Quick
- Department of PsychiatryColumbia University Vagelos College of Physicians and SurgeonsNew YorkNYUSA
- Center for Molecular RecognitionColumbia University Vagelos College of Physicians and SurgeonsNew YorkNYUSA
- Division of Molecular TherapeuticsNew York State Psychiatric InstituteNew YorkNYUSA
| | - Poul Nissen
- Department of Molecular Biology and GeneticsDanish Research Institute of Translational Neuroscience—DANDRITENordic‐EMBL Partnership for Molecular MedicineAarhus UniversityAarhus CDenmark
| |
Collapse
|
6
|
Alfonso I, Solà J. Molecular Recognition of Zwitterions with Artificial Receptors. Chem Asian J 2020; 15:986-994. [PMID: 32017445 DOI: 10.1002/asia.201901789] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/20/2020] [Indexed: 01/02/2023]
Abstract
Many biomolecules exist as internal ion pairs or zwitterions within a biologically relevant pH range. Despite their importance, the molecular recognition of this type of systems is specially challenging due to their strong solvation in aqueous media, and their trend to form folded or self-assembled structures by pairing of charges of different sign. In this Minireview, we will discuss the molecular recognition of zwitterions using non-natural, synthetic receptors. This contribution does not intend to make a full in-depth revision of the existing research in the field, but a personal overview with selected representative examples from the recent literature.
Collapse
Affiliation(s)
- Ignacio Alfonso
- Department of Biological Chemistry, Institute for Advanced Chemistry of Catalonia Jordi, Girona 18-26, 08034, Barcelona, Spain
| | - Jordi Solà
- Department of Biological Chemistry, Institute for Advanced Chemistry of Catalonia Jordi, Girona 18-26, 08034, Barcelona, Spain
| |
Collapse
|
7
|
Giangregorio N, Tonazzi A, Console L, Pistillo M, Scalera V, Indiveri C. Tryptophan 224 of the rat mitochondrial carnitine/acylcarnitine carrier is crucial for the antiport mechanism. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2019; 1860:708-716. [PMID: 31340138 DOI: 10.1016/j.bbabio.2019.07.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 07/06/2019] [Accepted: 07/18/2019] [Indexed: 01/14/2023]
Abstract
The mitochondrial carnitine/acylcarnitine carrier (CACT) catalyzes an antiport of carnitine and acylcarnitines and also a uniport reaction with a rate of about one tenth with respect to the antiport rate. The antiport process results from the coupling of the two uniport reactions in opposite directions. In this mechanism, the transition of the carrier from the outward open conformation to the inward open one (or vice versa) is much faster for the carrier-substrate complex than for the unbound carrier. To investigate the molecular determinants that couple the binding of the substrate with the conformational transitions, site directed mutagenesis has been employed. The antiport or the uniport reaction was followed as [3H]carnitine uptake in or efflux from proteoliposomes reconstituted with the WT or Trp mutants of the rat CACT. Substitution of each the three Trp residues led to different results. Nearly no variations were observed upon substitution of W192 and/or W296 with Ala. While, substantial alteration of the transport function was observed in the mutants W224A, W224Y and W224F. Mutation of W224 led to the loss of the antiport function while the uniport function was unaltered. In these mutants impairment of the substrate affinity on the external side was also observed. The data highlights that W224 is involved in the coupling of the substrate binding with the matrix gate opening. The experimental data are in line with predictions by homology modeling of the CACT in its cytosolic (c-state) or matrix (m-state) opened conformations.
Collapse
Affiliation(s)
- Nicola Giangregorio
- CNR Institute of Biomembranes, Bioenergetics and Molecular Biotechnology, via Amendola 165/A, 70126 Bari, Italy
| | - Annamaria Tonazzi
- CNR Institute of Biomembranes, Bioenergetics and Molecular Biotechnology, via Amendola 165/A, 70126 Bari, Italy
| | - Lara Console
- Department DiBEST (Biologia, Ecologia, Scienze della Terra) Unit of Biochemistry and Molecular Biotechnology, University of Calabria, Via P. Bucci 4C, 87036 Arcavacata di Rende, Italy
| | - Mariella Pistillo
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari, via Orabona 4, 70126 Bari, Italy
| | - Vito Scalera
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari, via Orabona 4, 70126 Bari, Italy
| | - Cesare Indiveri
- Department DiBEST (Biologia, Ecologia, Scienze della Terra) Unit of Biochemistry and Molecular Biotechnology, University of Calabria, Via P. Bucci 4C, 87036 Arcavacata di Rende, Italy.
| |
Collapse
|
8
|
Comparison of the functional properties of trimeric and monomeric CaiT of Escherichia coli. Sci Rep 2019; 9:3787. [PMID: 30846799 PMCID: PMC6406002 DOI: 10.1038/s41598-019-40516-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 02/12/2019] [Indexed: 11/08/2022] Open
Abstract
Secondary transporters exist as monomers, dimers or higher state oligomers. The significance of the oligomeric state is only partially understood. Here, the significance of the trimeric state of the L-carnitine/γ-butyrobetaine antiporter CaiT of Escherichia coli was investigated. Amino acids important for trimer stability were identified and experimentally verified. Among others, CaiT-D288A and -D288R proved to be mostly monomeric in detergent solution and after reconstitution into proteoliposomes, as shown by blue native gel electrophoresis, gel filtration, and determination of intermolecular distances. CaiT-D288A was fully functional with kinetic parameters similar to the trimeric wild-type. Significant differences in amount and stability in the cell membrane between monomeric and trimeric CaiT were not observed. Contrary to trimeric CaiT, addition of substrate had no or only a minor effect on the tryptophan fluorescence of monomeric CaiT. The results suggest that physical contacts between protomers are important for the substrate-induced changes in protein fluorescence and the underlying conformational alterations.
Collapse
|
9
|
Lechtenfeld M, Heine J, Sameith J, Kremp F, Müller V. Glycine betaine metabolism in the acetogenic bacteriumAcetobacterium woodii. Environ Microbiol 2018; 20:4512-4525. [DOI: 10.1111/1462-2920.14389] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 08/10/2018] [Accepted: 08/17/2018] [Indexed: 12/01/2022]
Affiliation(s)
- Mats Lechtenfeld
- Department of Molecular Microbiology & BioenergeticsInstitute of Molecular Biosciences, Johann Wolfgang Goethe University Max‐von‐Laue Str. 9, D‐60438 Frankfurt Germany
| | - Julia Heine
- Department of Molecular Microbiology & BioenergeticsInstitute of Molecular Biosciences, Johann Wolfgang Goethe University Max‐von‐Laue Str. 9, D‐60438 Frankfurt Germany
| | - Janin Sameith
- Department of Molecular Microbiology & BioenergeticsInstitute of Molecular Biosciences, Johann Wolfgang Goethe University Max‐von‐Laue Str. 9, D‐60438 Frankfurt Germany
| | - Florian Kremp
- Department of Molecular Microbiology & BioenergeticsInstitute of Molecular Biosciences, Johann Wolfgang Goethe University Max‐von‐Laue Str. 9, D‐60438 Frankfurt Germany
| | - Volker Müller
- Department of Molecular Microbiology & BioenergeticsInstitute of Molecular Biosciences, Johann Wolfgang Goethe University Max‐von‐Laue Str. 9, D‐60438 Frankfurt Germany
| |
Collapse
|
10
|
Patching SG. Recent developments in nucleobase cation symporter-1 (NCS1) family transport proteins from bacteria, archaea, fungi and plants. J Biosci 2018. [DOI: 10.1007/s12038-018-9780-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
11
|
Resculpting the binding pocket of APC superfamily LeuT-fold amino acid transporters. Cell Mol Life Sci 2017; 75:921-938. [PMID: 29058016 PMCID: PMC5809530 DOI: 10.1007/s00018-017-2677-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 09/14/2017] [Accepted: 10/02/2017] [Indexed: 12/03/2022]
Abstract
Amino acid transporters are essential components of prokaryote and eukaryote cells, possess distinct physiological functions, and differ markedly in substrate specificity. Amino acid transporters can be both drug targets and drug transporters (bioavailability, targeting) with many monogenic disorders resulting from dysfunctional membrane transport. The largest collection of amino acid transporters (including the mammalian SLC6, SLC7, SLC32, SLC36, and SLC38 families), across all kingdoms of life, is within the Amino acid-Polyamine-organoCation (APC) superfamily. The LeuT-fold is a paradigm structure for APC superfamily amino acid transporters and carriers of sugars, neurotransmitters, electrolytes, osmolytes, vitamins, micronutrients, signalling molecules, and organic and fatty acids. Each transporter is specific for a unique sub-set of solutes, specificity being determined by how well a substrate fits into each binding pocket. However, the molecular basis of substrate selectivity remains, by and large, elusive. Using an integrated computational and experimental approach, we demonstrate that a single position within the LeuT-fold can play a crucial role in determining substrate specificity in mammalian and arthropod amino acid transporters within the APC superfamily. Systematic mutation of the amino acid residue occupying the equivalent position to LeuT V104 titrates binding pocket space resulting in dramatic changes in substrate selectivity in exemplar APC amino acid transporters including PAT2 (SLC36A2) and SNAT5 (SLC38A5). Our work demonstrates how a single residue/site within an archetypal structural motif can alter substrate affinity and selectivity within this important superfamily of diverse membrane transporters.
Collapse
|
12
|
Alternating access mechanisms of LeuT-fold transporters: trailblazing towards the promised energy landscapes. Curr Opin Struct Biol 2016; 45:100-108. [PMID: 28040635 DOI: 10.1016/j.sbi.2016.12.006] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 11/28/2016] [Accepted: 12/09/2016] [Indexed: 01/21/2023]
Abstract
Secondary active transporters couple the uphill translocation of substrates to electrochemical ion gradients. Transporter conformational motion, generically referred to as alternating access, enables a central ligand binding site to change its orientation relative to the membrane. Here we review themes of alternating access and the transduction of ion gradient energy to power this process in the LeuT-fold class of transporters where crystallographic, computational and spectroscopic approaches have converged to yield detailed models of transport cycles. Specifically, we compare findings for the Na+-coupled amino acid transporter LeuT and the Na+-coupled hydantoin transporter Mhp1. Although these studies have illuminated multiple aspects of transporter structures and dynamics, a number of questions remain unresolved that so far hinder understanding transport mechanisms in an energy landscape perspective.
Collapse
|
13
|
Unveiling the Mechanism of Arginine Transport through AdiC with Molecular Dynamics Simulations: The Guiding Role of Aromatic Residues. PLoS One 2016; 11:e0160219. [PMID: 27482712 PMCID: PMC4970712 DOI: 10.1371/journal.pone.0160219] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 07/17/2016] [Indexed: 11/19/2022] Open
Abstract
Commensal and pathogenic enteric bacteria have developed several systems to adapt to proton leakage into the cytoplasm resulting from extreme acidic conditions. One such system involves arginine uptake followed by export of the decarboxylated product agmatine, carried out by the arginine/agmatine antiporter (AdiC), which thus works as a virtual proton pump. Here, using classical and targeted molecular dynamics, we investigated at the atomic level the mechanism of arginine transport through AdiC of E. coli. Overall, our MD simulation data clearly demonstrate that global rearrangements of several transmembrane segments are necessary but not sufficient for achieving transitions between structural states along the arginine translocation pathway. In particular, local structural changes, namely rotameric conversions of two aromatic residues, are needed to regulate access to both the outward- and inward-facing states. Our simulations have also enabled identification of a few residues, overwhelmingly aromatic, which are essential to guiding arginine in the course of its translocation. Most of them belong to gating elements whose coordinated motions contribute to the alternating access mechanism. Their conservation in all known E. coli acid resistance antiporters suggests that the transport mechanisms of these systems share common features. Last but not least, knowledge of the functional properties of AdiC can advance our understanding of the members of the amino acid-carbocation-polyamine superfamily, notably in eukaryotic cells.
Collapse
|
14
|
Affiliation(s)
- David Drew
- Centre for Biomembrane Research, Department of Biochemistry and Biophysics, Stockholm University, SE-106 91 Stockholm, Sweden;
| | - Olga Boudker
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, NY 10065;
| |
Collapse
|
15
|
F. M. Cellier M. Evolutionary analysis of Slc11 mechanism of proton-coupled metal-ion transmembrane import. AIMS BIOPHYSICS 2016. [DOI: 10.3934/biophy.2016.2.286] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
16
|
Belevich NP, Bertsova YV, Verkhovskaya ML, Baykov AA, Bogachev AV. Identification of the coupling step in Na(+)-translocating NADH:quinone oxidoreductase from real-time kinetics of electron transfer. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2015; 1857:141-149. [PMID: 26655930 DOI: 10.1016/j.bbabio.2015.12.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 11/02/2015] [Accepted: 12/03/2015] [Indexed: 10/22/2022]
Abstract
Bacterial Na(+)-translocating NADH:quinone oxidoreductase (Na(+)-NQR) uses a unique set of prosthetic redox groups-two covalently bound FMN residues, a [2Fe-2S] cluster, FAD, riboflavin and a Cys4[Fe] center-to catalyze electron transfer from NADH to ubiquinone in a reaction coupled with Na(+) translocation across the membrane. Here we used an ultra-fast microfluidic stopped-flow instrument to determine rate constants and the difference spectra for the six consecutive reaction steps of Vibrio harveyi Na(+)-NQR reduction by NADH. The instrument, with a dead time of 0.25 ms and optical path length of 1 cm allowed collection of visible spectra in 50-μs intervals. By comparing the spectra of reaction steps with the spectra of known redox transitions of individual enzyme cofactors, we were able to identify the chemical nature of most intermediates and the sequence of electron transfer events. A previously unknown spectral transition was detected and assigned to the Cys4[Fe] center reduction. Electron transfer from the [2Fe-2S] cluster to the Cys4[Fe] center and all subsequent steps were markedly accelerated when Na(+) concentration was increased from 20 μM to 25 mM, suggesting coupling of the former step with tight Na(+) binding to or occlusion by the enzyme. An alternating access mechanism was proposed to explain electron transfer between subunits NqrF and NqrC. According to the proposed mechanism, the Cys4[Fe] center is alternatively exposed to either side of the membrane, allowing the [2Fe-2S] cluster of NqrF and the FMN residue of NqrC to alternatively approach the Cys4[Fe] center from different sides of the membrane.
Collapse
Affiliation(s)
- Nikolai P Belevich
- Institute of Biotechnology, University of Helsinki, PO Box 65, Viikinkaari 1, FIN-00014, Finland
| | - Yulia V Bertsova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russia
| | - Marina L Verkhovskaya
- Institute of Biotechnology, University of Helsinki, PO Box 65, Viikinkaari 1, FIN-00014, Finland
| | - Alexander A Baykov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russia
| | - Alexander V Bogachev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russia.
| |
Collapse
|
17
|
Koldsø H, Grouleff J, Schiøtt B. Insights to ligand binding to the monoamine transporters-from homology modeling to LeuBAT and dDAT. Front Pharmacol 2015; 6:208. [PMID: 26441663 PMCID: PMC4585151 DOI: 10.3389/fphar.2015.00208] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 09/07/2015] [Indexed: 11/20/2022] Open
Abstract
Understanding of drug binding to the human biogenic amine transporters (BATs) is essential to explain the mechanism of action of these pharmaceuticals but more importantly to be able to develop new and improved compounds to be used in the treatment of depression or drug addiction. Until recently no high resolution structure was available of the BATs and homology modeling was a necessity. Various studies have revealed experimentally validated binding modes of numerous ligands to the BATs using homology modeling. Here we examine and discuss the similarities between the binding models of substrates, antidepressants, psychostimulants, and mazindol in homology models of the human BATs and the recently published crystal structures of the Drosophila dopamine transporter and the engineered protein, LeuBAT. The comparison reveals that careful computational modeling combined with experimental data can be utilized to predict binding of molecules to proteins that agree very well with crystal structures.
Collapse
Affiliation(s)
- Heidi Koldsø
- Department of Biochemistry, University of Oxford , Oxford, UK ; inSPIN and iNANO Centers, Department of Chemistry, Aarhus University , Aarhus C, Denmark
| | - Julie Grouleff
- inSPIN and iNANO Centers, Department of Chemistry, Aarhus University , Aarhus C, Denmark
| | - Birgit Schiøtt
- inSPIN and iNANO Centers, Department of Chemistry, Aarhus University , Aarhus C, Denmark
| |
Collapse
|
18
|
Keller R, Ziegler C, Schneider D. When two turn into one: evolution of membrane transporters from half modules. Biol Chem 2015; 395:1379-88. [PMID: 25296672 DOI: 10.1515/hsz-2014-0224] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 10/05/2014] [Indexed: 11/15/2022]
Abstract
The recently increasing number of atomic structures for active transporters has not only revealed strong conservation in the architecture of sequence-unrelated transporter families, but also identified a unifying element called the 'inverted repeat topology,' which is found in nearly all transporter folds to date. Indeed, most membrane transporters consist of two or more domains with similar structure, so-called repeats. It is tempting to speculate that transporters have evolved by duplication of one repeat followed by gene fusion and modification events. An intriguing question is, whether recent genes encoding such a 'half-transporter' still exist as independent folding units. Although it seems likely that the evolution of membrane transport proteins, which harbor internal repeats, is linked to these minimal structural building blocks, their identification in the absence of structural data represents a major challenge, as sequence homology is not an issue. In this review we discuss two protein families, the DedA family and the SWEET family, being potential half-transporters and putative ancestors for two of the most abundant secondary transporter families, the MFS family and the LeuT-fold family.
Collapse
|
19
|
Meadows JA, Wargo MJ. Carnitine in bacterial physiology and metabolism. MICROBIOLOGY (READING, ENGLAND) 2015; 161:1161-74. [PMID: 25787873 PMCID: PMC4635513 DOI: 10.1099/mic.0.000080] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 03/17/2015] [Indexed: 12/23/2022]
Abstract
Carnitine is a quaternary amine compound found at high concentration in animal tissues, particularly muscle, and is most well studied for its contribution to fatty acid transport into mitochondria. In bacteria, carnitine is an important osmoprotectant, and can also enhance thermotolerance, cryotolerance and barotolerance. Carnitine can be transported into the cell or acquired from metabolic precursors, where it can serve directly as a compatible solute for stress protection or be metabolized through one of a few distinct pathways as a nutrient source. In this review, we summarize what is known about carnitine physiology and metabolism in bacteria. In particular, recent advances in the aerobic and anaerobic metabolic pathways as well as the use of carnitine as an electron acceptor have addressed some long-standing questions in the field.
Collapse
Affiliation(s)
- Jamie A. Meadows
- Department of Microbiology and Molecular Genetics, University of Vermont College of Medicine, 95 Carrigan Drive, Burlington, VT, 05405, USA
| | - Matthew J. Wargo
- Department of Microbiology and Molecular Genetics, University of Vermont College of Medicine, 95 Carrigan Drive, Burlington, VT, 05405, USA
| |
Collapse
|
20
|
Dickschat JS, Rabe P, Citron CA. The chemical biology of dimethylsulfoniopropionate. Org Biomol Chem 2015; 13:1954-68. [DOI: 10.1039/c4ob02407a] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This review addresses synthesis, biosynthesis, transport and degradation of dimethylsulfoniopropionate and its derivatives.
Collapse
Affiliation(s)
- Jeroen S. Dickschat
- Kekulé-Institut für Organische Chemie und Biochemie
- Rheinische Friedrich-Wilhelms-Universität Bonn
- 53121 Bonn
- Germany
- Institut für Organische Chemie
| | - Patrick Rabe
- Kekulé-Institut für Organische Chemie und Biochemie
- Rheinische Friedrich-Wilhelms-Universität Bonn
- 53121 Bonn
- Germany
- Institut für Organische Chemie
| | - Christian A. Citron
- Kekulé-Institut für Organische Chemie und Biochemie
- Rheinische Friedrich-Wilhelms-Universität Bonn
- 53121 Bonn
- Germany
- Institut für Organische Chemie
| |
Collapse
|
21
|
Quick M, Shi L. The sodium/multivitamin transporter: a multipotent system with therapeutic implications. VITAMINS AND HORMONES 2015; 98:63-100. [PMID: 25817866 PMCID: PMC5530880 DOI: 10.1016/bs.vh.2014.12.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
The Na(+)/multivitamin transporter (SMVT) is a member of the solute:sodium symporter family that catalyzes the Na(+)-dependent uptake of the structurally diverse water-soluble vitamins pantothenic acid (vitamin B5) and biotin (vitamin H), α-lipoic acid-a vitamin-like substance with strong antioxidant properties-and iodide. The organic substrates of SMVT play central roles in the cellular metabolism and are, therefore, essential for normal human health and development. For example, biotin deficiency leads to growth retardation, dermatological disorders, and neurological disorders. Animal studies have shown that biotin deficiency during pregnancy is directly correlated to embryonic growth retardation, congenital malformation, and death of the embryo. This chapter focuses on the structural and functional features of the human isoform of SMVT (hSMVT); the discovery of which was greatly facilitated by the cloning and expression of hSMVT in tractable expression systems. Special emphasis will be given to mechanistic implications of the transport process of hSMVT that will inform our understanding of the molecular determinants of hSMVT-mediated transport in dynamic context to alleviate the development and optimization of hSMVT as a multipotent platform for drug delivery.
Collapse
Affiliation(s)
- Matthias Quick
- Department of Psychiatry, Division of Molecular Therapeutics, Columbia University College of Physicians and Surgeons, New York State Psychiatric Institute, New York, USA.
| | - Lei Shi
- Department of Physiology and Biophysics, Institute for Computational Biomedicine, Weill Medical College of Cornell University, New York, USA
| |
Collapse
|
22
|
Li Z, Lee ASE, Bracher S, Jung H, Paz A, Kumar JP, Abramson J, Quick M, Shi L. Identification of a second substrate-binding site in solute-sodium symporters. J Biol Chem 2014; 290:127-41. [PMID: 25398883 DOI: 10.1074/jbc.m114.584383] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The structure of the sodium/galactose transporter (vSGLT), a solute-sodium symporter (SSS) from Vibrio parahaemolyticus, shares a common structural fold with LeuT of the neurotransmitter-sodium symporter family. Structural alignments between LeuT and vSGLT reveal that the crystallographically identified galactose-binding site in vSGLT is located in a more extracellular location relative to the central substrate-binding site (S1) in LeuT. Our computational analyses suggest the existence of an additional galactose-binding site in vSGLT that aligns to the S1 site of LeuT. Radiolabeled galactose saturation binding experiments indicate that, like LeuT, vSGLT can simultaneously bind two substrate molecules under equilibrium conditions. Mutating key residues in the individual substrate-binding sites reduced the molar substrate-to-protein binding stoichiometry to ~1. In addition, the related and more experimentally tractable SSS member PutP (the Na(+)/proline transporter) also exhibits a binding stoichiometry of 2. Targeting residues in the proposed sites with mutations results in the reduction of the binding stoichiometry and is accompanied by severely impaired translocation of proline. Our data suggest that substrate transport by SSS members requires both substrate-binding sites, thereby implying that SSSs and neurotransmitter-sodium symporters share common mechanistic elements in substrate transport.
Collapse
Affiliation(s)
- Zheng Li
- From the Department of Physiology and Biophysics, Weill Cornell Medical College, Cornell University, New York, New York 10065
| | - Ashley S E Lee
- the Center for Molecular Recognition and Department of Psychiatry, Columbia University College of Physicians and Surgeons, New York, New York 10032
| | - Susanne Bracher
- the Ludwig Maximilian University of Munich, Biocentre, Microbiology, Grosshaderner Strasse 2-4, Martinsried, D-82152, Germany
| | - Heinrich Jung
- the Ludwig Maximilian University of Munich, Biocentre, Microbiology, Grosshaderner Strasse 2-4, Martinsried, D-82152, Germany
| | - Aviv Paz
- the Department of Physiology, UCLA, Los Angeles, California 90095
| | - Jay P Kumar
- the Institute for Stem Cell Biology and Regenerative Medicine, NCBS Campus, GKVK Post, Bellary Road, Bangalore-560065, Karnataka, India
| | - Jeff Abramson
- the Department of Physiology, UCLA, Los Angeles, California 90095, the Institute for Stem Cell Biology and Regenerative Medicine, NCBS Campus, GKVK Post, Bellary Road, Bangalore-560065, Karnataka, India
| | - Matthias Quick
- the Center for Molecular Recognition and Department of Psychiatry, Columbia University College of Physicians and Surgeons, New York, New York 10032, the Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, New York 10032, and
| | - Lei Shi
- From the Department of Physiology and Biophysics, Weill Cornell Medical College, Cornell University, New York, New York 10065, the Institute for Computational Biomedicine, Weill Cornell Medical College, Cornell University, New York, New York 10021
| |
Collapse
|
23
|
A mechanism for intracellular release of Na+ by neurotransmitter/sodium symporters. Nat Struct Mol Biol 2014; 21:1006-12. [PMID: 25282149 DOI: 10.1038/nsmb.2894] [Citation(s) in RCA: 131] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2014] [Accepted: 08/26/2014] [Indexed: 12/11/2022]
Abstract
Neurotransmitter/sodium symporters (NSSs) terminate synaptic signal transmission by Na+-dependent reuptake of released neurotransmitters. Key conformational states have been reported for the bacterial homolog LeuT and an inhibitor-bound Drosophila dopamine transporter. However, a coherent mechanism of Na+-driven transport has not been described. Here, we present two crystal structures of MhsT, an NSS member from Bacillus halodurans, in occluded inward-facing states with bound Na+ ions and L-tryptophan, providing insight into the cytoplasmic release of Na+. The switch from outward- to inward-oriented states is centered on the partial unwinding of transmembrane helix 5, facilitated by a conserved GlyX9Pro motif that opens an intracellular pathway for water to access the Na2 site. We propose a mechanism, based on our structural and functional findings, in which solvation through the TM5 pathway facilitates Na+ release from Na2 and the transition to an inward-open state.
Collapse
|
24
|
Simmons KJ, Jackson SM, Brueckner F, Patching SG, Beckstein O, Ivanova E, Geng T, Weyand S, Drew D, Lanigan J, Sharples DJ, Sansom MSP, Iwata S, Fishwick CWG, Johnson AP, Cameron AD, Henderson PJF. Molecular mechanism of ligand recognition by membrane transport protein, Mhp1. EMBO J 2014; 33:1831-44. [PMID: 24952894 PMCID: PMC4195764 DOI: 10.15252/embj.201387557] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The hydantoin transporter Mhp1 is a sodium-coupled secondary active transport protein of the nucleobase-cation-symport family and a member of the widespread 5-helix inverted repeat superfamily of transporters. The structure of Mhp1 was previously solved in three different conformations providing insight into the molecular basis of the alternating access mechanism. Here, we elucidate detailed events of substrate binding, through a combination of crystallography, molecular dynamics, site-directed mutagenesis, biochemical/biophysical assays, and the design and synthesis of novel ligands. We show precisely where 5-substituted hydantoin substrates bind in an extended configuration at the interface of the bundle and hash domains. They are recognised through hydrogen bonds to the hydantoin moiety and the complementarity of the 5-substituent for a hydrophobic pocket in the protein. Furthermore, we describe a novel structure of an intermediate state of the protein with the external thin gate locked open by an inhibitor, 5-(2-naphthylmethyl)-L-hydantoin, which becomes a substrate when leucine 363 is changed to an alanine. We deduce the molecular events that underlie acquisition and transport of a ligand by Mhp1.
Collapse
Affiliation(s)
- Katie J Simmons
- School of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK
| | - Scott M Jackson
- School of Biomedical Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK
| | - Florian Brueckner
- Membrane Protein Laboratory, Diamond Light Source Harwell Science and Innovation Campus, Chilton, Didcot, UK Division of Molecular Biosciences, Membrane Protein Crystallography Group Imperial College, London, UK Rutherford Appleton Laboratory, Research Complex at Harwell, Harwell, Oxford, Didcot, UK
| | - Simon G Patching
- School of Biomedical Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK
| | - Oliver Beckstein
- Department of Physics, Arizona State University, Tempe, AZ, USA Department of Biochemistry, University of Oxford, Oxford, UK
| | - Ekaterina Ivanova
- School of Biomedical Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK
| | - Tian Geng
- Membrane Protein Laboratory, Diamond Light Source Harwell Science and Innovation Campus, Chilton, Didcot, UK Division of Molecular Biosciences, Membrane Protein Crystallography Group Imperial College, London, UK Rutherford Appleton Laboratory, Research Complex at Harwell, Harwell, Oxford, Didcot, UK
| | - Simone Weyand
- Membrane Protein Laboratory, Diamond Light Source Harwell Science and Innovation Campus, Chilton, Didcot, UK Division of Molecular Biosciences, Membrane Protein Crystallography Group Imperial College, London, UK Rutherford Appleton Laboratory, Research Complex at Harwell, Harwell, Oxford, Didcot, UK
| | - David Drew
- Division of Molecular Biosciences, Membrane Protein Crystallography Group Imperial College, London, UK
| | - Joseph Lanigan
- School of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK
| | - David J Sharples
- School of Biomedical Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK
| | - Mark S P Sansom
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - So Iwata
- Membrane Protein Laboratory, Diamond Light Source Harwell Science and Innovation Campus, Chilton, Didcot, UK Division of Molecular Biosciences, Membrane Protein Crystallography Group Imperial College, London, UK Rutherford Appleton Laboratory, Research Complex at Harwell, Harwell, Oxford, Didcot, UK
| | - Colin W G Fishwick
- School of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK
| | - A Peter Johnson
- School of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK
| | - Alexander D Cameron
- Membrane Protein Laboratory, Diamond Light Source Harwell Science and Innovation Campus, Chilton, Didcot, UK Division of Molecular Biosciences, Membrane Protein Crystallography Group Imperial College, London, UK School of Life Sciences, University of Warwick, Coventry, UK
| | - Peter J F Henderson
- School of Biomedical Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK
| |
Collapse
|
25
|
Sasseville LJ, Longpré JP, Wallendorff B, Lapointe JY. The transport mechanism of the human sodium/myo-inositol transporter 2 (SMIT2/SGLT6), a member of the LeuT structural family. Am J Physiol Cell Physiol 2014; 307:C431-41. [PMID: 24944204 DOI: 10.1152/ajpcell.00054.2014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The sodium/myo-inositol transporter 2 (SMIT2) is a member of the SLC5A gene family, which is believed to share the five-transmembrane segment inverted repeat of the LeuT structural family. The two-electrode voltage-clamp (TEVC) technique was used to measure the steady-state and the pre-steady-state currents mediated by human SMIT2 after expression in Xenopus laevis oocytes. Phlorizin is first shown to be a poor inhibitor of pre-steady-state currents for depolarizing voltage pulse. From an up to threefold difference between the apparent ON and OFF transferred charges during a voltage pulse, we also show that a fraction of the transient current recorded for very negative potentials is not a true pre-steady-state current coming from the cotransporter conformational changes. We suggest that this transient current comes from a time-dependent leak current that can reach large amplitudes when external Na(+) concentration is reduced. A kinetic model was generated through a simulated annealing algorithm. This algorithm was used to identify the optimal connectivity among 19 different kinetic models and obtain the numerical values of the associated parameters. The proposed 5-state model includes cooperative binding of Na(+) ions, strong apparent asymmetry of the energy barriers, a rate-limiting step that is likely associated with the translocation of the empty transporter, and a turnover rate of 21 s(-1). The proposed model is a proof of concept for a novel approach to kinetic modeling of electrogenic transporters and allows insight into the transport mechanism of members of the LeuT structural family at the millisecond timescale.
Collapse
Affiliation(s)
- Louis J Sasseville
- Groupe d'étude des protéines membranaires (GÉPROM) and Département de Physique, Université de Montréal, Montreal, Quebec, Canada
| | - Jean-Philippe Longpré
- Groupe d'étude des protéines membranaires (GÉPROM) and Département de Physique, Université de Montréal, Montreal, Quebec, Canada
| | - Bernadette Wallendorff
- Groupe d'étude des protéines membranaires (GÉPROM) and Département de Physique, Université de Montréal, Montreal, Quebec, Canada
| | - Jean-Yves Lapointe
- Groupe d'étude des protéines membranaires (GÉPROM) and Département de Physique, Université de Montréal, Montreal, Quebec, Canada
| |
Collapse
|
26
|
Loland CJ. The use of LeuT as a model in elucidating binding sites for substrates and inhibitors in neurotransmitter transporters. Biochim Biophys Acta Gen Subj 2014; 1850:500-10. [PMID: 24769398 DOI: 10.1016/j.bbagen.2014.04.011] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2014] [Revised: 04/09/2014] [Accepted: 04/11/2014] [Indexed: 01/24/2023]
Abstract
BACKGROUND The mammalian neurotransmitter transporters are complex proteins playing a central role in synaptic transmission between neurons by rapid reuptake of neurotransmitters. The proteins which transport dopamine, noradrenaline and serotonin belong to the Neurotransmitter:Sodium Symporters (NSS). Due to their important role, dysfunctions are associated with several psychiatric and neurological diseases and they also serve as targets for a wide range of therapeutic and illicit drugs. Despite the central physiological and pharmacological importance, direct evidence on structure-function relationships on mammalian NSS proteins has so far been unsuccessful. The crystal structure of the bacterial NSS protein, LeuT, has been a turning point in structural investigations. SCOPE OF REVIEW To provide an update on what is known about the binding sites for substrates and inhibitors in the LeuT. The different binding modes and binding sites will be discussed with special emphasis on the possible existence of a second substrate binding site. It is the goal to give an insight into how investigations on ligand binding in LeuT have provided basic knowledge about transporter conformations and translocation mechanism which can pave the road for a deeper understanding of drug binding and function of the mammalian transporters. MAJOR CONCLUSIONS The LeuT is a suitable model for the structural investigation of NSS proteins including the possible location of drug binding sites. It is still debated whether the LeuT is a suitable model for the molecular mechanisms behind substrate translocation. GENERAL SIGNIFICANCE Structure and functional aspects of NSS proteins are central for understanding synaptic transmission. With the purification and crystallization of LeuT as well as the dopamine transporter from Drosophila melanogaster, the application of biophysical methods such as fluorescence spectroscopy, neutron- or x-ray scattering and NMR for understanding its function becomes increasingly available. This article is part of a Special Issue entitled Structural biochemistry and biophysics of membrane proteins.
Collapse
Affiliation(s)
- Claus J Loland
- Molecular Neuropharmacology Laboratory, Department of Neuroscience and Pharmacology, The Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen N, Denmark.
| |
Collapse
|
27
|
Indiveri C, Galluccio M, Scalise M, Pochini L. Strategies of bacterial over expression of membrane transporters relevant in human health: the successful case of the three members of OCTN subfamily. Mol Biotechnol 2013; 54:724-36. [PMID: 22843325 PMCID: PMC3636443 DOI: 10.1007/s12033-012-9586-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The OCTN subfamily includes OCTN1, 2, and 3 which are structurally and functionally related. These transporters are involved in maintenance of the carnitine homeostasis, which is essential in mammals for fatty acid β-oxidation, VLDL assembly, post-translational modifications, and other essential functions. Indeed, defects of these transporters lead to severe pathologies. OCTN1 and OCTN2 are expressed in many human tissues, while OCTN3 gene has been identified only in mouse and rat. The transporters mediate transport of carnitine and other substrates with different efficiencies and mechanisms. In order to over express the three proteins, a screening of many combinations of E. coli strains with plasmid constructs has been conducted. Only Rosetta(DE3) or Rosettagami2(DE3) gave significant expression. Higher protein amounts were firstly obtained with pET-41a(+) or pGEX-4T1 carrying fusion protein tags which required additional purification passages. Vectors carrying only a 6His tag, suitable for single passage purification, were preferred even though they lead to lower initial expression levels. Expressions were then increased optimizing several critical parameters. hOCTN1 was obtained with pH6EX3 in RosettaGami2(DE3)pLysS. hOCTN2 and mOCTN3 were obtained using pET-21a(+) in Rosetta(DE3). In particular, hOCTN2 was expressed only after codon bias, substituting the second triplet CGG with AAA (R2K mutant). The best growth conditions for hOCTN1 and mOCTN3 were 28 °C and 6 h of induction, while 4 h of induction for hOCTN2R2K. The proteins collected in the insoluble fraction of cell lysates, solubilized with sarkosyl, were purified by Ni-chelating chromatography. Final yield was 2.0, 3.0, or 3.5 mg/l of cell culture for mOCTN3, hOCTN1, or hOCTN2R2K. The data indicated that, in spite of the close evolutionary relations, several factors play different critical roles in bacterial expression of the three proteins, thus general criteria cannot be underlined. However, the strategy of dealing with related proteins revealed to be finally successful for over expressing all the three subfamily members.
Collapse
Affiliation(s)
- Cesare Indiveri
- Department of Cell Biology, University of Calabria, Arcavacata di Rende, Italy.
| | | | | | | |
Collapse
|
28
|
Arginine oscillation explains Na+ independence in the substrate/product antiporter CaiT. Proc Natl Acad Sci U S A 2013; 110:17296-301. [PMID: 24101465 DOI: 10.1073/pnas.1309071110] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Most secondary-active transporters transport their substrates using an electrochemical ion gradient. In contrast, the carnitine transporter (CaiT) is an ion-independent, l-carnitine/γ-butyrobetaine antiporter belonging to the betaine/carnitine/choline transporter family of secondary transporters. Recently determined crystal structures of CaiT from Escherichia coli and Proteus mirabilis revealed an inverted five-transmembrane-helix repeat similar to that in the amino acid/Na(+) symporter LeuT. The ion independence of CaiT makes it unique in this family. Here we show that mutations of arginine 262 (R262) make CaiT Na(+)-dependent. The transport activity of R262 mutants increased by 30-40% in the presence of a membrane potential, indicating substrate/Na(+) cotransport. Structural and biochemical characterization revealed that R262 plays a crucial role in substrate binding by stabilizing the partly unwound TM1' helix. Modeling CaiT from P. mirabilis in the outward-open and closed states on the corresponding structures of the related symporter BetP reveals alternating orientations of the buried R262 sidechain, which mimic sodium binding and unbinding in the Na(+)-coupled substrate symporters. We propose that a similar mechanism is operative in other Na(+)/H(+)-independent transporters, in which a positively charged amino acid replaces the cotransported cation. The oscillation of the R262 sidechain in CaiT indicates how a positive charge triggers the change between outward-open and inward-open conformations as a unifying critical step in LeuT-type transporters.
Collapse
|
29
|
Yan N. Structural investigation of the proton-coupled secondary transporters. Curr Opin Struct Biol 2013; 23:483-91. [DOI: 10.1016/j.sbi.2013.04.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Revised: 04/17/2013] [Accepted: 04/19/2013] [Indexed: 11/16/2022]
|
30
|
Penmatsa A, Gouaux E. How LeuT shapes our understanding of the mechanisms of sodium-coupled neurotransmitter transporters. J Physiol 2013; 592:863-9. [PMID: 23878376 DOI: 10.1113/jphysiol.2013.259051] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Neurotransmitter transporters are ion-coupled symporters that drive the uptake of neurotransmitters from neural synapses. In the past decade, the structure of a bacterial amino acid transporter, leucine transporter (LeuT), has given valuable insights into the understanding of architecture and mechanism of mammalian neurotransmitter transporters. Different conformations of LeuT, including a substrate-free state, inward-open state, and competitive and non-competitive inhibitor-bound states, have revealed a mechanistic framework for the transport and transport inhibition of neurotransmitters. The current review integrates our understanding of the mechanistic and pharmacological properties of eukaryotic neurotransmitter transporters obtained through structural snapshots of LeuT.
Collapse
Affiliation(s)
- Aravind Penmatsa
- Vollum Institute and Howard Hughes Medical Institute, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA.
| | | |
Collapse
|
31
|
Abstract
Secondary active transporters exploit the electrochemical potential of solutes to shuttle specific substrate molecules across biological membranes, usually against their concentration gradient. Transporters of different functional families with little sequence similarity have repeatedly been found to exhibit similar folds, exemplified by the MFS, LeuT, and NhaA folds. Observations of multiple conformational states of the same transporter, represented by the LeuT superfamily members Mhp1, AdiC, vSGLT, and LeuT, led to proposals that structural changes are associated with substrate binding and transport. Despite recent biochemical and structural advances, our understanding of substrate recognition and energy coupling is rather preliminary. This review focuses on the common folds and shared transport mechanisms of secondary active transporters. Available structural information generally supports the alternating access model for substrate transport, with variations and extensions made by emerging structural, biochemical, and computational evidence.
Collapse
Affiliation(s)
- Yigong Shi
- Ministry of Education Key Laboratory of Protein Science, Tsinghua-Peking Joint Center for Life Sciences, Center for Structural Biology, School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
32
|
Pochini L, Scalise M, Galluccio M, Indiveri C. OCTN cation transporters in health and disease: role as drug targets and assay development. ACTA ACUST UNITED AC 2013; 18:851-67. [PMID: 23771822 DOI: 10.1177/1087057113493006] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The three members of the organic cation transporter novel subfamily are known to be involved in interactions with xenobiotic compounds. These proteins are characterized by 12 transmembrane segments connected by nine short loops and two large hydrophilic loops. It has been recently pointed out that acetylcholine is a physiological substrate of OCTN1. Its transport could be involved in nonneuronal cholinergic functions. OCTN2 maintains the carnitine homeostasis, resulting from intestinal absorption, distribution to tissues, and renal excretion/reabsorption. OCTN3, identified only in mouse, mediates also carnitine transport. OCTN1 and OCTN2 are associated with several pathologies, such as inflammatory bowel disease, primary carnitine deficiency, diabetes, neurological disorders, and cancer, thus representing useful pharmacological targets. The function and interaction with drugs of OCTNs have been studied in intact cell systems and in proteoliposomes. The latter experimental model enables reduced interference from other transporters or enzyme pathways. Using proteoliposomes, the molecular bases of toxicity of some drugs have recently been revealed. Therefore, proteoliposomes represent a promising experimental tool suitable for large-scale molecular screening of interactions of OCTNs with chemicals regarding human health.
Collapse
Affiliation(s)
- Lorena Pochini
- Laboratory of Biochemistry and Molecular Biotechnology, Department BEST (Biologia, Ecologia, Scienze della Terra), University of Calabria, Italy
| | | | | | | |
Collapse
|
33
|
Schmitt KC, Rothman RB, Reith MEA. Nonclassical pharmacology of the dopamine transporter: atypical inhibitors, allosteric modulators, and partial substrates. J Pharmacol Exp Ther 2013; 346:2-10. [PMID: 23568856 DOI: 10.1124/jpet.111.191056] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The dopamine transporter (DAT) is a sodium-coupled symporter protein responsible for modulating the concentration of extraneuronal dopamine in the brain. The DAT is a principle target of various psychostimulant, nootropic, and antidepressant drugs, as well as certain drugs used recreationally, including the notoriously addictive stimulant cocaine. DAT ligands have traditionally been divided into two categories: cocaine-like inhibitors and amphetamine-like substrates. Whereas inhibitors block monoamine uptake by the DAT but are not translocated across the membrane, substrates are actively translocated and trigger DAT-mediated release of dopamine by reversal of the translocation cycle. Because both inhibitors and substrates increase extraneuronal dopamine levels, it is often assumed that all DAT ligands possess an addictive liability equivalent to that of cocaine. However, certain recently developed ligands, such as atypical benztropine-like DAT inhibitors with reduced or even a complete lack of cocaine-like rewarding effects, suggest that addictiveness is not a constant property of DAT-affecting compounds. These atypical ligands do not conform to the classic preconception that all DAT inhibitors (or substrates) are functionally and mechanistically alike. Instead, they suggest the possibility that the DAT exhibits some of the ligand-specific pleiotropic functional qualities inherent to G-protein-coupled receptors. That is, ligands with different chemical structures induce specific conformational changes in the transporter protein that can be differentially transduced by the cell, ultimately eliciting unique behavioral and psychological effects. The present overview discusses compounds with conformation-specific activity, useful not only as tools for studying the mechanics of dopamine transport, but also as leads for medication development in addictive disorders.
Collapse
Affiliation(s)
- Kyle C Schmitt
- Department of Neurosurgery, New York University School of Medicine, 455 First Ave., Public Health Laboratories (8th Floor), New York, New York 10016, USA.
| | | | | |
Collapse
|
34
|
Fujisawa I, Kitamura Y, Okamoto R, Murayama K, Kato R, Aoki K. Crystal structure of pyrogallol[4]arene complex with phosphocholine: A molecular recognition model for phosphocholine through cation–π interaction. J Mol Struct 2013. [DOI: 10.1016/j.molstruc.2013.01.030] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
35
|
Hsu MF, Yu TF, Chou CC, Fu HY, Yang CS, Wang AHJ. Using Haloarcula marismortui bacteriorhodopsin as a fusion tag for enhancing and visible expression of integral membrane proteins in Escherichia coli. PLoS One 2013; 8:e56363. [PMID: 23457558 PMCID: PMC3574148 DOI: 10.1371/journal.pone.0056363] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Accepted: 01/08/2013] [Indexed: 01/12/2023] Open
Abstract
Membrane proteins are key targets for pharmacological intervention because of their vital functions. Structural and functional studies of membrane proteins have been severely hampered because of the difficulties in producing sufficient quantities of properly folded and biologically active proteins. Here we generate a high-level expression system of integral membrane proteins in Escherichia coli by using a mutated bacteriorhodopsin (BR) from Haloarcula marismortui (HmBRI/D94N) as a fusion partner. A purification strategy was designed by incorporating a His-tag on the target membrane protein for affinity purification and an appropriate protease cleavage site to generate the final products. The fusion system can be used to detect the intended target membrane proteins during overexpression and purification either with the naked eye or by directly monitoring their characteristic optical absorption. In this study, we applied this approach to produce two functional integral membrane proteins, undecaprenyl pyrophosphate phosphatase and carnitine/butyrobetaine antiporter with significant yield enhancement. This technology could facilitate the development of a high-throughput strategy to screen for conditions that improve the yield of correctly folded target membrane proteins. Other robust BRs can also be incorporated in this system.
Collapse
Affiliation(s)
- Min-Feng Hsu
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
- Core Facilities for Protein Structural Analysis, Academia Sinica, Taipei, Taiwan
| | - Tsung-Fu Yu
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, Taiwan
| | - Chia-Cheng Chou
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
- Core Facilities for Protein Structural Analysis, Academia Sinica, Taipei, Taiwan
| | - Hsu-Yuan Fu
- Department of Biochemical Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Chii-Shen Yang
- Department of Biochemical Science and Technology, National Taiwan University, Taipei, Taiwan
- * E-mail: (CSY); (AHJW)
| | - Andrew H. J. Wang
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
- Core Facilities for Protein Structural Analysis, Academia Sinica, Taipei, Taiwan
- Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan
- * E-mail: (CSY); (AHJW)
| |
Collapse
|
36
|
Structures of a Na+-coupled, substrate-bound MATE multidrug transporter. Proc Natl Acad Sci U S A 2013; 110:2099-104. [PMID: 23341609 DOI: 10.1073/pnas.1219901110] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Multidrug transporters belonging to the multidrug and toxic compound extrusion (MATE) family expel dissimilar lipophilic and cationic drugs across cell membranes by dissipating a preexisting Na(+) or H(+) gradient. Despite its clinical relevance, the transport mechanism of MATE proteins remains poorly understood, largely owing to a lack of structural information on the substrate-bound transporter. Here we report crystal structures of a Na(+)-coupled MATE transporter NorM from Neisseria gonorrheae in complexes with three distinct translocation substrates (ethidium, rhodamine 6G, and tetraphenylphosphonium), as well as Cs(+) (a Na(+) congener), all captured in extracellular-facing and drug-bound states. The structures revealed a multidrug-binding cavity festooned with four negatively charged amino acids and surprisingly limited hydrophobic moieties, in stark contrast to the general belief that aromatic amino acids play a prominent role in multidrug recognition. Furthermore, we discovered an uncommon cation-π interaction in the Na(+)-binding site located outside the drug-binding cavity and validated the biological relevance of both the substrate- and cation-binding sites by conducting drug resistance and transport assays. Additionally, we uncovered potential rearrangement of at least two transmembrane helices upon Na(+)-induced drug export. Based on our structural and functional analyses, we suggest that Na(+) triggers multidrug extrusion by inducing protein conformational changes rather than by directly competing for the substrate-binding amino acids. This scenario is distinct from the canonical antiport mechanism, in which both substrate and counterion compete for a shared binding site in the transporter. Collectively, our findings provide an important step toward a detailed and mechanistic understanding of multidrug transport.
Collapse
|
37
|
Khafizov K, Perez C, Koshy C, Quick M, Fendler K, Ziegler C, Forrest LR. Investigation of the sodium-binding sites in the sodium-coupled betaine transporter BetP. Proc Natl Acad Sci U S A 2012; 109:E3035-44. [PMID: 23047697 PMCID: PMC3497817 DOI: 10.1073/pnas.1209039109] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Sodium-coupled substrate transport plays a central role in many biological processes. However, despite knowledge of the structures of several sodium-coupled transporters, the location of the sodium-binding site(s) often remains unclear. Several of these structures have the five transmembrane-helix inverted-topology repeat, LeuT-like (FIRL) fold, whose pseudosymmetry has been proposed to facilitate the alternating-access mechanism required for transport. Here, we provide biophysical, biochemical, and computational evidence for the location of the two cation-binding sites in the sodium-coupled betaine symporter BetP. A recent X-ray structure of BetP in a sodium-bound closed state revealed that one of these sites, equivalent to the Na2 site in related transporters, is located between transmembrane helices 1 and 8 of the FIRL-fold; here, we confirm the location of this site by other means. Based on the pseudosymmetry of this fold, we hypothesized that the second site is located between the equivalent helices 6 and 3. Molecular dynamics simulations of the closed-state structure suggest this second sodium site involves two threonine sidechains and a backbone carbonyl from helix 3, a phenylalanine from helix 6, and a water molecule. Mutating the residues proposed to form the two binding sites increased the apparent K(m) and K(d) for sodium, as measured by betaine uptake, tryptophan fluorescence, and (22)Na(+) binding, and also diminished the transient currents measured in proteoliposomes using solid supported membrane-based electrophysiology. Taken together, these results provide strong evidence for the identity of the residues forming the sodium-binding sites in BetP.
Collapse
Affiliation(s)
| | | | - Caroline Koshy
- Computational Structural Biology Group and
- Departments of Structural Biology, and
| | - Matthias Quick
- Center for Molecular Recognition and
- Department of Psychiatry, Columbia University College of Physicians and Surgeons, New York, NY 10032
| | - Klaus Fendler
- Biophysical Chemistry, Max Planck Institute of Biophysics, 60438 Frankfurt am Main, Germany; and
| | | | | |
Collapse
|
38
|
Wang CIA, Shaikh NH, Ramu S, Lewis RJ. A second extracellular site is required for norepinephrine transport by the human norepinephrine transporter. Mol Pharmacol 2012; 82:898-909. [PMID: 22874414 DOI: 10.1124/mol.112.080630] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The human norepinephrine transporter (NET) is implicated in many neurological disorders and is a target of tricyclic antidepressants and nisoxetine (NX). We used molecular docking simulations to guide the identification of residues likely to affect substrate transport and ligand interactions at NET. Mutations to alanine identified a hydrophobic pocket in the extracellular cavity of NET, comprising residues Thr80, Phe317, and Tyr317, which was critical for efficient norepinephrine (NE) transport. This secondary NE substrate site (NESS-2) overlapped the NX binding site, comprising Tyr84, Phe317, and Tyr317, and was positioned ∼11 Å extracellular to the primary site for NE (NESS-1). Thr80 in NESS-2 appeared to be critical in positioning NE for efficient translocation to NESS-1. Three residues identified as being involved in gating the reverse transport of NE (Arg81, Gln314, and Asp473) did not affect NE affinity for NESS-1. Mutating residues adjacent to NESS-2 abolished NET expression (D75A and L76A) or appeared to affect NET folding (S419A), suggesting important roles in stabilizing NET structure, whereas W308A and F388A at the top of NESS-2 abolished both NE transport and NX binding. Our findings are consistent with a multistep model of substrate transport by NET, for which a second, shallow extracellular NE substrate site (NESS-2) is required for efficient NE transport by NET.
Collapse
Affiliation(s)
- Ching-I A Wang
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, Queensland, Australia
| | | | | | | |
Collapse
|
39
|
Zomot E, Bahar I. A conformational switch in a partially unwound helix selectively determines the pathway for substrate release from the carnitine/γ-butyrobetaine antiporter CaiT. J Biol Chem 2012; 287:31823-32. [PMID: 22843728 PMCID: PMC3442516 DOI: 10.1074/jbc.m112.397364] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
CaiT is a homotrimeric antiporter that exchanges l-carnitine (CRN) with γ-butyrobetaine (GBB) across the bacterial membrane. Three structures have been resolved to date for CaiT, all in the inward-facing state: CRN-bound (with four CRNs per subunit), GBB-bound (two GBBs per subunit), and apo. One of the reported binding sites is the counterpart of the primary site observed in structurally similar transporters. However, the mechanism and pathway(s) of CRN/GBB unbinding and translocation, or even the ability of the substrates to dislodge from the reported binding sites, are yet to be determined. To shed light on these issues, we performed a total of 1.3 μs of molecular dynamics simulations and examined the dynamics of substrate-bound CaiT structures under different conditions. We find that both CRN and GBB are able to dissociate completely from their primary site into the cytoplasm. Substrate molecules initially located at the secondary sites dissociate even faster (within tens of nanoseconds) into the extra- or intracellular regions. Interestingly, the unbinding pathway from the primary site appears to be dictated by the geometry of the unwound part of the transmembrane (TM) helix 3, mostly around Thr100 therein. Arg262 on TM7, which apparently mimics the role of Na+ in CaiT structural homologues, plays a key role in triggering the dissociation of the substrate away from the primary site and guiding its release to the cytoplasm provided that the unwound part of TM3 switches from a shielding to a yielding pose.
Collapse
Affiliation(s)
- Elia Zomot
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | | |
Collapse
|
40
|
Moraes TF, Reithmeier RAF. Membrane transport metabolons. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2012; 1818:2687-706. [PMID: 22705263 DOI: 10.1016/j.bbamem.2012.06.007] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2011] [Revised: 05/28/2012] [Accepted: 06/05/2012] [Indexed: 10/28/2022]
Abstract
In this review evidence from a wide variety of biological systems is presented for the genetic, functional, and likely physical association of membrane transporters and the enzymes that metabolize the transported substrates. This evidence supports the hypothesis that the dynamic association of transporters and enzymes creates functional membrane transport metabolons that channel substrates typically obtained from the extracellular compartment directly into their cellular metabolism. The immediate modification of substrates on the inner surface of the membrane prevents back-flux through facilitated transporters, increasing the efficiency of transport. In some cases products of the enzymes are themselves substrates for the transporters that efflux the products in an exchange or antiport mechanism. Regulation of the binding of enzymes to transporters and their mutual activities may play a role in modulating flux through transporters and entry of substrates into metabolic pathways. Examples showing the physical association of transporters and enzymes are provided, but available structural data is sparse. Genetic and functional linkages between membrane transporters and enzymes were revealed by an analysis of Escherichia coli operons encoding polycistronic mRNAs and provide a list of predicted interactions ripe for further structural studies. This article supports the view that membrane transport metabolons are important throughout Nature in organisms ranging from bacteria to humans.
Collapse
Affiliation(s)
- Trevor F Moraes
- Department of Biochemistry, University of Toronto, Ontario, Canada
| | | |
Collapse
|
41
|
A comparative study of structures and structural transitions of secondary transporters with the LeuT fold. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2012; 42:181-97. [PMID: 22552869 PMCID: PMC3578728 DOI: 10.1007/s00249-012-0802-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2012] [Revised: 02/29/2012] [Accepted: 03/07/2012] [Indexed: 12/22/2022]
Abstract
Secondary active transporters from several protein families share a core of two five-helix inverted repeats that has become known as the LeuT fold. The known high-resolution protein structures with this fold were analyzed by structural superposition of the core transmembrane domains (TMDs). Three angle parameters derived from the mean TMD axes correlate with accessibility of the central binding site from the outside or inside. Structural transitions between distinct conformations were analyzed for four proteins in terms of changes in relative TMD arrangement and in internal conformation of TMDs. Collectively moving groups of TMDs were found to be correlated in the covariance matrix of elastic network models. The main features of the structural transitions can be reproduced with the 5 % slowest normal modes of anisotropic elastic network models. These results support the rocking bundle model for the major conformational change between the outward- and inward-facing states of the protein and point to an important role for the independently moving last TMDs of each repeat in occluding access to the central binding site. Occlusion is also supported by flexing of some individual TMDs in the collectively moving bundle and hash motifs.
Collapse
|
42
|
Cellier MFM. Nutritional immunity: homology modeling of Nramp metal import. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 946:335-51. [PMID: 21948377 DOI: 10.1007/978-1-4614-0106-3_19] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The Natural resistance-associated macrophage proteins (Nramp1 and 2) are proton-dependent solute carriers of divalent metals such as Fe(2+) and Mn(2+) (Slc11a1 and 2). Their expression in both resting and microbicidal macrophages which metabolize iron differently, raises questions about Nramp mechanism of Me(2+) transport and its impact in distinct phenotypic contexts. We developed a low resolution 3D model for Slc11 based on detailed phylogeny and remote homology threading using Escherichia coli Nramp homolog (proton-dependent Mn(2+) transporter, MntH) as experimental system. The predicted fold is consistent with determinations of transmembrane topology and activity; it indicates Slc11 carriers are part of the LeuT superfamily. Homology implies that inverted structural symmetry facilitates Slc11 H(+)-driven Me(2+) import and provides a 3D framework to test structure-activity relationships in macrophages and study functional evolution of MntH/Nramp (Slc11) carriers.
Collapse
Affiliation(s)
- Mathieu F M Cellier
- INRS-Institut Armand-Frappier, Institut National de la Recherche Scientifique, 531, Bd des prairies, H7V 1B7, Laval, QC, Canada.
| |
Collapse
|
43
|
Gärtner RM, Perez C, Koshy C, Ziegler C. Role of Bundle Helices in a Regulatory Crosstalk in the Trimeric Betaine Transporter BetP. J Mol Biol 2011; 414:327-36. [DOI: 10.1016/j.jmb.2011.10.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Revised: 10/04/2011] [Accepted: 10/11/2011] [Indexed: 10/16/2022]
|
44
|
Koldsø H, Noer P, Grouleff J, Autzen HE, Sinning S, Schiøtt B. Unbiased simulations reveal the inward-facing conformation of the human serotonin transporter and Na(+) ion release. PLoS Comput Biol 2011; 7:e1002246. [PMID: 22046120 PMCID: PMC3203053 DOI: 10.1371/journal.pcbi.1002246] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Accepted: 09/12/2011] [Indexed: 11/19/2022] Open
Abstract
Monoamine transporters are responsible for termination of synaptic signaling and are involved in depression, control of appetite, and anxiety amongst other neurological processes. Despite extensive efforts, the structures of the monoamine transporters and the transport mechanism of ions and substrates are still largely unknown. Structural knowledge of the human serotonin transporter (hSERT) is much awaited for understanding the mechanistic details of substrate translocation and binding of antidepressants and drugs of abuse. The publication of the crystal structure of the homologous leucine transporter has resulted in homology models of the monoamine transporters. Here we present extended molecular dynamics simulations of an experimentally supported homology model of hSERT with and without the natural substrate yielding a total of more than 1.5 µs of simulation of the protein dimer. The simulations reveal a transition of hSERT from an outward-facing occluded conformation to an inward-facing conformation in a one-substrate-bound state. Simulations with a second substrate in the proposed symport effector site did not lead to conformational changes associated with translocation. The central substrate binding site becomes fully exposed to the cytoplasm leaving both the Na+-ion in the Na2-site and the substrate in direct contact with the cytoplasm through water interactions. The simulations reveal how sodium is released and show indications of early events of substrate transport. The notion that ion dissociation from the Na2-site drives translocation is supported by experimental studies of a Na2-site mutant. Transmembrane helices (TMs) 1 and 6 are identified as the helices involved in the largest movements during transport. The human serotonin transporter belongs to the family of neurotransmitter transporters, which are located in the presynaptic nerve end, from where it is responsible for termination of synaptic serotonin signaling. Imbalance in serotonin concentration is related to various neuronal conditions such as depression, regulation of appetite etc. Very limited structural information of hSERT is available, but it is believed that the protein functions through an alternating access mechanism, where the central binding site is either exposed to the outside or the inside of the cell. We have previously published an experimentally validated outward-occluded homology model of hSERT, and here we reveal the inward-facing conformation of hSERT from molecular dynamics simulations, from which we can identify the main movements occurring during the translocation. From the inward-facing conformation we observe ion release, revealing important information on the sequence of events during transport. Following transport of the sodium ion, the substrate also shows early events of transport. The ion follows a cytoplasmic pathway as hinted at from experiments, and the ligand binding site becomes fully solvated by water through this same pathway. Experiments using an Asp437Asn mutant of hSERT confirm the prediction that Asp437 is a central residue in controlling ion transport.
Collapse
Affiliation(s)
- Heidi Koldsø
- Center for Insoluble Protein Structures (inSPIN) and Interdisciplinary Nanoscience Center (iNANO), Department of Chemistry, Aarhus University, Aarhus, Denmark
| | - Pernille Noer
- Laboratory of Molecular Neurobiology, Centre for Psychiatric Research, Aarhus University Hospital, Risskov, Denmark
| | - Julie Grouleff
- Center for Insoluble Protein Structures (inSPIN) and Interdisciplinary Nanoscience Center (iNANO), Department of Chemistry, Aarhus University, Aarhus, Denmark
| | - Henriette Elisabeth Autzen
- Center for Insoluble Protein Structures (inSPIN) and Interdisciplinary Nanoscience Center (iNANO), Department of Chemistry, Aarhus University, Aarhus, Denmark
| | - Steffen Sinning
- Laboratory of Molecular Neurobiology, Centre for Psychiatric Research, Aarhus University Hospital, Risskov, Denmark
| | - Birgit Schiøtt
- Center for Insoluble Protein Structures (inSPIN) and Interdisciplinary Nanoscience Center (iNANO), Department of Chemistry, Aarhus University, Aarhus, Denmark
- * E-mail:
| |
Collapse
|
45
|
Fujisawa I, Takeuchi D, Kato R, Murayama K, Aoki K. Crystal Structures of Resorcin[4]arene and Tetramethylated Resorcin[4]arene Complexes Incorporating L-Carnitine through Cation–π Interaction. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2011. [DOI: 10.1246/bcsj.20110166] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
46
|
Li J, Tajkhorshid E. A gate-free pathway for substrate release from the inward-facing state of the Na⁺-galactose transporter. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1818:263-71. [PMID: 21978597 DOI: 10.1016/j.bbamem.2011.09.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Revised: 09/02/2011] [Accepted: 09/10/2011] [Indexed: 10/17/2022]
Abstract
Employing molecular dynamics (MD) simulations, the pathway and mechanism of substrate unbinding from the inward-facing state of the Na(+)-coupled galactose transporter, vSGLT, have been investigated. During a 200-ns equilibrium simulation, repeated spontaneous unbinding events of the substrate from its binding site have been observed. In contrast to the previously proposed gating role of a tyrosine residue (Y263), the unbinding mechanism captured in the present equilibrium simulation does not rely on the displacement and/or rotation of this side chain. Rather, the unbinding involves an initial lateral displacement of the substrate out of the binding site which allows the substrate to completely emerge from the region covered by the side chain of Y263 without any noticeable conformational changes of the latter. Starting with the snapshots taken from this equilibrium simulation with the substrate outside the binding site, steered MD (SMD) simulations were then used to probe the translocation of the substrate along the remaining of the release pathway within the protein's lumen and to characterize the nature of protein-substrate interactions involved in the process. Combining the results of the equilibrium and SMD simulations, we provide a description of the full translocation pathway for the substrate release from the binding site into the cytoplasm. Residues E68, N142, T431, and N267 facilitate the initial substrate's displacement out of the binding site, while the translocation of the substrate along the remainder of the exit pathway formed between TM6 and TM8 is facilitated by H-bond interactions between the substrate and a series of conserved, polar residues (Y138, N267, R273, S365, S368, N371, S372, and T375). The observed molecular events indicate that no gating is required for the release of the substrate from the crystallographically captured structure of the inward-facing state of SGLT, suggesting that this conformation might represent an open, rather than occluded, state of the transporter. This article is part of a Special Issue entitled: Membrane protein structure and function.
Collapse
Affiliation(s)
- Jing Li
- Department of Biochemistry, College of Medicine, Beckman Institute, and Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | | |
Collapse
|
47
|
Abstract
Ion-coupled solute transporters are responsible for transporting nutrients, ions, and signaling molecules across a variety of biological membranes. Recent high-resolution crystal structures of several transporters from protein families that were previously thought to be unrelated show common structural features indicating a large structural family representing transporters from all kingdoms of life. This review describes studies that led to an understanding of the conformational changes required for solute transport in this family. The first structure in this family showed the bacterial amino acid transporter LeuT, which is homologous to neurotransmitter transporters, in an extracellularly oriented conformation with a molecule of leucine occluded at the substrate site. Studies with the mammalian serotonin transporter identified positions, buried in the LeuT structure, that defined a potential pathway leading from the cytoplasm to the substrate binding site. Modeling studies utilized an inverted structural repeat within the LeuT crystal structure to predict the conformation of LeuT in which the cytoplasmic permeation pathway, consisting of positions identified in SERT, was open for diffusion of the substrate to the cytoplasm. From the difference between the model and the crystal structures, a simple "rocking bundle" mechanism was proposed, in which a four-helix bundle changed its orientation with respect to the rest of the protein to close the extracellular pathway and open the cytoplasmic one. Subsequent crystal structures from structurally related proteins provide evidence supporting this model for transport.
Collapse
Affiliation(s)
- Gary Rudnick
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06520-8066, United States.
| |
Collapse
|
48
|
Zomot E, Bahar I. Protonation of glutamate 208 induces the release of agmatine in an outward-facing conformation of an arginine/agmatine antiporter. J Biol Chem 2011; 286:19693-701. [PMID: 21487006 DOI: 10.1074/jbc.m110.202085] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Virulent enteric pathogens have developed several systems that maintain intracellular pH to survive extreme acidic conditions. One such mechanism is the exchange of arginine (Arg(+)) from the extracellular region with its intracellular decarboxylated form, agmatine (Agm(2+)). The net result of this process is the export of a virtual proton from the cytoplasm per antiport cycle. Crystal structures of the arginine/agmatine antiporter from Escherichia coli, AdiC, have been recently resolved in both the apo and Arg(+)-bound outward-facing conformations, which permit us to assess for the first time the time-resolved mechanisms of interactions that enable the specific antiporter functionality of AdiC. Using data from ∼1 μs of molecular dynamics simulations, we show that the protonation of Glu-208 selectively causes the dissociation and release of Agm(2+), but not Arg(+), to the cell exterior. The impact of Glu-208 protonation is transmitted to the substrate binding pocket via the reorientation of Ile-205 carbonyl group at the irregular portion of transmembrane (TM) helix 6. This effect, which takes place only in the subunits where Agm(2+) is released, invites attention to the functional role of the unwound portion of TM helices (TM6 Trp-202-Glu-208 in AdiC) in facilitating substrate translocation, reminiscent of the behavior observed in structurally similar Na(+)-coupled transporters.
Collapse
Affiliation(s)
- Elia Zomot
- Department of Computational & Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | | |
Collapse
|
49
|
Substrate specificity and ion coupling in the Na+/betaine symporter BetP. EMBO J 2011; 30:1221-9. [PMID: 21364531 DOI: 10.1038/emboj.2011.46] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2010] [Accepted: 01/31/2011] [Indexed: 11/09/2022] Open
Abstract
BetP is an Na(+)-coupled betaine-specific transporter of the betaine-choline-carnitine (BCC) transporter family involved in the response to hyperosmotic stress. The crystal structure of BetP revealed an overall fold of two inverted structurally related repeats (LeuT-fold) that BetP shares with other sequence-unrelated Na(+)-coupled symporters. Numerous structures of LeuT-fold transporters in distinct conformational states have contributed substantially to our understanding of the alternating access mechanism of transport. Nevertheless, coupling of substrate and co-transported ion fluxes has not been structurally corroborated to the same extent. We converted BetP by a single-point mutation--glycine to aspartate--into an H(+)-coupled choline-specific transporter and solved the crystal structure of this mutant in complex with choline. The structure of BetP-G153D demonstrates a new inward-facing open conformation for BetP. Choline binding to a location close to the second, low-affinity sodium-binding site (Na2) of LeuT-fold transporters is facilitated by the introduced aspartate. Our data confirm the importance of a cation-binding site in BetP, playing a key role in a proposed molecular mechanism of Na(+) and H(+) coupling in BCC transporters.
Collapse
|
50
|
Molecular basis of substrate-induced permeation by an amino acid antiporter. Proc Natl Acad Sci U S A 2011; 108:3935-40. [PMID: 21368142 DOI: 10.1073/pnas.1018081108] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Transporters of the amino acid, polyamine and organocation (APC) superfamily play essential roles in cell redox balance, cancer, and aminoacidurias. The bacterial L-arginine/agmatine antiporter, AdiC, is the main APC structural paradigm and shares the "5 + 5 inverted repeat" fold found in other families like the Na(+)-coupled neurotransmitter transporters. The available AdiC crystal structures capture two states of its transport cycle: the open-to-out apo and the outward-facing Arg(+)-bound occluded. However, the role of Arg(+) during the transition between these two states remains unknown. Here, we report the crystal structure at 3.0 Å resolution of an Arg(+)-bound AdiC mutant (N101A) in the open-to-out conformation, completing the picture of the major conformational states during the transport cycle of the 5 + 5 inverted repeat fold-transporters. The N101A structure is an intermediate state between the previous known AdiC conformations. The Arg(+)-guanidinium group in the current structure presents high mobility and delocalization, hampering substrate occlusion and resulting in a low translocation rate. Further analysis supports that proper coordination of this group with residues Asn101 and Trp293 is required to transit to the occluded state, providing the first clues on the molecular mechanism of substrate-induced fit in a 5 + 5 inverted repeat fold-transporter. The pseudosymmetry found between repeats in AdiC, and in all fold-related transporters, restraints the conformational changes, in particular the transmembrane helices rearrangements, which occur during the transport cycle. In AdiC these movements take place away from the dimer interface, explaining the independent functioning of each subunit.
Collapse
|